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Summary

Analysis and Control of Nonlinear Systems with Stability and
Performance Guarantees

A Linear Parameter-Varying Approach

Across various domains in engineering, e.g., in the mechatronics, the automotive
and the aerospace industry, there is a constant push for higher performance in
terms of speed, accuracy, throughput, and power efficiency. These ever-growing
performance requirements have led to both increasingly complex engineering systems
and increasingly complicated models to describe their behavior with sufficient
accuracy. The resulting dynamic system models have become dominantly nonlinear,
time-varying, or even exhibiting spatial-varying behavior.
While such complexity of the dynamic models has increased rapidly over the past
decades, most tools commonly used in the industry to analyze and control these
systems still rely on results from the Linear Time-Invariant (LTI) framework, which
limits the ability to reach the currently targeted performance requirements. The
main advantages of the current LTI framework are that it provides systematic,
intuitive, computationally efficient, and relatively easy-to-use tools for analysis
and design of controllers to ensure stability and performance guarantees, which
contribute to its popularity. Moreover, it also provides effective methods to shape
the performance of the resulting closed-loop system. Some attempts have been
made to extend the systematic LTI results to nonlinear systems through the use
of so-called surrogate models. Surrogate modeling approaches, e.g., the Linear
Parameter-Varying (LPV) framework, approximate or embed the nonlinear system
dynamics in an easier-to-work-with model structure. This simplifies the analysis
and controller design in exchange for some conservativeness in the representation.
Although many successful applications of surrogate techniques have led to high
industrial interest, naive use of these approaches can lead to improper guarantees
of global stability and performance for the underlying nonlinear systems. On the
other hand, for nonlinear dynamic systems, there also exists a plethora of results
on stability analysis and controller synthesis techniques which directly operate on
the nonlinear model. Nonetheless, for these methods, there is a lack of available
approaches for performance shaping. Furthermore, most of the methods are too
complex, requiring significant expertise and complicated design choices from the
user compared to the easy-to-use methods available for LTI controller design. This
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heavily hampers the adoption of nonlinear analysis and synthesis techniques in the
industry.

To this end, a novel framework is proposed for systematic and computationally
efficient analysis and control of nonlinear systems to ensure global stability and
performance guarantees. In addition, the proposed framework provides intuitive
performance shaping just like in the LTI case. To achieve this, crucial questions
that are addressed are: (i) how to systematically and computationally efficiently
analyze stability and performance of nonlinear systems, (ii) how to use surrogate
representations to achieve convex controller synthesis for nonlinear systems under
general performance shaping concepts, (iii) how to reduce the used surrogate model
complexity for control to ensure computational efficiency for large, complex models.

To achieve true systematic analysis of nonlinear systems with global stability and
performance guarantees, we propose the use of stronger, equilibrium independent
notions, in particular, universal shifted and incremental stability and performance.
Using these concepts, stability and performance are analyzed w.r.t. all (forced)
equilibrium points of the system (universal shifted stability) or w.r.t. convergence
to all steady state trajectories of the system (incremental stability). This makes
these notions advantageous to achieve global stability performance analysis, as they
are independent of a particular equilibrium point or trajectory of the system.

One of our main contributions is to provide a systematic and computationally effi-
cient framework for both universal shifted and incremental stability and performance
analysis of Continuous-Time (CT) and Discrete-Time (DT), Multi-Input-Multi-
Output (MIMO) nonlinear systems. This is achieved by developing analysis results
for universal shifted and incremental dissipativity analysis with quadratic supply
functions of nonlinear systems. We show that these analysis conditions can be cast
as classical dissipativity tests of linearization-like system representations. Further-
more, we show that these linearization-like system representations can naturally
be represented through LPV embeddings. This significantly simplifies the analy-
sis problem, and, importantly, allows the problem to be solved computationally
efficiently by using various existing LPV techniques.

Based on these analysis results, we also develop both universal shifted and incre-
mental controller synthesis algorithms with a crucial nonlinear realization step
of the resulting controller for CT and DT, MIMO nonlinear systems. Similar
to the analysis results, we show that through the LPV framework, the proposed
controller design procedures can be cast as a standard LPV synthesis problem.
To this end, an intuitive and easy-to-use software implementation to realize the
proposed framework-based analysis and controller synthesis has been developed in
the LPVcore Toolbox for MATLAB.

Finally, we provide a novel, neural network based, scheduling dimension reduction
method for LPV models. This allows one to reduce the computational burden for
the provided, LPV-based, analysis and controller synthesis results for universal
shifted and incremental dissipativity. This is especially of high importance when
the developed methods are applied to large-scale, complex systems. Together, these
results constitute a systematic and computationally efficient framework for analysis
and control of nonlinear systems with global stability and performance guarantees
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while providing intuitive performance shaping.
The theoretical results are demonstrated on a wide range of academic examples,
lab setups, and real-world applications. Through these demonstrations, the benefits
of the proposed approaches are shown in terms of improved closed-loop stability
and performance properties. Moreover, it is shown that the proposed approaches
simultaneously achieve significantly better performance than existing standard LPV
control algorithms.
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1
Introduction

In our society, we are constantly improving systems and processes across
various domains to satisfy increasingly higher performance requirements,

for example in terms of speed, accuracy, throughput, and power efficiency.
The engineering solutions to cope with these increasingly higher performance
requirements have led to more complex systems and consequently also more
complicated dynamic models in order to describe these system sufficiently
accurately. This has resulted in dynamic models with dominantly nonlinear,
time-varying, or even spatial-varying behavior. Nonetheless, methods for
Linear Time-Invariant (LTI) systems are still widely used in industry today,
as they provide systematic and computationally efficient tools in order to
analyze and design controllers which allows to ensure and shape stability
and performance guarantees of LTI systems. Over the last decades, various
methods have been developed in order to also analyze and control nonlinear
dynamic systems. Nonetheless, for such systems, there does not exist the
same systematic and computationally efficient framework for analysis and
controller design as in the LTI case. Therefore, as the main objective
of this thesis, we aim to develop a systematic, computationally efficient
framework for the analysis and control of nonlinear systems in order to
ensure stability and performance guarantees. In this introductory chapter,
we give an overview of tools that are available in order to analyze and
design controllers for nonlinear systems and highlight the open problems
and challenges. Moreover, we present an outline of the thesis and its main
contributions.



2 Chapter 1. Introduction

1.1 Demand for Increased Performance

In engineering, we are constantly improving systems and processes to satisfy the
increasingly demanding performance requirements of society, e.g., in terms of
power efficiency, speed, accuracy, etc. These demands for higher performance
requirements stem from the challenges that we face today, such as reducing our
environmental footprint and increasing energy efficiency, and increasing automation
and throughput of production. In order to cope with these demands for increased
performance for systems and processes, the engineering solutions for them and
the domain(s) in which they operate have become more complex, e.g. in terms of
scale or inclusion of multi-physical dynamic phenomenon. For example, for high
precision mechatronic systems, like wafer scanners and wire bonders, to achieve
the desired production output despite the increasingly smaller scales at which
they operate, not only mechanical effects, but also multi-physical effects, such as
thermal and electromagnetic dynamics, are needed to be taken into account. Also in
aerospace engineering, to extend the operational lifetime and increase the guidance
and navigation control accuracy of spacecraft, control algorithms are required that
take into account aerodynamical effects and account for wind disturbances in order
to safely and reliably land spacecraft back on Earth. (Lamnabhi-Lagarrigue et al.
2017).

(a) ASML Wafer Scanner. (b) ESA Space Rider.

Figure 1.1: Complex Dynamic Systems.

Therefore, in order to realize the increasing performance demands for engineering
systems, more accurate descriptions of dynamics of these systems are required,
which take into account the corresponding effects. This has led to the behavior
of these systems becoming increasingly dominated by nonlinear, time-varying or
sometimes even spatial-varying dynamics, hence, it becomes inevitable to deal with
these effects.

While the systems and their dynamical models have grown significantly in complexity,
much of the tools used nowadays in industry to analyze and control these systems
based on a dynamical model still rely on the Linear Time-Invariant (LTI) theory
and the corresponding tools that were developed in the 20th century. These tools
are still commonly used because they are systematic, intuitive, computationally
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efficient, and relatively easy-to-use in order to analyze and design controllers to
ensure stability and shape the performance of LTI systems. Moreover, for LTI
systems, analysis and controller design are widely supported by various popular
software packages, such as MATLAB (The MathWorks, Inc. 2022) and Python
(Python Control 2022). However, with systems becoming more complex with
increasing performance requirements, the ability of the LTI tools to cope with
these dynamics and achieve the desired stability and performance requirements
is becoming increasingly difficult. While there is a plethora of results available
for analysis and control of nonlinear dynamical systems, there unfortunately does
not exist a comparable systematic framework for both the analysis and controller
design as is available in the LTI case. Many of the tools in the nonlinear domain
are often cumbersome to use, specific to their application domain, computationally
intensive, and/or require expert knowledge. Furthermore, they also heavily focus
on guaranteeing stability of the nonlinear system, much like the early linear tools,
without being concerned about what kind of performance they achieve or how to
shape this performance to the specific users needs. Finally, there is a lack of reliable
software support for analysis and controller synthesis tools for nonlinear systems.
The lack of a systematic framework and software support heavily contributes to the
slow and limited adoption of the plethora of tools available for nonlinear systems.
Hence, with the increase in system complexity, in most if not all domains, there
is an increasing need for systematic, computationally efficient, easy-to-use tools
to analyze and synthesize controllers for nonlinear dynamical systems in order to
ensure stability and shape performance of systems in engineering.

In the next section, we will discuss the various methods that are available to analyze
and control nonlinear systems to ensure stability and performance requirements.

1.2 Analysis and Control of Nonlinear Systems

1.2.1 Nonlinear systems

When considering dynamical systems with nonlinear behavior, they are often
represented by nonlinear state-space models of the form:

ξx(t) = f(x(t), w(t));
z(t) = h(x(t), w(t)).

(1.1)

For (1.1), t ∈ T ⊆ R is time, where for Continuous-Time (CT) systems, ξ = d
dt and

T = R (or an interval of R), and for Discrete-Time (DT) systems, ξ = q, i.e., the
discrete time-shift operator with qx(t) := x(t+ 1), and T = Z (or an interval of Z).
Furthermore, x(t) ∈ Rnx is the vector-valued state variable associated with (1.1) at
time t, w(t) ∈ Rnw is the vector-valued input of the system, and z(t) ∈ Rnz is the
vector-valued output of the system. Moreover, the functions f : Rnx × Rnw → Rnx

and h : Rnx × Rnw → Rnz are assumed to be sufficiently smooth such that the
solutions of (1.1) exists for all t ∈ T .
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1.2.2 Analysis and Synthesis for Nonlinear Systems

Early Works and Frequency Domain Methods

The analysis of dynamical systems represented by nonlinear differential equations,
goes back to the late 19th century with the early works of mathematicians like
Poincaré, in the form of analysis of differential equations (Poincaré 1881), and
Lyapunov, with stability analysis of dynamical systems (Lyapunov 1892). However,
these were not immediately picked up by the engineers at that time, and would
only later be rediscovered and reapplied in the systems and control theory.

Early analysis of nonlinear systems from an engineering perspective focussed on
analyzing the response of nonlinear systems in terms of periodic and frequency
domain behavior, like other LTI methods at that time. For example, Duffing and Van
der Pol, among others, focussed on the analysis of the periodic and frequency domain
behavior of mechanical and electrical oscillators with nonlinear behavior (Duffing
1918; Van der Pol 1926). This analysis from a frequency domain perspective for
nonlinear systems was later formalized in terms of describing functions, which was an
early method to analyze the response of a systems for a single sinusoidal input (Mees
and Bergen 1975). This also led to the development of other approaches to represent
and analyze frequency domain behavior of nonlinear systems, such as nonlinear
Bode diagrams (Pavlov, Van de Wouw, et al. 2007), best linear approximations
(Schoukens et al. 2009) and generalized frequency response functions (Schetzen
1980), see (Rijlaarsdam et al. 2017) for an overview. However, these approaches are
only valid for specific systems types, are restricted to single sinusoidal excitations,
and/or are only valid for Single-Input-Single-Output (SISO) systems. While many
of these analysis methods have been developed, their usage for controller design
and synthesis methods has remained limited, as they are not able to capture all
the relevant dynamics, and/or the high complexity of the resulting analysis of the
system.

Modern Control Theory

Around the 1950s, the development on what we now call modern control methods
started. These modern control methods predominantly relied on the state-space
representation of dynamical systems, e.g., (1.1), and these methods are still com-
monly used today. Maybe one of the most influential developments during this
era, was the (re)discovery of the work on stability analysis of unforced autonomous
dynamical systems by Lyapunov (Lyapunov 1892) in the West, later popularized
by Kalman (Kalman and Bertram 1960). The key insight of Lyapunov was that
stability of these systems could be analyzed without explicit knowledge of their
solutions. By analyzing the rate of change of a function representing the energy of
the system, which we nowadays know as a Lyapunov function, see also Figure 1.2,
stability could be concluded. Even nowadays, the most widely used method for
the analysis of stability of (equilibrium points of) nonlinear systems is through
Lyapunov functions. The Lyapunov concept of stability analysis has been extended
in many directions, including to systems of the form (1.1) with inputs leading to
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input-to-state stability (Sontag 1989), to controllability of nonlinear systems, and
to control Lyapunov functions (Sontag 1983). This also led to various developments
of control methods, based on ensuring stability through construction of Lyapunov
functions and controllers such that Lyapunov stability is guaranteed. For example,
Lyapunov redesign (Khalil 2015), backstepping (Kokotović and Sussmann 1989),
sliding mode control (Young et al. 1999), and many other methods.
However, these methods predominantly focus on guaranteeing stability, where
performance mostly only comes in the form of enforcing a decay rate of the Lyapunov
function. Moreover, expert knowledge is required to apply these methods, as the
design is often done by hand. For example, in terms of constructing a Lyapunov
function or feedback control law to ensure stability of a desired equilibrium point.
This also makes application of these methods to more complex, larger, systems
increasingly difficult or even infeasible.

function
Lyapunov

state-space

Figure 1.2: Depiction of a Lyapunov function ( ), a trajectory of a system ( ),
and evaluation of the Lyapunov function along the trajectory ( ).

Luré Systems and Linear Matrix Inequalities

Other early modern control developments, focussed on the analysis of so-called Luré
systems, named after Anatoliy Luré (Luré and Postnikov 1944). These systems can
be modeled as an LTI system G in feeback with a nonlinear, possible time-varying,
static nonlinearity ψ (Khalil 2002), see also Figure 1.3. Early developments for
these systems focussed on analyzing stability of the origin of the state-space for
certain classes of nonlinearities ψ. This led to the famous Circle criterion and Popov
Criterion (Luré and Postnikov 1944; Popov 1961), which, for a SISO G, could
be used to verify stability through analyzing its Nyquist plot. This significantly
simplified the analysis of these types of nonlinear systems, as the well-known LTI
tools could be redeployed for this purpose. The Circle and Popov criterion were later
also reformulated to Linear Matrix Inequality (LMI) conditions using Lyapunov
stability theory by Yakubovich (Yakubovich 1964), and led to the well known
Kalman-Yakubovich-Popov (KYP) Lemma (Rantzer 1996), giving a connection
between time and frequency domain inequalities for LTI systems.
These developments have led to analysis and control design tools for Luré type
systems (Arcak and Kokotović 2001; Arcak, Larsen, et al. 2003). Furthermore,
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Figure 1.4: LFR System.

analysis of Luré systems also lead to extensions to systems represented by Linear
Fractional Representations (LFRs), whereby an LTI system G is connected to a time-
varying and/or nonlinear function/operator ∆ (see Figure 1.4), with analysis through
Integral Quadratic Constraints (IQCs) (Megretski and Rantzer 1997; Veenman et al.
2016). As the techniques for Luré type systems and LFRs extend LTI methods,
they are attractive for analysis and control of nonlinear systems. However, Luré
type systems and LFRs remain limited in the types of nonlinear systems they can
represent. Moreover, they are also limited by the types of nonlinearities in ψ and ∆
they can handle to arrive at feasible analysis and synthesis methods.

Input-Output Analysis

The early results on Luré systems also led to notions of input-output stability
of systems (Zames 1966), whereby a system was seen stable if its outputs were
bounded and continuous. In this way, performance, could be further generalized to
express input-output behavior of systems. This also resulted in various concepts to
quantify the performance of systems, such as through passivity and the L2-gain (for
LTI systems connected to positiveness realness and the H∞ norm of the transfer
function representation), and in the widely used small-gain theorem, connecting to
robustness properties of interconnections of nonlinear systems (Khalil 2002; Van
der Schaft 2017). This subsequently led to control design methods based on these
concepts, for example passivity and L2 based control (Ortega and Garcia-Canseco
2004; Van der Schaft 2017). Later on, these performance concepts, such as passivity
and induced L2-gain analysis, were unified for LTI systems with Lyapunov based
stability analysis through the so-called dissipativity concept by Willems (Willems
1972). These results were also extended to nonlinear system descriptions and general
input-output maps (Hill and Moylan 1980), but initially without results for controller
design. Besides providing a joined framework for stability and performance analysis,
dissipativity theory has also been used in developing various control strategies for
nonlinear systems (Van der Schaft 2017; Brogliato et al. 2020). Nonetheless, while
these methods allow to provide stability and performance guarantees for nonlinear
systems, direct applications of them is often difficult and requires high expertise
of the user. In addition, only stability of an a priori chosen equilibrium point or
trajectory can be guaranteed, hence, requiring reanalysis and/or redesign of the
controller when multiple reference trajectories or disturbances are considered.
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Equilibrium Free Analysis

Besides the results based on the standard Lyapunov notion of stability for a single
equilibrium point, in the recent decade, increasing attention has been devoted
towards equilibrium free notions of stability. We will also refer to these equilibrium
free stability concepts, and their related performance notions, as global stability
and performance, as they consider stability and performance in a global sense, not
limited to a particular equilibrium point or trajectory. These notions are especially
relevant for nonlinear systems as these can have multiple equilibrium points or even
equilibrium trajectories, but also for stability analysis of networks and interconnec-
tions of systems, as determining equilibria for these systems is difficult. Equilibrium
independent stability/dissipativity is one such notion (Jayawardhana 2006; Hines
et al. 2011; Simpson-Porco 2019), which we will refer to as universal shifted sta-
bility/dissipativity such that it is not confused with other stability/dissipativity
notions that are also independent of the equilibrium points of the system. Universal
shifted stability/dissipativity considers stability/dissipativity w.r.t. to each (forced)
equilibrium point of the system, instead of w.r.t. one fixed point, e.g., the origin,
as is the case in ‘standard’ stability analysis, see also Figure 1.5. Some results also
exist in ensuring these stability and passivity based performance concepts through
controller design (Jayawardhana 2006; Castaños et al. 2009; Kawano et al. 2021).

1x

2x

∗x

Figure 1.5: Universal shifted stabil-
ity – stability w.r.t. each (forced)
equilibrium point x∗.
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3x

Figure 1.6: Incremental stability –
stability between each trajectory.

Another, stronger, equilibrium free concept is that of incremental stability, whereby
stability is analyzed between all trajectories of the system, see also Figure 1.6.
The earliest work considering a similar notion of stability have been developed
independently by Opial (Opial 1960) and Demidovich (Demidovich 1961), see also
the historical overview in (Jouffroy 2005). The notion of incremental stability as an
input-output property was first proposed by Zames (Zames 1966) as a property on
the continuity and stability of nonlinear systems and later extended to an induced
system gain concept (Romanchuk and James 1996). These notions have later
been modernized to various similar notions, such as a Lyapunov framework for
incremental stability (Angeli 2002), convergence theory (Pavlov, Pogromsky, et al.
2004), and contraction theory (Lohmiller and Slotine 1998). The relations between
these notions have also been studied (Jouffroy and Fossen 2010; Rüffer et al. 2013;
Tran et al. 2018). Furthermore, these notions of stability have proven to be useful
for other problems, such as synchronization of networked systems and observer
design (Pogromsky et al. 2002; Sharma and Kar 2011) and some early results exist
for controller design (Pavlov, Van de Wouw, et al. 2006; Scorletti, Fromion, et al.
2015; Manchester and Slotine 2018). Extensions of contraction theory towards
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passivity (Forni, Sepulchre, and Van der Schaft 2013; Van der Schaft 2013) and
dissipativity (Forni and Sepulchre 2013) based formulations have also been made.
While results in this direction are promising, a full framework for analysis and
controller synthesis to guarantee these global stability and performance properties
has not been developed. The current results remain limited to only L2-gain and
passivity based performance notions and are mainly available only to CT systems.
In addition, shaping the closed-loop behavior of systems such certain desired global
performance specifications are satisfied has also not been well explored. Moreover,
for a large part of the current methods using these notions, the analysis or controller
design needs to be done by hand, which requires high expertise of the user and
becomes infeasible for more complex systems. Computationally efficient tools for
analysis and controller synthesis have also not been well explored.

Geometric Methods and Port-Hamiltonian Systems

Another notable development were the geometric methods in the 1980s (Isidori
1995; Nijmeijer and Van der Schaft 2016). In these methods, techniques from
differential and Riemannian geometry were applied to the analysis of nonlinear
dynamical systems. These techniques largely shaped our current understanding
of properties of nonlinear systems such as controllability and observability. Some
notable methods resulting from these geometric methods are feedback linearization
(Isidori 1995), widely used for the control of robotic systems, and the development
of Port-Hamiltonian methods, including the (energy) shaping of the closed-loop
behavior of Port-Hamiltonian systems (Van der Schaft and Jeltsema 2014), which
also uses results from passivity and dissipativity theory.
From a mathematical perspective, these methods are elegant. However, this has
also resulted in these approaches requiring high expertise of the user. The expert
knowledge required to apply these methods to systems has severely limited their
applicability in industry.

Online Control Methods

Besides the controller design methods discussed previously for nonlinear systems,
whereby a controller is designed/synthesized a priori, there also exist various online
control methods that compute the control action by solving an online optimization
problem. These methods have the advantage that any constraint, on the state, input,
and output, can directly be taken into account in the optimization problem. One
such method is nonlinear Model Predictive Control (MPC) (Mayne and Michalska
1990; Grüne and Pannek 2017), which builds on top of the previously discussed
stability and performance principles from optimal control. Several nonlinear MPC
algorithms have also been implemented in popular software packages such as
MATLAB (The MathWorks, Inc. 2022).
The downside of applying online control methods, such as nonlinear MPC, to
nonlinear systems is that the resulting optimization problem is almost exclusively
non-convex. The non-convexity of the optimization problem makes it difficult to
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find a global minimum and it is computationally more expensive to solve compared
to convex problems. Moreover, for nonlinear MPC algorithms it is also difficult to
ensure the optimization problem is recursively feasible, making it more difficult to
ensure safe operation. In some cases the problems can be convexified, but at the cost
of increased conservatism in terms of the solution, e.g. through the use of surrogate
models (see also Section 1.2.3), such as based on the Linear Parameter-Varying
(LPV) framework (Hanema et al. 2017), or through an iterative method which
uses a convex approximation of the original problem as in Sequential Quadratic
Programming (SQP) (Diehl et al. 2009).

Learning based Methods

The final branch of nonlinear methods that we will discuss, which have received
increasing amounts of attention over the last decade are learning based methods. For
learning based methods the controller is adapted or learned through interactions
with, or based on data of, the system to be controlled. Adaptive control methods,
such as Model Reference Adaptive Control (MRAC) and Self-Tuning Control (STC),
were the earliest of such approaches, whereby the controller is adapted to achieve
stabilization or asymptotic tracking under plant uncertainties and/or disturbance
uncertainties (Tao 2014; Annaswamy and Fradkov 2021). These adaptive control
methods build on top of general stability results for nonlinear systems. However,
they also carry the downsides of these methods, such as the control designs requiring
to be designed by hand by an expert and the lack of general tools for performance
shaping. This makes them generally difficult to apply to complex systems and
makes it difficult to ensure the desired performance specifications.

Modern learning based methods use recent advances in machine learning, whereby
Gaussian Processes (GPs) or Artifical Neural Networks (ANNs) are used as function
approximators to learn (parts of) the system dynamics and/or to train the controller
based on data. This has resulted in GP and ANN based feedforward methods
(Bolderman et al. 2021; Poot et al. 2022), various supervised and unsupervised,
model free and model based reinforcement learning techniques (Sutton and Barto
2018), such as deep Q-learning (Mnih et al. 2013), Proximal Policy Optimization
(Schulman et al. 2017), and many others (Arulkumaran et al. 2017). However, while
these more recent learning based techniques have achieved incredible results in
many complex tasks (OpenAI et al. 2019; Vinyals et al. 2019), they are very costly
to train, and require vasts amounts of data and expertise. More importantly, these
methods generally do not have formal stability and performance guarantees like
the other previously discussed nonlinear control methods. For implementation of
these methods in real worlds systems this is crucial, as stability and performance
guarantees allow for guarantees w.r.t. the behavior and safety of these systems.
Although there have been recent developments which try to establish such results
(Gouk et al. 2021; Pauli et al. 2021; Revay et al. 2021).
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Discussion

While the various nonlinear methods discussed above have successfully been applied
in numerous applications, analyzing nonlinear systems and synthesizing controllers
for them still remains a non-systematic and difficult to be applied process compared
to LTI framework. Additionally, various software tools exist, such as the Control
Systems and Robust Control Toolbox in MATLAB (The MathWorks, Inc. 2022), in
order to analyze and design controllers for LTI systems, while off-the-shelf software
support for nonlinear systems is lacking.

1.2.3 Surrogate Model Approaches

As mentioned in Section 1.1, most of the tools for direct analysis and controller
design for a nonlinear system might be difficult or cumbersome to use. To circumvent
this, one option is to construct a surrogate model, i.e., a representation of the system
that is easier to work with. For example, by constructing a surrogate model which
has a linear relation between inputs and outputs. However, as a consequence of
this, the model might be a more conservative representation of the dynamics of
the nonlinear system, e.g., by being only valid in a certain operating range or
modeling a larger set of behavior. Through a surrogate model, the analysis and
control of the original nonlinear system is then simplified, however, the analysis and
controller design will also be conservative. Next, we will discuss some commonly
used surrogate models for analysis and controller design for nonlinear systems given
in terms of a state-space representation (1.1).

LTI Models

Linearization:

While nowadays most systems exhibit some form of nonlinear dynamics, a large part
of engineering systems can still be (robustly) approximated with sufficient accuracy
using (multiple) LTI models. This allows the analysis and control design for the
system to be done through LTI methods. To construct the LTI model, oftentimes a
linearization of the nonlinear model is taken. Concretely, a certain operating point
(xo, wo) ∈ X × W is considered for the linearization. The nonlinear functions f and
h are then linearized at this operating point via a Taylor expansion, whereby the
0th and 1st order terms are kept and higher order terms are dropped. This results
in the following differential/difference equation

ξx(t) ≈ f(xo, wo) +
(
∂f

∂x
(xo, wo)

)
(x(t) − xo) +

(
∂f

∂w
(xo, wo)

)
(w(t) − wo);

z(t) ≈ h(xo, wo) +
(
∂h

∂x
(xo, wo)

)
(x(t) − xo) +

(
∂h

∂w
(xo, wo)

)
(w(t) − wo).

(1.2)
In case that (xo, wo) corresponds to a linearization point of the system, i.e.,
f(xo, wo) = 0 in CT or f(xo, wo) = xo in DT, then, (1.2) can then written as
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an LTI model in state-space representation of the form

ξx̃(t) = Ax̃(t) +Bw̃(t);
z̃(t) = Cx̃(t) +Dw̃(t);

(1.3)

with x̃ := x − xo, w̃ := w − wo, and z̃ := z − h(xo, wo), where A := ∂f
∂x (xo, wo) ∈

Rnx×nx , B := ∂f
∂w (xo, wo) ∈ Rnx×nw , C := ∂h

∂x (xo, wo) ∈ Rnz×nx , D := ∂h
∂w (xo, wo) ∈

Rnz×nw (Skogestad and Postlethwaite 2001). In case a reliable first principles based
model of the system is missing, linear system identification techniques are commonly
used to identify the dynamics in a neighborhood around the operating point and
obtain an LTI model of the form (1.3) (Ljung 2010).
Classical Methods:
Having obtained an LTI model (1.1) to represent the nonlinear system allows us
to use the plethora of analysis and controller design methods for LTI systems.
The early methods that were developed are mostly based on frequency domain
analysis, and commonly use a transfer-function representation of the LTI system,
i.e., G(s) = C(sI − A)−1B + D for (1.3). Nowadays, these methods are often
referred to as classical control methods (Doyle, Francis, et al. 1990), and are still
commonly used today. For stability and performance analysis this includes the
Bode and Nyquist diagrams (Nyquist 1932; Bode 1945), which are relatively easy to
use as qualitative properties of the system can directly be read from the respective
diagrams plotted for the system. One classical controller design method, also still
commonly used in industry, is loop shaping (Doyle, Francis, et al. 1990). Using loop
shaping, the desirable frequency domain behavior of the closed-loop interconnection
of the plant and the controller is shaped directly.
Modern LTI Methods:
The development of most modern control methods for LTI systems, during the
second half of the 20th century, led to analysis and controller synthesis for optimal
control problems. These optimal control problems were first formulated in terms of
the linear quadratic control problems, such as the Linear-Quadratic Regulator (LQR)
and Linear-Quadratic-Gaussian (LQG) controller (Kalman 1960), which later led to
H∞ and H2 analysis and controller design (Doyle, Glover, et al. 1989). Importantly,
it was also shown how these problems were linked in the time and frequency domain
through the KYP lemma (Rantzer 1996). As aforementioned, the dissipativity
concept (Willems 1972) unified the concepts of (Lyapunov) stability and performance,
such as passivity and H∞ analysis, providing a general framework through which
both analysis and controller synthesis concepts could be formulated. Through LMIs,
these analysis and controller synthesis problems could then be convexified, providing
a computationally efficient framework for both analysis and controller synthesis
for LTI systems to guarantee stability and performance. Additionally, the shaping
of the desired performance was also unified through the generalized plant concept
(Doyle 1983). The generalized plant concept enables systematic controller design in
terms of different controller structures and performance objectives, e.g., four block
mixed sensitivity design, model matching problem, loop shaping design, controllers
with a two degree of freedom structure, and observer designs (Zhou et al. 1996;
Skogestad and Postlethwaite 2001), see also Figure 1.7.
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The analysis and controller synthesis through this framework has paved the way
to many extensions such as robust analysis and control of uncertain LTI systems,
analysis and control through IQCs and the LPV framework, to name a few.
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Figure 1.7: Example of a generalized plant P , which includes the plant G, and
weighting filters W∗, connected to the (to-be-designed) controller K.

This systematic and computationally efficient framework for LTI systems for ana-
lysis and controller design, along with the inclusion of these tools into popular
software packages, such as MATLAB (The MathWorks, Inc. 2022) and Python
(Python Control 2022), has significantly contributed to their wide spread use in the
engineering domain.
However, while stability and dissipativity properties of/around an equilibrium point
of the nonlinear system can be inferred from the stability and dissipativity properties
of the linearization (1.2) at that point, these properties are only valid in some (small)
neighborhood are the considered equilibrium point (Hartman 2002; Khalil 2002;
Van der Schaft 2017). The size of this neighborhood is strongly dependent on
the dynamics of the original nonlinear system, and for control dependent on the
designed controller. In some cases, this can severely limit the applicability of using
LTI models (1.3) for analysis and controller design for nonlinear systems (1.1).
Robust or multi model LTI concepts can extend this range to which LTI methods
can be applied slightly further. Nonetheless, their applicability is still limited as
they do not directly take into account the nonlinear dynamics of the system.

LPV Models

Due to the success and the extensive toolset available for LTI systems, but limitations
for their application to nonlinear systems, there have been various attempts to
extend these results to be used for nonlinear systems. The first attempts that were
made, resulted in the ‘ad-hoc’ methods of gain-scheduling originating form the
1960s for controller design for nonlinear systems (Leith and Leithead 2000). Using
gain-scheduling, a collection of LTI controllers would be synthesized for a collection
of LTI models based on local linearizations of the nonlinear system at different
operating points. This still allowed the existing LTI toolset to be used by doing
analysis and controller design at each individual operating point. By interpolating
between these LTI controllers, performance could be improved when compared



1.2. Analysis and Control of Nonlinear Systems 13

to the use of a single LTI controller, see also Figure 1.8. However, later research
showed that using gain-scheduling, formal stability and performance could only be
achieved if the operating condition changes ‘slowly’ (Desoer 1969; Shamma and
Athans 1991). Hence, this form of gain-scheduling is limited in applicability.
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Figure 1.8: Gain-scheduling illustration, interpolation of different local LTI models.

Later on, gain-scheduling was further extended into what would become the LPV
framework by Shamma (Shamma 1988; Shamma and Athans 1990). In the LPV
framework, information about an external variable, the so-called scheduling-variable,
is used in order to obtain a proxy ‘description’ of the dynamics of the original
nonlinear system, see also Figure 1.9. This corresponding LPV embedding of
the system is formulated in order to infer stability, performance and robustness
requirements of the original nonlinear system. Concretely, for a nonlinear system
(1.1), an LPV model of the form

ξx(t) = A(p(t))x(t) +B(p(t))w(t);
z(t) = C(p(t))x(t) +D(p(t))w(t);

(1.4)

is constructed, where p(t) ∈ P ⊆ Rnp is the scheduling-variable, with P often taken
to be a convex set. Moreover, A : P → Rnx×nx , B : P → Rnx×nw , C : P → Rnz×nx ,
D : P → Rnz×nw , whereA, . . . ,D are often restricted to a certain function class, such
as affine, polynomial, or rational. Furthermore, for this LPV model, there exists some
function η : X × W → P, called the scheduling-map, such that p(t) = η(x(t), w(t)).
Embedding the nonlinear model in an LPV representation was first done using
so-called local methods, whereby linearizations of the system around operating
points, similar to gain-scheduling, or along trajectories are taken, which are then
interpolated to construct the LPV model (Tóth 2010). While controller design using
local methods often works in practice, they are no strict guarantees as the LPV
model only matches the dynamics near the considered operating points. Hence,
later extensions to so-called global methods were made, where the LPV model is
constructed such that it is able to exactly represent the nonlinear system, i.e.,
constructing A, . . .D and η such that f(x,w) = A(η(x,w))x + B(η(x,w))w and
h(x,w) = C(η(x,w))x+D(η(x,w))w for all (x,w) ∈ X × W.
The LPV embedding of a nonlinear system, obtained through either local or global
methods, is non-unique, which has resulted in multiple techniques being developed
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Figure 1.9: LPV embedding of a nonlinear system G and the resulting behaviors:
B: solution set of G; and B′ : solution set of the LPV model for p(t) ∈ P.

to perform this step (Shamma and Cloutier 1993; Leith and Leithead 1998b; Marcos
and Balas 2004; Kwiatkowski, Bol, et al. 2006; Donida et al. 2009; Tóth 2010;
Hoffmann and Werner 2015b; Abbas, Tóth, Petreczky, Meskin, Mohammadpour
Velni, and Koelewijn 2021). Various works have also investigated how to reduce
the complexity or conservativeness of the LPV model for analysis or synthesis
techniques (Hecker and Varga 2005; Beck 2006; Kwiatkowski and Werner 2008;
Hoffmann 2016; Theis et al. 2018; Sadeghzadeh and Tóth 2020). However, these
embedding techniques are far from automated and how the embedding step exactly
influences the obtainable performance for the corresponding controller design is
not straightforward, see e.g. (Kwiatkowski, Bol, et al. 2006). Consequently, the
embedding step is often still performed in an ad-hoc fashion or through local
methods. Despite lack of guarantees for analysis and controller design using a
local LPV embedding of the nonlinear model, this method still sees wide, and
successful, application in industry due to its simplicity (Hoffmann and Werner
2015a). Moreover, it also possible to obtain an LPV model directly using various
data-driven methods, such as system identification techniques (Tóth 2010; Bachnas
et al. 2014; Cox 2018; Verhoek, Beintema, et al. 2022).

Using the LPV framework, the synthesis and analysis results from the LTI framework,
such as dissipativity based analysis and synthesis and the generalized plant concept,
were extended to be used with LPV models while retaining the computational
efficiency of the convex tools that were developed for the LTI framework using
LMIs. This allowed for stability and performance guarantees, such as L2-gain
boundedness or passivity, of nonlinear systems by means of the LPV framework.
The most common approaches for LPV synthesis are based on polytopic LPV
synthesis (Apkarian, Gahinet, and G. Becker 1995; Apkarian and Adams 1998),
Linear Fraction Transformation (LFT) based LPV synthesis using the S-procedure
(Packard 1993; Scorletti and El Ghaoui 1998; Scherer 2001) and gridding-based
LPV synthesis (Wu 1995; Wu 2001). In order to make the use of these methods
more accessible, some of them have also been implemented in various toolboxes for
MATLAB, such as LPVTools (Hjartarson et al. 2015), LCToolbox (Verbandt et al.
2018), IQClab (Veenman 2022), and the LPVcore Toolbox (Boef et al. 2021).

Due to the attractive properties of the LPV synthesis methods, these approaches
have successfully been applied in aerospace, automotive, and renewable energy
applications, to name a few (Mohammadpour Velni and Scherer 2012; Hoffmann
and Werner 2015a). Nonetheless, besides the challenge of (optimally) embedding the
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nonlinear system in an LPV representation, naive application of the LPV approaches
to analyze and design controllers for nonlinear systems can have undesired results.
Namely, the LTI approaches, on which the LPV results are based on, generally
investigate/ensure stability and performance w.r.t. the origin, which due to the
superposition principle, also directly hold w.r.t. other points or trajectories of the
system. It was thought that due to the linear dynamical input-output relations
of LPV systems, the same principle holds. However, it has been shown through
examples that the application of these surrogate model approaches can lead to
undesired results (Scorletti, Fromion, et al. 2015; Koelewijn, Sales Mazzoccante,
et al. 2020). The aforementioned global stability and performance notions, discussed
in Section 1.2.2, have been proposed as a direction to ‘fix’ these problems, however,
the notions themselves and also their connection to the LPV framework have not
been well explored.

Other Surrogate Model Approaches

Besides LTI and LPV models, other surrogate modeling methods have been intro-
duced such as Piecewise-Affine (PWA) models (Sontag 1981; Johansson 1999) and
Takagi-Sugeno (TS) (or sometimes referred to as Takagi-Sugeno-Kang (TSK)) fuzzy
models (Babuška and Verbruggen 1996). Both these model classes consider a set of
affine models which are switched between. Concretely, these models are of the form

ξx(t) = Aix(t) +Biw(t) + bx,i;
z(t) = Cix(t) +Diw(t) + bz,i;

for (x(t), w(t)) ∈ Ωi, and i ∈ [1, . . . , N ], (1.5)

where bx,i ∈ Rnx and bz,i ∈ Rnz are bias terms, N ∈ N is the number of local models
that is considered, and Ωi ⊂ Rnx × Rnw is a partitioning of the state and input
space which determines when which local model, or weighted combination of local
models for TS fuzzy models, is active.
Similar to LPV methods, PWA and fuzzy models can be obtained through various
conversion and modeling methods (Sontag 1981; Babuška 1998), or are obtained
through identification procedures (Takagi and Sugeno 1985; Garulli et al. 2012).
For PWA and fuzzy models, various approaches exist in order to analyze stability
and performance of the model or design controllers in order to ensure stability
and performance requirements (Sontag 1981; Guerra et al. 2009). Similar to the
LTI and LPV methods, these methods exploit the linear/affine properties of their
dynamic relationships to reduce the computational complexity of their analysis and
synthesis procedures. However, the price for reduced complexity is paid in terms of
conservativeness of the system representation, in terms of modeling a larger set of
behavior or only being valid in a certain region. This exact trade-off is very complex
and has not been analyzed in literature.
Besides the aforementioned high level similarities between these various surrogate
model approaches, on the level of the model representation, there are also close
connections between PWA, fuzzy models, and the LPV framework. Namely, under
certain considerations, the LPV framework allows for the representation of both
PWA and fuzzy models (Petreczky and Mercère 2012; Rotondo et al. 2015). Due to
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the good support for controller design and relative flexibility on how to obtain the
model (through either global or local approaches) in the LPV framework, it has
become a more popular choice for analysis and controller design compared to PWA
and fuzzy based methods.

1.3 Open Problems and Challenges

In Section 1.2, we have given an overview of the various techniques that have
been developed and are still used to analyze stability and performance of nonlinear
systems and to design controllers to ensure these notions. However, as we have also
discussed, the plethora of techniques that are available all have their own advantages
and disadvantages, resulting in various open problems and challenges when it comes
to analysis and control design for nonlinear systems. Next, we will summarize these
open problems and challenges.
We have seen that on the one hand we have the nonlinear methods, which are
directly applied to and operate on the nonlinear model, giving guarantees on
the nonlinear system based various extensive theoretical results. However, these
nonlinear methods still have issues that are yet to be addressed that prevent their
application and widespread use in industry:

• Application and computational complexity: Most of the nonlinear
methods for analyzing nonlinear models and designing controllers for them
are generally difficult to apply. For example, for backstepping and sliding
mode control, the resulting controller design problem to ensure stability are
non-constructive, e.g., in terms of constructing a Lyapunov function and/or
feedback control law to ensure stability of the origin of the nonlinear system.
This requires expert knowledge and becomes infeasible for large, complex
nonlinear systems. Alternatively an optimization problem can be formulated
for analysis, e.g., in terms of finding a Lyapunov function (Bobiti and Lazar
2014). However, for nonlinear systems, the resulting optimization problem
is almost exclusively non-convex, for which it is generally more difficult to
find a global minimum and it is computationally more expensive than convex
problems. In some cases the problems can be convexified, but at the cost of
increased conservatism in terms of the solution, e.g. through Sum-of-Squares
(SOS) approaches or via iterative approximation like in SQP. Furthermore,
setting up these optimization problems still requires expert knowledge of the
user.

• Performance considerations: Many of the nonlinear analysis and controller
design methods focus solely on stability of the closed-loop interconnection,
with much less attention towards what kind of performance they obtain or how
to shape the closed-loop performance. While stability is a prerequisite when
designing and implementing controllers for real world applications, quantifying
and shaping the performance that these controllers obtain is one of the most
important design aspects for a control engineer. For LTI systems, there exists
a systematic framework for shaping the controller and/or closed-loop behavior
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of the system. Namely, through the generalized plant concept together with
various approaches for designing weighting filters to achieve the desired closed-
loop behavior. In the LTI domain, these shaping techniques also nicely connect
to shaping the frequency domain behavior through the KYP lemma. On the
other hand, for nonlinear systems, there does not exist a systematic approach
for shaping their closed-loop performance. While there are some results for
nonlinear methods regarding passivity, with respect to energy shaping, and
induced L2-gain, there is no systematic framework on how to achieve the
desired performance. Furthermore, while there are methods for frequency
domain analysis of nonlinear systems (Rijlaarsdam et al. 2017), they are
restrictive and of high complexity, which has limited their applicability for
controller synthesis.

• Equilibrium dependent guarantees: Most existing analysis and control
techniques for nonlinear systems check or ensure stability and performance
w.r.t. a single point in the state-space, often the origin of the associated state-
space. The systematic approaches in the LTI framework also focus on showing
stability and performance w.r.t. the origin, however, due to the superposition
principle these properties also hold w.r.t. other enforced equilibria and other
trajectories of the system. For nonlinear systems this is not the case, hence,
one would need to specifically check stability and performance w.r.t. to each
desired (forced) equilibrium or trajectory, meaning for specific reference and
disturbance signals. This makes the analysis or controller synthesis excessively
complex. Equilibrium independent, or global, stability and performance
notions aim to solve this problem by decoupling the stability and performance
analysis from a specific equilibrium point. However, these notions have not
been well-explored in general with most of them focussing on CT systems only.
Additionally, similar to the previous issues pointed out, also for these global
notions the existing results are difficult and/or computationally expensive to
apply and how to shape the performance of the system, for controller design, is
also not well explored. Hence, there is a lack of a systematic overall framework
for the analysis and synthesis of these global stability and performance notions.

On the other hand we also have the various surrogate model approaches, which
construct a ‘simpler’ model, often with linear properties, to simplify the analysis
or controller design problem. These surrogate model approaches seem like an
excellent choice as they build on the systematic framework that already exists for
LTI methods. Moreover, they offer computationally efficient results, in terms of
convex optimization problems, and offer a systematic framework for performance
shaping. Nonetheless, these methods still have issues that are to be addressed:

• Model conservativeness and complexity: Due to the use of a surrogate
model, the analysis or controller design for a nonlinear system is inherently
conservative. Moreover, construction of the surrogate model is often non-
unique, which raises the question which one is the ‘best’, e.g., in terms of a
trade-off between complexity and conservativeness. Furthermore, not much
research has been performed on quantifying how conservative a particular
surrogate model is. Similarly, when the surrogate model is used to enable
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controller synthesis, the impact of the construction of the surrogate model
on the obtainable closed-loop performance is also generally unknown a priori
and hence it is difficult to compensate for it in advance.

• Equilibrium dependent guarantees: Many of the analysis and controller
synthesis results for surrogate models are extensions of those from the LTI
domain. While this has allowed to formulate powerful results in terms of
convex optimization problems, it has been shown that naive application
of these methods can lead to undesired results (Scorletti, Fromion, et al.
2015; Koelewijn, Sales Mazzoccante, et al. 2020). Namely, as previously
mentioned, the current state-of-the-art LPV methods do not ensure global
stability and performance notions. However, the notions themselves and also
their connection to surrogate model approaches have not been well explored.

1.4 Problem Statement

As aforementioned, taking into account the nonlinear behavior of systems is becoming
more important to push for higher performance in engineering. In the previous
sections, we gave an overview of the existing methods and open problems for the
analysis and control of nonlinear systems that can be used to tackle this. On the one
hand, we have nonlinear methods, which directly take into account the nonlinear
behavior to achieve the desired guarantees. Nonetheless, they are cumbersome to
use, are often not computationally efficient, and/or lack of a systematic framework
for performance analysis and shaping. For engineers in industry to be able to
use these methods effectively, systematic and computationally efficient methods
are essential. Moreover, a framework to shape the performance of systems is also
crucial in order to allow engineers to effectively achieve the desired performance.
On the other hand, we have the surrogate model approaches, which construct a
‘simpler’ model to obtain computationally efficient analysis and controller synthesis
results and build on top of the systematic approaches from the LTI framework,
but lack in guaranteeing stronger global stability and performance notions. These
global stability and performance notions are crucial, as it will ensure that the
guaranteed stability and performance of the nonlinear system is independent of any
specific equilibrium point or trajectory. This allows to investigate stability of all
equilibria at once or convergence of trajectories globally, similar to the stability
guarantees for LTI systems. Therefore, is a need for a systematic framework which
combines the advantages of surrogate model approaches and nonlinear methods,
while addressing their shortcomings, to analyze and shape global stability and
performance of nonlinear systems. This constitutes the formulation of the following
research objective that will be aimed for in this thesis:
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Research Objective

Develop a framework for systematic, computationally efficient, ana-
lysis and control of nonlinear systems to ensure and shape global
stability and performance guarantees.

As previously mentioned, by ‘global’ we mean stability and performance notions
that are independent of a particular reference/equilibrium point, also called ‘equi-
librium independent’. We intend to analyze and ensure these notions through
(global) extensions of dissipativity to guarantee global stability and performance
simultaneously. We will specifically focus on the global notions of universal shifted
and incremental dissipativity. These notions will allow us to guarantee stability
and performance w.r.t. all equilibria and/or all feasible trajectories of the systems
at once, respectively. The ‘performance’ characterization that we will consider
will be in terms of (extensions of) norm based notions, such as the L2-gain. We
will focus on norm based performance characterizations as they can effectively
characterize bounds on the amplification of disturbances, connect to dissipativity,
and are also widely used in the LTI framework. Moreover, this also connects to
the intention of the to-be-developed framework to be able to ‘shape performance’.
Namely, like in the LTI framework, through weighting of the norm based perfor-
mance characterizations, the closed-loop performance can effectively be shaped,
e.g., in terms of disturbance amplification. Furthermore, the intended framework
should be ‘systematic’, meaning the procedures to analyze or perform controller
synthesis should be the same irrespective of the particular dynamics of a nonlinear
system. Moreover, by systematic we also mean that the developed analysis and
control design tools are constructive, such that e.g. Lyapunov/storage functions and
controllers are constructed automatically based on specifications of the user. The
methods in the framework for analysis and controller synthesis should moreover be
‘computationally efficient’, by which we mean that the computations times should be
comparable or a reasonable multiple of the computation time for LTI methods. This
will allow engineers to iterate their analysis and controller designs in a comparable
time frame as in the LTI framework.
While this research objective seems very ambitious, various assumptions will be
taken at different points in the thesis to limit the scope of research. One assumption
in particular that we will take is that the dynamics of the nonlinear systems
that we will consider can be represented by a nonlinear time-invariant state-space
representation, e.g., of the form (1.1). This means we do not explicitly consider
nonlinear systems with

• Time-varying or spatial-varying behavior;

• Infinite dimensional state, input or output spaces;

Moreover, we will also assume that the solutions of the considered systems are
well-posed in some sense, e.g., they exists for all time and are unique. More concrete
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assumptions will be taken along the way. However, even with these assumptions,
the considered class of nonlinear models is still wide and covers a large generality
of phenomena in various domains from electrical and mechanical to chemical and
biological systems.
Next, we will formulate various crucial research questions that are to be addressed
to achieve the overall specified research objective. These research questions relate
to analysis of nonlinear systems, controller synthesis for nonlinear systems, and
handling complexity of nonlinear systems for analysis and synthesis.
Remark 1.1. Analyzing or designing a controller for a nonlinear system starts at
obtaining a model describing the system. This modeling step plays an important
role when analyzing or designing controllers, as the complexity of the model can
heavily influence the computational complexity and feasibility of the analysis and
controller synthesis methods. However, the modeling step is also heavily dependent
on the considered nonlinear system and the analysis and controller design objectives
set by the user. As such, we assume that a model of the considered system we want
to analyze or do controller design for is available to us, in order to focus on the
analysis and controller design steps and not on the modeling.

1.4.1 Analysis

The first key objective in developing the intended framework is analysis. Analyzing
the stability and performance of a given nonlinear system is an important aspect in
analyzing their qualitative behavior, analyzing they satisfy the desired performance
requirements, and analyzing their safety. Moreover, analysis methods are the
foundation in a large part of the development of modern control methods, hence,
why it also plays a key role in our framework. We discussed in Section 1.3 the
shortcomings of existing universal shifted and incremental analysis methods for
nonlinear systems. At a high-level, these shortcomings are due to a lack of a
systematic and computationally efficient framework, with existing results only
being present for specific applications, only focussing on stability or one specific
performance notion, or only focussing on CT systems. This leads us to the following
research question:

Research Question 1

How to systematically and computationally efficiently ana-
lyze universal shifted and incremental dissipativity of CT
and DT nonlinear systems?

1.4.2 Synthesis

After answering Research Question 1, the next key part in the development of
the framework is controller synthesis. Like for the analysis results, as discussed in
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Section 1.3, also for the controller synthesis there is a lack of systematic results
for controller synthesis. Not only is it important for the to-be-designed controller
synthesis methods to ensure universal shifted or incremental stability of the closed-
loop interconnection of plant and controller, they also need to be designed in such
a way that desired corresponding global performance criteria, set by the user, are
satisfied. Furthermore, like for analysis, also for synthesis we want to ensure that the
developed controller synthesis methods are computationally efficient. For controller
synthesis this is even more important, as often times multiple controller designs are
made, which are iterated on till the desired closed-loop behavior is achieved. Hence,
to allow for quick iterations, computational efficiency is also key for controller
synthesis. Finally, another important aspect of controller synthesis is how to shape
the performance in order to ensure user defined desired behavior in terms of the
aforementioned (weighted) norm based bounds, such as (global extensions of) the L2-
gain. As discussed in Section 1.2.3 for LTI and LPV systems we have the generalized
plant concept, which, combined with weighting filters, allows for systematic and
intuitive shaping of the closed-loop in terms of norm based performance bounds.
For LTI systems, these weighting filters also have a clear connection to the resulting
frequency domain behavior of the closed-loop system through the KYP lemma.
For nonlinear systems these general performance shaping concepts are mostly only
considered in conjunction with surrogate models, like through the LPV framework.
However, for general controller design of nonlinear systems, and more specifically for
controller design ensuring global stability and performance guarantees, performance
shaping through these general performance concepts remains largely unexplored.
This leads us to the following research question:

Research Question 2

How to systematically and computationally efficiently design
and shape controllers for CT and DT nonlinear systems
such that universal shifted and incremental performance
requirements and stability are ensured?

1.4.3 Complexity

As mentioned in Section 1.1, systems have significantly increased in complexity
over the last few decades, both in terms of more dominant nonlinear behavior,
and in terms of increase in size, i.e., the order of the dynamics and number of
Input-Output (IO) variables. Hence, why it is of importance to make sure the
developed framework can also cope with these increasingly complex systems. While
computational efficiency of the to-be-developed algorithms will play one part in this,
even for the most computationally efficient algorithms the ‘curse of dimensionality’
or specific nonlinearities can result in the algorithms taking a very long time to
compute or becoming infeasible to run. Hence, a way to reduce the complexity for
analysis and synthesis algorithms of resulting from answering Research Questions 1
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and 2, will be an important part in dealing with complex systems. This leads us to
our final research question:

Research Question 3

How to reduce the complexity for the to-be-developed ana-
lysis and controller synthesis methods to address complex
systems?

1.5 Contributions and Outline of the Thesis

In the previous section, we formulated the research objective of developing a
systematic, computationally efficient framework for global stability and performance
analysis and controller synthesis of nonlinear systems, along with crucial research
questions to be answered to achieve this objective. As previously mentioned, for
global stability and performance, we will focus on universal shifted and incremental
dissipativity. As we will show in the upcoming chapters, these dissipativity notions
can be analyzed through linearization-like representations of the system. We
will propose the use of LPV systems in order to represent these linearization-like
representations. We will show that this will allow us to use methods from the
LPV framework in order to formulate systematic and computationally efficient
analysis and controller synthesis methods for nonlinear systems that guarantee the
aforementioned global stability and performance notions. These developed methods
will form the framework in order to achieve our intended research objective.

In Chapter 2, we will introduce preliminaries on the LPV framework, specifically
on analysis and synthesis of LPV systems and their current application to nonlinear
systems. Furthermore, we will also introduce preliminaries on general dissipativity
theory of nonlinear systems.

Next, Chapter 3 will demonstrate the pitfalls of the current use of the LPV framework
for analysis of nonlinear systems and controller synthesis for them. This will highlight
the need for a different framework for systematic analysis and controller design for
nonlinear systems. We will furthermore also go deep into why, and in which cases,
the current LPV framework fails to ensure the desired stability and performance
guarantees. This chapter is based on the paper (Koelewijn, Sales Mazzoccante,
et al. 2020).

In the next chapters, we first focus on analysis and controller synthesis in CT
only. In Chapter 4, we introduce the first global dissipativity notion, universal
shifted dissipativity. First, as contribution, we present for CT nonlinear systems
how universal shifted dissipativity can be analyzed through dissipativity analysis
of the time-differentiated dynamics of the system. As a second contribution, we
then show that these time-differentiated dynamics can naturally be represented
by an LPV system. Using convex tools from the LPV framework, this then
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allows us to computationally efficiently analyze universal shifted dissipativity of
nonlinear systems. Finally, as a contribution, we present how the analysis tools can
then be extended to controller synthesis tools, again making use of methods from
LPV framework, in order to ensure universal shifted stability and performance of
nonlinear systems. These contributions then address Research Questions 1 and 2
w.r.t. universal shifted dissipativity for CT systems. The contents of this chapter
are based on the paper (Koelewijn, Tóth, and Weiland 2022a).
Subsequently, in Chapter 5, results on incremental dissipativity are presented. In
the chapter, as contribution, a computationally efficient approach will be presented
to analyze incremental dissipativity of CT nonlinear systems. We present how the
dynamics of the variation of a system around trajectories can be used to analyze
incremental dissipativity. We then show these variational dynamics can naturally be
represented by an LPV system. Using this, we then show how we computationally
efficiently analyze incremental dissipativity of nonlinear systems through the use
of the methods from LPV framework. This contribution then addresses Research
Question 1 w.r.t. incremental dissipativity for CT systems. The chapter is based
on the paper (Verhoek, Koelewijn, et al. 2020).
In Chapter 6, we then present how the analysis results of Chapter 5 can be used to
develop a systematic controller synthesis method in order to ensure incremental
dissipativity of nonlinear systems. To achieve this, we will present as contribution
a convex controller synthesis procedure which first synthesizes a controller for
the variational dynamics of the system using the LPV framework. Next, we
develop a realization method for this controller that ensures closed-loop incremental
dissipativity for the original nonlinear system. This contribution then addresses
Research Question 2 w.r.t. incremental dissipativity for CT systems. This chapter
is based on the paper (Koelewijn, Tóth, Nijmeijer, et al. 2022).
With the previous chapters answering Research Questions 1 and 2 for CT systems,
the next two chapters then address these Research Questions for DT nonlinear sys-
tems. In Chapter 7, we first present DT extensions to the incremental dissipativity
based results for analysis and control from Chapters 5 and 6. As contributions,
we show how results similar to the CT results can be obtained for incremental
dissipativity based analysis and controller synthesis of DT systems. These contri-
butions then address Research Questions 1 and 2 w.r.t. incremental dissipativity
for DT systems. This chapter is based on the papers (Koelewijn and Tóth 2021b;
Koelewijn, Tóth, and Weiland 2021).
Next, in Chapter 8, we present the DT extensions of the universal shifted analysis
and controller synthesis results of Chapter 4. As contribution, we first present how
convex universal shifted dissipativity analysis of DT system can be achieved using the
time difference dynamics and methods from LPV framework. As second contribution,
we present how the DT incremental controller synthesis results of Chapter 7 can be
used and simplified to synthesize controllers to ensure universal shifted stability and
performance for DT systems. For this reason, the DT universal shifted extensions
are presented after the DT incremental extensions. These contributions then address
Research Questions 1 and 2 w.r.t. universal shifted dissipativity for DT systems.
Combined with the previous chapters, this then fully addresses Research Questions 1
and 2. The contents of this chapter are based on the paper (Koelewijn, Tóth, and
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Weiland 2022b).
Chapter 9 contains results on scheduling dimension reduction of LPV models.
As contribution, we propose a new ANN based method for scheduling dimension
reduction that achieves a significantly decreased approximation error and has
advantageous properties compared to existing methods. Combined with the results
in Chapters 4 to 8, which use LPV models as part of their procedures, it allows to
reduce the complexity of these procedures, thereby addressing Research Question 3.
The content of the chapter is based on (Koelewijn and Tóth 2020).
Together, the results of Chapters 3 to 9, present methods in order to systematically
and computationally efficiently analyze and design controllers for (complex) nonlin-
ear systems in order to guarantee universal shifted and incremental dissipativity.
With these results, we address the research questions and which together combine
to an overall framework for analysis and controller synthesis for nonlinear systems,
therefore addressing the overall research objective. In Chapter 10 we demonstrate
the capabilities of the developed framework on two realistic applications for con-
troller design. Firstly, an application to a Control Momement Gyroscope (CMG) is
presented, for which a universal shifted controller is developed to track and reject
piecewise constant signals, based on the method discussed in Chapter 4. Secondly,
results are presented on the incremental flight control of a Generic Parafoil Return
Vehicle (GPRV), based on the methods discussed in Chapters 5, 6 and 9. In both
applications, the performance improvements of the ensured global stability and
performance guarantees are demonstrated. Furthermore, in both applications, the
designed controllers achieve significantly better performance compared to current
LPV methods.
Finally, in Chapter 11, we give concluding remarks; highlighting the main contri-
butions of the thesis, and providing recommendations for possible future research
directions that are of interest.
In each of the chapters where we present technical results, we will briefly (re)introduce
the system that is considered and we will briefly refresh the reader on the notation.
This is done for the convenience of the reader, as the thesis is of substantial length
and a variety of different results are presented.



2
Preliminaries

This chapter provides an overview of some existing methods for the
analysis and control of Linear Parameter-Varying (LPV) and nonlinear

systems which will serve as the cornerstone for the results presented in the
following chapters. More specifically, we will review the general stability
and performance analysis of nonlinear systems and LPV systems together
with how they connect to dissipativity theory. Furthermore, we will discuss
the implication of the stability and performance of LPV systems on the
underlying nonlinear system.
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2.1 Introduction

In Chapter 1, we discussed the objective of this thesis to develop a systematic
framework for analysis and control of nonlinear systems to ensure global stability
and performance. We briefly mentioned in Section 1.5 that to achieve this, two
key ingredients will be used, namely global dissipativity notions, which are a
generalization of the dissipativity concept introduced by (Willems 1972), and the
Linear Parameter-Varying (LPV) framework. Hence, in this chapter, we will review
some existing results on the stability and performance of nonlinear systems and
how they connect to dissipativity. Moreover, we will review existing analysis and
controller synthesis results for the LPV framework, which also use the dissipativity
concept. We will also discuss how the LPV framework is currently used for analysis
and control of nonlinear systems.

The chapter is structured as follows. First, in Section 2.2, we give a more in-depth
description on the types of nonlinear systems that we will consider in this thesis.
Next, in Section 2.3, we introduce stability and performance concepts for nonlinear
systems. In Section 2.4, we will introduce dissipativity of nonlinear systems and how
it connects to stability and performance. In Section 2.5, we will give an overview
the analysis and controller synthesis results for LPV systems and briefly discuss how
they can be used to analyze and design controllers for nonlinear systems. Finally,
in Section 2.6, we give a brief summary.

First, some general notation that will be considered in this chapter and throughout
this thesis: R is the set of real numbers, while R+

0 and R+ stand for the set of
non-negative and positive reals, respectively. N and N0 are the set of natural
numbers excluding and including zero, respectively. Z is the set of integers. The
set {n, n+ 1, . . . , m}, with n,m ∈ Z and n ≤ m, is denoted by Im

n . We denote by
Sn the set of real symmetric matrices of size n× n with n ∈ N. The projection of
D := A × B with elements (a, b) onto A is denoted by πa D, meaning a ∈ πa D = A.
The set of functions from X to Y is denoted by YX . For a function V : Rn×Rm → R
for which V (a, b) ∈ R with a ∈ Rn and b ∈ Rm, its gradient w.r.t. a is denoted
by ∇aV (a, b) =

[
∂V
∂a1

(a, b) · · · ∂V
∂an

(a, b)
]
, for functions V with one argument the

subscript for ∇ is dropped. For a vector x ∈ Rn, its Euclidian norm is denoted
by ∥x∥ =

√
x⊤x. For a matrix A ∈ Rn×m, its spectral norm is denoted by

∥A∥ =
√
λmax(A⊤A) (where λmax is the largest eigenvalue), corresponding to the

largest singular value of A. We use (⋆) to denote a symmetric term in a quadratic
expression, e.g., (⋆)⊤Q(a− b) = (a− b)⊤Q(a− b) for Q ∈ Sn and a, b ∈ Rn. The
notation A ≻ 0 (A ⪰ 0) indicates that A ∈ Sn is positive (semi-) definite, while
A ≺ 0 (A ⪯ 0) denotes a negative (semi-)definite A ∈ Sn. The zero-matrix and
the identity matrix of appropriate dimensions are denoted as 0 and I, respectively.
Furthermore, col(x1, . . . , xn) denotes the column vector [x⊤

1 · · ·x⊤
n ]⊤. The (block)

diagonal concatenation of a1, . . . , an is denoted by diag(a1, . . . , an).
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2.2 Nonlinear Systems

In this thesis, when talking about nonlinear systems, we generally consider nonlinear
time-invariant systems in state-space representation of the form:

ξx(t) = f(x(t), w(t));
z(t) = h(x(t), w(t));

(2.1)

where t ∈ T is time, x(t) ∈ X ⊆ Rnx is the state variable associated with (2.1) with
initial condition x(0) = x0 ∈ X , w(t) ∈ W ⊆ Rnw is the input of the system, and
z(t) ∈ Z ⊆ Rnz is the output of the system. Moreover, nx, nw, nz ∈ N, i.e., we only
consider finite dimensional systems. For Continuous-Time (CT) systems, ξ = d

dt ,
such that ξx(t) = d

dtx(t) = ẋ(t), and T = R+
0 . For Discrete-Time (DT) systems,

ξ = q, i.e., the discrete time-shift operator, such that ξx(t) = qx(t) = x(t+ 1), and
T = N0. We assume that the function f : X ×W → Rnx (or in DT f : X ×W → X ) is
continuously differentiable, and we assume that f and the function h : X × W → Z
are such that the solutions of (2.1) are forward complete, i.e., they exists for
all t ∈ T , and are unique. Furthermore, we define the state-transition map
ϕx : T × T × X × WT → X , such that

x(t) = ϕx(t, 0, x(0), w). (2.2)

Finally, we denote the corresponding behavior of (2.1), i.e., the set of all solutions,
by

B :=
{

(x,w, z) ∈ (X ,W,Z)T | (x,w, z) satisfy (2.1)
}
, (2.3)

in CT we additionally assume that x ∈ C1.
Moreover, we will also consider the following definitions of controllability and
observability for nonlinear state-space representations of the form (2.1), adapted
from (Nijmeijer and Van der Schaft 2016):

Definition 2.1 (Controllability). The nonlinear state-space representation (2.1) is
called controllable, if for any x1, x2 ∈ X , there exists a finite time T and an input
signal w ∈ πw B such that x2 = ϕx(T, 0, x1, w).

Definition 2.2 (Observability). The nonlinear state-space representation (2.1) is
called observable, if for any x0,1, x0,2 ∈ X and for every w ∈ WT , the two trajectories
z1, z2 ∈ ZT with z1(t) = h(ϕx(t, 0, x0,1, w), w(t)) and z2(t) = h(ϕx(t, 0, x0,2, w), w(t))
being identical, i.e., z1(t) = z2(t), ∀ t ∈ T , implies that x0,1 = x0,2.

2.3 Stability and Performance

2.3.1 Stability

In this section, we will discuss stability analysis of nonlinear systems described by
(2.1). When we talk about stability of nonlinear systems in the conventional sense,
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stability is characterized w.r.t. a particular equilibrium point of the system. The
equilibrium points of (2.1) can be described as

CT:
{

0 = f(x∗, w∗);
z∗ = h(x∗, w∗);

DT:
{
x∗ = f(x∗, w∗);
z∗ = h(x∗, w∗).

(2.4)

Let us denote the corresponding set of equilibrium points by

E := {(x∗, w∗, z∗) ∈ X × W × Z | (x∗, w∗, z∗) satisfy (2.4)} , (2.5)

and define X := πx∗ E , W =: πw∗ E , and Z := πz∗ E . We assume that w.l.o.g.1
(0, 0, 0) ∈ E . In this thesis, when we talk about stability of a system (2.1) at
an equilibrium point x∗ ∈ X , we always consider the behavior of the system
for the constant input trajectory corresponding to the equilibrium point x∗, i.e.,
w ≡ w∗ with (x∗, w∗, z∗) ∈ E . We use the notation w ≡ w∗ to denote that
w(t) = w∗ ∈ W , ∀ t ∈ T . Let us denote the behavior of (2.1) for an input trajectory
w̄ ∈ WT , by

Bw(w̄) := {(x,w, z) ∈ B | w = w̄ ∈ WT }. (2.6)

Furthermore, we define the shorthand notation B0 := Bw(w ≡ 0), specifically for
the zero input trajectory behavior.

The following definition is adapted from (Khalil 2002; Van der Schaft 2017).

Definition 2.3 (Stability). The nonlinear system (2.1), at the equilibrium point
x∗ ∈ X , and corresponding w∗ ∈ W , is

• stable, if for each ϵ > 0, there exists a δ(ϵ) > 0 such that

∥x(0) − x∗∥ < δ(ϵ) =⇒ ∥x(t) − x∗∥ < ϵ, (2.7)

for all t ∈ T and x ∈ πx Bw(w ≡ w∗).

• asymptotically stable, if it is stable and attractive, i.e., there exists a δ > 0
such that for w ≡ w∗

∥x(0) − x∗∥ < δ =⇒ lim
t→∞

∥ϕx(t, 0, x(0), w) − x∗∥ = 0. (2.8)

• unstable, if it is not stable.

When referring to stability of a system without mentioning the specific equilibrium
point, we always refer to stability of the origin of the state-space, corresponding to
(0, 0, 0) ∈ E , unless specified otherwise.

A common tool to analyze stability of systems is Lyapunov stability theory. However,
before introducing it, we briefly give the following definition:

1We can always do a coordinate transformation such that this is the case (Nijmeijer and Van
der Schaft 2016).
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Definition 2.4 (Cn-space). A function f : Rp → Rq is in C0 if it is continuous.
For n ∈ N, the function f is in Cn, it is n-times continuously differentiable, i.e.,
its first n derivatives exists and are continuous. The function f is in C∞ if its
derivatives of all orders exist and are continuous.

Definition 2.5 (Class K functions). A function α : R+
0 → R+

0 , with α ∈ C0, belongs
to the set K, i.e., it is called a class K function, if it is strictly increasing and
α(0) = 0.

Definition 2.6 (Definite functions (Scherer and Weiland 2015)). Consider a
function V : X → R and x∗ ∈ X . The function V is:

• positive definite (w.r.t. x∗), if there exists a function α ∈ K such that
V (x) ≥ α(∥x− x∗∥) for all x ∈ X .

• positive semi-definite, if V (x) ≥ 0 for all x ∈ X .

• decrescent (w.r.t. x∗), if there exists a function α ∈ K such that V (x) ≤
α(∥x− x∗∥) for all x ∈ X .

• negative definite (w.r.t. x∗) or negative semi-definite, if −V is positive definite
or positive semi-definite respectively.

Definition 2.7 (Class Q functions). A function V : X → R+
0 belongs to the set

Qx∗ , where x∗ ∈ X ⊆ Rnx , if there exists functions α1, α2 ∈ K, such that

α1(∥x− x∗∥) ≤ V (x) ≤ α2(∥x− x∗∥), (2.9)

for all x ∈ X . Note that this equivalently means that V is positive definite and
decrescent w.r.t. x∗ (Scherer and Weiland 2015).

Remark 2.1. Note that quadratic functions of the form V (x) = (x−x∗)⊤M(x−x∗)
with M ∈ Snx and M ≻ 0 satisfy that V ∈ Qx∗ . Namely, in that case it holds that

λmin(M) ∥x− x∗∥2 ≤ V (x) ≤ λmax(M) ∥x− x∗∥2
, (2.10)

where λmin(M) and λmax(M) are the smallest and largest eigenvalues of M , respec-
tively (Scherer and Weiland 2015).

Next, we give the following theorem on Lyapunov stability, adopted from (Khalil
2002; Haddad and Chellaboina 2008; Lazar et al. 2009):

Theorem 2.1 (Lyapunov stability). The nonlinear system given by (2.1) is stable
at x∗ ∈ X with the corresponding w∗ ∈ W , if there exists a Lyapunov function
V : X → R+

0 with V ∈ C1 and V ∈ Qx∗ such that

CT: ∂

∂t
V (x(t)) ≤ 0, (2.11a)

DT: V (x(t+ 1)) − V (x(t)) ≤ 0, (2.11b)

for all t ∈ T and x ∈ πx Bw(w ≡ w∗). Moreover, the nonlinear system is asymp-
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totically stable at x∗ ∈ X , if there exists a Lyapunov function V : X → R+
0 with

V ∈ C1 and V ∈ Qx∗ and there exists a function α ∈ K such that

CT: ∂

∂t
V (x(t)) ≤ −α(∥x(t) − x∗∥), (2.12a)

DT: V (x(t+ 1)) − V (x(t)) ≤ −α(∥x(t) − x∗∥), (2.12b)

for all t ∈ T and x ∈ πx Bw(w ≡ w∗).

As we consider nonlinear systems given by (2.1) with f ∈ C1, we can also formulate
the following equivalent Lyapunov based conditions for (asymptotic) stability (Khalil
2002; Bof et al. 2018):

Theorem 2.2 (Lyapunov stability, relaxed form). The nonlinear system given by
(2.1) is stable at x∗ ∈ X with the corresponding w∗ ∈ W , if there exists a Lyapunov
function V : X → R+

0 with V ∈ C1 and V ∈ Qx∗ such that

CT: ∂

∂t
V (x(t)) ≤ 0, (2.13a)

DT: V (x(t+ 1)) − V (x(t)) ≤ 0, (2.13b)

for all t ∈ T and x ∈ πx Bw(w ≡ w∗). Moreover, the nonlinear system is asymp-
totically stable at x∗ ∈ X , if (2.13) holds, but with strict inequality except when
x(t) = x∗.

The Lyapunov function V can be seen as representing the internal energy in the
system, which for the system to be (asymptotically) stable always has to decrease
over time, till it reaches zero, coinciding with the equilibrium point, see also
Figure 1.2. As analyzing (2.13) directly based on the trajectories is generally
infeasible, the check for Lyapunov stability is often rewritten to a test on a value
set (Khalil 2002; Haddad and Chellaboina 2008).

Lemma 2.1 (Lyapunov stability using value set). If there exists a Lyapunov
function V : X → R+

0 with V ∈ C1 and V ∈ Qx∗ such that

CT: ∇V (x)f(x,w∗) ≤ 0, (2.14a)
DT: V (f(x,w∗)) − V (x) ≤ 0, (2.14b)

for all x ∈ X , then, the system is stable at x∗ ∈ X with corresponding w∗ ∈ W .
Similarly, if (2.14) holds, but with strict inequality for all x ∈ X \ {x∗}, then the
system is asymptotically stable at x∗ ∈ X .



2.3. Stability and Performance 31

2.3.2 Performance

Input-output properties of systems are important to analyze not only their stability,
but also to quantify their performance. Popular performance metrics can be
described by the gain from (input) signals in Lpe to (output) signals in Lqe for
p, q = 1, 2, . . . ,∞ in CT or from sequences in ℓpe to sequences in ℓqe in DT. These
function spaces are defined as follows, adopted from (Van der Schaft 2017):

Definition 2.8 (Lp/ℓp space). For p ∈ N, the signal space Lp or sequence space ℓp

is the space of functions f : R+
0 → Rn or f : N0 → Rn, respectively, for which

Lp : ∥f∥p :=
(∫ ∞

0
∥f(t)∥p

dt

) 1
p

< ∞, ℓp :
( ∞∑

t=0
∥f(t)∥p

) 1
p

< ∞, (2.15)

where ∥·∥ is the Euclidian (vector) norm 2. The signal space L∞ or sequence space
ℓ∞ is the space of functions f : R+

0 → Rn or f : N0 → Rn, respectively, for which

L∞ : ∥f∥∞ := ess sup
t∈R+

0

∥f(t)∥ < ∞, ℓ∞ : ∥f∥∞ := sup
t∈N0

∥f(t)∥ < ∞. (2.16)

Definition 2.9 (Truncation). For signals f : R+
0 → Rn or sequences f : N0 → Rn,

define fT : R+
0 → Rn with T ∈ R+

0 or fT : N0 → Rn with T ∈ N0, respectively, by

fT (t) :=
{
f(t) 0 ≤ t ≤ T

0 t > T
, (2.17)

which expresses the truncation of f on [0, T ].

Definition 2.10 (Extended Lp/ℓp space). For p = 1, 2, . . . ,∞, the extended Lp or
ℓp space, denoted by Lpe or ℓpe, respectively, is the space of all functions f : R+

0 → Rn

or f : N0 → Rn such that fT ∈ Lp for all T ∈ R+
0 or fT ∈ ℓp for all T ∈ N0,

respectively. For p ∈ N, the accompanying norms of these truncated signals or
sequences 3 are denoted by

Lpe : ∥f∥p,T :=
(∫ T

0
∥f(t)∥p

dt

) 1
p

, ℓpe : ∥f∥p,T :=
(

T∑
t=0

∥f(t)∥p

) 1
p

,

(2.18a)
and for L∞e and ℓ∞e by

L∞e : ∥f∥∞,T := ess sup
t∈[0, T ]

∥f(t)∥ , ℓ∞e : ∥f∥∞,T := sup
t∈IT

0

∥f(t)∥ . (2.18b)

Having defined these signal spaces, we can then define the notion of Lp-Lq-gain of
a system (2.1), adopted from (Van der Schaft 2017).

2One can also define these functions spaces for different vector norms. However, the Euclidian
norm is used here as it will be beneficial in deriving analysis and controller synthesis results later
in the thesis.

3Note that these truncated norms are defined on the full signal/sequence f , but can similarly
be taken on the truncated version fT , but these would not change their definition.
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Definition 2.11 (Lp-Lq-gain). A CT nonlinear system given by (2.1) is said to
have a finite Lp-Lq-gain, or in DT a finite ℓp-ℓq-gain, if there is a finite γ ≥ 0 and
function ζ : X → R such that

∥z∥q,T ≤ γ ∥w∥p,T + ζ(x0), (2.19)

for all T ≥ 0 and (x,w, z) ∈ B with w ∈ Lpe in CT or w ∈ ℓpe in DT. The induced
Lp-Lq-gain/ℓp-ℓq-gain of (2.1) is the infimum of γ such that (2.19) still holds. If
p = q, we will refer to this as the (induced) Lp-gain/ℓp-gain.

One of the most well known and widely used performance metrics of this type is
the induced L2-gain, which can be seen as a bound on mapping input signals with
finite energy to output signal with finite energy. For stable Linear Time-Invariant
(LTI) systems, the induced L2-gain of the system is equal to the H∞ norm of its
corresponding transfer function representation. Other popular choices are peak-to-
peak performance, through the induced L∞-gain, and the generalized H2 nominal
performance, through the induced L2-L∞-gain (Scherer and Weiland 2015).
Another popular performance notion, is that of passivity, adopted from (Van der
Schaft 2017).
Definition 2.12 (Passivity). Assume that, for a nonlinear system given by (2.1),
nw = nz, i.e., the number of inputs is equal to the number of outputs. The nonlinear
system is said to be passive, if there exists a function ζ : X → R such that

CT:
∫ T

0
z(t)⊤w(t) dt ≥ ζ(x0), (2.20a)

DT:
T∑

t=0
z(t)⊤w(t) ≥ ζ(x0), (2.20b)

for all T ≥ 0 and (x,w, z) ∈ B.

Passivity is often used for analysis of physical systems, e.g., electrical networks or
mechanical systems, due it close connection to the power flow of the system. For
LTI systems, passivity also corresponds to positive realness of its transfer function
representation (Van der Schaft 2017).
While for LTI systems, the various discussed performance notions can generally be
analyzed by analyzing properties of the transfer function representation, analyzing
these performance notions for nonlinear systems directly based on their definitions
is more difficult if not impossible. For nonlinear systems, performance and stability
is often analyzed through the concept of dissipativity.

2.4 Dissipativity

2.4.1 Dissipativity of nonlinear systems

Dissipativity analysis allows for a joint framework for stability and performance
analysis of systems, as was first formulated by Willems for LTI systems (Willems
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1972). In this thesis, we use a similar definition of dissipativity, adopted from
(Van der Schaft 2017; Brogliato et al. 2020).

Definition 2.13 (Classical dissipativity). The nonlinear system given by (2.1) is
dissipative w.r.t. a supply function s : W × Z → R, if there exists a storage function
V : X → R+

0 with V ∈ C0 and V ∈ Q0, such that

CT: V(x(t1)) − V(x(t0)) ≤
∫ t1

t0

s(w(t), z(t)) dt, (2.21a)

DT: V(x(t1 + 1)) − V(x(t0)) ≤
t1∑

t=t0

s(w(t), z(t)), (2.21b)

for all t0, t1 ∈ T with t1 ≥ t0, and (x,w, z) ∈ B.

The storage function V can be interpreted as a representation of the stored ‘energy’
in the system w.r.t. a single point of neutral storage (energy minimum), where V is
zero. The point of neutral storage can be any point in the state-space, however,
it is often considered to be at the origin, i.e., x = 0, which we will also consider
to be the case. The supply function s can be seen as representing the energy
flowing in and out of the system. To distinguish the notion of dissipativity in
Definition 2.13 from other dissipativty based concepts that will be introduced in
later chapters of this thesis, from here on, we will refer to this form of dissipativity
as classical dissipativity. Similar as for Lyapunov stability, we can also formulate
time differentiated/difference versions of the classical dissipation inequality (2.21)
and value set based conditions (Willems 1972; Brogliato et al. 2020):

Lemma 2.2 (Differentiated/Difference Dissipation Inequality). If, for the nonlinear
system given by (2.1) and the supply function s : W × Z → R, there exists a storage
function V : X → R+

0 with V ∈ C1 and V ∈ Q0 such that it holds that

CT: ∂

∂t
V(x(t)) ≤ s(w(t), z(t)), (2.22a)

DT: V(x(t+ 1)) − V(x(t)) ≤ s(w(t), z(t)), (2.22b)

for all t ∈ T and (x,w, z) ∈ B, then, the nonlinear system is classically dissipative
w.r.t. the supply function s.

Lemma 2.3 (Classical dissipativity condition). If, for the nonlinear system given
by (2.1) and the supply function s : W × Z → R, there exists a storage function
V : X → R+

0 with V ∈ C1 and V ∈ Q0 such that it holds that

CT: ∇V(x)f(x,w) ≤ s(w, h(x,w)), (2.23a)
DT: V(f(x,w)) − V(x) ≤ s(w, h(x,w)), (2.23b)

for all (x,w) ∈ X × W, then, the nonlinear system is classically dissipative w.r.t.
the supply function s.
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Next, we will discuss how classical dissipativity implies stability and performance
of a system.

2.4.2 Inducing stability

As discussed, the storage function can be seen as representing the internal energy
of the system, similar to a Lyapunov function, and hence plays a crucial role in the
connection between classical dissipativity and stability. The following theorem is
adopted from (Van der Schaft 2017).

Theorem 2.3 (Stability from classical dissipativity). Assume the nonlinear system
given by (2.1) is dissipative under a storage function V ∈ C1 w.r.t. a supply function
s that satisfies

s(0, z) ≤ 0, (2.24)

for all z ∈ Z, then, the nonlinear system (2.1) is stable. If the supply function
satisfies (2.24), but with strict inequality when z ̸= 0, and the system is observable,
then the nonlinear system is asymptotically stable.

Remark 2.2. The observability requirement in Theorem 2.3 for asymptotic sta-
bility, can also be weakened to only require zero state observability or zero state
detectability of (2.1), see e.g. (Moylan 2014; Nijmeijer and Van der Schaft 2016;
Van der Schaft 2017; Brogliato et al. 2020) for more details.

2.4.3 Inducing performance

While the storage function connects classical dissipativity to stability, the supply
function connects it to various performance notions, often used in practice for
control design. A popular choice of supply function is the class of quadratic ones of
the form

s(w, z) =
[
w
z

] [
Q S
⋆ R

] [
w
z

]
, (2.25)

where Q ∈ Snw , R ∈ Snz , and S ∈ Rnw×nz , which connect to passivity and the norm
based performance notions discussed in Section 2.3.2. Classical dissipativity w.r.t.
a supply function of the form (2.25) is also often referred to as (classical) (Q,S,R)
dissipativity. Moreover, not every choice of supply function (or triplet (Q,S,R)) is
interesting, e.g., if s(w, z) ≥ 0 for all w ∈ W , z ∈ Z then every system is classically
dissipative, and if s(w, z) < 0 then no system can be classically dissipative in the
considered sense(Moylan 2014). Moreover, scaling a supply function by a positive
scalar results in the same effective supply function, as we can scale the storage
function by the same amount. Similarly, if we want to make the link to stability for
(Q,S,R) supply functions, then, by Theorem 2.3, we need to ensure that R ⪯ 0.

For L2-gain boundedness and passivity, we have the following connections to classical
(Q,S,R) dissipativity of the system. See (Van der Schaft 2017) for more details.



2.5. LPV Analysis and Control 35

Lemma 2.4 (L2-gain from classical dissipativity). If the nonlinear system given
by (2.1) is classically (Q,S,R) dissipative with4 (Q,S,R) = (γ2I, 0,−I), then the
system has a bounded L2-gain of γ.

Lemma 2.5 (Passivity from classical dissipativity). If the nonlinear system given
by (2.1) is classically (Q,S,R) dissipative with5 (Q,S,R) = (0, I, 0), then the system
is passive.

For L∞ and generalized H2, i.e. L2-L∞, performance, the corresponding supply
functions are (Q,S,R) = (αI, 0, 0), where α is a slack variable, and (Q,S,R) =
(γI, 0, 0), where γ is the corresponding L2-L∞ bound, respectively. However, extra
conditions are required, besides satisfying the classical dissipation inequality, in
order to ensure these performance notions, see (Scherer and Weiland 2015) for the
LTI case.

2.5 LPV Analysis and Control

2.5.1 LPV systems

As mentioned in Chapter 1, the LPV framework has become a popular choice for
analysis and control of nonlinear systems as it builds upon the systematic and
computational efficient analysis and controller synthesis results for LTI systems.
In this thesis, we consider LPV systems described in terms of the state-space
representation:

ξx(t) = A(p(t))x(t) +B(p(t))w(t);
z(t) = C(p(t))x(t) +D(p(t))w(t);

(2.26)

where x(t) ∈ Rnx is the state associated with (2.26) with initial condition x(0) =
x0 ∈ Rnx , w(t) ∈ Rnw and z(t) ∈ Rnz are the input and output of the system,
p(t) ∈ P ⊆ Rnp with np ∈ N is the scheduling-variable, with P often taken to
be a convex set, and A : P → Rnx×nx , B : P → Rnx×nw , C : P → Rnz×nx ,
D : P → Rnz×nw are matrix functions. Like for nonlinear systems given by (2.1),
we assume that the solutions of (2.26) are forward complete and unique. For a
given scheduling trajectory p ∈ PT , we define the behavior of (2.26) as

Bp(p) :=
{

(x,w, z) ∈ (X ,W,Z)T | (x,w, z, p) satisfy (2.26)
}
, (2.27)

moreover, we define the full behavior of (2.26), i.e., for all scheduling trajectories, as

B̆p :=
⋃

p∈PT

Bp(p). (2.28)

4Or equivalently, (Q,S,R) = (γI, 0,−γ−1I) for γ > 0.
5Or equivalently, (Q,S,R) = (0, 1

2 I, 0).
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The behavior of (2.26) for the zero input and a particular scheduling trajectory
p ∈ PT is denoted by Bp,0(p). We also define the state-transition map ϕp,x :
T × T × X × WT × PT → X for (2.26), such that

x(t) = ϕp,x(t, 0, x(0), w, p). (2.29)

Besides the state-space representation, there also exist other representations for
LPV systems, such as the Input-Output (IO) and kernel representation (Tóth 2010).
However, the majority of the available analysis and controller synthesis methods
assume that the LPV system is given by a state-space representation (2.26). Hence,
in this thesis, we will only focus on LPV systems described by the state-space
representation (2.26).
As aforementioned, the main interest towards the LPV framework originates from
analyzing and controlling nonlinear systems using LTI like tools. The idea of the
LPV framework was strengthened when it was observed that it is possible to fully
embed the solution set of a nonlinear system given by (2.1), i.e., the behavior B,
into the solution set B̆p of an LPV representation. This so-called LPV embedding is
achieved by expressing the scheduling-variable p as a function of the states and/or
inputs of the nonlinear system, through a so-called scheduling-map η (Tóth 2010).
Next, we will give a more concrete definition of this idea:

Definition 2.14 (Global LPV embedding). Consider the nonlinear system given by
(2.1) and an LPV system given by (2.26). If there exists a so-called scheduling-map
η : X × W → P, such that

f(x,w) = A(η(x,w))x+B(η(x,w))w,
h(x,w) = C(η(x,w))x+ C(η(x,w))w,

(2.30)

for all (x,w) ∈ X ×W ⊆ X ×W and such that η(X ,W ) ⊆ P, then, the LPV system
is a so-called global LPV embedding of the nonlinear system on the region X × W
with the scheduling-variable given by p(t) = η(x(t), w(t)).

Remark 2.3. Note that if (0, 0) ∈ X × W , which is often the case, to be able to
perform a global LPV embedding, we require that f(0, 0) = 0 and h(0, 0) = 0. This
means that the origin is an equilibrium point of the system, see also (2.4). While
for nonlinear systems this might not always be the case, we can always perform a
coordinate transformation to ensure this.

It is clear that through the scheduling-map, the LPV embedding describes all the
solutions of the nonlinear system (on the region X × W ). However, as for the
behavior of the LPV system, the scheduling-variable is considered independent, we
model a larger set of solutions, which does include the original nonlinear behavior
(Abbas, Tóth, Petreczky, Meskin, Mohammadpour Velni, and Koelewijn 2021).
This is formalized in the following lemma:

Lemma 2.6 (LPV behavioral embedding). Consider the nonlinear system given by
(2.1) and LPV system given by (2.26). If the LPV system is a global embedding of
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the nonlinear system on the region X × W = X ×W, then, the behavior of nonlinear
system is included in that of the LPV system, i.e., B ⊆ B̆p.

Proof. See Appendix B.1.

As the LPV representation describes a larger set of valid system trajectories than
the nonlinear system, using an LPV embedding to describe the nonlinear system
is inherently conservative. However, what we gain through the LPV embedding is
that we can use all of the convex tools that are available for analysis and controller
synthesis for LPV systems to analyze and design controllers for them.
As mentioned in Section 1.2.3, constructing a global LPV embedding for a given
nonlinear system is non-unique. While there exist multiple approaches in order to
perform this step (Kwiatkowski, Bol, et al. 2006; Tóth 2010; Hoffmann and Werner
2015b; Abbas, Tóth, Petreczky, Meskin, Mohammadpour Velni, and Koelewijn
2021), these techniques are still far from being widely applicable or being fully
automated. Hence, in practice, constructing a global LPV embedding is generally
still performed in an ad-hoc fashion. As also discussed in Section 1.2.3, besides global
methods to construct the LPV embedding, one can also construct an LPV embedding
through so-called local methods, usually based on linearizations. However, for local
LPV embeddings, it does not necessarily hold that the behavior of the nonlinear
system B is included in the behavior B̆p of the resulting LPV representation. On
the contrary, often they can only describe a subset of it. While, analyzing and
designing controllers for nonlinear systems through local LPV embeddings can
work in practice, there are consequently no formal guarantees. Hence, we will
only consider global LPV embeddings when talking about embeddings of nonlinear
systems (2.1) in an LPV representation.
Next, we will give an overview of analysis of LPV systems.

2.5.2 Analysis

Stability analysis

First, we will discuss stability analysis of LPV systems. Similar as for LTI systems,
also for LPV systems (given by (2.26)), the origin of the considered state-space
representation is always an equilibrium point, i.e., (0, 0, 0) ∈ E for all p ∈ P. For
LTI systems, due to the superposition principle, stability of the origin implies
stability of all forced equilibrium points of the LTI system. Hence, for LTI systems,
only stability of the origin is required to be analyzed. Due to the linearity of LPV
systems, this property is also extends LPV systems under the assumption that
the scheduling-variable is independent of the dynamics. Consequently, for stability
analysis of LPV systems, generally only stability w.r.t. the origin is analyzed. Hence,
when talking about stability of LPV systems, we often refer to stability of the origin,
unless otherwise noted. However, as we will discuss in detail in Chapter 3, naive
application of this concept can actually result in undesirable results when the LPV
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representation is used to analyze or ensure via control design the stability of an
underlying nonlinear system.
We have the following formal definition of stability of an LPV system given by
(2.26), adopted from (Briat 2015):

Definition 2.15 (Stability of LPV system). The LPV system (2.26) is

• stable, if for each ϵ > 0, there exists a δ(ϵ) > 0 such that

∥x(0)∥ < δ(ϵ) =⇒ ∥x(t)∥ < ϵ, (2.31)

for all t ∈ T , x ∈ πx Bp,0(p), and p ∈ PT .

• asymptotically stable, if it is stable and attractive, i.e., there exists a δ > 0
such that

∥x(0)∥ < δ =⇒ lim
t→∞

∥ϕp,x(t, 0, x(0), 0, p)∥ = 0, (2.32)

for all p ∈ PT .

• unstable, if it is not stable.

Like for nonlinear systems, also for LPV systems, Lyapunov stability theory is an
important tool for stability analysis. In order to make these analysis problems
tractable, one often considers quadratic functions Vp of the form:

Vp(x, p) = x⊤M(p)x, (2.33)

where M : P → Snx , M(p) ≻ 0 for all p ∈ P, and M is bounded, in the sense that
there exist an α1, α2 ∈ R with α1, α2 > 0, s.t. α1I ⪯ M(p) ⪯ α2I for all p ∈ P . Note
that for each p ∈ P , the function x 7→ Vp(x, p) satisfies the conditions for a Lyapunov
function. Moreover, in CT, we assume that6 for all t ∈ T , v(t) = d

dtp(t) ∈ Π, while
in DT, we assume that for all t ∈ T , v(t) = p(t + 1) − p(t) ∈ Π. Here Π ⊆ Rnp ,
which, similar to P, is generally assumed to be convex.
Under these considerations, we can apply the Lyapunov stability theory to LPV
systems to obtain the following results. Let us first denote by pi and vi the i’th
elements of p and v, respectively. Moreover, for a matrix function M : P → Snx

with M ∈ C1, we define ∂M : P × Π → Snx as ∂M(p, v) =
∑np

i=1
∂M(p)

∂pi
vi.

Theorem 2.4 (Stability condition for LPV systems). The LPV system given by
(2.26) is stable at the equilibrium point x∗ = 0 with w∗ = 0, if there exists a positive
definite matrix function M : P → Snx with M ∈ C1 such that, in CT, it holds that

A(p)⊤M(p) +M(p)A(p) + ∂M(p, v) ⪯ 0, (2.34a)

for all p ∈ P and v ∈ Π, while, in DT, it holds that

A(p)⊤M(p+ v)A(p) −M(p) ⪯ 0, (2.34b)

6In case that M is a constant matrix, i.e. M ∈ Snx , the assumptions on the ‘velocity’ of p are
not required.
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for all p ∈ P and v ∈ Π. If (2.34) holds, but with strict inequality, then the LPV
system is asymptotically stable at x∗ = 0.

See (G. S. Becker 1993; Wu 1995; Briat 2015) for proofs of this result. Note that the
conditions in Theorem 2.4 correspond to the feasibility of an infinite set of Linear
Matrix Inequalities (LMIs), which corresponds to an indefinite convex program. To
turn this infinite-dimensional check into a finite one, several approaches exist such
as polytopic techniques (Apkarian, Gahinet, and G. Becker 1995; De Caigny et al.
2012; Cox et al. 2018), grid-based techniques (Wu 1995; Apkarian and Adams 1998),
and multiplier-based techniques (Scorletti and El Ghaoui 1998; Scherer 2001), see
also (Hoffmann and Werner 2015a) for an overview. The resulting set of LMIs,
corresponding to a Semidefinite Program (SDP), can then be solved efficiently using
various SDP solvers, e.g., SDPT3 (Toh et al. 1999) or MOSEK (E. D. Andersen and
K. D. Andersen 2000). Various software tools also exist for MATLAB through which
the feasibility problem of a set of LMIs can be turned into a SDP, e.g., YALMIP
(Löfberg 2004) or CVX (Grant and Boyd 2014).

Classical dissipativity analysis

Classical dissipativity is the backbone for the majority of the existing analysis
and controller synthesis results that are available for LPV systems. Like when
talking about stability of LPV systems, we consider an LPV system to be classically
dissipative if the dissipation inequality (2.22) holds for every scheduling trajectory
in the scheduling set, more formally:

Definition 2.16 (Classical dissipativity of LPV systems). The LPV system given
by (2.26) is classically dissipative w.r.t. a supply function s : W × Z → R, if
there exists a so-called storage function Vp : X × P → R+

0 with Vp(·, p) ∈ C0 and
Vp(·, p) ∈ Q0, ∀ p ∈ P, such that

CT: Vp(x(t1), p(t1)) − Vp(x(t0), p(t0)) ≤
∫ t1

t0

s(w(t), z(t)) dt, (2.35a)

DT: Vp(x(t1 + 1), p(t1 + 1)) − Vp(x(t0), p(t0)) ≤
t1∑

t=t0

s(w(t), z(t)), (2.35b)

for all t0, t1 ∈ T with t1 ≥ t0, and (x,w, z) ∈ Bp(p) for all p ∈ PT .

In the previous section, we have shown how stability analysis of an LPV system
given by (2.26) can be formulated as a matrix inequality condition. Similarly, we
will next present how dissipativity conditions can be formulated as matrix inequality
conditions. For this purpose, classical (Q,S,R) dissipativity is considered (i.e.,
classical dissipativity w.r.t. a supply function of the form (2.25)), and the storage
function is also considered to be of a quadratic form:

Vp(x, p) = x⊤M(p)x, (2.36)
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analogous to the Lyapunov function (2.33), with the same assumptions holding on
M . This results in the following condition:

Theorem 2.5 (Classical (Q,S,R) dissipativity conditions for LPV systems). The
LPV system given by (2.26) is classically (Q,S,R) dissipative with a storage function
of the form (2.36), if there exists a positive definite matrix function M : P → Snx

with M ∈ C1 such that, in CT, for all p ∈ P and v ∈ Π, it holds that

(⋆)⊤
[
∂M(p, v) M(p)

⋆ 0

] [
I 0

A(p) B(p)

]
−(⋆)⊤

[
Q S
⋆ R

] [
0 I

C(p) D(p)

]
⪯ 0, (2.37a)

and such that, in DT, it holds for all p ∈ P and v ∈ Π that

(⋆)⊤
[
−M(p) 0

⋆ M(p+ v)

] [
I 0

A(p) B(p)

]
− (⋆)⊤

[
Q S
⋆ R

] [
0 I

C(p) D(p)

]
⪯ 0.

(2.37b)

Proof. See Appendix B.1.

Similar to the stability result, the condition for classical (Q,S,R) dissipativity
of an LPV system in Theorem 2.5 corresponds to an infinite set of LMIs. As
aforementioned, several techniques exists within the LPV framework to turn this
into a finite set of LMIs, such as polytopic techniques (Apkarian, Gahinet, and
G. Becker 1995; De Caigny et al. 2012; Cox et al. 2018), grid-based techniques (Wu
1995; Apkarian and Adams 1998), and multiplier-based techniques (Scorletti and
El Ghaoui 1998; Scherer 2001).

Based on the result and proof of Theorem 2.5 we can obtain the following conditions
for various performance notions.

Corollary 2.1 (L2-gain of an LPV system ). The LPV system given by (2.26)
has a bounded L2-gain of γ, if there exists a γ ∈ R+

0 and a positive definite matrix
function M : P → Snx with M ∈ C1 such that, in CT, for all p ∈ P and v ∈ Π it
holds thatA(p)⊤M(p) + (⋆)⊤ + ∂M(p, v) M(p)B(p) C(p)⊤

⋆ −γI D(p)⊤

⋆ ⋆ −γI

 ⪯ 0, (2.38a)

while, in DT, it holds for all p ∈ P and v ∈ Π that
M(p+ v) A(p)M(p) B(p) 0

⋆ M(p) 0 M(p)C(p)⊤

⋆ 0 γI D(p)⊤

⋆ ⋆ ⋆ γI

 ⪰ 0. (2.38b)

Corollary 2.2 (Passivity of an LPV system). The LPV system given by (2.26) is
passive, if there exists a positive definite matrix function M : P → Snx with M ∈ C1
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such that, in CT, for all p ∈ P and v ∈ Π, it holds that[
A(p)⊤M(p) + (⋆)⊤ + ∂M(p, v) M(p)B(p) − C(p)⊤

⋆ −D(p) + (⋆)⊤

]
⪯ 0, (2.39a)

while, in DT, it holds for all p ∈ P and v ∈ Π thatM(p+ v) A(p)M(p) B(p)
⋆ M(p) M(p)C(p)⊤

⋆ ⋆ D(p) + (⋆)⊤

 ⪰ 0. (2.39b)

Corollary 2.3 (L2-L∞-gain of an LPV system). The LPV system given by 7 (2.26)
has a bounded L2-L∞-gain of γ, if there exists a γ ∈ R+

0 and a positive definite
matrix function M : P → Snx with M ∈ C1 such that, in CT, for all p ∈ P and
v ∈ Π, it holds that[

A(p)⊤M(p) + (⋆)⊤ + ∂M(p, v) M(p)B(p)
⋆ −γI

]
⪯ 0,

[
M(p) C(p)⊤

⋆ γI

]
⪰ 0.

(2.40a)
while, in DT, it holds for all p ∈ P and v ∈ Π thatM(p+ v) A(p)M(p) B(p)

⋆ M(p) 0
⋆ ⋆ γI

 ⪰ 0,
[
M(p) M(p)C(p)⊤

⋆ γI

]
⪰ 0. (2.40b)

Corollary 2.4 (L∞-gain of an LPV system). The LPV system given by (2.26) has
a bounded L∞-gain of γ, if there exist α, β, γ ∈ R+

0 and a positive definite matrix
function M : P → Snx with M ∈ C1 such that, in CT, for all p ∈ P and v ∈ Π, it
holds that[

A(p)⊤M(p) + (⋆)⊤ + βM(p) + ∂M(p, v) M(p)B(p)
⋆ −αI

]
⪯ 0,βM(p) 0 C(p)⊤

⋆ (γ − α)I D(p)⊤

⋆ ⋆ γI

 ⪰ 0.
(2.41a)

while, in DT, it holds for all p ∈ P and v ∈ Π thatM(p+ v) A(p)M(p) B(p)
⋆ (1 − β)M(p) 0
⋆ ⋆ αI

 ⪰ 0,

βM(p) 0 M(p)C(p)⊤

⋆ (γ − α)I D(p)⊤

⋆ ⋆ γI

 ⪰ 0.

(2.41b)

The full derivations of the LMIs given in Corollaries 2.1 to 2.4 can be found in
Appendix A.2, which are inspired by the derivations for LTI systems given in
(Scherer and Weiland 2015).

7Under the condition that D(p) = 0 for all p ∈ P.
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Remark 2.4. Note that conditions in Corollaries 2.1 to 2.4 can also be formulated in
terms of strict, instead of non-strict, matrix inequality conditions. In turn, these will
guarantee asymptotic stability of the corresponding LPV system given by (2.26).

The infinite set of LMIs in Corollaries 2.1 to 2.4 can be turned into a finite one using
the aforementioned approaches, such as polytopic techniques, grid-based techniques,
and multiplier based techniques, see (Hoffmann and Werner 2015a) for an overview.
For LPV systems given by (2.26) with an affine scheduling dependency, i.e., when
A(p) = A0 +

∑np
i=1 Aipi, etc. in (2.26), the analysis results in Corollaries 2.1 to 2.4

are implemented in the LPVcore Toolbox (Boef et al. 2021). Also for general
scheduling dependencies, using a grid-based approach, the analysis results are
implemented in LPVcore. Other MATLAB toolboxes for LPV systems, such as
(Hjartarson et al. 2015; Verbandt et al. 2018; Veenman 2022), generally only include
L2-gain and sometimes (generalized) H2 based performance analysis algorithms.
However, these also support other scheduling dependencies such as rational and
polynomial ones.

2.5.3 Controller synthesis

Similar as for LTI systems, the analysis LMIs in Section 2.5.2 can be transformed to
synthesis LMIs through a nonlinear transformation of variables. For LPV controller
synthesis, the idea of the generalized plant concept from the LTI framework (Doyle
1983) is also used. The generalized plant concept provides a systematic and generic
approach to consider different control problems, such as a four block mixed sensitivity
design, model matching problems, and many others (Zhou et al. 1996), while also
allowing to systematically shape the performance through the inclusion of weighting
filters in the generalized plant.

P

K

zw

u y

kuky

Figure 2.1: Closed-loop interconnection of a generalized plant P and the (to-be-
designed) controller K.

More concretely, for the controller synthesis problem, we consider an interconnection
of a generalized plant P and to-be-designed controller K, as depicted in Figure 2.1.
We consider a generalized plant P of the form, omitting dependence on time for
brevity, ξxz

y

 =

A(p) Bw(p) Bu(p)
Cz(p) Dzw(p) Dzu(p)
Cy(p) Dyw(p) Dyu(p)

xw
u

 , (2.42)

where w and z now play the role of generalized disturbance (collecting references,
disturbances, etc.) and generalized performance channel (collecting tracking errors,
control efforts, etc.), respectively, and where u(t) ∈ U ⊆ Rnu is the control input,
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and y(t) ∈ Y ⊆ Rny is the measured output. Moreover, Bw : P → Rnx×nw ,
Bu : P → Rnx×nu , Cz : P → Rnz×nx , Cy : P → Rny×nx , Dzw : P → Rnz×nw ,
Dzu : P → Rnz×nu , Dyw : P → Rny×nw , and Dyu : P → Rny×nu are matrix
functions. For most synthesis algorithms, it is assumed for well-posedness that
Dyu(p) = 0, ∀ p ∈ P. In the remainder of this section, this will also be assumed.
The controller K, is considered in the form[

ξxk
yk

]
=
[
Ak(p) Bk(p)
Ck(p) Dk(p)

] [
xk
uk

]
, (2.43)

where xk(t) ∈ Xk ⊆ Rnxk is the state8 associated with (2.43), and where uk(t) ∈
Uk ⊆ Rnuk and yk(t) ∈ Yk ⊆ Rnyk are the input and output of the controller,
respectively. Furthermore, Ak : P → Rnxk ×nxk , Bk : P → Rnxk ×nuk , Ck : P →
Rnyk ×nxk , and Dk : P → Rnyk ×nuk are matrix functions.
The closed-loop interconnection of P and K, as depicted in Figure 2.1, i.e., such
that uk = y and u = yk (meaning also that nuk = ny and nu = nyk), is denoted by
Fl(P,K). The dynamics of the closed-loop interconnection Fl(P,K) are then given
by  ξx

ξxk
z

 =
[
Acl(p) Bcl(p)
Ccl(p) Dcl(p)

] x
xk
w

 , (2.44)

where
Acl(p) :=

[
A(p) +Bu(p)Dk(p)Cy(p) Bu(p)Ck(p)

Bk(p)Cy(p) Ak(p)

]
, (2.45a)

Bcl(p) :=
[
Bw(p) +Bu(p)Dk(p)Dyw(p)

Bk(p)Dyw(p)

]
, (2.45b)

Ccl(p) :=
[
Cz(p) +Dzu(p)Dk(p)Cy(p) Dzu(p)Ck(p)

]
, (2.45c)

Dcl(p) := Dzw(p) +Dzu(p)Dk(p)Dyw(p). (2.45d)

Note that for P to be considered as a generalized plant, there should exist a
controller K of the form (2.43) such that Fl(P,K) is stable. For this to be the case,
the pairs (A,Bu) and (A,Cy) should be stabilizable and detectable, respectively,
according to the following definitions:

Definition 2.17 (LPV stabilizability). Consider the matrix functions A : P →
Rnx×nx and B : P → Rnx×nu . The pair (A,B) is called stabilizable if there exists a
matrix function F : P → Rnu×nx such that the LPV state-space representation

ξx(t) = (A(p) +B(p)F (p))x(t), (2.46)

is asymptotically stable.

Definition 2.18 (LPV detectability). Consider the matrix functions A : P →
Rnx×nx and C : P → Rny×nx . The pair (A,C) is called detectable if the pair
(A⊤, C⊤) is stabilizable.

8For most state-space based LPV controller synthesis methods nxk = nx.
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Moreover, note that Fl(P,K) corresponds to an LPV system represented by (2.26).
For controller synthesis, the objective is to find the controller matrix functions
Ak, Bk, Ck, Dk such that Fl(P,K) is classically (Q,S,R) dissipative (for a given
tuple (Q,S,R)). Similar to the analysis problems, also the synthesis problem can
be expressed as a feasibility condition of a matrix inequality (Apkarian and Adams
1998; De Caigny et al. 2012; Scherer and Weiland 2015):

Theorem 2.6. There exists a controller K given by (2.43) such that the closed-
loop interconnection of a generalized plant P given by (2.42) and K is classically
(Q,S,R) dissipative, if, in CT, there exist a positive-define matrix Mx ∈ Snx ,
positive-definite matrix function My : P → Snx with My ∈ C1, and (transformed
controller) matrix functions Ak : P → Rnx×nx , Bk : P → Rnx×ny , Ck : P → Rnu×nx ,
and Dk : P → Rnu×ny , such that for all (p, v) ∈ P × Π, it holds that[

Acl(p, v) + (⋆)⊤ Bcl(p)
⋆ 0

]
− (⋆)⊤

[
Q S
⋆ R

] [
0 I

Ccl(p) Dcl(p)

]
⪯ 0. (2.47a)

[
My(p) I
⋆ Mx

]
≻ 0, (2.47b)

where the closed-loop related matrices are

Acl(p, v) =
[
A(p)My(p) +Bu(p)Ck(p) A(p) +Bu(p)Dk(p)Cy(p)

Ak(p) MxA(p) + Bk(p)Cy(p)

]
+[

− 1
2∂My(p, v) 0

0 0

]
, (2.48a)

Bcl(p) =
[
Bw(p) +Bu(p)Dk(p)Dyw(p)
MxBw(p) + Bk(p)Dyw(p)

]
, (2.48b)

Ccl(p) =
[
Cz(p)My(p) +Dzu(p)Ck(p) Cz(p) +Dzu(p)Dk(p)Cy(p)

]
, (2.48c)

Dcl(p) = Dzw(p) +Dzu(p)Dk(p)Dyw(p). (2.48d)

The matrices of the LPV state-space representation of the controller K that achieves
dissipativity are given by[

Ak(p) Bk(p)
Ck(p) Dk(p)

]
=[

U MxBu(p)
0 I

]−1([Ak(p) −MxA(p)My(p) Bk(p)
Ck(p) Dk(p)

])[
V (p)⊤ 0

Cy(p)My(p) I

]−1

,

(2.49)

where U and V are arbitrary solutions to MxMy(p) + UV (p)⊤ = I.
In DT, there exists a controller K such that Fl(P,K) given by (2.44) is classically
(Q,S,R) dissipative with 9 R ⪯ 0, if there exist a matrix Gy ∈ Rnx×nx , positive-
define matrix functions Mx : P → Snx , Mz : P → Snx , and matrix functions
My : P → Rnx×nx , Gx : P → Rnx×nx , J : P → Rnx×nx , Ak : P → Rnx×nx ,

9Note that R ⪯ 0 is also required for Fl(P,K) to be stable, see also Theorem 2.3.
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Bk : P → Rnx×ny , Ck : P → Rnu×nx , and Dk : P → Rnu×ny , such that for all
(p, v) ∈ P × Π, it holds thatM (p+ v) Acl(p) Bcl(p)

⋆ G(p)+(⋆)⊤−M (p) 0
⋆ ⋆ 0

+ (⋆)⊤
[
Q S
⋆ R

][
0 0 I
0 Ccl(p) Dcl(p)

]
⪰ 0,

(2.50a)
M (p) ≻ 0, (2.50b)

where

Acl(p) =
[
A(p)Gx(p) +Bu(p)Ck(p) A(p) +Bu(p)Dk(p)Cy(p)

Ak(p) GyA(p) + Bk(p)Cy(p)

]
, (2.51a)

Bcl(p, v) =
[
Bw(p) +Bu(p)Dk(p)Dyw(p)
GyBw(p) + Bk(p)Dyw(p)

]
, (2.51b)

Ccl(p) =
[
Cz(p)Gx(p) +Dzu(p)Ck(p) Cz(p) +Dzu(p)Dk(p)Cy(p)

]
, (2.51c)

Dcl(p) = Dzw(p) +Dzu(p)Dk(p)Dyw(p) (2.51d)

M (p) =
[
Mx(p) My(p)
⋆ Mz(p)

]
, (2.52)

G(p) =
[
Gx(p) I
J(p) Gy

]
. (2.53)

The matrices of the LPV state-space representation of the controller K that achieves
dissipativity are given by[

Ak(p) Bk(p)
Ck(p) Dk(p)

]
=[

V GyBu(p)
0 I

]−1 [Ak(p) −GyA(p)Gx(p) Bk(p)
Ck(p) Dk(p)

] [
U(p) 0

Cy(p)Gx(p) I

]−1
, (2.54)

where U and V are arbitrary solutions to J(p) = GyGx(p) + U(p)V .

The full derivations of these conditions and more details can be found in Ap-
pendix A.3.
Note that the matrix functions in Theorem 2.6, such as My, Ak, Bk, etc., are
generally assumed to be in the same function class, e.g., affine, polynomial, or
rational, as the matrices of the LPV state-space representation of the generalized
plant G.
Based on Theorem 2.6, we can obtain the following synthesis conditions for various
performance notions.

Corollary 2.5 (L2-gain based LPV synthesis). There exists a controller K given
by (2.43) such that the closed-loop interconnection of a generalized plant P given by
(2.42) and K has a bounded L2-gain of γ, if, in CT, there exist a positive-define
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matrix Mx ∈ Snx , a positive-definite matrix function My : P → Snx with My ∈ C1,
and matrix functions Ak : P → Rnx×nx , Bk : P → Rnx×ny , Ck : P → Rnu×nx , and
Dk : P → Rnu×ny , such that for all (p, v) ∈ P × Π, it holds that[

Acl(p, v) + (⋆)⊤ Bcl(p) − Ccl(p)⊤

⋆ −Dcl(p) + (⋆)⊤

]
⪯ 0, (2.55a)

along with (2.47b), where Acl, . . .Dcl are given by (2.48). The matrices of the LPV
state-space representation of the controller K are then given by (2.49), where U
and V are obtained by finding a solution to MxMy(p) + UV (p)⊤ = I.

In DT, there exists a controller K such that Fl(P,K) given by (2.44) has a bounded
ℓ2-gain of γ, if there exist a matrix Gy ∈ Rnx×nx , positive-define matrix functions
Mx : P → Snx , Mz : P → Snx , and matrix functions My : P → Rnx×nx , Gx : P →
Rnx×nx , J : P → Rnx×nx , Ak : P → Rnx×nx , Bk : P → Rnx×ny , Ck : P → Rnu×nx ,
and Dk : P → Rnu×ny , such that for all (p, v) ∈ P × Π, it holds that

M (p+ v) Acl(p, v) Bcl(p, v) 0
⋆ G(p) + (⋆)⊤ − M (p) 0 Ccl(p)⊤

⋆ ⋆ γI Dcl(p)⊤

⋆ ⋆ ⋆ γI

 ⪰ 0, (2.55b)

along with (2.50b), where Acl, . . .Dcl, M , and G are given by (2.51), (2.52), and
(2.53), respectively. The matrices of the LPV state-space representation of the
controller K are then given by (2.54), where U and V are obtained by finding a
solution to J(p) = GyGx(p) + U(p)V .

Corollary 2.6 (Passivity based LPV synthesis). There exists a controller K given
by (2.43) such that the closed-loop interconnection of a generalized plant P given by
(2.42) and K is passive, if, in CT, there exist a positive-define matrix Mx ∈ Snx , a
positive-definite matrix function My : P → Snx with My ∈ C1, and matrix functions
Ak : P → Rnx×nx , Bk : P → Rnx×ny , Ck : P → Rnu×nx , and Dk : P → Rnu×ny ,
such that for all (p, v) ∈ P × Π, it holds that[

Acl(p, v) + (⋆)⊤ Bcl(p) − Ccl(p)⊤

⋆ −Dcl(p) + (⋆)⊤

]
⪯ 0, (2.56a)

along with (2.47b), where Acl, . . .Dcl are given by (2.48). The matrices of the LPV
state-space representation of the controller K are then given by (2.49), where U
and V are obtained by finding a solution to MxMy(p) + UV (p)⊤ = I.

In DT, there exists a controller K such that Fl(P,K) given by (2.44) is passive, if
there exists a matrix Gy ∈ Rnx×nx , positive-define matrix functions Mx : P → Snx ,
Mz : P → Snx , and matrix functions My : P → Rnx×nx , Gx : P → Rnx×nx ,
J : P → Rnx×nx , Ak : P → Rnx×nx , Bk : P → Rnx×ny , Ck : P → Rnu×nx , and
Dk : P → Rnu×ny , such that for all (p, v) ∈ P × Π, it holds thatM (p+ v) Acl(p, v) Bcl(p, v)

⋆ G(p) + (⋆)⊤ − M (p) Ccl(p)⊤

⋆ ⋆ Dcl + (⋆)⊤

 ⪰ 0, (2.56b)
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along with (2.50b), where Acl, . . .Dcl, M , and G are given by (2.51), (2.52), and
(2.53), respectively. The matrices of the LPV state-space representation of the
controller K are then given by (2.54), where U and V are obtained by finding a
solution to J(p) = GyGx(p) + U(p)V .

Corollary 2.7 (L2-L∞-gain based LPV synthesis). There exists a controller K
given by (2.43) such that the closed-loop interconnection of a generalized plant P
given by 10 (2.42) and K has a bounded L2-L∞-gain of γ, if, in CT, there exists a
positive-define matrix Mx ∈ Snx , a positive-definite matrix function My : P → Snx

with My ∈ C1, and matrix functions Ak : P → Rnx×nx , Bk : P → Rnx×ny , Ck : P →
Rnu×nx , and Dk : P → Rnu×ny , such that for all (p, v) ∈ P × Π, it holds that[

Acl(p, v) + (⋆)⊤ Bcl(p)
⋆ −γI

]
⪯ 0,

[
M (p) Ccl(p)⊤

⋆ γI

]
⪰ 0, (2.57a)

along with (2.47b), where Acl, . . .Dcl are given by (2.48). The matrices of the LPV
state-space representation of the controller K are then given by (2.49), where U
and V are obtained by finding a solution to MxMy(p) + UV (p)⊤ = I.

In DT, there exists a controller K such that Fl(P,K) given by (2.44) has a bounded
ℓ2-ℓ∞-gain of γ, if there exists a matrix Gy ∈ Rnx×nx , positive-define matrix
functions Mx : P → Snx , Mz : P → Snx , and matrix functions My : P → Rnx×nx ,
Gx : P → Rnx×nx , J : P → Rnx×nx , Ak : P → Rnx×nx , Bk : P → Rnx×ny ,
Ck : P → Rnu×nx , and Dk : P → Rnu×ny , such that for all (p, v) ∈ P × Π, it holds
that M (p+ v) Acl(p, v) Bcl(p, v)

⋆ G(p) + (⋆) − M (p) 0
⋆ ⋆ γI

 ⪰ 0,

[
G + (⋆)⊤ − M (p) Ccl(p)⊤

⋆ γI

]
⪰ 0,

(2.57b)

along with (2.50b), where Acl, . . .Dcl, M , and G are given by (2.51), (2.52), and
(2.53), respectively. The matrices of the LPV state-space representation of the
controller K are then given by (2.54), where U and V are obtained by finding a
solution to J(p) = GyGx(p) + U(p)V .

Corollary 2.8 (L∞-gain based LPV synthesis). There exists a controller K given
by (2.43) such that the closed-loop interconnection of a generalized plant P given by
(2.42) and K has a bounded L∞-gain of γ, if, in CT, if there exist scalars α, β ∈ R+

0 ,
a positive-define matrix Mx ∈ Snx , a positive-definite matrix function My : P → Snx

with My ∈ C1, and matrix functions Ak : P → Rnx×nx , Bk : P → Rnx×ny , Ck : P →
Rnu×nx , and Dk : P → Rnu×ny , such that for all (p, v) ∈ P × Π, it holds that

[
Acl(p, v) + (⋆)⊤ + βM (p) Bcl(p)

⋆ −αI

]
⪯ 0,

βM (p) 0 Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

 ⪰ 0,

(2.58a)
10Under the condition that Dcl(p) = 0, which is the case when Dzu(p) = 0 or Dyw(p) = 0, along

with Dzw(p) = 0, for all p ∈ P.
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along with (2.47b), where Acl, . . .Dcl are given by (2.48). The matrices of the LPV
state-space representation of the controller K are then given by (2.49), where U
and V are obtained by finding a solution to MxMy(p) + UV (p)⊤ = I.
In DT, there exists a controller K such that Fl(P,K) given by (2.44) has a bounded
ℓ∞-gain of γ, there exist scalar α, β ∈ R+

0 , a matrix Gy ∈ Rnx×nx , positive-
define matrix functions Mx : P → Snx , Mz : P → Snx , and matrix functions
My : P → Rnx×nx , Gx : P → Rnx×nx , J : P → Rnx×nx , Ak : P → Rnx×nx ,
Bk : P → Rnx×ny , Ck : P → Rnu×nx , and Dk : P → Rnu×ny , such that for all
(p, v) ∈ P × Π, it holds thatM (p+ v) Acl(p, v) Bcl(p, v)

⋆ (1 − β)(G(p) + (⋆)⊤ − M (p)) 0
⋆ ⋆ αI

 ⪰ 0,

β · (⋆)⊤(G(p) + (⋆)⊤ − M (p))N(p) 0 Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

 ⪰ 0,

(2.58b)

along with (2.50b), where Acl, . . .Dcl, M , and G are given by (2.51), (2.52), and
(2.53), respectively. The matrices of the LPV state-space representation of the
controller K are then given by (2.54), where U and V are obtained by finding a
solution to J(p) = GyGx(p) + U(p)V .

The full derivations of the LMIs given in Corollaries 2.5 to 2.8 can be found in
Appendices A.3.2 to A.3.5 in Appendix A.3. Also for the synthesis results in
Corollaries 2.5 to 2.8, strict LMI conditions can be formulated, which will ensure
asymptotic stability of Fl(P,K) (see also Remark 2.4).
Like for the analysis results, the infinite set of LMIs in Corollaries 2.5 to 2.8 can
be turned into a finite one, using polytopic techniques, grid-based techniques, and
multiplier based techniques, see (Hoffmann and Werner 2015a) for an overview. Also
the synthesis results have been implemented in the LPVcore Toolbox (Boef et al.
2021) for CT and DT LPV systems (2.26) with general scheduling dependencies
(using a grid-based approach) and for LPV systems with an affine scheduling
dependency for the L2-gain, L2-L∞-gain, L∞-gain, and passivity performance
metrics. Like for the analysis algorithms, the other aforementioned toolboxes
(Hjartarson et al. 2015; Verbandt et al. 2018; Veenman 2022) mostly focus only on
L2-gain and H2 performance based controller synthesis, but have support for LPV
systems with rational and/or polynomial scheduling dependency.

2.5.4 Application to analysis and control of nonlinear systems

In the previous sections, we have discussed how the analysis and controller synthesis
problems for LPV systems can be turned into a finite set of LMIs which can be
solved efficiently through various SDP solvers. If the LPV system given by (2.26) is
a global LPV embedding of a nonlinear system given by (2.1), these results can be
used to efficiently analyze and synthesize controllers for nonlinear systems. Namely,
through the use of the Lemma 2.6 we have the following result.
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Theorem 2.7 (Dissipativity of nonlinear systems through the LPV framework).
Consider the nonlinear system given by (2.1) and LPV system given by (2.26).
If the LPV system is a global embedding of the nonlinear system on the region
X × W = X × W, and the LPV system is classically dissipative, then, the nonlinear
system is classically dissipative.

Theorem 2.7 trivially follows from using the result of Lemma 2.6, which shows that
the behavior of the nonlinear system is included in its LPV embedding, i.e., B ⊆ B̆p.
Hence, if the LPV system is classically dissipative for all considered scheduling
trajectories it also holds that, through the LPV embedding, the nonlinear system
is classically dissipative along all solution trajectories. In practice, one often only
considers an embedding region for which X × W ⊂ X × W. In this case, one can
still conclude classical dissipativity of the underlying nonlinear system, but only for
a subset of the behavior for which holds that (x(t), w(t)) ∈ X × W for all t ∈ T .
Note that both the analysis and controller synthesis results for LPV systems, as
shown in Sections 2.5.2 and 2.5.3, are based on classical dissipativity. Consequently,
this implies that through Theorem 2.7, both stability and performance of nonlinear
systems can be guaranteed by making use of LPV based analysis and controller
synthesis. However, stability and performance w.r.t. the origin of an LPV embedding
is only a sufficient condition for stability and performance w.r.t. the origin of the
underlying nonlinear system and not a necessary condition. This is because a global
LPV embedding of a nonlinear system is non-unique and the corresponding LPV
representation also models a larger set of behavior than the nonlinear system. On
the other hand, one can wonder how generalization of stability and dissipativity
w.r.t. other forced equilibria of the nonlinear system stems from these results. This
is what we will analyze next.

2.6 Summary

In this chapter, we have given an overview of stability and performance analysis of
nonlinear and LPV systems given by a state-space representations. We have shown
how through the concept of (classical) dissipativity, stability and performance could
jointly be analyzed. For LPV systems we have also shown how the dissipativity
concept can be used for controller synthesis and how the corresponding analysis
and controller synthesis problems can be cast as convex optimization problems.
Finally, we have shown how the LPV framework can be used in order to also
analyze and design controllers for nonlinear systems through convex optimization
problems. Nonetheless, in the next chapter, we will present how naive application
of these results in their current form can lead to improper stability and performance
guarantees on the underlying nonlinear system. After that, in the following chapters,
we will develop a systematic framework for analysis and control of nonlinear systems
to ensure global stability and performance by making use of approaches from LPV
framework. The framework that will be developed will also address the shortcomings
of the current LPV methods when applied to the analysis and control of nonlinear
systems.





3
Pitfalls of LPV Analysis
and Control of Nonlinear
Systems

The Linear Parameter-Varying (LPV) framework provides powerful meth-
ods for systematic analysis and controller synthesis for nonlinear systems.

However, recently, a number of counter examples have surfaced where naive
application of the LPV framework is unable to provide the desired guaran-
tees. Namely, LPV controller synthesis applied to accomplish asymptotic
output tracking and disturbance rejection for a nonlinear system can fail to
achieve the desired asymptotic tracking and rejection behavior even when
the scheduling variations remain in the bounded region considered during
design. It has been observed that the controlled system may exhibit an
oscillatory motion around the equilibrium point in the presence of a bounded
constant input disturbance even if integral action is present. In this chapter,
we investigate how and why the baseline Lyapunov stability notion, currently
widely used in the LPV framework, fails to guarantee the desired system
behavior. Specifically, it is shown that (asymptotic) stability analysis of a
global LPV embedding of a nonlinear system using a quadratic Lyapunov
function is only able to guarantee (asymptotic) stability of the origin of the
nonlinear state-space representation, and there are no stability guarantees
for other (non-zero) forced equilibria. Hence, under reference tracking and
disturbance rejection controller design scenarios, the current LPV framework
is insufficient to imply the desired guarantees for the underlying nonlinear
system. The introduced concepts and the apparent pitfalls are demonstrated
via a simulation example.
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3.1 Introduction

As also highlighted in Chapter 1, the ever-growing industrial performance demands
have resulted in increased system complexity, requiring tools for analysis and
controller synthesis of systems beyond the Linear Time-Invariant (LTI) framework.
This has resulted in various nonlinear analysis and control methods being developed.
However, one of the drawbacks of these nonlinear methods is that they often lack
the systematic controller design procedures and performance shaping approaches
of the LTI framework. As an alternative, varying concepts using linear surrogate
models have appeared and have extended the systematic analysis and synthesis
tools of the LTI framework. Among these, the Linear Parameter-Varying (LPV)
framework has become a popular approach (Tóth 2010).
As also described in Sections 1.2.3 and 2.5, LPV models are capable of describing
nonlinear behavior in terms of a linear dynamical relation whose mathematical
description depends on a time-varying parameter which can be measured, the
so-called scheduling-variable p, that resides in an a priori known set P . This allows
for the convex analysis and control synthesis results with stability and performance
guarantees from the LPV framework to be applied to nonlinear systems. These tools
have reduced computational complexity and are more robustness when compared
to other nonlinear methods. Due to these useful properties, many powerful LPV
analysis and control synthesis methods have appeared and have been successfully
applied to a wide range of industrial applications, see (Mohammadpour Velni and
Scherer 2012; Hoffmann and Werner 2015a) and the references therein for more
details.
However, as also highlighted in Section 1.3, it has been shown by counterexamples,
e.g., in (Scorletti, Fromion, et al. 2015), that a controller ensuring asymptotic
stability of the origin and L2-gain performance is not sufficient to guarantee asymp-
totic output tracking and disturbance rejection for nonlinear systems using LPV
control methods. This will also be demonstrated in this chapter and we will offer
solutions to the problem in the other chapters of this thesis. In the simulation
study in (Scorletti, Fromion, et al. 2015), it has been shown that for a reference
tracking application, the controlled system can exhibit oscillatory motion around
an equilibrium point in the presence of a bounded constant input disturbance. The
closed-loop displays this behavior even though integral action is present in the
control loop. In fact, such a problem may also occur with other linear surrogate
model based frameworks that build on the extension of the LTI framework, such
as Piecewise-Affine (PWA) and Takagi-Sugeno (TS) fuzzy modeling and control
design concepts.
Despite of the remedies that have been proposed in (Scorletti, Fromion, et al.
2015), no further analysis has been given why using ‘standard’ approaches for LPV
controller design can in some cases fail to guarantee expected stability and perfor-
mance requirements for nonlinear systems, while for LTI systems no such problems
exist. In this chapter, we provide an analysis of this question from a nonlinear
(Lyapunov) stability point of view for Continuous-Time (CT) systems. It is shown
that the conditions for asymptotic stability guarantees for LPV representations
with scheduling signals dependent on the state signals associated with the nonlinear
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system do not ensure the same guarantees for the represented nonlinear system for
equilibrium points other than zero. Thus, naively using the usual standard LPV
control methods to ensure stability and performance for a nonlinear system for
reference tracking and/or disturbance rejection could result in unexpected behavior
of the closed-loop system.
The chapter is structured as follows. In Section 3.2, we describe the problem of
analyzing or synthesizing controllers for nonlinear systems using the LPV framework
and an example is given to illustrate the issue with the current LPV results when
applied to nonlinear systems. Section 3.3 describes the current stability analysis
of LPV models and gives conditions when the current stability analysis results do
hold and when they fail in their full extent for the underlying nonlinear system.
In Section 3.4, the results of Section 3.3 are demonstrated on an example system.
Finally, in Section 3.5, conclusions on the provided results are given.

3.2 Analysis and Control via the LPV Framework

3.2.1 LPV Embedding of Nonlinear Systems

We consider CT nonlinear dynamical systems, like we considered in Section 2.2,
described by

ẋ(t) = f(x(t), w(t));
z(t) = h(x(t), w(t));

(3.1)

where x(t) ∈ Rnx is the state, w(t) ∈ Rnw is the input to the system and z(t) ∈ Rnz

the output of the system, and t ∈ R is time. The functions f : Rnx × Rnw × Rnu →
Rnx and h : Rnx × Rnw → Rny are assumed to be Lipschitz continuous.
This study focuses on the investigating the implied stability guarantees that are
obtained when the (global) LPV embedding of the nonlinear system (3.1) is analyzed.
As we considered in Section 2.5.1, here investigate LPV systems that can be
represented in the form of

ẋ(t) = A(p(t))x(t) +B(p(t))w(t);
z(t) = C(p(t))x(t) +D(p(t))w(t);

(3.2)

where p(t) ∈ P ⊆ Rnp , with P often taken to be a convex set. Moreover, A :
P → Rnx×nx , B : P → Rnx×nw , C : P → Rnz×nx , D : P → Rnz×nw are matrix
functions. We assume that this LPV form is a global LPV embedding of the
nonlinear system, see also Section 2.5 and specifically Definition 2.14 for more
details. In short, this implies that there exists a scheduling-map η : Rnx × Rnw →
Rnp , such that p(t) = η(x(t), w(t)) and f(x,w) = A(η(x,w))x + B(η(x,w))w,
h(x,w) = C(η(x,w))x+ C(η(x,w))w for all (x,w) ∈ X × W ⊆ Rnx × Rnw , where
X × W is a user chosen set on which the embedding is performed. See for example
(Kwiatkowski, Bol, et al. 2006; Tóth 2010; Abbas, Tóth, Petreczky, Meskin, and
Mohammadpour Velni 2014) for several procedures to embed the dynamics of
nonlinear systems in an LPV model.
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Systems of the form (3.1) includes cases when an LPV controller is designed/analyzed
for a nonlinear system described by

ẋ(t) = f(x(t), w(t), u(t));
z(t) = hz(x(t), w(t), u(t));
y(t) = hy(x(t), w(t));

(3.3)

where u(t) ∈ Rnu is the control input, y(t) ∈ Rny is the measured output, and w and
z now play the role of generalized disturbance, consisting of references, disturbances,
etc., and generalized performance, consisting of tracking errors, control effort, etc.,
respectively. In this case, using the LPV framework, stability and performance
guarantees are ensured with respect to the closed-loop behavior w → z in order to
achieve, e.g., asymptotic output tracking and disturbance rejection. In which case
(3.3) is embedded in an LPV representation of the form

ẋ(t) = A(p(t))x(t) +Bw(p(t))w(t) +Bu(p(t))u(t);
z(t) = Cz(p(t))x(t) +Dzw(p(t))w(t) +Dzu(p(t))u(t);
y(t) = Cy(p(t))x(t) +Dyw(p(t))w(t).

(3.4)

Then, based on the LPV form (3.4), which serves as a proxy description of the
nonlinear system (3.3), a controller is synthesized such that the interconnection of
controller and the LPV system represented by (3.4) is asymptotically stable and the
desired performance criteria on the performance channel from w → z are ensured
for all p(t) ∈ P. Powerful methods and performance shaping techniques exist to
synthesize LPV controllers via convex optimization, see Section 2.5 or (Packard
1993; Apkarian, Gahinet, and G. Becker 1995; Wu 1995; Scherer 2001). In these
cases, a dynamic output feedback controller of the form

ẋk(t) = Ak(p(t))xk(t) +Bk(p(t))uk(t);
yk(t) = Ck(p(t))xk(t) +Dk(p(t))uk(t);

(3.5)

is designed, where xk(t) ∈ Rnxk is the state, uk(t) ∈ Rnuk the input and yk(t) ∈ Rnyk

the output of the controller, respectively. For nu = nyk and nuk = ny, the closed-
loop LPV system, defined by interconnecting the LPV controller (3.5) with (3.4),
by taking u = yk and uk = y, will be of the form (3.2). See also Section 2.5 for
more details on LPV analysis and controller synthesis.
For simplicity, we will consider for our analysis two cases: (i) when η : Rnx → P,
i.e., p(t) = η(x(t)), which we will call the “dependent” scheduling-variable case, and
(ii) when η : Rnw → P, i.e., p(t) = η(w(t)), and hence p depends on an external
independent signals, which we will call the “independent” case. For the dependent
case, A, . . . ,D come from the decomposition of f and h from the nonlinear system
(3.1), through the LPV embedding, hence, we have that

ẋ(t) = A(η(x(t))x(t) +B(η(x(t))w(t)︸ ︷︷ ︸
f(x(t),w(t))

;

z(t) = C(η(x(t))x(t) +D(η(x(t)))w(t)︸ ︷︷ ︸
h(x(t),w(t)

.
(3.6)
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As aforementioned, it has been observed recently in (Scorletti, Fromion, et al. 2015)
that, when applying LPV controller synthesis techniques to nonlinear systems to
guarantee reference tracking and disturbance rejection, the resulting closed-loop
system can exhibit oscillations around the state equilibrium point in the presence of
bounded input disturbances, even though asymptotic stability is guaranteed during
synthesis, as p(t) = η(x(t)) resides in the set P, and integral action is also present.
Hence, the question arises why the LPV controller is unable to achieve asymptotic
reference tracking and disturbance rejection when interconnected to the nonlinear
system, or more generally, why the stability and performance guarantees of the LPV
representation are unable to imply the desired stability and performance guarantees
of the nonlinear system.

3.2.2 When the Implied Stability Guarantee Fails

Before analyzing why guarantees on the LPV representation fail to imply the desired
guarantees on the nonlinear system, we will first demonstrate this phenomenon by
means of a simple example.

Example 3.1 (A simple example).

Control scenario

Consider the following nonlinear system

ẋg(t) = −xg(t) − x3
g(t) + ug(t);

yg(t) = xg(t);
(3.7)

with xg(t), ug(t), yg(t) ∈ R. We aim to design an LPV controller in order to achieve
reference tracking and disturbance rejection for this system. A possible closed-loop
interconnection to achieve this objective is depicted in Figure 3.1. We define the
generalized disturbance w = col(r, d), where r is the reference and d the input
disturbance, and the generalized performance z = e, where e = r−yg is the tracking
error.

GK

d
kyku

e
r + +

− +

gu gy

Figure 3.1: Closed-loop interconnection of plant G, given by (3.7), and controller
K, given by (3.9).

In order to design an LPV controller for our plant and analyze the corresponding
closed-loop interconnection, the plant (3.7) is embedded in an LPV model. A
possible LPV embedding for (3.7) is

ẋg(t) = −(1 + p(t))xg(t) + ug(t);
yg(t) = xg(t);

(3.8)
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where p(t) ∈ P is the scheduling-variable for which we consider P = [0, 9]. The
corresponding scheduling-map η is given by p(t) = η(xg(t)) = x2

g(t) = y2
g(t).

In order to achieve our control objectives, we consider a PI-like LPV controller,
given by

ẋk(t) = uk(t);
yk(t) = (k11 + k12p(t))xk(t) + k21uk(t);

(3.9)

where k11, k12, k21 ∈ R are parameters of the controller with xk(t), uk(t), yk(t) ∈ R.
For the (numerical) analysis to follow, the controller parameters are assumed to
have the values: k11 = 5, k12 = 2 and k21 = 1. These controller parameters were
chosen to demonstrate the stability issues.
The interconnection of (3.8) and (3.9), as depicted in Figure 3.1, results in an LPV
model of the form (3.2) given by

ẋg(t) = −(1 + k21 + p(t))xg(t) + (k11 + k12p(t))xk(t) + k21r(t) + d(t);
ẋk(t) = −xg(t) + r(t);
e(t) = −xg(t) + r(t);

(3.10)

where w = col(r, d), z = e, x = col(xg, xk), and p = η(x) = x2
g. By substituting the

scheduling-map into (3.10), the corresponding nonlinear closed-loop interconnection
is

ẋg(t) = −(1 + k21)xg(t) − x3
g(t) + (k11 + k12x

2
g(t))xk(t) + k21r(t) + d(t);

ẋk(t) = −xg(t) + r(t);
e(t) = −xg(t) + r(t).

(3.11)

which is a model of the form (3.6).

L2-gain analysis via the LPV concept

The LPV framework allows for the calculation of an upper bound on the L2-gain of
(3.11), by considering (3.10) and assuming p ∈ P. Before computing the L2-gain,
we connect weighting filters to the inputs and output of the interconnection (3.10)
in order to incorporate the desired performance specification into our test. To r, we
connect the weighting filter Wr = 1.5 (expected magnitude of the reference), to d
we connect Wd = 8 (expected magnitude of the disturbance) and to e we connect
We(s) = 0.14(s+1)

s+1·10−7 (sensitivity shaping for integral action and 20% max overshoot).
Computing the L2-gain of (3.10) with the weighting filters connected using the
LPVcore Toolbox (Boef et al. 2021) results in an L2-gain of 0.98. Hence, we can
conclude that (3.11) is asymptotically stable and has an L2-gain of at most 0.98,
as long as η(x(t)) ∈ P. As the L2-gain of the closed-loop system with weighting
filters connected is ≤ 1, the closed-loop system should adhere to the performance
specifications defined by the weighting filters. In order to get a sense of the
performance of the closed-loop interconnection, the Bode magnitude plot of the
sensitivity (i.e., from r to e) and process sensitivity (i.e., from d to e) for a number
of frozen1 values of the scheduling-variable (in P) is displayed in Figure 3.2.
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Figure 3.2: Sensitivity (left, ), i.e., r → e, and process sensitivity (right, ), i.e.,
d → e, Bode magnitude plots for frozen values of the scheduling-variable, including
respective inverse weighting filters ( ).

In Figure 3.2, it can be seen that both the sensitivity and process sensitivity for
frozen values of the scheduling-variable have magnitudes of zero for a frequency
of zero. Hence, as the LPV representation is an LPV embedding of the nonlinear
system, it would be reasonable to conclude from an LTI analysis point of view that,
for constant reference and disturbance signals (for which still holds that p ∈ P),
the closed-loop system given by (3.11) has zero steady-state error. However, as will
be shown next, this is not the case.

Nonlinear time-domain analysis

Simulating (3.11) for a constant reference r ≡ 0.5 and various constant disturbances
d, results in the time responses displayed in Figure 3.3. From Figure 3.3, it is
apparent that, for input disturbances closer to zero, the output converges to the
reference (and we have zero steady-state error). However, applying d(t) = −7 or
d(t) = −8 results in trajectories that converge to orbit-stable limit cycles around the
target reference trajectory. Note that based on the trajectories of y(t) in Figure 3.3,
the corresponding scheduling trajectory stays within P = [0, 9] as y(t) ∈ [−3, 3].
Hence, while we adhere to the weighting filters and the scheduling-variable p stays
within the set P, we have shown that we do not obtain the expected desired
behavior.

1Constant fixed trajectory of the scheduling-variable, i.e., p ≡ p̄ ∈ P. Under such scheduling
trajectory, (3.2) corresponds to an LTI system, for which a frequency response can be computed.
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Figure 3.3: Time responses yg of the closed-loop interconnection (3.11) along with
the reference r ( ), for constant disturbances d ranging from 0 ( ) to -8 ( ).

Thus, by means of this simple example, we have demonstrated that the current
L2-gain/asymptotic stability and performance analysis through the LPV framework
is unfortunately inadequate to imply the tracking and rejection properties for
nonlinear systems in general. Next, it will be analyzed why this is the case.

3.3 Behind the Scenes of Stability Analysis

3.3.1 Stability analysis for LPV systems

The tools for LPV analysis and controller synthesis, also used for Example 3.1, make
use of (classical) dissipativity theory in order to simultaneously ensure stability and
performance guarantees, see also Section 2.4 and Section 2.5 for more details. In
this section, we will first investigate what the (Lyapunov) stability guarantees that
are ensured on the LPV system imply in the “independent” case, i.e., when the
scheduling is determined fully externally, meaning p(t) = η(w(t)).

We consider the LPV system given by (3.2) with p(t) ∈ P. Define (x∗, w∗, p∗) to
be an equilibrium point of (3.2). This means that for a given w∗ ∈ W ⊆ W and
p∗ = η(w∗) ∈ P,

0 =
[
A(p∗) B(p∗)

] [x∗
w∗

]
. (3.12)

To simplify the analysis, we assume that, for a given w∗ and corresponding p∗, there
is a unique x∗ that satisfies (3.12).

Stability of the origin

It can be seen from (3.12) that the origin is an equilibrium point of the LPV system
given by (3.2), by which we mean that (x∗, w∗, p∗) = (0, 0, p∗) is an equilibrium
point for all p∗ ∈ P. As we have shown in Section 2.5.2 using standard Lyapunov
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stability theory, the origin is a stable equilibrium for the LPV system given by (3.2),
if there exists a quadratic Lyapunov function

V (x) = x⊤Mx, (3.13)

with M ∈ Snx , where M ≻ 0, such that, omitting dependence on time for brevity,

V̇ (x) = x⊤ (A(p)⊤M +MA(p)
)
x ≤ 0, (3.14)

along all trajectories x and p of the unperturbed system, i.e., (3.2) with w(t) = 0.
If (3.14) is only zero when x = 0, then (3.14) implies asymptotic stability of (3.2).
Equivalently:

A(p)⊤M +MA(p) ≺ 0, ∀ p ∈ P. (3.15)

As P is considered to be a compact convex set, the infinite dimensional LMI
problem (3.15) can be reduced to a finite dimensional problem. Assuming A(p) is a
convex function, this problem can be solved efficiently using various semidefinite
programming solvers, e.g., (Toh et al. 1999). This form of stability is also guaranteed
when designing various controllers to ensure performance guarantees such as bounded
L2-gain, passivity, etc.

Stability of non-zero equilibrium points

For quadratic stability of equilibrium points other than the origin, consider the
quadratic Lyapunov function

Vx∗(x) = (x− x∗)⊤M(x− x∗), (3.16)

with again M ∈ Snx and M ≻ 0. Thus, based on (3.2) with w(t) = w∗, we obtain
that

V̇x∗(x)= ẋ⊤M(x− x∗) + (x− x∗)⊤Mẋ,

=(A(p)x+B(p)w∗)⊤
M(x− x∗) + (x− x∗)⊤M (A(p)x+B(p)w∗) ,

=2(x− x∗)⊤MA(p)x+ 2(x− x∗)⊤MB(p)w∗,

=2(x− x∗)⊤MA(p)(x− x∗)+2(x− x∗)⊤MA(p)x∗+2(x− x∗)⊤MB(p)w∗,

=(x− x∗)⊤(A(p)⊤M +MA(p))︸ ︷︷ ︸
Q(p)

(x− x∗)+2(x− x∗)⊤M(A(p)x∗ +B(p)w∗)︸ ︷︷ ︸
Z(p)

.

(3.17)
As we consider here the independent scheduling case, we have that p(t) = η(w(t)) =
η(w∗) = p∗. Therefore, we have by (3.12) that Z(p(t)) = Z(p∗) = 0. Consequently,
continuing from (3.17) with Z(p(t)) = 0, we obtain

V̇x∗(x) = (x− x∗)⊤Q(p)(x− x∗). (3.18)

Therefore, if there exists M ≻ 0 such that

Q(p) = A(p)⊤M +MA(p) ≺ 0, ∀ p ∈ P, (3.19)
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any equilibrium (x∗, w∗, p∗) is asymptotically stable.

This result is equivalent with (3.15), hence, for the scheduling independent case,
this means asymptotic convergence to any equilibrium point (x∗, w∗, p∗) satisfying
(3.12). Due to this property, which similarly holds in the LTI case, LPV stability
analysis and performance analysis is needed to be accomplished with respect to the
origin only (using (3.13) and (3.14) as a Lyapunov condition or (3.13) as a storage
function) as it implies the same guarantees for any other equilibrium point.

3.3.2 Implying stability guarantees under state dependent
scheduling

Stability of the origin

In the previous section, we have seen the stability guarantees for LPV systems in the
scheduling independent case. Next, we will investigate the “dependent” scheduling
case, i.e., when the LPV system describes a nonlinear system and p(t) = η(x(t)),
see (3.6). Like for the scheduling independent case, we will first investigate stability
of the origin, followed by stability of non-zero equilibrium points.

In the scheduling dependent case, the equilibrium at the origin of (3.6) corresponds
to (x∗, w∗) = (0, 0), that is equivalent with (0, 0, η(0)) in terms of (3.12). Performing
the stability analysis for the origin of (3.6) using the quadratic Lyapunov function
(3.13) gives

V̇ (x) = x⊤ (A(η(x))⊤M +MA(η(x))
)
x. (3.20)

If the following conditions are satisfied:

• For the LPV embedding (3.2) of (3.6), there exist an M ≻ 0 such that (3.15)
holds;

• η(X ) ⊆ P is satisfied, with X including the origin;

then (3.6) is asymptotically stable as these conditions will imply V̇ (x(t)) < 0 for all
x(t) ∈ X \ {0}.

Therefore, asymptotic stability of the origin of the LPV embedding implies asymp-
totic stability of the origin of the corresponding nonlinear system.

Stability of non-zero equilibrium points

Next, we consider non-zero equilibrium points of (3.6) given by (x∗, w∗), that is
equivalent to (x∗, w∗, η(x∗)) in terms of (3.12). Performing the stability analysis for
non-zero equilibrium points of (3.6) using the quadratic Lyapunov function (3.16)
gives

V̇x∗(x) = (x− x∗)⊤Q(η(x))(x− x∗) + 2(x− x∗)⊤MZ(η(x)). (3.21)
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If we only analyze the LPV representation, one would only ensure that (3.19) holds,
i.e, Q(p) ≺ 0 for all p ∈ P. However, this does not imply negativity of (3.21)
along all trajectories (x(t), η(x(t)). In case lim

t→∞
p(t) = lim

t→∞
η(x(t)) = η(x∗), then

lim
t→∞

Z(η(x)) = Z(η(x∗)) = 0. However, this is not imposed by (3.19). Continuing
the analysis of (3.21) and taking ∆x = x− x∗, (3.21) can be written as

∆x⊤Q(η(x))∆x+ 2∆x⊤MZ(η(x)), (3.22)

which for any fixed x ∈ X is a quadratic matrix polynomial. This quadratic form
has as its global maximum at

(MZ(η(x)))⊤(−Q(η(x)))−1(MZ(η(x))). (3.23)

As we enforce by (3.19) that Q(p) ≺ 0, the maximum of (3.23) will always be non-
negative, hence, there will always be parts of the state-space where the Lyapunov
function increases. Therefore, based on this analysis, no guarantees for (asymptotic)
stability of the equilibrium point can be given in the general case if we rely on the
results of the LPV test constructed Lyapunov function. In other words, based on the
LPV test here, there is no guarantee that the corresponding nonlinear system will
be asymptotically stable for an arbitrary equilibrium point, but only for the origin,
where the asymptotic stability guarantees are ensured for any arbitrary trajectory of
p in P. This means, we have no stability guarantees when the LPV representation
is used to ensure reference tracking and disturbance rejection of a nonlinear system,
as in that case we do want to ensure stability of non-zero equilibrium points. This
is in contrast to the scheduling independent case in Section 3.3.1, for which we
showed that asymptotic stability is guaranteed for any equilibrium point (x∗, w∗, p∗),
satisfying (3.12), if (3.19) holds.

While for the case of state dependent scheduling-variables, there are no general guar-
antees that the system is asymptotically stable when performing reference tracking
and disturbance rejection, it could still be the case that for a subset of equilibrium
points, (3.21) is strictly negative for a subregion of the state-space. Hence, as long
as the trajectory stays within this subset of the state-space, asymptotic stability can
still be guaranteed for the corresponding set of equilibrium points. This requires
computing where (3.21) is negative or alternatively finding the roots of (3.21).
However, even in the case that η(x) is a linear or a polynomial mapping, (3.21)
becomes a multivariable polynomial, for which it is difficult to find the roots, even
for simple systems. Moreover, despite the loss of asymptotic stability, boundedness,
as can be observed in Section 3.2.2, can still hold. However, this does not coincide
with the expected outcome of the LPV analysis, nor would be a desired objective
in synthesis.

Furthermore, this stability analysis is based on the Lyapunov function constructed
in the LPV analysis step. Of course, for a given nonlinear system this does not
mean that with an alternative method one could not find a Lyapunov function
that actually shows stability. Here, we have only investigated the limitations of
the currently widely used LPV stability concept when applied to analyze nonlinear
systems.
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3.4 Example

Based on the (asymptotic) Lyapunov stability guarantees given in Section 3.3, we
aim to show for the example system (3.11) from Example 3.1 that forced equilibrium
points exist for which asymptotic stability cannot be guaranteed while they are
admissible in the considered scheduling range.

Example 3.2 (Non-zero equilibrium analysis). Using the LPVcore Toolbox, we
have computed an upperbound for the L2-gain2 of 1.78 for (3.10) and verified that
it is asymptotically stable for p ∈ P = [0, 9], using a quadratic storage/Lyapunov
function (3.13). The obtained matrix M of (3.13) is given by

M =
[

0.6240 −0.6951
−0.6951 3.1187

]
. (3.24)

As described in Section 3.3, due to the scheduling being dependent on the state,
this result only implies asymptotic stability of the origin of (3.11). Next, we are
interested for which set of equilibrium points asymptotic stability of the underlying
nonlinear system can be guaranteed using the Lyapunov function (3.16) where M
is given by (3.24). Computing the set of equilibrium points of (3.11) results in

E = {(x∗, w∗) ∈ Rnx × Rnw | x∗ = Ω(w∗)} , (3.25)

where3

Ω(w∗) :=
[
r∗

r3
∗+r∗−d∗

k12r2
∗+k11

]⊤
, (3.26)

with w∗ =
[
r∗ d∗

]⊤. Furthermore, we define the sets W := πw∗ E and X := πx∗ E ,
denoting the projections of E on w∗ and x∗, respectively. Due to the assumption of
P being a convex and compact set, we only consider a part of the state-space for
the analysis. We consider x(t) ∈ X ⊂ Rnx , with

X = {x = col(xg, xk) ∈ Rnx | η(x) ∈ P}. (3.27)

For each element w∗ ∈ W , the subset of X is computed where V̇x∗=Ω(w∗)(x) < 0,
i.e.,

Sw∗ :=
{
x | x ∈ X , V̇Ω(w∗)(x) < 0, w∗ ∈ W

}
. (3.28)

When we consider only a subset of possible reference and disturbance values Ŵ ⊆ W ,
the intersection of the corresponding Sw∗ sets gives

Ŝ :=
⋂

w∗∈Ŵ

Sw∗ . (3.29)

Hence, as long as x(t) ∈ Ŝ and w∗ ∈ Ŵ , the trajectory is guaranteed to converge
towards a corresponding x∗. By computing the largest invariant set (reachability set)

2Note that no weighting filters are considered in this case.
3Assuming that k11, k12 > 0 or k11, k12 < 0.
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R ⊆ Ŝ over inputs w, with w(t) ∈ Ŵ , the nonlinear system is asymptotically stable
under any initial condition x0 ∈ R. As commented on before, analytically computing
Ŝ would be difficult, even for this example with only two states and a polynomial
scheduling-map. Hence, the computation is performed by gridding Ŵ and X . For
this example we consider4 Ŵ = [−2, 2] × [−8, 8] and x ∈ X = [−3, 3] × [−3, 3].
Furthermore, in order to get an understanding of the range of disturbances w ≡ w∗
for which the system is still asymptotically stable, several (gridded) subsets of Ŵ

are considered given by Ŵα = αŴ where α ∈ [0, 1]. The set R is approximated by
simulating (3.11) for a wide range of inputs with w(t) ∈ Ŵα.

Figure 3.4: The sets Ŝ ( ), X ( ), and R ( ), considering Ŵα for different
values of α.

In Figure 3.4, the resulting sets Ŝ, X , and R are displayed under Ŵα for different
values of α. In the figure, it can be observed that only for approximately α ≤ 0.4,
R ⊆ Ŝ. Hence, based on this analysis, we can only conclude asymptotic stability
of all forced equilibria of the system corresponding to w ≡ w∗ ∈ Ŵα with α ≤ 0.4.
Based on the computed R, this would correspond to xg(t) ∈ [−2.2, 2.2]. This is
in contrast to the L2-gain guarantee of the LPV model (3.10), which holds for
all p(t) ∈ [0, 9], corresponding to xg(t) ∈ [−3, 3], and all generalized disturbances

4Note, the specific X taken here is consistent with the considered scheduling set P, as p =
η(x) = x2

g and p ∈ P = [0, 9].
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w(t) ∈ R2, hence, also for all w(t) ∈ W . However, as mentioned in Section 3.3,
if the scheduling-variable is not independent of the system dynamics, there will
always exist regions for which asymptotic stability cannot be guaranteed, as it can
be observed from Figure 3.4 for this example. Whether or not these regions will
fall into the reachability set where the system is operated is unpredictable from
the viewpoint of LPV analysis and controller synthesis, and hence may or may not
endanger the closed-loop operation of the system.

3.5 Conclusions

The LPV framework provides attractive convex methods to analyze (asymptotic)
stability and performance of nonlinear systems through embedding them in an
LPV representation. This way of guaranteeing asymptotic stability is also heavily
used in synthesizing controllers for nonlinear systems through the LPV framework.
However, the underlying stability test only ensures asymptotic stability of the origin,
which is then argued in the LPV framework to extend to all equilibrium points due
to the linearity of the system. In this chapter, we have shown that this fails to
hold in case the scheduling-map is a function of the state. Hence, for such LPV
embeddings of nonlinear systems, asymptotic stability cannot be guaranteed for
equilibrium points other than the origin. This means that when applying LPV
control methods for a nonlinear system with state dependent scheduling, there are
no actual rigorous guarantees when the operating condition changes, e.g., when
tracking and rejection is considered.
This highlights the importance of moving towards global, equilibrium free, stability
and performance concepts in order to analyze and synthesize controllers for nonlinear
systems. As these concepts are able to give the rigorous guarantees for multiple
equilibrium points or target trajectories, compared to the single equilibrium point
oriented Lyapunov concept. In the following chapters, we will develop analysis and
controller synthesis methods using two types of equilibrium free concepts, namely,
universal shifted stability and performance in Chapter 4 and incremental stability
and performance in Chapters 5 and 6.



4
Universal Shifted
Dissipativity based
Analysis and Control

Systematic and computationally efficient analysis and control of nonlinear
systems has become increasingly important as discussed in Chapter 1. A

key ingredient to achieve this are global stability and performance concepts,
as these will allow us to achieve analysis and controller synthesis that is
independent of particular equilibrium points or trajectories. In this chapter
we focus on universal shifted stability and performance, which is such a
global concept, and which ensures stability and performance w.r.t. each
forced equilibrium point of the system. Therefore, this concept is especially
beneficial for control problems that require the tracking and rejection of
constant signals. In this chapter, we show how universal shifted stability
and performance can be analyzed through analysis of the time-differentiated
dynamics of a system. It is also shown how, through the application of
Linear Parameter-Varying (LPV) methods, this analysis can then be done
computationally efficiently. Moreover, based on the analysis results, a
controller synthesis method is developed, which makes use of the LPV
framework, in order to ensure universal shifted stability and performance.
The proposed controller design is verified in a simulation and experimental
study. Moreover, we also compare the proposed controller to standard LPV
controller designs, demonstrating the improved stability and performance
guarantees of the proposed approach.
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4.1 Introduction

The analysis and control of nonlinear systems becomes increasingly important
as we discussed in Chapter 1. However, Linear Time-Invariant (LTI) methods
are still widely used, as for LTI systems there is an extensive, systematic, and
computationally efficient framework for analysis and control design that allows to
ensure and shape stability and performance of the closed-loop system. While there
exists a multitude of analysis and controller synthesis methods for nonlinear systems,
so far, a systematic framework for analysis and controller synthesis for nonlinear
systems has not been introduced like is available for LTI systems. Therefore, in this
thesis, we set out to develop a systematic and computationally efficient framework
for nonlinear systems to ensure and shape global stability and performance of the
(closed-loop) system. While approaches such as the Linear Parameter-Varying
(LPV) framework have aimed to achieve this, as we have shown in Chapter 3, they
are unable to do so, as the stability and performance guarantees of the current
state-of-the-art LPV methods are dependent on the choice of equilibrium point.
While standard stability is sufficient if we only want to analyze stability and/or
dissipativity w.r.t. a single (forced) equilibrium point of the system, it becomes
troublesome to use if we want to ensure stability/dissipativity w.r.t. all (forced)
equilibrium points of the system. This is especially relevant in cases when one
wants to track constant references and/or reject constant (unknown) disturbances.
Consequently, global stability and performance concepts are highly important in
order to arrive at a systematic framework for nonlinear analysis and controller
synthesis. In the literature, notions such as so-called shifted stability/dissipativity
(Van der Schaft 2017) and equilibrium independent stability/dissipativity (Jayaward-
hana 2006; Hines et al. 2011; Simpson-Porco 2019) have been introduced, whereby
stability/dissipativity w.r.t. a particular (non-zero) (forced) equilibrium point is
ensured, or w.r.t. all forced equilibrium points of the system, respectively. In litera-
ture, equilibrium independent dissipativity has also been referred to as constant
incremental dissipativity (Jayawardhana 2006). In order to not confuse this notion
of stability/dissipativity with other notions we will discuss later in this thesis, we
will refer to this notion as universal shifted stability/dissipativity.
In literature, the analysis of non-zero equilibrium points of Continuous-Time
(CT) nonlinear systems has also been investigated through its time-differentiated
dynamics. In gain-scheduling and the LPV framework, this has it roots in the so-
called velocity-based scheduling technique (Kaminer et al. 1995; Leith and Leithead
1998b; Leith and Leithead 1999; Tóth 2010). However, these results are based on
the argument that locally around an equilibrium point, the dynamics of velocity
form coincide with the linearization of the nonlinear system at the equilibrium
point (see e.g. (1.2)). Consequently, these results are only able to provide local
guarantees in a neighborhood around the equilibrium points, which severely hampers
their viability. From a nonlinear perspective, the time-differentiated dynamics also
connect to the so-called Krasovskii method for the construction of a Lyapunov
function in order to show stability (Khalil 2002). This has also been explored more
recently in connection to non-zero equilibrium point stability and/or performance
properties, in (Kosaraju et al. 2019; Kawano et al. 2021) and (Schweidel and Arcak
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2022). The work in (Kawano et al. 2021) uses the time-differentiated properties
to ensure universal shifted stability and universal shifted passivity of the system.
However, they restrict the output map of nonlinear state-space representation to
a particular form and use properties of the passivity supply function in order to
prove their implications. Due to the reliance on properties of passivity for these
results, they have not been extended to other (quadratic) performance notions. The
resulting controller design also requires manual design choices to be made by the
user, requiring expert knowledge. The work in (Schweidel and Arcak 2022) strictly
focusses on the analysis of the network interconnection of systems, in which they
show that (unique) equilibrium points of interconnections of velocity dissipative
systems are stable. However, no connection to performance is made in this work or
how these results could be used for controller design.

Consequently, as the main contribution of this chapter, we will show how analysis of
the time-differentiated dynamics can be used in order imply both universal shifted
stability and universal shifted performance of CT nonlinear systems. Moreover, we
will also show how the analysis of the time-differentiated dynamics can be performed
through the LPV framework in order to systematically and computationally effi-
ciently analyze universal shifted stability and performance. Finally, as an additional
contribution, we will present a procedure to systemically and computationally effi-
ciently synthesize controllers in order to ensure universal shifted stability and shape
universal shifted performance. With these contributions, we build up key parts of
our intended framework for systematic and computationally efficient analysis and
controller design for nonlinear systems to ensure global stability and performance
guarantees, which is the objective of this thesis. Later, in Chapter 8, we also extend
the results of this chapter to Discrete-Time (DT) nonlinear systems.

In Section 4.2, we will introduce the concept of universal shifted stability, perfor-
mance, and dissipativity. Next, in Section 4.3, we introduce velocity based analysis,
i.e., analysis of the time-differentiated dynamics of the system, and show how it can
be used to imply universal shifted stability and performance. In Section 4.4, we then
show how velocity based analysis can be performed through the LPV framework.
Section 4.5, shows how the analysis results in the previous section can then be
used in order to synthesize controllers to ensure universal shifted stability and
performance. The performance and properties of the developed universal shifted
controller synthesis method are demonstrated in Section 4.6, first in a simulation
study and then via experiments on a unbalanced disk system. Finally, in Section 4.7,
conclusions on the developed results and capabilities of the established synthesis
and analysis toolchain are drawn.
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4.2 Universal Shifted Stability and Performance

4.2.1 Nonlinear system

Similar to Section 2.2, we consider CT nonlinear dynamical systems given by

ẋ(t) = f(x(t), w(t)); (4.1a)
z(t) = h(x(t), w(t)); (4.1b)

where t ∈ R+
0 is time, x(t) ∈ X ⊆ Rnx is the state with initial condition x(0) = x0 ∈

Rnx , w(t) ∈ W ⊆ Rnw is the input of the system, and z(t) ∈ Z ⊆ Rnz is the output
of the system. Moreover, the functions f : X × W → Rnx and h : X × W → Z are
assumed to be in C1, i.e., f, h ∈ C1. We define the set of solutions of (4.1) as

B := {(x,w, z) ∈ (X × W × Z)R
+
0 | x ∈ C1 and (x,w, z) satisfy (4.1)}, (4.2)

and the behavior of (4.1) for a specific input trajectory w̄ ∈ WR+
0 , by

Bw(w̄) := {(x,w, z) ∈ B | w = w̄ ∈ WR+
0 }. (4.3)

For the nonlinear system given (4.1), the equilibrium points satisfy

0 = f(x∗, w∗); (4.4a)
z∗ = h(x∗, w∗); (4.4b)

where x∗ ∈ X , w∗ ∈ W and z∗ ∈ Z. The set of equilibrium points is then defined as

E := {(x∗, w∗, z∗) ∈ X × W × Z | (x∗, w∗, z∗) satisfy (4.4)}. (4.5)

Define X := πx∗ E , W := πw∗ E , and Z := πz∗ E . Throughout this chapter, we
make the following assumption:

Assumption 4.1. For the nonlinear system given by (4.1) with equilibrium points
(x∗, w∗, z∗) ∈ E , we assume that there exists a bijective map κ : W → X such that
x∗ = κ(w∗), for all (x∗, w∗) ∈ πx∗,w∗ E . This means that for each w∗ ∈ W there is
a unique corresponding x∗ ∈ X , and vice versa, for each x∗ ∈ X there is a unique
corresponding w∗ ∈ W .

This assumption on the uniqueness of the equilibrium points is taken for convenience,
in order to not overcomplicate the discussion.

4.2.2 Universal shifted stability

As mentioned in Section 4.1, universal shifted stability is stability w.r.t. all forced
equilibrium points of the system. Defined more formally:

Definition 4.1 (Universal shifted stability). The nonlinear system given by (4.1)
is universally shifted (asymptotically) stable, if it is (asymptotically) stable at each
x∗ ∈ X with corresponding w∗ ∈ W , i.e., (x∗, w∗) ∈ πx∗,w∗ E .
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Note that this definition is nothing more than the ‘standard’ stability definition,
i.e., Definition 2.3, required to hold for each equilibrium point of the system. In
literature, the set of all asymptotically stable equilibrium points is sometimes also
referred as the positive limit set or ω-limit set (Haddad and Chellaboina 2008;
Mei and Bullo 2017). We can extend the standard Lyapunov condition to analyze
stability of an equilibrium point, see Theorem 2.2, to a condition to analyze universal
shifted stability.

Theorem 4.1 (Universal shifted Lyapunov stability). The nonlinear system given
by (4.1) is universally shifted stable, if there exists a function Vs : X × W → R+

0
with Vs(·, w∗) ∈ C1 and Vs(·, w∗) ∈ Qx∗ for every (x∗, w∗) ∈ πx∗,w∗ E , such that for
every (x∗, w∗) ∈ πx∗,w∗ E , it holds that

∂

∂t
Vs(x(t), w∗) ≤ 0, (4.6)

for all t ∈ R+
0 and x ∈ πx Bw(w ≡ w∗). If (4.6) holds, but with strict inequality

except when x(t) = x∗, then the system is universally shifted asymptotically stable.

Proof. See Appendix B.2.

4.2.3 Universal shifted dissipativity

Classical dissipativity as developed in (Willems 1972), also discussed Section 2.4, is
an important concept for stability and performance analysis of nonlinear systems.
The theory has also resulted in various controller design methods in order to ensure
dissipativity of the (closed-loop) system, see e.g. (Van der Schaft 2017; Brogliato
et al. 2020). Nonetheless, as also discussed in Chapter 1, a downside of classical
dissipativity is that it only considers a single point for neutral storage, which is
often the origin. This means that only stability and performance guarantees w.r.t.
the origin of the system can be given, which is limiting in cases where one wants to
ensure stability and performance w.r.t. more or even all equilibrium points of the
system.
Universal shifted dissipativity is a stronger dissipativity notion aimed at overcoming
this shortcoming of classical dissipativity. Namely, universal shifted dissipativity
considers dissipativity w.r.t. to each (forced) equilibrium point of the system. In
literature, this has also been referred to as equilibrium independent dissipativity
(Hines et al. 2011; Simpson-Porco 2019) or constant incremental dissipativity
(Jayawardhana 2006). This allows for analyzing the (dissipated) energy flow between
trajectories and equilibrium points of the system.
More concretely, we take the following definition for universal shifted dissipativity,
adopted from (Simpson-Porco 2019):

Definition 4.2 (Universal shifted dissipativity). The nonlinear system given by
(4.1) is universally shifted dissipative w.r.t. the supply function ss : W ×W ×Z ×Z ,
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if there exists a storage function Vs : X × W → R+
0 with Vs(·, w∗) ∈ C0 and

Vs(·, w∗) ∈ Qx∗ for every (x∗, w∗) ∈ πx∗,w∗ E , such that

Vs(x(t1), w∗) − Vs(x(t0), w∗) ≤
∫ t1

t0

ss(w(t), w∗, z(t), z∗) dt, (4.7)

for all t0, t1 ∈ R+
0 with t1 ≥ t0 and (x,w, z) ∈ B.

Based on this definition, we can also formulate the following condition for universal
shifted dissipativity of a system given by (4.1):

Lemma 4.1 (Condition for universal shifted dissipativity). If there exists a storage
function Vs with Vs(·, w∗) ∈ C1 and Vs(·, w∗) ∈ Qx∗ for every (x∗, w∗) ∈ πx∗,w∗ E ,
such that

∇xVs(x,w∗)f(x,w) ≤ ss(w,w∗, h(x,w), z∗), (4.8)

for all x ∈ X and w ∈ W, then, the nonlinear system given by (4.1) is universally
shifted dissipative w.r.t. the supply function ss.

Proof. See Appendix B.2.

For classical dissipativity, we can connect to many well-known performance metrics,
such as the L2-gain and passivity, by considering (Q,S,R) supply functions, see
Section 2.4.3. Similarly, also for universal shifted dissipativity, we will mostly focus
our attention on quadratic supply functions ss of the form

ss(w,w∗, z, z∗) =
[
w − w∗
z − z∗

]⊤ [
Q S
⋆ R

] [
w − w∗
z − z∗

]
, (4.9)

where Q ∈ Snw , R ∈ Snz , and S ∈ Rnw×nz . If a system given by (4.1) is uni-
versally shifted dissipative w.r.t. to a supply function of the form (4.9), we will
also refer to it being universally shifted (Q,S,R) dissipative. Like how classical
(Q,S,R) dissipativity implies quadratic performance notions of the system (see
Section 2.4.3), such as induced L2-gain and passivity, we will also show how universal
shifted (Q,S,R) dissipativity implies universal shifted versions of these quadratic
performance notions.

As universal shifted dissipativity is a stronger notion than classical dissipativity, we
can easily show the following result:

Theorem 4.2 (Induced classical dissipativity). If a nonlinear system given by (4.1)
is universally shifted (Q,S,R) dissipative and (0, 0, 0) ∈ E , then, the system is also
classically (Q,S,R) dissipative for the same tuple (Q,S,R).

Proof. See Appendix B.2.
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4.2.4 Induced universal shifted performance

As aforementioned, classical (Q,S,R) dissipativity links back to many popular
performance metrics such as the L2-gain and passivity. Next, we will show how
universal shifted (Q,S,R) dissipativity connects to universal shifted versions of
these performance metrics. Before giving this results, we will first give a definition
for the universal shifted extension of the Lp-Lq-gain (see also Definition 2.11):

Definition 4.3 (Universal shifted Lp-Lq-gain). A nonlinear system given by (4.1)
is said to have a finite universal shifted Lp-Lq-gain, if there is a finite γ ≥ 0 and
function ζs : X × X → R such that for every (x∗, w∗) ∈ πx∗,w∗ E it holds that 1

∥z − z∗∥q,T ≤ γ ∥w − w∗∥p,T + ζs(x0, x∗), (4.10)

for all T ≥ 0 and (x,w, z) ∈ B with 2 w ∈ Lpe. The induced universal shifted
Lp-Lq-gain of (4.1), denoted as Lsp-Lsq-gain, is the infimum of γ such that (4.10)
still holds. If p = q, we will refer to this as the (induced) universal shifted Lp-gain,
denoted as Lsp-gain.

Using this definition, we directly have universal shifted extensions of the well-known
L2-gain, L∞-gain, and L2-L∞-gain through the Ls2-gain, Ls∞-gain, and Ls2-Ls∞-
gain, respectively. We can then connect universal shifted (Q,S,R) dissipativity to
Ls2-gain performance through the following lemma:

Lemma 4.2 (Ls2-gain based on universal shifted dissipativity). If the nonlinear
system given by (4.1) is universally shifted (Q,S,R) dissipative with (Q,S,R) =
(γ2I, 0,−I), then, the Ls2-gain of the system is bounded by γ.

Proof. See Appendix B.2.

For universal shifted passivity, we have adopted the following definition inspired by
the shifted passivity definition in (Van der Schaft 2017):

Definition 4.4. A nonlinear system given by (4.1) is said to be universally shifted
passive, if it is universally shifted dissipative w.r.t. to the supply function

ss(w,w∗, z, z∗) = (w − w∗)⊤(z − z∗) + (z − z∗)⊤(w − w∗). (4.11)

This also corresponds to the system being universally shifted (Q,S,R) dissipative
w.r.t. to the tuple (Q,S,R) = (0, I, 0).

Through this definition, we directly link universal shifted passivity to universal
shifted dissipativity. Note that if (0, 0, 0) ∈ E , then, the universal shifted perfor-
mance notions also imply their standard counterparts in terms of the Lp-Lq-gain
(see Definition 2.11) and passivity (see Definition 2.12).

1Note that w and z are signals, while w∗ and z∗ are constant values, so (w − w∗) and (z − z∗)
are understood as the signals (t 7→ (w(t) − w∗)) and (t 7→ (z(t) − z∗)), respectively.

2Note that this implies (w − w∗) ∈ Lpe.
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4.2.5 Induced universal shifted stability

Classical dissipativity of a nonlinear system implies stability (at the origin) of the
system if the supply function satisfies a negativity condition, see Theorem 2.3. We
will show how a similar condition on the universal shifted supply function ss can
be formulated in order to link universal shifted dissipativity and universal shifted
stability.

Theorem 4.3 (Universal shifted stability from universal shifted dissipativity). If
the nonlinear system given by (4.1) is universally shifted dissipative under a storage
function Vs with Vs(·, w∗) ∈ C1 for all w∗ ∈ W , w.r.t. a supply function ss that
satisfies for every (x∗, w∗, z∗) ∈ E that

ss(w∗, w∗, z, z∗) ≤ 0, (4.12)

for all z ∈ Z, then, the nonlinear system is universally shifted stable. If the supply
function satisfies (4.12), but with strict inequality for all z ̸= z∗, and the system
is observable (see Definition 2.2), then the nonlinear system is universally shifted
asymptotically stable.

Proof. See Appendix B.2.

Note that similar to classical (Q,S,R) dissipativity, the condition in Theorem 4.3
is satisfied for universal shifted (Q,S,R) supply functions for which R ⪯ 0 (with
R ≺ 0 implying universal shifted asymptotic stability, such as is the case for the
Ls2-gain).

As previously mentioned, in this chapter we are interested in efficiently analyzing
and ensuring universal shifted stability and performance of nonlinear systems. We
have seen in this section and in Section 4.2.4 how universal shifted dissipativity
allows us to simultaneously analyze both universal shifted stability and perfor-
mance. While Definition 4.2 and Lemma 4.1 give us conditions to analyze universal
shifted dissipativity, these conditions require to hold for all state and input tra-
jectories/values and for every equilibrium point (x∗, w∗, z∗) ∈ E . Hence, checking
universal shifted dissipativity directly through these conditions can be a difficult if
not an infeasible task, even when assuming a particular class of storage functions
Vs. Next, as one of the main results of this chapter, we will show how analysis of
the time-differentiated dynamics of the system will allow us to simplify universal
shifted stability and performance analysis of nonlinear systems.
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4.3 Velocity based Analysis

4.3.1 The velocity form

Let us first define the following restriction of the solution set of (4.1) by 3

Bc := {(x,w, z) ∈ B | x ∈ C2, w, z ∈ C1}, (4.13)

i.e., the solutions in B that are differentiable. We also define Bc,w(w) := Bw(w)∩Bc

for a w ∈ WR+
0 . Furthermore, define the operator ∂ for these sets such that

∂Bc =
{

(ẋ, ẇ, ż) ∈ (Rnx × Rnw × Rnz)R
+
0 | ẋ(t) = d

dtx(t),
ẇ(t) = d

dtw(t), ż(t) = d
dtz(t),∀t ∈ R+

0 , (x,w, z) ∈ Bc
}
. (4.14)

For a nonlinear system given by (4.1), we call the time-differentiated dynamics of
(4.1) to be the velocity form of the system.

Definition 4.5 (Velocity form). For a nonlinear system given by (4.1), the velocity
form is

ẍ(t) = Av(x(t), w(t))ẋ(t) +Bv(x(t), w(t))ẇ(t); (4.15a)
ż(t) = Cv(x(t), w(t))ẋ(t) +Dv(x(t), w(t))ẇ(t); (4.15b)

where Av = ∂f
∂x , Bv = ∂f

∂w , Cv = ∂h
∂x , Dv = ∂h

∂w , and (x,w, z) ∈ Bc.

The solution set of (4.15) is given by Bv := ∂Bc, and we define Bv,w(w) := ∂Bc,w(w)
for a w ∈ WR+

0 .
In this context, the velocity form (4.15) is nothing more than the dynamics of
the time-differentiated (i.e., velocity) dynamics of our original system given by
(4.1). We will refer to the original system given by (4.1) as the primal form of
the system. As aforementioned, the analysis of the time-differentiated dynamics
has been investigated in connection to gain scheduling (Leith and Leithead 1998b;
Leith and Leithead 1999), the construction of (local) LPV embeddings (Tóth 2010),
and more recently also in connection with (universal) shifted stability/dissipativity
(Kosaraju et al. 2019; Kawano et al. 2021; Schweidel and Arcak 2022). However, as
previously mentioned, the existing works on this topic are limited as they are only
able to provide local guarantees, assume severe restrictions to the output dynamics,
and/or only focus on stability. Next, we will show how the velocity form can be
used to provide stability and performance guarantees in the form of universal shifted
stability and performance.

4.3.2 Velocity dissipativity

Before connecting analysis of the velocity form to universal shifted analysis of the
primal form, we will first define the following dissipativity notion based on the
velocity form:

3As solutions are defined on R+
0 , we assume they are also continuously differentiable at t = 0.
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Definition 4.6 (Velocity dissipativity). The nonlinear system given by (4.1) is
velocity dissipative w.r.t. the supply function sv, if there exists a storage function
Vv : Rnx → R+

0 with Vv ∈ C1 and Vv ∈ Q0, such that, for all t0, t1 ∈ R+
0 with

t1 ≥ t0,

Vv(ẋ(t1)) − Vv(ẋ(t0)) ≤
∫ t1

t0

sv(ẇ(t), ż(t)) dt, (4.16)

for all (ẋ, ẇ, ż) ∈ Bv.

Note that in this sense, velocity dissipativity can be seen as ‘classical dissipativity’
(see Definition 2.13) of the velocity form (4.15) of the system. In literature, similar
notions have also been introduced, such as Krasovskii passivity (Kosaraju et al.
2019; Kawano et al. 2021) and delta dissipativity (Schweidel and Arcak 2022), which
in these works is also connected to non-zero equilibrium point properties of the
original system.

Similarly to the universal shifted (Q,S,R) supply function, also for velocity dissipa-
tivity, we focus on quadratic supply functions of the form

sv(ẇ, ż) =
[
ẇ
ż

]⊤ [
Q S
⋆ R

] [
ẇ
ż

]
, (4.17)

where again Q ∈ Snw , S ∈ Rnw×nz , and R ∈ Snz . If a system is velocity dissipative
w.r.t. a supply function of the form (4.17), we will refer to it being velocity (Q,S,R)
dissipative.

Similar to the work in (Kawano et al. 2021; Schweidel and Arcak 2022), based on
our definition of velocity dissipativity, we can derive the following condition:

Lemma 4.3 (Condition for velocity dissipativity). If there exists a storage function
Vv : Rnx → R+

0 with Vv ∈ C1 and Vv ∈ Q0, such that, for all values wv ∈ Rnw ,
x ∈ X , and w ∈ W,

∇Vv(f(x,w)) (Av(x,w)f(x,w) +Bv(x,w)wv) ≤
sv(wv, Cv(x,w)f(x,w) +Dv(x,w)wv), (4.18)

then the nonlinear system given by (4.1) is velocity dissipative w.r.t. the supply
function sv.

Proof. See Appendix B.2.

Using the results of Lemma 4.3, for a (Q,S,R) supply function (4.17) and quadratic
storage function:

Vv(ẋ) = ẋ⊤Mẋ, (4.19)

where M ∈ Snx with M ≻ 0, we can derive the following sufficient condition for
velocity dissipativity:
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Theorem 4.4 (Velocity (Q,S,R) dissipativity condition). The system given by
(4.1) is velocity (Q,S,R) dissipative, if there exists an M ∈ Snx with M ≻ 0, such
that, for all (x,w) ∈ X × W,

(⋆)⊤
[
0 M
⋆ 0

] [
I 0

Av(x,w) Bv(x,w)

]
− (⋆)⊤

[
Q S
⋆ R

] [
0 I

Cv(x,w) Dv(x,w)

]
⪯ 0.

(4.20)

Proof. See Appendix B.2.

Note, what is compelling about the condition given in Theorem 4.4 is that it
corresponds to a feasibility check of an infinite dimensional set of Linear Matrix
Inequalities (LMIs), as for a fixed (x,w) ∈ X × W, (4.20) becomes an LMI. Later,
in Section 4.4, we will see how we can use tools from the LPV framework to
reduce this infinite dimensional set of LMIs to a finite dimensional set, which can
computationally efficiently be verified. This will then gives us computationally
efficient tools to analyze velocity (Q,S,R) dissipativity of a system.

4.3.3 Induced universal shifted stability

Having introduced the velocity form and velocity dissipativity, we will first present
results on how these notions connect to universal shifted stability of the system.
Let us first introduce the set Bv,W :=

⋃
w∗∈W

Bv,w(w ≡ w∗), i.e., the behavior of the

velocity form for which the input is w(t) = w∗ ∈ W , and hence ẇ(t) = 0, for all
t ∈ R+

0 .

Theorem 4.5 (Implied universal shifted stability). The nonlinear system given by
(4.1), with solutions in Bc, is universally shifted stable, if there exists a function
Vv : Rnx → R+

0 with Vv ∈ C1 and Vv ∈ Q0, such that

d

dt
Vv(ẋ(t)) ≤ 0, (4.21)

for all t ∈ R+
0 and ẋ ∈ πẋ Bv,W . If (4.21) holds, but with strict inequality except

when ẋ(t) = 0, then the system is universally shifted asymptotically stable.

Proof. See Appendix B.2.

The proof of Theorem 4.5 relies on a construction of a universally shifted Lyapunov
function based on Vv. This construction is based on the so-called Krasovskii method
for ‘standard’ stability (Khalil 2002), and construction of the storage/Lyapunov
function in a similar manner is also used for the results in (Kawano et al. 2021) and
(Schweidel and Arcak 2022).
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Note that the condition in Theorem 4.5 can be interpreted as the velocity form being
stable (w.r.t. ẋ = 0), similar to how the condition for velocity dissipativity could be
seen as the velocity form being classically dissipative. Note that conceptually this
is also intuitive, as ẋ(t) = 0 corresponds to an equilibrium point of the system (see
(4.4)). Hence, (in the asymptotic stability case) for t → ∞, we have that ẋ(t) → 0,
meaning the state approaches an equilibrium point, i.e., x(t) → x∗ ∈ X .
Through the result of Theorem 4.5, we can also connect velocity dissipativity of a
system to universal shifted stability. Similar to how universal shifted dissipativity is
connected to universal shifted stability through restrictions on the supply function
ss, we can do the same by restricting the velocity supply function sv.

Theorem 4.6 (Universal shifted stability from velocity dissipativity). Assume
the nonlinear system given by (4.1) is velocity dissipative under a storage function
Vv ∈ C1 w.r.t. a supply function sv that satisfies

sv(0, zv) ≤ 0, (4.22)

for all zv ∈ Rnz , then, the nonlinear system is universally shifted stable. If the
supply function satisfies (4.22), but with strict inequality when zv ̸= 0, and the
system is observable, then the nonlinear system is universally shifted asymptotically
stable.

Proof. See Appendix B.2.

Again, in a similar fashion as for classical (Q,S,R) dissipativity and universal
shifted (Q,S,R) dissipativity, also for velocity (Q,S,R) dissipativity the condition
in Theorem 4.6 corresponds to R ⪯ 0.

4.3.4 Induced universal shifted dissipativity

In the previous section, we have seen how velocity (Q,S,R) dissipativity implies
universal shifted stability. Next, we are interested if velocity (Q,S,R) dissipativity
also implies universal (Q,S,R) dissipativity. Therefore, we formulate the following
proposition:
Proposition 4.1 (Induced (Q,S,R) universal shifted dissipativity). If a nonlinear
system given by (4.1) is velocity (Q,S,R) dissipative, then, it is also universally
shifted (Q,S,R) dissipative for the same tuple (Q,S,R).

While we have not able been to proof Proposition 4.1 completely, we will next present
results which link velocity (Q,S,R) dissipativity and universal shifted (Q,S,R)
dissipativity under some assumptions.
Instead of considering nonlinear systems of the form (4.1), we restrict ourselves to
nonlinear systems that can be represented as

ẋ(t) = f(x(t)) +Bw(t); (4.23a)
y(t) = Cx(t). (4.23b)



4.3. Velocity based Analysis 77

This restricted class of nonlinear systems is only assumed for the results that follow
in this subsection. Note that at the cost of increasing state dimension, e.g., by
appending the system with appropriate input-output filters (see Appendix C.2.1),
we can always transform nonlinear systems given by (4.1) to the form (4.23). Besides
considering systems of the form (4.23), we will assume in this subsection that X ,
i.e., the state set, is convex and compact.
For the nonlinear system given by (4.23), the equilibrium points (x∗, w∗, z∗) ∈ E
satisfy

0 = f(x∗) +Bw∗; (4.24a)
y∗ = Cx∗; (4.24b)

and its velocity form is given by

ẍ(t) = Av(x(t))ẋ(t) +Bẇ(t); (4.25a)
ż(t) = Cẋ(t). (4.25b)

Under these considerations, we will next connect velocity (Q,S,R) dissipativity for
(Q,S,R) tuples for which S = 0, Q ⪰ 0, and R ⪯ 0 to universal shifted performance
notions that can be characterized by a similar universal shifted (Q,S,R) supply
function. Before presenting these results, we will first introduce the following
assumptions:

Assumption 4.2. For the nonlinear system given by (4.23) assume that CB = 0.

Note that systems of the form (4.1) can be converted to the form (4.23), satisfying
Assumption 4.2, by connecting appropriate filters, see Appendix C.2.1.

Assumption 4.3. Given a matrix T ∈ Snz with T ⪯ 0, assume that there exists
an α ∈ R+ such that for all x∗ ∈ X and x ∈ X

(x− x∗)⊤Ā(x, x∗)⊤C⊤TCĀ(x, x∗)(x− x∗) ≤ α−1(x− x∗)⊤C⊤TC(x− x∗), (4.26)

where Ā(x, x∗) =
∫ 1

0 Av(x∗ + λ(x− x∗)) dλ.

In case Av is bounded, there will always exists an α such that Assumption 4.3 holds,
as X is considered compact.

Assumption 4.4. For a given (x∗, w∗, z∗) ∈ E , assume that w is generated by the
exosystem

ẇ(t) = Aw(w(t) − w∗), (4.27)
where Aw ∈ Rnw×nw is Hurwitz and ∥Aw∥ ≤ β. Define the corresponding behavior
as

W :=
{
w ∈ WR+

0 | ẇ ∈ C1, w satisfies (4.27)
}
. (4.28)

Note that constant and decaying (towards w∗) disturbances satisfy the behavior
considered in Assumption 4.4.
Under these assumptions, we can formulate the following result to link velocity
dissipativity to universal shifted performance:
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Theorem 4.7 (Universal shifted performance from velocity dissipativity). If a
nonlinear system given by (4.23) is velocity (Q,S,R) dissipative for the (Q,S,R)
tuple where S = 0, Q ⪰ 0, and R ⪯ 0, where R satisfies Assumption 4.3, Assump-
tions 4.2 and 4.4 hold for every (x∗, w∗, z∗) ∈ E , and ẋ(0) = 0, then for every
(x∗, w∗, z∗) ∈ E , it holds that∫ T

0
β2(⋆)⊤Q(w(t) − w∗) + α−1(⋆)⊤R(z(t) − z∗) dt > 0, (4.29)

for all T > 0 and (w, z) ∈ πw,z Bc with w ∈ W.

Proof. See Appendix B.2.

Note that the assumption that ẋ(0) = 0 in Theorem 4.7 does not mean we stay in
an equilibrium point, as we have an input w ∈ W which acts on the system.
Applying the result of Theorem 4.7 to the (Q,S,R) tuple (Q,S,R) = (γ2I, 0,−I),
corresponding to the (universal shifted) L2-gain, we obtain the following corollary:

Corollary 4.1 (Bounded Ls2-gain from velocity dissipativity). If a nonlinear
system given by (4.23) is velocity (Q,S,R) dissipative for (Q,S,R) = (γ2I, 0,−I),
where R = −I satisfies Assumption 4.3, Assumptions 4.2 and 4.4 hold for every
(x∗, w∗, z∗) ∈ E , and ẋ(0) = 0, then the system has an Ls2-gain bound of γ̃ =√
αβ2γ2.

Proof. See Appendix B.2.

Due to technicalities, Theorem 4.7 and Corollary 4.1 are what we can prove in
terms of the connection between velocity (Q,S,R) dissipativity and universal shifted
(Q,S,R) dissipativity. Compared to Proposition 4.1, these results form a direct
upperbound. Moreover, based on some of our other technical results on analyzing
this problem (see Appendix C.3) and the results when these concepts are used for
controller synthesis (see Section 4.6), there are strong indications that Proposition 4.1
holds true.

4.4 Convex Universal Shifted Analysis

In Section 4.3, we have shown how the velocity form in conjunction with the
concept of velocity dissipativity can be used to analyze universal shifted stability
and performance. Moreover, in Theorem 4.4, we have shown how velocity (Q,S,R)
dissipativity, considering a quadratic storage function Vv of the form (4.19), can be
analyzed through a feasibility check of an infinite dimensional set of LMIs. In this
section, we will discuss how we can make the analysis computationally feasible and
efficient through the use of methods from the LPV framework.
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As the state-space matrices of the velocity form vary with (x,w), we obtain an
infinite dimensional set of LMIs for velocity dissipativity analysis. This is similar
to the LPV case, where the (LPV) state-space matrices vary with the scheduling-
variable p, which also results in an infinite dimensional set of LMIs for classical
dissipativity analysis of LPV systems, see also Section 2.5.2. In the LPV framework,
various methods exist in order to turn the infinite dimensional problem into a
finite dimensional one, such as through polytopic, grid-based, and multiplier based
techniques (Hoffmann and Werner 2015a). Inspired by the connection between the
velocity form and LPV representations, we propose the use of the LPV analysis
results to make the velocity dissipativity analysis problem of nonlinear systems
computationally feasible and efficient.
For that purpose, we introduce the following so-called Velocity Parameter-Varying
(VPV) embedding, which is a embedding of the velocity form (4.15) in an LPV
representation:

Definition 4.7 (VPV embedding). Consider a system given by (4.1) and its velocity
form (4.15). Furthermore, consider the LPV state-space representation

ẋv(t) = A(p(t))xv(t) +B(p(t))wv(t), (4.30a)
zv(t) = C(p(t))xv(t) +D(p(t))wv(t), (4.30b)

where xv(t) ∈ Rnx is the state, wv(t) ∈ Rnw the input, and zv ∈ Rnz the output of
the LPV representation, with p(t) ∈ P ⊂ Rnp being the scheduling-variable, and
matrix functions A, . . . ,D being of appropriate size and belonging to a given class of
functions A (e.g., affine or rational). The LPV representation (4.30) is a so-called
VPV embedding of (4.1) on the region X × W ⊆ X × W, if there exists a function
η : X × W → P, the so-called scheduling-map, with p = η(x,w), and P ⊇ η(X ,W ),
such that:

A(η(x,w)) = Av(x,w), B(η(x,w)) = Bv(x,w),
C(η(x,w)) = Cv(x,w), D(η(x,w)) = Dv(x,w),

(4.31)

for all (x,w) ∈ X × W , where A, . . . , D belong to a given function class (affine,
polynomial, etc.).

The behavior of a VPV embedding given by (4.30) for a p ∈ PR+
0 is 4

Bp(p) := {(xv, wv, zv) ∈ (Rnx × Rnw × Rnz)R
+
0 |

xv ∈ C2, wv, zv ∈ C1 and (xv, wv, zv, p) satisfy (4.30)}, (4.32)

with B̆p :=
⋃

p∈PR+
0
Bp(p) being the full behavior (i.e., for all scheduling trajecto-

ries).
As the VPV embedding is an LPV representation, the various methods available
in the LPV framework to reduce the conservatism of the embedding, for a given
dependency class of A, . . . , D (e.g., affine, polynomial, rational, etc.), can also

4Note that we assume for the behavior that wv, zv ∈ C1. The function class A and trajectories
of p that are considered are implicitly restricted such that this is the case.
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be used to reduce the conservatism of the VPV embedding, see e.g., (Tóth 2010;
Sadeghzadeh and Tóth 2020). Later, in Chapter 9, we will also present a data-based
method to reduce the number of scheduling-variables of an LPV representation, to
allow for reduced complexity of LPV analysis and synthesis algorithms.
Through the construction of the VPV embedding, we can then describe the behavior
of the velocity form of a nonlinear system given by (4.1). This is similar to how the
behavior of a nonlinear system can also be described by an LPV representation, see
Lemma 2.6. More formally, we have the following lemma:

Lemma 4.4 (VPV behavioral embedding). Consider a nonlinear system given
by (4.1) with a velocity form given by (4.15). If the LPV representation (4.30) is
a VPV embedding of the nonlinear system on the region X × W = X × W, then,
the behavior of velocity form is included in that of the LPV representation, i.e.,
Bv ⊆ B̆p.

Proof. See Appendix B.2.

Remark 4.1. In the case our VPV embedding only considers part of the state-space,
i.e., (4.30) is a VPV embedding of the nonlinear system given by (4.1) on the region
X × W ⊂ X × W, we can still describe part of the behavior of the velocity form
(4.15). However, one has to consider a smaller set of behavior of the nonlinear
system given by (4.1) (and correspondingly of the velocity form (4.15)) for which
(x(t), w(t)) ∈ X × W for all t ∈ R+

0 .

As aforementioned, velocity dissipativity of a nonlinear system, see Definition 4.6,
can be seen as ‘classical dissipativity’ of the velocity form. Moreover, through the
VPV embedding, which is an LPV representation, we can describe the behavior of
the velocity form, by Lemma 4.4. Combining these two results then allows us to
cast the velocity dissipativity analysis problem as a classical dissipativity analysis
problem of an LPV representation. This is also evident when we compare the
condition for velocity (Q,S,R) dissipativity given in Theorem 4.4 and the condition
for classical (Q,S,R) dissipativity of an LPV representation given in Theorem 2.5.
This then also allows us to formulate the following theorem:

Theorem 4.8 (Velocity dissipativity analysis through the LPV framework). Con-
sider the nonlinear system given by (4.1) for which the LPV representation (4.30)
is a VPV embedding of the system on the region X × W = X × W. If the LPV
representation (4.30) is classically dissipative, then the nonlinear system is velocity
dissipative.

Proof. See Appendix B.2.

With Theorem 4.8, we now have a powerful tool to analyze velocity dissipativity of
nonlinear systems, as we can cast it as a classical dissipativity analysis problem of
an LPV representation, for which their exists many results, see also Section 2.5.2. In
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Section 4.3, we have shown how universal shifted stability and quadratic universal
shifted performance notions can be analyzed through velocity (Q,S,R) dissipativity.
Consequently, combining these two results, we are now able to analyze universal
shifted stability and performance of nonlinear systems through the use of the LPV
framework. This then gives us a systematic, and computationally efficient tool to
analyze global stability and performance in the form of universal shifted stability
and performance.
In the next section, we will use these analysis tools to also develop a systematic
controllers synthesis method in order to ensure and shape universal shifted stability
and performance.

4.5 Convex Universal Shifted Controller Synthesis

4.5.1 Controller synthesis problem

For LTI and also for (standard) LPV systems, as discussed in Section 2.5.3, the
generalized plant concept (Doyle 1983; Apkarian, Gahinet, and G. Becker 1995) is
used in order to provide a systematic approach to controller synthesis. Through
the generalized plant concept, various control configurations can be described and
through the inclusion of weighting filters in the generalized plant, the closed-loop
behavior of the plant and controller can be shaped. Due to systematic and intuitive
nature of the generalized plant concept in the LTI and LPV framework, we will
consider a notion similar to it for our controller synthesis problem. This will allow
us to achieve our goal of systematic controller synthesis for nonlinear systems to
ensure and shape universal shifted stability and performance.
Therefore, in this section, we will consider nonlinear systems P of the form

ẋ(t) = f(x(t), u(t)) +Bww(t); (4.33a)
z(t) = hz(x(t), u(t)) +Dzww(t); (4.33b)
y(t) = hy(x(t), u(t)) +Dyww(t); (4.33c)

where again x(t) ∈ X ⊆ Rnx is the state with x ∈ C1 and initial condition x(0) =
x0 ∈ Rnx and where now w(t) ∈ W ⊆ Rnw and z(t) ∈ Z ⊆ Rnz are called the
generalized disturbance (consisting of references, disturbances, etc.) and generalized
performance (consisting of tracking errors, control efforts, etc.) channels, respectively.
Moreover, we introduce the channels u(t) ∈ U ⊆ Rnu and y(t) ∈ Y ⊆ Rny ,
denoting the control input and measured output channel, through which the to-be-
designed controller will interact with the plant. Furthermore, f : X × U → Rnx ,
hz : X × U → Rnz and hy : X → Rny are assumed to be in C1 and Bw ∈ Rnx×nw ,
Dzw ∈ Rnz×nw , and Dyw ∈ Rny×nw . In Figure 4.1, an example of such a plant P
interconnected with a controller K is given.
The to-be-designed controller K for our plant P is considered to be of the form

ẋk(t) = fk(xk(t), uk(t)); (4.34a)
yk(t) = hk(xk(t), uk(t)); (4.34b)
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Figure 4.1: Example of a control configuration in terms of a closed-loop connection
of the controller K with a plant P , consisting of a nonlinear system G and weighting
filters W1 and W2.

where xk(t) ∈ Rnxk is the state, uk(t) ∈ Rnuk is the input, and yk(t) ∈ Rnyk

is the output of the controller. Furthermore, fk : Rnxk × Rnuk → Rnxk and
hk : Rnxk × Rnuk → Rnyk .

The closed-loop interconnection of P and K for which uk = y and u = yk (hence,
nuk = ny and nyk = nu) will be denoted by Fl(P,K). Note that this closed-
loop interconnection will be a system of the form (4.1), which has as input w
and as output z. Furthermore, the output z ∈ ZR+

0 of Fl(P,K) for an input
w ∈ WR+

0 and initial condition xcl,0 = col(x(0), xk(0)) ∈ X × Rnxk , will be denoted
by Fl(P,K)(w, xcl,0) = z ∈ ZR+

0 .

Considering this closed-loop interconnection Fl(P,K), our objective then is to
synthesize the controller K such that Fl(P,K) is universally shifted stable and
satisfies a (desired) universal shifted performance criteria. To simplify the discussion,
we will consider the Ls2-gain, see (4.10), as our desired performance metric, which
we will aim to minimize. More concretely, we are hence interested in synthesizing
a controller K for our generalized plant P s.t. the Ls2-gain γ of our closed-loop
interconnection Fl(P,K) from w to z is minimized, i.e., synthesize a K such that
there exists a function ζs : X × X → R and a γ ≥ 0, for which

∥Fl(P,K)(w, xcl,0) − z∗∥2,T ≤ γ ∥w − w∗∥2,T + ζs(xcl,0, xcl,∗), (4.35)

for all T ≥ 0 and (xcl, w, z) ∈ Bcl with w ∈ L2e and for every (xcl,∗, w∗, z∗) ∈ Ecl,
where γ is minimal. In (4.35), xcl = col(x, xk) is the state associated with the
state-space representation of the closed-loop Fl(P,K) and Bcl and Ecl are the
behavior and set of equilibrium points associated with Fl(P,K).

To ensure that the above given synthesis problem is feasible with a finite γ, we
require P to be a generalized plant in the following sense:

Definition 4.8 (Generalized plant for universal shifted synthesis). P , given by
(4.33), is a generalized plant, if there exists a controller K of the form (4.34) such
that the closed-loop interconnection Fl(P,K) is universally shifted stable.
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Proposition 4.2. P , given by (4.33), is a generalized plant in the sense of Defini-
tion 4.8, if

(
∂f
∂x (x, u), ∂f

∂u (x, u)
)

is stabilizable and
(

∂f
∂x (x, u), ∂hy

∂x (x, u)
)

is detectable
over X × W, see (Pavlov, Van de Wouw, et al. 2006, Section 5.3.2).

Note that Proposition 4.2 can be interpreted as the velocity form of (4.33) being
stabilizable and detectable w.r.t. the input channel u̇ and output channel ẏ,
respectively, along all trajectories of nonlinear system given by (4.33). This is
similar to condition that is required for standard LTI and LPV controller synthesis
using the generalized plant concept, see also Section 2.5.3 and Definitions 2.17
and 2.18.

4.5.2 Universal shifted controller synthesis procedure

Overview

As aforementioned, we will achieve our previously discussed control objective through
extension of the analysis tools for universal shifted stability and performance that
were developed in Sections 4.2 and 4.3. Namely, we again make use of the velocity
form, velocity dissipativity, and VPV embeddings in order to also simplify our
controller synthesis problem. To simplify the discussion for controller synthesis, we
will consider that Proposition 4.1 is true, meaning we will consider that velocity
(Q,S,R) dissipativity of a system implies universal shifted (Q,S,R) dissipativity of
that system for the same tuple (Q,S,R).
Based on this, we then propose the following novel procedure in order to synthesize
a controller K for our generalized plant P s.t. the closed-loop interconnection
Fl(P,K) is universally shifted stable and has a bounded Ls2-gain:

1. VPV embedding step: For a nonlinear generalized plant P given by (4.33),
compute its velocity form Pv. Construct a VPV embedding Pvpv of P based
on Pv.

2. Velocity controller synthesis step: For the VPV embedding Pvpv an LPV
controller Kv is synthesized, ensuring a minimal closed-loop L2-gain γ. For
this, we use standard LPV controller synthesis methods, see also Section 2.5.3.

3. Universal shifted controller realization step: The synthesized controller Kv of
Step 2, which is in the velocity domain, is realized to a nonlinear controller K
in the primal form (4.34) to be used with the primal form of the generalized
plant P , to ensure the closed-loop Ls2-gain γ.

By considering Proposition 4.1 to be true, all typical (Q,S,R) performance metrics
can also be considered in the velocity controller synthesis in Step 2 to induce various
universal shifted (Q,S,R) performance notions of the closed-loop interconnection.
Before detailing the individual steps of the above procedure, we will first show
that the velocity form of the closed-loop interconnection is equal to the closed-loop
interconnection of the velocity form of the plant an velocity form of the controller.
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This simplifies the controller design procedure, as it allows us to independently
‘transform’ the plant and controller between their primal and velocity forms.

Theorem 4.9 (Closed-loop velocity form). The velocity form of the closed-loop
system Fl(P,K) is equal to the closed-loop interconnection of Pv and Kv, i.e.,
Fl(Pv,Kv), if the interconnection of P and K is well-posed, i.e., there exists a C1
function h̆ such that u = hk(xk, hy(x, u)) can be expressed as 5 u = h̆(x, xk).

Proof. See Appendix B.2.

VPV embedding step

The first step of our universal shifted controller synthesis procedure consists of
embedding the generalized plant P given by (4.33) in a VPV embedding. From
here on, we will denote the behavior of (4.33) by

B :=
{

(x, u, w, z, y) ∈ (X × U × W × Z × Y)R
+
0 | x ∈ C1,

(x, u, w, z, y) satisfies (4.33)
}
. (4.36)

Moreover, we define the set of all differentiable solutions B, by

Bc := {(x, u, w, z, y) ∈ B | x ∈ C2, u, w, z, y ∈ C1}. (4.37)

First, we compute the velocity form of P given by (4.15), resulting in Pv given by

ẍ(t) = Av(x(t), u(t))ẋ(t) +Bwẇ(t) +Bv,u(x(t), u(t))u̇(t); (4.38a)
ż(t) = Cv,z(x(t), u(t))ẋ(t) +Dzwẇ(t) +Dv,zu(x(t), u(t))u̇(t); (4.38b)
ẏ(t) = Cv,y(x(t), u(t))ẋ(t) +Dywẇ(t) +Dv,yu(x(t), u(t))u̇(t); (4.38c)

where Av = ∂f
∂x , Bv = ∂f

∂u , Cv,z = ∂hz
∂x , Dv,zu = ∂hz

∂u , Cv,y = ∂hy
∂x , and Dv,yu = ∂hy

∂u .
The behavior of (4.38) is then denoted by Bv := ∂Bc, see also Section 4.3.1.
We then embed Pv, given by (4.38), in an LPV representation in order to construct
a VPV embedding of P (4.33). Based on Definition 4.7 of the VPV embedding,
we then construct a VPV embedding of P given by (4.33) on the compact region6

X × U ⊆ X × U , which we denote by Pvpv and is given by

ẋv(t) = A(p(t))xv(t) +Bwwv(t) +Bu(p(t))uv(t); (4.39a)
zv(t) = Cz(p(t))xv(t) +Dzwwv(t) +Dzu(p(t))uv(t); (4.39b)
yv(t) = Cy(p(t))xv(t) +Dywwv(t) +Dyu(p(t))uv(t); (4.39c)

5In the proof, we give conditions for the existence of this function.
6Note that as w enters into (4.33) linearly, the scheduling-map η of the VPV embedding will

not depend on it. Hence, the embedding region w.r.t. w can be taken equal to or as any subset of
W, i.e., the complete value set of w. Therefore, we omit it when talking about the VPV embedding
region of (4.33).
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with scheduling-variable p(t) ∈ P ⊂ Rnp , where P is assumed to be convex, and
the accompanying scheduling-map η, s.t. p(t) = η(x(t), u(t)) and P ⊇ η(X ,U). We
will also assume that η ∈ C1. Moreover, xv(t) ∈ Rnx , wv(t) ∈ Rnw , uv(t) ∈ Rnu ,
zv(t) ∈ Rnz , and yv(t) ∈ Rny . The accompanying behavior of the VPV embedding
(4.39) for a scheduling trajectory p ∈ ηR

+
0 is denoted by

Bp(p) := {(xv, uv, wv, zv, yv) ∈ (Rnx × Rnu × Rnw × Rnz × Rny)R
+
0 |

xv ∈ C2, uv, wv, zv, yv ∈ C1 and (xv, uv, wv, zv, yv, p) satisfy (4.39)}, (4.40)

with B̆p :=
⋃

p∈PR+
0

Bp(p) being the full behavior of (4.39).

Moreover, we will denote the restriction of the state and control input solutions of P
to X and U, respectively, by Bc,XU := {(x, u, w, z, y) ∈ Bc | (x(t), u(t)) ∈ X × U}
and the corresponding solution set for the velocity form Pv by Bv,XU := ∂Bc,XU .
Through the VPV behavioral embedding principle, given by Lemma 4.4, we have
Bv,XU ⊆ B̆p. This means that through Pvpv given by (4.39), we can describe the
behavior of Pv given by (4.38) for which (x(t), u(t)) ∈ X × U.
Remark 4.2. Note that for the controller synthesis problem to be feasible, one
has to make sure that for the constructed VPV embedding given by (4.39), the
pairs (A,Bu) and (A,Cy) are stabilizable and detectable7, respectively. This has to
be done in order to preserve the stabilizability and detectability properties of the
underlying velocity form according to Proposition 4.2.

Velocity controller synthesis step

Having constructed a VPV embedding Pvpv for our generalized plant P , we will use
it in order to synthesize a controller Kv s.t. Fl(Pvpv,Kv) has a minimal L2-gain,
which will ensure that the L2-gain of Fl(Pv,Kv) is minimized. Note again that
velocity (Q,S,R) dissipativity will imply universal shifted (Q,S,R) dissipativity,
and that velocity dissipativity can be seen as ‘classical dissipativity’ of the velocity
form. Therefore, minimizing the L2-gain of Fl(Pv,Kv) will minimize the Ls2-gain
of Fl(P,K), where K will be realized in the next subsection s.t. its velocity form
will correspond to Kv.
As Pvpv is an LPV representation, we make use of the synthesis algorithms in the
LPV framework in order to synthesize Kv s.t. Fl(Pvpv,Kv) has a minimal L2-gain.
Note that this is just a standard LPV synthesis problem, hence, we can apply one
of the various available controller synthesis techniques that ensure the closed-loop
interconnection is classically dissipative with a minimal L2-gain bound, see e.g.
(Packard 1993; Apkarian, Gahinet, and G. Becker 1995; Wu 1995; Scherer 2001)
and see also Section 2.5.3. Concretely, we consider Kv, which we will refer to as
velocity controller, in the form

ẋv,k(t) = Ak(p(t))xv,k(t) +Bk(p(t))uv,k(t); (4.41a)
yv,k(t) = Ck(p(t))xv,k(t) +Dk(p(t))uv,k(t); (4.41b)

7See Definitions 2.17 and 2.18.
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where xv,k(t) ∈ Rnxk is the state, uv,k(t) ∈ Rnuk is the input, and yv,k(t) ∈ Rnyk is
the output of the controller, respectively, and Ak, . . . , Dk ∈ A are matrix functions
with appropriate dimensions. Note that when we connect Kv to Pv (to obtain
Fl(Pv,Kv)), we have that uv,k = ẏ and yv,k = u̇, and p = η(x, u). Moreover, as
x, u ∈ C1 and as η ∈ C1, we have that p ∈ C1.
Based on this, we can formulate the following theorem:

Theorem 4.10 (Velocity closed-loop L2-gain). If controller Kv of the form (4.41)
ensures classical dissipativity and a bounded L2-gain γ of the closed-loop intercon-
nection Fl(Pvpv,Kv) for all (xv, uv) ∈ πxv,uv B̆p, then, Fl(Pv,Kv) with p = η(x, u)
is classically dissipative and has an L2-gain bound ≤ γ for all (ẋ, u̇) ∈ πẋ,u̇ Bv,XU.

Proof. See Appendix B.2.

Remark 4.3. By applying shaping filters on P that consequently appear in Pv, we
can shape the closed-loop performance of Fl(P,K), see Figure 4.2a. If the weighting
filters included in P are LTI, then, as depicted in Figure 4.2, the input-output
behavior of Ww and Wz is equivalent to that of Wv,w and Wv,z. This is because the
transfer function representation of the velocity form of an LTI system is given by the
same transfer function as its primal form. This results in a one to one correspondence
between the performance shaping of the primal form Fl(P,K) (see Figure 4.2a)
and performance shaping of the velocity form Fl(Pv,Kv) (see Figure 4.2b). This
significantly simplifies the controller design, as shaping can be directly performed
through the velocity form Pv and hence also through the VPV embedding Pvpv.

wW zW

K

w z
P̃

P

yu

(a) Primal form.

vP̃ z,vWw,vW

vK

żẇ
vP

ẏu̇

(b) Velocity form.

Figure 4.2: Shaping the closed-loop behavior of the primal and the velocity form by
the use of weighting filters Ww and Wz.

Universal shifted controller realization step

Finally, we will describe the last step of the proposed synthesis procedure. For
the last step, we realize the controller K to be used with the primal form of the
generalized plant P based on the velocity controller Kv of the previous step, such
that closed-loop universal shifted stability and performance is ensured.
To do this, we exploit the properties of the velocity form. As in the velocity form
the inputs and outputs of our system are time differentiated versions of the inputs
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and outputs of the primal form of the system. This allows us to formulate the
following theorem:

Theorem 4.11 (Velocity behavior inclusion). Consider a nonlinear system given
by (4.1) with behavior Bc (see (4.13)). The nonlinear system with its inputs (time)
integrated and its outputs (time) differentiated is equal to its velocity form (4.15).

Proof. See Appendix B.2.

Next, we exploit the result of Theorem 4.11 for our controller realization. Namely,
we concatenate an integrator to the output of the velocity controller Kv and
concatenate a differentiator to its input. We then absorb the differentiator and
integrator into the dynamics of the controller using realization theory. Let us denote
the i’th element of p by pi.

Theorem 4.12 (Universal shifted controller realization). Consider the velocity
controller Kv given by (4.41). Furthermore, consider the nonlinear time-invariant
controller K given by

˙̆xk(t) = Ăk(p(t))x̆k + B̆k(p(t), ṗ(t))uk(t); (4.42a)
yk(t) = C̆kx̆k + D̆k(p(t))uk(t); (4.42b)

where x̆k(t) ∈ Rnxk +nyk is the state of the controller, and where

Ăk(p) =
[
Ak(p) 0
Ck(p) 0

]
, B̆k(p, ṗ) =

[
Ak(p)Bk(p) − ∂Bk(p, ṗ)
Ck(p)Bk(p) − ∂Dk(p, ṗ)

]
,

C̆k =
[
0 I

]
, D̆k(p) = Dk(p),

(4.43)

with p(t) = η(x(t), u(t)), ∂Bk(p(t), ṗ(t)) =
∑np

i=1
∂Bk(p(t))

∂pi
ṗi(t), and

∂Dk(p(t), ṗ(t)) =
∑np

i=1
∂Dk(p(t))

∂pi
ṗi(t). The controller K in (4.42) is the primal

form of Kv (4.41) and the velocity form of K is Kv. Hence, K is called the primal
realization of Kv.

Proof. See Appendix B.2.

We will refer to the controller K in (4.42) as the universal shifted controller. For the
realization of this controller, we require the derivative of the scheduling-variable, ṗ.
Note that ṗ exists, as p ∈ C1, and is bounded as the VPV embedding region X × U
is compact. Moreover, also note that the dependency on ṗ in (4.42) drops out when
Bk and Dk of the velocity controller (4.41) are constant matrices. This then has
to be ensured in Step 2 of the controller synthesis procedure. However, this might
limit the achievable closed-loop performance that can be obtained, corresponding to
a complexity trade-off. Due to the definition of the state of the controller through
the proposed realization, there are no restrictions on the initial condition of the
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state of the controller. Nonetheless, we generally assume the initial condition to be
zero. An interpretation of this controller realization procedure is also depicted in
Figure 4.3.
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Figure 4.3: Universal shifted controller realization.

Remark 4.4. Similar control structures as (4.42) have been proposed in literature,
see e.g (Kaminer et al. 1995; Mehendale and Grigoriadis 2006). Compared to
these works, we connect the proposed controller design to universal shifted stability
and performance, which, to the author’s knowledge, has not been made so far in
literature.

4.5.3 Closed-loop universal shifted stability and performance

Based on the proposed universal shifted controller realization of Section 4.5.2, we
can show that the closed-loop interconnection Fl(P,K) is universally shifted stable
and has a bounded Ls2-gain. Before showing this result, we first introduce the
following definition:

Definition 4.9 (Invariance). For a system 8 given by (4.1) with behavior B, we
call X̃ ⊆ X to be invariant under a given W̃ ⊆ W, if x(t) = ϕx(t, t0, x0, w) ∈ X̃

8Note that Fl(P,K) is of this form.
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for all t ∈ R+
0 , x0 ∈ X̃ and w ∈ WR+

0 . The corresponding behavior is denoted by
BX̃ W̃ := B ∩ {(x,w, z) ∈ B | (x(t), w(t)) ∈ X̃ × W̃, ∀ t ∈ R+

0 }.

Theorem 4.13 (Closed-loop universal shifted stability and performance). Let Kv,
given in (4.41), be an LPV controller, synthesized for the velocity form Pv in (4.38)
of a nonlinear system given by (4.33) with behavior Bc, which ensures classical
dissipativity and a bounded L2-gain of γ of the closed-loop Fl(Pv,Kv) on X × U.
Consider the set W̃ ⊆ W, such that there is an open and bounded Xk ⊆ Rnxk

for which Xcl = X × Xk is invariant in the sense of Definition 4.9. Then, the
controller K, given by (4.42), ensures universal shifted (asymptotic) stability and
a bounded Ls2-gain of ≤ γ of the closed-loop Fl(P,K) for all w ∈ W̃R+

0 ∩ L2e and
any w∗ ∈ W ∩ W̃.

Proof. See Appendix B.2.

Note that considering w ∈ W̃R+
0 ∩ L2e in Theorem 4.13 ensures that the trajectories

stay in the VPV embedding region considered during synthesis of the controller.
However, computing W̃ is a difficult problem, which is related to reachability
analysis or invariant set computation. Nonetheless, there are numerical tools that
can be employed for this purpose, see e.g. (Althoff 2013; Maidens and Arcak 2015).

4.5.4 Reference tracking and disturbance rejection

The previously presented universal shifted controller design makes use of the velocity
form and velocity dissipativity to ensure universal shifted stability and performance
of the closed-loop. This has as advantage that explicit knowledge of the (closed-loop)
equilibrium points is not required, making the design procedure feasible. However,
for reference tracking purposes and disturbance rejection purposes it is important
that the controller is designed in such a way that the equilibrium points of the
closed-loop system correspond to the to-be-followed (constant) reference trajectories.
In order to achieve this for the universal shifted controller design described in this
chapter, we propose the following solution. For reference tracking and disturbance
rejection purposes, frequently a generalized plant is considered where the generalized
disturbance is assumed to be in the form w = col(w1, w2), where w1 contains the
reference signals and w2 contains external disturbances. Moreover, corresponding to
this, the measured output of the plant is then assumed of the form y = col(y1, y2),
where y1 contains signals to be tracked (such that w1 and y1 have the same dimen-
sion) and y2 contains other to be controlled variables. Similar to controller design for
LTI systems, in order to track the to-be-followed constant reference, an integrator
is required to be included in the dynamics of the controller K corresponding to
the y1 channel. A simple way to achieve explicit integral action is by including a
bi-proper filter with integrator(s) in the loop, or approximate integral action can be
achieved by appropriate choice of weighting filters, see (Zhou et al. 1996, Section
17.4). Including an explicit integral filter results in the interconnection depicted in
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Figure 4.4: Controller interconnection for reference and disturbance rejection, with
controller K and integral filter M .
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Figure 4.5: Example closed-loop control configuration, similar to Figure 4.1, with
explicit integral filter M in the loop.

Figure 4.4. See also Figure 4.5, where a generalized plant P is depicted with an
explicit integral filter in the loop (where y2 is empty, i.e., y1 = y).
The inclusion of explicit integrators in the loop also allows for state reduction of the
interconnection of integrator (filters) and primal controller, as the differentiators
used for realization of the controller (see Section 4.5.2) and the integrator (filters)
in the loop will partially cancel out. This gives us the following corollary:

Corollary 4.2 (Universal shifted realization with integral action). Consider a
generalized plant which includes an explicit integrator filter of the form M(s) = s+α

s
(where s is the Laplace variable and α > 0) in the loop, such that the (to-be-designed)
controller K and M are connected as depicted in Figure 4.4 where y2 is empty, i.e.,
y1 = y (see also see Figure 4.5). For Kv given by (4.41), the interconnection of the
primal realization of the controller K and M can be expressed as (4.42) where Ăk,
C̆k, and D̆k are given as in (4.43), and B̆k is given by

B̆k(t) =
[
Ak(p(t))Bk(p(t)) +Bk(p)αI − ∂Bk(p(t), ṗ(t))
Ck(p(t))Bk(p(t)) +Dk(p)αI − ∂Dk(p(t), ṗ(t))

]
. (4.44)

Proof. See Appendix B.2.

4.6 Examples

In this section, we will demonstrate through examples that the universal shifted
controller design guarantees closed-loop universal shifted stability and Ls2-gain
performance. The results will be demonstrated through a simulation study and also
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on an experimental setup. Moreover, we compare the universal shifted controller
design to a standard LPV controller design, which is only able to guarantee stability
w.r.t. the origin (as discussed in Chapter 3) and standard L2-gain performance,
showing the benefits of the universal shifted design.

Example 4.1 (Duffing oscillator). First, constant reference tracking and distur-
bance rejection for a Duffing oscillator is investigated. The system is described by
the following differential equations:

q̇(t) = v(t);

v̇(t) = −k1

m
q(t) − k2

m
(q(t))3 − d

m
v(t) + 1

m
F (t);

(4.45)

where, q [m] is the position, v [m · s−1] the velocity and F [N] is the (input) force
acting on the mass. Furthermore, m = 1 [kg], k1 = 0.5 [N · m−1], k2 = 5 [N · m−3]
and d = 0.2 [N · s · m−1]. We assume that only the position q can be measured and
hence it is considered to be the only output of the plant.
The generalized plant P that is considered for synthesis is depicted in Figure 4.6,
where G is the system given by (4.45), K is the controller, w = col (r, di) is the
generalized disturbance, with r the reference and di being an input disturbance.
The performance channel consists of z1 (tracking error) and z2 (control effort).
The considered LTI weighting filters {Wi}3

i=1 are chosen as the transfer functions
W1(s) = 0.501(s+3)

s+2π , W2(s) = 10(s+50)
s+5·104 and W3 = 1.5. Furthermore, integral action is

enforced by the filter M(s) = s+2π
s . The resulting sensitivity weight W1(s)M(s) has

guaranteed 20 dB/dec roll-off at low frequencies in order to ensure good tracking
performance, while W2(s) has high-pass characteristics in order to ensure proper
roll-off at high frequencies.

u
K G
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2W
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r + +

+− M
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Figure 4.6: Generalized plant considered for Duffing oscillator.

As the Duffing Oscillator is the only nonlinear system in the generalized plant, we
only require the computation of the velocity form of (4.45) for the VPV embedding,
as all the LTI filters will have the same dynamics in their velocity forms. The
following VPV embedding for (4.45) is constructed9, where dependence on time is

9Note that variables with subscript v correspond to the time-derivatives, i.e., qv corresponds to
q̇ etc. See also Definition 4.7.
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omitted for brevity:

q̇v = vv;

v̇v =
(

−k1

m
− 3k2

m
p

)
qv − d

m
vv + 1

m
Fv;

(4.46)

where the scheduling p(t) = q2(t) and P = [0, 2] is chosen to allow for a relatively
large operating range. Consequently the resulting V PV embedding region is
X = [−

√
2,

√
2] × R.

As the VPV embedding (4.46) (and hence, the resulting generalized plant) has affine
scheduling dependency, polytopic L2-gain synthesis based on (Apkarian, Gahinet,
and G. Becker 1995; Apkarian and Adams 1998) is used in the velocity controller
synthesis (i.e., second) step of the universal shifted controller design procedure
Section 4.5.2. This synthesis algorithm has been implemented in the LPVcore
Toolbox (Boef et al. 2021), which has been used to synthesize the controller. For the
velocity controller synthesis step, Bk and Dk are assumed to be constant10, which
gives us an Ls2-gain of γ = 1.2. Based on this structural restriction, the resulting
universal shifted controller has affine dependence on p(t) without dependence on
ṗ(t), see (4.42). Moreover, as an integration filter M is included in the loop, we
make use of the result of Corollary 4.2 for the primal realization to obtain the
universal shifted controller. Based on this, the closed-loop is universally shifted
stable has an Ls2-gain of γ ≤ 1.2 (under the consideration that Proposition 4.1 is
true) for (q(t), v(t)) ∈ [−

√
2,

√
2] × R.

For comparison, also a standard LPV controller design is done to ensure L2-gain
performance and closed-loop stability (of the origin). For the design of the standard
LPV controller, the primal form of the system given by (4.45) is embedded in an
LPV representation:

q̇ = v;

v̇ =
(

−k1

m
− k2

m
ps

)
q − d

m
v + 1

m
F ;

(4.47)

where ps(t) = q2(t) is the scheduling-variable. Here we will denote with subscript ‘s’
this ‘standard’ concept of LPV embedding and control design. Note that ps is the
same as p, i.e., we are able to create an LPV embedding with the same scheduling-
map. Consequently for comparison, we also consider ps(t) ∈ Ps = [0, 2]. The same
generalized plant structure as for the universal shifted design is considered, see
Figure 4.6, and we also use the polytopic controller synthesis method implemented
in the LPVcore toolbox in order to synthesize the standard LPV controller. This
then results in an L2-gain for the standard LPV controller design of γ = 0.94.

10This might reduce the achievable performance as the parameter dependency of the controller
is partly fixed, which results in less freedom during synthesis.
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Figure 4.7: Position of the Duffing oscillator (top) in closed-loop with the standard
LPV ( ) and the universal shifted ( ) controllers under reference ( ) and
no input disturbance, together with the generated control inputs (bottom) by the
controllers.

Figure 4.8: Position of the Duffing oscillator (top) in closed-loop with the standard
LPV ( ) and the incremental ( ) controllers under reference ( ) and input
disturbance, together with the generated control inputs (bottom) by the controllers.

In simulation, the resulting outputs of the system using the standard LPV controller
and the universal shifted controller in closed-loop are depicted without and with
input disturbance in Figures 4.7 and 4.8, respectively. In both cases, a step signal
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is taken as a reference trajectory which changes from zero to 0.5 at t = 5 seconds.
For the simulation results in Figure 4.8, a constant input disturbance di ≡ −10 2

3
(corresponding to −10 2

3 ·W3 = −16 [N]) is applied. Note that this reference signal is
not continuously differentiable, due to the change in value at 5 seconds. Nonetheless,
as can be seen, the proposed universal shifted controller works for non-differentiable
references as well.
Comparing the results of the standard LPV controller and the universal shifted
controller in Figure 4.7 shows that both controllers have similar performance when
no input disturbance is present. The universal shifted controller has slightly more
overshoot, but a lower settling time for this example. However, under constant
input disturbance, it can be seen in Figure 4.8 that the standard LPV controller
has a significant performance loss with oscillatory behavior, whereas the universal
shifted controller preserves its constant reference tracking property. Note, that in
both cases, the scheduling-variable p never leaves the set for which the controllers
have been designed, i.e., q(t) ∈ [−

√
2,

√
2].

In the next example, we demonstrate the universal shifted controller design on an
experimental setup. Like for the duffing oscillator example, we consider a constant
reference tracking disturbance rejection problem and also compare the achieved
performance to a standard LPV controller design.

Example 4.2 (Unbalanced disk system).

Figure 4.9: Unbalanced disk setup.

By neglecting the fast electrical dynamics of the motor, the motion of the unbalanced
disk can be described as

θ̇(t) = ω(t); (4.48a)
ω̇(t) = Mgl

J sin(θ(t)) − 1
τ ω(t) + Km

τ V (t); (4.48b)

where θ [rad] is the angle of the disk, ω [rad · s−1] its angular velocity, V [V] is the
input voltage to the motor, g is the gravitational acceleration, l the length of the
pendulum, J the inertia of the disk, and Km and τ are the motor constant and
time constant respectively. The angle of the disk θ is considered to be the output
of the plant. The physical parameters, estimated based on measurement data, are
given in Table 4.1.
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Table 4.1: Physical parameters of the unbalanced disk.

Parameter Value Unit
g 9.8 m·s−2

J 2.4 · 10−4 kg·m2

Km 1.1 · 101 rad·s−1·V−1

l 4.1 · 10−2 m
M 7.6 · 10−2 kg
τ 4.0 · 10−1 s

K G
u

id1z

2z

r

sW diW

doW uW

θ
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+

+

+
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−

Figure 4.10: Generalized plant considered for the unbalanced disk.

A generalized plant structure is used as depicted in Figure 4.10, where G is the
system given by (4.48), K is the to-be-designed controller, w = col (r, di, do) is the
generalized disturbance, with r the reference, di being an input disturbance, and do
an output disturbance. In this case, the controller K has a two-degree of freedom
structure, meaning the tracking error and reference trajectory are separate inputs
to the controller. The weighting filters are chosen as

Ws(s) = 0.5012s+ 2.005
s+ 0.02005 , Wu(s) = s+ 40

s+ 4000 ,

Wdi = 0.5, Wdo = 0.1.
(4.49)

Note that the integral action is approximate in this case, due to the choice of Ws, as
Ws includes a real pole close the origin. While this means that we are not able to
use Corollary 4.2 for the realization step of the universal shifted controller design,
we will see that this choice will still result in good tracking and rejection behavior
of the closed-loop.
As G corresponding to the unbalanced disk (4.48) is the only nonlinear system in
the generalized plant, like in Example 4.1, only a VPV embedding of (4.48) has to
be constructed. We use the following VPV embedding for (4.48):

θ̇v(t) = ωv(t);

ω̇v(t) =
(

Mgl
J p(t))

)
θv(t) − 1

τ ωv(t) + Km

τ Vv(t);
(4.50)

where p(t) = η(θ(t)) = cos(θ(t)) is the scheduling-variable which is assumed to be
in P = [−1, 1]. This corresponds to the VPV embedding region of (4.48) being
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X = R × R. Note that ṗ(t) = − sin(θ(t))ω(t) for which no bounds are explicitly
assumed.
Like for the previous example, we again have an affine dependency on the scheduling-
variable for the VPV embedding, hence, we again use L2-gain polytopic LPV
controller synthesis to synthesize the velocity controller, resulting in an L2-gain of
γ = 0.56 for the velocity form of the closed-loop. The resulting realized universal
shifted controller then ensures that the closed-loop is universally shifted stable and
has an Ls2-gain of γ ≤ 0.56 (under the consideration that Proposition 4.1 is true).
Also for the unbalanced disk, a standard LPV controller is designed for comparison.
For this, the primal form of the nonlinear system (4.48) embedded in an LPV
representation, which results in

θ̇(t) = ω(t);

ω̇(t) =
(

Mgl
J ps(t))

)
θ(t) − 1

τ ω(t) + Km

τ V (t);
(4.51)

where ps(t) = ηs(θ(t)) = sin(θ(t))
θ(t) = sinc(θ(t)). Ps is chosen11 as [−0.22, 1]. The

same generalized plant structure as for the universal shifted design is considered,
see Figure 4.10, and we also use the polytopic controller synthesis method in order
to synthesize the standard LPV controller. This then results in L2-gain for the
standard LPV controller design of γ = 0.56.

Figure 4.11: Measured angle of the unbalanced disk system (top) in closed-loop
with the standard LPV ( ) and the universal shifted ( ) controllers under
reference ( ) and no input disturbance, together with inputs to the plant (bottom)
generated by the controllers.

11Note that ηs(0) = 1 as limx→0 sinc(x) = 1.
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Figure 4.12: Measured angle of the unbalanced disk system (top) in closed-loop
with the standard LPV ( ) and the universal shifted ( ) controller under
reference ( ) and input disturbance, together with corresponding inputs to the
plant (bottom) generated by the controllers.

Both the universal shifted controller and LPV controller are then implemented
on the experimental setup, whereby, for safety, the input voltage to the system
was saturated between ± 10 V. In Figure 4.11, the trajectory of the angle on the
experimental setup is depicted along with the input to the plant (i.e. u) for a
piece-wise constant reference signal. Note that on the experimental setup, the disk
starts in the downward position, which is why the initial angle is at π radians. In
Figure 4.12, the same reference trajectory is used, but a constant input disturbance
of di = 60 V is introduced (which is implemented by adding 60 V to the control input
that is sent to the plant before saturation). For this input disturbance, the standard
LPV controller performs much worse, compared to universal shifted controller design,
which has similar performance to the case when no input disturbance is applied.
Both the LPV controller universal shifted controller are able to compensate the 60
V input disturbance, as visible in the control input that is sent to the plant (i.e. u
in Figure 4.10), see bottom graph in Figure 4.12. However, while the control input
that is sent to the plant is nearly identical for the universal shifted controller in both
cases, see Figures 4.11 and 4.12, this is clearly not the case for the LPV controller,
as oscillations in the signal are present when the input disturbance is applied which
causes unwanted oscillation of the disk angle. While an input disturbance of 60 V
is extraordinarily high for this system, and will likely never occur on the real setup,
it still shows that there are inherent issues when using standard LPV controller for
reference tracking and disturbance rejection.
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4.7 Conclusions

As objective of our thesis, as we have discussed in Chapter 1, we intend to develop
a systematic and computationally efficient framework for analysis and control of
nonlinear systems to guarantee global stability and performance. In this chapter, we
have build a key part of this intended framework, by developing a novel systematic
and computationally efficient framework for analysis and control of nonlinear systems
to guarantee universal shifted stability and performance. We have first shown how
the concepts of the velocity form of a system and the corresponding notion of
velocity dissipativity can be used in order to analyze universal shifted stability and
performance. Namely, we have shown that velocity (Q,S,R) dissipativity implies
universal shifted stability and, under assumptions, implies quadratic universal
shifted performance. Through the so-called VPV embedding, we have also shown
how the velocity (Q,S,R) dissipativity problem can be cast as a standard LPV
analysis problem. This then allows us to analyze universal shifted stability and
performance using the LPV framework. These analysis results have also been used
in order to develop a novel controller synthesis method which is able to guarantee
and shape universal shifted stability and performance, again making use of the
LPV analysis and synthesis approaches. We have shown the controller synthesis
procedure considering a universal shifted L2-gain performance objective, but we
can apply the same procedure to also consider other universal shifted quadratic
performance concepts. The benefits of the universal shifted controller design for
reference tracking and disturbance rejection have also been demonstrated through
a simulation and experimental study.



5
Incremental Dissipativity
based Analysis

Efficiently computable (global) stability and performance analysis of
nonlinear systems becomes increasingly more important in practical

applications, as discussed in Chapter 1. Global stability and performance
concepts allow to analyze properties of the system independent of its partic-
ular equilibrium points. In Chapter 4, we have seen how universal shifted
stability and performance can be used to provide such stronger guarantees
and ensure them through synthesis. In this chapter, we focus on the even
stronger global concept of incremental stability and performance analysis
through incremental dissipativity, whereby stability and performance w.r.t.
arbitrary trajectories of the system is considered. We investigate how incre-
mental dissipativity of nonlinear systems is linked to differential dissipativity
of the system, i.e., the dissipativity of the variations along trajectories of
the system. We also provide how these concepts link to other dissipativity
concepts such as universal shifted and classical dissipativity. Moreover, we
show how, through the Linear Parameter-Varying (LPV) framework, we can
formulate tests for incremental dissipativity as a matrix inequalities-based
conditions, which can be verified computationally efficiently. Finally, we also
show how these results lead to the incremental extensions of the L2-gain,
the generalized H2-norm, the L∞-gain, and passivity of nonlinear systems.
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5.1 Introduction

As discussed in Chapter 1, the Linear Time-Invariant (LTI) framework has been
a systematic and easy-to-use approach for modeling, identification and control
of physical systems for many years. However, growing performance demands in
terms of accuracy, response speed and energy efficiency, together with increasing
complexity of systems to accommodate such expectations, are pushing beyond the
modeling and control capabilities of the LTI framework. Therefore, stability and
performance analysis of nonlinear systems becomes increasingly more important.
While there are many existing tools available for analysis of nonlinear systems,
see Section 1.2.2, they often require cumbersome computations and restrictive
assumptions, and unlike the LTI case, they have not lead to systematic performance
analysis and shaping methods. While dissipativity theory in principle allows for
analysis of nonlinear systems, current results are not computationally attractive.
Furthermore, they only provide local stability and performance guarantees, i.e., only
w.r.t. a single point of natural storage (usually the origin), which is undesirable
for disturbance rejection and reference tracking. Hence, there is need for a com-
putationally efficient analysis tool for global stability and performance properties
of nonlinear systems. Such analysis tools will also be key for developing synthesis
results in order to achieve the goal of this thesis, see Section 1.4, of developing a
systematic, computationally efficient, framework for nonlinear analysis and control
with global stability and performance guarantees.
In Chapter 4, we have already seen the how one such global stability concept,
universal shifted stability and performance, can be used to provide guarantees w.r.t.
all equilibrium points of the system, instead of w.r.t. only a single equilibrium
point. Moreover, we have also seen how, through the velocity form and the Linear
Parameter-Varying (LPV) framework, we could convexify the resulting analysis
problem. The results on universal shifted stability and performance have proved to
be especially useful in analysis and control problems where tracking and rejection of
constant signals is required. However, in many applications we do not only want to
ensure stability and performance w.r.t. constant trajectories, i.e., equilibrium points,
of the system, but also w.r.t. other trajectories of the system (i.e., w.r.t. time-
varying signals). As already briefly discussed in Section 1.2.2, incremental stability
(and performance) is one such global concept which allows to analyze this. Namely,
incremental stability (Angeli 2002) analyzes stability of a system w.r.t. arbitrary
trajectories of the system. Similar stability notions have also been developed, such
as contraction (Lohmiller and Slotine 1998; Manchester and Slotine 2018) and
convergence theory (Pavlov, Pogromsky, et al. 2004) with strong connections to
incremental stability theory (Rüffer et al. 2013). Similar notions for performance
have also been introduced such as incremental L2-gain (Fromion, Monaco, et al.
2001) and passivity (Jayawardhana 2006; Pavlov and Marconi 2008). With further
extensions also towards global dissipativity analysis through differential dissipativity
(Forni and Sepulchre 2013; Forni, Sepulchre, and Van der Schaft 2013; Van der
Schaft 2013) and incremental dissipativity (Pavlov and Marconi 2008). However,
they do not provide computationally efficient methods to verify these dissipativity
notions. Current works discussing differential and incremental dissipativity only
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focus on passivity based performance. How the various dissipativity notions are
linked to universal shifted dissipativity or classical dissipativity is generally not
discussed.
To address these shortcomings, the main contributions in this chapter are (i) con-
ditions on general quadratic performance analysis using incremental dissipativity
for Continuous-Time (CT) nonlinear systems, (ii) establishing the missing link
between the various dissipativity concepts for CT nonlinear systems, and (iii) com-
putationally efficient convex tools to analyze incremental stability and performance
of CT nonlinear systems. This is achieved by developing a general incremental
dissipativity framework that connects differential, incremental, universal shifted,
and classical dissipativity. Through these results, incremental notions of the L2-gain,
the generalized H2-norm, the L∞-gain and passivity are systematically introduced,
also recovering some of the existing results on these concepts. Finally, convex
analysis tools to compute the resulting conditions for differential and incremental
dissipativity are derived using the LPV framework. Later, in Chapter 7, we also
extend the results of this chapter to Discrete-Time (DT) nonlinear systems.
In Section 5.2, some preliminaries are introduced and a formal problem statement is
given. Section 5.3 gives the main results on differential and incremental dissipativity
and their connection to universal shifted dissipativity and classical dissipativity. In
Section 5.4, the incremental extensions of well-known performance measures are
derived and the use of the LPV framework is discussed to obtain convex computation
methods to analyze these performance measures. The introduced concepts and
methods are demonstrated on two academic examples in Section 5.5. Finally, in
Section 5.6, conclusions are drawn from the presented results.

5.2 Incremental and Differential Dissipativity

Similar to Section 2.2, in this chapter, we consider nonlinear, time-invariant, CT
systems given by

ẋ(t) = f(x(t), w(t)); (5.1a)
z(t) = h(x(t), w(t)); (5.1b)

where t ∈ R+
0 is time, x(t) ∈ X ⊆ Rnx is the state, w(t) ∈ W ⊆ Rnw is the input,

and z(t) ∈ Z ⊆ Rnz is the output of the system. We consider the sets X , W and Z
to be open sets containing the origin, with X , W being convex, and the mappings
f : X × W → Rnx and h : X × W → Z to be in C1. The state-transition map is
again ϕx : R × R × X × WR+

0 → X , describing the evolution of the state such that

x(t) = ϕx(t, 0, x0, w), (5.2)

with x0 = x(0). The behavior of the system, i.e., the set of all possible solutions, is
denoted by

B := {(x,w, z) ∈ (X × W × Z)R
+
0 | x ∈ C1 and (x,w, z) satisfies (5.1)}. (5.3)
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Note that B ⊆ BR+
0 , where B = X × W × Z is called the signal value set.

Like in the previous chapter, the form presented in (5.1) will be referred to as the
primal form of the nonlinear system. As we have discussed in Section 2.4, for the
primal form, an extensive dissipativity theory has been developed over the years,
with its roots in (Willems 1972). From the classical dissipativity notion many system
properties can be derived, such as performance characteristics and stability, as well
as a link with the physical interpretation of the system. Therefore, dissipativity is
an important fundament in nonlinear system theory. However, a shortcoming of
classical dissipativity theory that it is always considers the energy w.r.t. a single
point of neutral storage, often being the origin of the state-space representation.
If the system is nonlinear, this analysis is different for each considered neutral
storage point and unlike in the LTI case, this difference cannot be eliminated by
a coordinate transformation. This means that performance and stability analysis
through classical dissipativity is equilibrium point dependent.
An extension to this concept is incremental dissipativity, i.e., analysis of the (dissi-
pated) energy flow between any two system trajectories. We give an extension of
the definition of incremental passivity in (Van der Schaft 2017, Def. 4.7.1). Let us
first give the following definition:

Definition 5.1 (Qi-space). A function Vi : X ×X → R+
0 is in Qi, with X ⊆ Rnx , if

Vi(·, x̃) ∈ Qx̃ for all x̃ ∈ X and Vi(x, ·) ∈ Qx for all x ∈ X . See also Definition 2.7.

Definition 5.2 (Incremental Dissipativity). The system (5.1) is called incremen-
tally dissipative w.r.t. the supply function si : W × W × Z × Z → R, if there exists
a storage function Vi : X × X → R+

0 with Vi ∈ C0 and Vi ∈ Qi, such that for any
two trajectories (x,w, z), (x̃, w̃, z̃) ∈ B,

Vi
(
x(t1), x̃(t1)

)
− Vi

(
x(t0), x̃(t0)

)
≤
∫ t1

t0

si
(
w(t), w̃(t), z(t), z̃(t)

)
dt, (5.4)

for all t0, t1 ∈ R+
0 with t0 ≤ t1.

Besides analyzing the difference between two trajectories, it is also possible to
analyze infinitesimal variations of trajectories. First, define the set of paths

ΓΦ(φ, φ̃) := {φ̄ ∈ Φ[0,1] | φ̄ ∈ C1, φ̄(0) = φ̃, φ̄(1) = φ}, (5.5)

corresponding to all smooth paths along λ ∈ [0, 1], between the points φ ∈ Φ ⊆ Rn

and φ̃ ∈ Φ ⊆ Rn. Consider any two trajectories of (5.1): (x,w, z), (x̃, w̃, z̃) ∈ B. As
X , W are considered to be convex, any trajectory between these can be parametrized
with x̄0 ∈ ΓX (x0, x̃0) and w̄(t) ∈ ΓW(w(t), w̃(t)), e.g., x̄0(λ) = x̃0 + λ(x0 − x̃0) ∈
X and w̄(t, λ) = w̃(t) + λ(w(t) − w̃(t)) ∈ W, resulting in the state transition
map x̄(t, λ) = ϕx(t, t0, x̄0(λ), w̄(λ)) ∈ X . Note that this parametrization covers
transitions between all possible solutions in B. Given a λ, it holds that

˙̄x(t, λ) = f(x̄(t, λ), w̄(t, λ)); (5.6a)
z̄(t, λ) = h(x̄(t, λ), w̄(t, λ)), (5.6b)
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with λ ∈ [0, 1] and the resulting collection of trajectories (x̄(λ), w̄(λ), z̄(λ)) ∈ B,
also depicted in Figure 5.1. Note that λ here is a constant that parametrizes a
collection of solution trajectories that represent a transition from one particular
solution trajectory (x,w, z) to another trajectory (x̃, w̃, z̃).

)1t(w̃
= 0λ = 0λ

= 1λ = 1λ

)2t(w̃

)2t(w
)1t(w

), λ2t(w̄

), λ1t(w̄
)t, λ(δx

0x̃

0x

)λ(0x̄

)t, λ(x̄

)t(x̃

)t(x

Figure 5.1: Collection of trajectories (x̄(λ), w̄(λ), z̄(λ)) ∈ B parametrized in λ ∈
[0, 1] between two arbitrary state and input trajectories, where w̄(t, λ) = w̃(t) +
λ(w(t) − w̃(t)) and x̄0(λ) = x̃0 + λ(x0 − x̃0) with the variation of x̄ along λ given
by xδ.

As f, h ∈ C1, taking the derivative of (5.6) w.r.t. λ, the infinitesimal variation of
the original trajectories, can be analyzed. A similar concept has been introduced
in (Crouch and Van der Schaft 1987; Forni, Sepulchre, and Van der Schaft 2013;
Reyes-Báez 2019) as variational dynamics1. Differentiation of (5.6) w.r.t. λ yields
the variational system

ẋδ(t, λ) = Aδ(x̄(t, λ), w̄(t, λ))xδ(t, λ) +Bδ(x̄(t, λ), w̄(t, λ))wδ(t, λ); (5.7a)
zδ(t, λ) = Cδ(x̄(t, λ), w̄(t, λ))xδ(t, λ) +Dδ(x̄(t, λ), w̄(t, λ))wδ(t, λ); (5.7b)

with xδ(t, λ) = ∂x̄
∂λ (t, λ) ∈ Rnx , wδ(t, λ) = ∂w̄

∂λ (t, λ) ∈ Rnw , zδ(t, λ) = ∂z̄
∂λ (t, λ) ∈ Rnz ,

and
Aδ = ∂f

∂x
, Bδ = ∂f

∂w
, Cδ = ∂h

∂x
, Dδ = ∂h

∂w
, (5.8)

where (x̄(λ), w̄(λ)) ∈ πx,w B for all λ ∈ [0, 1]. Note that for a trajectory in B, λ
is fixed for all time. For a trajectory x(λ), corresponding to a given λ ∈ [0, 1], its
variations are captured in xδ(λ). In the sequel, we will generally omit λ for brevity,
e.g., xδ(t) = xδ(t, λ) (which holds for any λ ∈ [0, 1]). In this chapter, we will refer
to (5.7) as the differential form of the nonlinear system (5.1). Let us denote the
behavior of (5.7) for a particular (x̄, w̄) ∈ πx,w B by (omitting dependency on λ)

Bδ(x̄, w̄) :=
{

(xδ, wδ, zδ) ∈ (Rnx × Rnw × Rnz)R
+
0 | xδ ∈ C1,

(xδ, wδ, zδ) satisfies (5.7) along (x̄, w̄)
}
, (5.9)

and the full behavior by B̆δ =
⋃

(x̄,w̄)∈πx,w B

Bδ(x̄, w̄).

1In fact, we can obtain a variational system for any smooth (x,w) parametrization (see
(Reyes-Báez 2019) for an alternative approach).
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With the differential form of a system defined, we can define the notion of differential
dissipativity, interpreted as the ‘energy’ dissipation of variations of the system
trajectory that are not forced by the input. If the energy of these variations in
the system trajectories decreases over time, the trajectory will eventually only be
determined by the input of the system. Hence, the primal form of the system will
converge to a steady-state solution, which is not necessary a forced equilibrium
point, e.g., it can be a periodic orbit. We use the definition adopted from (Forni
and Sepulchre 2013).

Definition 5.3 (Differential dissipativity). Consider a system (5.1) and its differ-
ential form (5.7). The system is differentially dissipative w.r.t. a supply function
sδ : Rnw × Rnz → R, if there exists a storage function Vδ : X × Rnx → R+

0 with
Vδ ∈ C0 and Vδ(x̄, ·) ∈ Q0, ∀ x̄ ∈ X , such that

Vδ

(
x̄(t1), xδ(t1)

)
− Vδ

(
x̄(t0), xδ(t0)

)
≤
∫ t1

t0

sδ

(
wδ(t), zδ(t)

)
dt, (5.10)

for all (x̄, w̄) ∈ πx,w B and for all t0, t1 ∈ R+
0 , with t0 ≤ t1.

Differential passivity definitions can be found in (Forni, Sepulchre, and Van der
Schaft 2013; Van der Schaft 2013). The condition for differential dissipativity (5.10)
can be interpreted as the differential form of the system (5.7) being classically
dissipative (along all solutions of the system (5.1)), see also Definition 2.13.
Remark 5.1. Note that when the incremental and differential storage functions Vi
and Vδ are differentiable, we can also define equivalent conditions in terms of the
(time) differentiated forms of (5.4) and (5.10). Similar as for classical dissipativity
in (2.22).

Despite the interest in classical dissipativity, universal shifted dissipativity, incremen-
tal dissipativity, and differential dissipativity, the underlying connection between
these notions have not been explored in the literature yet. We will establish this
connection in case of quadratic supply functions in the next section based on which
performance analysis of nonlinear systems is achieved. Furthermore, we will discuss
implications of these dissipativity notions on stability as well.

5.3 Global Stability and Performance Analysis

5.3.1 Differential (Q, S, R) dissipativity

In this section, we present results on how differential dissipativity can be used in
order to analyze global stability and performance of systems. We will first examine
differential dissipativity with quadratic supply functions.

Consider the differential form (5.7) of a nonlinear system, which describes the
variation of the system over a trajectory (x̄, w̄, z̄) ∈ B. Note that this system always
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exists if the mappings f and h are in C1. To formulate our results for differential
dissipativity, we consider a quadratic storage function of the form

Vδ(x̄, xδ) = x⊤
δ M(x̄)xδ. (5.11)

For Vδ of the form (5.11) to be a differential storage function (see Definition 5.3),
we have the following Condition:

Condition 5.1. The matrix function M : X → Snx with M ∈ C1 is real, symmetric,
bounded and positive definite, i.e., ∃α1, α2 ∈ R+, such that for all x̄ ∈ X , α1I ⪯
M(x̄) ⪯ α2I.

This storage function represents a measure of the energy of the variation along the
state trajectory x̄. We consider the following quadratic supply function,

sδ(wδ, zδ) =
[
wδ

zδ

]⊤ [
Q S
⋆ R

] [
wδ

zδ

]
, (5.12)

with matrices Q ∈ Snw , S ∈ Rnw×nz , and R ∈ Snz . We will refer to differentially
dissipativity w.r.t. the quadratic supply function (5.12) as differential (Q,S,R)
dissipativity. For the system in primal form given by (5.1), let us also consider
the set D for which holds that d

dtx(t) = ẋ(t) ∈ D for all t ∈ R+
0 . Based on these

considerations, we can formulate the following theorem.

Theorem 5.1 (Differential (Q,S,R) dissipativity condition). The system in primal
form (5.1) is differentially (Q,S,R) dissipative, under a quadratic storage function
(5.11), if there exits a matrix function M : X → Snx satisfying Condition 5.1, such
that for all (x̄, w̄) ∈ X × W and x̄v ∈ D it holds that

(⋆)⊤
[
∂M(x̄, x̄v) M(x̄)

⋆ 0

] [
I 0

Aδ(x̄, w̄) Bδ(x̄, w̄)

]
−

(⋆)⊤
[
Q S
⋆ R

] [
0 I

Cδ(x̄, w̄) Dδ(x̄, w̄)

]
⪯ 0, (5.13)

where ∂M(x̄, x̄v) =
∑nx

i=1
∂M(x̄)

∂x̄i
x̄v,i (x̄i and x̄v,i denote the i’th element of x̄ and

x̄v, respectively) and Aδ, . . . , Dδ are given as in (5.8).

Proof. See Appendix B.3.

5.3.2 Inducing incremental dissipativity

First, we show that the property of differential dissipativity under supply function
(5.12) and storage function (5.11) implies the property of incremental dissipativity
with supply function

si(w, w̃, z, z̃) =
[
w − w̃
z − z̃

]⊤ [
Q S
⋆ R

] [
w − w̃
z − z̃

]
. (5.14)
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We will refer to incremental dissipativity w.r.t. the supply function (5.14) as
incremental (Q,S,R) dissipativity. Secondly, we give a computable condition to
analyze incremental dissipativity. The following result is the core of our contribution
of this chapter.

Theorem 5.2 (Induced incremental dissipativity). When the system in primal form
(5.1) is differentially (Q,S,R) dissipative for a tuple (Q,S,R) for which R ⪯ 0,
under a storage function Vδ of the form (5.11), then, there exists a storage function
Vi such that the system is incrementally (Q,S,R) dissipative for the same tuple
(Q,S,R).

Proof. See Appendix B.3.

Remark 5.2 (Restricted R). The restriction R ⪯ 0 is a technical necessity in the
proof of Theorem 5.2. In case of R ≻ 0 or R being indefinite, validity of Theorem 5.2
is an open question. However, for supply functions of the form (5.12), R ⪯ 0 is also
required to infer incremental stability from incremental dissipativity, see Remark 5.3.
Hence, this assumption is not restrictive.

Comparing Theorem 5.2 to existing results in this context, we want to highlight that
(Waitman et al. 2016a; Waitman et al. 2016b) also give some results on incremental
dissipativity. However, these works only focus on a specific and restrictive form of
the supply function. Moreover, the technical result of (Waitman et al. 2016b) refers
to a proof in a paper that has never appeared to the author’s knowledge.
From Theorem 5.2, we have the following (trivial) result:

Corollary 5.1 (Incremental (Q,S,R) dissipativity condition). The system in primal
form (5.1) is incrementally (Q,S,R) dissipative with R ⪯ 0, if (5.13) holds for all
(x̄, w̄) ∈ X × W and x̄v ∈ D with M satisfying Condition 5.1.

Corollary 5.1 gives a sufficient condition to verify incremental (Q,S,R) dissipativity
of a general nonlinear system. Note that by this result, if the matrix inequality
(5.13) holds for all (x̄, w̄) ∈ X × W and x̄v ∈ D, then we know that there exist
a valid storage function Vi (of the form (B.75), see the proof of Theorem 5.2 in
Appendix B.3) such that (5.4) is satisfied. However, calculating this function in
an explicit form might be difficult (see Section 5.3.3). If no positive definite M
can be found to satisfy (5.13), then it does not necessarily mean that the system is
not differentially or incrementally dissipative. Inequality (5.13) might hold for a
non-quadratic Vδ, or a more complex M .

5.3.3 Explicit incremental storage function

Even if deriving an explicit form of Vi is challenging in general, we can take an
extra assumption for the quadratic form (5.11) to give an explicit construction:

Assumption 5.1. M(x̄) can be decomposed as M(x̄) = N(x̄)⊤PN(x̄), P ∈ Snx

with P ≻ 0 and N(x̄) ∈ Rnx×nx s.t. ∃µ : Rnx → Rnx s.t. ∂µ(x̄)
∂x̄ = N(x̄).
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While this decomposition of M(x̄) is always possible if it satisfies Condition 5.1,
see Appendix C.5, existence of µ such that ∂µ(x̄)

∂x̄ = N(x̄) is not guaranteed for any
M(x̄). This illustrates well the challenges for obtaining an explicit construction of
Vi. For the sake of simplicity, we assume in the remainder of this subsection that
X = Rnx .

Lemma 5.1 (Induced incremental storage function). If the system in primal form
(5.1) is differentially dissipative with a storage function

Vδ(x̄, xδ) = x⊤
δ M(x̄)xδ,

where M satisfies Condition 5.1 and Assumption 5.1, then, the incremental storage
function Vi in Theorem 5.2 is given by

Vi(x, x̃) = (µ(x) − µ(x̃))⊤P (µ(x) − µ(x̃)). (5.15)

Additionally, if M(x̄) = M ∈ Snx for all x̄ ∈ X with M ≻ 0, then, the incremental
storage function simplifies to

Vi(x, x̃) = (x− x̃)⊤M(x− x̃). (5.16)

Proof. See Appendix B.3.

In case X is a bounded convex set, Lemma 5.1 can be also shown to hold true,
if either beyond Assumption 5.1 it holds that µ(X ) is also convex, or if M is a
constant matrix.

5.3.4 Relation to other dissipativity notions

We now show that incremental dissipativity implies also the previously discussed
dissipativity notions in this thesis. Namely, we will show incremental dissipativity
implies universal shifted dissipativity, see Definition 4.2, and also classical dissipa-
tivity, Definition 2.13, assuming the origin is an equilibrium point of the system,
with corresponding zero input and output.

Theorem 5.3 (Induced dissipativity). Consider a nonlinear system in its primal
form (5.1). If the system is incrementally (Q,S,R) dissipative and satisfies 2

Assumption 4.1, then it is universally shifted (Q,S,R) dissipative, see Definition 4.2.
If 3 (0, 0, 0) ∈ E , the system is also classically (Q,S,R) dissipative.

Proof. See Appendix B.3.
2In case the system is also incrementally asymptotically stable (see Definition 5.4 and Theo-

rem 5.5), this assumption can be dropped.
3Meaning the origin is an equilibrium point of the system, corresponding to zero input and

output, see also (2.5).
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By this last result, we have obtained a chain of implications, which connect the
various dissipativity notions. Moreover, we have given a condition (matrix inequality
(5.13)) that then allows to examine differential, incremental, universal shifted, and
classical dissipativity and thus examine global stability and performance of a
nonlinear system. This chain of implications is summarized in Figure 5.2. A
result similar to Theorem 5.3 is given in (Liu et al. 2014) for single-input-single-
output networked nonlinear systems and only considering the connection between
incremental and classical dissipativity. However, note that Theorem 5.3 is more
general, as it holds for general nonlinear multi-input-multi-output systems of the
form (5.1) and also highlights the connection to universal shifted dissipativity.

Differential
dissipativity

Incremental
dissipativity

Universal
shifted

dissipativity

Classical
dissipativity

⇒= ⇒= ⇒=

Figure 5.2: Chain of implications with the dissipativity notions for supply functions
of the form (5.12).

For LTI systems (1.3), it is also trivial to see how these different dissipativity
concepts are equivalent to each other. Namely, as for the differential form of
an LTI state-space system (1.3) we have that Aδ(x̄, w̄) = A, . . . , Dδ(x̄, w̄) = D.
Consequently, the condition for differential dissipativity in Definition 5.3 is in that
case equivalent to the classical dissipativity condition in Definition 2.13. This also
further highlights why global stability and performance concepts do not have to
be considered for analysis and control of LTI systems, as the standard/classical
stability and performance concepts already guarantee them in that case.

5.3.5 Relation to stability notions

For classical dissipativity, it is well known how it connects to stability of the system
(at the origin of the state-space representation), see also Section 2.4.2. Similarly,
we will show how incremental dissipativity connects to an incremental notion of
stability.
Before providing these results, we will first introduce some (existing) results on
incremental stability. While definitions of incremental stability are often being
given in terms of comparison functions, see e.g. (Angeli 2002; Tran et al. 2016),
we will here use a definition more along the lines of ‘standard’ stability given in
Definition 2.3, which is also consistent with the definitions in literature.

Definition 5.4 (Incremental stability). The nonlinear system (5.1) is

• incrementally stable, if for each ϵ > 0, there exists a δ(ϵ) > 0 such that

∥x(0) − x̃(0)∥ < δ(ϵ) =⇒ ∥x(t) − x̃(t)∥ < ϵ; (5.17)

for all t ∈ R, x, x̃ ∈ Bw(w), and measurable and bounded functions w ∈ WR+
0 .
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• incrementally asymptotically stable, if it is stable and attractive, i.e., there
exists a δ > 0 such that

∥x(0) − x̃(0)∥ < δ =⇒ lim
t→∞

∥ϕx(t, 0, x(0), w) − ϕx(t, 0, x̃(0), w)∥ = 0;
(5.18)

for all x, x̃ ∈ Bw(w) and measurable and bounded functions w ∈ WR+
0 .

By taking one trajectory equal to an equilibrium point of the system (for the
corresponding constant input), one can easily see that by this definition incremental
stability also implies universal shifted stability, see Definition 4.1.

Similar to standard stability, see Section 2.3.1, we can use (incremental) Lyapunov
functions to analyze (incremental) stability of the system. The following is adapted
from (Angeli 2002):

Theorem 5.4 (Incremental Lyapunov stability). The nonlinear system given by
(5.1) is incrementally stable, if there exists a positive definite, so-called incremental
Lyapunov function Vi : X × X → R+

0 with Vi ∈ C1 and Vi ∈ Qi, such that

d

dt
Vi(x(t), x̃(t)) ≤ 0, (5.19)

for all t ∈ R+
0 and x, x̃ ∈ πx Bw(w) under all measurable and bounded functions

w ∈ WR+
0 . Moreover, the nonlinear system is incrementally asymptotically stable,

if (5.19) holds, but with strict inequality except when x(t) = x̃(t).

Having introduced these results on incremental stability, we will next show how it
connects to incremental dissipativity.

Theorem 5.5 (Incremental stability implied by incremental dissipativity). Assume
the nonlinear system given by (5.1) is incrementally dissipative under a storage
function Vi ∈ C1 w.r.t. a supply function s that satisfies

si(w,w, z, z̃) ≤ 0, (5.20)

for all w ∈ W and all z, z̃ ∈ Z, then, the nonlinear system is incrementally stable.
If the supply function satisfies (5.20), but with strict inequality when z ̸= z̃, and the
system is observable (see Definition 2.2), then the nonlinear system is incrementally
asymptotically stable.

Proof. See Appendix B.3.

Remark 5.3. For quadratic supply functions of the form (5.14) the conditions for
incremental stability of Theorem 5.5 correspond to R ⪯ 0 (or to R ≺ 0 in order
to imply incremental asymptotic stability). Note, that this condition on R is also
required for Theorem 5.2. See also Remark 5.2.
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Similar to analyzing incremental dissipativity through the differential form, results
have also been derived in literature to analyze incremental stability using the
differential form (Lohmiller and Slotine 1998; Pavlov, Pogromsky, et al. 2004;
Jouffroy and Fossen 2010; Rüffer et al. 2013; Forni and Sepulchre 2014):

Theorem 5.6 (Induced incremental stability). The system given by (5.1), with
differential form (5.7), is incrementally stable, if there exists a quadratic positive
definite function Vδ : X × Rnx → R+

0 of the form (5.11), such that

d

dt
Vδ

(
x̄(t), xδ(t)

)
≤ 0, (5.21)

for all 4 x̄ ∈ πx Bw(w) under all measurable and bounded w ∈ WR+
0 and for all

t ∈ R+
0 . If (5.21) holds, but with strict inequality except when 5 x(t) = x̃(t), then

the system (5.7) is incrementally asymptotically stable.

The condition given in (5.21) can be interpreted as the differential form being
(asymptotically) stable (along all trajectories of the system).
The result of Theorem 5.6 can then also be used to derive a matrix inequality
condition for incremental stability, as has been reported in (Lohmiller and Slotine
1998; Pavlov, Pogromsky, et al. 2004; Jouffroy and Fossen 2010; Rüffer et al. 2013).
For the system in primal form (5.1), we consider again the set D for which holds
that d

dtx(t) = ẋ(t) ∈ D for all t ∈ R+
0 .

Lemma 5.2 (Incremental stability condition). The system given by (5.1) is incre-
mentally stable, if

Aδ(x̄, w̄)⊤M(x̄) +M(x̄)Aδ(x̄, w̄) + ∂M(x̄, x̄v) ⪯ 0, (5.22)

for all (x̄, w̄) ∈ X × W, x̄v ∈ D and M satisfying Condition 5.1. If (5.22) holds,
but with strict inequality, then, the system is incrementally asymptotically stable.

Note that the above results also gives us a similar chain of implications as discussed
in Section 5.3.5, where now we have that the condition in Lemma 5.2 implies
‘stability of the differential form’, implying incremental stability, which in turn
implies universal shifted stability, which finally implies standard stability (under the
condition that the origin is an equilibrium point). Therefore, like for dissipativity,
we have one condition (the matrix inequality in Lemma 5.2) that allows us to
examine incremental, universal shifted, and standard stability.

5.3.6 Relation to velocity dissipativity

In Chapter 4, we have also discussed how universal shifted stability and performance
can be analyzed through the velocity form and corresponding notion of velocity

4Note that this corresponds to w̄(λ) = w ∈ πw B, ∀λ ∈ [0, 1], hence, wδ = 0.
5Corresponding to xδ(t) = 0.
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dissipativity, specifically see Section 4.3.

For a nonlinear system given by (5.1) its velocity form, see Definition 4.5, is given
by

ẍ(t) = Av(x(t), w(t))ẋ(t) +Bv(x(t), w(t))ẇ(t); (5.23a)
ż(t) = Cv(x(t), w(t))ẋ(t) +Dv(x(t), w(t))ẇ(t); (5.23b)

where Av = ∂f
∂x , Bv = ∂f

∂w , Cv = ∂h
∂x , Dv = ∂h

∂w , and (x,w, z) ∈ Bc (see (4.13)).
Moreover, the solution set of (5.23) is given by

Bv =
{

(ẋ, ẇ, ż) ∈ (Rnx × Rnw × Rnz)R
+
0 | ẋ(t) = d

dtx(t),
ẇ(t) = d

dtw(t), ż(t) = d
dtz(t),∀t ∈ R+

0 , (x,w, z) ∈ Bc
}
, (5.24)

see also (4.14). When we compare the velocity form (5.23) with the differential form
(5.7), note that Av = Aδ, . . . , Dv = Dδ. Moreover, due the definition of the solution
set of the velocity form, Bv, it is clear that any solution of the velocity form is
also a solution of the differential form, i.e., for a (ẋ, ẇ, ż) ∈ Bv with corresponding
(x,w) ∈ πx,w Bc, it also holds that (ẋ, ẇ, ż) ∈ Bδ(x,w) (see (5.9)). However, not
any solution of the differential form is also a solution of the velocity form, as solution
for the velocity form are directly connected to the solutions of the primal form
through time-differentiation. Consequently, we have that the solution set of the
velocity form is included in that of the differential form, i.e., Bv ⊂ B̆δ.

Furthermore, remember that velocity dissipativity, see Definition 4.6, can be seen as
classical dissipativity of the velocity form, similar how differential dissipativity can
be seen as classical dissipativity of the differential form. Combined with the previous
observation that the solution set of the velocity form is included in that of the
differential form, i.e., Bv ⊂ Bδ, we therefore have that differential dissipativity also
implies velocity dissipativity. This connection has also been reported in (Kosaraju
et al. 2019; Kawano et al. 2021), however, only in case of a passivity based supply
function.

That differential dissipativity implies velocity dissipativity also becomes clear when
we compare the matrix inequality condition for velocity (Q,S,R) dissipativity given
in Theorem 4.4, with the condition for differential (Q,S,R) dissipativity given in
Theorem 5.1. Comparing the two conditions, it is evident that in case M in (5.13)
is a constant matrix, that condition (5.13) is equivalent with condition (4.20). This
means that with condition (4.20) for velocity (Q,S,R) dissipativity in Theorem 4.4,
we actually imply the stronger notion of differential (Q,S,R) dissipativity. However,
note that the velocity form and velocity dissipativity are still useful, as we can exploit
their properties for controller synthesis in order to ensure closed-loop universal
shifted stability and performance, as we have shown in Section 4.5.
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5.4 Convex Incremental Performance Analysis

5.4.1 Incremental performance

We now use the dissipativity results of Section 5.3 to recover incremental notions of
well-known performance indicators (L2-gain, L∞-gain, passivity and the generalized
H2-norm) and propose a method, through the LPV framework, that allows for
global, convex performance analysis of nonlinear systems. This will also serve as a
stepping stone for the formulation of incremental controller synthesis in Chapter 6.

In Section 2.3.2, we have introduced the performance metric given by the gain from
input signals in Lpe to output signals in Lqe, see Definition 2.11. This has given rise
to the popular performance notion of L2-gain, and to performance notions such as
generalized H2 nominal performance, through the L2-L∞-gain, and peak-to-peak
performance, through the L∞-gain. All these performance notions, along with
stability of the system, can be characterized through classical dissipativity of the
system, for a particular choice of supply function, see Section 2.4.3.

In the incremental case, most work in the literature has focussed on the incremental
L2-gain (Fromion, Scorletti, and Ferreres 1999; Van der Schaft 2017), with some
extensions to a general incremental Lp-gain notion (Romanchuk and James 1996).
Next we will give generalization of these results to an incremental version of Lp-Lq-
gain for CT systems.

Definition 5.5 (Incremental Lp-Lq-gain). A (CT) nonlinear system given by (5.1)
is said to have a finite incremental Lp-Lq-gain, if there is a finite γ ≥ 0 and function
ζi : X × X → R such that

∥z − z̃∥q,T ≤ γ ∥w − w̃∥p,T + ζi(x0, x̃0), (5.25)

for all T ≥ 0 and (x,w, z), (x̃, w̃, z̃) ∈ B with6 w, w̃ ∈ Lpe. The induced incremental
Lp-Lq-gain of (5.1), denoted as Lip-Liq-gain, is the infimum of γ such that (5.25)
still holds. If p = q, we will refer to this as the (induced) incremental Lp-gain,
denoted as Lip-gain.

Next, we will present conditions for the incremental performance notions considering
storage functions of the form of (5.16). It is trivial to extend these results to the
case when a matrix function M(x̄) is considered.

Incremental L2-gain

As aforementioned, the L2-gain is one of the more popular performance notions
for analysis and controller synthesis. Next, we give a results for its incremental
extension, the Li2-gain. Using Definition 5.5 to define the Li2-gain and together
with Corollary 5.1 lead to the following result:

6Which also implies that (w − w̃) ∈ Lpe.
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Corollary 5.2 (Li2-gain bound). Consider the system given by (5.1) with differential
form given by (5.7), and let γ ∈ R+. If there exists an M ∈ Snx with M ≻ 0, s.t.
for all (x̄, w̄) ∈ X × W,Aδ(x̄, w̄)⊤M + (⋆) MBδ(x̄, w̄) Cδ(x̄, w̄)⊤

⋆ −γI Dδ(x̄, w̄)⊤

⋆ ⋆ −γI

 ⪯ 0, (5.26)

then, (5.1) has an Li2-gain bound of γ.

Proof. See Appendix B.3.

In (Fromion and Scorletti 2003), it is shown that the primal form (5.1) has an
incremental L2-gain of γ if and only if the differential form (5.7) has a bounded L2-
gain of γ. It is an interesting (open) question how necessity can also be established
via Theorem 5.2 in this case. Additionally, note that (5.26) is linear, i.e., convex, in
M and γ, but it is an infinite semi-definite problem. We will discuss in Section 5.4.2
how to turn the condition in Corollary 5.2 into a finite number of Linear Matrix
Inequality (LMI)-based convex optimization problem.

Incremental L∞-gain

The well-known L1-norm is defined for stable LTI systems that map inputs with
bounded amplitude to outputs with bounded amplitude. For LTI systems, the
L1-norm is equivalent with the induced L∞-norm, i.e., the peak-to-peak gain of a
system. Similar to results for the Li2-gain, we extend this to the incremental setting
using Definition 5.5 to define the Li∞-gain, which, together with Corollary 5.1, as
extension of (Scherer 2000, Sec. 10.3) and (Scherer and Weiland 2015, Sec. 3.3.5),
gives us the following result:

Corollary 5.3 (Li∞-gain bound). Consider the system given by (5.1), with differ-
ential form (5.7), and let γ ∈ R+. If there exists an M ∈ Snx with M ≻ 0, α > 0,
and β > 0, s.t. for all (x̄, w̄) ∈ X × W,[

Aδ(x̄, w̄)⊤M + (⋆) + βM MBδ(x̄, w̄)
⋆ −αI

]
⪯ 0, (5.27a)βM 0 Cδ(x̄, w̄)⊤

⋆ (γ − α)I Dδ(x̄, w̄)⊤

⋆ ⋆ γI

 ⪰ 0, (5.27b)

then, (5.1) has a Li∞-gain bound of γ for all (x,w, z), (x̃, w̃, z̃) ∈ B.

Proof. See Appendix B.3.

Despite of the fact that (5.27a) is not convex in β and M due to their multiplicative
relation, by fixing β and performing a line-search over it, (5.27a) again corresponds
to an infinite semi-definite program.
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Incremental passivity

Passivity is a widely studied system property and it has been extended towards
the incremental setting (Pavlov and Marconi 2008; Van der Schaft 2017) and the
differential setting (Forni and Sepulchre 2013; Forni, Sepulchre, and Van der Schaft
2013; Van der Schaft 2013). In (Kawano et al. 2021), the connection between
differential and incremental passivity has been established for a storage function
(5.11) with constant M . That work might serve as a parallel proof for Theorem 5.2,
when focusing only on passivity.
A system is said to be passive, if it is dissipative w.r.t. to the supply rate s(w, z) =
w⊤z+ z⊤w. Based on (Van der Schaft 2017), the definition of incremental passivity
is as follows:

Definition 5.6 (Incremental passivity). A system of the form (5.1) for which
nw = nz is incrementally passive, if it is incrementally dissipative w.r.t. the supply

si(w, w̃, z, z̃) = (w − w̃)⊤(z − z̃) + (z − z̃)⊤(w − w̃). (5.28)

Based on Corollary 5.1, the following result holds:

Corollary 5.4 (Incremental passivity condition). The system given by (5.1) with
nw = nz is incrementally passive, if there exists an M ∈ Snx with M ≻ 0, such that
for all (x̄, w̄) ∈ X × W[

Aδ(x̄, w̄)⊤M + (⋆) MBδ(x̄, w̄) − Cδ(x̄, w̄)⊤

⋆ −Dδ(x̄, w̄) + (⋆)

]
⪯ 0. (5.29)

The proof simply follows by direct application of Corollary 5.1 with Q = R = 0 and
S = I.
Comparing Corollary 5.4 to (Kawano et al. 2021) and (Van der Schaft 2013), these
papers give results on differential passivity for a combined primal and differential
system formulation (a prolonged system (Crouch and Van der Schaft 1987)) using a
specific form of storage function. The result depends on equality constrains, which
serve as a decoupling condition between the differential storage and the primal
storage, while in this chapter the differential storage and the primal storage have
the same structure (quadratic form with the same M), not requiring such equality
constraints.

Incremental generalized H2 performance

There are several extensions of the H2-norm for nonlinear systems embedded as
LPV systems (De Souza et al. 2003; Xie 2005; Bouali et al. 2008). In this chapter,
we extend the notion of generalized H2 performance, corresponding to the L2-
L∞ gain, to the incremental setting through the Li2-Li∞-gain, consistent with
Definition 5.5. Note for the Li2-Li∞-gain to be bounded, the assumption is required
that ∂h

∂w̄ (x̄, w̄) = Dδ(x̄, w̄) = 0 for all (x̄, w̄) ∈ X × W. As an extension of (Scherer
and Weiland 2015, Sec. 3.3.4), the following result characterizes an upper bound γ
on the Li2-Li∞-gain.
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Corollary 5.5 (Li2-Li∞-gain bound). Consider the system given by (5.1) with
differential form given by (5.7) for which ∂h

∂w̄ (x̄, w̄) = Dδ(x̄, w̄) = 0 for all (x̄, w̄) ∈
X × W, and let γ ∈ R+. If there exists an M ∈ Snx , s.t. for all (x̄, w̄) ∈ X × W,[

A(η̄)⊤M +MA(η̄) MB(η̄)
B(η̄)⊤M −γI

]
⪯ 0, (5.30a)[

M C(η̄)⊤

C(η̄) γI

]
⪰ 0, (5.30b)

then, (5.1) has an Li2-Li∞-gain bound of γ for all (x,w, z), (x̃, w̃, z̃) ∈ B.

Proof. See Appendix B.3.

Remark 5.4. Note that the performance measures discussed in this section have a
specific (Q,S,R)-triplet associated with them. Specifically, (Q,S,R) = (γ2I, 0,−I)
for Li2-gain, (Q,S,R) = (αI, 0, 0) for Li∞-gain, (Q,S,R) = (0, I, 0) for incremental
passivity and (Q,S,R) = (γI, 0, 0) for the Li2-Li∞-gain.
Remark 5.5. Note that the results in Corollaries 5.2 to 5.5 are given in terms of non-
strict (matrix) inequalities, while in literature their non-incremental counterparts
are often given in terms of strict inequalities. The strict versions of these results can
easily be retrieved by changing the dissipation inequality for differential dissipativity
in Definition 5.3 to a strict inequality, from which the rest will follow.

5.4.2 Convex computation through the LPV framework

So far, the obtained results have yielded matrix inequalities that correspond to
infinite dimensional semidefinite programs (SDPs). This problem is similar to what
is encountered when analyzing LPV systems. This section presents an approach
to recast these problems as standard LPV analysis problems by embedding of the
differential form of the system in an LPV representation, which we will refer to as
a Differential Parameter-Varying (DPV) embedding. As discussed in Chapters 1
and 2, there exists various approaches for LPV framework to cast the infinite
dimensional LMIs to a finite dimensional problem. Inspired by (Tóth 2010; R.
Wang, Tóth, et al. 2020), we define the DPV embedding of (5.1) as follows.
Definition 5.7 (DPV embedding). Consider a system (5.1) and its differential
form (5.7). The LPV state-space representation

ẋδ(t) = A(p(t))xδ(t) +B(p(t))wδ(t), (5.31a)
zδ(t) = C(p(t))xδ(t) +D(p(t))wδ(t), (5.31b)

with p(t) ∈ P ⊂ Rnp being the scheduling-variable, is a so-called DPV embedding
of (5.1) on the region X × W ⊆ X × W, if there exists a function η : X × W → P,
the so-called scheduling-map, with p = η(x̄, w̄), and P ⊇ η(X ,W ), such that for all
(x̄, w̄) ∈ X × W :

A(η(x̄, w̄)) = Aδ(x̄, w̄), B(η(x̄, w̄)) = Bδ(x̄, w̄),
C(η(x̄, w̄)) = Cδ(x̄, w̄), D(η(x̄, w̄)) = Dδ(x̄, w̄),

(5.32)

where A, . . . , D belong to a given function class (affine, polynomial, etc.).
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The convex set P is usually a superset of the η-projected values of possible state
and input trajectories (even if X , W are convex), hence, the DPV embedding of
a nonlinear system introduces conservatism. However, similar to standard LPV
analysis of nonlinear systems, this is considered to be the trade-off for efficiently
computable stability and performance analysis of nonlinear systems. In case that
X × W is unbounded, the DPV embedding is often realized on a convex subset
X × W ⊆ X × W, such that there exists a compact and convex P ⊇ η(X × W ).
In this case, one either requires to add an extra condition of invariance of the
system on X × W or assume it, which may introduce conservatism in the analysis,
as not the full behavior of the original primal system is considered. Note that
existence of a compact and convex P, in case of unbounded X × W, follows when
∂f
∂x ,

∂f
∂w ,

∂h
∂x ,

∂h
∂w are bounded matrix functions, e.g., if ∂h

∂x = sin(x), with x ∈ R, we
can take p = η(x) = sin(x) ∈ [−1, 1].

As the DPV embedding is an LPV representation, we can make use of various
approaches from the LPV framework to reduce the conservatism of the DPV
embedding (5.31) for a given preferred dependency class of A,B,C,D (e.g. affine,
polynomial, rational). For example there exists methods whereby we can optimize
η (with minimal np) such that co (η(X ,W )) \ η(X ,W ) has minimal volume, see e.g.
(Tóth 2010; Sadeghzadeh and Tóth 2020). In Chapter 9, we will also discuss a data
based method to reduce scheduling dimension in order to improve the computational
efficiency for more complex systems, requiring a large number of scheduling-variables
for their LPV or DPV embedding.

Note that the DPV embedding serves as an important tool to convexify the variation
of the matrix inequalities in the analysis. Through the DPV embedding, we can
capture all the behavior of the differential form (5.7). Let us define the behavior
of (5.31) for a particular p ∈ PR+

0 by Bp(p) and the full behavior by (i.e., for all
p ∈ PR+

0 ) by B̆p, see also (2.27) and (2.28).

Lemma 5.3 (DPV behavioral embedding). Consider the nonlinear system given by
(5.1) and the LPV system given by (5.31). If the LPV system is a DPV embedding
of the nonlinear system on the region X × W = X × W, then, the behavior of
differential form is included in that of the LPV system, i.e., B̆δ ⊆ B̆p.

Proof. See Appendix B.3.

Remark 5.6. If the DPV embedding is considered on the region X × W ⊂ X × W,
i.e., only part of the state-space is considered, then we can still describe (part of)
the behavior of the differential form using the DPV embedding. In this case one
requires the assumption that the states and inputs stay in the embedding region,
i.e., (x(t), w(t)) ∈ X × W for all t ∈ R+

0 .

Note again that differential dissipativity can be seen as classical dissipativity of the
differential form, which we have shown allows us to imply incremental dissipativity.
Therefore, as we can represent the differential form by the DPV embedding, we can
analyze classical dissipativity of the DPV embedding in order to analyze incremental
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dissipativity. As the DPV embedding is an LPV representation, we hence can cast
the incremental analysis problem as a standard LPV analysis problem. This is
formalized in the following theorem:

Theorem 5.7 (Incremental dissipativity through the LPV framework). Consider
the nonlinear system given by (5.1), for which the LPV representation given by
(5.31) is a DPV embedding of the system on the region X × W = X × W. If the
LPV representation given by (5.31) is classically (Q,S,R) dissipative with R ⪯ 0,
then, the nonlinear system is incrementally (Q,S,R) dissipative.

Proof. See Appendix B.3.

Note that it is also evident that we can analyze incremental dissipativity through
the LPV framework, if we compare the conditions for the various incremental
performance notions in Section 5.4.1 to the conditions in Section 2.5.2. Namely, the
conditions given in Section 5.4.1 become then equal to the LPV analysis conditions
discussed in Section 2.5.2, when the LPV representation is given by the DPV
embedding (5.31).

Similarly, the DPV embedding can also be used for incremental stability analysis,
using the result of Lemma 5.2, which then becomes a standard LPV stability analysis
problem, again, see also Section 2.5.2. In turn, this allows the proposed incremental
stability and performance analysis to make use of all the computationally efficient
methods constructed to analyze LPV representations (Hoffmann and Werner 2015a).

Note that these results also connect again to the velocity based results to analyze
universal shifted stability and performance in Chapter 4, as we have also discussed
in Section 5.3.6. Specifically, in Section 4.4, we have also proposed the use the
LPV framework in order to efficiently analyze velocity dissipativity, by embedding
the velocity form in an LPV representation, which we refer to as the Velocity
Parameter-Varying (VPV) embedding. This is similar to how we use the DPV
embedding to efficiently analyze differential dissipativity, and hence, incremental
dissipativity. In Section 5.3.6, we have already shown the similarities between the
differential and velocity forms. Due to these similarities, also the DPV embedding
and VPV embedding of a system are closely related. In fact, an LPV representation
can simultaneously be both a DPV embedding and VPV embedding of a system.
This is especially evident when we compare the conditions that the LPV matrices
A, . . . ,D of an LPV representation (along with the scheduling-map η) need to
satisfy in order to be a DPV embedding, see (5.32), and in order to be a VPV
embedding, see (4.31). However, as aforementioned, despite these similarities, we
can still exploit the different properties of the differential form and the velocity
form through the DPV and VPV embedding, respectively, for controller synthesis.
Like we have shown in Section 4.5 w.r.t. the VPV embedding, and which we will
show w.r.t. the DPV embedding in Chapter 6.
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5.5 Examples

This section demonstrates the developed notions of incremental dissipativity theory
and the analysis tools on two example systems.

Example 5.1 (Incremental dissipativity analysis of a Duffing oscillator). Consider
a second-order Duffing oscillator given in a state-space form by

ẋ1(t) = x2(t);
ẋ2(t) = −a x2(t) −

(
b+ c x2

1(t)
)
x1(t) + w(t);

z(t) = x1(t),
(5.33)

where a and b represent the linear damping and stiffness, respectively, and c
represents the nonlinear stiffness component. The differential form of (5.33) is given
by

ẋδ(t) =
[

0 1
−b− 3 c x2

1(t) −a

]
xδ(t) +

[
0
1

]
wδ(t);

zδ(t) =
[
1 0

]
xδ(t).

(5.34)

Moreover, we assume for this system that (x1(t), x2(t)) ∈ X for all t ∈ R+
0 , where

X = [−
√

2,
√

2] × R, and

w ∈ {RR+
0 | (5.33) holds and (x1(t), x2(t)) ∈ X , ∀ t ∈ R+

0 }. (5.35)

By choosing a = 3.3, b = 7.9, c = 1, (5.33) yields a system with finite Li2-gain. In
this example, we determine the Li2-gain of the system, using Corollary 5.2. Note
that the nonlinearity x2

1(t) in (5.34) can be captured by using a DPV inclusion
p(t) = η(x1(t)) = x2

1(t) ∈ [0, 2]. The resulting DPV embedding is then given by

ẋδ(t) =
[

0 1
−b− 3 c p(t) −a

]
xδ(t) +

[
0
1

]
wδ(t);

zδ(t) =
[
1 0

]
xδ(t),

(5.36)

where p(t) = η(x1(t)) = x2
1(t) ∈ [0, 2], which has an affine scheduling depen-

dency. Computing an L2-gain upperbound for (5.36), corresponding to the Li2-
gain upperbound for (5.33), using the LPVcore Toolbox (Boef et al. 2021), yields

M =
[

0.592 0.0896
0.0896 0.0543

]
≻ 0 and γ = 0.155. Hence, within less than a second, we

know that the nonlinear system is differentially, incrementally, universally shifted,
and classically dissipative7 on X for which w satisfies (5.35), w.r.t. the supply
function (5.12) with Q = 0.1552, R = −1 and S = 0, corresponding to an Li2-gain
upperbound of 0.155. Next, the system is simulated with two different input signals

w1(t) = 3e−0.2t cos (πt) , (5.37a)
w2(t) = −2e−0.1t sin

(
0.6πt+ π

4
)
, (5.37b)

7Note that (5.33) satisfies (0, 0, 0) ∈ E as per Theorem 5.2.
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for which holds that w1, w2 satisfy (5.35) and w1, w2 ∈ L2. The inputs and the
state trajectories are shown in Figure 5.3, which shows that the states stay within
the defined state-space X .
To visualize differential dissipativity of the system, the signals of (5.34) are substi-
tuted in the dissipation inequality for the differential form (5.10). The left- and
right-hand side of the dissipation inequality (5.10) are plotted in Figure 5.4a corre-
sponding to the system trajectories of Figure 5.3. As can be seen in Figure 5.4a, the
stored energy in the system is always less than the supplied energy plus the initial
stored energy, hence the system is differentially dissipative w.r.t. the considered
L2-gain supply.

Figure 5.3: The applied inputs, w1 ( ) and w2 ( ), (left) and the resulting state
trajectories (right). Both trajectories start at

(
x1(0), x2(0)

)
= (1, 1).

(a) Differential dissipativity of the system trajectories, [Vδ(x̄(t), xδ(t))] ( ) and[∫ t1
t0

sδ(wδ(τ), zδ(τ)) dτ + Vδ(x̄(0), xδ(0))
]

( ), with w1(t) as input (left) and w2(t)
as input (right).
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(b) Incremental dissipativity based on the system trajectories, [Vi(x(t), x̃(t))] ( ) and[∫ t1
t0

si(w(τ), w̃(τ), z(τ), z̃(τ)) dτ + Vi(x(0), x̃(0))
]

( ), with w(t) = w1(t) and w̃(t) =
w2(t) as input.

(c) Classical dissipativity of the system trajectories, [V(x(t))] ( ) and[∫ t1
t0

s(w(τ), z(τ)) dτ + Vi(x(0))
]

( ), with w1(t) as input (left) and w2(t) as input
(right).

Figure 5.4: Simulation results for the different notions of dissipativity for a Duffing
oscillator w.r.t. a (Q,S,R) supply function with Q = γ2I, S = 0, and R = −I,
corresponding to the Li2-gain.

Since the system is differentially dissipative it is also incrementally dissipative.
Figure 5.4b shows the incremental dissipation inequality, i.e., the stored energy and
the supplied energy between the two trajectories in Figure 5.3. As can be observed
in Figure 5.4b, the stored energy between two trajectories is always less than the
supplied energy between two trajectories. Hence, considering these trajectories, the
system is incrementally dissipative. Therefore, we can state (based on these two
trajectories) that these results correspond to the developed theory. Furthermore,
because the supply function is parametrized such that it represents the Li2-gain of
a system, γ = 0.155 is an upper bound for the Li2-gain of the system (5.33).
Moreover, by Theorem 5.3, incremental dissipativity implies universal shifted dissi-
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pativity and classical dissipativity of the original system (5.33). Figure 5.4c gives the
storage and supply function evolution over time for the two considered trajectories,
showing that the original system is dissipative, since the stored energy is always
less than the supplied energy.

The next example shows that incremental dissipativity is a stronger notion than
classical dissipativity, if the same type of storage function is considered.

Example 5.2 (Comparison between incremental and classical dissipativity on the
Duffing oscillator). This example again uses a Duffing oscillator, now with the
output equation given by z(t) = x2(t). With this small modification compared to
(5.33), the Duffing oscillator can be written as a port-Hamiltonian system. Based
on (Molero et al. 2013), we take the Hamiltonian function as

H(x) = 1
2x

2
2 + 1

2b x
2
1 + 1

4c x
4
1. (5.38)

The resulting port-Hamiltonian form of this system is

ẋ(t) =
[

0 1
−1 0

]
−
[
0 0
0 a

]
︸ ︷︷ ︸

(J(x)−R(x))

[ ∂H
∂x1
∂H
∂x2

]
︸ ︷︷ ︸
∇H(x)

+
[
0
1

]
︸︷︷︸
B(x)

w(t);

z(t) = B(x)⊤∇H(x).

Since a port-Hamiltonian system is always dissipative w.r.t. the supply function
s(w, z) = 2w⊤z, we know that the dissipation inequality holds for all trajectories.

(a) Classical dissipativity of the system trajectories, [V(x(t))] ( ) and[∫ t1
t0

s(w(τ), z(τ)) dτ + Vi(x(0))
]

( ), with w1(t) as input (left) and w2(t) as input
(right), here the y-axis is normalized unitarily.
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(b) Incremental dissipativity based on the system trajectories, [Vi(x(t), x̃(t))] ( ) and[∫ t1
t0

si(w(τ), w̃(τ), z(τ), z̃(τ)) dτ + Vi(x(0), x̃(0))
]

( ), with w1(t) and w2(t) as input.

Figure 5.5: Simulation results for a Duffing oscillator which is passive, but not incre-
mentally passive, when the same storage function (i.e., the Hamiltonian function)
is used: H(x) for general passivity and H(x− x̃) for incremental passivity.

Moreover, this supply function indicates passivity, hence the port-Hamiltonian
system is passive. By choosing a = 1.3, b = 7.9, c = 3, the storage function based
on the Hamiltonian allows us to show the system is passive, however, we cannot
conclude if the system is incrementally passive based on a storage function which
uses the same Hamiltonian. The two plots in Figure 5.5a show the (normalized)
classical dissipation inequality for two arbitrary inputs, and indeed the energy in the
system, based on the Hamiltonian as measure, is less than the supplied energy to
the system. Hence, the system is passive. However, when incremental dissipativity
is examined by subtracting both trajectories, the plot in Figure 5.5b is obtained.
For some time-interval, the energy in the system is more than the energy supplied
to the system, hence the system is not incrementally passive w.r.t. the supply
function si(w, w̃, z, z̃) = 2(w − w̃)⊤(z − z̃) and storage function H(x − x̃). This
shows that incremental dissipativity is a stronger notion than classical dissipativity,
when the storage function has the same complexity. Note that the system might be
incrementally dissipative for some different storage function.

5.6 Conclusions

In this chapter, we have established the link between various dissipativity notions,
namely, we have shown that differential dissipativity implies incremental dissipativity,
universal shifted dissipativity, as discussed in Chapter 4, and classical dissipativity of
nonlinear systems. Moreover, we have given results on general quadratic incremental
performance notions and how, through the introduced concept of DPV embeddings,
we can use the LPV framework to analyze the different notions of dissipativity
computationally efficiently. The links we have established give us a generic framework
to analyze global stability and performance notions of nonlinear systems, irrespective
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of a particular equilibrium point or trajectory. Finally, the computation tools we
have presented allow to efficiently analyze global stability and performance of a
rather general class of nonlinear systems. In the next chapter, Chapter 6, we
will show how these results open up the possibility to establish computationally
efficient controller synthesis based on the DPV embedding, such that we can
synthesize (nonlinear) controllers for nonlinear systems with incremental stability
and performance guarantees of the closed-loop behavior.





6
Incremental Dissipativity
based Control

The constant push for higher performance requirements in practical sys-
tems has resulted in that nonlinear behavior is becoming increasingly

more dominant in applications, as we have discussed in Chapter 1. This
has resulted in computationally efficient and systematic control of nonlin-
ear systems growing more and more important for practical applications.
While the Linear Parameter-Varying (LPV) framework aimed to provide
systematic and computationally efficient tools for nonlinear systems, we
have seen in Chapter 3 that the current results are not always capable of
providing the desired guarantees in terms of stability and performance for
nonlinear systems. Namely, they can only provide guarantees w.r.t. a single
equilibrium point of the nonlinear system. Consequently, to achieve the
goal of systematic control of nonlinear systems, we require the use of global
stability and performance concepts, which are independent of a particular
point or trajectory. In Chapter 5, we have shown how the global concept
of incremental stability and performance through incremental dissipativity
analysis could computationally efficiently be analyzed through the use of
the LPV framework. In this chapter, for controller synthesis, we build on
top of these results to develop a novel, computationally efficient, systematic
controller design method which is able to ensure incremental dissipativity.
The proposed control method is verified through simulation studies and
on an experimental setup. Moreover, it is also compared to standard LPV
controller designs, showing significant performance improvements.
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6.1 Introduction

The control of nonlinear systems has been an intense, ongoing field of research since
the early 1970’s, and it is still to this date, as we also discussed in Chapter 1. So
far, no systematic way has been found to perform controller synthesis for general
nonlinear systems with performance shaping, compared to the class of Linear Time-
Invariant (LTI) systems where several systematic approaches exist to design or
synthesize controllers.

Hence, in this thesis, we set out to develop a computationally efficient, systematic
framework for analysis and control of nonlinear systems to guarantee and shape
global stability and performance requirements. In Chapter 3, we have first shown how
and why the existing results for the Linear Parameter-Varying (LPV) framework,
which promises to provide a systematic framework for nonlinear analysis and control,
can fail to provide the desired guarantees. Namely, the standard results for the
LPV framework can only ensure stability and performance w.r.t. a single point,
and not the global, equilibrium point independent, notions that are required for
proper systematic nonlinear analysis and control. In Chapter 4, we have already
seen how we can use the LPV framework to analyze and design controllers to ensure
the global notion of universal shifted stability and performance. However, this
notion is limited to ensuring stability and performance w.r.t. constant trajectories
only, i.e., equilibrium points, and not w.r.t. varying trajectories. In Chapter 5,
we have seen how through the stronger global notion of incremental stability and
performance we can analyze stability and performance w.r.t. arbitrary trajectories
of the system. Moreover, we have also shown how incremental dissipativity can be
efficiently analyzed through the use of the LPV framework.

A first attempt to use the concept of incremental stability and performance to
perform controller synthesis in conjunction with the LPV framework was first
made in (Scorletti, Fromion, et al. 2015). Using the results from (De Hillerin et al.
2011), this work has provided a control synthesis method where the controller itself
is restricted to be Linear Time-Invariant (LTI), with an extra input being the
scheduling-variable. However, the lack of a multiplicative relationship between
the state and the scheduling-variable in the control structure is a heavy limitation
compared to standard LPV control. Despite this restriction, the general benefits of
the alternative design have been clearly visible from the results.

Besides the incremental stability concept, similar stability concepts such as contrac-
tion (Lohmiller and Slotine 1998) and convergence (Pavlov, Van de Wouw, et al.
2006) have also been employed to design controllers to ensure a global form of
stability. However, these results often rely on complex procedures for controller
design, and often have no explicit guarantees on performance. More recently, a
convex synthesis framework has been introduced for state feedback design to achieve
contraction (Manchester and Slotine 2018; R. Wang, Tóth, et al. 2020).

In this chapter, our contribution is the development of a systematic output feedback
controller synthesis framework to ensure incremental stability and dissipativity based
performance for nonlinear systems on the basis of the results of Chapter 5. This
is achieved through three key sub-contributions: (i) proposing a methodology and
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a performance shaping framework to synthesize an output feedback controller
for the differential form of the system by exploiting computationally efficient
LPV methods, (ii) introducing a realization method for the controller designed
for the differential form of the system to get a nonlinear controller that can be
implemented for regulating the (original) target system, (iii) rigorous proofs that
the obtained controller ensures closed-loop incremental stability and dissipativity
based performance specs with the system.
Compared to previous work, we extend the results in (Manchester and Slotine
2018) which use state feedback to ensure L2-gain performance to output feedback
design under general quadratic performance specifications. Moreover, we present
how the LPV framework can be used effectively to synthesize the output feedback
controller in a computationally efficient manner. Compared to (Scorletti, Fromion,
et al. 2015), in which the resulting controller is limited to an LTI structure, our
proposed controller has full multiplicative relationship between the controller state
and scheduling-variable, similar to a standard LPV controller, hence, potentially
allowing to achieve better performance. The overall capabilities of the design
approach are demonstrated on simulation examples and via experimental studies.
The chapter is structured as follows. In Section 6.2, a formal definition of the
incremental controller synthesis problem is given. Section 6.3 describes the proposed
framework used to synthesize nonlinear controllers ensuring incremental stability and
dissipativity based performance via convex optimization. In Section 6.5, examples
are given on the application of the developed control method. Finally, in Section 6.6,
conclusions on the presented results are drawn.

6.2 Incremental Controller Synthesis Problem

Similar as we considered for universal shifted controller synthesis in Section 4.5,
in this chapter, we consider the problem of control synthesis for a rather wide
class of nonlinear control configurations, described by so-called generalized plants P
(Apkarian, Gahinet, and G. Becker 1995). The objective is to solve the synthesis
problem by a novel LPV approach that, via exploiting differential dissipativity,
can ensure global stability and performance guarantees for tracking and rejection.
As described in Section 6.1, see also Chapter 3, current LPV synthesis methods
cannot provide such guarantees in general. A wide range of control structures from
feedback and feedforward control to observer design for nonlinear systems can be
expressed in the form of the plant P , given by

ẋ(t) = f (x(t), u(t)) +Bww(t); (6.1a)
z(t) = hz(x(t), u(t)) +Dzww(t); (6.1b)
y(t) = hy(x(t), u(t)) +Dyww(t); (6.1c)

where t ∈ R+
0 is time, x(t) ∈ X ⊆ Rnx is the state, with x ∈ C1 and initial condition

x(0) = x0 ∈ Rnx , w ∈ WR+
0 with W ⊆ Rnw correspond to references, external

disturbances, etc., collectively called as generalized disturbances, while elements
of z ∈ ZR+

0 with Z ⊆ Rnz characterize the generalized performance (e.g. tracking
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error, control effort, etc.). Furthermore, the channels u and y where u ∈ UR+
0

with U ⊆ Rnu is the control input and y ∈ YR+
0 with Y ⊆ Rny is the measured

output. These represent the channels on which the controller K interacts with P .
Additionally, f : X × U → Rnx , hz : X × U → Rnz and hy : X × U → Rny are
assumed to be in C1, while Bw ∈ Rnx×nw , Dzw ∈ Rnz×nw , and Dyw ∈ Rny×nw .
The controller K for a given plant (i.e., control configuration) P is considered in
the form

ẋk(t) = fk(xk(t), uk(t)); (6.2a)
yk(t) = hk(xk(t), uk(t)); (6.2b)

where xk(t) ∈ Rnxk is the state, uk(t) ∈ Rnuk is the input, and yk(t) ∈ Rnyk

is the output of the controller. Furthermore, fk : Rnxk × Rnuk → Rnxk and
hk : Rnxk × Rnuk → Rnyk . The closed-loop interconnection of P and K through
uk = y and u = yk (hence, nuk = ny and nyk = nu) will be denoted by Fl(P,K),
which has as input w and as output z. The output z ∈ ZR+

0 of Fl(P,K) for an
input w ∈ WR+

0 and initial condition xcl,0 = col(x(0), xk(0)) ∈ X × Rnxk , is also
denoted by Fl(P,K)(w, xcl,0) = z ∈ ZR+

0 .
Our objective in this chapter is to synthesize K for a given plant P , such that
the closed-loop interconnection Fl(P,K) is incrementally dissipative in terms of
Definition 5.2 under a given (incremental) (Q,S,R) supply function si, i.e., of
the form (5.14), for which R ⪯ 0, implying closed-loop incremental stability (see
Remark 5.3). However, for the sake of compactness of the discussion, we will
exemplify the theoretical toolchain only via the incremental L2-gain, although the
overall machinery can be easily extended to the other incremental performance
concepts discussed in Chapter 5. This leads to the following problem statement:

Problem Statement 1. For a given plant P , synthesize K such that the Li2-gain γ
from w to z of the closed-loop interconnection Fl(P,K) is minimized, i.e., synthesize
a K such that there exists a function ζi : Xcl × Xcl → R and a γ ≥ 0, for which

∥Fl(P,K)(w, xcl,0) − Fl(P,K)(w̃, x̃cl,0)∥2,T ≤ γ ∥w − w̃∥2,T + ζi(xcl,0, x̃cl,0), (6.3)

for all T ≥ 0, xcl,0, x̃cl,0 ∈ Xcl ⊆ Rnx+nxk and w, w̃ ∈ WR+
0 with w, w̃ ∈ L2, where

γ is minimal. In (6.3), xcl(t) = col(x(t), xk(t)) ∈ Xcl is the state associated with
the state-space representation of the closed-loop Fl(P,K).

Similar as for universal shifted synthesis in Section 4.5, to ensure that the above
given synthesis problem is feasible with a finite γ, we require P to be a generalized
plant in the following sense

Definition 6.1 (Generalized plant for incremental synthesis). P , given by (6.1), is
a generalized plant, if there exists a controller K of the form (6.2) such that the
closed-loop interconnection Fl(P,K) is incrementally stable.

Proposition 6.1. P , given by (6.1), is a generalized plant in the sense of Defini-
tion 6.1, if

(
∂f
∂x (x, u), ∂f

∂u (x, u)
)

is stabilizable and
(

∂f
∂x (x, u), ∂hy

∂x (x, u)
)

is detectable
over X × W, see (Pavlov, Van de Wouw, et al. 2006, Section 5.3.2).
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Note that the condition in Proposition 4.2 for universal shifted synthesis is equivalent
to the ones in Proposition 6.1. This is because both the differential form and velocity
form have a similar structure, as we discussed in Section 5.3.6. Therefore, analogous
to Proposition 4.2, Proposition 6.1 can be interpreted as the differential form of
(6.1) being stabilizable and detectable w.r.t. the (differential versions of the) control
input channel u and measured output channel y, respectively, along all trajectories
of nonlinear system given by (6.1).

To further simplify our discussion, we will assume that (6.1) can be transformed to
the form

ẋ(t) = f(x(t)) +Bww(t) +Buu(t); (6.4a)
z(t) = hz(x(t)) +Dzww(t) +Dzuu(t); (6.4b)
y(t) = Cyx(t) +Dyww(t); (6.4c)

where now f : X → Rnx and hz : X → Rnz with f, hz ∈ C1, and where Bu ∈ Rnx×nu

and Dzu ∈ Rnz×nu . While (6.4) may seem restrictive, (6.1) can be always expressed
as (6.4) at cost of increasing the state dimension and requiring the input u to
be (piecewise) differentiable, see e.g. (Nijmeijer and Van der Schaft 2016) or the
procedure discussed in Appendix C.2.2. We will see that P in the form of (6.4) is
advantageous to provide a realization of K after synthesis.

6.3 Convex Incremental Controller Synthesis

6.3.1 Main concept

To solve Problem Statement 1, we propose a novel procedure to synthesize a
nonlinear controller K that ensures Li2-gain stability and performance of Fl(P,K).
The main steps of the method are summarized as follows:

1. Differential embedding step: Given a generalized plant P , its differential form
Pδ is computed. Based on the differential form, a Differential Parameter-
Varying (DPV) embedding1 Pdpv is then constructed to represent the resulting
Pδ.

2. Differential controller synthesis step: For the DPV embedding Pdpv, an LPV
controller Kδ is synthesized, ensuring a minimal closed-loop L2-gain γ. This
synthesis is accomplished using standard methods of the LPV framework, as
discussed in Section 2.5.3.

3. Incremental controller realization step: The synthesized controller Kδ is
realized as a primal nonlinear controller K in the form of (6.2) to be used
with the original nonlinear system P to ensure the closed-loop Li2-gain γ.

1See also Definition 5.7.
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Our key contributions in the above proposed controller synthesis scheme is the
controller realization procedure (Theorem 6.3) and proving that the resulting K
solves Problem Statement 1, i.e., performance and stability guarantees obtained
in the differential controller synthesis step do hold in the incremental sense on
Fl(P,K) (see Theorems 6.1 to 6.4).
Note that the same procedure can be applied in order to ensure different performance
specifications by changing the used performance notion in the differential controller
synthesis step, e.g., in order to ensure incremental passivity one would synthesize an
LPV controller for the differential form of the generalized plant such that closed-loop
passivity is ensured.
Remark 6.1. Note that the steps proposed above for incremental controller synthesis
are similar to the steps for universal shifted controller synthesis as we have presented
in Section 4.5.2. For the first step, instead of a Velocity Parameter-Varying (VPV)
embedding, we use the for the incremental procedure a DPV embedding, which
as discussed (see the end of Section 5.4.2) can in fact be given by the same LPV
representation. Moreover, in the second step of both the universal shifted and
incremental controller synthesis procedures, the LPV framework is used to synthesize
a controller for the VPV embedding or DPV embedding of the generalized plant,
respectively. In the third and final step of both the universal shifted and incremental
controller procedure, we realize the controller to be used with the original nonlinear
system. However, the realization procedure in the third step is where the universal
shifted and incremental controller design greatly differ. For the universal shifted
controller design, we exploit properties of the velocity form, while, as we will show,
for the incremental controller design, we will exploit properties of the differential
form. While the velocity form and differential form share similarities, they are
different distinct representations, as we have discussed in Section 5.3.6. In the
end, this results in the primal forms of the universal shifted controller design
and incremental controller design having vastly different structures. We will also
compare the controller designs in more detail in Section 6.4.

6.3.2 Separability in the differential domain

The procedure relies on the results of Chapter 5, specifically Theorem 5.2, which
shows that ‘classical (Q,S,R) dissipativity’ of the differential form (i.e., differential
(Q,S,R) dissipativity) implies incremental (Q,S,R) dissipativity of the primal
form (for the same tuple (Q,S,R)). Hence, to solve Problem Statement 1, we
can equivalently minimize the L2-gain of the differential form of Fl(P,K). Before
discussing the steps of the proposed procedure, we will first show that the differential
form of Fl(P,K) is equal to Fl(Pδ,Kδ). This significantly simplifies the synthesis
procedure, as it allows for independently ‘transforming’ P and K between the
primal and differential domains. This is similar to the result we provide for the
velocity form in Theorem 4.9.

Theorem 6.1 (Closed-loop differential form). The differential form of the closed-
loop system Fl(P,K) is equal to the closed-loop interconnection of Pδ and Kδ, i.e.,
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Fl(Pδ,Kδ), if the interconnection of P and K is well-posed, i.e., there exists a C1
function h̆ such that u = hk(xk, hy(x, u)) can be expressed as u = h̆(x, xk).

Proof. See Appendix B.4.

6.3.3 Differential embedding

In the first step of the synthesis procedure, the differential form of the generalized
plant P is computed, and the result is embedded in an LPV representation, resulting
in a DPV embedding.
Let us introduce the solution set of (6.4), defined as follows

B :=
{

(x, u, w, z, y) ∈ (X × U × W × Z × Y)R
+
0 | x ∈ C1,

(x, u, w, z, y) satisfies (6.4)
}
. (6.5)

Then, computing the differential form of P given in (6.4), results in Pδ, given by2

ẋδ(t) = Aδ(x̄(t))xδ(t) +Bwwδ(t) +Buuδ(t); (6.6a)
zδ(t) = Cδ,z(x̄(t))xδ(t) +Dzwwδ(t) +Dzuuδ(t); (6.6b)
yδ(t) = Cyxδ(t) +Dywwδ(t); (6.6c)

where Aδ = ∂f
∂x and Cδ,z = ∂hz

∂x with x̄ ∈ πx B, xδ ∈ C1 and xδ(t) ∈ Rnx with
xδ(0) = xδ,0 ∈ Rnx , uδ(t) ∈ Rnu , wδ(t) ∈ Rnw , zδ(t) ∈ Rnz and yδ(t) ∈ Rny . Along
a x̄ ∈ πx B solution of (6.4), the set of solutions of (6.6) is

Bδ(x̄) :=
{

(xδ, uδ, wδ, zδ, yδ) ∈ (Rnx × Rnu × Rnw × Rnz × Rny)R
+
0 | xδ ∈ C1,

(xδ, uδ, wδ, zδ, yδ) satisfies (6.6) along x̄
}
. (6.7)

Then B̆δ =
⋃

x̄∈πx B

Bδ(x̄) gives the complete solution set of (6.6).

Next, we embed (6.6) in an LPV representation, i.e., we construct a DPV embedding
of (6.4):

Definition 6.2 (Generalized plant DPV embedding). Consider a nonlinear sys-
tem with primal form (6.4) and differential form (6.6). The LPV state-space
representation

ẋδ(t) = A(p(t))xδ(t) +Bwwδ(t) +Buuδ(t); (6.8a)
zδ(t) = Cz(p(t))xδ(t) +Dzwwδ(t) +Dzuuδ(t); (6.8b)
yδ(t) = Cyxδ(t) +Dywwδ(t); (6.8c)

2Similar to the notation in Chapter 5, we drop the dependency on λ for brevity.
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with A, Cz belonging to a given class of functions A (e.g., affine or rational functions)
and p(t) ∈ P being the scheduling-variable with a compact and convex P ⊂ Rnp ,
is called a DPV embedding of (6.4) on the region X ⊆ X , if there is a function
η : X → P, called the scheduling-map, with η ∈ C1 and η(X ) ⊆ P, such that
A ◦ η = Aδ (i.e., A(η(x̄)) = Aδ(x̄)) and Cz ◦ η = Cδ,z for all x̄ ∈ X .

While Definition 6.2 is consistent with the general DPV embedding definition given
in Definition 5.7, it is given for clarity of the procedure.
Remark 6.2. For tractable controller synthesis, later in Section 6.3.4, the function η
is must be chosen such that the resulting dependence of A and Cz on p, i.e., the class
A, is either affine, polynomial or rational and np is minimal. Furthermore, P needs
to be chosen such that for the LPV representation (6.8), (A,Bu) is stabilizable and
(A,Cy) is detectable3. This will ensure that the properties of the generalized plant
in Proposition 6.1 are preserved when constructing the DPV embedding. Moreover,
P is also chosen such that it is the smallest convex set in a given complexity class
(n-vertex polytope, hyper-ellipsoid, etc.) such that η(X ) ⊆ P, in order to minimize
the conservativeness of the LPV representation in describing the differential form.
See (Kwiatkowski and Werner 2008; Hoffmann 2016; Sadeghzadeh, Sharif, et al.
2020) for approaches to fulfill these properties.

In accordance with Definition 6.2, we assume that a DPV embedding, denoted
by Pdpv, of (6.4) is constructed in terms of (6.8) on the region X ⊆ X , where X
is compact. This means that i.e., we assume we embed part of the state-space.
For this DPV embedding, let us denote for a given p ∈ PR+

0 the solution set by
Bp(p) and the full behavior by (i.e., for all p ∈ PR+

0 ) by B̆p, see also (2.27) and
(2.28). Moreover, denote the restriction of state solutions of P (6.4) to X by
BX := {(x, u, w, z, y) ∈ B | x(t) ∈ X } and the corresponding set for the differential
form Pδ by B̆δ,X := ∪(x̄∈πx BX )Bδ(x̄). Through Lemma 5.3, we then have that
B̆δ,X ⊆ B̆p, i.e., through the DPV embedding (6.8) we can describe the behavior of
the differential form (6.6) under x̄(t) ∈ X . Through this DPV embedding Pdpv, we
can use the LPV framework in order to synthesize a controller for Pδ, which will be
the next step in the procedure.

6.3.4 Differential synthesis

As aforementioned, we want to synthesize a controller K in order to minimize the
Li2-gain of Fl(P,K). This is done by first synthesizing a differential controller Kδ

such that the L2-gain of Fl(Pδ,Kδ) is minimized. Then, later in Section 6.3.5, a
primal form K of the controller Kδ is realized that preserves the achieved closed-
loop properties of Fl(Pδ,Kδ). In order to perform controller synthesis for the
differential form Pδ, the LPV framework is used. More concretely, we synthesize
a controller for the LPV embedding of the differential form Pdpv, given in (6.8),
which has been constructed in the differential embedding step in the previous
subsection. To achieve this, we can apply our standard L2-gain LPV synthesis
techniques on (6.8) such as polytopic or LFT-based LPV synthesis methods, e.g.

3See Definitions 2.17 and 2.18.
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(Packard 1993; Apkarian, Gahinet, and G. Becker 1995; Wu 1995; Scherer 2001),
see also Section 2.5.3, to synthesize a controller Kδ and ensure L2-gain stability4

of the closed-loop interconnection Fl(Pdpv,Kδ), for all p ∈ PR+
0 . This synthesized

controller Kδ is considered to be of the following form

ẋδ,k(t) = Ak(p(t))xδ,k(t) +Bk(p(t))uδ,k(t); (6.9a)
yδ,k(t) = Ck(p(t))xδ,k(t) +Dk(p(t))uδ,k(t); (6.9b)

which we will refer to as the differential controller, where xδ,k(t) ∈ Rnxk is the
state, uδ,k(t) ∈ Rnuk is the input, and yδ,k(t) ∈ Rnyk is the output of the controller,
respectively and Ak, . . . , Dk ∈ A are matrix functions with appropriate dimensions.

Theorem 6.2 (Differential closed-loop L2-gain). If controller Kδ of the form (6.9)
ensures bounded L2-gain γ of the closed-loop interconnection Fl(Pdpv,Kδ) for all
p ∈ PR, then Fl(Pδ,Kδ) with p = η(x̄) is also L2-gain stable with an L2-gain ≤ γ
for all x̄ ∈ πx BX .

Proof. See Appendix B.4.

Assumption 6.1. We assume that the controller synthesis has been solved such that
Fl(Pδ,Kδ) is dissipative with a quadratic storage function, i.e., the corresponding
(differential) storage function is assumed to be of the form Vδ(xcl, xδ,cl) = x⊤

δ,clMxδ,cl,
where M ≻ 0, i.e., a quadratic Vδ which is independent of xcl. This is required for
the proposed controller realization procedure in Section 6.3.5.

Remark 6.3. Note that similar as for the universal shifted controller design, see
Remark 4.3, if the weighting filters included in P are LTI, then, as depicted in
Figure 6.1, the input-output behaviors of Ww and Wz are equivalent to that of
Wδ,w and Wδ,z. This is the case because the dynamics of the differential form of
an LTI system are equivalent to the dynamics of its primal form. Therefore, there
in a one to one correspondence between the performance shaping of the primal
form Fl(P,K) (see Figure 6.1a) and performance shaping of the differential form
Fl(Pδ,Kδ) (see Figure 6.1b). This significantly simplifies the controller design, as
shaping can be directly performed through the differential form Pδ and hence also
through the DPV embedding Pdpv.

6.3.5 Controller realization

We will now describe how to realize the primal form K of the controller for the
nonlinear system such that the differential form of K is given by Kδ in (6.9) and
incremental dissipativity of the closed-loop is ensured. Similar to the approach
in (Manchester and Slotine 2018), we take a path integral based realization. In
Chapter 5 we have seen that to obtain the differential form we differentiate over
the variation of trajectories, in terms of λ, hence, to go back to the primal form we

4By which we mean the system is classically dissipative with a supply function corresponding
to a bounded L2-gain, also implying stability of the system.
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Figure 6.1: Shaping the closed-loop behavior of the primal and the differential form
by the use of weighting filters Ww and Wz.

integrate over the variation λ. This lets us converge from the current trajectory
towards a known desired (feasible) steady-state trajectory. Namely, to guarantee
incremental stability and performance, we consider ϑ ≜ (x∗, u∗, w∗, z∗, y∗) ∈ BX
of P (6.4) to be a known trajectory, towards which we want to converge. Let us
denote by xδ,cl(t) ∈ Rnxcl the state associated with Fl(Pδ,Kδ), analogous to the
state xcl of the primal form of the closed-loop interconnection Fl(P,K).

Theorem 6.3 (Incremental controller realization). Consider a differential controller
Kδ in the form of (6.9) that ensures closed-loop L2-gain stability of Fl(Pδ,Kδ)
satisfying Assumption 6.1. Let (x∗, u∗, y∗) = πx,u,y ϑ ∈ πx,u,y BX be the (desired)
steady-state trajectory of P and consider the nonlinear controller K, omitting
dependence on time for brevity, given by

ẋ∆,k = Āk(x, x∗)x∆,k + B̄k(x, x∗)u∆,k; (6.10a)
yk = y∗

k + C̄k(x, x∗)x∆,k + D̄k(x, x∗)u∆,k; (6.10b)

with (y∗
k, u

∗
k) = (u∗, y∗), x∆,k(t) ∈ Rnxk , u∆,k := uk − u∗

k, and

Āk(x, x∗)=
∫ 1

0
Ak

(
η
(
x∗ + λ(x− x∗)

))
dλ, B̄k(x, x∗)=

∫ 1

0
Bk

(
η
(
x∗ + λ(x− x∗)

))
dλ,

C̄k(x, x∗)=
∫ 1

0
Ck

(
η
(
x∗ + λ(x− x∗)

))
dλ, D̄k(x, x∗)=

∫ 1

0
Dk

(
η
(
x∗ + λ(x− x∗)

))
dλ.

(6.11)
The controller K in (6.10) is the primal form of Kδ (6.9) and the differential form
of K is Kδ. Hence, K is called the primal realization of Kδ.

Proof. See Appendix B.4.
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We will refer to the proposed controller K as the incremental controller. Even if Kδ

is an LPV controller, realization by Theorem 6.3 results in a nonlinear controller
through the resubstitution and integration over the scheduling-map η.
Remark 6.4. Note that the dependency on x and x∗ of the incremental controller K
given by (6.10) is only through the scheduling-map η. This means that depending
on differential form of the generalized plant, Pδ, it could be that the scheduling-map
η only depends on some of the states when constructing a DPV embedding Pdpv in
first step of the controller design procedure (Section 6.3.3). Therefore, in that case,
K also does not depend on the full x and x∗.

Note that the resulting controller consists of both a direct feedforward action
y∗

k = u∗, corresponding to the desired steady-state trajectory ϑ, and a feedback
action on the measured deviation from the desired steady-state output y∗. Therefore,
the controller has a structure as depicted in Figure 6.2, where K∆ (based on (6.10))
is given by

ẋ∆,k(t) = Āk
(
x(t), x∗(t)

)
x∆,k(t) + B̄k

(
x(t), x∗(t)

)
u∆,k(t); (6.12a)

y∆,k(t) = C̄k
(
x(t), x∗(t)

)
x∆,k(t) + D̄k

(
x(t), x∗(t)

)
u∆,k(t); (6.12b)

with Āk, . . . , D̄k given by (6.11). Note that this structure is similar to gain-scheduling
or LPV controller design with trimming (through u∗

k and y∗
k) in order to ensure

guarantees w.r.t. a desired operating point. However, gain-scheduling and LPV
controllers which use such a trimming approach, generally do not have stability and
performance guarantees w.r.t. to any arbitrary trimming point. This is in contrast
to the incremental controller design, which does ensure stability and performance
w.r.t. any ‘trimming point’. For the incremental controller, the ‘trimming point’
corresponds to steady state-trajectory ϑ, which can be any (feasible, varying or
constant) trajectory of the system. Due to the closed-loop incremental stability
performance guarantees of the incremental controller, we therefore ensure stability
and performance w.r.t. any trajectory.

+ +

+−

)∗x, x(

k
∗y

k
∗u

kyku

K

∆K
k,∆u k,∆y

Figure 6.2: Structure of the realized incremental controller K, where K∆ is given
by (6.12). Note that K∆ does not necessarily depend on the full x and x∗, see
Remark 6.4.

Note that this means that for implementation we require knowledge of ϑ. This
also implies we require knowledge of w∗, which is part of ϑ, either through direct
measurement or estimation. This will be discussed in more detail in Section 6.3.7.
For implementation of the incremental controller, we also require computation of
the integrals for Āk, . . . , D̄k in (6.11). Analytically computing these integrals might
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be difficult in some cases, however, they can reliably calculated (online) through
numerical computation (Atkinson 1989). Moreover, if the scheduling-dependency of
Kδ is affine, (6.11) can be further simplified:

Corollary 6.1. Assume that Ak, . . . , Dk in (6.9), characterizing Kδ, are affine in
p, i.e., Ak(p) = Ak,0 +

∑np
i=1 Ak,i pi. Then, the matrix functions in (6.10) are given

as
Āk(x, x∗) =

∫ 1

0
Ak

(
η
(
x∗ + λ(x− x∗)

))
dλ,

= Ak,0 +
np∑
i=1

Ak,i ρi = Ak(ρ),
(6.13)

where ρ =
∫ 1

0 η
(
x∗ + λ(x− x∗)

)
dλ, and similarly B̄k(x, x∗) = Bk(ρ), C̄k(x, x∗) =

Ck(ρ) and D̄k(x, x∗) = Dk(ρ).

Therefore, in case of an affine scheduling dependency, we only require integration
of the scheduling-map, instead of requiring integration of the matrix function
Ak, . . . , Dk, which simplifies implementation.

6.3.6 Closed-loop incremental stability and performance

Next, we will show that the proposed controller K ensures closed-loop Li2-gain
stability of Fl(P,K).

Theorem 6.4 (Closed-loop Li2-gain stability). Let Kδ, given in (6.9), be an LPV
controller, synthesized for Pδ given in (6.6) of a nonlinear system (6.4), which
ensures L2-gain stability of the closed-loop Fl(Pδ,Kδ) with a bounded L2-gain of
γ on X under Assumption 6.1. Consider the set W̃ ⊆ W, such that there is an
open and bounded Xk ⊆ Rnxk for which Xcl = X × Xk is invariant, in the sense of
Definition 4.9. Then, the controller K, given by (6.10), ensures Li2-gain stability of
the closed-loop Fl(P,K) with a bounded Li2-gain of γ in the following sense: there
exists a function ζi : Xcl × Xcl → R s.t.

∥Fl(P,K)(w, xcl,0) − Fl(P,K)(w̃, x̃cl,0)∥2,T ≤ γ ∥w − w̃∥2,T +ζi(xcl,0, x̃cl,0), (6.14)

for all T ≥ 0, xcl,0, x̃cl,0 ∈ Xcl and any w, w̃ ∈ W̃R+
0 with w − w∗ ∈ L2e.

Proof. See Appendix B.4.

Remark 6.5. The value set of the generalized disturbance signals W̃, considered
in Theorem 6.4, i.e., w(t) ∈ W̃, ensures that only generalized disturbances are
considered such that x(t) ∈ X , which corresponds to the set for which L2-gain sta-
bility was verified of the closed-loop differential form, see Section 6.3.4. Computing
this set is a difficult problem which is related to reachability analysis or invariant
set computation, however there are numerical tools that can be employed for this
purpose, see e.g. (Althoff 2013; Maidens and Arcak 2015).
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6.3.7 Steady-state solution

Estimating the steady-state solution

The realized controller K in terms of (6.10) consists of a feedforward and a feedback
part, see also Figure 6.2. The feedforward part u∗ = y∗

k corresponds to the steady-
state trajectory ϑ = (x∗, u∗, w∗, z∗, y∗) ∈ BX . This trajectory is chosen a-priori
by the user, based on the desired reference the system needs to follow, similar
to trajectory planning in robotics. Computation of ϑ can be accomplished by
using trajectory planning algorithms (Gasparetto et al. 2015) or in some cases by
computation of the analytic solution of the system equations.

Note that the generalized disturbances w also influence the steady-state trajectory.
The generalized disturbance consists of disturbances wm that are known or can
be measured, such as references, and consists of disturbances wu that are not
known and/or cannot be measured, such as measurement noise and load variation,
composing w = col(wm, wu). Hence, to guarantee convergence towards the designed
desired steady-state trajectory, we also require knowledge of the asymptotic behavior
of the unknown part wu of w∗. We only need knowledge on the asymptotic behavior
of wu as only that influences the steady-state trajectory ϑ, e.g. a zero mean
measurement noise does not need to be estimated as it does not influence the
steady-state trajectory, while estimation of a constant load is required as it directly
influences it. Next, we will present a solution using a disturbance observer in order
to estimate the unknown elements w∗

u of the steady-state generalized disturbance
w∗.

Disturbance observers have been widely used to estimate and compensate for the
effect of unknown disturbances (Chen et al. 2016). Often they work on the basis of
the internal model principle, whereby the (assumed) dynamics of the disturbance
are included in the design (Chen 2004). In our case, we assume wu can be modeled
in terms of a disturbance model:

Assumption 6.2 (Disturbance model). Given the generalized plant (6.1), assume
that the unknown disturbances wu, can be modeled by the disturbance generator

ẋw(t) = fw(xw(t)); (6.15a)
wu(t) = Cwxw(t); (6.15b)

with xw(t) ∈ Xw.

Given Assumption 6.2, the state dynamics of the combined generalized plant (6.1)
and disturbance model are given by

ẋe(t) =
[
ẋ(t)
ẋw(t)

]
=

f(x(t), u(t)) +Bw

[
wm(t)
Cwxw(t)

]
fw(xw(t))

 ,
= fe(xe(t), u(t), wm(t)),

(6.16a)



138 Chapter 6. Incremental Dissipativity based Control

where xe(t) ∈ X × Xw = Xe ⊆ Rnxe , and the measured output is given by

y = Cyx(t) +Dyw

[
wm(t)
Cwxw(t)

]
,

= Cexe(t) +Dywwm(t)),
(6.16b)

where Ce =
[
Cy DywCw

]
.

Remark 6.6. Note that the disturbance model in Assumption 6.2 has a different
purpose than the disturbance model that is included in the generalized plant P
given by (6.4), which is modeled in terms of weighted norm relation. Namely, the
former is used to model disturbances that are acting on the system and influence
the asymptotic behavior of the steady-state trajectory (and hence influence w∗),
while the latter can be seen as modeling the difference/increment between the
steady-state disturbance and other possible disturbances (i.e. w−w∗) which do not
influence the asymptotic behavior of the steady-state trajectory, e.g., measurement
noise.

Assumption 6.3. In order for the construction of the disturbance observer on the
basis of (6.16) to be feasible, we assume that ( ∂fe

∂xe
, Ce) is detectable over xe ∈ Xe

(Pavlov, Van de Wouw, et al. 2006, Section 5.3.2).

Theorem 6.5 (Nonlinear observer). Under Assumption 6.3, the state observer for
(6.16), given by

˙̂xe(t) = fe(x̂e(t), u(t), wm(t)) + L(y(t) − ŷ(t)); (6.17a)
ŷ(t) = Cex̂e(t) +Dywwm(t)); (6.17b)

with x̂e ∈ Rnxe and ŷ(t) ∈ Rny ensures that for t → ∞, x̂e(t) → xe(t), if there exists
an P ∈ Snxe with P ≻ 0, and an F ∈ Rnxe ×ny such that

Aδ,e(xe, u, wm)⊤P − FCe + (⋆)⊤ ≺ 0, (6.18)

for all (xe, u, wm) ∈ Xe × U × πwm W, where Aδ,e = ∂fe
∂xe

, and L = PF−1.

Proof. See Appendix B.4.

Remark 6.7. Similar to controller design, also for observer design the LPV frame-
work can be used by embedding the differential form of the system in an LPV
representation. This allows to use convex optimization for the computation of the
observer gain L in Theorem 6.5.

Applying the nonlinear observer (6.17) gives us a disturbance observer for the
combined generalized plant and disturbance model (6.16), which then allows us
to estimate the unknown disturbances on the system by taking w∗

u(t) = Cwx̂w(t),
where x̂w is the estimated state of the disturbance model. This can then be
used to compute the steady-state control input trajectory u∗ = y∗

k, used by the
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realized controller K (6.10), corresponding to the steady-state output trajectory
y∗. Note that co-design of the controller and the observer under (6.17) can also be
accomplished.

Unknown steady-state solution

In case w∗ cannot be measured or estimated, we cannot guarantee that w∗(t) → w(t)
as t → ∞. Consequently, we cannot ensure convergence towards our desired steady-
state solution ϑ. However, in this case, the controller still ensures an L2-gain bound5

of γ from w − w∗ to z − z∗, i.e., the steady state trajectory will remain close in
an L2 sense to the desired reference and the controller will still ensure stability of
the closed-loop system. This weaker performance guarantee is also referred to as
universal L2-gain performance, see also (Manchester and Slotine 2018).

6.4 Comparison to Universal Shifted and LPV
Controllers

6.4.1 Universal shifted controller design

Both the universal shifted controller design, proposed in Chapter 4, and the incre-
mental controller design proposed in this chapter are able to ensure global stability
and performance guarantees. In this section we briefly compare the two controller
designs.

In Section 5.3.4, specifically Theorem 5.3, we discussed how incremental dissipativity
also guarantees universal shifted dissipativity, considering (Q,S,R) supply functions.
This means that using the proposed incremental controller in this chapter, we can
also guarantee universal shifted stability and performance of the closed-loop system
Fl(P,K), similar how the universal shifted controller design of Section 4.5 was able
to ensure this. In case the incremental controller design is applied in order to ensure
universal shifted dissipativity, the desired trajectory ϑ becomes a constant trajectory,
equal to an equilibrium point of P (6.4). More concretely, the equilibrium points of
(6.4) satisfy that

0 = f(x∗) +Bww∗ +Buu∗; (6.19a)
z∗ = hz(x∗) +Dzww∗ +Dzuu∗; (6.19b)
y∗ = Cyx∗ +Dyww∗; (6.19c)

with corresponding set

E :=
{

(x∗, u∗, w∗, z∗, y∗) ∈ X × U × W × Z × Y | (x∗, u∗, w∗, z∗, y∗) satisfy (6.19)
}
.

(6.20)

5Assuming that w − w∗ ∈ L2e.
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For universal shifted dissipativity we then have

ϑ ∈
{

(x, u, w, z, y) ∈ BX | (x(t), u(t), w(t), z(t), y(t)) =
(x∗, u∗, w∗, z∗, y∗) ∈ E , ∀ t ∈ R+

0
}
. (6.21)

As for the proposed incremental design we require knowledge of the desired trajectory
ϑ, we hence require explicit knowledge of the equilibrium points to ensure universal
shifted dissipativity. Compared to the universal shifted controller design we propose
in Chapter 4, this is disadvantageous, as for the universal shifted design, no explicit
knowledge of the equilibrium points is required (and hence also not of any (constant)
unmeasured disturbances). However, as the knowledge of the equilibrium point is
also incorporated in the incremental controller as feedforward action, the incremental
controller will likely converge faster to the desired equilibrium point compared to
the universal shifted controller (for the same closed-loop performance metric). This
can be seen as an advantage of the incremental controller design compared to the
universal shifted controller design, although a feedforward action or controller can
also be added or designed for the universal shifted controller.
Another disadvantage of using the incremental controller design to ensure universal
shifted stability and performance compared to using the universal shifted controller
design is the (computational) complexity of the controller implementation. Namely,
for the incremental controller design, one must compute integrals of the differential
controller matrices, see (6.11). As aforementioned, analytically computing these
integrals might be difficult, in which case they need to computed (online) using
numerical integration procedures. While there exists fast numerical integration,
procedures, they can be costly on when the controller is implemented on an embedded
platform. On the other hand, the universal shifted controller implementation only
requires evaluation of the matrices of the velocity(/differential) controller, see
(4.43). Therefore, the computational cost for the universal shifted controller is
lower. However, a disadvantage of the universal shifted controller is that it does
depend on the derivative of the considered scheduling-variable. Therefore, for
implementation of the universal shifted controller, one would need to be able to
measure the derivative of the scheduling-variable or obtain the derivative it through
filtering. Although when obtaining the derivative through filtering, one needs to be
careful as this might amplify high frequent measurement noise, which can lead to an
endangerment of the closed-loop stability and performance guarantees. Nonetheless,
as discussed in Section 4.5.2, one can avoid the dependency on the derivative
of the scheduling-variable by ensuring that B and D matrix of the synthesized
velocity controller are constant. Although this might limit the achievable closed-loop
performance that can be obtained, which is then a trade-off.

6.4.2 Standard LPV controller design

As incremental dissipativity also implies classical dissipativity (assuming that the
origin is an equilibrium point of the system), we can similarly also ensure classical
dissipativity using the incremental controller design, similar how a standard LPV
controller ensure this.
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Applying the incremental controller to ensure classical dissipativity, we need that
(0, 0, 0, 0, 0) ∈ E . In this case,

ϑ = t 7→ (0, 0, 0, 0, 0). (6.22)

For classical dissipativity this then means that the ‘feedforward terms’ in the
controller, i.e., u∗

k and y∗
k, and the dependency on x∗, drop out, as they are equal

to zero, i.e., u∗
k(t) = 0, y∗

k(t) = 0, and x∗ = 0. The resulting incremental controller
then becomes a ‘standard’ LPV controller. This becomes especially clear in case
the differential controller Kδ given by (6.9) has an affine scheduling dependency. In
that case, through the result of Corollary 6.1, we then have that (6.10) becomes

ẋk(t) = Ak(ρ(t))xk(t) +Bk(ρ(t))uk(t); (6.23a)
yk(t) = Ck(ρ(t))xk(t) +Dk(ρ(t))uk(t); (6.23b)

where xk = x∆,k and ρ(t) =
∫ 1

0 η(λx(t)) dλ. In fact, the LPV controller (6.23)
corresponds to specific standard (affine) LPV embedding of the generalized plant P
given by (6.4). Namely, we have that for the DPV embedding of P , given by (6.8),
it holds that

A(η(x̄)) = Aδ(x̄), (6.24)
for all x̄ ∈ X . Assuming that X is convex, we therefore have by Lemma C.1.1, as
f(0, 0) = 0, that

f(x) =
∫ 1

0

∂f

∂x
(λx) dλ, (6.25a)

=
∫ 1

0
Aδ(λx) dλ, (by definition of Aδ), (6.25b)

=
∫ 1

0
A(η(λx)) dλ, (by (6.24)), (6.25c)

= A

(∫ 1

0
η(λx) dλ

)
, (as A has affine scheduling dependency), (6.25d)

= A(ρ), (6.25e)

for all x ∈ X where again ρ =
∫ 1

0 η(λx) dλ. We can derive a similar result to obtain
that hz(x) = Cz(ρ) with ρ =

∫ 1
0 η(λx) dλ for all x ∈ X . Therefore, by Definition 2.14,

the LPV representation:

ẋ(t) = A(ρ(t)) +Bww(t) +Buu(t); (6.26a)
z(t) = Cz(ρ(t)) +Dzww(t) +Dzuu(t); (6.26b)
y(t) = Cyx(t) +Dyww(t); (6.26c)

with ρ =
∫ 1

0 η(λx) dλ, is a (standard) global LPV embedding of the generalized
plant P given by (6.4) on the region X . The LPV controller (6.23) than ensures
classical dissipativity of (6.26) and consequently of (6.4) on the region X . We discuss
this specific global LPV embedding of a nonlinear system also in more detail in
Appendix C.6 and also discuss further applications of this type of embedding.
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6.5 Examples

In this section, the proposed incremental controller will be demonstrated through
examples. Moreover, it will also be compared to standard LPV controller designs.
We will also demonstrate using simulation and experimental results that standard
LPV control can fail to result in the desired behavior, while the proposed LPV
synthesis resulting in an incremental controller can reliably achieve it.

Example 6.1 (Duffing oscillator). First, we apply the incremental controller
design to the Duffing oscillator that was also considered for universal shifted control
in Example 4.1. The Duffing oscillator is described by the following differential
equations:

q̇(t) = v(t);

v̇(t) = −k1

m
q(t) − k2

m
(q(t))3 − d

m
v(t) + 1

m
F (t);

(6.27)

where, q [m] is the position, v [m · s−1] the velocity and F [N] is the (input) force
acting on the mass. Furthermore, we consider the same parameters for the Duffing
oscillator as in Example 4.1, i.e., m = 1 [kg], k1 = 0.5 [N · m−1], k2 = 5 [N · m−3]
and d = 0.2 [N · s · m−1]. We again assume that the position q is measured, and
hence it is considered to be the only output of the plant.
For the incremental synthesis, the differential form of (6.27) is calculated and a
DPV embedding is constructed, resulting in

q̇δ = vδ;

v̇δ =
(

−k1

m
− 3k2

m
p

)
qδ − d

m
vδ + 1

m
Fδ;

(6.28)

where the scheduling p(t) = q2(t) ∈ P where we consider P = [0, 2]. Note that this
is the same region that has been considered in Example 4.1 for the universal shifted
controller design.
We also consider the same generalized plant that has been considered in the
universal shifted example. This generalized plant P is also depicted in Figure 6.3,
where G is the system given by (6.27), K is the controller, w = col (r, di) is the
generalized disturbance, with r the reference and di being an input disturbance. The
performance channel consists of z1 (tracking error) and z2 (control effort). We also
consider the same LTI weighting filters as in Example 4.1, i.e., W1(s) = 0.501(s+3)

s+2π ,
W2(s) = 10(s+50)

s+5·104 , W3 = 1.5, and M(s) = s+2π
s , where s corresponds to the

complex frequency. The resulting sensitivity weight W1(s)M(s) has guaranteed 20
dB/dec roll-off at low frequencies in order to ensure good tracking performance,
while W2(s) has high-pass characteristics in order to ensure proper roll-off at high
frequencies. Because the system (6.28) and the corresponding generalized plant have
affine dependency on the scheduling-variable, polytopic L2-gain synthesis based
on (Apkarian, Gahinet, and G. Becker 1995; Apkarian and Adams 1998) has been
used in the design the incremental controller to ensure closed-loop Li2-gain stability
and performance. This synthesis algorithm has been implemented in the LPVcore
Toolbox (Boef et al. 2021), which has been used to synthesize the controllers.
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Figure 6.3: Generalized plant used in the examples.

Using the given weighting filters, synthesizing the LPV controller for the differential
plant results in an Li2-gain of γ ≈ 1.2. As the synthesis provides the controller
with affine parameter dependence, we can use the result of Corollary 6.1 in order
to compute ρ(t) =

∫ 1
0 η(x̄(t, λ)) dλ = q2(t) + q(t)q∗(t) + (q∗(t))2 and realize the

incremental controller K. As we assume the presence of an (unknown) input
disturbance di, a disturbance observer is constructed for the incremental controller
as described in Section 6.3.7. It is assumed the input disturbance will be constant,
hence, the following disturbance model is used for the disturbance observer design

ẋd(t) = 0;
di(t) = xd(t).

(6.29)

The LPV controller which we will use for comparison is the same one that is used for
comparison in Example 4.1. This standard LPV controller uses the same generalized
plant with weighting filters as the incremental design and achieves an L2-gain of
γ ≈ 0.94.

Figure 6.4: Position of the Duffing oscillator (top) in closed-loop with the standard
LPV ( ), the incremental ( ), and universal shifted ( ) controller under
reference ( ) and no input disturbance, together with the generated control inputs
(bottom) by the controllers.
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Figure 6.5: Position of the Duffing oscillator (top) in closed-loop with the standard
LPV ( ), the incremental ( ), and universal shifted ( ) controller under
reference ( ) and input disturbance, together with the generated control inputs
(bottom) by the controllers.

In simulation, the resulting outputs of the system using the standard LPV controller
and the incremental controller in closed-loop are depicted without and with input
disturbance in Figures 6.4 and 6.5, respectively. Moreover, also the results of the
universal shifted controller design of Example 4.1 are depicted in Figures 6.4 and 6.5,
specifically the results that are also in Figures 4.7 and 4.8. The universal shifted
controller of Example 4.1 uses the same generalized plant structure and weighting
filters. For all controllers, a step signal is taken as a reference trajectory which
changes from zero to 0.5 at t = 5 seconds. For the incremental controller, the
reference r corresponds to q∗ with u∗(t) = k1q

∗(t) + k2(q∗(t))3 −W3d
∗
i (t) (as the

trajectory of q∗ is piecewise constant), where q∗ is known, and d∗
i is estimated

using a disturbance observer. For the simulation results in Figure 6.5, a constant
input disturbance di ≡ −10 2

3 (corresponding to −10 2
3 ·W3 = −16 [N]) is applied.

Comparing the results of the standard and the incremental controllers in Figure 6.4
shows that both controllers have similar performance when no input disturbance is
present. The incremental controller has slightly more overshoot, but a lower settling
time for this example. However, under constant input disturbance, it can be seen
in Figure 6.5 that the standard LPV controller has a significant performance loss
with oscillatory behavior, whereas the incremental controller preserves its smooth
reference tracking property. Note, that in both cases, the scheduling-variable p
never leaves the set for which the controllers have been designed, i.e., q2(t) ∈ [0, 2].
Compared to the universal shifted controller design, the incremental controller
design has similar performance for the same constant reference trajectory and con-
stant disturbance. Both the universal shifted controller and incremental controller
have smooth reference tracking and disturbance rejection properties as they both
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guarantee closed-loop global stability and performance.

Figure 6.6: Position of the Duffing oscillator (top) in closed-loop with the standard
LPV ( ) and the incremental ( ) controllers under varying reference ( ) and
constant input disturbance, together with the generated control inputs (bottom) by
the controllers.

Next, the system in closed-loop with the incremental controller and standard LPV
controller is simulated with a varying reference r(t) = q∗(t) = 0.5 sin(πt) + 0.5, and
again the constant input disturbance di ≡ −16, see Figure 6.6. For the incremental
controller the corresponding u∗ is computed based on the dynamics of the plant
(6.27), which is not given due to its complexity. As shown in Figure 6.6, the
incremental controller also in this case converges toward the desired reference
trajectory, while the standard LPV controller fails to do so, also leaving the
scheduling set it was designed for in the process.

For the next example, the proposed incremental control method is experimentally
verified on an unbalanced disk setup for a reference tracking and disturbance
rejection control problem that was also considered in Example 4.2. Like for the
previous example it is also compared to a standard LPV controller.
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Example 6.2 (Unbalanced disk).

Figure 6.7: Unbalanced disk setup.

We consider again the model for the unbalanced disk as given in Example 4.2, which
is given by

θ̇(t) = ω(t); (6.30a)
ω̇(t) = Mgl

J sin(θ(t)) − 1
τ ω(t) + Km

τ V (t); (6.30b)

where again θ [rad] is the angle of the disk, ω [rad · s−1] its angular velocity, V [V]
is the input voltage to the motor, g is the gravitational acceleration, l the length of
the pendulum, J the inertia of the disk, and Km and τ are the motor constant and
time constant respectively. The angle of the disk θ is considered to be the output
of the plant. The values of the physical parameters are given in Table 4.1.
We construct a DPV embedding of (6.30), which is given by

θ̇δ(t) = ωδ(t);

ω̇δ(t) =
(

Mgl
J p(t))

)
θδ(t) − 1

τ ωδ(t) + Km

τ Vδ(t);
(6.31)

where p(t) = η(θ(t)) = cos(θ(t)) is the scheduling-variable which is assumed to be
in P = [−1, 1].
As in the previous example, the primal form of the nonlinear system (6.30) is also
embedded in an LPV representation to construct a standard LPV controller for the
sake of comparison. This results in

θ̇(t) = ω(t);

ω̇(t) =
(

Mgl
J ps(t))

)
θ(t) − 1

τ ω(t) + Km

τ V (t);
(6.32)

where ps(t) = ηs(θ(t)) = sin(θ(t))
θ(t) = sinc(θ(t)) ∈ Ps, where Ps is chosen6 as [−0.22, 1].

The used generalized plant structure is depicted in Figure 6.3. Note that this is
different from the structure we considered in Example 4.2 for the unbalanced disk.
The weighting filters are chosen as W1(s) = 0.5012(s+4)

s+π , M(s) = s+π
s , W2(s) =

s+40
s+4000 and W3 = 0.5. Synthesizing the controllers, using the same approach as
for the duffing oscillator in Example 6.1, results in an L2-gain of γ ≈ 1.1 and

6Note that ηs(0) = 1 as limx→0 sinc(x) = 1.



6.5. Examples 147

Li2-gain of γ ≈ 1.2. As the LPV controller resulting for the DPV embedding has an
affine dependency, we can use Corollary 6.1 to compute7 ρ(t) =

∫ 1
0 η(x̄(t, λ) dλ =

sin(θ(t))−sin(θ∗(t))
θ(t)−θ∗(t) . For the resulting incremental controller, a disturbance observer

is also designed to estimate the (unknown) disturbances di. As di is assumed to be
constant, therefore (6.29) is consider for the design.
Both the standard LPV controller and incremental controller are implemented on
the experimental setup. On the experimental setup, for safety, the input voltage
to the system is saturated between ± 10 [V]. The results of the experiments are
depicted in Figures 6.8 to 6.10.

Figure 6.8: Measured angle of the unbalanced disk system (top) in closed-loop with
the standard LPV ( ) and the incremental ( ) controllers under reference ( )
and no input disturbance, together with inputs to the plant (bottom) generated by
the controllers.

7Note that limθ→θ∗
sin(θ)−sin(θ∗)

θ−θ∗ = cos(θ) = cos(θ∗).
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Figure 6.9: Measured angle of the unbalanced disk system (top) in closed-loop with
the standard LPV ( ) and the incremental ( ) controller under reference ( )
and input disturbance, together with corresponding inputs to the plant (bottom)
generated by the controllers.

Figure 6.10: Measured angle of the unbalanced disk system (top) in closed-loop with
the standard LPV ( ) and the incremental ( ) controller under reference ( )
and input disturbance, together with corresponding inputs to the plant (bottom)
generated by the controllers.

In Figure 6.8, the measured angular response of the disk during the experiments
is depicted along with the input to the setup (i.e., V ). The reference trajectory r
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switches between 0 and ± π
2 rad/s. For the incremental controller, r corresponds to

θ∗ with u∗(t) = − Mglτ
JKm

sin(θ∗(t))−W3d
∗
i (t) (as the trajectory is piecewise constant).

In Figure 6.9, the same reference trajectory is used, but a constant input disturbance
of di = 100, corresponding to 100 ·W3 = 50 [V], is introduced (which is implemented
by adding 50 V to the control input that is sent to the plant before saturation).
Note that the reference only starts at 10s to give the controllers time to compensate
for the input disturbance. The standard LPV controller performs much worse when
a constant input disturbance is present, compared to the incremental controller,
which has similar performance to the case when no input disturbance is applied.
Both the standard LPV and the incremental controllers are able to compensate
the 50 [V] input disturbance, as visible in the total received input by the plant
(i.e., V = u + W3di), see bottom graph in Figure 6.9. However, while the input
that is sent to the plant is nearly identical for the incremental controller in both
cases, see Figures 6.8 and 6.9, this is clearly not the case for the standard LPV
controller. For the latter, oscillations in the input signal are present when the input
disturbance is applied which causes unwanted oscillation of the disk angle. While
an input disturbance of 50 [V] is extraordinarily high for this system, and will likely
never occur on the real setup, it still shows that there are inherent issues when
using standard LPV controllers.
Finally, in Figure 6.10, experimental results are shown under a sinusoidal reference
and a constant input disturbance. For this experiment, the reference r is taken
to be r(t) = π

2 sin(5πt) and again an input disturbance di = 100 is used. For
the incremental controller r again corresponds to θ∗, and for this reference the
corresponding u∗ is equal to u∗(t) = τ

Km
θ̈∗(t)− Mglτ

JKm
sin(θ∗(t))+ 1

Km
θ̇∗(t)−W3d

∗
i (t).

Again, the reference only starts at 10s, to give the controllers time to compensate
for the input disturbance, and we stop the reference at 25s. Moreover, for this
experiment u∗ is also used as a feedforward trajectory for the LPV controller, i.e.,
the total input sent to the system is u∗ + u (not considering disturbances), where
u is generated by the standard LPV controller. From Figure 6.10 it is evident
that also for this sinusoidal reference and under the disturbance, the incremental
controller is able to smoothly track the reference. On the other hand, the standard
LPV controller is not able to track the reference and again oscillates it, even with
the feedforward action added.

Finally, we compare the results of our method with the results from (Scorletti,
Fromion, et al. 2015).

Example 6.3 (Scorletti et al. example). The example system in (Scorletti,
Fromion, et al. 2015) is described by the following state-space representation

ẋg,1(t) = −100φ(xg,1(t)) − 70xg,2(t) + 300ug(t); (6.33a)
ẋg,2(t) = 70xg,2(t) − 14xg,2(t); (6.33b)
yg(t) = xg,1(t); (6.33c)
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where

φ(x) =


0.9x3 − 2|x|x+ 1.2x, for |x| < 5

3 ;
2x− 2.72, for x ≥ 5

3 ;
2x+ 2.72, for x ≤ − 5

3 .

(6.34)

Next, we construct a DPV embedding of (6.33), which is given by (and is also
considered in (Scorletti, Fromion, et al. 2015)):

ẋδ,g,1(t) = (−100p(t))xδ,g,1 − 70xδ,g,2(t) + 300uδ,g(t); (6.35a)
ẋδ,g,2(t) = 70xδ,g,1(t) − 14xδ,g,2(t); (6.35b)
yδ,g(t) = xδ,g,1(t); (6.35c)

where p(t) = φδ(xg,1(t)), is the scheduling-variable, which is assumed to be in
P ∈ [−0.3, 2], where

φδ(x) =


2.7x2 − 4x+ 1.2, for 0 ≤ x < 5

3 ;
2.7x2 + 4x+ 1.2, for − 5

3 < x < 0;
2, for x ≥ 5

3 ∧ x ≤ − 5
3 .

(6.36)

A generalized plant structure is taken as in Figure 6.3, where W1(s) = 50
s+2π ,

W2(s) = 10(s+10)
s+1000 , W3 = 0.1 and M(s) = s+2π

s . Which is similar to the generalized
plant and weighting filters taken in (Scorletti, Fromion, et al. 2015). On the basis
of this, an incremental controller for (6.33) is synthesized, using (6.35). Like for
previous examples, LPVcore is used to synthesize an affine LPV controller. This
results in the incremental controller achieving an Li2-gain of γ ≈ 1.0, similar
to the incremental gain obtained in (Scorletti, Fromion, et al. 2015), where an
Li2-gain of γ ≈ 1 is reported. As the LPV controller resulting for the DPV
embedding of the generalized plant has affine dependency we can, like was done
for the previous examples, use the result of Corollary 6.1 in order to compute8

ρ(t) =
∫ 1

0 p̄(t, λ)) dλ = φ(xg,1(t))−φ(x∗
g,1(t))

xg,1(t)−x∗
g,1(t) . Furthermore, like for the previous

examples, a disturbance observer is used for the incremental controller for which the
disturbance model (6.29) is also used. In order to compute the feasible steady-state
trajectory used by the incremental controller, the reference r is filtered by the
lowpass filter F (s) = 1000

s+1000 which then corresponds to x∗
g,1, this trajectory is then

used to compute the corresponding control input u∗(t) (which due to its complexity
is not given).

8Note that limx1→x∗
1

φ(xg,1)−φ(x∗
g,1)

xg,1−x∗
g,1

= φδ(xg,1) = φδ(x∗
g,1).
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Figure 6.11: Output of the nonlinear system (6.33) (top) in closed-loop with the
proposed incremental controller ( ), as well as the results from (Scorletti, Fromion,
et al. 2015, Fig. 7) ( ) under the reference trajectory ( ), together with the
input to the plant (bottom).

Figure 6.11 shows the output of the nonlinear system from (Scorletti, Fromion,
et al. 2015) in closed-loop with the proposed incremental controller alongside the
results from (Scorletti, Fromion, et al. 2015, Fig. 7), as well as the input to the
plant, i.e. ug, for the proposed incremental controller. It can be observed that
our proposed incremental control design performs better in this example than the
one proposed in (Scorletti, Fromion, et al. 2015), using the same performance and
stability requirements set by the weighting filters. This is likely due to the fact
that (i) our proposed controller has a more flexible dependency structure for the
scheduling-variable, compared to the linear structure of the controller proposed
in (Scorletti, Fromion, et al. 2015); (ii) our proposed controller contains besides
a feedback part also a feedforward component, corresponding to the steady-state
trajectory, which the method in (Scorletti, Fromion, et al. 2015) does not have.

6.6 Conclusions

In this chapter, we proposed a novel systematic dynamic output feedback controller
synthesis method for nonlinear systems under general controller parameterization
which provides incremental stability and performance guarantees of the achieved
closed-loop behavior. The proposed incremental controller synthesis method is
based on two key ingredients: (i) LPV controller synthesis on the differential form
of the nonlinear plant to be controlled and (ii) realization of the resulting LPV
controller as an implementable incremental nonlinear controller with closed-loop
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stability and performance guarantees. A key advantage of the method is that it
facilitates systematic controller design for nonlinear plants by convex synthesis
and enables the use of powerful performance shaping concepts available for linear
controller design. Although a large variety of incremental (Q,S,R) dissipativity
notions can be ensured by the proposed methodology, we chose to exemplify the
approach with incremental L2-gain and performance. As it is demonstrated through
simulation and experimental studies, the proposed approach successfully achieves
desired closed-loop stability and performance requirements for tracking and rejection
problems and overcomes issues of standard LPV controller synthesis methods.



7
Discrete-Time Extension
of the Incremental
Theory

In this chapter, we discus the extension of the Continuous-Time (CT)
results on incremental analysis and controller synthesis which we have

presented in Chapters 5 and 6, respectively, to Discrete-Time (DT) nonlinear
systems. Similar to the CT results, we show that we can use differential
(Q,S,R) dissipativity in order to analyze incremental (Q,S,R) dissipativity.
Furthermore, analogous to the CT results, we show that also in DT, the
differential (Q,S,R) dissipativity analysis problem can be cast as a classical
(Q,S,R) dissipativity of an Linear Parameter-Varying (LPV) representation.
Based on these analysis results, we show that for DT incremental controller
synthesis, an equivalent procedure as in CT can be used, with the resulting
DT incremental controller having the same structure as the CT incremental
controller. Both the capabilities of the DT incremental analysis and controller
synthesis frameworks are investigated and analyzed through simulation
studies, which show the achieved global stability and performance guarantees.
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7.1 Introduction

In Chapters 5 and 6, we have presented our results on incremental dissipativity
based analysis and control of Continuous-Time (CT) systems. For analysis, we have
seen that by analyzing stability and dissipativity properties of the differential form
of the system, representing variations along trajectories, we can infer incremental
stability and dissipativity properties of the primal form of the system, i.e., the
original nonlinear dynamics. Moreover, we have shown that by embedding the
differential form in a Linear Parameter-Varying (LPV) representation, which we
refer to as a so-called Differential Parameter-Varying (DPV) embedding of the
system, we can then use the analysis tools of the LPV framework to efficiently
analyze incremental properties of CT nonlinear systems. Based on these analysis
results, we have shown in Chapter 6 how the DPV embedding and properties of
the differential form could be exploited for computationally efficient and systematic
incremental controller synthesis.

For controller synthesis, CT methods have as advantage that shaping the closed-
loop behavior is intuitive due to the frequency domain interpretation of Linear
Time-Invariant (LTI) weighting filters. Nonetheless, the designed controller needs
to be implemented digitally in order to be used. This requires discretization of the
CT controller which can lead to deteriorated performance or even loss of closed-
loop stability and performance guarantees. Therefore, the analysis and control
of Discrete-Time (DT) systems is also of high importance. Moreover, the recent
resurgence in data and learning based methods for analysis and control of nonlinear
systems also rely on DT systems analysis.

While there have been some results on incremental and contraction based stability
of DT systems, see e.g. (Tran et al. 2016; Tran et al. 2018), similar extensions
to incremental dissipativity have not yet been made to the author’s knowledge.
Hence, in this chapter we will propose an extension of the CT incremental dissi-
pativity results of Chapter 5 to the DT systems. We will show that in DT, we
obtain analogous results to the CT case, namely, that we can analyze incremental
dissipativity of the primal form by analyzing differential dissipativity . Moreover,
we show that we can again use DPV embeddings to analyze differential dissipativity
in a computationally efficient manner, making use of the LPV framework.

With respect to controller synthesis to ensure incremental properties, there are even
less results in existing literature, with only a few works that ensure incremental
stability (like properties) through state-feedback (Wei et al. 2021) and through
Nonlinear Model Predictive Control (NMPC) (Köhler et al. 2020). Comprehen-
sive results for DT output-feedback synthesis to ensure closed-loop incremental
dissipativity remains an open problem. Hence, in this chapter, we also develop an
incremental dissipativity based convex output-feedback controller synthesis method
for DT nonlinear systems, based on an extension of the CT results in Chapter 6.

This chapter is structured as follows, in Section 7.2 we present the results for
incremental stability and performance analysis for DT nonlinear systems. Next, in
Section 7.3, we show how the incremental analysis conditions presented in Section 7.2
can efficiently be verified through the LPV framework. These analysis results are
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then also demonstrated through an example in Section 7.4. In Section 7.5, we
present the results for incremental controller synthesis of DT systems. Finally, in
Section 7.7, conclusions are drawn.

7.2 Incremental Stability and Performance Analy-
sis

7.2.1 Incremental dissipativity

Like we considered in Section 2.2, we consider DT nonlinear systems given by

x(t+ 1) = f(x(t), w(t)); (7.1a)
z(t) = h(x(t), w(t)); (7.1b)

where x(t) ∈ X ⊆ Rnx is the state with initial condition x0 ∈ X , w(t) ∈ W ⊆ Rnw

is the input, z(t) ∈ Z ⊆ Rnz is the output, and t ∈ N0 is the discrete-time instant.
The sets X , W and Z are open and convex, containing the origin. The functions
f : X × W → X and h : X × W → Z are assumed to be C1, i.e., f, h ∈ C1. We
define the set of solutions of (7.1) as

B :=
{

(x,w, z) ∈ (X × W × Z)N0 | (x,w, z) satisfies (7.1)
}
. (7.2)

Furthermore, we define the state transition map ϕx : N0 × N0 × X × WN0 → X ,
such that

x(t) = ϕx(t, 0, x(0), w), (7.3)

which is the state x(t) ∈ X at discrete-time instant t ∈ N0, when the system is
driven from x(0) ∈ X by input signal w ∈ WN0 .
In Section 2.4, we have already seen how classical dissipativity can be used to
simultaneously analyze stability and performance of nonlinear systems. However,
as mentioned in Chapter 5, the classical dissipativity framework only analyzes the
internal energy of the system with respect to a single point of neutral storage, often
taken as the origin of the state-space associated with the nonlinear representation.
However, it is often of interesest to analyze a set of equilibrium points/trajectories,
e.g., in the case of reference tracking or disturbance rejection, which is cumbersome
to be performed with the classical dissipativity results. Hence, there is a need for
global dissipativity notions such as incremental dissipativity, as they allow to handle
these cases efficiently. Incremental dissipativity is an extension of the classical
dissipativity results which takes into account multiple trajectories of a system and
can be thought of as analyzing the energy flow between trajectories.
Similar to the incremental dissipativity definition for CT systems in Definition 5.2,
we define incremental dissipativity of DT nonlinear systems as follows:

Definition 7.1 (DT incremental dissipativity). The system given by (7.1) is called
incrementally dissipative w.r.t. the supply function si : W × W × Z × Z → R, if
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there exists a storage function Vi : X × X → R+
0 with Vi ∈ C0 and Vi ∈ Qi, such

that, for any two trajectories (x,w, z), (x̃, w̃, z̃) ∈ B,

Vi
(
x(t1 + 1), x̃(t1 + 1)

)
− Vi

(
x(t0), x̃(t0)

)
≤

t1∑
t=t0

si
(
w(t), w̃(t), z(t), z̃(t)

)
, (7.4)

for all t0, t1 ∈ N0 with t0 ≤ t1.

Again, we will focus on quadratic supply functions of the form

si(w, w̃, z, z̃) =
[
w − w̃
z − z̃

]⊤ [
Q S
⋆ R

] [
w − w̃
z − z̃

]
, (7.5)

where Q ∈ Snw , R ∈ Snz and S ∈ Rnw×nz . We focus on this particular family,
often referred to as (incremental) (Q,S,R) supply functions, as they allow formula-
tion of many useful performance notions, such as incremental versions of ℓ2-gain
performance and passivity.

7.2.2 Differential Dissipativity

Analogous to the CT results, we are interested in analyzing incremental dissipativity
by analyzing the dynamics of the variations along the trajectories, captured through
the differential form of the system.
Like it has been done in Section 5.2, we consider two arbitrary trajectories of the
system (7.1): (x,w, z), (x̃, w̃, z̃) ∈ B. Where we parameterize any two trajectories
between them by x̄0 ∈ ΓX (x0, x̃0) and w̄(t) ∈ ΓW(w(t), w̃(t)), resulting in the state
transition map x̄(t, λ) = ϕx(t, t0, x̄0(λ), w̄(λ)) ∈ X , where ΓA(a1, a2) denotes the
set of paths between a1, a2 ∈ A, see (5.5) for the exact definition. This results in
that for any λ ∈ [0, 1] and all (x,w, z), (x̃, w̃, z̃) ∈ B, it holds that

x̄(t+ 1, λ) = f(x̄(t, λ), w̄(t, λ)); (7.6a)
z̄(t, λ) = h(x̄(t, λ), w̄(t, λ)); (7.6b)

where (x̄(λ), w̄(λ), z̄(λ)) ∈ B. Differentiating the parameterized dynamics w.r.t. λ
results in the differential form of (7.1), given by

xδ(t+ 1, λ) = Aδ(x̄(t, λ), w̄(t, λ))xδ(t, λ) +Bδ(x̄(t, λ), w̄(t, λ))wδ(t, λ); (7.7a)
zδ(t, λ) = Cδ(x̄(t, λ), w̄(t, λ))xδ(t, λ) +Dδ(x̄(t, λ), w̄(t, λ))wδ(t, λ); (7.7b)

with xδ(t, λ) = ∂x̄
∂λ (t, λ) ∈ Rnx , wδ(t, λ) = ∂w̄

∂λ (t, λ) ∈ Rnw , zδ(t, λ) = ∂z̄
∂λ (t, λ) ∈ Rnz ,

and
Aδ = ∂f

∂x
, Bδ = ∂f

∂w
, Cδ = ∂h

∂x
, Dδ = ∂h

∂w
, (7.8)

where (x̄(λ), w̄(λ)) ∈ πx,w B for all λ ∈ [0, 1]. Note that this analogous to the
CT case, with the differential form given by (5.7). We also similarly omit the
dependence on λ if it holds for any λ ∈ [0, 1]. This then allows us to state a DT
definition for differential dissipativity:
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Definition 7.2 (DT differential dissipativity). Consider the system given by (7.1)
and its differential form (7.7). The system is differentially dissipative w.r.t. a supply
function sδ : Rnw × Rnz → R, if there exists a storage function Vδ : X × Rnx → R+

0
with Vδ ∈ C0 and Vδ(x̄, ·) ∈ Q0, ∀ x̄ ∈ X , such that

Vδ

(
x̄(t1 + 1), xδ(t1 + 1)

)
− Vδ

(
x̄(t0), xδ(t0)

)
≤

t1∑
t=t0

sδ

(
wδ(t), zδ(t)

)
, (7.9)

for all (x̄, w̄) ∈ πx,u B and for all t0, t1 ∈ N0, with t0 ≤ t1.

In correspondence with the incremental quadratic, (Q,S,R), supply function, we
will also focus on quadratic supply functions for differential dissipativity. Namely,
we will consider supply functions of the form

sδ(wδ, zδ) =
[
wδ

zδ

]⊤ [
Q S
⋆ R

] [
wδ

zδ

]
. (7.10)

Note that like for CT systems, checking differential (Q,S,R) dissipativity of the (pri-
mal form of the) system (7.1) can be seen as checking ‘classical (Q,S,R) dissipativity’
of the differential form of the system (7.7).
In CT, we have the result of Theorem 5.1, which shows how we can analyze differen-
tial (Q,S,R) dissipativity through a feasibility check of a (infinite dimensional) set
of Linear Matrix Inequalities (LMIs). Under the same considerations, we will also
show that likewise for DT systems we can formulate a matrix inequality condition
to analyze differential dissipativity, which also corresponds to a feasibility check of
a(n) (infinite dimensional) set of LMIs. To obtain the results, we consider, like in
CT, storage functions of a quadratic form given by

Vδ(x̄, xδ) = x⊤
δ M(x̄)xδ, (7.11)

with M satisfying Condition 5.1. Moreover, for the system in primal form (7.1), let
us also consider the set D for which holds that (x(t+ 1) − x(t)) ∈ D for all t ∈ N0.
This allows us to obtain the following result to analyze differential dissipativity in
DT:

Theorem 7.1 (DT differential (Q,S,R) dissipativity condition). A nonlinear
system given by (7.1) is differentially (Q,S,R) dissipative, if there exists a storage
function (7.11) with M satisfying Condition 5.1, such that for all (x̄, w̄) ∈ X × W
and xv ∈ D

(⋆)⊤
[
−M(x̄) 0

0 M(x̄+ x̄v)

] [
I 0

Aδ(x̄, w̄) Bδ(x̄, w̄)

]
−

(⋆)⊤
[
Q S
⋆ R

] [
0 I

Cδ(x̄, w̄) Dδ(x̄, w̄)

]
⪯ 0. (7.12)

Proof. See Appendix B.5.
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With this theorem, we now have analogous conditions in CT and DT in order to
analyze differential dissipativity of nonlinear systems through a feasibility check
of an infinite dimensional set of LMIs. Later, in Section 7.3, we will discuss how
we can make use of the results in LPV framework in order to make the check
computationally feasible, similar to the CT results in Section 5.4.2.

7.2.3 Induced incremental dissipativity

Next, we will present how we can use differential (Q,S,R) dissipativity in or-
der to analyze incremental (Q,S,R) dissipativity of DT nonlinear systems. In
Chapter 5, we have shown for CT systems how differential (Q,S,R) dissipativity
implies incremental (Q,S,R) dissipativity, for (Q,S,R) supplies for which R ⪯ 0,
see Theorem 5.2. Combined with the matrix inequality condition resulting from
Theorem 5.1, this gave us a very powerful tool to check incremental dissipativity of
CT nonlinear systems. Next, we will similarly show, how also in DT differential
(Q,S,R) dissipativity of a DT nonlinear system (7.1) implies incremental (Q,S,R)
dissipativity.

Theorem 7.2 (Induced DT incremental dissipativity). If the nonlinear system
given by (7.1) is differentially (Q,S,R) dissipative, i.e., w.r.t. the supply function
(7.10), with R ⪯ 0, under a storage function Vδ of the form (7.11), then the system
is incrementally (Q,S,R) dissipative for the same tuple (Q,S,R).

Proof. See Appendix B.5.

This shows, similar to the CT results in Theorem 5.2, that also in DT, differential
(Q,S,R) dissipativity implies incremental (Q,S,R) dissipativity under a quadratic
storage function of the form (7.11) and with R ⪯ 0.
We can then combine the results of Theorems 7.1 and 7.2 to arrive at the following
corollary:

Corollary 7.1 (Incremental dissipativity condition). The nonlinear system given
by (7.1) is incrementally (Q,S,R) dissipative with R ⪯ 0, if (7.12) holds for all
(x̄, w̄) ∈ X × W and xv ∈ D with M satisfying Condition 5.1.

Remark 7.1. Note that the results of Lemma 5.1 and Theorem 5.3 also hold in the
DT case, as they can trivially be extended through the use Theorem 7.2.

With these results, we have a powerful tool, through the matrix inequality condition
in Theorem 7.1, to check incremental (Q,S,R) dissipativity of DT systems. Similarly,
with these results, we have in DT the same chain of implications which connects
differential, incremental, universal shifted, and classical dissipativity of the system.
This gives us a systematic way to analyze global dissipativity concepts of both CT
and DT nonlinear systems.
Next, we will discuss how these results connect to incremental performance notions
for DT systems.
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7.2.4 Induced incremental performance

Using classical (Q,S,R) dissipativity, many useful performance notions can be
retrieved such as ℓ2-gain performance and passivity. In Section 5.4, we have shown
how also in the incremental case in CT, we can retrieve incremental versions of these
performance notions, such as the incremental L2-gain and incremental passivity.
Next, we will use the previously derived results to also connect DT incremental
dissipativity to incremental performance notions.
Before deriving these results, we will first give definition of incremental the ℓp-ℓq-gain
of a DT system, analogous to the CT version in Definition 5.5.
Definition 7.3 (Incremental ℓp-ℓq-gain). A DT nonlinear system given by (7.1) is
said to have a finite incremental ℓp-ℓq-gain, if there is a finite γ ≥ 0 and function
ζi : X × X → R such that

∥z − z̃∥q,T ≤ γ ∥w − w̃∥p,T + ζi(x0, x̃0), (7.13)

for all T ≥ 0 and (x,w, z), (x̃, w̃, z̃) ∈ B with w, w̃ ∈ ℓpe in CT. The induced
incremental ℓp-ℓq-gain of (7.1), denoted as ℓip-ℓiq-gain, is the infimum of γ such
that (7.13) still holds. If p = q, we will refer to this as the (induced) incremental
ℓp-gain, denoted as ℓip-gain.

Using this definition, we will now show how the ℓi2-gain of a nonlinear system (7.1)
can be analyzed using the results of Corollary 7.1.
Corollary 7.2 (ℓi2-gain analysis). A nonlinear system given by (7.1) has a finite
ℓi2-gain of γ if there exists a matrix M ∈ Snx with M ≻ 0 such that for all x̄ ∈ X
and w̄ ∈ W 

M Aδ(x̄, w̄)M Bδ(x̄, w̄) 0
⋆ M 0 MCδ(x̄, w̄)⊤

⋆ ⋆ γI Dδ(x̄, w̄)⊤

⋆ ⋆ ⋆ γI

 ⪰ 0. (7.14)

Proof. See Appendix B.5.

Next, we will look into DT incremental passivity. Similar to Definition 5.6, we
define DT incremental passivity as follows:
Definition 7.4 (Incremental passivity). A nonlinear system given by (7.1) for
which nw = nz is incrementally passive, if it is incrementally dissipative w.r.t. the
supply

si(w, w̃, z, z̃) = (w − w̃)⊤(z − z̃) + (z − z̃)⊤(w − w̃). (7.15)

Using this definition, we can then use Corollary 7.1 to obtain the following result:
Corollary 7.3 (DT incremental passivity analysis). A nonlinear system given by
(7.1) is incrementally passive, if there exists a matrix M ∈ Snx with M ≻ 0, such
that for all x̄ ∈ X and w̄ ∈ WM Aδ(x̄, w̄)M Bδ(x̄, w̄)

⋆ M MCδ(x̄, w̄)⊤

⋆ ⋆ Dδ(x̄, w̄) + (⋆)

 ⪰ 0. (7.16)
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Proof. See Appendix B.5.

Remark 7.2. Note that the obtained conditions for ℓi2-gain and incremental passivity
analysis result in checking positive semi-definiteness of a matrix, while in literature
these, or similar conditions, are often found as positive definiteness checks. The
positive definite versions of the conditions can simply retrieved by making the
incremental dissipativity check strict, i.e., changing ≤ to < in (7.9) and (7.4), which
then imply the strict versions of the conditions found in this section.
Remark 7.3. In Chapter 5, conditions for CT systems for Li∞ performance and
incremental generalized H2 performance, corresponding to the Li2-Li∞-gain, are also
given besides the Li2-gain and passivity conditions. For DT systems, similar results
can also be derived along the same lines as the CT proofs given in Appendix B.3 in
order to obtain ℓi∞ and ℓi2-ℓi∞-gain conditions.

Again note that the results of Corollaries 7.2 and 7.3 are analogous to their CT
counterparts in Corollaries 5.2 and 5.4, respectively. With these results, we have
now shown that both in CT and DT differential dissipativity analysis can be done
through a feasibility check of a matrix inequality, which can then be used in order
to achieve systematic incremental performance analysis of nonlinear systems. Next,
we will discuss how in DT, like in CT, these results link to incremental stability
analysis of nonlinear systems.

7.2.5 Relation to incremental stability

In Section 5.3.5, we extensively discussed for the CT case how incremental dissipa-
tivity connects to incremental stability of nonlinear systems. A key result to show
this connection is the incremental extension to Lyapunov functions in CT from
(Angeli 2002), see Theorem 5.4. Similarly, in DT, incremental to Lyapunov stability
theory have also been made in (Tran et al. 2016; Tran et al. 2018):

Theorem 7.3 (DT Incremental Lyapunov stability). The nonlinear system given
by (7.1) is incrementally stable, if there exists an incremental Lyapunov function
Vi : X × X → R+

0 with Vi ∈ C1 and Vi ∈ Qi, such that

Vi(x(t+ 1), x̃(t+ 1)) − Vi(x(t), x̃(t)) ≤ 0, (7.17)

for all t ∈ R+
0 and x, x̃ ∈ πx Bw(w) under all measurable and bounded functions

w ∈ WR+
0 . Moreover, the nonlinear system is asymptotically stable, if (7.17) holds,

but with strict inequality except when x(t) = x̃(t).

This also allows Theorem 5.5 to be trivially extended to DT and is therefore not
given. Moreover, using the differential form, results analogous to Lemma 5.2 have
also been derived in literature in order to arrive at a matrix inequality condition
for incremental stability (Tran et al. 2016; Tran et al. 2018):
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Lemma 7.1 (DT incremental stability condition). The nonlinear system given by
(7.1) is incrementally stable, if

Aδ(x̄, w̄)⊤M(x̄+ x̄v)Aδ(x̄, w̄) −M(x̄) ⪯ 0 (7.18)

for all (x̄, w̄) ∈ X × W, x̄v ∈ D and M satisfying Condition 5.1. If (7.18) holds
with strict inequality, then, the system is incrementally asymptotically stable.

7.3 Convex Incremental Analysis

In the previous section, we have shown how incremental stability and performance
in DT, similar as in CT, can be analyzed in terms of feasibility check of an infinite
dimensional set of LMIs, see Corollary 7.1. The question then arises how we can
computationally efficiently verify this infinite dimensional set of LMIs. Like we
discussed in Section 5.4.2 in the CT case, this problem is similar to the analysis
problem of LPV systems, where due to the scheduling-variable we obtain an infinite
dimensional set of LMIs. Hence, in a similar manner as has been done in the CT
case, we make once again use of the LPV framework to make the proposed check
for DT incremental dissipativity computationally feasible.
As we have shown in Section 7.2, the resulting incremental dissipativity conditions
for a system given by (7.1) are related to standard dissipativity of its differential
form (7.7). Hence, we embed the differential form of the nonlinear system in an
LPV representation, which we call a DPV embedding of the nonlinear system (7.1).

Definition 7.5 (DT DPV embedding). Assume we have a nonlinear system given
by (7.1) with differential form given by (7.7). The LPV representation given by

xδ(t+ 1) = A(p(t))xδ(t) +B(p(t))wδ(t), (7.19a)
zδ(t) = C(p(t))xδ(t) +D(p(t))wδ(t), (7.19b)

where p(t) ∈ P ⊂ Rnp is the scheduling-variable, is a DPV embedding of (7.1)
on the compact convex region X × W ⊆ X × W if there exists a function, called
the scheduling-map, η : X × W → P such that under a given choice of function
class for A, . . . , D, e.g. affine, polynomial, etc., A(η(x̄, w̄)) = Aδ(x̄, w̄), . . . ,
D(η(x̄, w̄)) = Dδ(x̄, w̄) for all (x̄, w̄) ∈ X × W and η(X ,W ) ⊆ P.

Through the DPV embedding of a system, like in the CT case in Section 5.4.2,
we can embed the behavior of the differential form of the system. Hence, also in
DT we can use the results of Lemma 5.3 and Theorem 5.7. This then allows us
to make use of the LPV analysis results for DT systems, see also Section 2.5, in
order to computationally efficiently check the condition in Theorem 7.1. In fact,
like in the CT case, the resulting analysis problems are standard LPV analysis
problems, i.e., incremental (Q,S,R) dissipativity of the primal form (7.1) can be
checked through checking ‘classical (Q,S,R) dissipativity’ of the differential form
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(7.7), which we then check through checking classical (Q,S,R) dissipativity of the
DPV embedding (7.19). As the proposed analysis results can be cast as classical
(Q,S,R) dissipativity analysis problem of an LPV representation, all the techniques
to reduce the evaluation of an infinite set of LMIs to only checking a finite set of
LMIs from the LPV framework can be used. Often for this, A, . . . , D are needed
to be restricted to an affine function in the embedding (7.19). The most common
techniques are polytopic, multiplier or gridding-based approaches, see (Hoffmann and
Werner 2015a) for an overview. Although the same tools from the LPV framework
can be used for checking incremental dissipativity and classical dissipativity of
nonlinear systems, we would like to remind again that the underlying dissipativity
and stability concepts are very different. Namely, using the incremental dissipativity
tools developed in this thesis, global stability and performance guarantees, i.e.,
irrespective of a particular equilibrium point or trajectory, can be given for the
nonlinear system, while standard dissipativity tools can only provide performance
and stability analysis with respect to single equilibrium point, often the origin of
the state-space representation of the nonlinear system.

7.4 Analysis Example

In this section, we apply the results of the previous sections in order to analyze
incremental dissipativity of a controlled unbalanced disk.

Example 7.1 (Analysis of a controlled unbalanced disk).

Figure 7.1: Unbalanced disk setup.

We consider the (CT) model for an unbalanced disk, as also used in Examples 4.2
and 6.2, which is given by

θ̇(t) = ω(t); (7.20a)
ω̇(t) = Mgl

J sin(θ(t)) − 1
τ ω(t) + Km

τ V (t); (7.20b)

where θ [rad] is the angle of the disk, ω [rad · s−1] its angular velocity, V [V] is the
input voltage to the motor, g is the gravitational acceleration, l the length of the
pendulum, J , the inertia of the disk and Km and τ are the motor constant and
time constant respectively. The values of the physical parameters of the system are
given in Table 4.1.
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We discretize equation (7.20) using a fourth order Runge-Kutta (RK4) method,
where the control input is assumed to be constant over the sampling period. More
specifically, assuming the CT dynamics are ẋg(t) = fc(xg(t), ug(t)), we have the
RK4 discretized dynamics given by

xg(t+ 1) = xg(t) + Ts

6 (φ1(t) + 2φ2(t) + 2φ3(t) + φ4(t)), (7.21)

where Ts is the sample time, t ∈ N0 is now the (discrete) time-instant, and

φ1(t) = fc(xg(t), ug(t)), (7.22a)
φ2(t) = fc

(
xg(t) + Ts

2 φ1(t), ug(t)
)
, (7.22b)

φ3(t) = fc
(
xg(t) + Ts

2 φ2(t), ug(t)
)
, (7.22c)

φ4(t) = fc (xg(t) + Tsφ3(t), ug(t)) . (7.22d)

Applying this method to the CT dynamics of the unbalanced disk given by (7.20),
with a sample time Ts = 1

20 second, results in a DT nonlinear state-space represen-
tation of the form

xg(t+ 1) = f(xg(t), ug(t)), (7.23)
where xg = col(θ, ω) and ug = V . For the discretized version of the unbalanced
disk given by (7.23), a (robust) DT LTI controller is heuristically designed in order
to achieve reference tracking. This controller is given by

xk(t+ 1) = xk(t) +Bkuk(t); (7.24a)
yk(t) = Ckxk(t) +Dkuk(t); (7.24b)

where xk is the state, uk is the input and yk is the output of the controller. For
the LTI controller, Bk =

[
1 0

]
, Ck = −0.5 and Dk =

[
−10 −1

]
are chosen,

corresponding to a PID controller. The closed-loop interconnection of plant and
controller is given in Figure 7.2, where K is the DT LTI controller given by (7.24),
G is the discretized unbalanced disk dynamics given by (7.23), w is the input
disturbance, and z is the generalized performance channel. The controller K in this
configuration can be thought of as a PID controller for regulation of the disk angle at
zero and rejection of constant input disturbances. The closed-loop interconnection
results in a system of the form (7.1).

K G
ku

z

w

ky

θ

ω

V

Figure 7.2: Closed-loop interconnection of DT controller K and discretized dynamics
of the unbalanced disk G.

Using Definition 7.5, the differential form of the closed-loop dynamics of the DT
LTI controller and discretized unbalanced disk dynamics is computed and a DPV
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embedding is constructed on the compact region θ(t) ∈ [−π, π], ω(t) ∈ [−10, 10]
and V (t) ∈ [−10, 10], with scheduling-variable p = col(p1, p2, p3) = col(θ, ω, V ).
Next, an upper-bound for the induced ℓi2-gain of the closed-loop interconnection
on the compact region is computed using the results of Corollary 7.2. Due to
the complexity of the DPV embedding (as we use the discretized plant), we use a
gridding-based LPV analysis method, which has been implemented in the LPVcore
Toolbox (Boef et al. 2021). For the grid-based method, we consider equidistant set of
grid points on the embedding region with 11 grid-points in each dimension, resulting
in a total of 1331 grid-points. Computing the L2-gain of the DPV embedding, results
in an ℓ2-gain of γ = 0.220. Consequently, the upper-bound for the induced ℓi2-gain
of the closed-loop interconnection on the compact region is given by γ = 0.220.
In order to compute the closed-loop ℓ2-gain of the closed-loop interconnection,
the DT primal form in the plant (7.23) is embedded in a grid-based LPV model
using the technique described Appendix C.6 on the aforementioned equidistant grid.
The closed-loop interconnection of the LTI controller and primal form of the plant
obtains an upper-bound for the ℓ2-gain1 of γℓ2 = 0.219.
For comparison, an LPV version of the controller is also heuristically designed,
where B is taken the same as for the LTI controller (7.24), but Ck and Dk
are made parameter-varying by taking Ck(p) = −0.5 − 1

20 sin(p1) and Dk(p) =[
−10 − 2 cos(p1) −1

]
(hence, they only depend on p1 = θ). For the closed-loop

interconnection of the LPV controller and the primal form of the plant, an upper-
bound for the ℓ2-gain is computed using a standard grid-based LPV method. This
results in γℓ2 = 0.179, which is better than the closed-loop interconnection with
the LTI controller. However, unlike for the closed-loop with the LTI controller, we
cannot compute an upperbound for the ℓi2-gain for the closed-loop with the LPV
controller using the results of Corollary 7.2. While this does not immediately mean
that the closed-loop does not have a bounded ℓi2-gain, as Corollary 7.2 is only a
sufficient condition, we will see by means of simulation that the closed-loop using
the LPV controller is indeed not incrementally stable.
In Figure 7.3, simulation results of trajectory of the angle of the disk for both the
interconnection of the discrete-time plant with the LTI controller and with the
LPV controller for different input disturbances w are shown2. When w(t) = 0,
the closed-loop with the LPV controller has a faster response and less overshoot
compared to the closed-loop with LTI controller. This is also to be expected, as
the closed-loop ℓ2-gain with LPV controller (γℓ2 = 0.179) is lower than that of
the closed-loop system with the LTI controller (γℓ2 = 0.219). However, when
w(t) = − min(t, 70), it can be seen that while the LTI controller is still able to reject
the disturbance when it becomes constant (at t = 70), the closed-loop with the LPV
controller ends up in a limit cycle and is not able to reject the disturbance, which
is a results of the system not being incrementally stable/dissipative. This behavior
is similar to what we have seen in the CT case. These observations highlight the
importance of analyzing stability and performance of nonlinear systems using global
dissipativity notions instead of using only classical dissipativity based notions.

1Note that the ℓ2-gain is smaller than the ℓi2-gain, as the ℓi2-gain is a stronger notion.
2Note that during simulation all the scheduling-variables stayed within the compact-set.
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Figure 7.3: Angle of the disk in closed-loop with the LTI controller ( ) and LPV
controller ( ) for different input disturbances w.

7.5 Convex Incremental Synthesis

7.5.1 Incremental synthesis problem

In this section Section 7.5, we will present how we can formulate DT incremental
controller synthesis results in a similar manner as the CT controller synthesis results
of Chapter 6.
We consider a similar setup as is considered in the CT case that is discussed in
Chapter 6. Namely, we consider a DT nonlinear system, being the generalized plant
(see also Definition 6.1), of the form

x(t+ 1) = f(x(t)) +Bww(t) +Buu(t); (7.25a)
z(t) = hz(x(t)) +Dzww(t) +Dzuu(t); (7.25b)
y(t) = Cyx(t) +Dyww(t); (7.25c)

where t ∈ N0 is time, x(t) ∈ X ⊆ Rnx , w(t) ∈ W ⊆ Rnw and z(t) ∈ Z ⊆ Rnz are
the state, generalized disturbance and generalized performance signals of the plant,
respectively, and where u(t) ∈ U ⊆ Rnu is the control input and y(t) ∈ Y ⊆ Rny is
the measured output. The sets X , W , U , Z and Y are open and convex, containing
the origin. The solutions of (7.25) satisfy (7.25) in the ordinary sense and are
restricted to t ∈ N0. The functions f : X → X and hz : X → Z are assumed to be
in C1, i.e. f, hz ∈ C1. Furthermore, Bw ∈ Rnx×nw , Bu ∈ Rnx×nu , Dzw ∈ Rnz×nw ,
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Dzu ∈ Rnz×nu , and Dyw ∈ Rny×nw are matrices. The solution set of (7.25) is
defined as

B :=
{

(x,w, u, z, y) ∈ (X × W × U × Z × Y)N0 |

(x,w, u, z, y) satisfies (7.25)
}
. (7.26)

Remark 7.4. Note that while (7.25) might seem restrictive, a larger class of nonlinear
generalized plants of the form

x(t+ 1) = f(x(t), u(t)) +Bww(t); (7.27a)
z(t) = hz(x(t), u(t)) +Dzww(t); (7.27b)
y(t) = hy(x(t)) +Dyww(t); (7.27c)

where f : X × U → X , hz : X × U → Z and hy : X → Y with f, hz, hy ∈ C1, can
be written in the form (7.25) by interconnecting appropriate filters to u and y of
(7.27). See Appendix C.2.2 for an example of such a procedure in CT.

The to-be-designed controller for the generalized plant given by (7.25) is considered
in the form

xk(t+ 1) = fk(xk(t), uk(t)); (7.28a)
yk(t) = hk(xk(t), uk(t)); (7.28b)

where xk(t) ∈ Rnxk is the state of the controller, uk(t) ∈ Rnuk its input, and yk(t) ∈
Rnyk its output. Moreover, fk : Rnxk ×Rnuk → Rnxk and hk : Rnxk ×Rnuk → Rnyk .
The closed-loop interconnection of a generalized plant P given by (7.25) and a
controller K given by (7.28) with uk = y and u = yk is denoted by Fl(P,K), which
is assumed to be well-posed and hence in the form (7.1). In this section we propose
a DT convex controller synthesis method such that the closed-loop interconnection
Fl(P,K) is incrementally (Q,S,R) dissipative. Consequently, we assume that (7.25)
is a generalized plant in the sense that there exists a controller K such that the
closed-loop interconnection Fl(P,K) is incrementally stable, see also Definition 6.1
and Proposition 6.1.
Like for the CT results in Chapter 6, the procedure will be exemplified by ensuring
ℓi2-gain stability3 with minimal ℓi2-gain of the closed-loop interconnection Fl(P,K).
However, the results also hold for the other aforementioned incremental (Q,S,R)
performance notions.

7.5.2 Controller synthesis method

Overview

In this section, the proposed controller synthesis method is discussed. The proposed
procedure follows along the same lines as the CT version discussed in Chapter 6.

3By which we mean the system is incrementally dissipative w.r.t. the ℓi2-gain supply function,
implying incremental stability.
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This is possible because like in the CT case, it also holds for DT systems that
‘classical (Q,S,R) dissipativity’ of the differential form (i.e., differential (Q,S,R)
dissipativity) implies incremental (Q,S,R) dissipativity of the primal form (for the
same tuple (Q,S,R)), see Theorem 7.2. Consequently, to ensure a minimal ℓi2-gain
of Fl(P,K), we can equivalently ensure a minimal ℓ2-gain of the differential form of
Fl(P,K).

In order to obtain a DT controller ensuring closed-loop ℓi2-gain stability and
performance the following procedure is proposed:

1. For the generalized plant given by (7.25), its differential form is computed,
which is then used to construct a DPV embedding (see Definition 7.5) for
(7.25).

2. For the DPV embedding of the generalized plant, an LPV controller is synthe-
sized such that the closed-loop interconnection is ℓ2-gain stable with minimal
ℓ2-gain γ. This controller will be referred to as the differential (LPV) controller.

3. The differential controller designed in Step 2 is realized into a primal form.
The resulting closed-loop interconnection of the primal form of the generalized
plant and realized primal form of the controller then is ℓi2-gain stable with an
ℓi2-gain bounded by γ.

Similar to the CT case, also in DT we can make use of the separability of system
interconnections when transforming to and from the differential domain, see Theo-
rem 6.1. Note that in DT Theorem 6.1 also holds as the interconnection structure
is the same as in CT, hence, the proof for DT trivially follows. Consequently, this
also allows us in DT for independently ‘transforming’ the generalized plant and
controller between the primal and differential domains.

Next, we will discuss each step in more detail.

DPV embedding of the generalized plant

Similar as in CT in Section 6.3.3, as a first step in our proposed controller synthesis
procedure, the differential form of the generalized plant is computed and embedded
in an LPV representation. The differential form of (7.25) is given by

xδ(t+ 1) = Aδ(x̄(t))xδ(t) +Bwzδ(t) +Buuδ(t); (7.29a)
zδ(t) = Cδ,z(x̄(t))xδ(t) +Dzwzδ(t) +Dzuuδ(t); (7.29b)
yδ(t) = Cyxδ(t) +Dywzδ(t); (7.29c)

where Aδ = ∂f
∂x , Cδ,z = ∂hz

∂x with x̄ ∈ πx B, xδ(t) ∈ Rnx , uδ(t) ∈ Rnu , wδ(t) ∈ Rnw ,
zδ(t) ∈ Rnz and yδ(t) ∈ Rny . Analogous as for (6.6), we denote the set of solutions
of (7.29) along a x̄ ∈ πx B solution of (7.25) by Bδ(x̄) (see also (6.7)) and we denote
the complete solution set by B̆δ =

⋃
x̄∈πx B

Bδ(x̄).
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The differential form of the generalized plant (7.29) is then embedded in an LPV
representation, such that we obtain a DPV embedding of (7.25), see Definition 7.5
and also Definition 6.2. We assume that this DPV embedding of (7.25) is constructed
on the region X ⊆ X , where X is compact, and is given by

xδ(t+ 1) = A(p(t))xδ(t) +Bwzδ(t) +Buuδ(t); (7.30a)
zδ(t) = Cz(p(t))xδ(t) +Dzwzδ(t) +Dzuuδ(t); (7.30b)
yδ(t) = Cyxδ(t) +Dywzδ(t); (7.30c)

where p(t) ∈ P ⊂ Rnp is the scheduling-variable with corresponding scheduling-map
η : X → P , s.t. p(t) = η(x̄(t)), and A, Cz are assumed to be a given function class A
(e.g., affine, polynomial, rational, etc.). Similar as in CT, for the controller synthesis
problem to be feasible, we assume that for the LPV representation given by (7.30)
that (A,Bu) is stabilizable and (A,Cy) is detectable, see Definitions 2.17 and 2.18.
We denote the behavior of the DPV embedding (7.30) for a scheduling trajectory
p ∈ PN0 by Bp(p) and the full behavior (i.e., for all p ∈ PN0) by B̆p, similar as
for LPV systems, see (2.27) and (2.28). As the DPV embedding is considered on
X ⊆ X , we denote the restriction of the state trajectories of the generalized plant
representation (7.25) to X by BX := {(x, u, w, z, y) ∈ B | x(t) ∈ X }. The corre-
sponding restriction of the solution set of the differential form (7.29) is denoted by
B̆δ,X := ∪(x̄∈πx BX )Bδ(x̄). Using these behaviors, we then have, through Lemma 5.3
that B̆δ,X ⊆ B̆p, i.e., the behavior of the differential form of the plant (7.29) is
included in the behavior of the DPV embedding (7.30).
Next, we use the DPV embedding (7.30) in order to be able to use convex controller
synthesis through the LPV framework.

Differential controller synthesis

In second step of our procedure, a controller for the differential form of the general-
ized plant (7.29) is synthesized such that the closed-loop interconnection is ℓ2-gain
stable with minimal ℓ2-gain. To convexify this problem, the LPV framework is
used to perform this step. Hence, we synthesize an LPV controller for the DPV
embedding of the generalized plant (7.30), obtained in the previous step. The LPV
controller is considered to be of the form

xδ,k(t+ 1) = Ak(p(t))xδ,k(t) +Bk(p(t))uδ,k(t); (7.31a)
yδ,k(t) = Ck(p(t))xδ,k(t) +Dk(p(t))uδ,k(t); (7.31b)

where xk(t) ∈ Rnxk is the state, uk(t) ∈ Rny is the input and yk(t) ∈ Rnu is
the output of the controller and Ak, . . . , Dk ∈ A. We will refer to (7.31) as the
differential controller. As aforementioned, various methods exist to obtain an LPV
controller (7.31), i.e., to synthesize a DT LPV controller minimizing the ℓ2-gain of
the closed-loop system, see e.g. (Apkarian and Gahinet 1995; M. Ali and Werner
2011; De Caigny et al. 2012) or Section 2.5.3.
More formally, we can formulate the following theorem:
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Theorem 7.4 (Differential closed-loop ℓ2-gain). The closed-loop interconnection of
the differential form of the generalized plant Pδ given by (7.29) and the controller Kδ

given by (7.31), denoted by Fl(Pδ,Kδ), is ℓ2-gain stable and has an ℓ2-gain bounded
by γ for all x̄ ∈ πx̄ BX , if the closed-loop interconnection of the DPV embedding
of the generalized plant Pdpv given by (7.30) and Kδ, denoted by Fl(Pdpv,Kδ), is
ℓ2-gain stable and with a bounded ℓ2-gain of γ for all p ∈ PN0 .

Proof. See Appendix B.5.

Like in CT case, we assume Assumption 6.1 holds. This means we assume that the
controller synthesis has been solved such that Fl(Pδ,Kδ) is classicaly dissipative with
a quadratic (differential) storage function of the form Vδ(xcl, xδ,cl) = x⊤

δ,clMxδ,cl,
where M ≻ 0. Here, xcl = col(x, xk) and xδ,cl = col(xδ, xδ,k).

Note that we can also consider other (Q,S,R) performance notions in this step,
similar as in CT, which will ensure different closed-loop incremental (Q,S,R)
performance notions. For example, if the differential controller is synthesized such
that its closed-loop interconnection with the differential form of the generalized
plant is passive, then, after realization of the controller, incremental passivity of
the primal form of the closed-loop interconnection is ensured.

Next, it is shown how to realize the primal form of the controller based on synthesized
differential controller (7.31) such that the closed-loop interconnection of the primal
form of the controller and primal form of the generalized plant (7.25) is ℓi2-gain
stable.

Primal controller realization

Inspired by realization procedure for CT systems in Section 6.3.5, we make use of
a path integral based realization to obtain the primal form of the controller that
enforces convergence of the plant response from our current trajectory towards a
desired steady-state response ϑ = (x∗, w∗, u∗, z∗, y∗) ∈ BX .

Theorem 7.5 (Primal controller realization). Consider a differential controller Kδ

given by (7.31) synthesized for Pδ given by (7.29) such that Fl(Pδ,Kδ) is ℓ2-gain
stable under Assumption 6.1. Moreover, let (x∗, u∗, y∗) = πx,u,y ϑ ∈ πx,u,y BX be
the (desired) steady-state trajectory of P and consider the nonlinear controller K,
omitting dependence on time for brevity, given by,

q x∆,k = Āk(x, x∗)x∆,k + B̄k(x, x∗)u∆,k; (7.32a)
yk = y∗

k + C̄k(x, x∗)x∆,k + D̄k(x, x∗)u∆,k; (7.32b)

where q is the discrete time-shift operator, (y∗
k, u

∗
k) = (u∗, y∗), x∆,k(t) ∈ Rnxk ,



170 Chapter 7. DT Extension of the Incremental Theory

u∆,k := uk − u∗
k, and

Āk(x, x∗)=
∫ 1

0
Ak

(
η
(
x∗ + λ(x− x∗)

))
dλ, B̄k(x, x∗)=

∫ 1

0
Bk

(
η
(
x∗ + λ(x− x∗)

))
dλ,

C̄k(x, x∗)=
∫ 1

0
Ck

(
η
(
x∗ + λ(x− x∗)

))
dλ, D̄k(x, x∗)=

∫ 1

0
Dk

(
η
(
x∗ + λ(x− x∗)

))
dλ.

(7.33)
The controller K in (7.32) is the primal form of Kδ (7.31) and the differential form
of K is Kδ. Hence, K is called the primal realization of Kδ.

Note that the structure of the controller (7.32) is equivalent to the CT version (6.10).
Therefore, it will also have a structure as is depicted in Figure 6.2. Accordingly, the
proof for Theorem 7.5 also follows along the same line as the proof of Theorem 6.3
and is therefore not repeated here. Also here, in DT, we will refer to (7.32) as the
incremental controller. As also discussed in Chapter 6, the incremental controller
consists of a feedback part, to converge towards the steady-state trajectory, and a
feedforward part, corresponding to the steady-state trajectory. Using the controller
K given by (7.32) we can then formulate the following theorem:

Theorem 7.6 (Closed-loop ℓi2-gain). The closed-loop interconnection Fl(P,K) of a
generalized plant P given by (7.25) and controller K given by (7.32) is ℓi2-gain stable
and its ℓi2-gain is bounded by γfor all x, x̃ ∈ BX , if the closed-loop Fl(Pdpv,Kδ) of
the DPV embedding Pdpv (7.30) and the LPV controller Kδ (7.31) is ℓ2-gain stable
and has a bounded ℓ2-gain of γ for all p ∈ PN0 with a storage function satisfying
Assumption 6.1.

Proof. See Appendix B.5.

Remark 7.5. Theorem 7.6 holds for x, x̃ ∈ BX . Similar to Theorem 6.4, we
can consider a set W̃ ⊆ W s.t. for w, w̃ ∈ W̃N0 we have that x, x̃ ∈ BX . See
Definition 4.9 and Theorem 6.4 for more details.
Remark 7.6. Note that as in the CT case, also in DT, the proposed incremental con-
troller explicitly depends on (u∗, y∗) ∈ πu,y BX corresponding to (x∗, w∗, u∗, z∗, y∗) ∈
BX , hence, explicit knowledge of w∗ is required. As w∗ in the generalized plant
framework can contain besides known disturbances, e.g., references, also unknown
disturbances, a disturbance observer is required in order to estimate the unknown
entries of w∗. For this, we can employ similar design considerations as in CT,
including observer design, see the discussion in Section 6.3.7 for more details.
Remark 7.7. Analogous to the CT incremental controller, also for the DT incremental
controller presented in this section, we can ensure universal shifted and classical
dissipativity of the closed-loop system, see also Section 6.4. The corresponding
results are not repeated here.

With the results we have now presented in this chapter, we have the same tools in
DT as we have in CT for incremental dissipativity based analysis and control of
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nonlinear systems. Moreover, to obtain these results, we have shown that we can
take the same considerations in DT as in CT.

7.6 Controller Synthesis Example

In this section we demonstrate the proposed incremental controller synthesis method
on a simulation example. For comparison, a standard LPV controller, ensuring
ℓ2-gain stability, will also be designed.

Example 7.2 (DT incremental control). Consider the following DT nonlinear
system

xg,1(t+ 1) = 0.1xg,1(t) − xg,2(t); (7.34a)
xg,2(t+ 1) = 0.9 sin(xg,1) + xg,2 + ug(t); (7.34b)

yg(t) = xg,1(t). (7.34c)

For this plant, we want to design a controller which achieves reference tracking.
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Figure 7.4: Generalized plant.

The generalized plant structure that is considered in order to achieve this objective
is depicted in Figure 7.4, where G is the system given by (7.34), K is the to-be-
synthesized controller, r is the reference, We(q) = 0.2(q−0.5)

q+α , M(q) = q+α
q−1 , and

Wu = 0.2, where α = 1
π .

For the synthesis of the incremental controller using the procedure described in
Section 7.5.2, we require a DPV embedding of the generalized plant. As the system
given by (7.34) is the only nonlinear system in the generalized plant (the weighting
filters are linear), we only require computation of the differential form of (7.34)
(as the dynamics of differential form of an LTI system are equivalent to its primal
form). The following DPV embedding on the region X of (7.34) is taken:

xδ,g,1(t+ 1) = 0.1xδ,g,1(t) − xδ,g,2(t); (7.35a)
xδ,g,1(t+ 1) = 0.9p(t)xδ,g,1(t) + xδ,g,2(t) + uδ,g(t); (7.35b)

yδ,g(t) = xδ,g,1(t); (7.35c)

where p(t) = cos(xg,1(t)) ∈ P = [−1, 1] such that η(xg) = cos(xg,1) with xg(t) ∈
X = R2. Note that (7.35) has an affine scheduling dependency. Under these
consideration, we synthesize an incremental controller for (7.34) using the synthesis
procedure described in Section 7.5.2. For the synthesis of the differential controller
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in Step 2 of the synthesis method, see Section 7.5.2, we use a polytopic L2-gain
LPV controller synthesis method implemented in the LPVcore Toolbox (Boef et al.
2021). This synthesis procedure results in a closed-loop ℓi2-gain bound of 1.1.
For comparison, a standard LPV controller is also synthesized in order to achieve
a bounded closed-loop ℓ2-gain. For the synthesis of the standard LPV controller,
the same generalized plant structure as depicted in Figure 7.4 is considered. To
perform standard LPV synthesis, the primal form of the system given by (7.34) is
embedded in an LPV representation on the region X̂ , given by

xg,1(t+ 1) = 0.1xg,1(t) − xg,2(t); (7.36a)
xg,2(t+ 1) = 0.9ps(t) + xg,2 + ug(t); (7.36b)

yg(t) = xg,1(t). (7.36c)

where ps = sinc(xg,1(t)) ∈ [−0.22, 1] such that ηs(xg) = sinc(xg,1) with xg(t) ∈ X̂ =
R2. For synthesis of the standard LPV controller, the LPVcore Toolbox is also used
(however, applied to (7.36)), which results in a closed-loop ℓ2-gain bound of 0.80.
The closed-loop systems with incremental controller and standard LPV controller
are both simulated for a reference r ≡ 1 and r ≡ 2. For the incremental
controller, this corresponds to the steady-state trajectory x∗

g,1(t) = r(t) with
u∗

g(t) = y∗
k(t) = 0.9 sin(x∗

g,1(t)). The trajectories of the closed-loop systems for both
of these controllers can be found in the top two graphs in Figure 7.5. From the
figure, it can be seen that for both references, the incremental controller achieves
similar tracking behavior and it asymptotically converges towards the references.
However, with the standard LPV controller, the output of the plant ends up in a
limit cycle around the reference when r ≡ 2. The closed-loop system with standard
LPV controller displays similar issues as have been observed in CT.
The incremental controller also allows to track and guarantee convergence towards
more complex reference trajectories. In the bottom graph in Figure 7.5, the reference
r(t) = sin(π

8 t) + 2.5 is used. For this reference, the corresponding feedforward
trajectory y∗

k (which is not given due to its complexity) is also added to the output
of the standard LPV controller. However, it can again be seen that also for this
reference, the standard LPV controller is not able to guarantee convergence, even
using feedforward.
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Figure 7.5: Output response of the closed-loop of the plant with standard
LPV controller ( ) and the incremental controller ( ) for the reference
trajectory ( ).

7.7 Conclusions

In this chapter, extensions of the CT incremental dissipativity based analysis and
controller synthesis results to DT nonlinear systems have been proposed. The
obtained DT analysis results, similar to the CT results, use the LPV framework
for efficient computation of the various incremental performance notions. More-
over, also analogous to the CT results, we show that DT incremental (Q,S,R)
dissipativity of nonlinear systems can be analyzed by analyzing ‘classical (Q,S,R)
dissipativity’ of their differential form. Through the DPV embedding and by making
use of the LPV framework, this analysis problem can then be casted as a classical
(Q,S,R) dissipativity check of an LPV representation. This allows for the many
computational techniques of the LPV framework to be used to efficiently solve in-
cremental stability performance analysis problems using convex optimization. This
then gives us a systematic and computationally efficient tool to analyze incremental
stability and performance of both CT and DT nonlinear systems. Moreover, we have
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also proposed a systematic, computationally efficient output-feedback controller
synthesis method to ensure incremental dissipativity of DT nonlinear systems. This
is achieved through combining the results we have presented on incremental dissipa-
tivity analysis of DT nonlinear systems using the LPV framework and extending
the CT incremental controller synthesis results from Chapter 6. We show that
an equivalent controller synthesis procedure as in CT can be used, and that the
resulting incremental controller has the same structure as the CT incremental
controller. Taken together, these results give us a systematic and computationally
efficient framework to ensure and shape closed-loop incremental dissipativity of
both CT and DT nonlinear systems, with the CT case and DT case having the
same considerations.



8
Discrete-Time Extension
of the Universal Shifted
Theory

This chapter discusses the extension of the Continuous-Time (CT) univer-
sal shifted results what we have presented in Chapter 4 to Discrete-Time

(DT) systems. We show that analogous to the CT results, we can use a
velocity representation of the system in order to analyze universal shifted
stability and performance. In DT, this velocity representation corresponds to
the time-difference dynamics of the system. Moreover, like in CT, we show
how the resulting analysis problem of the DT velocity representation can be
cast as a standard Linear Parameter-Varying (LPV) analysis problem. We
also show how these results can be used in order to construct a systematic
controller synthesis method, which achieves closed-loop universal shifted sta-
bility and performance. Finally, we investigate and analyze the capabilities
of the controller synthesis method through a simulation study, which shows
stronger and stability and performance guarantees that we achieve, which
are also advantageous compared to a standard LPV controller design.
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8.1 Introduction

In Chapter 7, we have already presented how we can extend our Continuous-Time
(CT) incremental results of Chapters 5 and 6 to Discrete-Time (DT) systems. In
this chapter, we will show how we can also extend the CT universal shifted results
of Chapter 4 to DT. In CT, we have shown how we can use the velocity form and
analysis and synthesis results of the Linear Parameter-Varying (LPV) framework to
arrive at systematic and computationally efficient methods for analysis and controller
synthesis in order to guarantee universal shifted stability and performance.

While the notion of universal shifted dissipativity for DT system is shortly discussed
in (Simpson-Porco 2019) in order to analyze stability and performance w.r.t. all
equilibrium points of the system, there are to the author’s knowledge no results
available in literature which also try to ensure this notion through control. As afore-
mentioned, in CT, we have seen how the velocity form, i.e., the time-differentiated
dynamics, imply stability and performance properties w.r.t. (non-zero) equilibrium
points, which also has been investigated in several other works (Leith and Leithead
1998a; Kosaraju et al. 2019; Schweidel and Arcak 2022) In DT, the time-difference
dynamics, analogous to the time-differentiated dynamics in CT, have primarily
received attention in the context (nonlinear) Model Predictive Control (MPC) meth-
ods. In the context of MPC, the time-difference dynamics have been used in order
to penalize or constraint the differences between consecutive samples and have also
been use in the context of offset free tracking (Ferramosca et al. 2009; Cisneros
et al. 2016). However, to the author’s knowledge, there have not been results in
literature which connect the time-difference dynamics to stability and performance
guarantees w.r.t. equilibrium points in the nonlinear context.

Therefore, as a contribution of this chapter, we will present how the time-difference
dynamics can be used in order to analyze universal shifted stability and performance
of the system, analogous to the CT results in Chapter 4. Moreover, we will also
show how the analysis of time-difference dynamics can be performed through the
LPV framework and how we can formulate controller synthesis results on the basis
of it to ensure closed-loop universal shifted stability and performance.

First, in Section 8.2, we will discuss universal shifted stability and performance
in the context of DT systems. Next, in Section 8.3, we will present how the DT
velocity based analysis, i.e., analysis based on the time-difference dynamics, can be
connected to universal shifted stability and performance properties of the system.
In Section 8.4, we show how velocity based analysis can in DT also be performed
through the LPV framework. In Section 8.5, we present a systematic controller
synthesis method to guarantee universal shifted stability and performance on the
basis of the time-difference dynamics and the LPV framework. Next, in Section 8.6,
we demonstrate the proposed controller synthesis method through a simulation
study. Finally, in Section 8.7, conclusions are drawn on the presented results.
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8.2 Universal Shifted Stability and Performance

Like we have considered in Section 2.2, we consider DT nonlinear dynamical systems
given by

x(t+ 1) = f(x(t), w(t)); (8.1a)
z(t) = h(x(t), w(t)); (8.1b)

where t ∈ N0 is the discrete-time instant, x(t) ∈ X ⊆ Rnx the state with initial
condition x(0) = x0 ∈ Rnx , w(t) ∈ W ⊆ Rnw is the input of the system, and
z(t) ∈ Z ⊆ Rnz is the output of the system. The sets X and W are assumed to be
open and convex, containing the origin. Moreover, the functions f : X × W → X
and h : X × W → Z are considered to be in C1, i.e., f, h ∈ C1. We define the set of
solutions of (8.1) as

B := {(x,w, z) ∈ (X × W × Z)N0 | (x,w, z) satisfy (8.1)}, (8.2)

and the behavior of (8.1) for a specific input trajectory w̄ ∈ WN0 , by

Bw(w̄) := {(x,w, z) ∈ B | w = w̄ ∈ WN0}. (8.3)

For the nonlinear system given by (8.1), the equilibrium points satisfy

x∗ = f(x∗, w∗); (8.4a)
z∗ = h(x∗, w∗); (8.4b)

where x∗ ∈ X , w∗ ∈ W and z∗ ∈ Z. The set of equilibrium points is then defined as

E := {(x∗, w∗, z∗) ∈ X × W × Z | (x∗, w∗, z∗) satisfy (8.4)}. (8.5)

Define X := πx∗ E , W := πw∗ E , and Z := πz∗ E . Similar as we did for CT
systems, we assume Assumption 4.1 is satisfied.
In DT, we consider the same definition for universal shifted stability as has been
considered in CT, i.e., a system given by (8.1) is universally shifted stable if it is
stable w.r.t. to all its forced equilibrium points, see again Definition 4.1. This then
allows for a trivial extension of the results of Theorem 4.1 to discrete time systems:

Theorem 8.1 (Universal shifted Lyapunov stability in DT). The nonlinear system
given by (8.1) is universally shifted stable, if there exists a function Vs : X ×W → R+

0
with Vs(·, w∗) ∈ C1 and Vs(·, w∗) ∈ Qx∗ for every (x∗, w∗) ∈ πx∗,w∗ E , such that, for
every (x∗, w∗) ∈ πx∗,w∗ E , it holds that

Vs(x(t+ 1), w∗) − Vs(x(t), w∗) ≤ 0, (8.6)

for all t ∈ N0 and x ∈ πx Bw(w ≡ w∗). If (8.6) holds, but with strict inequality
except when x(t) = x∗, then the system is universally shifted asymptotically stable.
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Proof. The proofs follows similarly as the proof of the CT version (i.e., Theorem 4.1)
in Appendix B.2 and therefore it is not repeated.

For universal shifted dissipativity, we can also formulate the extension of Defini-
tion 4.2 to DT, similar to the DT version of classical dissipativity (see Definition 2.13),
which gives us the following definition:

Definition 8.1 (Universal shifted dissipativity of DT systems). The nonlinear
system given by (8.1) is universally shifted dissipative w.r.t. the supply function
ss : W × W × Z × Z , if there exists a storage function Vs : X × W → R+

0 with
Vs(·, w∗) ∈ C0 and Vs(·, w∗) ∈ Qx∗ for every (x∗, w∗) ∈ πx∗,w∗ E , such that

Vs(x(t1 + 1), w∗) − Vs(x(t0), w∗) ≤
t1∑

t=t0

ss(w(t), w∗, z(t), z∗), (8.7)

for all t0, t1 ∈ R+
0 with t1 ≥ t0 and (x,w, z) ∈ B.

As the universal shifted stability and dissipativity conditions in DT are similar to
those in CT, we can trivially extend a few of the CT results in Section 4.2 to DT
systems. Namely, we can trivially extend Theorem 4.2 to DT, which shows that
universal shifted (Q,S,R) dissipativity implies classical (Q,S,R) dissipativity of
the system (considering (0, 0, 0) ∈ E ). Furthermore, Theorem 4.3 can trivially be
extended to DT, which shows how universal shifted dissipativity implies universal
shifted stability under restrictions of the supply function. As both these results are
trivially extended to DT, they are not repeated.
The CT universal shifted performance notions and results we have discussed in
Section 4.2.4 can also easily be extended to DT. Namely, for the universal shifted
extension to the ℓp-ℓq-gain (see also Definition 2.11), we consider the following
definition:

Definition 8.2 (Universal shifted Lp-Lq-gain). A nonlinear system given by (8.1)
is said to have a finite universal shifted ℓp-ℓq-gain, if there is a finite γ ≥ 0 and
function ζs : X × X → R such that for every (x∗, w∗) ∈ πx∗,w∗ E it holds that

∥z − z∗∥q,T ≤ γ ∥w − w∗∥p,T + ζs(x0, x∗), (8.8)

for all T ≥ 0 and (x,w, z) ∈ B with w ∈ ℓpe. The induced universal shifted ℓp-ℓq-
gain of (8.1), denoted as ℓsp-ℓsq-gain, is the infimum of γ such that (8.8) still holds.
If p = q, we will refer to this as the (induced) universal shifted ℓp-gain, denoted as
ℓsp-gain.

Using this definition, the result of Lemma 4.2 can easily be extended to DT to show
that universal shifted (Q,S,R) dissipativity of a DT nonlinear system given by (8.1)
with (Q,S,R) = (γ2, 0,−I) implies that the system has a ℓs2-gain bound of γ.
The CT version of the definition of universal shifted passivity given in Definition 4.4
can also directly be applied to DT systems. This means that the system given by
(8.1) is universally shifted passive is it is universally shifted (Q,S,R) dissipative
with (Q,S,R) = (0, I, 0).
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8.3 Discrete-Time Velocity based Analysis

8.3.1 The DT velocity form and velocity dissipativity

For CT systems in Section 4.3, we have shown how the universal shifted stability and
performance properties of nonlinear systems could be analyzed through the time-
differentiated dynamics, i.e., velocity form of the system. In DT, the counterpart to
time-differentiation is taking difference of the dynamics in time. By doing this, we
get a new representation which we will show can be used to imply universal shifted
stability and performance properties in DT.
Let us introduce x∆(t) := x(t+1)−x(t) ∈ Rnx , w∆(t) := w(t+1)−w(t) ∈ Rnw , and
z∆(t) := z(t+1)−z(t) ∈ Rnz . Based on these variables, we have that time-difference
dynamics of (8.1) can be expressed as

x∆(t+ 1) = f(x(t+ 1), w(t+ 1)) − f(x(t), w(t)); (8.9a)
z∆(t) = h(x(t+ 1), w(t+ 1)) − h(x(t), w(t)). (8.9b)

By Lemma C.1.1, we can then equivalently write the time-difference dynamics (8.9)
in an alternative form, which we will refer to as the (DT) velocity form:

Definition 8.3 (Discrete-time velocity form). For a nonlinear system given by
(8.1), the velocity form is

x∆(t+ 1) = Āv
(
ς(t+ 1), ς(t)

)
x∆(t) + B̄v

(
ς(t+ 1), ς(t)

)
w∆(t); (8.10a)

z∆(t) = C̄v
(
ς(t+ 1), ς(t)

)
x∆(t) + D̄v

(
ς(t+ 1), ς(t)

)
w∆(t); (8.10b)

where (x,w, z) ∈ B, ς = col(x,w), and

Āv(x+, w+, x, w) =
∫ 1

0

∂f

∂x
(x̄(λ), w̄(λ)) dλ,

B̄v(x+, w+, x, w) =
∫ 1

0

∂f

∂w
(x̄(λ), w̄(λ)) dλ,

C̄v(x+, w+, x, w) =
∫ 1

0

∂h

∂x
(x̄(λ), w̄(λ)) dλ,

D̄v(x+, w+, x, w) =
∫ 1

0

∂h

∂w
(x̄(λ), w̄(λ)) dλ,

(8.11)

with x̄(λ) = x+ λ(x+ − x), w̄(λ) = w + λ(w+ − w).

Let us define the operator ∆ for the behavior B of (8.1), given by (8.2), such that

∆B =
{

(x∆, w∆, z∆) ∈ (Rnx × Rnw × Rnz)R
+
0 |

x∆(t) = x(t+ 1) − x(t), w∆(t) = w(t+ 1) − w(t),
z∆(t) := z(t+ 1) − z(t), ∀ t ∈ N0, (x,w, z) ∈ B

}
. (8.12)
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The solution set of (8.10) is then given by Bv := ∆B, and we can also define
Bv,w(w) := ∆Bw(w) for a w ∈ WN0 .
The DT velocity form represents the dynamics of the change between consecutive
time-instances of the original dynamics. This is analogous to the CT velocity form,
whereby the velocity form represents the dynamics of the instantaneous change in
time (i.e., time derivative) of the original dynamics. Similar to the CT results, we
will show that the DT velocity form also connects to universal shifted stability and
performance. Before presenting this connection, we will first present our analysis
results based on the DT velocity form.
Based on the DT velocity form, we formulate the following definition for DT velocity
dissipativity, analogous to the CT definition in Definition 4.6:

Definition 8.4 (DT velocity dissipativity). The nonlinear system given by (8.1) is
velocity dissipative w.r.t. the supply function sv, if there exists a storage function
Vv : Rnx → R+

0 with Vv ∈ C1 and Vv ∈ Q0, such that, for all t0, t1 ∈ R+
0 with

t1 ≥ t0,

Vv(x∆(t1 + 1)) − Vv(x∆(t0)) ≤
t1∑

t=t0

sv(w∆(t), z∆(t)), (8.13)

for all (x∆, w∆, z∆) ∈ Bv.

Similar to the CT case, the DT version of velocity dissipativity can be seen as
‘classical dissipativity’ (see Definition 2.13) of the velocity form of the system.
Moreover, analogous to the CT condition in Lemma 4.3, we can also derive a
condition for DT velocity dissipativity.

Lemma 8.1 (Condition for DT velocity dissipativity). If there exists a storage
function Vv : Rnx → R+

0 with Vv ∈ C1 and Vv ∈ Q0, such that, for all values
w+, w ∈ W and x ∈ X ,

Vv
(
Āv(x+, x, w+, w)(x+ − x) + B̄v(x+, x, w+, w)(w+ − w)

)
− Vv(x+ − x) ≤

sv(w+ − w, C̄v(x+, x, w+, w)(x+ − x) + D̄v(x+, x, w+, w)(w+ − w)), (8.14)

where x+ = f(x,w), then the nonlinear system given by (8.1) is velocity dissipative
w.r.t. the supply function sv.

Proof. See Appendix B.6.

In CT, we could formulate an (infinite dimensional) Linear Matrix Inequality (LMI)
feasibility condition for velocity dissipativity by considering a quadratic storage
function and a quadratic (Q,S,R) supply function, see Theorem 4.4. We will
show that in DT, we can formulate a similar condition. For this, we will consider
quadratic (Q,S,R) supply functions for velocity dissipativity of the form

sv(w∆, z∆) =
[
w∆
z∆

]⊤ [
Q S
⋆ R

] [
w∆
z∆

]
, (8.15)
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where again Q ∈ Snw , S ∈ Rnw×nz , and R ∈ Snz . Moreover, we also consider the
storage function Vv to be quadratic:

Vv(x∆) = x⊤
∆Mx∆ (8.16)

where M ∈ Snx with M ≻ 0. Under these considerations, we can derive the following
theorem:

Theorem 8.2 (DT velocity (Q,S,R) dissipativity condition). The system given by
(8.1) is velocity (Q,S,R) dissipative where R ⪯ 0, if there exists an M ∈ Snx with
M ≻ 0, such that for all (x,w) ∈ X × W, it holds that

(⋆)⊤
[
−M 0
⋆ M

] [
I 0

Av(x,w) Bv(x,w)

]
− (⋆)⊤

[
Q S
⋆ R

] [
0 I

Cv(x,w) Dv(x,w)

]
⪯ 0,

(8.17)
where Av = ∂f

∂x , Bv = ∂f
∂w , Cv = ∂h

∂x , Dv = ∂h
∂w .

Proof. See Appendix B.6.

From the proof of Theorem 8.2, it follows that the condition for velocity (Q,S,R)
dissipativity in DT, can be expressed in terms of the matrix functions Av, . . . , Dv
instead of the matrix functions Āv, . . . , D̄v of the DT velocity form1 (8.10). This
results in a similar condition for velocity (Q,S,R) dissipativity as in CT in Theo-
rem 4.4, which also uses Av, . . . , Dv. Expressing the condition for velocity (Q,S,R)
dissipativity in DT in terms of Av, . . . , Dv instead of Āv, . . . , D̄v simplifies the
condition. Namely, Av, . . . , Dv only depend on two arguments, which results in
the condition needing to be verified at all (x,w) ∈ X × W. On the other hand, a
condition using Āv, . . . , D̄v, which take four arguments, would need to be verified
at all (x,w) ∈ X × W and all (x+, w+) ∈ X × W.
Analogous to the CT condition in Theorem 4.4, we have that the condition in
Theorem 8.2 corresponds to a feasibility check of an infinite dimensional set of LMIs,
as for a fixed (x,w) ∈ X × W (8.17) becomes an LMI. Later, in Section 8.4, we
will see how we can use tools from LPV analysis to reduce this infinite dimensional
set of LMIs to a finite dimensional set, which can computationally efficiently be
verified. This will then gives us computationally efficient tools to analyze velocity
(Q,S,R) dissipativity of a system, like the ones we have developed for CT systems
in Section 4.4.

8.3.2 Induced universal shifted stability

In Section 4.3.3, we have shown how the velocity form in CT can be used to
formulate a condition to imply universal shifted stability of a system. Likewise, we
will show that also in DT, we can formulate a condition for universal shifted stability
of a system using the DT velocity form. Before doing so, let us first introduce the

1Do note that Āv, . . . , D̄v are integrated versions (over the time difference) of Av, . . . , Dv.
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behavior Bv,W :=
⋃

w∗∈W Bv,w(w ≡ w∗), i.e., the behavior of the velocity form for
which the input w(t) = w∗ ∈ W , and hence w∆(t) = 0, for all t ∈ N0.

Theorem 8.3 (Implied universal shifted stability). The nonlinear system given
by (8.1) is universally shifted stable, if there exists a function Vv : Rnx → R+

0 with
Vv ∈ C1 and Vv ∈ Q0, such that

Vv(x∆(t+ 1)) − Vv(x∆(t)) ≤ 0, (8.18)

for all t ∈ N0 and x∆ ∈ πx∆ Bv,W . If (8.18) holds, but with strict inequality except
when x∆(t) = 0, then the system is universally shifted asymptotically stable.

Proof. See Appendix B.6.

Like the proof for Theorem 4.5, also the proof for Theorem 8.3 relies on the
construction of the universally shifted Lyapunov function based on Vv. While in
CT, a similar construction is often referred to as the Krasovskii method (Khalil
2002; Kawano et al. 2021), to the author’s knowledge, an equivalent result in DT
like we have presented here is not available in literature. Moreover, to the author’s
knowledge, this is also the first time that properties of the time-difference dynamics
have been connected to universal shifted stability.
Analogous to the CT condition, we can also interpret the DT condition (8.18) as
the velocity form being (asymptotically) stable.
In CT, we have shown in Theorem 4.6 how velocity dissipativity implies universal
shifted stability, under restriction of sv. Similarly, we can trivially extend the results
of Theorem 4.6 to DT systems for which the same condition on the supply function
holds (see (4.22)), therefore it is not repeated.
With these results, we have shown so far that DT versions of the velocity form and
velocity dissipativity can also be used in order to imply universal shifted stability
of nonlinear systems, analogous to our CT results in Section 4.3.3.

8.3.3 Induced universal shifted dissipativity

Next, we are interested if velocity (Q,S,R) dissipativity also implies universal
shifted (Q,S,R) dissipativity. In CT, in Section 4.3.4, we have not been able
to proof completely that velocity (Q,S,R) dissipativity implies universal shifted
(Q,S,R) dissipativity, i.e., Proposition 4.1. Nevertheless, we have shown results in
Section 4.3.4 that link these dissipativity concepts under some assumptions. While
also in DT, we are not able to completely proof Proposition 4.1, we will present
results that link the two, which are analogous to the CT results in Section 4.3.4.
Like we considered in CT, instead of considering nonlinear system given by (8.1),
we will also restrict ourselves here to nonlinear systems that can be represented as

x(t+ 1) = f(x(t)) +Bw(t); (8.19a)
y(t) = Cx(t). (8.19b)
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Also for the DT system given by (8.1), we can always transform (8.1) to the form
(8.19) at the cost of increasing state dimension, e.g., by appending appropriate
filters (see the CT result in Appendix C.2.1). For (8.19), we will also assume in
this section that X , besides being convex, is compact.
For a nonlinear system given by (8.19), the equilibrium points (x∗, w∗, z∗) ∈ E
satisfy

x∗ = f(x∗) +Bw∗; (8.20a)
y∗ = Cx∗; (8.20b)

and the velocity form of (8.19) is given by

x∆(t) = Āv(x(t+ 1), x(t))x∆(t) +Bw∆(t); (8.21a)
z∆(t) = Cx∆(t); (8.21b)

for which now Āv(x+, x) =
∫ 1

0
∂f
∂x (x+ λ(x+ − x)) dλ.

Analogous to the CT results, we will next connect velocity (Q,S,R) dissipativity for
(Q,S,R) tuples for which S = 0, Q ⪰ 0, and R ⪯ 0 to universal shifted performance
notions that can be characterized by a similar (Q,S,R) universal shifted supply
function. Like in CT, we assume that Assumption 4.2 holds for (8.19), i.e., for
(8.19), we assume CB = 0. Moreover, we take the following assumptions, analogous
to Assumptions 4.3 and 4.4 in CT:

Assumption 8.1. Given a matrix T ∈ Snz with T ⪯ 0, assume that there exists
an α ∈ R+ such that for all x∗ ∈ X and x ∈ X

(⋆)⊤TC
(
Āv(x, x∗) − I

)
(x− x∗) ≤ α−1(⋆)⊤TC(x− x∗). (8.22)

Assumption 8.2. For a given (x∗, w∗, z∗) ∈ E , assume that w is generated by the
exosystem

w(t+ 1) = Aw(w(t) − w∗) + w∗, (8.23)
where Aw ∈ Rnw×nw is Schur and ∥Aw − I∥ ≤ β. Define the corresponding behavior
as

W :=
{
w ∈ WN0 | w satisfies (8.23)

}
. (8.24)

Under these assumptions, we can show the following result, similar to Theorem 4.7:

Theorem 8.4 (Universal shifted performance from velocity dissipativity). If a
nonlinear system given by (8.19) is velocity (Q,S,R) dissipative for the (Q,S,R)
tuple where S = 0, Q ⪰ 0, and R ⪯ 0, , where R satisfies Assumption 8.1,
Assumptions 4.2 and 8.2 hold for every (x∗, w∗, z∗) ∈ E , and x∆(0) = 0, then for
every (x∗, w∗, z∗) ∈ E , it holds that

T∑
t=0

β2(⋆)⊤Q(z(t) − w∗) + α−1(⋆)⊤R(z(t) − z∗) > 0, (8.25)

for all T > 0 and (w, z) ∈ πw,z B with w ∈ W.
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Proof. See Appendix B.6.

Similarly, applying the result of Theorem 8.4 to the (Q,S,R) tuple (Q,S,R) =
(γ2I, 0,−I), corresponding the (universal shifted) L2-gain, we obtain the following
corollary:

Corollary 8.1 (Bounded Ls2-gain from velocity dissipativity). If a nonlinear
system given by (8.19) is velocity (Q,S,R) dissipative for (Q,S,R) = (γ2I, 0,−I),
where R = −I satisfies Assumption 8.1, Assumptions 4.2 and 8.2 hold for every
(x∗, w∗, z∗) ∈ E , and x∆(0) = 0, then the system has an Ls2-gain bound of γ̃ =√
αβ2γ2.

Proof. The proof follows in a similar manner as the proof of Corollary 4.1 in
Appendix B.2.

Like in CT, due to technicalities, Theorem 8.4 and Corollary 8.1 are what we
can prove in terms of the connection between velocity (Q,S,R) dissipativity and
universal shifted (Q,S,R) dissipativity. Nonetheless, based on the results that we
obtain for controller synthesis (see Section 8.6), there are also strong indications for
DT nonlinear systems that Proposition 4.1 holds true.

8.4 Convex Universal Shifted Analysis

In the previous section, we have shown how the DT velocity form (8.10) can be used
to formulate the concept of velocity dissipativity which can then be used in order
to imply universal shifted stability and performance properties of the primal form
of the system. This is similar to what we have shown for CT systems in Chapter 4.
Furthermore, we have shown in Theorem 8.2 how velocity (Q,S,R) dissipativity in
DT could be analyzed through a feasibility check of an infinite dimensional set of
LMIs. Next, we will discuss how we can make the analysis computationally feasible
through the use of methods from the LPV framework.
In Section 4.4, we have shown in the CT case that the CT velocity form could
be embedded in an LPV representation, obtaining a so-called Velocity Parameter-
Varying (VPV) embedding. Through the VPV embedding, we can cast the velocity
(Q,S,R) dissipativity analysis problem as a classical (Q,S,R) dissipativity problem
of the VPV embedding. This is also directly connected to the matrix inequality
condition (4.20) in Theorem 4.4. Namely, through the VPV embedding, the matrix
inequality condition (4.20) becomes equivalent to the LPV based matrix inequality
condition (2.37).
In the DT case, the matrix inequality condition for velocity (Q,S,R) dissipativ-
ity given in Theorem 8.2 uses the matrix functions Av, . . . , Dv instead of matrix
functions Āv, . . . , D̄v corresponding to the (DT) velocity form (8.10) (which are inte-
grated versions of Av, . . . , Dv). While, as aforementioned, a similar condition could
be formulated that uses Āv, . . . , D̄v, it would significantly increase the complexity of
the condition, as the resulting condition would need to hold for all (x,w) ∈ X × W
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and all (x+, w+) ∈ X × W (corresponding to all the arguments of Āv, . . . , D̄v). The
current condition (8.17) only needs to hold at all (x,w) ∈ X × W. While we could
also construct an LPV embedding of the DT velocity form (8.10), this would result
in a more complex embedding procedure due the increased complexity of Āv, . . . , D̄v
(compared to Av, . . . , Dv).
Nonetheless, despite this difference between the matrix inequality condition and the
velocity form in DT, we can still use the LPV framework to arrive at an LPV based
analysis condition. Namely, instead of embedding the DT velocity form in an LPV
representation, we just ‘embed’ the matrix functions Av, . . . , Dv (used in (8.17)) in
LPV matrix functions A, . . . ,D. More concretely, for a region X × W ⊆ X × W,
we construct the LPV matrix functions A, B, C, D, belonging to a given class of
functions A (e.g., affine or rational), and function η : X × W → P with p = η(x,w)
and P ⊇ η(X ,W ), such that, ∀ (x,w) ∈ X × W :

A(η(x,w)) = Av(x,w), B(η(x,w)) = Bv(x,w),
C(η(x,w)) = Cv(x,w), D(η(x,w)) = Dv(x,w).

(8.26)

If X × W = X × W, then condition (8.17) can equivalently be verified by ensuring

(⋆)⊤
[
−M 0
⋆ M

] [
I 0

A(p) B(p)

]
− (⋆)⊤

[
Q S
⋆ R

] [
0 I

C(p) D(p)

]
⪯ 0, (8.27)

for all p ∈ P , which is equivalent to the condition for classical (Q,S,R) dissipativity
of an LPV state-space representation in (2.37) (considering M in (2.37) is a constant
matrix).
Therefore, also in DT, we can still check velocity (Q,S,R) dissipativity through
the LPV framework. Combined with the results of Section 8.3, we can also analyze
universal shifted stability and performance through the LPV framework. This also
give us in DT a systematic and computationally efficient tool for universal shifted
stability and performance analysis of nonlinear systems, similar to what we have
shown for CT systems.
While we have shown in Chapter 7 that the analysis results for incremental stability
and performance in CT and DT are equivalent, with the results presented in this
chapter, we have now seen that for universal shifted stability and performance there
are some differences between the CT and DT results for analysis. Namely, while
in both CT and DT we can formulate a velocity form to analyze universal shifted
properties, the velocity forms represent the time-differentiated dynamics in CT, while
it represents the time-difference dynamics in DT. Due to these differences, slightly
different assumptions have to be considered for the results presented in Section 8.3.3.
Similarly, in this section, we have also shown how we do not directly use a VPV
embedding in DT to make the velocity based analysis results computationally
feasible. Nevertheless, in the end, we can still come to analogous results in CT and
DT for universal shifted stability and performance analysis based on the velocity
form.
In the next section, we will show how we can also develop a systematic controller
synthesis method in order to ensure and shape universal shifted stability and
performance through the use of the DT velocity form.
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8.5 Convex Universal Shifted Synthesis

8.5.1 Controller synthesis problem

Like we considered for the universal shifted (and incremental) controller synthesis
problem in CT, we again make use of the generalized plant concept in order
systematically and intuitively ensure and shape universal shifted stability and
performance requirements. In this case, we consider a DT nonlinear generalized
plant of the form

x(t+ 1) = f(x(t)) +Bww(t) +Buu(t); (8.28a)
z(t) = hz(x(t)) +Dzww(t) +Dzuu(t); (8.28b)
y(t) = Cyx(t) +Dyww(t); (8.28c)

where x(t) ∈ X ⊆ Rnx , w(t) ∈ W ⊆ Rnw and z(t) ∈ Z ⊆ Rnz are the state, gener-
alized disturbance and generalized performance signals of the plant, respectively,
and where u(t) ∈ U ⊆ Rnu is the control input and y(t) ∈ Y ⊆ Rny is the measured
output. The sets X , W, U , Z and Y are open and convex, containing the origin.
The functions f : X → X and hz : X → Z are assumed to be in C1, i.e. f, hz ∈ C1.
Furthermore, Bw ∈ Rnx×nw , Bu ∈ Rnx×nu , Dzw ∈ Rnz×nw , Dzu ∈ Rnz×nu , and
Dyw ∈ Rny×nw . The solution set of (8.28) will from here on be denoted by B and
given by

B :=
{

(x,w, u, z, y) ∈ (X × W × U × Z × Y)N0 |

(x,w, u, z, y) satisfies (8.28)
}
. (8.29)

Remark 8.1. Note that while (8.28) might seem restrictive, a larger class of nonlinear
generalized plants of the form

x(t+ 1) = f(x(t), u(t)) +Bww(t); (8.30a)
z(t) = hz(x(t), u(t)) +Dzww(t); (8.30b)
y(t) = hy(x(t)) +Dyww(t); (8.30c)

where f : X × U → X , hz : X × U → Z and hy : X → Y with f, hz, hy ∈ C1, can
be written in the form (8.28) by interconnecting appropriate filters to u and y of
(8.30). See Appendix C.2.2 for an example of such a procedure in CT.

The to-be-designed controller K for the generalized plant P (8.28) is considered to
be of the form

xk(t+ 1) = fk(xk(t), uk(t)); (8.31a)
yk(t) = hk(xk(t), uk(t)); (8.31b)

where xk(t) ∈ Rnxk is the state of the controller, uk(t) ∈ Rnuk is its input, and yk(t) ∈
Rnyk is its output. Moreover, fk : Rnxk ×Rnuk → Rnxk and hk : Rnxk ×Rnuk → Rnyk .
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The closed-loop interconnection of P given by (8.28) and K given by (8.31) for
which uk = y and u = yk is denoted by Fl(P,K). Note that this closed-loop
interconnection will be a system of the form (8.1) with input w and output z.
Moreover, we assume that (8.28) is a generalized plant in the sense that there exists
a controller K such that the closed-loop interconnection Fl(P,K) is universally
shifted stable, see also Definition 4.8 and Proposition 4.2.
Our objective for controller synthesis is then to synthesize a controller K such
that Fl(P,K) is universally shifted stable and satisfies a (desired) universal shifted
performance criteria. Like for the CT results in Chapter 4, the procedure will be
exemplified by considering the ℓs2-gain and universal shifted performance criteria,
which we will aim to minimize. However, the procedure can also be used when
other (Q,S,R) performance notions are considered.

8.5.2 Universal shifted controller synthesis procedure

Overview

In this section, we will discuss the proposed controller synthesis method to achieve
universal shifted stability and performance in DT. As aforementioned, for this
we will exploit of the DT velocity form, similar to the CT case. Like in CT, to
simplify the discussion, we will also assume Proposition 4.1 to be true for DT
system, meaning we will consider that velocity (Q,S,R) dissipativity of a system
implies universal shifted (Q,S,R) dissipativity of that system for the same tuple
(Q,S,R).
In CT, we have shown how we can embed the velocity form in an LPV representation
to obtain a VPV embedding. This has been used to accommodate the controller
synthesis procedure, see Section 4.5.2. However, as has been discussed in Section 8.4,
doing the same in DT leads to a more complex embedding procedure. Next, we
will show that we can actually use the differential form and DT incremental
controller synthesis results that have been presented in Section 7.5 to ensure
universal shifted stability and performance. While incremental (Q,S,R) dissipativity
implies universal shifted (Q,S,R) dissipativity, see Theorems 5.3 and 7.2, we
will show that under some restrictions the DT incremental controller design can
be simplified. Under these restrictions, we cannot ensure incremental (Q,S,R)
dissipativity anymore, however, they will imply DT velocity (Q,S,R) dissipativity.
Through the presented velocity (Q,S,R) dissipativity results (Section 8.3), we will
then ensure universal shifted stability and performance of the closed-loop.
Next, we will give an overview of the proposed procedure, after which more details
are given on the specifics of the procedure and how the aforementioned implications
will follow. While the procedure will use the DT incremental controller synthesis
results that have been presented in Section 7.5, we will present for clarity all the
keys steps and results that are required for the proposed DT universal shifted
controller design.
Similar to the CT universal shifted and incremental controller synthesis methods,
we propose a three step procedure in order to obtain a DT controller which ensures
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universal shifted stability and a bounded ℓs2-gain of the closed-loop system:

1. For the generalized plant given by (8.28), its differential form is computed,
which is then used to construct a Differential Parameter-Varying (DPV)
embedding of (8.28).

2. For the DPV embedding of the generalized plant, an LPV controller is syn-
thesized to ensure a minimal closed-loop L2-gain γ.

3. The previously synthesized LPV controller is realized into a primal form
such that the resulting closed-loop interconnection of the primal form of the
generalized plant and realized primal form of the controller is universally
shifted stable and its ℓs2-gain is bounded by γ.

The first two steps of this proposed approach are equivalent to the first two steps of
the proposed DT incremental controller design approach in Section 7.5. However,
in the third and final step, we make restrictions to the realization procedure. As
aforementioned, the restrictions will then be used to simplify the resulting realization
procedure. Under these simplification, we will still be able to imply DT velocity
(Q,S,R) dissipativity and consequently universal shifted stability and performance
of the closed-loop.

DPV embedding of the generalized plant

For the first step in the procedure, the differential form of (8.28) is computed and
embedded in an LPV representation, resulting in a DPV embedding of (8.28). The
differential form of (8.28) is given by

xδ(t+ 1) = Aδ(x̄(t))xδ(t) +Bwzδ(t) +Buuδ(t); (8.32a)
zδ(t) = Cδ,z(x̄(t))xδ(t) +Dzwzδ(t) +Dzuuδ(t); (8.32b)
yδ(t) = Cyxδ(t) +Dywzδ(t); (8.32c)

where Aδ = ∂f
∂x , Cδ,z = ∂hz

∂x with x̄ ∈ πx B, xδ(t) ∈ Rnx , uδ(t) ∈ Rnu , wδ(t) ∈ Rnw ,
zδ(t) ∈ Rnz and yδ(t) ∈ Rny . We denote the set of solutions of (8.32) along a
x̄ ∈ πx B solution of (8.28) by Bδ(x̄) (see also (6.7)) with the complete solution set
denoted by B̆δ =

⋃
x̄∈πx B

Bδ(x̄), see also (6.6) and (6.7).

The differential form, given by (8.32), is then embedded in an LPV representation
such that we obtain a DPV embedding of (8.28), see also Definitions 6.2 and 7.5.
We assume that the DPV embedding is constructed on the region X ⊆ X , where X
is compact, and is given by

xδ(t+ 1) = A(p(t))xδ(t) +Bwzδ(t) +Buuδ(t); (8.33a)
zδ(t) = Cz(p(t))xδ(t) +Dzwzδ(t) +Dzuuδ(t); (8.33b)
yδ(t) = Cyxδ(t) +Dywzδ(t); (8.33c)

where p(t) ∈ P ⊂ Rnp is the scheduling-variable with corresponding scheduling-map
η : X → P, s.t. p(t) = η(x̄(t)). Moreover, the matrix functions A, Cz are assumed
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to be of a user chosen function class A, such as affine, polynomial, rational, etc.
Furthermore, for the controller synthesis problem to be feasible, we assume that
for (8.33), (A,Bu) is stabilizable and (A,Cy) is detectable, see Definitions 2.17
and 2.18.

The behavior of the DPV embedding (8.33) for a given scheduling trajectory p ∈ PN0

is denoted by Bp(p) and the full behavior of the DPV embedding is denoted by
(i.e., for all p ∈ PN0) B̆p, similar as for LPV systems, see (2.27) and (2.28). As the
DPV embedding is considered on X ⊆ X , we will denote the restriction of the state
solutions of the generalized plant (8.28) to X by BX := {(x, u, w, z, y) ∈ B | x(t) ∈
X }. The corresponding restriction of the solution set of the differential form (8.32)
is denoted by B̆δ,X := ∪(x̄∈πx BX )Bδ(x̄). Using these behaviors, we have through
Lemma 5.3 (which also holds in DT, see Section 7.3) that B̆δ,X ⊆ B̆p. This means
that the behavior of the differential form of the plant (8.32) is included in the
behavior of the DPV embedding (8.33).

Next, we use the DPV embedding (8.33) in order to be able to use the convex
controller synthesis results of the LPV framework.

Controller synthesis for the DPV embedding

In the second step of the procedure, we use the DPV embedding (8.33) to be able
to use the convex synthesis results of the LPV framework to synthesize a controller.
More concretely, we synthesize an LPV controller for (8.33) in order to ensure the
closed-loop has a bounded (and minimal) ℓ2-gain. The synthesized LPV controller
is considered to be of the form:

xδ,k(t+ 1) = Ak(p(t))xδ,k(t) +Bk(p(t))uδ,k(t); (8.34a)
yδ,k(t) = Ck(p(t))xδ,k(t) +Dk(p(t))uδ,k(t); (8.34b)

where xk(t) ∈ Rnxk is the state, uk(t) ∈ Rny is the input and yk(t) ∈ Rnu is the
output of the controller and Ak, . . . , Dk ∈ A. As also mentioned in Section 7.5.2,
various methods exist to synthesize a controller (8.34) such that the closed-loop
ℓ2-gain is minimized, see e.g. (Apkarian and Gahinet 1995; M. Ali and Werner
2011; De Caigny et al. 2012) and also Section 2.5.3. The synthesized controller then
gives us the following result (also given in Theorem 7.4):

Theorem 8.5 (Differential closed-loop ℓ2-gain). The closed-loop interconnection of
the differential form of the generalized plant Pδ given by (8.32) and the controller
Kδ given by (8.34), denoted by Fl(Pδ,Kδ), is classically dissipative and has an
ℓ2-gain bounded by γ for all x̄ ∈ πx̄ BX , if the closed-loop interconnection of the
DPV embedding of the generalized plant Pdpv given by (8.33) and Kδ, denoted by
Fl(Pdpv,Kδ), is classically dissipative with a bounded ℓ2-gain of γ for all p ∈ PN0 .

Proof. See the proof of Theorem 7.4 in Appendix B.5.
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Similar to the CT and DT incremental controller synthesis procedures, we assume
that Assumption 6.1 holds in order to facilitate the realization procedure in the
next step. Consequently, we assume that the synthesis problem has been solved
such that Fl(Pδ,Kδ) is classically dissipative with a quadratic (differential) storage
function of the form Vδ(xcl, xδ,cl) = x⊤

δ,clMxδ,cl, where M ≻ 0, xcl = col(x, xk), and
xδ,cl = col(xδ, xδ,k).

DT universal shifted controller realization

In the final step of the procedure, we use the synthesized LPV controller (8.34) of
the previous step in order to realize our universal shifted controller that ensures
closed-loop universal shifted stability and performance.
This is achieved using the following idea. For the incremental controller realization
in CT in Section 6.3.5 and similarly in DT in Section 7.5.2, a path integral realization
is used to converge towards a desired steady-state response ϑ = (x∗, w∗, u∗, z∗, y∗) ∈
BX . As ϑ is any trajectory in BX in the incremental realization, we obtain our
incremental stability and incremental performance guarantees. For the DT universal
shifted controller realization instead of considering any ϑ ∈ BX , we restrict ourselves
to a single specific trajectory. Namely, we consider ϑ to be the current trajectory
shifted one time instance back. Based on this restriction, we will show that we
can simplify the incremental controller realization (7.32) (which is equivalent to
the CT version (6.10)). Moreover, as ϑ is now restricted to the current trajectory
shifted one time instance back, we have stability and performance guarantees w.r.t.
this time shifted trajectory. This can then be connected to the DT velocity form,
which expresses the time-difference dynamics, and therefore we can connect it to
DT velocity dissipativity. Through velocity dissipativity, we can then establish the
connection to universal shifted stability and performance through the results in
Sections 8.3.2 and 8.3.3. This idea is formalized in the following theorem:

Theorem 8.6 (DT universal shifted controller realization). Consider the controller
Kδ, given by (8.34), synthesized for Pδ, given by (8.32), such that the closed-loop is
classically dissipative and has a bounded ℓ2-gain of γ on X , satisfying Assumption 6.1.
Moreover, consider the nonlinear controller K, omitting dependence on time for
brevity, given by

q x̆k = Ăk(x, x−)x̆k + B̆k(x, x−)uk; (8.35a)
yk = C̆k(x, x−)x̆k + D̆k(x, x−)uk; (8.35b)

where q is the discrete time-shift operator, x− = x(t− 1), x̆k(t) ∈ Rnuk +nxk +nyk is
the state of the controller, and where

Ăk(x, x−) =

 0 0 0
−B̄k(x, x−) Āk(x, x−) 0
−D̄k(x, x−) C̄k(x, x−) I

 , B̆k(x, x−) =

 I
B̄k(x, x−)
D̄k(x, x−)

 ,
C̆k(x, x−) =

[
−D̄k(x, x−) C̄k(x, x−) I

]
, D̆k(x, x−) = D̄k(x, x−),

(8.36)
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with
Āk(x, x−) =

∫ 1

0
Ak

(
η
(
x− + λ(x− x−)

))
dλ,

B̄k(x, x−) =
∫ 1

0
Bk

(
η
(
x− + λ(x− x−)

))
dλ,

C̄k(x, x−) =
∫ 1

0
Ck

(
η
(
x− + λ(x− x−)

))
dλ,

D̄k(x, x−) =
∫ 1

0
Dk

(
η
(
x− + λ(x− x−)

))
dλ.

(8.37)

The controller K given by (8.35) ensures for the generalized plant P given by (8.28)
that the closed-loop interconnection Fl(P,K) is velocity (Q,S,R) dissipative for
(Q,S,R) = (γ2I, 0,−I) on X .

Proof. See Appendix B.6.

Through Theorem 8.6, we have that the controller given by (8.35) ensures closed-
loop (Q,S,R) velocity dissipativity with (Q,S,R) = (γ2I, 0,−I). From the results
presented in Sections 8.3.2 and 8.3.3, this implies universal shifted stability and
quadratic universal shifted performance of the closed-loop. Therefore, we will refer
to the controller given by (8.35) as the (DT) universal shifted controller. Moreover,
under Proposition 4.1, we can imply universal shifted (Q,S,R) dissipativity of the
closed-loop system with (Q,S,R) = (γ2I, 0,−I). This then implies a closed-loop
Ls2-gain bound of γ. As aforementioned, for the controller in Theorem 8.6, other
(Q,S,R) performance metrics can also be considered. For the universal shifted
controller, we require knowledge of the state2 at the previous time instant (x−
in (8.35)). At initialization, the previous time instant of the state is not known.
Therefore, for implementation of the controller, the previous time instant of the
state is taken equal to its current value.

Note that similar as for CT universal shifted and incremental results, see Sec-
tions 4.5.3 and 6.3.6, one can consider a set W̃ such that for w ∈ W̃N0 ∩ ℓ2e the
state x(t) stays in the region X for all t ∈ N0, i.e., X is invariant. Meaning that
we stay in the set on which the controller was designed (specifically the set that is
considered during the second step, where an LPV controller for the DPV embedding
is synthesized). However, as aforementioned, computing the set W̃ is challenging.

The realization of the universal shifted controller K given by (8.35) based on the LPV
controller Kδ given by (8.34) can also be interpreted as connecting a time-difference
operator and time-summation operator to the input and output of Kδ, respectively.
This is similar to the interpretation of the CT universal shifted realization whereby
time differentiation and time integration operators are connected, see Figure 4.3.

As mentioned in Section 8.4, for universal shifted analysis using the velocity form,
there are a few differences between the CT and DT case due to the differences

2Only the part of the state that the scheduling-map η depends on is required to be measured.
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yu

K

∆y∆u
Σ ∆

Figure 8.1: Universal shifted controller realization K in DT through time difference
and time summation operations ∆ and Σ, respectively.

between the CT and DT velocity forms. Similarly, as we have seen in this section,
the different velocity forms in CT and DT also result in a different structure for the
resulting universal shifted controller (see Theorem 4.12 and Theorem 8.6). While
for the incremental dissipativity based controller synthesis results, the CT and DT
incremental controller have the same structure, this is not the case for the CT and
DT universal shifted controller. Nonetheless, we still have analogous results and
similar steps for the universal shifted controller design procedures in CT and DT.

8.5.3 Reference tracking and disturbance rejection

The presented DT universal shifted controller design, analogous to the CT design,
makes use of the velocity form and velocity dissipativity to ensure universal shifted
stability and performance of the closed-loop. Like in CT, this has as an advantage
that explicit knowledge of the (closed-loop) equilibrium points is not required.
However, it is still important that the controller is designed in such a way that we
converge toward the desired point, especially in reference tracking applications.

In Section 4.5.4, we have proposed the use of explicit integral action in the controller,
which has also resulted in a simplified realization procedure. Here, in DT, we
propose a similar solution. Like mentioned in Section 4.5.4, for reference tracking
and disturbance rejection purposes, we assume the measured output of the plant
to be of the form y = col(y1, y2), where y1 contains signals to be tracked and y2
contains other to-be-controlled variables. In order to achieve (constant) reference
tracking for y1, we can include a DT (integral) filter in the loop (of the generalized)
plant, like we have depicted in Figure 4.4.

In DT, an integration filter corresponds to summation over time. Therefore, we can
simplify the realization of the controller in Theorem 8.6, as it can be interpreted as
appending time summation and time difference operators to the synthesized LPV
controller Kδ, see Figure 8.1. Similar to the CT result in Corollary 4.2, we can then
formulate the following corollary:

Corollary 8.2 (Universal shifted realization with integral action). Consider a
generalized plant which includes an explicit DT integrator filter of the form M(q) =
q+α
q−1 (where q is the discrete time-shift operator and −1 < α < 1) in the loop, such
that the (to-be-designed) controller K and M connect such as depicted in Figure 4.4
where y2 is empty, i.e., y1 = y, see also Figure 4.5. For Kδ given by (8.34), the
interconnection of the primal realization of the controller K and M can be expressed
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as (8.35) where B̆k and D̆k are given as in (8.36), and Ăk and C̆k are given by

Ăk(x, x−) =

 0 0 0
αB̄k(x, x−) Āk(x, x−) 0
αD̄k(x, x−) C̄k(x, x−) I

 ,
C̆k(x, x−) =

[
αD̄k(x, x−) C̄k(x, x−) I

]
,

(8.38)

where again Āk, B̄k, C̄k, and D̄k are given as in (8.37).

Proof. See Appendix B.6.

8.6 Example

In this section, we will demonstrate the proposed DT universal shifted controller
design through a simulation study. Moreover, the resulting controller will also be
compared to a standard LPV controller design.

Example 8.1 (DT universal shifted control). We consider the DT nonlinear system
that has also been considered in Example 7.2. This DT nonlinear system is given
by

xg,1(t+ 1) = 0.1xg,1(t) − xg,2(t); (8.39a)
xg,2(t+ 1) = 0.9 sin(xg,1) + xg,2 + ug(t); (8.39b)

yg(t) = xg,1(t). (8.39c)

For this plant we want to design a controller which achieves constant reference
tracking.
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Figure 8.2: Generalized plant.

We consider the same generalized plant structure and weightings filters that have
been considered in Example 7.2 for this system. This generalized plant structure
is depicted in Figure 8.2, where G is the system given by (8.39), K is the to-be-
synthesized controller, r is the reference, We(q) = 0.2(q−0.5)

q+α , M(q) = q+α
q−1 , and

Wu = 0.2, where α = 1
π .

For universal shifted controller synthesis procedure described in Section 8.5, we
require a DPV embedding of the generalized plant. As the plant (8.39) is the only
nonlinear system in the generalized plant (the weighting filters are linear), we only
require computation of the differential form of (8.39) (as the dynamics of differential
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form of an LTI system are equivalent to its primal form). The following DPV
embedding on the region X of (8.39) is taken:

xδ,g,1(t+ 1) = 0.1xδ,g,1(t) − xδ,g,2(t); (8.40a)
xδ,g,1(t+ 1) = 0.9p(t)xδ,g,1(t) + xδ,g,2(t) + uδ,g(t); (8.40b)

yδ,g(t) = xδ,g,1(t); (8.40c)

where p(t) = cos(xg,1(t)) ∈ [−1, 1] such that η(xg) = cos(xg,1) with xg(t) ∈ X = R2.
Note that this is the same DPV embedding that is considered in Example 7.2.
For the synthesis of the L2-gain optimal LPV controller in the second step of the
procedure, the polytopic LPV synthesis method in the LPVcore Toolbox (Boef
et al. 2021) is used. The resulting closed-loop of the DPV embedding of the
generalized plant and LPV controller achieves an L2-gain of 1.1. This means, under
Proposition 4.1, that the primal closed-loop achieves an Ls2-gain of 1.1. As the
generalized plant contains the integral weighting filter M , we also use the result
of Corollary 8.2 to simplify the interconnection of the realized universal shifted
controller and the filter M .
For comparison, we will also consider the standard LPV controller and incremental
controller that are designed in Example 7.2 for the same system. These controllers
consider the same generalized plant structure and weighting filters as the universal
shifted controller design. The standard LPV controller achieves a closed-loop ℓ2-gain
bound of 0.80, while the incremental controller achieves a closed-loop Li2-gain of
1.1.
The closed-loop systems with universal shifted controller, standard LPV controller,
and incremental controller are simulated for a reference r ≡ 1 and r ≡ 2. The
trajectories of the closed-loop systems for these controllers can be found in Figure 8.3.
From the figure, it can be seen that while the universal shifted controller has slower
settling time than the LPV controller, for both references the universal shifted
controller achieves similar tracking behavior and it asymptotically converges towards
the reference. On the other hand, the output of the plant under the LPV controller
ends up in a limit cycle for r ≡ 2.
Compared to the incremental controller design, the universal shifted controller
displays quite different behavior, as can be seen in Figure 8.3. Namely, for the
same constant reference, the incremental controller overshoots the to-be-followed
reference, while the universal shifted controller does not have any overshoot. The
universal shifted controller also has slightly higher settling time than the incremental
controller. This difference is partly due to the feedforward action that is inherent
to the incremental controller design, which is not present in the universal shifted
controller design. Despite these differences, both the incremental controller and the
universal shifted controller achieve there desired global stability and performance
guarantees.
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Figure 8.3: Output response of the closed-loop of the plant with standard
LPV controller ( ), the universal shifted controller ( ), and incremental
controller ( ) for the reference trajectory ( ).

8.7 Conclusions

In this chapter, we have presented extensions of the CT universal shifted analysis
and controller synthesis methods to DT systems. We have seen that similar to the
CT results, we could analyze universal shifted stability and performance through
analysis of the velocity form of the system, which in DT represents the time-difference
dynamics. Analogous to the CT case, we have shown that also in DT velocity
(Q,S,R) dissipativity implies universal shifted stability and under assumptions
also quadratic universal shifted performance. Moreover, we have also shown how
the analysis of velocity (Q,S,R) dissipativity can be cast as an LPV analysis
problem, similar to what we have shown in CT. Based on the DT velocity form
and using the DT incremental controller synthesis results, we have also shown that
we could then obtain a systematic and computationally efficient universal shifted
controller synthesis procedure for DT nonlinear systems, also making use of LPV
methods. Combined with the CT results of Chapter 4, this gives us a systematic
and computationally efficient framework to ensure and shape closed-loop universal
shifted stability and performance of both CT and DT nonlinear systems.





9
Scheduling Dimension
Reduction of LPV
Models

S cheduling Dimension Reduction (SDR) methods allow for a reduction
of the number of scheduling-variables of an Linear Parameter-Varying

(LPV) model based on a given data set. This allows for reduced complexity
when the resulting system is used for analysis and or controller synthesis and
also reducing conservatism by taking into account the expected behavior of
the underlying system through the data set. In this chapter, the existing
SDR methods are reviewed and a Deep (Artifical) Neural Network (DNN)
approach is developed that achieves higher model accuracy under scheduling
dimension reduction. Moreover, it is shortly discussed how the DNN method
can be used in order to automatically obtain an affine LPV or Differential
Parameter-Varying (DPV) embedding of the nonlinear system based on a
given data set. The proposed DNN method and existing SDR methods are
compared on a two-link robotic manipulator example, both in terms of model
accuracy and performance of controllers synthesized with the reduced models.
Compared to existing methods, the DNN method achieves improvements
to modeling error and closed-loop performance when used for controller
synthesis compared to existing methods.
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9.1 Introduction

In the previous chapters, we have developed an extensive framework to analyze and
synthesize controllers for nonlinear systems in order to guarantee global stability
and performance requirements, making use of the tools of the Linear Parameter-
Varying (LPV) framework. While the powerful tools for analysis and synthesis of
LPV representations have matured, the embedding of nonlinear systems in LPV
representations is still underdeveloped and depends on the expertise of the user.
Some automated procedures exists for direct embedding of the nonlinear system, see
e.g. (Shamma and Cloutier 1993; Kwiatkowski, Bol, et al. 2006; Casella et al. 2009;
Tóth 2010), but it is generally true that these procedures and heuristic methods can
easily lead to an LPV model with a large amount of scheduling-variables. For the
methods discussed in the previous chapters, the velocity and differential form of the
system are used, which are embedded in LPV representations. These embeddings are
called the Velocity Parameter-Varying (VPV) and Differential Parameter-Varying
(DPV) embedding of a nonlinear system, respectively. Constructing a VPV or
DPV embedding is easier compared to embedding the primal form in an LPV
representation. This is because the velocity and the differential form are already
in a factorized form. Nonetheless, the construction of a VPV or DPV embedding
under a given scheduling dependency is still done heuristically. Therefore, this can
still be challenging and lead to a large amount of scheduling-variables.

A large amount of scheduling-variables is an issue when the embedding is used
for analysis or controller synthesis because the complexity of these procedures
is proportional to the number of scheduling-variables. Limiting the number of
scheduling-variables in the embedding is therefore highly important for tractable
LPV analysis and controller synthesis. Moreover, during the embedding procedure,
control objectives are not taken into account, hence the LPV embedding can be
conservative for the required control objectives. Hence, the objective of Scheduling
Dimension Reduction (SDR) is to reduce this conservativeness, which can be achieved
by taking into account a set of scheduling-variable trajectories associated with the
expected (closed-loop) behavior of the system. In the literature, based on this
concept, several data-based methods have been proposed to reduce the scheduling
dimension of LPV models. These methods only focus on the reduction of the number
of scheduling-variables and not on the reduction of the amount of states (referred
to as model reduction), for which also several methods exist, see e.g. (Wood et al.
1996; Tóth et al. 2012; Theis et al. 2018). Methods for reducing the amount of
scheduling-variables based on data include methods based on Principal Component
Analysis (PCA) (Kwiatkowski and Werner 2008; Sadeghzadeh, Sharif, et al. 2020),
Kernel Principal Component Analysis (KPCA) (Rizvi, Mohammadpour Velni, et al.
2016) and Autoencoders (AEs) (Rizvi, Abbasi, et al. 2018). Other methods for
dimensionality reduction for LPV models, not relying on data, exist, where the
LPV model is represented by a Linear Fractional Representation (LFR), see e.g.
(Varga et al. 1998; Hecker and Varga 2005; Beck 2006). These methods were not
considered in this work as they aim only to the reduction of the extracted ∆-block
using a controllability/observability argument, not the reduction of the number of
scheduling-variables.
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While KPCA and the AE method use nonlinear mappings to construct the new
scheduling-variable, significantly improving the PCA method, they require an extra
optimization step in order to synthesize an inverse transformation that enables the
realization of the reduced LPV state-space model with affine dependency. However,
due to this extra optimization step, one can quickly lose advantage over the PCA
method, for which this is not required. Hence, the PCA method remains the
most reliable approach in practice. Therefore, in this chapter, a novel method is
developed, which like the AE method, proposed in (Rizvi, Abbasi, et al. 2018), uses
an Artifical Neural Network (ANN) in order to perform SDR, but from which the
matrices of the reduced LPV state-space model can directly be extracted. This
avoids the use of a second optimization step, hence, leads to better results. Moreover,
the addition of hidden layers in the encoding layer is proposed to handle more
complex scheduling mappings. The chapter is structured as follows, in Section 9.2,
a mathematical problem definition of the SDR problem will be given. Section 9.3
gives an overview of the existing SDR methods. In Section 9.4, the developed Deep
(Artifical) Neural Network (DNN) approach is explained. An application of SDR
methods to the automated affine LPV embedding of a nonlinear system in primal
form and velocity/differential form is discussed in Section 9.5. A comparison of
the DNN and existing methods is given in Section 9.6 on a two-link planar robot
manipulator example. On this example, we compare the modeling error as a result
of the different SDR methods and the achieved performance of the controller that
is synthesized based on the reduced model. Finally, in Section 9.7, conclusions on
the given results are drawn.

9.2 Scheduling Dimension Reduction Problem

Consider a nonlinear dynamical system with a state-space representation given by

ξx(t) = f(x(t), u(t));
y(t) = h(x(t), u(t));

(9.1)

where x(t) ∈ Rnx is the state variable associated with the considered state-space
representation of the system, u(t) ∈ Rnu is the input, y(t) ∈ Rny is the output of
the system, and t ∈ T is time. In the Continuous-Time (CT) case, ξ = d

dt and
T = R+

0 , and in the Discrete-Time (DT) case, ξ = q (i.e., the forward time shift
operator) and T = N0. The functions f and h are defined as f : Rnx × Rnu → Rnx

and h : Rnx ×Rnu → Rny and assumed to be Lipschitz continuous. As considered in
the LPV literature and as described in Section 2.5.1, the embedding of the nonlinear
system (9.1) in an LPV representation, corresponds to constructing

ξx(t) = A(p(t))x(t) +B(p(t))u(t);
y(t) = C(p(t))x(t) +D(p(t))u(t);

(9.2)

where p(t) ∈ Rnp is the scheduling-variable and there existing a function η :
Rnx × Rnu → Rnp , called the scheduling-map, such that η(x(t), u(t)) = p(t). This
proxy representation of (9.1) is used during control synthesis by confining p(t) into
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a compact convex set P ⊂ Rnp and synthesizing a controller that ensures stability
and performance of (9.2) under all possible variations of p(t) ∈ P. Therefore the
embedding is constructed on the compact sets X , U, where x ∈ X and u ∈ U, such
that P ⊇ η(X ,U), often taken as the convex hull of η(X ,U). Moreover, unless
specified otherwise, it is assumed that the embedding of (9.1) is performed such
that the resulting LPV representation has an affine scheduling dependency, meaning
that

L(p) =
[
A(p) B(p)
C(p) D(p)

]
=
[
A0 B0
C0 D0

]
︸ ︷︷ ︸

L0

+
np∑
i=1

[
Ai Bi

Ci Di

]
︸ ︷︷ ︸

Li

pi, (9.3)

where p = col(p1, . . . , pnp) and Li ∈ Rm×n, ∀ i ∈ Inp
1 with m = nx+ny, n = nx+nu.

By restricting the scheduling dependency to being affine, the scheduling-map η
can contain many nonlinear functions that are dependent on the same elements
of x and u. Hence, the variation of scheduling-variables are not independent
from each other, which contributes to the conservativeness of the LPV model
(Shamma and Athans 1992). This can have dramatic effects on the capability of
the LPV synthesis to find a stabilizing controller for (9.1) via (9.2) with acceptable
performance. Therefore, reducing conservativeness through SDR can help with
attaining performance requirements. Given an LPV embedding (9.2) of (9.1) and a
set of nominal scheduling-variable trajectories of (9.2), denoted by D that correspond
to typical expected behavior of (9.1) through η, find an LPV embedding given by

ξx(t) = Â(φ(t))x(t) + B̂(φ(t))u(t);
y(t) = Ĉ(φ(t))x(t) + D̂(φ(t))u(t);

(9.4)

which approximates (9.2) under all trajectories of p ∈ D, where φ(t) ∈ Φ ⊂ Rnφ is
the (reduced) scheduling-variable with nφ ≤ np and (9.4) has an affine parameter
dependency, i.e., a structure like (9.3), with φ = col(φ1, · · · , φnφ), where Φ is
compact and convex. Here, approximation is considered in the sense that φ = µ ◦ η,
with µ : Rnp → Rnφ , where µ(p(t)) = φ(t) is chosen such that for all p ∈ D

L̂(φ) =
[
Â(φ) B̂(φ)
Ĉ(φ) D̂(φ)

]
≈ L(p). (9.5)

We also aim to find the inverse mapping µ−1, for which µ−1(φ(t)) = p̂(t), where p̂(t)
is an approximation of the original scheduling-variable p(t), such that L̂(φ) = L(p̂).
The SDR problem is solved if (9.4) is a satisfactory approximation of (9.2). A
satisfactory approximation is achieved, e.g., when, for a given a user defined ε,
∥L(p) − L̂(µ(p))∥F < ε for all p ∈ D, where ∥·∥F is corresponds to the Frobenius
norm, i.e., for a matrix A ∈ Rn×m, ∥A∥F =

√
trace(AA⊤).
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9.3 Overview of SDR Techniques

9.3.1 Preliminaries

In this section, we briefly explain the procedures of the existing data-based SDR
methods in the literature. Before giving an overview of these methods, we discuss
some preliminaries that all the methods use.

Assume a nonlinear system given by (9.1) is embedded in an LPV representation
given by (9.2). Furthermore, assume that we have generated a set of nominal
trajectories of the scheduling-variable p(t) = η(x(t), u(t)), based on the trajectories
of the nonlinear system. For CT systems, these trajectories are sampled at time
instances t = kTs, k = 0, . . . , N − 1, with sample-time Ts, resulting in

Γ =
[
p(0) · · · p((N − 1)Ts)

]
, (9.6)

with Γ ∈ Rnp×N and D = {p(kTs)}N
k=0. Moreover we introduce the shorthand

notation p(i) := p((i− 1)Ts) = Γ∗,i for i ∈ IN
1 , where Γ∗,i denotes the i’th column

of Γ. Similarly, in the DT case, we get

Γ =
[
p(0) · · · p(N − 1)

]
, (9.7)

D = {p(k)}N
k=0, and p(i) := p(i− 1) = Γ∗,i for i ∈ IN

1 .

The trajectories in Γ are then normalized by an affine function N , e.g., such that
each row of the data matrix varies in [−1, 1], which results in a normalized data
matrix Γn = N (Γ). For all the discussed algorithms (also for the DNN method
in Section 9.4), it is assumed1 that the data matrix, and therefore also p(i), is
normalized, meaning that Γ ≡ Γn. Next, the algorithms of the considered SDR
methods will be discussed.

9.3.2 Principal component analysis

One of the earliest works to perform SDR based on trajectory data makes use of
PCA (Kwiatkowski and Werner 2008). The core idea of the PCA method is to
extract the most significant directions, principal components, of the scheduling data
Γ. For the PCA method, a Singular Value Decomposition (SVD) is performed on Γ
in order to obtain the principal components, such that

Γ =
[
U1 U2

] [S1 0 0
0 S2 0

] [
V ⊤

1
V ⊤

2

]
, (9.8)

where U1 ∈ Rnp×nφ , V1 ∈ RN×nφ are unitary and S1 ∈ Rnφ×nφ is positive diagonal,
containing the highest nφ singular values of Γ. The complexity of the reduced
model is governed by the user chosen nφ. The corresponding approximation of

1While not explicitly written down for the discussed methods, the normalization transformation
does have to be taken into account for the mapping µ (and µ−1) and during construction of L̂(φ).
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the data matrix, denoted by Γ̂, is given by Γ̂ = U1S1V
⊤

1 ≈ Γ. The new reduced
scheduling-variable φ is then given by

φ(t) = µ(p(t)) = U⊤
1 p(t), (9.9)

and an approximation of the old scheduling-variable p is obtained via

p̂(t) = µ−1(φ(t)) = U1φ(t). (9.10)

The matrices of the (scheduling dimension) reduced LPV model can then be
constructed by using the relation L̂(φ) = L(p̂) and (9.10). For a more in-depth
overview of the PCA method for SDR, see (Kwiatkowski and Werner 2008).

9.3.3 Kernel PCA

The next method discussed is the KPCA method (Rizvi, Mohammadpour Velni, et al.
2016). A disadvantage of the PCA method is that it only seeks a linear mapping for
µ. The KPCA method extends the PCA method by allowing a nonlinear mapping.
In the KPCA method, the data is nonlinearly mapped to a higher dimensional,
so called, feature space on which normal PCA is applied. This mapping into the
feature space is denoted by Θ. The covariance matrix is then given by

C̄ := 1
N

N∑
j=1

Θ
(
p(j)
)

Θ⊤ (p(j)
)
. (9.11)

The principal components are then computed such that λlvl = C̄vl holds, where λl

is the l’th eigenvalue and vl is the l’th eigenvector. By this method, we seek for
a mapping to an appropriate feature space where PCA will result in the smallest
number of components. The mapping Θ is a priori not known. In KPCA, the idea
is to characterize the inner product of Θ with an a priori chosen kernel function,
resulting in the kernel matrix

Kij = (Θ(p(i))⊤Θ(p(j))) = k(p(i), p(j)), (9.12)

where K ∈ RN×N and k(·, ·) is a nonlinear kernel function. Examples of the
kernel function include, the sigmoid kernel k(p(i), p(j)) = tanh(κ(p⊤

(i)p(j)) + ι),
the radial basis function k(p(i), p(j)) = exp(−

∥∥p(i) − p(j))
∥∥2
/κ2), and polynomial

kernel k(p(i), p(j)) = (p⊤
(i)p(j) + ι)κ, where κ and ι are hyperparameters chosen such

that PCA can be accomplished with the lowest number of components given the
structure of k. The data in the feature space is assumed to be centered, which is
not always the case, therefore the centered kernel matrix is constructed as follows

Kc = K − 1NK −K1N + 1NK1N, (9.13)

where 1N ∈ RN×N denotes the matrix with each element being 1
N . The princi-

pal components of Kc are then computed instead of C̄. Resulting, for non-zero
eigenvalues, in

λlαl = Kcαl, (9.14)
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where αl = col(αl,1 . . . αl,N ), with vl =
∑N

i=1 αl,iΘ(p(i)) and with αl (for l ∈ IN
1 )

normalized by 1/
√
λl. The new scheduling-variable φ is then

φl(t) =
N∑

i=1
αl,ik(p(i), p(t)) for l ∈ Inφ

1 . (9.15)

For KPCA, the inverse mapping µ−1 cannot analytically be constructed in general
and hence a further optimization step is required. We refer the reader to (Rizvi,
Mohammadpour Velni, et al. 2014) for the details. Due to the difficulty of con-
structing the inverse mapping and due to this mapping being nonlinear, the affine
scheduling-variable dependent matrices Â, . . . , D̂ are constructed by solving the
following optimization problem

min
{L̂i}nφ

i=1

1
N

N∑
i=1

∥∥∥L (p(i)
)

− L̂
(
φ(i)

)∥∥∥2

F
, (9.16)

where φ(i) := φ((i − 1)Ts) in CT or φ(i) := φ(i − 1) for i ∈ IN
1 in DT, computed

through (9.15). The reduced scheduling-variable φ is not directly constructed in
order to minimize (9.16), therefore it is difficult to attach any guarantees to the
overall outcome of the method. See (Rizvi, Mohammadpour Velni, et al. 2016) for
a more in-depth overview of the KPCA method for SDR.

9.3.4 Autoencoder

The final method that will be discussed is the AE method (Rizvi, Abbasi, et al.
2018). The AE method like KPCA uses nonlinear functions for the mapping µ. This
method makes use of an AE ANN, which is trained on the data set to construct
the mappings µ and µ−1. Therefore it has as an advantage over KPCA that µ−1 is
co-synthesized with µ. Again, assume we have an LPV model given by (9.2), and
a data matrix given by (9.6). The data matrix is fed into a two-layer2 AE ANN,
which consist of a single encoding layer (from p to φ) and a decoding layer (from φ
to p̂). On the first layer (the encoding layer), we have the following relation

φ(i) = σ[1]
(
W [1]p(i) + b[1]

)
for i ∈ IN

1 , (9.17)

where σ is called the activation function, with the weight matrix W [1] ∈ Rnφ×np ,
and bias vector b[1] ∈ Rnφ . Examples of activation functions include the logistic
sigmoid (logsig) function, hyperbolic function (tanh), and Rectified Linear Unit
(ReLU).

On the second layer, on the decoding side, we have the following relation

p̂(i) = σ[2]
(
W [2]φ(i) + b[2]

)
for i ∈ IN

1 , (9.18)

2In general, the AE can have more than two layers, but as in (Rizvi, Abbasi, et al. 2018), this
is not considered here.
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where W [2] ∈ Rnp×nφ and b[2] ∈ Rnp . To train the AE, an optimization procedure
is used to minimize the error between p(i) and p̂(i) for i ∈ IN

1 . This is done by
solving the following optimization problem

min
W [k],b[k], k=1,2

1
N

np∑
i=1

N∑
j=1

(
Γi,j − Γ̂i,j

)2
. (9.19)

Additional terms can be incorporated into the cost function in order to reduce
overfitting such as weight and/or sparsity regularization, see (Rizvi, Abbasi, et al.
2018) for more details. After optimization of (9.19) the new scheduling-variable can
be expressed as

φ(t) = µ(p(t)) = σ[1]
(
W [1]p(t) + b[1]

)
, (9.20)

with the inverse mapping

p̂(t) = µ−1(φ(t)) = σ[2]
(
W [2]φ(t) + b[2]

)
. (9.21)

However, due to the nonlinear inverse mapping (9.21), a separate optimization
procedure is required to obtain the affine scheduling-variable dependent state-space
matrices Â, . . . , D̂ of the reduced model. This is similar to the KPCA method,
see Section 9.3.3, specifically (9.16). See (Rizvi, Abbasi, et al. 2018) for a detailed
explanation of the AE method for SDR.

9.4 A Deep Neural Network Approach

While the AE and KPCA approaches have the benefit of using nonlinear mappings
for the reduction, they still require an extra optimization step in order to obtain the
matrices of the reduced LPV state-space model. However, the impact of this second
optimization step, characterizing the model approximation error, is not taken into
account in the synthesis of φ(t). Hence, as the contribution of this chapter, a new
method is developed which, like the AE method, uses an ANN in order to construct
the mapping φ = µ(p). However, unlike the AE method, (multiple) hidden layers
are used in the encoding layer of the network, which allows to capture more complex
mappings. Furthermore, a vectorized form of L̂(φ) is used as output of the network
in order to directly construct the state-space matrices of the reduced LPV model.
In this way, the synthesis of φ(t) and the state-space matrices associated with it are
co-determined under optimal approximation of L(p) on D. The idea of using the
state-space matrix data instead of the scheduling data for SDR has been recently
also adopted in (Sadeghzadeh, Sharif, et al. 2020), whereby instead of a DNN,
PCA was used to perform the scheduling reduction. However, the use of PCA
in (Sadeghzadeh, Sharif, et al. 2020) has two downsides, namely, (i) the reduced
scheduling-map is dependent on the original LPV state-space matrix functions, i.e.,
A, . . . , D, which might be complex, and (ii) PCA searches for a linear mapping for
the reduction, while the DNN method allows for a nonlinear mapping, which allows
us to achieve a reduced model approximation error.
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Assume we have an LPV model given by (9.2) and a data matrix given by (9.6),
which we will call the input data matrix. Moreover, assume we have another data
matrix, the output data matrix, given by

Λ =
[
Lv(p(1)) · · · Lv(p(N))

]
, (9.22)

where Λ ∈ Rν×N , with ν = m · n, and where

Lv(p) = vec
(

np∑
i=1

Li(p)
)

=
np∑
i=1

vec (Li) pi, (9.23)

with vec(·) denoting the column stacked vectorized form of a matrix, i.e., for the
matrix L ∈ Rm×n, vec(L) ∈ R(m·n), so a vector with m · n elements. Note that we
assume that the output data matrix does not contain (a vectorized form of) the
parameter independent term L0 of our affine LPV model, see (9.3), as it does not
play a role in the SDR problem. Also note that in this way, we are not limited
to reducing LPV models (9.2) with only affine scheduling dependency. Namely,
any dependency can be considered as long as we can evaluate the state-space
matrices of the LPV model at scheduling points p(i), similar to what is presented in
(Sadeghzadeh, Sharif, et al. 2020).
The input data matrix is fed into the input layer of the ANN, for which it holds
that

l
[1]
(i) = σ[1]

(
W [1]p(i) + b[1]

)
for i ∈ IN

1 , (9.24)

where l[1] ∈ Rnl,1 is the ‘output’ of the first hidden layer, with the weight matrix
W [1] ∈ Rnl,1×np and bias vector b[1] ∈ Rnl,1 . For the second hidden layer till the
(nh − 1)’th hidden layer (where nh denotes the number of hidden layers), we have
the relation

l
[j]
(i) = σ[j]

(
W [j]l

[j−1]
(i) + b[j]

)
for j ∈ Inh−1

1 , and i ∈ IN
1 , (9.25)

where l[j] ∈ Rnl,j is the ‘output’ of the j’th hidden layer, with the weight matrix
W [j] ∈ Rnl,j×nl,j−1 , and bias vector b[j] ∈ Rnl,j . For the nh’th hidden layer, i.e., the
final hidden layer, we have

φ(i) = σ[nh]
(
W [nh]l

[nh−1]
(i) + b[nh]

)
for i ∈ IN

1 , (9.26)

with weight matrix W [nh] ∈ Rnφ×nl,(nh−1) and bias vector b[nh] ∈ Rnφ . Together,
equations (9.24)-(9.26) make up the encoding layer of the ANN and hence make up
the mapping µ : Rnp → Rnφ , i.e.,

µ(p) = σ[nh]
(
W [nh]

(
· · ·σ[1]

(
W [1]p+ b[1]

)
· · ·
)

+ b[nh]
)
. (9.27)

While many different activation functions (as in the AE case) can be used in the
encoding layer, we propose to use ReLU activation functions, given by σ(x) =
max(0, x). DNNs using ReLU functions have been proven to be universal function
approximators (Hanin 2019) with favorable benefits during training (stable non-
vanishing gradient propagation). Moreover, ReLU functions have computational
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benefits, as their expression can be evaluated quickly and because they introduce
sparsity in the network (as some neurons in a particular layer can be zero).

Finally, we have the matrix mapping layer, which is the final layer in the network.
Before giving the relation of the final layer, we first define the vector

L̂v(φ) = vec
(

nφ∑
i=1

L̂i(φ)
)

=
nφ∑
i=1

vec
(
L̂i

)
φi, (9.28)

where L̂v(φ) = col
(
L̂v,1(φ), L̂v,2(φ), . . . , L̂v,ν(φ)

)
∈ Rν . The final layer is then

given by
L̂v(φ(i)) = W [nh+1]φ(i) + b[nh+1] for i ∈ IN

1 , (9.29)

where W [nh+1] ∈ Rν×nφ with bias vector b[nh+1] ∈ Rν . Note that the matrix
mapping layer does not use any activation functions, this is done such that the
required affine relation between the reduced scheduling-variables and the (vectorized)
reduced LPV model matrices is obtained. The encoding layer, (9.24)-(9.26), together
with the matrix mapping layer, (9.29), make up the full ANN. The full ANN structure
for the DNN approach is depicted in Figure 9.1.
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Figure 9.1: DNN architecture.

To reconstruct the state-space matrices of the reduced LPV model, we can use
(9.28) and (9.29) to obtain the relations

vec L̂0 = vec (L0) + b[nh+1];[
vec
(
L̂1

)
· · · vec

(
L̂nφ

)]
= W [nh+1].

(9.30)
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The weights and biases of the layers of the DNN are trained by solving the following
optimization problem

min
W [j],b[j], j=1,...,nh+1

1
N

N∑
i=1

∥∥∥L (p(i)
)

− L̂
(
µ(p(i))

)∥∥∥2

F
, (9.31)

with µ given by (9.27). This optimization problem can then be solved by means of a
backpropagation algorithm (Goodfellow et al. 2016) in combination with a gradient
decent algorithm, such as Stochastic Gradient Decent (SGD), Adam (Kingma and
Ba 2014), or AdaBound (Luo et al. 2019). Like for the AE method, in order to
reduce overfitting, regularization techniques can be used such as L1 or L2 weight
regularization (Goodfellow et al. 2016). Moreover, if multiple hidden layers are used
in the encoding layer, regularization techniques such as dropout (Srivastava et al.
2014) can be used to also reduce overfitting.

9.5 Application to Automated Affine LPV Embed-
ding

9.5.1 Embedding of nonlinear systems

As highlighted in Chapter 1, one challenge of the existing LPV framework is
embedding a given (primal form of the) nonlinear system of the form (9.1) in an
LPV representation (9.2) with a certain scheduling dependency, such as affine or
rational. Next, we will discuss how the DNN SDR method can be used to obtain
an (approximate) affine LPV embedding of a nonlinear system using a given data
set of state and input trajectories.

We assume we have a nonlinear system given by (9.1), for which both f and h are
continuously differentiable, i.e., f, h ∈ C1, and such that f(0, 0) = 0 and h(0, 0) = 0.
Moreover, we assume we have a data set Dxu of N state x ∈ X and input u ∈ U
samples, corresponding to nominal trajectories or operating range on which we
which we want to perform the embedding. More concretely,

Dxu := {(x(i), u(i)) ∈ X × U, i = 1, . . . N}, (9.32)

where x(i) and u(i) denote the i’th sample of the state and input in Dxu, respectively.

Based on this data set, we can use Theorem C.6.1 (see Appendix C.6) to construct
a grid-based LPV model. In short, we can embed the nonlinear system (9.1) in an
LPV representation given by (9.2) where

A(p) = Ā(x, u), B(p) = B̄(x, u),
C(p) = C̄(x, u), D(p) = D̄(x, u),

(9.33)
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with p = col(x, u), meaning that η is the identity map, and,

Ā(x, u) =
∫ 1

0

∂f

∂x
(λx, λu) dλ, B̄(x, u) =

∫ 1

0

∂f

∂u
(λx, λu) dλ,

C̄(x, u) =
∫ 1

0

∂h

∂x
(λx, λu) dλ, D̄(x, u) =

∫ 1

0

∂h

∂u
(λx, λu) dλ.

(9.34)

Note that, as mentioned in Appendix C.6, analytical computation of the integrals
of the Jacobian is not required, as Automatic Differentiation (AD) and numerical
integration techniques can be used to compute the values of Ā(x, u), . . . , D̄(x, u)
at points (x, u) ∈ Dxu. Note that as p = col(x, u), we have for SDR that D = Dxu,
and

L(p) = L(x, u) =
[
Ā(x, u) B̄(x, u)
D̄(x, u) D̄(x, u)

]
. (9.35)

Note that as the scheduling-map η is the identity map, our scheduling-map for
the reduced LPV model will become equal to µ, i.e., φ(t) = µ(η(x(t), u(t))) =
µ(x(t), u(t)). Hence, based on just a data set Dxu and the expressions of f and h, we
can automatically construct the matrices Γ (9.6) and Λ (9.22) for the DNN method,
which can then be used to construct an (approximate) affine LPV embedding of
the of the nonlinear system.

9.5.2 Embedding of differential and velocity forms

For the proposed universal shifted and incremental based analysis and synthesis
approaches discussed in Chapters 4 to 8, the LPV framework is also used. Namely,
the LPV framework is used in order to embed the velocity or differential form of a
nonlinear system in an LPV representation, giving us a VPV or DPV embedding
of the system, respectively. As the velocity and differential forms of a nonlinear
system are already in a factorized form, the embedding procedure is partially sim-
plified. However, embedding them in an LPV representation for a given scheduling
dependency is still done heuristically and can therefore still be challenging. Next,
we will discuss how we can also use the DNN SDR method in order to obtain an
(approximate) affine VPV or DPV embedding of a nonlinear system based a given
data set of state and input trajectories. As the VPV and DPV embedding have
identical structures (see also the discussion at the end of Section 5.4.2), we will only
present the procedure for construction of an affine DPV embedding.
For a nonlinear system given by (9.1), its differential form (see Chapter 5 for more
details) is given by

ξxδ(t) = Aδ(x, u)xδ(t) +Bδ(x, u)uδ(t);
yδ(t) = Cδ(x, u)xδ(t) +Dδ(x, u)uδ(t);

(9.36)

where Aδ = ∂f
∂x , Bδ = ∂f

∂u , Cδ = ∂h
∂x , and Dδ = ∂h

∂u . As the differential form is
already in a factorized form, we can take as LPV embedding (9.2), where

A(p) = Aδ(x, u), B(p) = Bδ(x, u),
C(p) = Cδ(x, u), D(p) = Dδ(x, u),

(9.37)
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p = col(x, u), meaning that η is the identity map. Similar as in Section 9.5.1, we
only need to know the values of Aδ(x, u), . . . , Dδ(x, u) at points (x, u) ∈ Dxu. Hence,
we can use AD techniques in order to compute and evaluate the Jacobians, for
which implementations exists in various software tools such as in Python (Maclaurin
et al. 2019) and Julia (Revels et al. 2016). As p = col(x, u), we have for SDR that
D = Dxu, and

L(p) = L(x, u) =
[
Aδ(x, u) Bδ(x, u)
Cδ(x, u) Dδ(x, u)

]
. (9.38)

Similarly as in Section 9.5.1, note that the scheduling-map η is the identity map,
hence, our scheduling-map for the reduced LPV model will become equal to µ, i.e.,
φ(t) = µ(η(x(t), u(t))) = µ(x(t), u(t)). Therefore, based the DNN SDR approach,
we can automatically construct an (approximate) affine LPV embedding of the
differential form, i.e., a DPV embedding of the nonlinear system.
In Section 10.3, we will also demonstrate the application this approach in order to
construct an affine DPV embedding of a Generic Parafoil Return Vehicle (GPRV),
which is then used for the design of an incremental controller for this system.

9.6 Example

In this section the methods discussed from Section 9.3 and Section 9.4 are compared
on the LPV modeling and control design problem of a two-link planar robot
manipulator (Kwiatkowski and Werner 2005), see also Figure 9.2.

Example 9.1 (Two-link robot manipulator).

1q

1τ

2τ

2q

Figure 9.2: Diagram of the two-link planar robot manipulator.

Nonlinear Model

The robot manipulator can be described by the following equation of motion

M(q(t))q̈(t) + C(q(t), q̇(t)) + g(q(t)) = nτ(t), (9.39)

where q(t) = col(q1(t), q2(t)) are the angles, τ(t) = col(τ1(t), τ2(t)) the motor
torques and

M(q) =
[

a b cos(q1 − q2))
b cos(q1 − q2) c

]
, g(q) =

[
−d sin (q1)
−e sin (q2)

]
,

C(q, q̇) =
[

b sin(q1 − q2)q̇2
2 + f q̇1

−b sin(q1 − q2)q̇2
1 + f (q̇2 − q̇1)

]
.
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The values of the (physical) parameters of the robot manipulator are given in
Table 9.1. The equations of motion (9.39) can be rewritten to a CT nonlinear
state-space representation, of the form (9.1), given by

ẋ(t) =
[

x2(t)
M
(
x1(t)

)−1
(
nu(t) − C

(
x1(t), x2(t)

)
− g
(
x1(t)

))] ;

y(t) =
[
I2 0

]
x(t);

(9.40)

where x = col(x1, x2) = col(q, q̇), and u = col(τ1, τ2).

Table 9.1: Physical parameters of the robot manipulator.

Parameter Value
a 5.6794
b 1.473
c 1.7985
d 4 · 10−1

e 4 · 10−1

f 2
n 1

LPV model

For the (manual) LPV embedding of the nonlinear model of the robot manipulator
in an affine LPV representation, we take the approach given in (Kwiatkowski and
Werner 2005), which gives

ẋ(t) = A(p(t))x(t) +B(p(t))u(t);
y(t) = Cx(t) +Du(t);

(9.41)

where

A(p) =


0 0 1 0
0 0 0 1

cdp3 −bep4 p5 bp6
−bdp7 aep8 p9 p10

 , C =
[
I2 0

]
,

B(p) =


0 0
0 0

cnp1 −bnp2
−bnp2 anp1

 , D = 0.

(9.42)



9.6. Example 211

The corresponding scheduling-map (only depending on the states) η : R4 → R10 is
given by

η(x) =



h
cos(x1 − x2)h
sinc(x1)h
cos(x1 − x2) sinc(x2)h
(−b2 sin(x1 − x2) cos(x1 − x2)x3 − (c+ b cos(x1 − x2))f)h
(−c sin(x1 − x2)x4 + cos(x1 − x2)f)h
cos(x1 − x2) sinc(x1)h
sinc(x2)h
(ab sin(x1 − x2)x3 + f(a+ b cos(x1 − x2)))h
(b2 sin(x1 − x2) cos(x1 − x2)x4 − af)h


, (9.43)

where h = 1
ac−b2 cos(x1−x2)2 .

Scheduling dimension reduction

In order to perform SDR on (9.41), a data set D is required containing a set of
typical trajectories of the scheduling-variables. As the reduced LPV models will be
used for controller synthesis and as the objective of the controller will be reference
tracking, the to be followed reference trajectory is used as a data set, see ‘Reference 1’
in Figure 9.5. To obtain the trajectories of the scheduling-variables, the scheduling-
map η (9.43) is used. Note, that while it is not displayed in Figure 9.5, the angular
joint velocities corresponding to the reference trajectory are also required and used
to obtain the data set.
Regarding the hyperparameters of the SDR methods, for the KPCA method, a
sigmoid kernel is chosen with hyperparameters κ = 0.1 and ι = 0.1. For the AE
method, logsig activation functions are used for both the decoding and encoding layer.
Furthermore, L2 weight regularization is added with a coefficient of 1 · 10−5. The
implementation and training of the AE based method is done using the Autoencoder
class from the MATLAB Deep Learning Toolbox. For the DNN approach, the
training of the ANN was done in Python using Keras (Chollet et al. 2015). As an
optimization method, in terms of gradient descent, AdaBound (Luo et al. 2019) is
used with the default learning rates. For the encoding layer of the DNN approach,
one hidden layer is used with 5 neurons, and, as mentioned, ReLU functions are
used as activation functions in the encoding layer. Moreover, for the DNN method,
L2 weight regularization is added with a coefficient of 1 ·10−6. The hyperparameters
for each method were chosen such that their respective cost function were minimal.

Modeling error

The approximation error, in terms of average squared Frobenius norm (see (9.16)),
of the reduced LPV models is compared for various reductions to a scheduling size
nφ. These results are given in Figure 9.3. From the results, it can be concluded
that the new developed DNN method results overall in the best performance for
all the considered scheduling sizes. A lower cost can be achieved using the DNN
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methods because it directly optimizes the average squared Frobenius cost instead
of needing an extra optimization step like for the KPCA or AE method. Moreover,
the scaling to larger scheduling dimensions is also better with the developed DNN
method compared to the other methods.

Figure 9.3: Average squared Frobenius norm cost model error for different scheduling
sizes (nφ) using PCA ( ), KPCA ( ), AE ( ), DNN ( ).

LPV controller design

For the controller design with the obtained models, a generalized plant is constructed,
equivalent with the one used in (Rizvi, Mohammadpour Velni, et al. 2016), in order
to achieve reference tracking of x1 and x2 (i.e., the two angles, q1 and q2). The
generalized plant is shown in Figure 9.4, where r is the reference signal, d the
input disturbance, z1 and z2 are performance channels, K is the to-be designed
controller, G is the robot manipulator model, and W∗ are weighting filters. The
weighting filter W1 is chosen to include low-pass characteristics on both channels in
order to ensure good tracking performance at low frequencies, while W2 is chosen
as a constant gain for both channels in order to limit the motor torques. The
weighting filter Wu is chosen as a true low-pass filter on both channels3. The
exact transfer functions applied in Figure 9.4 are given in4 Table 9.2. Based on
this (weighted) generalized plant, an affine (L2-gain optimal) LPV controller is
synthesized, using the LPVcore Toolbox (Boef et al. 2021), which minimizes the
L2-gain from disturbance to performance channel. This synthesis procedure is
performed using the scheduling reduced plants (G in Figure 9.4) resulting from the
various SDR techniques. The resulting L2-gains can be found in Table 9.3.

3Wu is included because the synthesis procedure requires the relation from the control input to
the state of the generalized plant to be independent of the scheduling-variable.

4All the weighting filters are block diagonal with the same transfer function for both channels.
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Figure 9.4: Generalized plant for controller synthesis.

Table 9.2: Weighting filters of the generalized plant where s is the complex frequency.

Weighting filter Transfer function

W1(s) (5·10−1)s+5
s+(5·10−5)

W1(s) 3 · 10−3

Wu(s) 1·103

s+(1·103)

Table 9.3: Closed-loop L2-gains obtained using the models resulting from the SDR
methods for nφ = 1.

SDR method L2-gain
PCA 1.25
KPCA 1.26
AE 1.25
DNN 1.24

LPV controller performance

The controllers resulting from the synthesis on the reduced LPV models (with
nφ = 1) are interconnected with the nonlinear model of the robot arm. The tracking
performance of the various resulting controllers is evaluated for three reference
trajectories. The first reference trajectory (reference 1) is the reference trajectory
also used to construct the data set. The second reference trajectory (reference 2) is
constructed to have similar ‘behavior’ as reference 1, while still being different from
the first reference. Reference 2 is used to analyze if the methods overfit. Finally,
the third reference trajectory (reference 3) consists of a square wave trajectory for
q1 while q2 is kept at zero. Reference trajectory 3 has different ‘behavior’ compared
to reference 1 and 2 (hence not present in the data used for SDR) and is used to
analyze the robustness of the methods.
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Figure 9.5: Tracking performance of LPV controllers w.r.t. reference q1 ( ) and
q2 ( ) using the SDR techniques with nφ = 1, using PCA ( ), KPCA ( ), AE
( ), DNN ( ).

Shown in Figure 9.5 are the simulation results for the considered reference trajectories
using the resulting controllers (i.e., using the various SDR techniques). It is apparent
from these figures that for this example the methods all result in trajectories that are
close together. Therefore, the closed-loop L2-gains γ using the different controllers
is also computed/approximated based on the simulation data, i.e.,

γ =

√∫∞
0 ∥z(t)∥2

dt√∫∞
0 ∥w(t)∥2

dt
≈

√∑T
k=0 ∥z(kTs)∥2

Ts√∑T
k=0 ∥w(kTs)∥2

Ts

, (9.44)

where z = col(z1, z2), w = col(r, d) (see Figure 9.4) and T is the end-time of the
simulation. The L2-gains based on the simulation data, computed using (9.44),
for each of the different reference trajectories are given in Table 9.4. From the
computed L2-gains it is clear that the DNN method provides overall the best
controller performance. An additional benefit of the proposed DNN method is that
due to the use of ReLU activation functions, the mapping µ from p to φ can be
computed faster compared to the AE method proposed in (Rizvi, Abbasi, et al.
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2018) and the KPCA methods, which use more complex nonlinear functions. This
makes the DNN method also better suited for realtime implementation.

Table 9.4: L2-gain performance of LPV controllers in simulation based on the
different SDR techniques with nφ = 1.

Reference SDR method

PCA KPCA AE DNN

1 0.9466 1.008 0.9532 0.9062
2 0.9564 0.9109 0.9088 0.8834
3 2.044 1.333 1.511 1.500

9.7 Conclusions

In this chapter, a novel SDR method that uses a DNN in order to perform the
scheduling reduction has been introduced. In this way, the number of scheduling-
variables is reduced which allows for reduced computational complexity of the LPV
analysis and controller synthesis methods. Moreover, through the SDR method,
conservatism of the resulting LPV model w.r.t. a certain set of trajectories is
also reduced. The DNN method has as a benefit that it directly optimizes the
approximation error (squared Frobenius norm in this case) and directly gives the
state-space matrices of the reduced LPV representation, whereas for the KPCA and
AE method, an additional optimization step is required. Furthermore, as suggested
in this chapter, using a deep encoding layer with ReLU functions in the DNN
method allows for better approximation of more complex scheduling-maps while
still being able to compute the output of the encoding layer rapidly and efficiently.
Moreover, we show how the DNN or other SDR methods can be used in order to
automatically construct an affine LPV, VPV, or DPV embedding of the nonlinear
system based on a given data set.
Based on the results of the two-link robotic manipulator example, it can also be
concluded that the developed DNN method results in a improved representation (of
the matrix variations) of the original model (in terms of average Frobenius norm
squared) compared to the current SDR methods. Moreover, the DNN method also
gives improved tracking performance when the (reduced) LPV model is used for
synthesis compared to the other methods.
The DNN SDR method, together with the analysis and synthesis results of previous
chapters, allows for the computational efficient analysis and controller synthe-
sis for nonlinear systems in order to guarantee global stability and performance
requirements, even as the complexity of these systems increases.





10
Applications

In this chapter, we demonstrate the capabilities of the developed frame-
work that has been presented in the previous chapters on two realistic

applications for controller design in order to ensure global stability and per-
formance guarantees. Namely, we consider a Control Momement Gyroscope
(CMG) lab setup, to which our universal shifted controller design, presented
in Chapter 4, is applied in an experimental study for tracking piece-wise
constant reference signals. Next to that, a simulation study is presented,
whereby our incremental controller design, presented in Chapter 6, is used to
achieve reference tracking for a Generic Parafoil Return Vehicle (GPRV). For
both applications, the benefits of the proposed controller design approaches
are demonstrated in terms of a systematic controller design process and
their ability to guarantee the desired stability performance properties for
the underlying nonlinear systems. Moreover, the obtained controllers are
compared to standard Linear Parameter-Varying (LPV) controller designs,
which share a similar design complexity. Compared to these controller de-
signs, the universal shifted and incremental controllers achieve significantly
improved closed-loop performance, as they are able to guarantee global
stability and performance requirements.
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10.1 Introduction

In the previous chapters, we have presented a framework for analysis and control of
nonlinear systems in order to ensure and shape global stability and performance
guarantees. So far, we have demonstrated the developed tools on various (academic)
examples and small scale experimental studies in the individual chapters. In this
chapter, we will apply our developed universal shifted controller design (of Chapter 4)
and incremental controller design (of Chapter 6), to more complex and realistic
problems. More concretely, we will show experimental results of the application of
our universal shifted controller design to a Control Momement Gyroscope (CMG)
lab setup, and we will present a simulation study of our incremental controller
design applied to a Generic Parafoil Return Vehicle (GPRV).
This chapter is structured as follows. First, in Section 10.2, we present a universal
shifted control design and its implementation for a CMG. Next, in Section 10.3,
we present an incremental flight controller design for the final descent phase of a
GPRV. Finally, in Section 10.4, conclusions are drawn based on the obtained results
that have been achieved on the presented applications.

10.2 Universal Shifted Control of a Control Mo-
ment Gyroscope

10.2.1 Introduction

In this section, we discuss the application of the proposed universal shifted controller
design from Chapter 4 in order to achieve constant reference tracking control for a
CMG. CMGs are used in various applications such as attitude control of satellites
and stabilization of ships (Townsend and Shenoi 2011). Moreover, they are regularly
used as a test bed for nonlinear control applications due to the challenging coupled
rotational nonlinear dynamics (Reyhanoglu and Van de Loo 2006). This has also
made them a popular choice to demonstrate the efficacy of various standard Linear
Parameter-Varying (LPV) control based methods (Abbas, A. Ali, et al. 2014;
Hoffmann and Werner 2015b; Koelewijn, Cisneros, et al. 2018).
Next, we will first give an overview of the dynamics and the considered model of the
CMG in Section 10.2.2. Secondly, we will describe in Section 10.2.3 the considered
universal shifted controller design along with a standard LPV controller approach
for comparison purposes. In Section 10.2.4, we show experimental results of the
control designs applied to the CMG setup and we analyze them to evaluate the
obtained closed-loop performance.

10.2.2 Dynamical model of the CMG

We consider a four Degree of Freedom (DOF) CMG as displayed in Figure 10.1, with
a schematic overview depicted in Figure 10.2. The three gimbals and disk of the
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Figure 10.1: Photo of the CMG setup.
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Figure 10.2: Schematic overview of the
CMG.

CMG are modeled as four bodies, denoted by A, B, C, D, respectively. The angular
rotations of D, C, B, and A are denoted by q1, q2, q3, q4 (in radian), respectively.
Whereas, the current of the motors actuating D, C, B, and A are denoted by i1, i2,
i3, i4 (in Ampere), respectively. Through Euler-Lagrange equations, the dynamical
model of the CMG can be derived, see (Bloemers and Tóth 2019) for more details,
resulting in

M(q(t))q̈(t) + (C(q(t), q̇(t)) + Fv) q̇(t) = Kmi(t) (10.1)
q = col(q1, q2, q3, q4) (where q(t) ∈ R4), i = col(i1, i2, i3, i4) (where i(t) ∈ R4), M
is the inertia matrix, C the Coriolis matrix, Fv viscous friction matrix, and Km
the motor constant matrix. The inertia matrix is given by M(q) = MA +MB(q) +
MC(q) +MD(q) with

MA =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 KA

 , (10.2a)

MB(q) =


0 0 0 0
0 0 0 0
0 0 JB 0
0 0 0 IBs

2
3 + KBc

2
3

 , (10.2b)

MC(q) =


0 0 0 0
0 IC 0 −ICs3
0 0 JCc

2
2 + KCs

2
2 α1s2c2c3

0 −ICs3 α1s2c2c3 ICs
2
3 +

(
JCs

2
2 + KCc

2
2
)
c2

3

 , (10.2c)

MD(q) =


JD 0 JDc2 JDs2c3
0 ID 0 −IDs3

JDc2 0 IDs
2
2 + JDc

2
2 α2s2c2c3

JDs2c3 −IDs3 α2s2c2c3 IDs
2
3 +

(
IDc

2
2 + JDs

2
2
)
c2

3

 , (10.2d)
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with si and ci being shorthand for sin(qi) and cos(qi), respectively. The Coriolis
matrix is given by

C(q, q̇) =


q̇⊤ 0 0 0
0 q̇⊤ 0 0
0 0 q̇⊤ 0
0 0 0 q̇⊤




Γ1(q)
Γ2(q)
Γ3(q)
Γ4(q)

 , (10.3)

with

Γ1(q) = 1
2


0 0 0 0
⋆ 0 −JDs2 JDc2c3
⋆ ⋆ 0 −JDs2s3
⋆ ⋆ ⋆ 0

 , (10.4a)

Γ2(q) = 1
2


0 0 JDs2 −JDc2c3
⋆ 0 0 0
⋆ ⋆ −2α3s2c2 α3

(
c2

2c3 − s2
2c3
)

− α4c3
⋆ ⋆ ⋆ 2α3c2c

2
3s2

 , (10.4b)

Γ3(q) = 1
2


0 −JDs2 0 JDs2s3
⋆ 0 2α3s2c2 α4c3 + α3

(
c3s

2
2 − c2

2c3
)

⋆ ⋆ 0 0
⋆ ⋆ ⋆ −2

(
α5 + α3s

2
2
)
c3s3

 , (10.4c)

Γ4(q) = 1
2


0 JDc2c3 −JDs2s3 0
⋆ 0 α3

(
c3s

2
2 − c2

2c3
)

− α4c3 −2α3c2c
2
3s2

⋆ ⋆ 2α3c2s2s3 2
(
α5 + α3s

2
2
)
c3s3

⋆ ⋆ ⋆ 0

 . (10.4d)

The friction matrix is given by Fv = diag(fv,1, fv,2, fv,3, fv,4) and motor constant
matrix is given by Km = diag(km,1, km,2, km,3, km,4). Moreover,

α1 = JC − KC, α2 = JD − ID,

α3 = ID − JC − JD + KC, α4 = IB + IC − KB − KC,
(10.5)

and the physical parameters of the system are given in Tables 10.1 and 10.2.

Table 10.1: Moments of inertia of the gimbals of the CMG.

Gimbal Moments of inertia [kg·m2]
i Ii Ji Ki

A 9.02 · 10−2 5.34 · 10−2 3.74 · 10−2

B 3.88 · 10−3 1.62 · 10−3 2.00 · 10−3

C 9.21 · 10−4 1.62 · 10−3 2.55 · 10−3

D 3.01 · 10−3 5.50 · 10−3 3.01 · 10−3

The model (10.1) can be written in the form

E(xf(t))ẋf(t) = A(xf(t))xf(t) +Bguf(t), (10.6)
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Table 10.2: Other physical parameters of the CMG.

j fv,j [N·m· s] Km,j [N·m· A−1]
1 7.11 · 10−5 6.80 · 10−2

2 1.24 · 10−5 1.01 · 10−1

3 1.41 · 10−2 1.05 · 10−1

4 3.72 · 10−2 6.06 · 10−2

where xf = col(q, q̇), uf = i, and

E(xf) =
[
I 0
0 M(q)

]
, A(xf) =

[
0 I
0 −C(q, q̇) − Fv

]
, Bg =

[
0
Km

]
. (10.7)

As control objective, we consider a special operating mode of the disk, where only
inputs i1 and i2 are available for control and gimbal B is locked at q3 = 0, meaning
that q̇3 = 0. In this operating mode our objective will be the control of the outer
(silver) gimbal and the disk speed, i.e., q4 and q̇1, respectively. This can be seen as
simple form of pointing control for satellites. Taking into account these restrictions,
we can obtain the resulting dynamical model from (10.6) by removing the 3th and
7th row and column form E and A, corresponding to q3 and q̇3, and the 3th and
4th column of Bg, corresponding to i3 and i4. Moreover, also the 1st and 2nd rows
and columns of E and A are removed, corresponding to q1 and q2, as these will not
considered in our control objectives (see also Section 10.2.3). Note that this can
be done as the bottom left (block) entry of E and A is zero, meaning the angular
velocities have no linear dependency on q1 and q2 in our model. The resulting model
will be of the form

Er(q2(t))ẋg(t) = Ar(xg(t), q2(t))xg(t) +Brug(t), (10.8)

where xg = col(q4, q̇1, q̇2, q̇4) and ug = col(i1, i2), and where Er, Ar, and Br are the
E , A , and Bg matrices/matrix functions from (10.7) with the discussed rows and
columns removed, respectively. Note that the model is still dependent on q2, due to
its dependency in the Er and Ar matrix. However, it is not a free parameter, due
to its relation to q̇2. We assume that q4, q̇1, and q̇4 can be measured, and these are
therefore considered to be the outputs of the system, i.e., yg = col(q4, q̇1, q̇4).
Finally, (10.8) can be written in a nonlinear state-space form

ẋg(t) = fg(xg(t), ug(t), q2(t)), (10.9a)
yg(t) = Cgxg(t), (10.9b)

with xg(t) ∈ R4, ug(t) ∈ R2, yg(t) ∈ R3, and

fg(xg, ug, q2) = Er(q2)−1Ar(xg, q2)xg + Er(q2)−1Brug, (10.10)

Cg =

1 0 0 0
0 1 0 0
0 0 0 1

 . (10.11)

Note that fg is well-posed as Er is invertible (due to invertibility of the inertia
matrix M).
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10.2.3 Controller design

Universal shifted controller

+
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Figure 10.3: Generalized plant considered for the control design for the CMG.

For the universal shifted controller design, in order to achieve constant reference
tracking for q4 and q̇1, we consider a generalized plant structure as is depicted
in Figure 10.3. In Figure 10.3, r is the reference signal, zi are the generalized
performance channels, G is the CMG given by (10.9) where yg,1 = col(q4, q̇1) and
yg,2 = q̇4 (such that yg = col(yg,1, yg,2)), K is our to-be-designed controller, and
the weighting filters are Linear Time-Invariant (LTI), given as (in transfer function
representation):

Me(s) =
[

s+π
s 0
0 s+π

s

]
, Mu(s) =

[ 20π
s+20π 0

0 20π
s+20π

]
,

We(s) =
[

10(− 5
20 ) s+2

s+π 0
0 10(− 10

20 ) s+4
s+π

]
.

(10.12)

The combinations of the weighting filters We(s)Me(s) ensures good tracking perfor-
mance for (piece-wise) constant reference signals. Moreover, Wu is used to low pass
filter the signals entering the plant G. Additionally, yg,2 = q̇4 is fed back to the
controller and added as generalized performance channel in order to penalize high
velocities of q4 to ensure smooth tracking behavior of q4. Moreover, the plant G
given by (10.9) is pre-scaled, such that signals of unit magnitude correspond to the
maximum values of the signals. More concretely, instead of considering G directly
in the generalized plant, we consider

G̃ = S−1
y GSu, (10.13)

where Sy = diag(π
4 , 10, 3) and Su = diag(3, 5). Later, when the controller K is

implemented on the setup, this scaling is also taken into account.
Based on this generalized plant, we then perform the three-step-procedure, as
discussed in Section 4.5.2, to design the universal shifted controller.
In the first step, we require the construction of a Velocity Parameter-Varying (VPV)
embedding of our generalized plant. In the generalized plant, the CMG, G, given by
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(10.9) is the only nonlinear system as the weightings filters are LTI. Consequently,
we only require construction of a VPV embedding of (10.9).
For construction of the VPV embedding of (10.9), we first compute its velocity
form, which results in (omitting dependence on time for brevity):

ẍg = Av(xg, q2)ẋg +Bv(q2)u̇g + ∂fg

∂q2
(xg, ug, q2)q̇2, (10.14a)

ẏg = Cgẋg, (10.14b)

where Av = ∂fg
∂xg

and Bv = ∂fg
∂ug

. Note that Av only depends on xg and q2 and Bv

only on q2 due to the structure of fg, see (10.10). As the nonlinear system (10.9)
also depends on q2 (not part of xg), we also get the extra term ∂fg

∂q2
(xg, ug, q2)q̇2

in the velocity form. We will omit this term as part of the considered velocity
form, and consider it to be a disturbance/unmodeled dynamics, which through the
controller will be compensated. Hence, we will consider the following velocity form
for (10.9):

ẍg = Av(xg, ug, q2)ẋg +Bv(q2)u̇g, (10.15a)
ẏg = Cgẋg. (10.15b)

Based on the velocity form (10.15), we construct a VPV embedding of (10.9) (see
also Definition 4.7), which is given by

ẋv = A(p)xv +B(p)uv, (10.16a)
yv = Cguv, (10.16b)

where xv(t) ∈ R4, uv(t) ∈ R2, yv(t) ∈ R3, with scheduling-variable p(t) ∈ P and
scheduling-map η such that p(t) = η(xg(t), q2(t)) where η(xg, q2) = [q2 q̇1 q̇2 q̇4]⊤ =
[p1 p2 p3 p4]⊤, note that the scheduling-map also depends on q2. As the scheduling
set, we consider (the hypercube) P = [−0.8, 0.8] × [30, 50] × [−4, 4] × [−3, 3],
corresponding to the (VPV) embedding region X = R × [30, 50] × [−4, 4] × [−3, 3]
of (10.9). The VPV embedding of (10.9), given by (10.16), together with the LTI
weighting filters (for which the dynamics of their velocity forms are equivalent to
their primal form dynamics) Me, Mu, and We, as interconnected in Figure 10.3,
then give us a VPV embedding of the generalized plant.
For the second step in the universal shifted controller synthesis procedure, we
synthesize an L2-gain optimal LPV controller (of the form (4.41)) for our VPV
embedding of the generalized plant. Due to the complex scheduling-dependency,
we use a grid-based LPV controller synthesis approach (Wu 1995), which has been
implemented in the LPVcore Toolbox (Boef et al. 2021). For the grid-based synthesis,
we consider the grid points p1 ∈ {−0.8, 0, 0.8}, p2 ∈ {30, 40, 50}, p3 ∈ {−4, 0, 40},
p4 ∈ {−3, 0, 3}, i.e., three grid points for each scheduling-variable, for a total of 81
grid points. For the synthesis, a parameter independent quadratic storage function
is considered (i.e., of the form (2.36), where M is a constant positive definite matrix).
We also restrict the B and D matrix of the state-space controller (i.e., Bk and
Dk in (4.41)) to be parameter independent, s.t. later on the resulting universal
shifted controller does not depend on ṗ. Moreover, a Linear Matrix Inequality (LMI)
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region constraint is added (also implemented in the LPVcore Toolbox), s.t. the
closed-loop eigenvalues of the generalized plant and controller at each grid point
have a real part larger than -500. Under these consideration, the resulting LPV
controller, i.e., the velocity controller, obtains a closed-loop L2-gain of 1.14 for the
VPV embedding of the generalized plant. The Bode magnitude plot of the velocity
form of the closed-loop system is given in Figure 10.4 at the considered grid points.
Finally, based on the synthesized velocity controller, we realize the universal shifted
controller as the last step of the universal shifted controller synthesis procedure. As
our generalized plant includes integral filters, we make use of the realization result in
Corollary 4.2, see also Section 4.5.4 and Theorem 4.12. Note, as aforementioned, the
velocity controller has been synthesized such that its B and D matrices are constant,
hence, our universal shifted controller does not depend on ṗ. The resulting universal
shifted controller (of the form (4.42)) achieves universal shifted (asymptotic) stability
and quadratic universal shifted performance of the closed-loop (under Proposition 4.1
this is with an Ls2-gain of 1.14).
Before we show the results of this universal shifted controller design applied to the
experimental CMG setup, we first shortly discuss the design of a standard LPV
controller, which will be used for comparison.

Standard LPV controller

For the standard LPV controller design, we use the same generalized plant structure1

as for our universal shifted controller design, depicted in Figure 10.3, and we use
the same weighting filters (see (10.12)). Consequently, we only require construction
of a global LPV embedding of (10.9), as it is the only nonlinear system in the
interconnection that makes up the generalized plant. The LPV embedding of (10.9)
we construct is given by

ẋg = As(ps)xg +Bs(ps)ug, (10.17a)
yg = Cgug, (10.17b)

(where subscript ‘s’ is used to denote the standard LPV embedding variables),
where ps ∈ Ps is the scheduling-variable and for the scheduling-map ηs we consider
ps = ηs(xg, q2) s.t. ηs(xg, q2) = [q2 q̇1 q̇2 q̇4]⊤ = [ps,1 ps,2 ps,3 ps,4]⊤. As fg can
be written in a factorized form, see (10.10), the LPV matrix functions As and Bs
are chosen as

As(ηs(xg, q2)) = Er(q2)−1Ar(xg, q2), Bs(ηs(xg, q2)) = Er(q2)−1Br. (10.18)

Note that the scheduling-map of our global LPV embedding is equal to the
scheduling-map of the VPV embedding for the universal shifted controller de-
sign, i.e., ηs(xg, q2) = η(xg, q2) =

[
q2 q̇1 q̇2 q̇4

]⊤, consequently p(t) = ps(t).
Hence, for a fair comparison between the universal shifted and standard LPV
controller designs, we consider the same scheduling set, meaning, Ps = [−0.8, 0.8] ×
[30, 50] × [−4, 4] × [−3, 3].

1With also the same pre-scaling applied as in (10.13).
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Similarly, we also synthesize an L2-gain LPV controller for the generalized plant
consisting of (10.17) using a grid-based synthesis approach. We take the same
considerations for the standard LPV (grid-based) controller synthesis as were taken
for the (grid-based) velocity controller synthesis, i.e., same grid points, same form of
quadratic parameter independent storage function, restricting the B and D matrices
to be parameter independent in the controller, and the same LMI region constraint.
This results in an LPV controller that achieves an L2-gain bound of 1.07 for its
closed-loop interconnection with the nonlinear generalized plant.
Next, we compare both the universal shifted controller design and the standard
LPV controller design on the experimental CMG setup.

10.2.4 Experimental results

For the experimental study, both the standard LPV controller and universal shifted
controller designs are implemented on the CMG setup. On the experimental setup,
the control inputs, corresponding to the currents sent to the motors, are saturated
between ± 3 [A] for i1 and ± 5 [A] for i2. For the experiment, the disk is first sped
up to a velocity of 40 rad/s before switching on either the standard LPV controller
or the universal shifted controller. As reference signals, a piecewise-constant signal
is chosen which makes steps of π

4 rad every 5 seconds for q4, while the reference for
q̇1 is taken to be constant and equal to 40 rad/s. Under this reference, the resulting
closed-loop behavior of the setup with the standard LPV controller design and with
the universal shifted controller is depicted in Figures 10.5 to 10.7.
In Figure 10.5, the angle q4 and angular velocity q̇1 are depicted, along with their
to-be-followed reference signals. It can be seen that as soon as the reference for
q4 switches for the first time at t = 5 seconds, the standard LPV controller starts
oscillating around the reference. This is likely due to (unmodeled) Coulomb friction
which affects the experimental setup, which acts as a disturbance. This once again
shows, as we have also demonstrated in the other chapters, that the standard LPV
controller is not able to ensure the desired stability and performance guarantees
for reference tracking and disturbance rejection. On the other hand, the universal
shifted controller is able to smoothly track the piece-wise constant reference signal
for q4 and q̇1 without any oscillations, as it ensures the stronger stability and
performance guarantees in the form of universal shifted stability and performance.
The differences in performance between the two controllers are also clearly visible
in Figures 10.6 and 10.7, where the motor currents (generated by the controller)
and scheduling trajectories (corresponding to q2 and angular velocities of the CMG)
are depicted. The induced oscillations due of the LPV controller even result in the
motor currents becoming saturated, while again, the universal controller stays well
within the saturation limits and varies smoothly. Note that the scheduling-variables
also stay within the assumed set P = Ps (only p1 for the LPV controller briefly
leaves the scheduling set), see Figure 10.7.
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Figure 10.4: Bode magnitude plot of velocity form of closed-loop system at the
considered grid points ( ), along with the corresponding inverse weighting filters
( ).
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Figure 10.5: Angle q4 (top) and angular velocity q̇1 (bottom) of the CMG in closed-
loop with the standard LPV ( ) and the universal shifted ( ) controllers under
reference ( ).

Figure 10.6: Motor currents i1 (top) and i2 (bottom) sent to the CMG in closed-loop
with the standard LPV ( ) and the universal shifted ( ) controllers.
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Figure 10.7: Scheduling trajectories corresponding to the CMG in closed-loop with
the standard LPV ( ) and the universal shifted ( ) controllers, along with the
considered scheduling limits ( ).



10.3. Incremental Control of a Generic Parafoil Return Vehicle 229

10.3 Incremental Control of a Generic Parafoil
Return Vehicle

10.3.1 Introduction

In this section, we present the application of the incremental controller design we
have proposed in Chapter 6 to a GPRV for reference tracking purposes during
atmospheric flight. GPRVs are used as reusable space transportation systems, in
order to perform missions in low earth orbit. In the past, they have been explored
to be used as crew return vehicles, such as the NASA X-38 (Shin et al. 2001),
see Figure 10.8. More recently, the European Space Agency has been developing
a GPRV, the Space Rider, see Figure 10.9. Its primary intended use will be to
perform research in microgravity and as demonstration platform for robotic and
surveillance applications (Cacciatore et al. 2019; De Lange 2021).
In this application example, we will specifically focus on GPRVs during their so-
called terminal guidance phase. During this phase, the craft has entered the Earth’s
atmosphere and needs to be steered in order to land at a designated location on
the surface.
The rest of the section is structured as follows. In Section 10.3.2, we give a
description of the dynamical model of the GPRV that will be considered. Next, in
Section 10.3.3, we discuss the incremental controller design that is developed for
the GPRV. Finally, in Section 10.3.4, we show results of a simulation study that
is performed in order to evaluate the performance of the incremental controller
design. Moreover, in the simulation study the incremental controller design is also
compared to a (local) LPV controller design.

Figure 10.8: Photo (sequence) of NASA
X-38 CRV prototype.

Figure 10.9: Artist’s impression of ESA
Space Rider.

10.3.2 Dynamical model of the GPRV

The dynamics of a GPRV in atmospheric flight are complex due to aerodynamical
effects, governed by fluid dynamics, and the interactions between spacecraft body
and the parafoil (De Lange 2021). This makes navigation of the vehicle also
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challenging from a control perspective, especially as there is no active propulsion
and the system can only be actuated through steering the parafoil. Here, we consider
a simplified dynamical model describing a GPRV. Namely, we consider a 3 DOF
model, whereby the combination of the spacecraft body and the parafoil is modeled
as a point mass which moves in 3D space affected by aerodynamical effects such as
lift and drag.
More concretely, we consider the model of the GPRV, adopted from (De Lange
2022), given by the following set of differential equations

ṙx(t) = V (t) cos(α(t)) cos(ψ(t)); (10.19a)
ṙy(t) = V (t) cos(α(t)) sin(ψ(t)); (10.19b)
ṙz(t) = V (t) sin(α(t)); (10.19c)
V̇ (t) = − 1

mD(V (t), ϵ(t)) − g sin(α(t)); (10.19d)

α̇(t) =
1
mL(V (t), ϵ(t)) cos(σ(t)) − g cos(α(t))

V (t) ; (10.19e)

ψ̇(t) = L(V (t), ϵ(t)) sin(σ(t))
mV (t) cos(α(t)) ; (10.19f)

ϵ̇(t) = δs(t) − ϵ(t)
τϵ

; (10.19g)

σ̇(t) = δa(t) − σ(t)
τσ

; (10.19h)

where t [s] is time, rx [m], ry [m] and rz [m] is the position of the GPRV in x (north),
y (east), z (up), direction (in a left-handed coordinate system) in the Earth frame,
respectively, V [m·s−1] is its absolute velocity, α [rad] is the flight path angle, and ψ
[rad] is the heading angle. δs and δa are the (normalized) symmetric and asymmetric
deflections (and hence are dimensionless), respectively, which are the inputs of the
system. Furthermore, ϵ and σ represent delayed versions of the symmetric and
asymmetric deflection, respectively. The mass of the system is given by m [kg], the
gravitational acceleration is g [m·s−2] (and is considered to be constant along the
atmospheric flight), and τϵ and τσ are time constants. The aerodynamic drag D
and aerodynamic lift L are given by

D(V (t), ϵ(t)) = 1
2ρV (t)2SCD(ϵ(t)), (10.20a)

L(V (t), ϵ(t)) = 1
2ρV (t)2SCL(ϵ(t)), (10.20b)

where ρ is the air-density [kg·m−3] (assumed to be constant), S is the aerodynamic
surface area [m2], CD and CL are aerodynamic drag and lift coefficients, respectively,
given as lookup tables. The considered physical parameters are given in Table 10.3.
A schematic representation of the GPRV based on this model is given in Figure 10.10.
As aforementioned, we consider control of the GPRV during the terminal guidance
phase. During the terminal guidance phase, the vehicle needs to follow a pre-
determined path which is expressed in terms of a heading profile that needs to be
followed. Therefore, for this model of the GPRV, we are interested in regulating the
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Table 10.3: Physical parameters of the GPRV model.

Parameter Value Unit
g 9.81 m·s−2

m 2.35 · 103 kg
ρ 1.23 kg·m−3

S 2.79 · 102 m2

τϵ 2 · 10−2 -
τσ 2 · 10−2 -

m

V ψ

x

y

m

V
z

y

α−

Figure 10.10: Schematic representation of the GPRV based on (10.19).

flight-path angle α and tracking a desired heading angle ψ, consequently we consider
them to be outputs of the system which can be measured. Based on this, we can
rewrite the dynamics of the GPRV, given by (10.19), in the following nonlinear
state-space representation

ẋg(t) = fg(xg(t)) +Bgug(t)), (10.21a)
yg(t) = Cgxg(t), (10.21b)

where xg(t) = col(V (t), α(t), ψ(t), ϵ(t), σ(t)) ∈ R5, ug(t) = col(δs(t), δa(t)) ∈
[−1, 1] × [−1, 1], and where

fg(xg) =


− 1

mD(V, ϵ) − g sin(α)
1
m L(V,ϵ) cos(σ)−g cos(α)

V
L(V,ϵ) sin(σ)

mV cos(α)
−ϵ
τϵ−σ
τσ

 , Bg =


0 0
0 0
0 0
1 0
0 1

 , Cg =
[
0 1 0 0 0
0 0 1 0 0

]
.

(10.22)
Note that we have omitted the positional dynamics, given by (10.19a)–(10.19c), as
the dynamics of xg do not depend on it.

10.3.3 Controller design

Generalized plant

In order to achieve our control objective of regulating the flight-path angle α and
tracking a desired heading angle ψ, we consider a generalized plant structure as
depicted in Figure 10.11. In Figure 10.11, r is the to-be-followed reference and d is
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Figure 10.11: Generalized plant considered for the flight control design of the GPRV.

the disturbance, which collectively are the generalized disturbance channel w (i.e.,
w = col(r, d)), z1 and z2 together are the generalized performance channel, G is
system given by (10.21), K is the to-be-designed controller, My, Wy, Wu, and Wd
are (LTI) weighting filters given (in transfer function representation by):

My(s) =
[1 0
0 1.12(s2+0.71s+0.18)

s2

]
, Wy(s) =

[
1 0
0 0.45(s+0.63)2

s2+0.71s+0.18

]
,

Wu =
[
0.32 0

0 0.32

]
, Wd =

[
0.1 0
0 0.1

]
.

(10.23)

The combinations of the weighting filters Wy(s)My(s) ensures regulation of α
and good tracking performance of ψ, especially for constant and ramp references
due the -40 dB/dec slope of the filter. The constant weight Wu ensures that too
large control inputs are penalized. The constant Wd is used to ensure robustness
against disturbances. Like for the universal shifted controller design for the CMG
in Section 10.2.3, we pre-scale G using (10.13). In this case, for the GPRV, the
pre-scale weights are given by Su = I and Sy = diag(0.5, π

2 ).

Considering this generalized plant, we then use the three-step-design procedure to
perform an incremental controller design as has been presented in Section 6.3. Note
that G given by (10.21) has linear dependence w.r.t. ug and has a linear output
map, hence, we have that the generalized plant is of the form (6.4).

DPV embedding

For the first step in the procedure, we need to compute the differential form of the
generalized plant and construct a Differential Parameter-Varying (DPV) embedding
based on it. The system given by (10.21) is the only nonlinear system in the
generalized plant, hence, we only require construction of a DPV embedding of
(10.21). As the dynamics of (10.21) depend on the aerodynamic drag and lift
coefficients, CD and CL, which are given by lookup tables, we cannot analytically
compute the differential form of (10.21). Therefore, we use the Deep (Artifical)
Neural Network (DNN) based Scheduling Dimension Reduction (SDR) method of
Chapter 9, in order to construct an (approximate version of the) DPV embedding of
(10.21) based on a data set, see also Section 9.5.2. More concretely, the differential
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form of (10.21) is given by

xδ,g(t) = Aδ,g(xg(t)) +Bguδ,g(t)), (10.24a)
yδ,g(t) = Cgxδ,g(t), (10.24b)

where Aδ,g = ∂fg
∂xg

. While we cannot analytically compute Aδ,g, we can use Automatic
Differentiation (AD) methods in order to evaluate it at different points xg in a
data set D, corresponding to the considered embedding region X . For the DPV
embedding region, we consider2 X = [10, 21]× [−0.35, −0.21]×R× [−1, 1]× [−1, 1].
As data set D, we consider an equidistant grid on X with 9 grid points in each
dimension (for a total of data 6561 points). For the DNN SDR method, the output
data matrix Λ of the DNN, see also (9.22), is given by

Λ =
[
vec
(
Aδ,g(xg,(1))

)
. . . vec

(
Aδ,g(xg,(6561))

)]
(10.25)

where xg,(i) is the i’th element in D. Instead of considering xg directly as an input
to the DNN, we create the extended vector θ that is considered to be the input

θ = col(V, sin(α), sin(σ), cos(α), cos(σ), ϵ). (10.26)

This extended vector is chosen as it will wrap the angle variation in the interval
[−1, 1] in order to help training of the DNN. The input data matrix Γ of the DNN,
see also (9.6), is then given by

Γ =
[
θ(1) . . . θ(6561)

]
, (10.27)

where θ(i) is the value of θ corresponding to xg,(i). The normalized version of the
data matrices Γ and Λ are then used as the input data and output data, respectively,
to train the DNN.

For the considered architecture of the DNN, see also Figure 9.1, the size of the
(reduced) scheduling-variable φ is taken equal to 3, i.e., nφ = 3. This was chosen as
it gave a good trade-off between modeling error and scheduling size. Moreover, for
the encoding layer, two hidden layers with 32 neurons each using Rectified Linear
Unit (ReLU) activation functions were used. A higher number of hidden layers
and/or neurons did not significantly improve the modeling error for considered
scheduling size.

For training of the DNN, the gradient descent algorithm Adam (Kingma and Ba
2014) is used with a learning rate of 1 · 10−4. Moreover, L2 weight regularization is
considered with a coefficient of 1 · 10−3. The DNN is then trained for a 1000 epochs,
resulting in a final squared Frobenius norm cost (see also (9.31)) of ∼ 6 · 102. Based
on the DNN network we can then construct the LPV representation

xδ,g(t) = Â(p(t)) +Bguδ,g(t)), (10.28a)
yδ,g(t) = Cgxδ,g(t), (10.28b)

2Note that fg, given in (10.22), does not depend on ψ, consequently, Aδ,g does not depend on
it as well. This means that we can consider R as the embedding region of ψ.
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where p(t) ∈ P ⊂ R3 is the scheduling-variable, with scheduling-map

η(xg) = µ(V, sin(α), sin(σ), cos(α), cos(σ), ϵ), (10.29)

where µ is the encoding layer of the DNN (with normalization taken into account),
and Â is constructed based on the matrix mapping layer of the DNN. Due to the
DNN method, (10.28) has an affine scheduling dependency. The scheduling set P
is then constructed by evaluating η(xg) for xg ∈ D, and computing the minimal
volume bounding box of the resulting data, see also (Sadeghzadeh, Sharif, et al.
2020, Section 4.1)). The vertices of the resulting minimal volume bounding box
are then used to define the convex set P. The LPV representation (10.28) is then
used as a DPV embedding of (10.21) on the region X . The DPV embedding (10.28)
interconnected with the weighting filters, as displayed in Figure 10.11, then gives
us a DPV embedding of the generalized plant.

Differential controller synthesis

The DPV embedding of the generalized plant is then used in the second step of
the incremental controller synthesis procedure. For the DPV embedding, an L2-
gain optimal LPV (of the form (6.9)) is synthesized, which will be the differential
controller. After realization of the controller, this will imply an Li2-gain performance
bound of the primal form of the closed-loop. As the DPV embedding (10.28) has
affine scheduling dependency, we make use of polytopic L2-gain optimal LPV
controller synthesis (Apkarian, Gahinet, and G. Becker 1995), implemented in
the LPVcore Toolbox (Boef et al. 2021). Moreover, in order to enforce roll-off
at high frequencies of the controller, we set the D-matrix of the controller (i.e.,
Dk of (4.41)) to zero and add an LMI region constraint s.t. for constant values
of the scheduling-variable, the closed-loop eigenvalues of the interconnection have
a real part larger than -60. Synthesizing the differential controller under these
considerations, achieves a closed-loop L2-gain of 1.96. The Bode magnitude plot of
the differential form of the closed-loop system is given in Figure 10.12 .

Incremental control realization

For the final step of the incremental controller design procedure, we use the result of
Theorem 6.3. This results in an incremental controller of the form (6.10). Moreover,
as the differential controller has affine scheduling dependency, we make use of
Corollary 6.1. This means that we only require integration of the scheduling-map
η, instead of integration of the matrix functions of the differential controller, for
realization of the incremental controller. In this case, the scheduling-map η consists
of a DNN. Due to the DNN in the scheduling-map, computing the analytical
solution of the integral is difficult. Therefore, the integration of the scheduling-map
is numerically computed in MATLAB. For fast execution, C-code of the resulting
MATLAB function is generated, using MATLAB code generation. On a modern
Intel Core i5 processor with a (boost) frequency of 3.8GHz, the resulting function
is able to execute in ∼ 0.43 ms, making it feasible for real-time deployment.
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Figure 10.12: Bode magnitude plot of differential form of closed-loop system at
frozen values of xg ∈ X ( ), along with the corresponding inverse weighting filters
( ).

Standard LPV controller design

In industry, the linearization of a nonlinear system is often used for standard (local)
LPV controller design. While it is known that these type of controllers do not have
explicit guarantees (Shamma and Athans 1990), they are still regularly used in
industry as they are able to provide satisfactory performance. The differential form
of a system can be interpreted as the linearization of the system along a certain
trajectory. Therefore, the synthesized differential controller, obtained in the second
step of the incremental controller design procedure, can also be seen as a local
LPV controller design for the system if we do not compute the realization step.
Therefore, we will compare this local LPV controller to our proposed incremental
controller design.

Next, we will present simulations results when the incremental controller and the
local LPV controller are applied to the GPRV model (10.19).
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10.3.4 Simulation results

For our simulation study, we will compare the tracking performance of the designed
incremental controller and local LPV controller. As reference trajectory we consider
a (simulated) open loop trajectory of the GPRV model, which consist of constant
heading and constant heading rate sections, see Figure 10.13 and also the reference
in Figure 10.14.

Figure 10.13: Position of the considered reference trajectory ( ) and its projection
on rx and ry ( ).

For the incremental controller, this trajectory is also used as the desired steady-
state trajectory, i.e., it is used for (y∗

k, u
∗
k) = (u∗, y∗) in (6.10). Moreover, as the

symmetric and asymmetric deflection are physically restricted to be between ±1,
the control actions generated by the controllers are saturated between ±1. The
resulting simulation results under these considerations is displayed in Figures 10.14
to 10.16.

In Figure 10.14, the flight path angle α and heading angle ψ are depicted for the
system in closed-loop with the local LPV and incremental controller, along with their
to-be-followed reference signals. It can be seen that using the incremental controller,
both the flight path and heading angle converge quickly to their corresponding
reference trajectories. While the local LPV controller is able to track the heading
angle fairly well, the behavior of the flight path angle is more erratic. This can also
been seen from Figure 10.15, where the corresponding tracking errors are displayed.
From Figure 10.15, it is evident that the incremental controller achieves much better
tracking performance for the heading angle ψ. Finally, in Figure 10.16, the control
inputs of both controllers are depicted in terms of the symmetric deflection δs and
asymmetric deflection δa. From the behavior of the control inputs, it can also
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be seen that the incremental controller generates much smoother control signals
compared to the local LPV controller. In fact, due to the design of the incremental
controller, the control signals converge to the ones of the steady-state trajectory
(also used as reference). While the local LPV controller is able to achieve relatively
good performance, it has, as aforementioned, no strict stability and performance
guarantees. On the other hand, our incremental controller design achieves better
tracking performance compared to the local LPV controller, while at the same time
it also has guarantees in terms of incremental stability and performance.

Figure 10.14: Flight path angle α (top) and heading angle ψ (bottom) of the GPRV
in closed-loop with the local LPV ( ) and the incremental ( ) controllers under
reference ( ).
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Figure 10.15: Tracking errors of the flight path angle α (top) and heading angle ψ
(bottom) using the local LPV ( ) and the incremental ( ) controllers.

Figure 10.16: Symmetric deflection δs (top) and asymmetric deflection δa (bottom)
sent to the GPRV in closed-loop with the local LPV ( ) and the incremental
( ) controllers.
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10.4 Conclusions

In this chapter, we applied the developed universal shifted controller design and the
incremental controller design to reference tracking control problems for a CMG and
GPRV, respectively. For both these realistic applications, the results show that both
controller designs are able to successfully achieve their desired control objectives
and guarantee global stability and performance properties of the closed-loop system.
Moreover, they achieve improved performance compared to standard LPV controller
designs, while having a comparable design complexity. These results once again
highlight that we can achieve systematic and computationally efficient control of
nonlinear systems in order to ensure and shape global stability and performance
guarantees through developed framework in this thesis.





11
Conclusions

In this chapter, we reflect on the objective of this thesis to develop a
systematic framework for the analysis and control of nonlinear systems.

Firstly, the main results of the thesis are summarized and it is discussed to
which extend the research questions have been addressed in order to achieve
the set out research objective. Secondly, we highlight the main contributions
of each chapter. Finally, we give some recommendations for future research
directions.
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11.1 Overview and Summary

To cope with the increasing complexity and higher performance requirements of
systems nowadays, there is a growing need to move beyond the Linear Time-
Invariant (LTI) framework in order to analyze and design controllers for these
systems. As discussed in Chapter 1, specifically Section 1.3, while there is a vast
array nonlinear methods to handle analysis and control of systems, they are often
cumbersome to use due to a lack of a systematic and computationally efficient
framework for analysis and controller synthesis, like in the case of LTI systems.
While approaches such as the Linear Parameter-Varying (LPV) framework, which
build on top of the LTI results, have systematic and computationally efficient results,
they lack results for guaranteeing global stability and performance of nonlinear
systems. This can result in undesirable behavior when the current LPV methods
are used to analyze or design controllers for nonlinear systems, as we have shown in
Chapter 3. Global stability and performance guarantees are crucial for systematically
analyzing and designing controllers for nonlinear systems, as they are able to provide
guarantees independent of a particular equilibrium point or trajectory of the system,
similar to the stability and performance guarantees for LTI systems. Therefore, in
this thesis, we set out to achieve the research objective of developing a framework
for systematic, computationally efficient analysis and control of nonlinear systems
to ensure and shape global stability and performance guarantees.

To achieve this objective, we have specifically focussed on the global notions of
universal shifted and incremental dissipativity. As we have shown in the thesis,
these notions allow us to guarantee stability and performance w.r.t. all equilibria
and/or all feasible trajectories of the systems at once, respectively. Under these
considerations, we formulated three crucial Research Questions to be answered in
Section 1.4. Next, we discuss in detail our findings in answering the three Research
Questions.

Research Question 1 – Analysis

For Research Question 1, we have investigated “How to systematically and com-
putationally efficiently analyze universal shifted and incremental dissipativity of
Continuous-Time (CT) and Discrete-Time (DT) nonlinear systems?”

First, in Chapter 4, we have focused on universal shifted stability and performance,
which considers stability and performance w.r.t. all (forced) equilibrium points
of the system. We have shown how classical dissipativity of the so-called velocity
form, i.e., the time-differentiated dynamics in CT and time-difference dynamics in
DT, is able to imply universal shifted stability and performance for CT systems.
We furthermore have shown how the velocity form can naturally be represented
by an LPV representation, which we refer to as a Velocity Parameter-Varying
(VPV) embedding of the nonlinear system. This crucially allows us to cast the
universal shifted stability and performance analysis problem of a nonlinear system
as a standard stability and performance analysis problem of an LPV representation.
This allows for all the computationally efficient analysis methods that are available to



11.1. Overview and Summary 243

LPV systems to be applied to analyzing universal shifted stability and performance
of nonlinear systems. Which gives us a systematic and computationally efficient
framework for global stability and performance analysis, in terms of universal shifted
stability and performance.

In Chapter 5, we have focused on incremental dissipativity analysis of nonlinear
systems. Incremental dissipativity is a stronger notion than universal shifted
dissipativity as it considers dissipativity w.r.t. any arbitrary trajectory of the
system, instead of w.r.t. only the equilibrium points. In Chapter 5, we have
shown how for CT systems, incremental dissipativity can be implied through
ensuring classical dissipativity of the so-called differential form, which represents
the dynamics of the variations along trajectories of the system. We show that
also the differential form, like the velocity form for universal shifted dissipativity
analysis, can naturally be embedded in an LPV representation, which we refer to as
a Differential Parameter-Varying (DPV) embedding. Through the DPV embedding,
we can also cast the incremental dissipativity analysis problem of a nonlinear system
as a classical dissipativity analysis problem of an LPV representation. Therefore,
similar to the universal shifted analysis results, we can use the efficient tools
available for LPV systems, in order analyze incremental dissipativity. This also
gives us a systematic and computationally efficient framework for global stability and
performance analysis, but now in terms of incremental stability and performance.

In fact, due to the similarities between the velocity form and the differential form
of a system and the corresponding VPV and DPV embeddings, a single LPV
representation can represent both the velocity and differential form of a system.
Through classical dissipativity analysis of the LPV representation, both incremental,
universal shifted, and also classical dissipativity can then be concluded.

Moreover, in Chapters 7 and 8, we have similarly shown how these results for
universal shifted and incremental stability and performance analysis of CT systems
can be extended to DT systems. This gives us also in DT a systematic and
computationally efficient framework for global stability and performance analysis.

Taken all together, we have the following procedure in order to systematically and
computationally efficiently analyze global stability and performance of nonlinear
systems:

1. For the to-be-analyzed nonlinear system compute its velocity form or differen-
tial form;

2. Embed the velocity or differential form in an LPV representation, resulting in
a VPV or DPV embedding, respectively;

3. Analyze classical dissipativity of the VPV or DPV embedding, for which
standard LPV analysis methods can be used.

4. If the VPV or DPV embedding is classically dissipative, universal shifted or
incremental stability and performance of the nonlinear system is guaranteed,
respectively.
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Again, these results give us an overarching systematic procedure for global stability
and performance analysis of nonlinear systems. Importantly, we show that this
check can be done computationally efficiently, as it can be cast as a standard LPV
analysis problem, for which a wide variety of existing tools can be used. With this
framework for analysis, we address Research Question 1 of this thesis.

Research Question 2 – Synthesis

Next, for Research Question 2, we have investigated “How to systematically and
computationally efficiently design and shape controllers for CT and DT nonlinear
systems such that universal shifted and incremental performance requirements and
stability are ensured?”. To answer this research question, we have again tackled the
considered global dissipativity notions separately. First, in Chapter 4, Section 4.5,
we have addressed the question of synthesizing a controller to ensure universal shifted
stability and performance of CT systems. In this chapter, we have developed a
novel convex controller synthesis method in order to guarantee closed-loop universal
shifted stability and performance, by exploiting properties of the velocity form and
using through the use VPV embeddings. Similarly, in Chapter 6, we have shown
how to address the controller synthesis problem to ensure incremental stability and
performance of CT systems. In this chapter, we have proposed a novel convex
controller synthesis method, by exploiting properties of the differential form and
using DPV embeddings, in order to ensure the desired incremental stability and
performance guarantees.
Moreover, in Chapter 7, we have shown how also in DT, we can construct a convex
controller synthesis procedure to guarantee closed-loop incremental stability and
performance. We show that this resulting procedure is equivalent to the procedure
in CT. In Chapter 8, we have proposed a procedure for DT controller synthesis in
order to ensure closed-loop universal shifted stability and performance. To achieve
this, we have shown, we can use part of the DT incremental controller synthesis
results due to specific structure of the DT velocity form. Due to the properties of the
DT velocity form, the controller structure can be simplified. While the DT and CT
universal shifted controllers do not have the same structure, they are analogous to
each other. Namely, they both are able to guarantee universal shifted stability and
performance by exploiting properties of the velocity form. Together, these results
give us a systematic and computationally efficient framework for controller synthesis
in order to ensure and shape global stability and performance requirements.
Taken all together, we can formulate the following procedure in order to systemati-
cally and computationally efficiently synthesize controllers for nonlinear systems in
order to ensure and shape global stability and performance of nonlinear systems:

1. Formulate a (weighted) nonlinear generalized plant, based on the desired
closed-loop performance requirements;

2. Embed the nonlinear generalized plant in a VPV or DPV embedding;

3. Synthesize a standard LPV output-feedback controller for the VPV or DPV
embedding of the generalized plant.
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4. Based on the synthesized LPV controller for the VPV or DPV embedding,
realize the controller using the proposed universal shifted controller or incre-
mental controller realization procedure, respectively. Consequently, we obtain
a universal shifted or incremental controller, respectively.

5. The universal shifted controller and incremental controller in closed-loop
with the nonlinear generalized plant ensure universal shifted and incremental
stability and performance, respectively.

An important result we discuss w.r.t. shaping is that when LTI weighting filters are
used to construct the generalized plant, the shaping can also be done directly on
the VPV or DPV embedding using the same weights, which significantly simplifies
the shaping procedure.

A key takeaway here is that we can use existing synthesis methods from the
LPV framework in the third step of the above procedure, giving us a convex
controller synthesis procedure in order to guarantee closed-loop global stability and
performance. With this framework for synthesis, we adress the second research
question of this thesis.

Research Question 3 – Complexity

Finally, for Research Question 3, we have investigated “How to reduce the complexity
for the to-be-developed analysis and controller synthesis methods to address complex
systems?”. A key part of the analysis and synthesis framework we have developed
has been the use of LPV methods combined with the proposed VPV and DPV
embeddings of systems. For increasingly complex systems, more state and input
dependent terms enter the velocity or differential form, which makes it increasingly
difficult to embed them in LPV representations. In order to cope with this increasing
complexity, we have proposed in Chapter 9 a data-based method to obtain an
affine LPV embedding of the velocity or differential form with a user defined
number of scheduling-variables. This was achieved by the development of a Deep
(Artifical) Neural Network (DNN) based Scheduling Dimension Reduction (SDR)
method, whereby the scheduling-map and state-space matrices of the LPV model
are parametrized through an DNN. Compared to existing methods, the proposed
method achieves lower modeling error and improved performance when used for
controller synthesis. The proposed DNN method allows us to reduce the number
of scheduling-variables of a given VPV or DPV embedding. In this way, we can
handle more complex systems. Moreover, we have also shown that DNN method
allows us to automatically construct a VPV or DPV embedding based on a given
data set of typical trajectories or operating points of the system. To achieve this,
when combined with Automatic Differentiation (AD) techniques to evaluate the
velocity or differential form, one would only need the primal form of the system
and a given data set to construct a VPV or DPV embedding. This VPV or DPV
embedding can then be used for either the proposed global analysis or controller
synthesis procedures. This approach has been demonstrated for an incremental
flight controller design for a Generic Parafoil Return Vehicle (GPRV) in Chapter 10.
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In conclusion, the proposed DNN SDR method gives us a tool to reduce the
complexity for the developed analysis and controller synthesis methods to also deal
with complex systems. This addresses the final, and third research question in this
thesis.

The Complete Framework

The combined results of answering Research Questions 1–3 gives us the systematic,
computationally efficient framework for analysis and control of nonlinear systems
to ensure and shape stability and performance. In Figure 11.1, an overview of the
proposed framework is summarized and displayed in terms of a flow chart. In the
figure, ‘Analysis’ refers to the approaches we have developed for addressing Research
Question 1, ‘Synthesis’ refers to the approaches we have developed for addressing
Research Question 2, and ‘Complexity’ to the approach we have developed for
addressing Research Question 3.
In Chapter 10, we have demonstrated the capabilities of the proposed framework
through an experimental study of an universal shifted controller design for a
Control Momement Gyroscope (CMG) lab setup and through a simulation study
of an incremental flight controller design for a GPRV. For both applications, the
benefits of the proposed controller design approaches are demonstrated in terms of a
systematic controller design process and their ability to guarantee the desired global
stability performance properties for the underlying nonlinear systems. Moreover,
the proposed controllers achieve significantly improved performance compared to
standard LPV controller design for these systems.

11.2 Main Contributions

Next, we highlight the main contributions of each chapter individually.

• In Chapter 3, we show that the current use of the LPV framework is insufficient
to properly analyze stability and performance of nonlinear systems. Namely,
we show that using the LPV framework in its current form, we can only
give guarantees for stability and performance for the underlying nonlinear
system w.r.t. the origin of the particular state-space representation. This
means that the current state-of-the-art LPV analysis and controller synthesis
results are insufficient when they are applied to nonlinear systems in order to
ensure stability and performance w.r.t. multiple non-zero equilibrium points
or trajectories. This demonstrates the need to move to global notions for
stability and performance analysis of nonlinear systems.

• In Chapter 4, we show how that the time-differentiated dynamics can be
used in order imply both universal shifted stability and universal shifted
performance of nonlinear systems. Moreover, we show how the analysis of the
time-differentiated dynamics can be performed by using LPV analysis methods.
Together, these results show how to systematically and computationally
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Figure 11.1: Overview of the steps in the framework for analysis, related to Research
Question 1; synthesis, related to Research Question 2; and complexity, related to
Research Question 3.

efficiently analyze universal shifted stability and performance of nonlinear
systems. Moreover, as additional contribution, we show how these analysis
results can be used in order to systemically and computationally efficiently
synthesize controllers to ensure closed-loop universal shifted stability and
shape universal shifted performance.

• In Chapter 5, we show how the differential dissipativity of a nonlinear system
implies incremental, universal shifted, and classical dissipativity. Moreover, we
show how differential dissipativity can computationally efficiently be analyzed
by using analysis methods from the LPV framework.

• In Chapter 6, we propose a novel convex output feedback controller synthesis
method in order to ensure and shape closed-loop incremental dissipativity.
This is achieved by synthesizing an LPV controller for the differential form
of the plant and developping a novel realization procedure which uses the
synthesized LPV controller to realize an implementable incremental controller.

• In Chapter 7, we extend the CT results for incremental dissipativity based
analysis and controller synthesis of Chapters 5 and 6 to DT nonlinear systems.
We show that the same results in terms of analysis and controller synthesis
procedure can be obtained as in CT.

• In Chapter 8, we extend the CT results for universal shifted based analysis
and controller design of Chapter 4 to DT nonlinear systems. We show that



248 Chapter 11. Conclusions

time-difference dynamics, analogous to the time-differentiated dynamics in CT,
can be used to imply universal shifted stability and performance properties.
Moreover, we propose a novel convex output feedback controller synthesis
method in order to ensure and shape closed-loop universal shifted stability and
performance, which uses the DT incremental controller results of Chapter 7.

• In Chapter 9, we present an DNN based SDR method for LPV systems. The
proposed method uses a single Artifical Neural Network (ANN) to model both
the (reduced) scheduling-map and LPV state-space matrices. The proposed
method achieves improved model representation and results in improved closed-
loop performance when the reduced model is used for controller synthesis
compared to existing SDR methods. Moreover, we show how the DNN
method can be used for the automated construction of LPV, VPV, and DPV
embeddings.

• In Chapter 10, we demonstrate the capabilities of the proposed analysis and
controller synthesis framework on a lab setup and on a real-life example. We
demonstrate that the proposed methods allow us to systematically design
controllers to ensure and shape the desired global stability and performance
requirements. Moreover, the improvements of the proposed methods compared
to standard LPV controller designs are shown in terms of improved stability
and performance properties.

11.3 Recommendations

While the results for the developed framework are fairly general, there are still
open problems and challenges to be solved, e.g., as a results of assumptions taken
along the way or interesting directions to extend the framework into. Next, we will
discuss some of these open problems and challenges.

• For both the analysis and synthesis results, assumptions are taken on the
class of nonlinear systems that is considered. Namely, for both analysis and
synthesis, the velocity and differential forms require the state transition map
f and output map h of the nonlinear system to be in C1. However, common
nonlinearities such as saturations, dead-zones, etc. do not satisfy this. Hence,
it is worth investigating if the extensions can be made to nonlinearities that are
differentiable almost everywhere, C0, or even discontinues, while still allowing
them to be used for universal shifted and incremental dissipativity analysis.
There exist extensions of the Jacobian to non-smooth (but locally Lipschitz)
functions, such as in the form of the Clarke’s generalized Jacobian (Clarke
1983). However, it is still an open question if a velocity or differential form
formulated using these will still be able to imply incremental or universal
shifted stability and performance.
Furthermore, for both synthesis procedures, i.e., universal shifted and incre-
mental controller designs, various restrictions on the class of nonlinear systems
are considered. While we show how through concatenation of simple filters
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more general classes of nonlinear systems can also be addressed, it is still of
interest to investigate extensions to larger system classes.

• In Chapters 4 and 8, we have shown how velocity (Q,S,R) dissipativity
implies universal shifted stability of nonlinear systems. However, we have not
been able to completely proof that velocity (Q,S,R) dissipativity also implies
universal shifted (Q,S,R) dissipativity. While we have presented results that
strongly indicate that this is the case, it is still an open problem to formally
proof this.

• The velocity form and differential form, while similar, are distinct objects
describing different system representations. While for controllers synthesis,
explicit properties of the velocity form are exploited to ensure universal shifted
stability and performance, for analysis this is not the case. In fact, as we
have discussed in Sections 5.3.6 and 5.4.2, analysis of the VPV embedding
can be seen as analysis of an DPV embedding, which actually analyzes the
stronger notion of incremental stability and performance. Hence, analysis
of universal shifted stability and performance through the velocity form is
inherently conservative in the developed framework. Therefore, the question
arises if this conservatism in the analysis can be reduced by exploiting other
properties of the velocity form specifically for universal shifted stability and
performance analysis.

• For the proposed incremental controller design, knowledge of the steady state
trajectory to which we want to converge is required for realization of the
controller. While some results exist which do not require knowledge of this
steady state trajectory in order to realize the controller and ensure the desire
incremental stability and performance guarantees, they only consider an LTI
controller (Scorletti, Fromion, et al. 2015). Therefore, this is still an open
problem in the case a nonlinear controller is considered.

• We have shown that the velocity and differential form can naturally be
represented by an LPV representation. However, for a given scheduling
dependency, the corresponding construction of the VPV or DPV embedding
has to be performed manually and is generally non-unique. Hence, the
question arises how to perform this embedding automatically and what the
most ‘optimal’ VPV or DPV embedding is for a given scheduling class, e.g.
in terms of best controller performance. We have shown we can use the
developed DNN SDR method to automatically obtain an affine VPV or DPV
embedding based on data. However, this requires gathering of data and
the resulting LPV representation is only an approximation of the underlying
velocity or differential form due to the scheduling reduction. Some results exist
in the literature related to automated and/or optimal embedding construction.
However, these results are only w.r.t. embedding the primal form of the
nonlinear systems in an LPV representation (Kwiatkowski, Bol, et al. 2006;
Tóth 2010; Abbas, Tóth, Petreczky, Meskin, Mohammadpour Velni, and
Koelewijn 2021). Therefore, it is still an open question how to perform the
VPV or DPV embedding of a nonlinear system ‘optimally’ and automatically.
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• With respect to controller synthesis, we have shown how we can intuitively
shape the velocity/differential form to shape shifted/incremental properties of
the closed-loop system through the use of LTI weighting filters. However, for
LTI systems there is also a strong connection of the weighting filters to the
frequency domain behavior of the expected closed-loop dynamics. While for
notions related to incremental dissipativity there are some results to frequency
domain behavior of the nonlinear system (Pavlov, Van de Wouw, et al. 2007),
it is still an open question how these results connect to properties of the
differential form, and if and how these results can be used effectively to shape
the frequency domain behavior of the nonlinear system.

• For standard LPV controller design, besides using LTI weighting filters, it is
also common to use parameter-dependent weighting filters in order to shape
the closed-loop performance differently for different operating/scheduling
points. For the proposed universal shifted and incremental controller designs,
we assume that LTI weighting filters are used, as this ensures that shaping the
velocity/differential form is equivalent to shaping universal shifted/incremental
properties of the primal form. While, parameter-varying weights could in
theory be used to shape the, LPV embedded, velocity/differential form,
this breaks the interpretation of how these weights will shape universal
shifted/incremental performance of the primal form. Alternatively, one could
also interconnect nonlinear weighting filters in the primal form to shape
universal shifted/incremental properties. However, this will result in the
velocity/differential form also depending on the nonlinearities coming from
these weighting filters, which will make effective shaping more difficult. Hence,
it is of interest to investigate how parameter-dependent or nonlinear weighting
filters can efficiently and intuitively be incorporated in the shaping procedure
for the universal shifted and incremental controller designs.

• Using the developed incremental controller synthesis technique, we have
stability and performance guarantees w.r.t. any trajectory of the system. In
most cases, we only require these guarantees w.r.t. a subset of the behavior of
the system. This can then be exploited by making use of a so-called virtual
systems, which can be seen a general nonlinear embedding of the nonlinear
system. By enforcing differential dissipativity of the virtual systems rather
than that of the original nonlinear system, stability and performance w.r.t. the
trajectories that are in the behavior of both the virtual system and nonlinear
system can be guaranteed. On this front, there have already been some
developments for CT systems using state-feedback controllers (R. Wang, Tóth,
et al. 2020; R. Wang, Koelewijn, et al. 2021). However, extensions to the
output-feedback case and DT systems is still an open problem.

• As discussed in Chapter 1, one of the more popular and successful nonlinear
control methods is Nonlinear Model Predictive Control (NMPC). While there
are some results on using incremental properties for NMPC (Köhler et al. 2022),
these methods still require expensive, non-convex, optimization problems to
be solved at each sampling instant. On the other hand, there also exist LPV
based methods (Cisneros et al. 2016; Hanema et al. 2017) which are solved by
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(a series of) linear or quadratic programs making them more efficient than
nonlinear methods, however, these generally lack convergence guarantees in
reference tracking applications when applied to nonlinear systems. Hence,
extending the results of the proposed framework in this thesis to NMPC based
methods would be of great interest.

• The developed framework relies on the fact that a (state-space) model of the
nonlinear system is available. The increasing complexity of systems over the
last decades has lead to a great research interest in learning based methods for
analysis and control design. Some methods have already been developed for
system identification of nonlinear systems with built-in incremental stability
and performance guarantees (Revay et al. 2021). However, the various learning
based analysis (Boffi et al. 2020), control (Tsukamoto et al. 2021), and control
synthesis techniques (Junnarkar et al. 2022), rely on just ensuring incremental
stability and do not focus on performance.
Moreover, in the last few years, increasing attention has been devoted towards
analysis and synthesis of systems directly based on data with stability and
performance guarantees. However, the data-based results with explicit stability
and performance guarantees are still limited to LTI (Van Waarde et al. 2022)
and LPV (Verhoek, Tóth, et al. 2021) systems.
Hence, extensions of these various data and learning based methods to analyze
and ensure universal shifted or incremental performance and/or dissipativity
guarantees is still an open problem. However, the systematic framework we
have developed in this thesis can help pave the way for this.

• To use the results of the developed systematic framework for analysis and
control, there are still a few gaps in the software tooling that need to be
overcome. An important part of the proposed framework is the use of the
LPV analysis and synthesis methods, for which tools are readily available,
such as the LPVcore Toolbox (Boef et al. 2021) for MATLAB. However,
computation of the velocity or differential form and their embedding in an
LPV representation still needs to be done by hand or by using different
toolboxes and/or software packages. Hence, while individual components
exist, a complete end-to-end toolbox for the proposed analysis and synthesis
framework is still required to be developed.





A
Derivations of LPV
Analysis and Synthesis
Results

A.1 Introduction

In this appendix, we will present derivations for the analysis and controllers synthesis
conditions for Linear Parameter-Varying (LPV) systems in state-space represen-
tation that are given in Sections 2.5.2 and 2.5.3. Some of the results that we will
present on analysis and controller synthesis for LPV systems are already available in
literature, specifically those for L2-gain performance, see e.g. (Apkarian, Gahinet,
and G. Becker 1995; Apkarian and Adams 1998; M. Ali and Werner 2011; De Caigny
et al. 2012). Nonetheless, results for other the performance notions we discuss in
this thesis, such as passivity, L2-L∞-gain, and L∞-gain, are not widely available or
do not exist in literature to the author’s knowledge. Therefore, in this appendix,
we will present derivations for the various conditions, in terms of Linear Matrix
Inequalities (LMIs), in order to analyze LPV systems or synthesize LPV controllers
for them.

The derivations in this appendix are inspired by the derivations and results in
(Scherer and Weiland 2015) in Continuous-Time (CT) and by (De Caigny et al.
2012) in Discrete-Time (DT).

First, in Section A.2, we will present derivations for the L2-gain, passivity, L2-L∞-
gain, and L∞-gain based analysis conditions for both CT and DT LPV systems.
In Section A.3, we will present derivations for L2-gain, passivity, L2-L∞-gain, and
L∞-gain based LPV controller synthesis conditions for both CT and DT LPV
systems.
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A.2 Derivations of Analysis Results

A.2.1 L2-gain

Continuous-time

We first proof that a CT LPV system given by (2.26) has a bounded L2-gain of
γ, if it is classically (Q,S,R) dissipative with (Q,S,R) = (γ2I, 0,−I) (see also
Lemma 2.4). Consequently, it then holds that there exists a storage function Vp
such that

Vp(x(t1), p(t1)) − Vp(x(t0), p(t0)) ≤
∫ t1

t0

γ2(⋆)⊤w(t) − (⋆)⊤z(t) dt, (A.1)

for all t0, t1 ∈ R+
0 with t1 ≥ t0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+

0 . Hence, it also
holds that

0 ≤ Vp(x(T ), p(T )) ≤
∫ T

0
γ2(⋆)⊤w(t) − (⋆)⊤z(t) dt+ Vp(x(0), p(0)), (A.2)

for all T ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+
0 . This implies that, using the

(extended) L2-norm definition in Definition 2.10, that

γ2 ∥w∥2
2,T − ∥z∥2

2,T + Vp(x(0), p(0)) ≥ 0, (A.3)

for all (x,w, z) ∈ Bp(p) and p ∈ PR+
0 with w ∈ L2e. Therefore1,

∥z∥2,T ≤
√
γ2 ∥w∥2

2,T + Vp(x(0), p(0)) ≤ γ ∥w∥2,T +
√

Vp(x(0), p(0)), (A.4)

for all (x,w, z) ∈ Bp(p) and p ∈ PR+
0 with w ∈ L2e, which is the L2-gain definition

(see Definition 2.11), where ζ(x0) =
√

Vp(x0, p(0)).
Note that similarly, classical (Q,S,R) dissipativity with (Q,S,R) = (γI, 0,−γ−1I)
(for γ > 0) also ensures a bounded L2-gain. This follows from multiplying (A.1) by
γ−1 > 0 and following the same steps above.
Next, we show the derivation to obtain the LMI condition given in (2.38a). Based
on the result of Theorem 2.5 for classical (Q,S,R) dissipativity, we have that a
CT LPV system given by (2.26) is classically (Q,S,R) dissipative with (Q,S,R) =
(γ, 0,−γ−1I), if for all p ∈ P and v ∈ Π, it holds that

(⋆)⊤
[
∂M(p, v) M(p)

⋆ 0

] [
I 0

A(p) B(p)

]
− (⋆)⊤

[
γI 0
⋆ −γ−1I

] [
0 I

C(p) D(p)

]
⪯ 0,

(A.5)
which can be rewritten as[
A(p)⊤M(p) + (⋆)⊤ + ∂M(p, v) M(p)B(p)

⋆ −γI

]
− (⋆)⊤(−γ−1I)

[
C(p) D(p)

]
⪯ 0.

(A.6)
1Using that

√
a+ b ≤

√
a+

√
b for a, b ≥ 0.
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Through a Schur complement, this is equivalent toA(p)⊤M(p) + (⋆)⊤ + ∂M(p, v) M(p)B(p) C(p)⊤

⋆ −γI D(p)⊤

⋆ ⋆ −γI

 ⪯ 0, (A.7)

which is equivalent to the condition in (2.38a).

Discrete-time

Similar as for the CT result, we can also show in DT that an LPV system given
by (2.26) has a bounded ℓ2-gain of γ, if it is classically (Q,S,R) dissipative with
(Q,S,R) = (γ2, 0,−I) (or (Q,S,R) = (γI, 0,−γ−1I)). This proof will not be
repeated as it follows in a similar manner as in CT, see (A.1)–(A.4), but by using
the DT dissipation inequality (2.35b).
Next, we show the derivation to obtain the LMI condition given in (2.38b). Based
on the result of Theorem 2.5 for classical (Q,S,R) dissipativity, we have that a
DT LPV system given by (2.26) is classically (Q,S,R) dissipative with (Q,S,R) =
(γI, 0,−γ−1I), if for all p ∈ P and v ∈ Π, it holds that

(⋆)⊤
[
−M(p) 0

⋆ M(p+ v)

] [
I 0

A(p) B(p)

]
− (⋆)⊤

[
γI 0
⋆ −γ−1I

] [
0 I

C(p) D(p)

]
⪯ 0,

(A.8)
which can be rewritten as[

(⋆)⊤M(p+ v)A(p) −M(p) A(p)⊤M(p+ v)B(p)
⋆ (⋆)⊤M(p+ v)B(p) − γI

]
−

(⋆)⊤(−γ−1I)
[
C(p) D(p)

]
⪯ 0, (A.9)[

−M(p) 0
⋆ −γ

]
+ (⋆)⊤

[
M(p+ v)−1 0

⋆ γ−1I

] [
M(p+ v)A(p) M(p+ v)B(p)

C(p) D(p)

]
⪯ 0,

(A.10)
and hence,[

M(p) 0
⋆ γ

]
− (⋆)⊤

[
M(p+ v)−1 0

⋆ γ−1

] [
M(p+ v)A(p) M(p+ v)B(p)

C(p) D(p)

]
⪰ 0.

(A.11)
Through a Schur complement, this is equivalent to

M(p) 0 A(p)⊤M(p+ v) C(p)⊤

⋆ γ B(p)⊤M(p+ v) D(p)⊤

⋆ ⋆ M(p+ v) 0
⋆ ⋆ ⋆ γ

 ⪰ 0. (A.12)

Using a congruence transformation, this is equivalent to

(⋆)⊤


M(p) 0 A(p)⊤M(p+ v) C(p)⊤

⋆ γ B(p)⊤M(p+ v) D(p)⊤

⋆ ⋆ M(p+ v) 0
⋆ ⋆ ⋆ γ




0 M(p)−1 0 0
0 0 I 0

M(p+ v)−1 0 0 0
0 0 0 I

 ⪰ 0,

(A.13)
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resulting in 
M̄(p+ v) A(p)M̄(p) B(p) 0

⋆ M̄(p) 0 M̄(p)C(p)⊤

⋆ ⋆ γI D(p)⊤

⋆ ⋆ ⋆ γI

 ⪰ 0, (A.14)

where M̄(p) := M(p)−1 ≻ 0 and M̄(p+ v) := M(p+ v)−1 ≻ 0, which is equivalent
to the condition in (2.38b).

A.2.2 Passivity

Continuous-time

We first proof that a CT LPV system given by (2.26) is passive, if it is classically
(Q,S,R) dissipative with (Q,S,R) = (0, I, 0) (see also Lemma 2.5). Consequently,
it then holds that there exists a storage function Vp such that

Vp(x(t1), p(t1)) − Vp(x(t0), p(t0)) ≤
∫ t1

t0

z(t)⊤w(t) + w(t)⊤z(t) dt, (A.15)

for all t0, t1 ∈ R+
0 with t1 ≥ t0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+

0 . Hence, it also
holds that

0 ≤ Vp(x(T ), p(T )) ≤
∫ T

0
z(t)⊤w(t) + w(t)⊤z(t) dt+ Vp(x(t0), p(0)), (A.16)

for all T ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+
0 . This implies that∫ T

0
2z(t)⊤w(t) dt ≥ −Vp(x(t0), p(0)), (A.17)∫ T

0
z(t)⊤w(t) dt ≥ −1

2Vp(x(t0), p(0)), (A.18)

for all T ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+
0 , which is the passivity definition

(see Definition 2.12), where ζ(x0) = − 1
2 Vp(x0, p(0)).

Next, we show the derivation to obtain the LMI condition given in (2.39a). Based on
the result of Theorem 2.5 for classical (Q,S,R) dissipativity, we have that a CT LPV
system given by (2.26) is classically (Q,S,R) dissipative with (Q,S,R) = (0, I, 0),
if for all p ∈ P and v ∈ Π, it holds that

(⋆)⊤
[
∂M(p, v) M(p)

⋆ 0

] [
I 0

A(p) B(p)

]
− (⋆)⊤

[
0 I
⋆ 0

] [
0 I

C(p) D(p)

]
⪯ 0, (A.19)

which can be rewritten as[
A(p)⊤M(p) + (⋆)⊤ + ∂M(p, v) M(p)B(p)

⋆ 0

]
−
[
0 C(p)⊤

⋆ D(p) + (⋆)⊤

]
⪯ 0, (A.20)[

A(p)⊤M(p) + (⋆)⊤ + ∂M(p, v) M(p)B(p) − C(p)⊤

⋆ −D(p) + (⋆)⊤

]
⪯ 0, (A.21)

which is equivalent to the condition in (2.39a).
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Discrete-time

Similar as for the CT result, we can also show in DT that an LPV system given
by (2.26) is passive, if it is classically (Q,S,R) dissipative with (Q,S,R) = (0, I, 0).
This proof will not be repeated as it follows in a similar manner as in CT, see
(A.15)–(A.18), but by using the DT dissipation inequality (2.35b).
Next, we show the derivation to obtain the LMI condition given in (2.39b). Based on
the result of Theorem 2.5 for classical (Q,S,R) dissipativity, we have that a DT LPV
system given by (2.26) is classically (Q,S,R) dissipative with (Q,S,R) = (0, I, 0) if
for all p ∈ P and v ∈ Π it holds that

(⋆)⊤
[
−M(p) 0

⋆ M(p+ v)

] [
I 0

A(p) B(p)

]
−(⋆)⊤

[
0 I
⋆ 0

] [
0 I

C(p) D(p)

]
⪯ 0, (A.22)

which can be rewritten as[
(⋆)⊤M(p+ v)A(p) −M(p) A(p)⊤M(p+ v)B(p)

⋆ (⋆)⊤M(p+ v)B(p)

]
−
[
0 C(p)⊤

⋆ D(p) + (⋆)⊤

]
⪯ 0,

(A.23)[
−M(p) −C(p)⊤

⋆ −D(p) + (⋆)⊤

]
+ (⋆)⊤M(p+ v)−1 [M(p+ v)A(p) M(p+ v)B(p)

]
⪯ 0.

(A.24)
Through multiplication with −1 and through a Schur complement, this can be
written as M(p) C(p)⊤ A(p)⊤M(p+ v)

⋆ D(p) + (⋆)⊤ B(p)⊤M(p+ v)
⋆ ⋆ M(p+ v)

 ⪰ 0. (A.25)

Using a congruence transformation, this is equivalent to

(⋆)⊤

M(p) C(p)⊤ A(p)⊤M(p+ v)
⋆ D(p) + (⋆)⊤ B(p)⊤M(p+ v)
⋆ ⋆ M(p+ v)

 0 M̃(p)−1 0
0 0 I

M̃(p+ v)−1 0 0

 ⪰ 0,

(A.26)
resulting in M̄(p+ v) A(p)M̄(p) B(p)

⋆ M̄(p) M̄(p)C(p)⊤

⋆ ⋆ D(p) + (⋆)⊤

 ⪰ 0. (A.27)

where M̄(p) := M(p)−1 ≻ 0 and M̄(p+ v) := M(p+ v)−1 ≻ 0, which is equivalent
to the condition in (2.39b).

A.2.3 L2-L∞-gain

Continuous-time

We first proof that a CT LPV system given by (2.26) has a bounded L2-L∞-
gain of γ, if it is classically (Q,S,R) dissipative for a storage function Vp with
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(Q,S,R) = (γ, 0, 0) and it holds that

z(t)⊤z(t) ≤ γVp(x(t), p(t)), (A.28)

for all t ≥ 0 and (x, z) ∈ πx,z Bp(p) for all p ∈ PR+
0 .

Consequently, it then holds that

Vp(x(t1), p(t1)) − Vp(x(t0), p(t0)) ≤
∫ t1

t0

γ(⋆)⊤w(t) dt, (A.29)

for all t0, t1 ∈ R+
0 with t1 ≥ t0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+

0 . Hence, it also
holds that

0 ≤ Vp(x(t), p(t)) ≤
∫ t

0
γ(⋆)⊤w(τ) dτ + Vp(x(0), p(0)), (A.30)

for all t ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+
0 . This implies that

Vp(x(t), p(t)) ≤ γ

∫ t

0
∥w(τ)∥2

dτ + Vp(x(0), p(0)), (A.31)

for all (x,w, z) ∈ Bp(p) and p ∈ PR+
0 with w ∈ L2e. Combining this with (A.28),

we obtain that,

∥z(t)∥2 ≤ γ2
∫ t

0
∥w(τ)∥2

dτ + γVp(x(0), p(0)), (A.32)

for all t ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+
0 . Taking the supremum over

t ∈ [0, T ] gives that for all T ≥ 0

∥z∥2
∞,T ≤ γ2 ∥w∥2

2,T + γVp(x(0), p(0)), (A.33)

for all (x,w, z) ∈ Bp(p) and p ∈ PR+
0 with w ∈ L2e. Therefore,

∥z∥∞,T ≤ γ ∥w∥2,T +
√
γVp(x(0), p(0)), (A.34)

for all (x,w, z) ∈ Bp(p) and p ∈ PR+
0 with w ∈ L2e, which is the L2-L∞-gain

definition (see Definition 2.11), where ζ(x0) =
√
γVp(x0, p(0)).

Next, we show the derivation to obtain the LMI conditions given in (2.40a). Based on
the result of Theorem 2.5 for classical (Q,S,R) dissipativity, we have that a CT LPV
system given by (2.26) is classically (Q,S,R) dissipative with (Q,S,R) = (γ, 0, 0),
if for all p ∈ P and v ∈ Π, it holds that

(⋆)⊤
[
∂M(p, v) M(p)

⋆ 0

] [
I 0

A(p) B(p)

]
− (⋆)⊤

[
γ 0
⋆ 0

] [
0 I

C(p) D(p)

]
⪯ 0, (A.35)

which can be rewritten as[
A(p)⊤M(p) + (⋆)⊤ + ∂M(p, v) M(p)B(p)

⋆ 0

]
−
[
0 0
⋆ γ

]
⪯ 0, (A.36)
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[
A(p)⊤M(p) + (⋆)⊤ + ∂M(p, v) M(p)B(p)

⋆ −γ

]
⪯ 0, (A.37)

which is equivalent to the first LMI in (2.40a). Next, from (A.28), we have that2

(⋆)⊤(C(p(t))x(t)) ≤ γ x(t)⊤M(p(t))x(t), (A.38)

for all t ≥ 0 and x ∈ πx Bp(p) for all p ∈ PR+
0 . This holds if

(⋆)⊤C(p)x ≤ γ x⊤M(p)x, (A.39)

for all x ∈ X ⊆ Rnx and p ∈ P, which holds if

M(p) − (⋆)⊤(γ−1)C(p) ⪰ 0, (A.40)

for all p ∈ P. Through a Schur complement, this is equivalent to[
M(p) C(p)⊤

⋆ γI

]
⪰ 0, (A.41)

which is equivalent to the second LMI in (2.40a).

Discrete-time

Similar as for the CT result, we can also show in DT that an LPV system given by
(2.26) has a bounded ℓ2-ℓ∞-gain of γ, if it is classically (Q,S,R) dissipative with
(Q,S,R) = (γ, 0, 0) and (A.28) holds for all t ≥ 0 and (x, z) ∈ πx,z Bp(p) for all
p ∈ PN0 . This proof will not be repeated as it follows in a similar manner as in CT,
see (A.29)–(A.34), but by using the DT dissipation inequality (2.35b).
Next, we show the derivation to obtain the LMI condition given in (2.40b). Based on
the result of Theorem 2.5 for classical (Q,S,R) dissipativity, we have that a DT LPV
system given by (2.26) is classically (Q,S,R) dissipative with (Q,S,R) = (γ, 0, 0),
if for all p ∈ P and v ∈ Π, it holds that

(⋆)⊤
[
−M(p) 0

⋆ M(p+ v)

] [
I 0

A(p) B(p)

]
− (⋆)⊤

[
γ 0
⋆ 0

] [
0 I

C(p) D(p)

]
⪯ 0,

(A.42)
which can be rewritten as[

(⋆)⊤M(p+ v)A(p) −M(p) A(p)⊤M(p+ v)B(p)
⋆ (⋆)⊤M(p+ v)B(p)

]
−
[
0 0
⋆ γ

]
⪯ 0, (A.43)

[
−M(p) 0

⋆ −γ

]
+ (⋆)⊤M(p+ v)−1 [M(p+ v)A(p) M(p+ v)B(p)

]
⪯ 0. (A.44)

Through multiplication with −1 and through a Schur complement, this is equivalent
to M(p) 0 A(p)⊤M(p+ v)

⋆ γ B(p)⊤M(p+ v)
⋆ ⋆ M(p+ v)

 ⪰ 0. (A.45)

2Note that for the L2-L∞-gain, D(p) = 0 for all p ∈ P is considered.
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Using a congruence transformation, it then holds that

(⋆)⊤

M(p) 0 A(p)⊤M(p+ v)
⋆ γ B(p)⊤M(p+ v)
⋆ ⋆ M(p+ v)

 0 M(p)−1 0
0 0 I

M(p+ v)−1 0 0

 ⪰ 0, (A.46)

resulting in M̄(p+ v) A(p)M̄(p) B(p)
⋆ M̄(p) 0
⋆ ⋆ γI

 ⪰ 0, (A.47)

where M̄(p) := M(p)−1 ≻ 0 and M̄(p+ v) := M(p+ v)−1 ≻ 0, which is equivalent
to the first LMI in (2.40b).
Next, from (A.28), we obtain through the steps in (A.38)–(A.41),[

M(p) C(p)⊤

⋆ γI

]
⪰ 0. (A.48)

Using a congruence transformation, this is equivalent to

(⋆)⊤
[
M(p) C(p)
⋆ γI

] [
M(p)−1 0

0 I

]
⪰ 0, (A.49)

resulting in [
M̄(p) M̄(p)C(p)⊤

⋆ γI

]
⪰ 0, (A.50)

where again M̄(p) = M(p)−1 ≻ 0, which is equivalent to the second LMI in (2.40b).

A.2.4 L∞-gain

Continuous-time

We first proof that a CT LPV system given by (2.26) has a bounded L∞-gain of γ,
if there exists a storage function Vp and α, β ∈ R+

0 such that3

d

dt
Vp(x(t), p(t)) ≤ −βVp(x(t), p(t)) + α(⋆)⊤w(t), (A.51)

and
γ−1z(t)⊤z(t) ≤ βVp(x(t), p(t)) + (γ − α)w(t)⊤w(t), (A.52)

for all t ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+
0 .

By Grönwall’s Lemma (Khalil 2002, Lemma A.1), we have that (A.51) implies that

Vp(x(t), p(t)) ≤ e−βtVp(x(0), p(0)) + α

∫ t

0
e−β(t−τ) ∥w(τ)∥2

dτ, (A.53)

3Note that this can be seen as strict classical (Q,S,R) dissipativity with (Q,S,R) = (αI, 0, 0),
where the βVp term ensures strictness of the dissipation inequality.
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for all t ≥ 0 and (x,w) ∈ πx,w Bp(p) for all p ∈ PR+
0 .

Moreover, it holds that

α

∫ t

0
e−β(t−τ) ∥w(τ)∥2

dτ ≤ α ∥w∥2
∞,t

∫ t

0
e−β(t−τ) dτ ≤ α

β
∥w∥2

∞,t , (A.54)

for all t ≥ 0 and w ∈ πw Bp(p) for all p ∈ PR+
0 . Furthermore, it holds that

e−βtVp(x(0), p(0)) ≤ Vp(x(0), p(0)), (A.55)

for all t ≥ 0.

Therefore, combining (A.54) and (A.55) with (A.53), it holds that

Vp(x(t), p(t)) ≤ Vp(x(0), p(0)) + α

β
∥w∥2

∞,t , (A.56)

and
βVp(x(t), p(t)) ≤ βVp(x(0), p(0)) + α ∥w∥2

∞,t , (A.57)

for all t ≥ 0 and (x,w) ∈ πx,w Bp(p) for all p ∈ PR+
0 .

Next, by (A.52), we have that it holds that

γ−1 ∥z(t)∥2 ≤ βVp(x(t), p(t)) + (γ − α) ∥w(t)∥2
, (A.58)

for all t ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+
0 . Using (A.57), it therefore also

holds that

γ−1 ∥z(t)∥2 ≤ βVp(x(0), p(0)) + α ∥w∥2
∞,t + (γ − α) ∥w(t)∥2

, (A.59)

for all t ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PR+
0 . By multiplication with γ and

taking the supremum over t ∈ [0, T ], this gives that for all T ≥ 0

∥z∥2
∞,T ≤ γβVp(x(0), p(0)) + γ2 ∥w∥2

∞,T , (A.60)

for all (x,w, z) ∈ Bp(p) and p ∈ PR+
0 with w ∈ L∞e. Therefore,

∥z∥∞,T ≤ γ ∥w∥∞,T +
√
γβVp(x(0), p(0)), (A.61)

for all T ≥ 0, (x,w, z) ∈ πBp(p), and p ∈ PR+
0 with w ∈ L∞e, which is the L∞-gain

definition (see Definition 2.11), where ζ(x0) =
√
γβVp(x0, p(0)).

Next, we show the derivation to obtain the LMI conditions given in (2.41a). For a
storage function of the form (2.36), (A.51) becomes

2x(t)⊤M(p(t))
(
A(p(t))x(t) +B(p(t))w(t)

)
+ (⋆)⊤∂M(p(t), ṗ(t))x(t) ≤

− β(⋆)⊤M(p(t))x(t) + α(⋆)⊤w(t), (A.62)
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which holds if

2x⊤M(p)
(
A(p)x+B(p)w

)
+ (⋆)⊤∂M(p, v)x ≤ −β(⋆)⊤M(p)x+ α(⋆)⊤w, (A.63)

(⋆)⊤
[
A(p)⊤M(p) + (⋆)⊤ + βM(p) + ∂M(p, v) M(p)B(p)

⋆ −αI

] [
x
w

]
≤ 0, (A.64)

for all x ∈ X ⊆ Rnx , w ∈ W ⊆ Rnw , p ∈ P, and v ∈ Π. This is implied if[
A(p)⊤M(p) + (⋆)⊤ + βM(p) + ∂M(p, v) M(p)B(p)

⋆ −αI

]
⪯ 0, (A.65)

holds for all p ∈ P, and v ∈ Π, which is equivalent to the first LMI in (2.41a).
Next, from (A.52), we have that

γ−1(⋆)⊤(C(p(t))x(t) +D(p(t))w(t)) ≤ β x(t)⊤M(p(t))x(t) + (γ − α)w(t)⊤w(t),
(A.66)

for all t ≥ 0 and (x,w) ∈ πx,w Bp(p) for all p ∈ PR+
0 . This holds if

γ−1(⋆)⊤(C(p)x+D(p)w) ≤ β x(t)⊤M(p)x+ (γ − α)w⊤w, (A.67)

or rewritten

(⋆)⊤
([
βM(p) 0
⋆ (γ − α)

]
− (⋆)⊤(γ−1I)

[
C(p) D(p)

]) [x
w

]
≥ 0, (A.68)

for all x ∈ X ⊆ Rnx , w ∈ W ⊆ Rnw , and p ∈ P, which holds if[
βM(p) 0
⋆ (γ − α)

]
− (⋆)⊤(γ−1I)

[
C(p) D(p)

]
⪰ 0, (A.69)

for all p ∈ P. Through a Schur complement, this is equivalent toβM(p) 0 C(p)⊤

⋆ (γ − α)I D(p)⊤

⋆ ⋆ γI

 ⪰ 0, (A.70)

which is equivalent to the second LMI in (2.41a).

Discrete-time

We first proof that a DT LPV system given by (2.26) has a bounded ℓ∞-gain of γ,
if there exists an α ∈ R+

0 , β ∈ [0, 1], and storage function Vp such that

Vp(x(t+ 1), p(t+ 1)) − Vp(x(t), p(t)) ≤ −βVp(x(t), p(t)) + α(⋆)⊤w(t), (A.71)

and (A.52) holds for all t ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PN0 .
We can rewrite (A.71) to

Vp(x(t+ 1), p(t+ 1)) ≤ (1 − β)Vp(x(t), p(t)) + α(⋆)⊤w(t), (A.72)
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by the DT version of Grönwall’s Lemma, this implies that

Vp(x(t), p(t)) ≤ (1 − β)tVp(x(0), p(0)) + α

t−1∑
τ=0

(1 − β)t−1−τ ∥w(τ)∥2
, (A.73)

for all t ≥ 0 and (x,w) ∈ πx,w Bp(p) for all p ∈ PN0 .
Moreover, it holds that

α

t−1∑
τ=0

(1 − β)t−1−τ ∥w(τ)∥2 ≤ α ∥w∥2
∞,t

t−1∑
τ=0

(1 − β)t−1−τ ≤ α

β
∥w∥2

∞,t , (A.74)

for all t ≥ 0 and w ∈ πw Bp(p) for all p ∈ PN0 . Furthermore, it holds that

(1 − β)tVp(x(0), p(0)) ≤ Vp(x(0), p(0)), (A.75)

for all t ≥ 0 and β ∈ [0, 1].
Therefore, combining (A.74) and (A.75) with (A.73), it holds that

Vp(x(t), p(t)) ≤ Vp(x(0), p(0)) + α

β
∥w∥2

∞,t , (A.76)

and
βVp(x(t), p(t)) ≤ βVp(x(0), p(0)) + α ∥w∥2

∞,t , (A.77)

for all t ≥ 0 and (x,w) ∈ πx,w Bp(p) for all p ∈ PN0 .
Next, by (A.52), we have that it holds that

γ−1 ∥z(t)∥2 ≤ βVp(x(t), p(t)) + (γ − α) ∥w(t)∥2
, (A.78)

for all t ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PN0 . Using (A.77), it therefore also
holds that

γ−1 ∥z(t)∥2 ≤ βVp(x(0), p(0)) + α ∥w∥2
∞,t + (γ − α) ∥w(t)∥2

, (A.79)

for all t ≥ 0 and (x,w, z) ∈ Bp(p) for all p ∈ PN0 . By multiplication with γ and
taking the supremum over t ∈ [0, T ], this gives that for all T ≥ 0

∥z∥2
∞,T ≤ γβVp(x(0), p(0)) + γ2 ∥w∥2

∞,T , (A.80)

for all (x,w, z) ∈ πBp(p) and p ∈ PN0 with w ∈ L∞e. Therefore,

∥z∥∞,T ≤ γ ∥w∥∞,T +
√
γβVp(x(0), p(0)), (A.81)

for all T ≥ 0, (x,w, z) ∈ Bp(p), and p ∈ PN0 with w ∈ L∞e, which is the L∞-gain
definition (see Definition 2.11), where ζ(x0) =

√
γβVp(x0, p(0)).

Next, we show the derivation to obtain the LMI conditions given in (2.41b). For a
storage function of the form (2.36), (A.71) becomes

(⋆)⊤M
(
p(t) + v(t)

)(
A(p(t))x(t) +B(p(t))w(t)

)
− (⋆)⊤M(p(t))x(t) ≤

− β(⋆)⊤M(p(t))x(t) + α(⋆)⊤w(t), (A.82)
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which holds if

(⋆)⊤M(p+ v)
(
A(p)x+B(p)w

)
− (⋆)⊤M(p)x ≤ − β(⋆)⊤M(p)x+α(⋆)⊤w, (A.83)

(⋆)⊤

([
−(1 − β)M(p) 0

⋆ −αI

]
+

(⋆)⊤M(p+ v)−1 [M(p+ v)A(p) M(p+ v)B(p)
])[x

w

]
≤ 0, (A.84)

for all x ∈ X ⊆ Rnx , w ∈ W ⊆ Rnw , p ∈ P, and v ∈ Π, which is implied if[
(1 − β)M(p) 0

⋆ αI

]
− (⋆)⊤M(p+ v)−1 [M(p+ v)A(p) M(p+ v)B(p)

]
⪰ 0,

(A.85)
holds for all p ∈ P, and v ∈ Π. Using a Schur complement, this is equivalent to(1 − β)M(p) 0 A(p)⊤M(p+ v)

⋆ αI B(p)⊤M(p+ v)
⋆ ⋆ M(p+ v)

 ⪰ 0. (A.86)

Using a congruence transformation, this is equivalent to

(⋆)⊤

(1 − β)M(p) 0 A(p)⊤M(p+ v)
⋆ αI B(p)⊤M(p+ v)
⋆ ⋆ M(p+ v)

 0 M(p)−1 0
0 0 I

M(p+ v)−1 0 0

 ⪰ 0,

(A.87)
resulting, in M̄(p+ v) A(p)M̄(p) B(p)

⋆ (1 − β)M̄(p) 0
⋆ ⋆ αI

 ⪰ 0, (A.88)

where M̄(p) := M(p)−1 ≻ 0 and M̄(p+ v) := M(p+ v)−1 ≻ 0, which is equivalent
to the first condition in (2.41b).
Next, from (A.52), we obtain through the steps in (A.66)–(A.70),βM(p) 0 C(p)⊤

⋆ (γ − α)I D(p)⊤

⋆ ⋆ γI

 ⪰ 0. (A.89)

Using a congruence transformation, this is equivalent to

(⋆)⊤

βM(p) 0 C(p)⊤

⋆ (γ − α)I D(p)⊤

⋆ ⋆ γI

M(p)−1 0 0
0 I 0
0 0 I

 ⪰ 0, (A.90)

resulting in βM̄(p) 0 M̄(p)C(p)⊤

⋆ (γ − α)I D(p)⊤

⋆ ⋆ γI

 ⪰ 0, (A.91)

where again M̄(p) = M(p)−1 ≻ 0, which is equivalent to the second condition in
(2.41b).
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Remark A.1. Note that the L∞/ℓ∞ analysis conditions are not LMIs due to the
multiplication of β and M , which are both unknown variables. In practice, this is
often solved by performing a line search over β. For each fixed β in the line search,
(A.65), (A.70), (A.88), and (A.91) are LMIs.
Remark A.2. As mentioned in Section 2.5.2, in the LPVcore Toolbox (Boef et al.
2021), the analysis algorithms have been implemented for LPV systems given by
(2.26) with affine scheduling dependency. In that case, the matrix function M is also
parameterized as an affine matrix function, i.e., of the form M(p) = M0+

∑np
i=1 Mipi,

where Mi ∈ Snx for i = 0, . . . , np. In that case, ∂M(p, v) =
∑np

i=1
∂M(p)

∂pi
vi =∑np

i=1 Mivi, and M(p+ v) = M0 +
∑np

i=1 Mi(pi + vi) = M(p) +
∑np

i=1 Mivi.

A.3 Derivations of Synthesis Results

A.3.1 (Q, S, R) performance

Continuous-time

By Theorem 2.5, the closed-loop LPV system given by (2.44) is classically (Q,S,R)
dissipative, if there exists a positive definite matrix function M : P → Snx+nxk ,
such that, in CT, for all p ∈ P and v ∈ Π it holds that

(⋆)⊤
[
∂M(p, v) M(p)

⋆ 0

] [
I 0

Acl(p) Bcl(p)

]
− (⋆)⊤

[
Q S
S⊤ R

] [
0 I

Ccl(p) Dcl(p)

]
⪯ 0.

(A.92)
As both M and the controller matrices, part of Acl, . . . , Dcl (see (2.45)), are unknown,
(A.92) is not an LMI. Next, we will derive an LMI condition which is equivalent to
(A.92). Let us take nxk = nx and we partition M as follows

M(p) =
[
Mx(p) U(p)
⋆ ∗

]
, (A.93)

where Mx : P → Snx and U : P → Rnx×nx , here ∗ indicates that this entry is not
relevant for our derivation. Moreover, the inverse of M is partitioned as

M(p)−1 =
[
My(p) V (p)
⋆ ∗

]
, (A.94)

where My : P → Snx and V : P → Rnx×nx . As by definition M(p)M(p)−1 = I,
we have from (A.93) and (A.94) that Mx(p)My(p) + U(p)V (p)⊤ = I. Next, we
introduce the matrix

N(p) :=
[
My(p) I
V (p)⊤ 0

]
, (A.95)

and
P (p) := N(p)⊤M(p) =

[
I 0

Mx(p) U(p)

]
. (A.96)
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Based on these matrices, we apply the following congruence transformation to
(A.92)

[
N(p)⊤ 0

0 I

](
(⋆)⊤

[
∂M(p, v) M(p)

⋆ 0

] [
I 0

Acl(p) Bcl(p)

]
−

(⋆)⊤
[
Q S
S⊤ R

] [
0 I

Ccl(p) Dcl(p)

])[
N(p) 0

0 I

]
⪯ 0, (A.97)

resulting in

[
N(p)⊤ 0

0 I

]([
∂M(p, v) +M(p)Acl(p) + (⋆)⊤ M(p)Bcl(p)

⋆ 0

]
−

(⋆)⊤
[
Q S
S⊤ R

] [
0 I

Ccl(p) Dcl(p)

])[
N(p) 0

0 I

]
⪯ 0, (A.98)

[
(⋆)⊤(∂M(p, v))N(p) + (⋆)⊤M(p)Acl(p)N(p) + (⋆)⊤ N(p)⊤M(p)Bcl(p)

⋆ 0

]
−

(⋆)⊤
[
Q S
⋆ R

] [
0 I

Ccl(p)N(p) Dcl(p)

]
⪯ 0. (A.99)

We have that Acl, . . . , Dcl in (2.45) can be written as

Acl(p) =
[
A(p) 0

0 0

]
+
[
0 Bu(p)
I 0

] [
Ak(p) Bk(p)
Ck(p) Dk(p)

] [
0 I

Cy(p) 0

]
, (A.100a)

Bcl(p) =
[
Bw(p)

0

]
+
[
0 Bu(p)
I 0

] [
Ak(p) Bk(p)
Ck(p) Dk(p)

] [
0

Dyw(p)

]
, (A.100b)

Ccl(p) =
[
Cz(p) 0

]
+
[
0 Dzu(p)

] [Ak(p) Bk(p)
Ck(p) Dk(p)

] [
0 I

Cy(p) 0

]
, (A.100c)

Dcl(p) := Dzw(p) +
[
0 Dzu(p)

] [Ak(p) Bk(p)
Ck(p) Dk(p)

] [
0

Dyw(p)

]
. (A.100d)

Next, we use these relations and (A.93)–(A.96), to rewrite the terms in (A.99).
First, we focus on the term (⋆)⊤(∂M(p, v))N(p) = N(p)⊤(∂M(p, v))N(p). We have
by (A.96), dropping dependency on p and v for brevity, that

∂P = (∂N)⊤M +N⊤(∂M), (A.101)

therefore
N⊤(∂M) = ∂P − (∂N)⊤M, (A.102)

and
N⊤(∂M)N = (∂P )N − (∂N)⊤MN,

= (∂P )N − (∂N)⊤P⊤.
(A.103)
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Filling in (A.93)–(A.96), we obtain that

(⋆)⊤(∂M)N =
[

0 0
∂Mx ∂U

] [
My I
V ⊤ 0

]
−
[
∂My ∂V

0 0

] [
I Mx
0 U⊤

]
,

=
[

−∂My −(∂My)Mx − (∂V )U⊤

(∂Mx)My + (∂U)V ⊤ ∂Mx

]
.

(A.104)

Note that this matrix is symmetric (as ∂M is symmetric), which means that(
(∂Mx)My + (∂U)V ⊤)⊤ = −(∂My)Mx − (∂V )U⊤.

Next, we take a look at (⋆)⊤(∂M)N + (⋆)⊤MAclN + (⋆)⊤, which using (A.96) can
be written as

N⊤(∂M)N + PAclN + (⋆)⊤. (A.105)

Filling in (A.95), (A.96), (A.100), and (A.104), results in

[
−∂My −(∂My)Mx − (∂V )U⊤

(∂Mx)My + (∂U)V ⊤ ∂Mx

]
+[

I 0
Mx U

]([
A 0
0 0

]
+
[
0 Bu
I 0

] [
Ak Bk
Ck Dk

] [
0 I
Cy 0

])[
My I
V ⊤ 0

]
+ (⋆)⊤. (A.106)

This can be written as follows[
−∂My −(∂My)Mx − (∂V )U⊤

(∂Mx)My + (∂U)V ⊤ ∂Mx

]
+
([

AMy A
MxAMy MxA

]
+[

0 Bu
U MxBu

] [
Ak Bk
Ck Dk

] [
V ⊤ 0
CyMy Cy

])
+ (⋆)⊤, (A.107)

[
AMy + (⋆)⊤ − ∂My A

⋆ MxA+ (⋆)⊤ + ∂Mx

]
+[

0 ⋆
MxAMy + (∂Mx)My + (∂U)V ⊤ 0

]
+([

0 Bu
I 0

] [
U MxBu
0 I

] [
Ak Bk
Ck Dk

] [
V ⊤ 0
CyMy I

] [
I 0
0 Cy

])
+ (⋆)⊤, (A.108)

[
AMy + (⋆) − ∂My A

⋆ MxA+ (⋆) + ∂Mx

]
+[

0 Bu
I 0

]([
U MxBu
0 I

] [
Ak Bk
Ck Dk

] [
V ⊤ 0
CyMy I

]
+

[
MxAMy + (∂Mx)My + (∂U)V ⊤ 0

0 0

])[
I 0
0 Cy

]
+ (⋆)⊤. (A.109)
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Let us define[
Ak Bk
Ck Dk

]
:=[

U MxBu
0 I

] [
Ak Bk
Ck Dk

] [
V ⊤ 0
CyMy I

]
+
[
MxAMy + (∂Mx)My + (∂U)V ⊤ 0

0 0

]
,

(A.110)

where Ak : P × Π → Rnx×nx , Bk : P × Π → Rnx×ny , Ck : P × Π → Rnu×nx , and
Dk : P × Π → Rnu×ny .
This allows us to write (A.109), and hence, (⋆)⊤(∂M)N + (⋆)⊤MAclN + (⋆)⊤, as[
AMy + (⋆) − ∂My A

⋆ MxA+ (⋆) + ∂Mx

]
+
[
0 Bu
I 0

] [
Ak Bk
Ck Dk

] [
I 0
0 Cy

]
+ (⋆)⊤,

(A.111)[
(AMy +BuCk) + (⋆)⊤ − ∂My A+ A⊤

k +BuDkCy
⋆ (MxA+ BkCy) + (⋆)⊤ + ∂Mx

]
. (A.112)

We then define

Acl :=
[
AMy +BuCk − 1

2∂My A+BuDkCy
Ak MxA+ BkCy + 1

2∂Mx

]
, (A.113)

such that (A.112) can be expressed as Acl + A⊤
cl .

Let us now take a look at the term N⊤MBcl = PBcl in (A.99). Filling in (A.96)
and (A.100) result in[

I 0
Mx U

]([
Bw
0

]
+
[
0 Bu
I 0

] [
Ak Bk
Ck Dk

] [
0

Dyw

])
, (A.114)

which can be rewritten as follows[
Bw

MxBw

]
+
[

0 Bu
U MxBw

] [
Ak Bk
Ck Dk

] [
0

Dyw

]
, (A.115)

[
Bw

MxBw

]
+
[
0 Bu
I 0

] [
U MxBu
0 I

] [
Ak Bk
Ck Dk

] [
V ⊤ 0
CyMy I

] [
0

Dyw

]
, (A.116)

[
Bw

MxBw

]
+
[
0 Bu
I 0

]([
U MxBu
0 I

] [
Ak Bk
Ck Dk

] [
V ⊤ 0
CyMy I

]
+

[
MxAMy + (∂Mx)My + (∂U)V ⊤ 0

0 0

])[
0

Dyw

]
. (A.117)

Using (A.110), we can write this, and hence, N⊤MBcl, as[
Bw

MxBw

]
+
[
0 Bu
I 0

] [
Ak Bk
Ck Dk

] [
0

Dyw

]
, (A.118)
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which can be rewritten to [
Bw +BuDkDyw
MxBw +BkDyw

]
=: Bcl. (A.119)

Next, we take a look at the term CclN in (A.99). Filling in (A.95) and (A.100)
results in ([

Cz 0
]

+
[
0 Dzu

] [Ak Bk
Ck Dk

] [
0 I
Cy 0

])[
My I
V ⊤ 0

]
, (A.120)

which can be rewritten as follows[
CzMy Cz

]
+
[
0 Dzu

] [Ak Bk
Ck Dk

] [
V ⊤ 0
CyMy Cy

]
, (A.121)

[
CzMy Cz

]
+
[
0 Dzu

] [U MxBu
0 I

] [
Ak Bk
Ck Dk

] [
V ⊤ 0
CyMy I

] [
I 0
0 Cy

]
, (A.122)

[
CzMy Cz

]
+
[
0 Dzu

]([U MxBu
0 I

] [
Ak Bk
Ck Dk

] [
V ⊤ 0
CyMy I

]
+

[
MxAMy + (∂Mx)My + (∂U)V ⊤ 0

0 0

])[
I 0
0 Cy

]
. (A.123)

Similarly as for the other terms, using (A.110), we can then write this, and hence,
CclN , as [

CzMy Cz
]

+
[
0 Dzu

] [Ak Bk
Ck Dk

] [
I 0
0 Cy

]
, (A.124)

which can be rewritten to[
CzMy +DzuCk Cz +DzuDkCy

]
:= Ccl. (A.125)

Finally, we focus on Dcl in (A.99). Using (A.100), we have that

Dcl = Dzw +
[
0 Dzu

] [Ak Bk
Ck Dk

] [
0

Dyw

]
= Dzw +DzuDkDyw. (A.126)

By (A.110), we have that Dk = Dk, hence,

Dcl = Dzw +DzuDkDyw =: Dcl. (A.127)

Combining the results (A.113), (A.119), (A.125), and (A.127), we can rewrite (A.99)
as [

Acl(p, v) + (⋆)⊤ Bcl(p)
⋆ 0

]
− (⋆)⊤

[
Q S
⋆ R

] [
0 I

Ccl(p) Dcl(p)

]
⪯ 0, (A.128)

to hold for all (p, v) ∈ P × Π. Note that (A.128) is not an LMI, as it is quadratic
in Ccl(p) and Dcl(p). However, for specific choices of (Q,S,R) we can rewrite this
to an LMI, see e.g. Appendices A.3.2 to A.3.5.
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Finally, to ensure M is a positive definite matrix function, it needs to hold for all
p ∈ P that

M(p) ≻ 0. (A.129)
Using a congruence transformation, this holds if

N(p)⊤M(p)N(p) ≻ 0, (A.130)

which results, using the definitions of N and P in (A.95) and (A.96), respectively,
in

P (p)N(p) ≻ 0, (A.131)[
I 0

Mx(p) U(p)

] [
My(p) I
V (p)⊤ 0

]
≻ 0, (A.132)[

My(p) I
Mx(p)My(p) + U(p)V (p)⊤ Mx(p)

]
≻ 0, (A.133)

and using that Mx(p)My(p) + U(p)V (p)⊤ = I, this becomes

M (p) :=
[
My(p) I
I Mx(p)

]
≻ 0. (A.134)

Once a solution has been found for (A.128) and (A.134), i.e., matrix functions
Ak, . . . Dk, Mx, My have been found such that (A.128) and (A.134) hold for all
(p, v) ∈ P × Π, we can reconstruct Ak, . . . Dk, i.e., the state-space matrices of the
LPV controller. Namely, by (A.110), we have, omitting dependence on p and v for
brevity, that[

Ak Bk
Ck Dk

]
=[

U MxBu
0 I

]−1([Ak −MxAMy − (∂Mx)My − (∂U)V ⊤ Bk
Ck Dk

])[
V ⊤ 0
CyMy I

]−1

,

(A.135)

where U and V are arbitrary solutions to Mx(p)My(p) + U(p)V (p)⊤ = I.
Remark A.3. Note that ∂Mx and ∂U appear in (A.135), which depend on p and
v. Therefore, the state-space matrices of the controller, Ak, . . . , Dk, also depend
on both p and v. This means that the synthesized controller will depend on the
scheduling-variable and its derivative, i.e., p and ṗ. However, this can be avoided
by taking Mx and ensuring U to be parameter independent during the synthesis
procedure, i.e., Mx ∈ Snx and U ∈ Rnx×nx . In that case, ∂Mx = 0 and ∂U = 0,
which results in the dependency on v to drop out of (A.135). This is also described
in (Apkarian and Adams 1998). However, due to the restriction of Mx and U , this
comes at the cost of increased conservatism of the solution to the synthesis problem.
Remark A.4. In order to obtain a controller with affine scheduling dependency, we
require Ak, . . . , Dk to have an affine dependency. To ensure this, we also require
the generalized plant to have affine scheduling dependency and we require Bu and
Cy to be parameter independent. Moreover, for synthesis, one needs to take Mx
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and My as parameter independent matrices (therefore U and V are also parameter
independent). Under these considerations, constructing the matrices Ak, . . . , Dk
through (A.135) results in Ak, . . . , Dk to have affine scheduling dependency.

Under the considerations in Remark A.3, (A.128), (A.134), and (A.135) become
(2.47a), (2.47b), and (2.49), respectively.
Furthermore, note that in case the variation of v = ṗ is unbounded, one must
take Mx and My (and therefore U and V ) as parameter independent matrices,
as otherwise the terms ∂My etc., that dependent on v, also become unbounded,
making the synthesis conditions infeasible. In this case, that means that one should
take Mx,My ∈ Snx and U, V ∈ Rnx×nx . This is equivalent to taking M (A.93) to
be a constant positive-definite matrix.

Discrete-time

By Theorem 2.5, the closed-loop LPV system given by (2.44) is classically (Q,S,R)
dissipative, if there exists a positive definite matrix function M : P → Snx+nxk ,
such that, in DT, for all p ∈ P and v ∈ Π, it holds that

(⋆)⊤
[
−M(p) M(p+ v)

⋆ 0

] [
I 0

Acl(p) Bcl(p)

]
−(⋆)⊤

[
Q S
S⊤ R

] [
0 I

Ccl(p) Dcl(p)

]
⪯ 0.

(A.136)
Like in CT, as both M and the controller matrices, part of Acl, . . . , Dcl (see (2.45)),
are unknown, (A.136) is not an LMI. Next, we will derive an LMI condition which is
equivalent to (A.136). Let us first rewrite (A.136) as follows, omitting dependence
on p and v for brevity:[

−M − (⋆)⊤RCcl −C⊤
clS − C⊤

clRDcl
⋆ −Q− (SDcl + (⋆)⊤) − (⋆)⊤RDcl

]
+

(⋆)⊤M+
[
Acl Bcl

]
⪯ 0, (A.137)

where M+ denotes M(p+ v). Let us rewrite this further as follows[
M + (⋆)⊤RCcl C⊤

clS + C⊤
clRDcl

⋆ Q+ (SDcl + (⋆)⊤) + (⋆)⊤RDcl

]
−

(⋆)⊤M−1
+
[
M+Acl M+Bcl

]
⪰ 0, (A.138)

which using a Schur complement is equivalent toM + (⋆)⊤RCcl C⊤
clS + C⊤

clRDcl A⊤
clM+

⋆ Q+ (SDcl + (⋆)⊤) + (⋆)⊤RDcl B⊤
clM+

⋆ ⋆ M+

 ⪰ 0. (A.139)

Using a congruence transformation, this is equivalent to

(⋆)⊤

M+(⋆)⊤RCcl Ccl
⊤S + Ccl

⊤RDcl Acl
⊤M+

⋆ Q+(SDcl+(⋆)⊤)+(⋆)⊤RDcl Bcl
⊤M+

⋆ ⋆ M+

 0 M−1 0
0 0 I
M−1

+ 0 0

 ⪰ 0,

(A.140)
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resulting inM̄+ AclM̄ Bcl
⋆ M̄ + (⋆)⊤RCclM̄ M̄C⊤

clS + M̄C⊤
clRDcl

⋆ ⋆ Q+ (SDcl + (⋆)⊤) + (⋆)⊤RDcl

 ⪰ 0, (A.141)

where M̄ = M−1 and M̄+ = M−1
+ . Inspired by (De Caigny et al. 2012), this condi-

tion is equivalent to, considering R ⪯ 0: there exists a G : P → R(nx+nxk )×(nx+nxk )

such thatM̄+ AclG Bcl
⋆ G+G⊤ − M̄ + (⋆)⊤RCclG GC⊤

clS +GC⊤
clRDcl

⋆ ⋆ Q+ (SDcl + (⋆)⊤) + (⋆)⊤RDcl

 ⪰ 0.

(A.142)
It is clear that (A.141) implies (A.142) by taking G = M̄ for (A.142). By (A.142),
we have that

G+G⊤ − M̄ + (⋆)⊤RCclG ⪰ 0, (A.143)

which under the assumption that R ⪯ 0 implies that

G+G⊤ ⪰ M̄ ≻ 0, (A.144)

therefore, G is non-singular (for all p ∈ P). Moreover, as M̄ is positive definite, it
holds that

(M̄ −G)⊤M̄−1(M̄ −G) ≻ 0, (A.145)

G⊤M̄−1G ≻ G+G− M̄. (A.146)

Combining this and (A.142), it therefore holds thatM̄+ AclG Bcl
⋆ (⋆)⊤M̄−1G+ (⋆)⊤RCclG G⊤C⊤

clS +G⊤C⊤
clRDcl

⋆ ⋆ Q+ (SDcl + (⋆)⊤) + (⋆)⊤RDcl

 ⪰ 0. (A.147)

Through a congruence transformation, this is equivalent to

(⋆)⊤

M̄+ AclG Bcl
⋆ (⋆)⊤M̄−1G+ (⋆)⊤RCclG G⊤C⊤

clS +G⊤C⊤
clRDcl

⋆ ⋆ Q+ (SDcl + (⋆)⊤) + (⋆)⊤RDcl

 ·

I 0 0
0 G−1M̄ 0
0 0 I

 ⪰ 0, (A.148)

which gives us (A.141), hence, (A.142) implies (A.141). Therefore, (A.141) and (A.142)
are equivalent. We can then rewrite (A.142) asM̄+ AclG Bcl

⋆ G+G⊤ − M̄ 0
⋆ ⋆ 0

+ (⋆)⊤
[
Q S
⋆ R

] [
0 0 I
0 CclG Dcl

]
⪰ 0. (A.149)
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Next, let us take nxk = nx and we partition G as follows

G(p) =
[
Gx(p) G1(p)
U(p) G2(p)

]
, (A.150)

where Gx : P → Rnx×nx , G1 : P → Rnx×nx , G2 : P → Rnx×nx , U : P → Rnx×nx .
Moreover, the inverse of G is partitioned as

G(p)−1 =
[
Gy(p)⊤ G3(p)
V (p)⊤ G4(p)

]
, (A.151)

where Gy : P → Rnx×nx , G3 : P → Rnx×nx , G4 : P → Rnx×nx , V : P →
Rnx×nx . As by definition G(p)G(p)−1 = I, we have from (A.150) and (A.151) that
Gx(p)Gy(p)⊤ + G1(p)V (p)⊤ = I and U(p)Gy(p)⊤ + G2(p)V (p)⊤ = 0. Next, we
introduce the matrix

N(p) :=
[
I Gy(p)⊤

0 V (p)⊤

]
, (A.152)

and

P (p) := G(p)N(p) =
[
Gx(p) Gx(p)Gy(p)⊤ +G1(p)V (p)⊤

U(p) U(p)Gy(p)⊤ +G2(p)V (p)⊤

]
=
[
Gx(p) I
U(p) 0

]
.

(A.153)
Based on these matrices, we apply a congruence transformation to (A.149), again
omitting dependence on p and v for brevity,

(⋆)⊤
M̄+ AclG Bcl

⋆ G+G⊤ − M̄ 0
⋆ ⋆ 0

+(⋆)⊤
[
Q S
⋆ R

][
0 0 I
0 CclG Dcl

]N+ 0 0
0 N 0
0 0 I

 ⪰ 0,

(A.154)
where N+ denotes N(p+ v) resulting in(⋆)⊤M̄+N+ N⊤

+AclGN N⊤
+Bcl

⋆ T 0
⋆ ⋆ 0

+(⋆)⊤
[
Q S
⋆ R

][
0 0 I
0 CclGN Dcl

]
⪰ 0, (A.155)

where T = (⋆)⊤GN + (⋆)⊤ − (⋆)⊤M̄N . Next, similar to the CT case, we use
(A.150)–(A.153) and (A.100) to rewrite the terms in (A.155). First, we focus on
the term (⋆)⊤M̄N and (⋆)⊤M̄+N+, the former which we parameterize as follows

N(p)⊤M̄(p)N(p) =
[
Mx(p) My(p)
⋆ Mz(p)

]
=: M (p), (A.156)

where Mx : P → Snx , My : P → Rnx×nx , and Mz : P → Snx , such that

N⊤
+ M̄+N+ = N(p+v)⊤M̄(p+v)N(p+v) =

[
M+,x M+,y
⋆ M+,z

]
= M (p+v). (A.157)

where M+,x, M+,y, and M+,z, denote Mx(p + v), My(p + v), and Mz(p + v),
respectively. Next, we focus on the term (⋆)⊤GN , which using (A.153) is equivalent
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to N⊤P , filling in (A.152) and (A.153), we get, again omitting dependence on p
and v for brevity,

N⊤P =
[
I 0
Gy V

] [
Gx I
U 0

]
=
[
Gx I
J Gy

]
:= G , (A.158)

where J := GyGx + UV with J : P → Rnx×nx .
Next, we take a look at the term N⊤

+AclGN = N⊤
+AclP in (A.155). Filling in

(A.100), (A.152), and (A.153) results in[
I 0

G+,y V+

]([
A 0
0 0

]
+
[
0 Bu
I 0

] [
Ak Bk
Ck Dk

] [
0 I
Cy 0

])[
Gx I
U 0

]
, (A.159)

where G+,y and V+ denote Gy(p + v) and V+(p + v), respectively. We can then
rewrite (A.159) as follows[

AGx A
G+,yAGx G+,yA

]
+
[

0 Bu
V+ G+,yBu

] [
Ak Bk
Ck Dk

] [
U 0

CyGx Cy

]
, (A.160)

[
AGx A

0 G+,yA

]
+
[

0 0
G+,yAGx 0

]
+[

0 Bu
I 0

] [
V+ G+,yBu
0 I

] [
Ak Bk
Ck Dk

] [
U 0

CyGx I

] [
I 0
0 Cy

]
, (A.161)

[
AGx A

0 G+,yA

]
+[

0 Bu
I 0

]([
V+ G+,yBu
0 I

] [
Ak Bk
Ck Dk

] [
U 0

CyGx I

]
+
[
G+,yAGx 0

0 0

])[
I 0
0 Cy

]
.

(A.162)

Let us define[
Ak Bk
Ck Dk

]
:=
[
V+ G+,yBu
0 I

] [
Ak Bk
Ck Dk

] [
U 0

CyGx I

]
+
[
G+,yAGx 0

0 0

]
, (A.163)

where Ak : P × Π → Rnx×nx , Bk : P × Π → Rnx×ny , Ck : P × Π → Rnu×nx , and
Dk : P × Π → Rnu×ny . This allows us to write (A.162), and hence, N⊤

+AclGN , as[
AGx A

0 G+,yA

]
+
[
0 Bu
I 0

] [
Ak Bk
Ck Dk

] [
I 0
0 Cy

]
, (A.164)

[
AGx +BuCk A+BuDkCy

Ak G+,yA+ BkCy

]
:= Acl. (A.165)

Next, we consider the term N⊤
+Bcl in (A.155). Filling in (A.100) and (A.152),

results in, [
I 0

G+,y V+

]([
Bw
0

]
+
[
0 Bu
I 0

] [
Ak Bk
Ck Dk

] [
0

Dyw

])
, (A.166)
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which we can rewrite as follows[
Bw

G+,yBw

]
+
[

0 Bu
V+ G+,yBu

] [
Ak Bk
Ck Dk

] [
0

Dyw

]
, (A.167)

[
Bw

G+,yBw

]
+
[
0 Bu
I 0

] [
V+ G+,yBu
0 I

] [
Ak Bk
Ck Dk

] [
U 0

CyGx I

] [
0

Dyw

]
, (A.168)

[
Bw

G+,yBw

]
+[

0 Bu
I 0

]([
V+ G+,yBu
0 I

] [
Ak Bk
Ck Dk

] [
U 0

CyGx I

]
+
[
G+,yAGx 0

0 0

])[
0

Dyw

]
.

(A.169)

Using (A.163), we can write this, and hence, N⊤
+Bcl, as[

Bw
G+,yBw

]
+
[
0 Bu
I 0

] [
Ak Bk
Ck Dk

] [
0

Dyw

]
, (A.170)

which can be written as [
Bw +BuDkDyw
G+,yBw + BkDyw

]
:= Bcl. (A.171)

Next, we take a look at the term CclGN = CclP in (A.155). Filling in (A.100)
and (A.153) results in([

Cz 0
]

+
[
0 Dzu

] [Ak Bk
Ck Dk

] [
0 I
Cy 0

])[
Gx I
U 0

]
, (A.172)

which can be rewritten as follows[
CzGx Cz

]
+
[
0 Dzu

] [Ak Bk
Ck Dk

] [
U 0

CyGx Cy

]
, (A.173)

[
CzGx Cz

]
+
[
0 Dzu

] [V+ G+,yBu
0 I

] [
Ak Bk
Ck Dk

] [
U 0

CyGx I

] [
I 0
0 Cy

]
, (A.174)

[
CzGx Cz

]
+[

0 Dzu
]([V+ G+,yBu

0 I

] [
Ak Bk
Ck Dk

] [
U 0

CyGx I

]
+
[
G+,yAGx 0

0 0

])[
I 0
0 Cy

]
.

(A.175)

Again, using (A.163), we can write this, and hence, CclGN , as

[
CzGx Cz

]
+
[
0 Dzu

] [Ak Bk
Ck Dk

] [
I 0
0 Cy

]
, (A.176)
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which we can rewrite as[
CzGx +DzuCk Cz +DzuDkCy

]
:= Ccl. (A.177)

Finally, we take a look at Dcl in (A.155). Using (A.100), we have that

Dcl = Dzw +
[
0 Dzu

] [Ak Bk
Ck Dk

] [
0

Dyw

]
= Dzw +DzuDkDyw, (A.178)

By (A.163), we have that Dk = Dk, hence,

Dcl = Dzw +DzuDkDyw =: Dcl. (A.179)

Combining the results (A.156)–(A.158), (A.165), (A.171), (A.177), and (A.179), we
can rewrite (A.155) asM (p+ v) Acl(p, v) Bcl(p, v)

⋆ G(p)+(⋆)⊤−M (p) 0
⋆ ⋆ 0

+ (⋆)⊤
[
Q S
⋆ R

][
0 0 I
0 Ccl(p) Dcl(p)

]
⪰ 0,

(A.180)
Note that (A.180) is not an LMI, as it is quadratic in Ccl(p) and Dcl(p). However, for
specific choices of (Q,S,R) we can rewrite this to an LMI, see e.g. Appendices A.3.2
to A.3.5.
Finally to ensure M is a positive definite matrix function we use (A.156), resulting
in the condition:

M (p) =
[
Mx(p) My(p)
⋆ Mz(p)

]
≻ 0, (A.181)

for all p ∈ P.
Once a solution has been found for (A.180) and (A.181), i.e., matrix functions
Ak, . . . Dk, Mx, My, Mz, Gx, Gy, and J have been found such that (A.180)
and (A.181) hold for all (p, v) ∈ P × Π, we can reconstruct Ak, . . . Dk, i.e., the
state-space matrices of the LPV controller. Namely, by (A.163), we have, omitting
dependence on p and v for brevity, that[

Ak Bk
Ck Dk

]
=
[
V+ G+,yBu
0 I

]−1 [Ak −G+,yAGx Bk
Ck Dk

] [
U 0

CyGx I

]−1
, (A.182)

where U and V are arbitrary solutions to J = GyGx + UV .
Remark A.5. Note that as G+,y and V+ appear in (A.182), which depend on p and
v, the controller matrices Ak, . . . , Dk depend on both p(t) and v(t) = p(t+ 1) − p(t).
This means that the synthesized controller depends on the scheduling-variable at
the current time and the scheduling one step in the future, i.e., p(t) and p(t+ 1),
respectively. However, this can be avoided by taking Gy and ensuring V to be
parameter independent matrices during the synthesis procedure, i.e., Gy ∈ Rnx×nx

and V ∈ Rnx×nx . In that case, Gy = G+,y and V = V+, which results in the
dependency on p(t+ 1) to drop out of (A.182). However, due to the restriction of
Gy and V , this comes at the cost of increased conservatism of the solution to the
synthesis problem, similar as we had in CT, see Remark A.3.
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Remark A.6. In order to obtain a controller with affine scheduling dependency, we
require Ak, . . . , Dk to have an affine dependency. To ensure this, we also require the
generalized plant to have affine scheduling dependency and we require Bu and Cy
to be parameter independent. Moreover, for synthesis, one needs to take Gx, Gy,
and J as parameter independent matrices (therefore U and V are also parameter
independent). Under these considerations, constructing the matrices Ak, . . . , Dk
through (A.182) results in Ak, . . . , Dk to have affine scheduling dependency. Note
that unlike in the CT case (see Remark A.4), we do not require the matrices of the
storage function, i.e., Mx, My, Mz to be parameter independent. This is a result of
the introduction of the variable G in the synthesis conditions, which allows us to
decouple the controller matrices from the storage matrices.

Under the considerations in Remark A.5, (A.180)–(A.182) become (2.50a), (2.50b),
and (2.54), respectively.

Moreover, similar as in CT, note that in case the variation of v(t) = p(t+1)−p(t) is
unbounded, one must take Mx, My, Mz, Gx, Gy, and J as parameter independent
matrices, as otherwise the terms G+,y etc., that dependent on v, also become
unbounded, making the synthesis conditions infeasible. In this case, that means
that one should take Mx,Mz ∈ Snx and My, Gx, Gy, J ∈ Rnx×nx . This is equivalent
to taking M and G to be constant matrices.

A.3.2 L2-gain

Continuous-time

In Appendix A.2.1, we have shown that an LPV system given by (2.26) has a
bounded L2-gain of γ, if it is classically (Q,S,R) dissipative for the tuple (Q,S,R) =
(γI, 0,−γ−1I). Combining this with the results for CT LPV controller synthesis
for (Q,S,R) performance in Appendix A.3.1, we get that (A.128) becomes[

Acl(p, v) + (⋆)⊤ Bcl(p)
⋆ 0

]
− (⋆)⊤

[
γI 0
⋆ −γ−1I

] [
0 I

Ccl(p) Dcl(p)

]
⪯ 0. (A.183)

This can be rewritten as follows[
Acl(p, v) + (⋆)⊤ Bcl(p)

⋆ −γI

]
− (⋆)⊤(−γ−1I)

[
Ccl(p) Dcl(p)

]
⪯ 0, (A.184)

which through a Schur complement is equivalent toAcl(p, v) + (⋆)⊤ Bcl(p) Ccl(p)⊤

⋆ −γI Dcl(p)⊤

⋆ ⋆ −γI

 ⪯ 0. (A.185)

This gives us the LMI in (2.55a).
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Discrete-time

Like in CT, also in DT, classically (Q,S,R) dissipativity for the tuple (Q,S,R) =
(γI, 0,−γ−1I) corresponds to an ℓ2-gain of γ. Combining this with the results for
DT LPV controller synthesis for (Q,S,R) performance in Appendix A.3.1, we get
that (A.180) becomesM (p+ v) Acl(p, v) Bcl(p, v)

⋆ G(p) + (⋆)⊤ − M (p) 0
⋆ ⋆ 0

+

(⋆)⊤
[
γI 0
⋆ −γ−1I

] [
0 0 I
0 Ccl(p) Dcl(p)

]
⪰ 0. (A.186)

This can be rewritten as followsM (p+ v) Acl(p, v) Bcl(p, v)
⋆ G(p) + (⋆)⊤ − M (p) 0
⋆ ⋆ γI

−

(⋆)⊤(γ−1I)
[
0 Ccl(p) Dcl(p)

]
⪰ 0, (A.187)

which through a Schur complement is equivalent to
M (p+ v) Acl(p, v) Bcl(p, v) 0

⋆ G(p) + (⋆)⊤ − M (p) 0 Ccl(p)⊤

⋆ ⋆ γI Dcl(p)⊤

⋆ ⋆ ⋆ γI

 ⪰ 0. (A.188)

This gives us the LMI in (2.55b).

A.3.3 Passivity

Continuous-time

In Appendix A.2.2, we have shown that an LPV system given by (2.26) is passive,
if it is classically (Q,S,R) dissipative for the tuple (Q,S,R) = (0, I, 0). Combining
this with the results for CT LPV controller synthesis for (Q,S,R) performance in
Appendix A.3.1, we get that (A.128) becomes[

Acl(p, v) + (⋆)⊤ Bcl(p)
⋆ 0

]
− (⋆)⊤

[
0 I
⋆ 0

] [
0 I

Ccl(p) Dcl(p)

]
⪯ 0. (A.189)

This can be rewritten as follows[
Acl(p, v) + (⋆)⊤ Bcl(p) − Ccl(p)⊤

⋆ −Dcl(p) + (⋆)⊤

]
⪯ 0. (A.190)

This gives us the LMI in (2.56a).
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Discrete-time

Like in CT, also in DT, classically (Q,S,R) dissipativity for the tuple (Q,S,R) =
(0, I, 0) corresponds to passivity. Combining this with the results for DT LPV
controller synthesis for (Q,S,R) performance in Appendix A.3.1, we get that
(A.180) becomesM (p+ v) Acl(p, v) Bcl(p, v)

⋆ G(p) + (⋆) − M (p) 0
⋆ ⋆ 0

+

(⋆)⊤
[
0 I
⋆ 0

] [
0 0 I
0 Ccl(p) Dcl(p)

]
⪰ 0. (A.191)

This can be rewritten as followsM (p+ v) Acl(p, v) Bcl(p, v)
⋆ G(p) + (⋆)⊤ − M (p) Ccl(p)⊤

⋆ ⋆ Dcl + (⋆)⊤

 ⪰ 0. (A.192)

This gives us the LMI in (2.56b).

A.3.4 L2-L∞-gain

Continuous-time

In Appendix A.2.3, we have shown that an LPV system given by (2.26) has a
bounded L2-L∞-gain of γ, if it is classically (Q,S,R) dissipative for the tuple
(Q,S,R) = (γI, 0, 0) and (A.41) holds for all p ∈ P . Combining this with the results
for CT LPV controller synthesis for (Q,S,R) performance in Appendix A.3.1, we
get that (A.128) becomes[

Acl(p, v) + (⋆)⊤ Bcl(p)
⋆ 0

]
− (⋆)⊤

[
γI 0
⋆ 0

] [
0 I

Ccl(p) Dcl(p)

]
⪯ 0. (A.193)

This can be rewritten as follows[
Acl(p, v) + (⋆)⊤ Bcl(p)

⋆ −γI

]
⪯ 0. (A.194)

This gives us the first LMI in (2.57a).
For controller synthesis, the considered LPV system is the closed-loop system (2.44),
hence, (A.41) becomes [

M(p) Ccl(p)⊤

⋆ γI

]
⪰ 0, (A.195)

where Ccl is given in (A.100). Using a congruence transformation, this is equivalent
to

(⋆)⊤
[
M(p) Ccl(p)⊤

⋆ γI

] [
N(p) 0

0 I

]
⪰ 0, (A.196)
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where N is given in (A.95), which then results in

(⋆)⊤
[
(⋆)⊤M(p)N(p) N(p)⊤Ccl(p)⊤

⋆ γI

]
⪰ 0. (A.197)

Using the results of (A.120)–(A.125) and (A.130)–(A.134), this can be expressed as[
M (p) Ccl(p)⊤

⋆ γI

]
⪰ 0. (A.198)

This gives us the second LMI in (2.57a).

Discrete-time

Like in CT, also in DT, classically (Q,S,R) dissipativity for the tuple (Q,S,R) =
(γI, 0, 0) together with (A.50) corresponds to an ℓ2-ℓ∞-gain of γ. Combining this
with the results for DT LPV controller synthesis for (Q,S,R) performance in
Appendix A.3.1, we get that (A.180) becomesM (p+ v) Acl(p, v) Bcl(p, v)

⋆ G(p) + (⋆) − M (p) 0
⋆ ⋆ 0

+

(⋆)⊤
[
γI 0
⋆ 0

] [
0 0 I
0 Ccl(p) Dcl(p)

]
⪰ 0. (A.199)

This can be rewritten as followsM (p+ v) Acl(p, v) Bcl(p, v)
⋆ G(p) + (⋆) − M (p) 0
⋆ ⋆ γI

 ⪰ 0. (A.200)

This gives us the first LMI in (2.57b).
For controller synthesis, the considered LPV system is the closed-loop system (2.44),
hence, (A.50) becomes [

M̄(p) M̄(p)Ccl(p)⊤

⋆ γI

]
⪰ 0, (A.201)

where M̄(p) = M(p)−1 and Ccl is given in (A.100). Similar to how we have shown
that (A.141) and (A.142) are equivalent, we can show that (A.201) and there
existing a matrix function G such that[

G(p) + (⋆)⊤ − M̄(p) G(p)Ccl(p)⊤

⋆ γI

]
⪰ 0, (A.202)

are equivalent. Namely, (A.201) implies (A.202) by taking G = M̄ , and (A.202)
implies (A.201) by substituting G(p) + (⋆)⊤ − M̄(p) for (⋆)⊤M̄(p)−1G(p) in (A.202)
(by (A.146)). Performing a congruence transformation on the resulting matrix
inequality with diag(G(p)−1M(p), I) results in (A.201).
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Using a congruence transformation, (A.202) is equivalent to

(⋆)⊤
[
G(p) + (⋆)⊤ − M̄(p) G(p)Ccl(p)⊤

⋆ γI

] [
N(p) 0

0 I

]
⪰ 0, (A.203)

where N is given in (A.152), which then results in[
(⋆)⊤G(p)N(p) + (⋆)⊤ − (⋆)⊤M̄(p)N(p) N(p)⊤G(p)Ccl(p)⊤

⋆ γI

]
⪰ 0. (A.204)

Using the results of (A.172)–(A.177) and (A.156) and (A.158), this can be expressed
as [

G + (⋆)⊤ − M (p) Ccl(p)⊤

⋆ γI

]
⪰ 0. (A.205)

This gives us the second LMI in (2.57b).

A.3.5 L∞-gain

Continuous-time

In Appendix A.2.3, we have shown that an LPV system given by (2.26) has a
bounded L∞-gain of γ, if it satisfies (A.65) and (A.70) for all p ∈ P . For controller
synthesis, the considered LPV system is the closed-loop system (2.44), hence, (A.65)
becomes[

Acl(p)⊤M(p) + (⋆)⊤ + βM(p) + ∂M(p, v) M(p)Bcl(p)
⋆ −αI

]
⪯ 0, (A.206)

where Acl and Bcl are given in (A.100). Using a congruence transformation, this is
equivalent to

(⋆)⊤
[
Acl(p)⊤M(p) + (⋆)⊤ + βM(p) + ∂M(p, v) M(p)Bcl(p)

⋆ −αI

] [
N(p) 0

0 I

]
⪯ 0,

(A.207)
where N is given in (A.95), which then results in, omitting dependence on p and v
for brevity,[

(⋆)⊤A⊤
clMN + (⋆)⊤ + β(⋆)⊤MN + (⋆)⊤∂MN N⊤MBcl

⋆ −αI

]
⪯ 0. (A.208)

Using the results of (A.101)–(A.112), (A.114)–(A.119), and (A.130)–(A.134), this is
equivalent to [

Acl(p, v) + (⋆)⊤ + βM (p) Bcl(p)
⋆ −αI

]
⪯ 0. (A.209)

This gives us the first LMI in (2.58a).
Next, we focus on (A.70), which for controller synthesis becomesβM(p) 0 Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

 ⪰ 0, (A.210)
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where Ccl and Dcl are given in (A.100). Using a congruence transformation, this is
equivalent to

(⋆)⊤

βM(p) 0 Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

N(p) 0 0
0 I 0
0 0 I

 ⪰ 0, (A.211)

resulting in β(⋆)⊤M(p)N(p) 0 N(p)⊤Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

 ⪰ 0. (A.212)

Using the results of (A.120)–(A.125), (A.126)–(A.127), and (A.130)–(A.134), this
can be expressed as βM (p) 0 Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

 ⪰ 0. (A.213)

This gives us the second LMI in (2.58a).

Discrete-time

Like in CT, also in DT, we have shown in Appendix A.2.3 that an LPV system
given by (2.26) has a bounded ℓ∞-gain of γ, if it satisfies (A.88) and (A.91) for
all p ∈ P. For controller synthesis, the considered LPV system is the closed-loop
system (2.44), hence, (A.88) becomesM̄(p+ v) Acl(p)M̄(p) Bcl(p)

⋆ (1 − β)M̄(p) 0
⋆ ⋆ αI

 ⪰ 0, (A.214)

where M̄(p) = M(p)−1 and Acl and Bcl are given in (A.100). Again, similar to how
we have shown that (A.141) and (A.142) are equivalent, we can show that (A.214)
and there existing a matrix function G such thatM̄(p+ v) Acl(p)G(p) Bcl(p)

⋆ (1 − β)(G(p) + (⋆)⊤ − M̄(p)) 0
⋆ ⋆ αI

 ⪰ 0, (A.215)

are equivalent. Namely, (A.214) implies (A.215) by taking G = M̄ , and (A.215)
implies (A.214) by substituting G(p) + (⋆)⊤ − M̄(p) for (⋆)⊤M̄(p)−1G(p) in (A.215)
(by (A.146)). Performing a congruence transformation on the resulting matrix
inequality with diag(I,G(p)−1M(p), I) results in (A.214).
Using a congruence transformation, (A.215) is equivalent to

(⋆)⊤
M̄(p+ v) Acl(p)Ḡ(p) Bcl(p)

⋆ (1 − β)(G(p) + (⋆)⊤−M̄(p)) 0
⋆ ⋆ αI

N(p+ v) 0 0
0 N(p) 0
0 0 I

⪰0,

(A.216)
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resulting in(⋆)⊤M̄(p+ v)N(p+ v) N(p+ v)⊤Acl(p)Ḡ(p)N(p) N(p+ v)⊤Bcl(p)
⋆ T (p, v) 0
⋆ ⋆ αI

 ⪰ 0,

(A.217)
where T (p, v) = (1 −β)(⋆)⊤(G(p) + (⋆)⊤−M̄(p))N(p). Using the results of (A.159)–
(A.165), (A.166)–(A.171), and (A.156)–(A.158), this can be expressed as,M (p+ v) Acl(p, v) Bcl(p, v)

⋆ (1 − β)(G(p) + (⋆)⊤ − M (p)) 0
⋆ ⋆ αI

 ⪰ 0. (A.218)

This gives us the first LMI in (2.58b).
Next, we focus on (A.91), which for controller synthesis becomesβM̄(p) 0 M̄(p)Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

 ⪰ 0, (A.219)

where again M̄(p) = M(p)−1, and Ccl and Dcl are given in (A.100). Similar as
before, we can show that (A.219) and there existing a matrix function G such thatβ(G(p) + (⋆)⊤ − M̄(p)) 0 G(p)Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

 ⪰ 0, (A.220)

are equivalent. Namely, (A.219) implies (A.220) by taking G = M̄ , and (A.220)
implies (A.219) by substituting G(p) + (⋆)⊤ − M̄(p) for (⋆)⊤M̄(p)−1G(p) in (A.220)
(by (A.146)). Performing a congruence transformation on the resulting matrix
inequality with diag(G(p)−1M(p), I, I) results in (A.219).
Using a congruence transformation, (A.220) is equivalent to

(⋆)⊤

β(G(p) + (⋆)⊤ − M̄(p)) 0 G(p)Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

N(p) 0 0
0 I 0
0 0 I

 ⪰ 0,

(A.221)
resulting inβ · (⋆)⊤(G(p) + (⋆)⊤ − M̄(p))N(p) 0 N(p)⊤G(p)Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

 ⪰ 0.

(A.222)
Using the results of (A.172)–(A.177), (A.179), (A.156) and (A.158), this can be
expressed as,β · (⋆)⊤(G(p) + (⋆)⊤ − M (p))N(p) 0 Ccl(p)⊤

⋆ (γ − α)I Dcl(p)⊤

⋆ ⋆ γI

 ⪰ 0. (A.223)

This gives us the second LMI in (2.58b).
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Remark A.7. Note that similar to the L∞/ℓ∞ based analysis conditions (see
Remark A.1), also the above L∞/ℓ∞ controller synthesis conditions are not LMIs
due to the multiplication of β with M and G . In practice, this is often solved by
performing a line search over β for which the conditions do become LMIs.



B
Mathematical Proofs

B.1 Proofs of Chapter 2

Proof of Lemma 2.6 (LPV behavioral embedding)

As the Linear Parameter-Varying (LPV) system is a global LPV embedding of the
nonlinear system on the region X × W = X × W for any trajectory (x,w, z) ∈ B,
we also have that (x,w, z) ∈ Bp(η(x,w)). Moreover, as X × W = X × W and
η(X ,W ) ⊆ P, we get the following relation

B =
⋃

(x,w)∈πx,w B

Bp(η(x,w)) ⊆
⋃

(x,w)∈(X ,W)T

Bp(η(x,w)) ⊆
⋃

p∈PT

Bp(p) = B̆p.

(B.1)

Proof of Theorem 2.5 (Classical (Q, S, R) dissipativity condi-
tions for LPV systems)

Left and right multiplication of the inequalities in (2.37) by col(x,w)⊤ and col(x,w),
respectively, we obtain that

(⋆)⊤ +M(p) (A(p)x+B(p)w) + ∂M(p, v) ≤
(⋆)⊤Qw + 2w⊤S (C(p)x+D(p)w) + (⋆)⊤R (C(p)x+D(p)w) , (B.2a)

and

(⋆)⊤M(p+ v) (A(p)x+B(p)w) −M(p) ≤
(⋆)⊤Qw + 2w⊤S (C(p)x+D(p)w) + (⋆)⊤R (C(p)x+D(p)w) , (B.2b)
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for all p ∈ P, v ∈ Π, and (x,w) ∈ (Rnx × Rnw). This implies

(⋆)⊤ +M(p(t)) (A(p(t))x(t) +B(p(t))w(t)) + ∂M(p(t), ṗ(t)) ≤
(⋆)⊤Qw(t) + 2w(t)⊤S (C(p(t))x(t) +D(p)w(t)) +

(⋆)⊤R (C(p(t))x(t) +D(p(t))w(t)) , (B.3a)

and

(⋆)⊤M(p(t+ 1)) (A(p(t))x(t) +B(p(t))w(t)) −M(p(t)) ≤
(⋆)⊤Qw(t) + 2w(t)⊤S (C(p(t))x(t) +D(p(t))w(t)) +

(⋆)⊤R (C(p(t))x(t) +D(p(t))w(t)) , (B.3b)

for all t ∈ T and (x,w, z) ∈ Bp(p) for all p ∈ PT . Through integration/summation
from t0 to t1, this implies condition (2.35), where Vp is given by (2.36) and sv by
(2.25), meaning the LPV system is classically (Q,S,R) dissipative.
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B.2 Proofs of Chapter 4

Proof of Theorem 4.1 (Universal shifted Lyapunov stability)

For every (x∗, w∗) ∈ πx∗,w∗ E , the function V : x 7→ Vs(x,w∗) satisfies the conditions
for a Lyapunov function for the equilibrium point x∗, as V = (x 7→ Vs(x,w∗)) ∈ Qx∗

for every (x∗, w∗) ∈ πx∗,w∗ E , see Theorem 2.2. Consequently, by (4.6), it then
holds for every (x∗, w∗) ∈ πx∗,w∗ E that

∂

∂t
V (x(t)) ≤ 0, (B.4)

for all t ∈ R+
0 and x ∈ πx Bw(w ≡ w∗). Hence, by Theorem 2.2, the system is stable

at each equilibrium point (x∗, w∗, z∗) ∈ E , meaning, by definition, it is universally
shifted stable. Similarly, when (4.6) holds, but with a strict inequality except when
x(t) = x∗, this implies that (B.4) holds, but with a strict inequality except when
x(t) = x∗. Therefore, by Theorem 2.2, asymptotic stability of the nonlinear system
follows at each equilibrium point (x∗, w∗, z∗) ∈ E .

Proof of Lemma 4.1 (Condition for universal shifted dissipa-
tivity)

If the nonlinear system given by (4.1) is universally shifted dissipative for every
(x∗, w∗, z∗) ∈ E , condition (4.7) holds for all t0, t1 ∈ R+

0 with t1 ≥ t0 and (x,w, z) ∈
B. If Vs(·, w∗) ∈ C1 for every w∗ ∈ W , this is equivalent to requiring that the
following relation holds for every (x∗, w∗, z∗) ∈ E :

∂

∂t
Vs(x(t), w∗) ≤ ss(w(t), w∗, z(t), z∗) dt, (B.5)

for all t ∈ R+
0 and (x,w, z) ∈ B. This is equivalent to the following relation

requiring to hold for every (x∗, w∗, z∗) ∈ E

∇xVs(x(t), w∗)f(x(t), w(t)) ≤ ss(w(t), w∗, h(x(t), w(t)), z∗), (B.6)

for all t ∈ R+
0 and (x,w) ∈ πx,w B, which holds if, for every (x∗, w∗, z∗) ∈ E , (4.8)

holds for all x ∈ X and w ∈ W.

Proof of Theorem 4.2 (Induced classical dissipativity)

If (4.1) is universally shifted (Q,S,R) dissipative, there exists a storage function
Vs : X × W → R+

0 with Vs(·, w∗) ∈ C0 and Vs(·, w∗) ∈ Qx∗ for every (x∗, w∗) ∈
πx∗,w∗ E , such that it holds that

Vs(x(t1), w∗) − Vs(x(t0), w∗) ≤
∫ t1

t0

[
w − w∗
z − z∗

]⊤ [
Q S
⋆ R

] [
w − w∗
z − z∗

]
dt, (B.7)
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for all t0, t1 ∈ R+
0 with t1 ≥ t0 and (x,w, z) ∈ B. As we assume that (0, 0, 0) ∈ E ,

it also holds that

Vs(x(t1), 0) − V(x(t0), 0) ≤
∫ t1

t0

[
w
z

]⊤ [
Q S
⋆ R

] [
w
z

]
dt, (B.8)

for all t0, t1 ∈ R+
0 with t1 ≥ t0 and (x,w, z) ∈ B. Defining V(x) = Vs(x, 0), which

satisfies that V ∈ Q0, we have that

V(x(t1)) − Vs(x(t0)) ≤
∫ t1

t0

[
w
z

]⊤ [
Q S
⋆ R

] [
w
z

]
dt, (B.9)

for all t0, t1 ∈ R+
0 with t1 ≥ t0 and (x,w, z) ∈ B, which is the condition for classical

(Q,S,R) dissipativity, see also Definition 2.13.

Proof of Lemma 4.2 (Ls2-gain based on universal shifted dissi-
pativity)

If the system is universally shifted (Q,S,R) dissipative with (Q,S,R) = (γ2I, 0,−I)
it holds that there exists a Vs such that for every (x∗, w∗, z∗) ∈ E

Vs(x(t1), w∗) − Vs(x(t0), w∗) ≤
∫ t1

t0

γ2(⋆)⊤(w(t) −w∗) − (⋆)⊤(z(t) − z∗) dt, (B.10)

for all t0, t1 ∈ R+
0 with t1 ≥ t0 and (x,w, z) ∈ B. Consequently, it also holds for

every (x∗, w∗, z∗) ∈ E that

0 ≤ Vs(x(t), w∗) ≤
∫ T

0
γ2 ∥w(t) − w∗∥ − ∥z(t) − z∗∥ dt+ Vs(x0, w∗), (B.11)

for all T ≥ 0 and (x,w, z) ∈ B. Using the L2e signal norm definition, see Defini-
tion 2.10, and using that w∗ = κ(x∗), this is equivalent to

∥z − w∗∥2
2,T ≤ γ2 ∥w − z∗∥2

2,T + Vs(x0, κ(x∗)), (B.12)

holding for all T ≥ 0 and (x,w, z) ∈ B with w ∈ L2e. Next, we take the square
root on both sides of (B.12), which gives us

∥z − z̃∥2,T ≤
√
γ2 ∥w − w̃∥2

2,T + Vi(x0, x̃(0)) ≤ γ ∥w − w̃∥2,T +
√

Vs(x0, κ(x∗)),
(B.13)

which is equivalent to (4.10) with ζs(x0, x∗) =
√

Vs(x0, κ(x∗)).

Proof of Theorem 4.3 (Universal shifted stability from univer-
sal shifted dissipativity)

If, the system given by (4.1) is universally shifted dissipative w.r.t. a supply function
ss, for which for every (x∗, w∗, z∗) ∈ E , (4.12) holds for all z ∈ Z, then it holds for



B.2. Proofs of Chapter 4 289

every (x∗, w∗, z∗) ∈ E that

Vs(x(t1), w∗) − Vs(x(t0), w∗) ≤
∫ t1

t0

ss(w∗, w∗, z(t), z∗) dt ≤ 0, (B.14)

for all t0, t1 ∈ R+
0 with t0 ≤ t1 and (x, z) ∈ πx,z Bw(w ≡ w∗). As Vs(·, w∗) ∈ C1 for

all w∗ ∈ W , this means that for every (x∗, w∗, z∗) ∈ E it holds that
d

dt
Vs(x(t), w∗) ≤ 0, (B.15)

for all t ∈ R+
0 and x ∈ πx Bw(w ≡ w∗). The storage function Vs satisfies the

conditions for the universal shifted Lyapunov function Vs in Theorem 4.1. Hence,
(B.15) implies (4.6), which by Theorem 4.1 implies universal shifted stability.
In case of universal shifted asymptotic stability, the supply function satisfies (4.12),
but with strict inequality for all z ≠ z∗. Moreover, as the system is assumed to be
observable, this means that z ∈ πz Bw(w ≡ w∗) for which z(t) = z∗ ∈ πz∗ E for all
t ∈ R+

0 , implies that x(t) = x∗ ∈ πx∗ E , with (x∗, z∗) ∈ πx∗,z∗ E . Consequently, we
have that (B.15) holds, but with strict inequality except when x(t) = x∗, which by
Theorem 4.1 implies universal shifted asymptotic stability.

Proof of Lemma 4.3 (Condition for velocity dissipativity)

We have that the system given by (4.1) is velocity dissipative if there exists a storage
function Vv s.t. (4.16) holds, which, for Vv ∈ C1, is equivalent to

∂

∂t
Vv(ẋ(t)) ≤ sv(ẇ(t), ż(t)), (B.16)

holding for all t ∈ R+
0 and (ẋ, ẇ, ż) ∈ Bv. Using the dynamics of the velocity form

given by (4.15) and expression for ẋ given by (4.1a), (B.16) equivalently holds if

∇Vv
(
f(x(t), w(t))

)(
Av(x(t), w(t))f(x(t), w(t)) +Bv(x(t), w(t))ẇ(t)

)
≤

sv
(
ẇ(t), Cv(x(t), w(t))f(x(t), w(t)) +Dv(x(t), w(t))ẇ(t)

)
, (B.17)

for all t ∈ R+
0 , ẇ ∈ πẇ Bv, and corresponding (x,w) ∈ πx,w Bc. Consequently, if

(4.18) holds for all values wv ∈ Rnw , x ∈ X , and w ∈ W, then, (B.17) holds for all
t ∈ R+

0 , ẇ ∈ πẇ Bv. This means that the system is velocity dissipative w.r.t. the
supply function sv.

Proof of Theorem 4.4 (Velocity (Q, S, R) dissipativity condition)

If (4.20) holds for all (x,w) ∈ X × W, we have by pre- and post multiplication of
(4.20) with col(f(x,w), wv)⊤ and col(f(x,w), wv), respectively, that

2(f(x,w)⊤M(f(x,w)) (Av(x,w)f(x,w) +Bv(x,w)wv) −
w⊤

v Qwv − 2w⊤
v S
(
Cv(x,w)f(x,w) +Dv(x,w)wv

)
−

(⋆)⊤R
(
Cv(x,w)f(x,w) +Dv(x,w)wv

)
≤ 0, (B.18)
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all wv ∈ Rnw and (x,w) ∈ X × W . This corresponds to the condition in Lemma 4.3
with the storage function given by (4.19) and a (Q,S,R) supply function (4.17).
Hence, by Lemma 4.3, the system given by (4.1) is velocity (Q,S,R) dissipative.

Proof of Theorem 4.5 (Implied universal shifted stability)

For each equilibrium point (x∗, w∗, z∗) ∈ E consider

Vs(x(t), w∗) := Vv(f(x(t), w∗)) = Vv(ẋ(t)). (B.19)

For each (x∗, w∗, z∗) ∈ E , this choice implies that Vs(·, w∗) ∈ Qx∗ and Vs(·, w∗) ∈ C1
as Vv ∈ Q0 and Vv ∈ C1 (and f ∈ C1). Note that this requires uniqueness of the
equilibrium points (see Assumption 4.1), as otherwise there exists multiple x∗ for
which Vs(x∗, w∗) = 0. By this choice of Vs, we have that for each (x∗, w∗, z∗) ∈ E

d

dt
Vs(x(t), w∗) = d

dt
Vv(ẋ(t)) ≤ 0, (B.20)

for all t ∈ R+
0 and ẋ ∈ πẋ Bv,w(w ≡ w∗) and correspondingly for all x ∈ πx Bc,w(w ≡

w∗). This implies that (4.6) holds for all x ∈ πx Bc,w(w ≡ w∗) and for all equilibrium
points (x∗, w∗) ∈ πx∗,w∗ E . Hence, by Theorem 4.1, the system is universally shifted
stable. The asymptotic stability version follows similarly by changing (B.20) to a
strict inequality.

Proof of Theorem 4.6 (Universal shifted stability from velocity
dissipativity)

If the system given by (4.1) is velocity dissipative w.r.t. a supply function sv which
satisfies (4.22) for all zv ∈ Rnz , then it holds that

Vv(ẋ(t1)) − Vv(ẋ(t0)) ≤
∫ t1

t0

sv(0, ż(t)) dt ≤ 0, (B.21)

for all t0, t1 ∈ R+
0 with t1 ≥ t0 and (ẋ, ż) ∈ πẋ,ż Bv,W . As Vv ∈ C1, this means that

d

dt
Vv(ẋ(t)) ≤ 0, (B.22)

for all t ∈ R+
0 and ẋ ∈ πẋ Bv,W , which implies through Theorem 4.5 universal

shifted stability, where Vv = Vv.
For universal shifted asymptotic stability, sv satisfies (4.22), but with a strict
inequality when zv ̸= 0. As it is also assumed that the system is observable, this
means that ż(t) = 0 for all t ∈ R+

0 , corresponding to z ∈ πz Bc,w(w ≡ w∗) for
which z(t) = z∗ ∈ πz∗ E for all t ∈ R+

0 , implies that x(t) = x∗ ∈ πx∗ E , with
(x∗, z∗) ∈ πx∗,z∗ E corresponding to ẋ(t) = 0 for all t ∈ R+

0 . Consequently, we have
that (B.22) where the inequality is strict except when ẋ(t) = 0 is satisfied. This
implies by Theorem 4.5 universal shifted asymptotic stability of the system.
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Proof of Theorem 4.7 (Universal shifted performance from
velocity dissipativity)

If the nonlinear system is velocity dissipative w.r.t. the supply function sv(ẇ, ż) =
ẇ⊤Qẇ+ ż⊤Rż, there exists a storage function Vv, such that for all t0, t1 ∈ R+

0 with
t1 ≥ t0

Vv(ẋ(t1)) − Vv(ẋ(t0)) ≤
∫ t1

t0

ẇ(t)⊤Qẇ(t) + ż(t)⊤Rż(t) dt, (B.23)

for all (ẋ, ẇ, ż) ∈ Bv, corresponding to (x,w, z) ∈ Bc. Hence, as Vv(ẋ(0)) =
Vv(0) = 0 and Vv(xv) > 0, ∀xv ∈ Rnx\{0} this implies that

0 <
∫ T

0
ẇ(t)⊤Qẇ(t) + ż(t)⊤Rż(t) dt, (B.24)

for all T > 0 and (ẋ, ẇ, ż) ∈ Bv. Defining Q̃ := 1
∥Q∥Q and R̃ := 1

∥Q∥R, it also holds
that

0 <
∫ T

0
ẇ(t)⊤Q̃ẇ(t) + ż(t)⊤R̃ż(t) dt, (B.25)

Next, using (4.23)–(4.25), we have that, omitting dependence on time for brevity,

ż⊤R̃ż = ẋ⊤C⊤R̃ Cẋ, (B.26a)
= (⋆)⊤R̃ C(f(x) +Bw), (B.26b)
= (⋆)⊤R̃ C(f(x) +Bw−(f(x∗) +Bw∗)︸ ︷︷ ︸

=0

), (B.26c)

= (⋆)⊤R̃ C(f(x) − f(x∗) +B(w − w∗)). (B.26d)

Through, Lemma C.1.1, we have that

f(x) − f(x∗) =
(∫ 1

0

∂f

∂x
(x∗ + λ(x− x∗)) dλ

)
(x− x∗),

=
(∫ 1

0
Av(x∗ + λ(x− x∗)) dλ

)
︸ ︷︷ ︸

Ā(x,x∗)

(x− x∗). (B.27)

Combining this with Assumption 4.2, we can write (B.26d) as

ż⊤R̃ż = (⋆)⊤R̃ CĀ(x, x∗)(x− x∗). (B.28)

Next, by satisfying Assumption 4.3 for T = R̃ ⪯ 0, we have that for every x∗ ∈ X

ż⊤R̃ż = (⋆)⊤R̃CĀ(x, x∗)(x− x∗) ≤ α−1(⋆)⊤R̃C(x− x∗) = α−1(⋆)⊤R̃(z − z∗).
(B.29)

Moreover, by Assumption 4.4, we have that, for a given (x∗, w∗, z∗) ∈ E ,

ẇ⊤Q̃ẇ = (⋆)⊤Q̃Aw(w − w∗) ≤ β2(⋆)⊤Q̃(w − w∗), (B.30)
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where w ∈ W and 0 ⪯ Q̃ ⪯ I. Combining (B.25), (B.29), and (B.30), we obtain
that, for every (x∗, w∗, z∗) ∈ E ,∫ T

0
β2(⋆)⊤Q̃(w(t) − w∗) + α−1(⋆)⊤R̃(z(t) − z∗) dt > 0, (B.31)

for all T > 0 and (w, z) ∈ πw,z Bc with w ∈ W. Hence, also∫ T

0
β2(⋆)⊤Q(w(t) − w∗) + α−1(⋆)⊤R(z(t) − z∗) dt > 0, (B.32)

for all T > 0 and (w, z) ∈ πw,z Bc with w ∈ W.

Proof of Corollary 4.1 (Bounded Ls2-gain from velocity dissi-
pativity)

From Theorem 4.7 with (Q,S,R) = (γ2I, 0,−I), we have that there exists a function
ζs : X × X → R, such that, for every (x∗, w∗, z∗) ∈ E ,∫ T

0
γ2β2(⋆)⊤(w(t) − w∗) − α−1(⋆)⊤(z(t) − z∗) dt+ ζs(x0, x∗) ≥ 0, (B.33)

for all T > 0 and (w, z) ∈ πw,z Bc, with w ∈ W. This is equivalent to

α−1
∫ T

0
∥z(t) − z∗∥2

dt ≤ γ2β2
∫ T

0
∥w(t) − w∗∥2

dt+ ζs(x0, x∗), (B.34)

∥z − z∗∥2
2,T ≤ αγ2β2 ∥w − w∗∥2

2,T + αζs(x0, x∗), (B.35)

for all T > 0 and (w, z) ∈ πw,z Bc with w ∈ W. Hence, this implies that for every
(x∗, w∗, z∗) ∈ E

∥z − z∗∥2,T ≤ γ̃ ∥w − w∗∥2,T + αζs(x0, x∗), (B.36)

for all T > 0 and (w, z) ∈ πw,z Bc with w ∈ W where γ̃ = αγ2β2, corresponding to
the Ls2-gain definition (see Definition 4.3).

Proof of Lemma 4.4 (VPV behavioral embedding)

The LPV representation (4.30) is a Velocity Parameter-Varying (VPV) embedding
of the system given by (4.1) on the region X × W = X × W . Consequently, for any
trajectory (ẋ, ẇ, ż) ∈ Bv, we also have that (ẋ, ẇ, ż) ∈ Bp(η(x,w)). Moreover, as
X × W = X × W and η(X ,W ) ⊆ P, we get the following relation

Bv =
⋃

(x,w)∈πx,w B

Bp(η(x,w)) ⊆
⋃

(x,w)∈(X ,W)R
+
0

Bp(η(x,w)) ⊆
⋃

p∈PR+
0

Bp(p) = B̆p.

(B.37)
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Proof of Theorem 4.8 (Velocity dissipativity analysis through
the LPV framework)

As the LPV representation (4.30) is a VPV embedding of the nonlinear system
given by (4.1) on the region X × W = X × W, we have by Lemma 4.4 that the
LPV representation describes the full behavior of the velocity form (4.15), i.e.,
Bv ⊆ B̆p. Consequently, if the LPV representation (4.30) is classically dissipative
for all trajectories in B̆p, we have that the velocity form is classically dissipative
for all trajectories in Bv, which corresponds to the nonlinear system being velocity
dissipative, see Definition 4.6.

Proof of Theorem 4.9 (Closed-loop velocity form)

W.l.o.g., we can omit w and z and assume P is given by (dependence on t is omitted
for brevity):

ẋ = f(x, u); (B.38a)
y = hy(x, u); (B.38b)

and K is given by (4.34). P and K are interconnected such that uk = y and u = yk.
We assume that the interconnection is well-posed, i.e., there exists a C1 function h̆,
such that u = hk(xk, hy(x, u)) can be expressed as u = h̆(x, xk). The closed-loop is
then given by

ẋ = f(x, h̆(x, xk)); (B.39a)
ẋk = fk(xk, hy(x, h̆(x, xk))). (B.39b)

The velocity form of (B.39) is

ẍ = ∂f

∂x
(x, u)ẋ+ ∂f

∂u
(x, u)

(
∂h̆

∂x
(x, xk)ẋ+ ∂h̆

∂xk
(x, xk)ẋk

)
; (B.40a)

ẍk = ∂fk

∂xk
(xk, uk)ẋk + ∂fk

∂uk
(xk, uk)

(
∂hy

∂x
(x, u)ẋ+ ∂hy

∂u
(x, u)· (B.40b)(

∂h̆

∂x
(x, xk)ẋ+ ∂h̆

∂xk
(x, xk)ẋk

))
;

where uk = hy(x, h̆(x, xk)). The velocity form of P , Pv, is given by

ẍ = ∂f

∂x
(x, u)ẋ+ ∂f

∂u
(x, u)u̇; (B.41a)

ẏ = ∂hy

∂x
(x, u)ẋ+ ∂hy

∂u
(x, u)u̇; (B.41b)

and the velocity form of K, Kv, is given by

ẍk = ∂fk

∂xk
(xk, uk)ẋk + ∂fk

∂uk
(xk, uk)u̇k; (B.42a)

ẏk = ∂hk

∂xk
(xk, uk)ẋk + ∂hk

∂uk
(xk, uk)u̇k. (B.42b)
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Interconnecting these in a similar manner as P and K, i.e., u̇k = ẏ and u̇ = ẏk,
results for (B.42b) in

u̇ = ∂hk

∂xk
(xk, uk)ẋk + ∂hk

∂uk
(xk, uk)

(
∂hy

∂x
(x, u)ẋ+ ∂hy

∂u
(x, u)u̇

)
. (B.43)

By the well-posedness assumption, we know that u = hk(xk, hy(x, u)) can be
expressed as u = h̆(x, xk), hence, in the velocity form, (B.43) can equivalently be
expressed as u̇ = ∂h̆

∂x (x, xk)ẋ+ ∂h̆
∂xk

(x, xk)ẋk. Combining this with (B.41) and (B.42)
allows us to express the interconnection of Pv and Kv as (B.40). Note that by
writing (B.43) as

u̇ =

∂h̆
∂x (x,xk)︷ ︸︸ ︷

hv(x, xk)∂hk

∂uk
(xk, uk)∂hy

∂x
(x, u) ẋ+

∂h̆
∂xk

(x,xk)︷ ︸︸ ︷
hv(x, xk)∂hk

∂xk
(xk, uk) ẋk, (B.44)

where1 hv(x, xk) =
(
I − ∂hk

∂uk
(xk, uk) ∂hy

∂u (x, u)
)−1

, we get conditions on the existence
of h̆. Namely, if hv(x, xk) exists for some point (x, xk) ∈ X × Rnxk , then, by the
implicit function theorem, there exists a neighborhood around this point for which
h̆(x, xk) exists (in that neighborhood) and is in C1.

Proof of Theorem 4.10 (Velocity closed-loop L2-gain)

As Pvpv is a VPV embedding on the region X × U ⊆ X × U , we have through
Lemma 4.4 that Bv,XU ⊆ B̆p. Consequently, through Theorem 4.8, we have that
Fl(Pv,Kv) with p = η(x, u) for Kv is classically dissipative and has an L2-gain
bound ≤ γ for all (ẋ, u̇) ∈ πẋ,u̇ Bv,XU .

Proof of Theorem 4.11 (Velocity behavior inclusion)

We introduce the operators ξ = d
dt and ξ−1w(t) =

∫ t

0 w(τ) dτ . In order to integrate
the inputs and differentiate the outputs of the nonlinear system given by (4.1),
we introduce the new input and output ŵ and ẑ, respectively, with the following
relations:

w(t) = ξ−1ŵ(t), ẑ(t) = ξz(t), (B.45)

which exist, as the solutions (x,w, z) ∈ Bc. Obviously, multiplication with ξ or ξ−1

is not commutative. We can then write (4.1) as

ξx(t) = f(x(t), ξ−1ŵ(t)); (B.46a)
ξ−1ẑ(t) = h(x(t), ξ−1ŵ(t)); (B.46b)

1Note again that uk = hy(x, h̆(x, xk)) and u = h̆(x, xk).
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which, by multiplication with ξ in order to obtain the new output ẑ, results in

ξ2x(t) = ξf(x(t), ξ−1ŵ(t)); (B.47a)
ẑ(t) = ξh(x(t), ξ−1ŵ(t)); (B.47b)

ξ2x(t) = ∂f(x(t), ξ−1ŵ(t))
∂x

ξx(t) + ∂f(x(t), ξ−1ŵ(t))
∂w

ξ
(
ξ−1ŵ(t)

)
; (B.48a)

ẑ(t) = ∂h(x(t), ξ−1ŵ(t))
∂x

ξx(t) + ∂h(x(t), ξ−1ŵ(t))
∂w

ξ
(
ξ−1ŵ(t)

)
; (B.48b)

ξ2x(t) = ∂f(x(t), w(t))
∂x

ξx(t) + ∂f(x(t), w(t))
∂w

ŵ(t); (B.49a)

ẑ(t) = ∂h(x(t), w(t))
∂x

ξx(t) + ∂h(x(t), w(t))
∂w

ŵ(t). (B.49b)

By using the definitions in (B.45), we can express (B.49) as

ẍ(t) = ∂f(x(t), w(t))
∂x

ẋ(t) + ∂f(x(t), w(t))
∂w

ẇ(t); (B.50a)

ż(t) = ∂h(x(t), w(t))
∂x

ẋ(t) + ∂h(x(t), w(t))
∂w

ẇ(t). (B.50b)

From this, it is clear that we obtain the velocity form of (4.1) given by (4.15).

Proof of Theorem 4.12 (Universal shifted controller realization)

First, the primal form of the controller is realized. To realize the primal form we
differentiate the input to the velocity controller uv,k and integrate the output yv,k
of the velocity controller Kv given by (4.41). Therefore, the following relations hold
(omitting time dependency for brevity)

ξyk = yv,k, ξuk = uv,k, (B.51)

where again ξ = d
dt and ξ−1w(t) =

∫ t

0 w(τ) dτ . By simply rewriting (4.41), we get

ξxv,k = Ak(p)xv,k +Bk(p)ξuk; (B.52a)
ξyk = Ck(p)xv,k +Dk(p)ξuk; (B.52b)

Through (B.52a), we have the following equalities

ξxv,k = Ak(p)xv,k +Bk(p)ξuk + (ξBk(p))uk − (ξBk(p))uk, (B.53)
ξxv,k = Ak(p)xv,k + ξ (Bk(p)uk) − (ξBk(p))uk, (B.54)

ξ (xv,k −Bk(p)uk) = Ak(p)xv,k − (ξBk(p))uk, (B.55)

we then define x̃k = xv,k −Bk(p)uk, resulting in

ξx̃k = Ak(p)x̃k +Ak(p)Bk(p)uk − (ξBk(p))uk, (B.56)
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which can be rewritten to

˙̃xk = Ak(p)x̃k + (Ak(p)Bk(p) − ∂Bk(p, ṗ))uk, (B.57)

where ∂Bk(p, ṗ) =
∑np

i=1
∂Bk(p)

∂pi
ṗi.

A similar procedure can be used to rewrite (B.52b), resulting in

˙̂xk = Ck(p)x̃k + (Ck(p)Bk(p) − ∂Dk(p, ṗ))uk, (B.58)

where x̂k = yk −Dk(p)uk and ∂Dk(p, ṗ) =
∑np

i=1
∂Dk(p)

∂pi
ṗi. Due to the definition of

x̂k, we then have that yk = x̂k + Dk(p)uk. Combining these results gives us the
primal realization K: ˙̃xk

˙̂xk
yk

 =

 Ak(p) 0 Ak(p)Bk(p) − ∂Bk(p, ṗ)
Ck(p) 0 Ck(p)Bk(p) − ∂Dk(p, ṗ)

0 I Dk(p)

 x̃k
x̂k
uk

 . (B.59)

From which (4.42) can be constructed by introducing x̆k = col(x̃k, x̂k) and using
(4.43). Note that the realization of the controller (B.59) is not necessarily state
minimal. However, in the literature techniques exists which can be applied in order
to construct a minimal state-space realization of an LPV system, see e.g. (Petreczky,
Tóth, et al. 2017).
As uv,k, yv,k, p ∈ C1, we have by Theorem 4.11 that the controller given by (4.42)
with its inputs integrated and outputs differentiated is equal to its velocity from
(4.41). Note, that to be conform with the initial form of K given in (4.41) the
scheduling-variable is also considered an input to the controller. Substituting the
relations of (B.51) in the first row of (B.59) and rewriting it results in

ξx̃k = Ak(p)x̃k +Ak(p)Bk(p)ξ−1uv,k − (ξBk(p)) ξ−1uv,k, (B.60)

for which we can write

ξx̃k =Ak(p)x̃k +Ak(p)Bk(p)ξ−1uv,k−
(ξBk(p)) ξ−1uv,k −Bk(p)uv,k︸ ︷︷ ︸

ξ
(

Bk(p)ξ−1uv,k

) +Bk(p)uv,k, (B.61)

ξ
(
x̃k +Bk(p)ξ−1uv,k

)
= Ak(p)

(
x̃k +Bk(p)ξ−1uv,k

)
+Bk(p)uv,k, (B.62)

then, defining xv,k = x̃k +Bk(p)ξ−1uv,k, results in

ξxv,k = Ak(p)xv,k +Bk(p)uv,k. (B.63)

Similarly, based on the second row of (B.59), we can find that

ξ
(
x̂k +Dk(p)ξ−1uv,k

)
= Ck(p)

(
x̃k +Bk(p)ξ−1uv,k

)
+Dk(p)uv,k. (B.64)

Now, we can use that x̂k +Dk(p)ξ−1uv,k = x̂k +Dk(p)u = yk based on the third
row of (B.59) and using xv,k = x̃k +Bk(p)ξ−1uv,k to rewrite (B.64) to

ξyk = Ck(p)xv,k +Dk(p)uv,k. (B.65)
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Finally, by combining (B.63) and (B.65), we arrive at the velocity form of the
controller

ẋv,k = Ak(p)xv,k +Bk(p)uv,k; (B.66a)
yv,k = Ck(p)xv,k +Dk(p)uv,k; (B.66b)

which is equivalent with (4.41).

Proof of Theorem 4.13 (Closed-loop universal shifted stability
and performance)

For our generalized plant P given by (4.33) with behavior Bc and velocity form Pv
given by (4.38), we have by Theorem 4.10 that Kv given in (4.41) ensures classical
dissipativity and a bounded L2-gain of γ of the closed-loop Fl(Pv,Kv) on X × U.
Moreover, we consider the set W̃ ⊆ W , for which Xcl = X ×Xk is invariant, meaning
that for any w ∈ W̃R+

0 , the resulting (x(t), u(t)) ∈ X × U, ∀ t ∈ R+
0 . Hence, we will

remain in the design set on which classical dissipativity and a bounded L2-gain of
the velocity form is ensured.
By Theorem 4.12, we have that the velocity form of K (4.42) is given by Kv.
Consequently, by Theorem 4.9, the velocity form of Fl(P,K) is given Fl(Pv,Kv).
Hence, Fl(P,K) is velocity (Q,S,R) dissipative with (Q,S,R) = (γ2I, 0,−I) for
(x, u) ∈ Bc,XU , which by Proposition 4.1 implies that Fl(P,K) is universally shifted
(Q,S,R) dissipative for (Q,S,R) = (γ2I, 0,−I) for all w ∈ W̃R+

0 ∩ L2e and any
w∗ ∈ W ∩W̃ . Hence, by Lemma 4.2, the (primal form of the) closed-loop system has a
bounded Ls2-gain of γ and, by Theorem 4.3, it is universally shifted (asymptotically)
stable for all w ∈ W̃R+

0 ∩ L2e and any w∗ ∈ W ∩ W̃.

Proof of Corollary 4.2 (Universal shifted realization with inte-
gral action)

For the realization of the controller in Theorem 4.12, the input to the velocity
controller is time differentiated, which can be seen as appending a differentiator to
the input of the velocity controller, see also Figure 4.3. The integration filter M ,
given by M(s) = s+α

s , is also connected to the input of the controller as depicted
in Figure 4.4. As differentiation in time can be expressed in the Laplace domain as
s, we have that the interconnection of weighting filter and differentiator is given
by s · M(s) = s s+α

s = s + α. Hence, as y = uk, in the proof of Theorem 4.12,
s · uk = ξuk = uv,k in (B.51) becomes (s+ α)uk = ξuk + αuk = uv,k. Consequently,
(B.52a) becomes

ξxv,k = Ak(p)xv,k +Bk(p)(ξuk + αuk), (B.67)
and we can write, similarly as (B.55), that

ξ (xv,k −Bk(p)uk) = Ak(p)xv,k − (ξBk(p))uk + (Bk(p)α)uk. (B.68)

Defining again that x̃k = xv,k −Bk(p)uk, we obtain
˙̃xk = Ak(p)x̃k + (Ak(p)Bk(p) +Bk(p)αI − ∂Bk(p, ṗ))uk, (B.69)
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Similarly, (B.58) becomes

˙̂xk = Ck(p)x̃k + (Ck(p)Bk(p) +Dk(p)αI − ∂Dk(p, ṗ))uk. (B.70)

Then, along the same lines as in the proof of Theorem 4.12, we obtain Ăk, C̆k, and
D̆k as given in (4.43), and B̆k given by (4.44).
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B.3 Proofs of Chapter 5

Proof of Theorem 5.1 (Differential (Q, S, R) dissipativity con-
dition)

By Definition 5.3, the primal form (5.1) is differentially dissipative, if the differential
form (5.7) is classically dissipative. Hence, it suffices to show that if (5.13) holds,
the differential form is classically dissipative with storage function (5.11) and
supply function (5.12). Note that (5.11) is differentiable. Therefore, we start
with substituting (5.11) and (5.12) into the differentiated differential dissipation
inequality, i.e., (5.10) differentiated w.r.t. t, resulting in requiring

d

dt

(
xδ(t)⊤M(x̄(t))xδ(t)

)
≤
[
wδ(t)
zδ(t)

]⊤ [
Q S
⋆ R

] [
wδ(t)
zδ(t)

]
. (B.71)

to hold for all (x̄, w̄) ∈ πx,w B and t ∈ R+
0 . By (Willems 1972), (B.71) is satis-

fied for all possible trajectories of (5.7) if and only if (B.71) holds for all values
(xδ(t), wδ(t), zδ(t)) ∈ Rnx × Rnw × Rnz , and x̄(t) ∈ X . Which, writing out (B.71),
using the differential dynamics (5.7), and through the assumption that ẋ(t) ∈ D,
(hence, also ˙̄x(t) ∈ D) for all t ∈ R+

0 , yields in requiring for all (xδ, wδ) ∈ Rnx ×Rnw ,
(x̄, w̄) ∈ X × W, and x̄v ∈ D, that

2x⊤
δ M(x̄)

(
Aδ(x̄, w̄)xδ +Bδ(x̄, w̄)wδ

)
+ x⊤

δ ∂M(x̄, x̄v)xδ ≤
w⊤

δ Qwδ + 2w⊤
δ S
(
Cδ(x̄, w̄)xδ +Dδ(x̄, w̄)wδ

)
+ (⋆)⊤R

(
Cδ(x̄, w̄)xδ +Dδ(x̄, w̄)wδ

)
, (B.72)

where ∂M(x̄, x̄v) =
∑nx

i=1
∂M(x̄)

∂x̄i
x̄v,i and Aδ, . . . , Dδ as in (5.8). Here x̄v corre-

sponds to the values taken by ˙̄x(t) ∈ D. It is trivial to see that (B.72) is equivalent
to the pre- and post multiplication of (5.13) with col(xδ, wδ)⊤ and col(xδ, wδ),
respectively. Consequently, requiring (B.72) to hold for all (xδ, wδ) ∈ Rnx × Rnw ,
(x̄, w̄) ∈ X × W , and x̄v ∈ D, is equivalent to require the condition in (5.13) to hold
for all (x̄, w̄) ∈ X × W and x̄v ∈ D, which proves the statement.

Proof of Theorem 5.2 (Induced incremental dissipativity)

By writing out the λ-dependence in (5.10) for differential dissipativity, allows to
integrate it over λ:

∫ 1

0

[
Vδ

(
x̄(t1, λ), xδ(t1, λ)

)
− Vδ

(
x̄(t0, λ), xδ(t0, λ)

)
−∫ t1

t0

sδ

(
wδ(τ, λ), zδ(τ, λ)

)
dτ
]
dλ ≤ 0. (B.73)
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We compute the integral of the storage terms first. We define the following minimum
energy path between x and x̃ by

χ(x,x̃)(λ) := arg inf
x̂∈ΓX (x,x̃)

∫ 1

0
Vδ

(
x̂(λ), ∂x̂(λ)

∂λ

)
dλ. (B.74)

As Vδ(x̄, xδ) = x⊤
δ M(x̄)xδ, the path χ(x,x̃) can be seen as the geodesic connecting

x and x̄ corresponding to the Riemannian metric M(x̄), see also (Manchester and
Slotine 2018; Reyes-Báez 2019). By the Hopf-Rinow theorem, this implies for
any x, x̄ ∈ X , χ(x,x̃) is a unique, smooth function (Manchester and Slotine 2017;
Manchester and Slotine 2018). Next, we define

Vi(x, x̃) :=
∫ 1

0
Vδ

(
χ(x,x̃)(λ),

∂χ(x,x̃)(λ)
∂λ

)
dλ, (B.75)

which will be our incremental storage function. Note that Vδ(x̄, ·) ∈ Q0, ∀ x̄ ∈ X .
Therefore, Vi(x, x) = 0 for all x ∈ X as χ(x,x)(λ) = x, hence, ∂χ(x,x̃)(λ)

∂λ = 0
and by definition Vδ(·, 0) = 0. Moreover, for all x, x̃ ∈ X for which x ̸= x̃, we
have that Vi(x, x̃) > 0, as in that case there exists a set of λ ∈ [0, 1] for which
∂χ(x,x̃)(λ)

∂λ ∈ R\{0} (as it can only be zero for all λ if x = x̃) and by definition
Vδ(x̄, xδ) > 0, ∀xδ ∈ Rnx\{0}. Consequently, we have that Vi ∈ Qi.
Using this incremental storage function, we have that

Vi(x(t1), x̃(t1)) ≤
∫ 1

0
Vδ

(
x̄(t1, λ), xδ(t1, λ)

)
dλ, (B.76)

for any (λ 7→ x̄(t1, λ)) ∈ ΓX (x(t1), x̃(t1)) with x(t1), x̃(t1) ∈ X , t1 ∈ R+
0 , and

(t 7→ x̄(t, λ)) ∈ πx B for any λ ∈ [0, 1]. Furthermore, we take as parametrization
for our initial condition x̄(t0, λ) = x̄0(λ) = χ(x0,x̃0)(λ). Hence, we have that

−Vi(x(t0), x̃(t0)) = −
∫ 1

0
Vδ

(
x̄(t0, λ), xδ(t0, λ)

)
dλ. (B.77)

Combining (B.76) and (B.77) gives that

Vi
(
x(t1), x̃(t1)

)
− Vi

(
x(t0), x̃(t0)

)
≤∫ 1

0
Vδ

(
x̄(t1, λ), xδ(t1, λ)

)
− Vδ

(
x̄(t0, λ), xδ(t0, λ)

)
dλ. (B.78)

This together with (B.73) implies

Vi
(
x(t1), x̃(t1)

)
− Vi

(
x(t1), x̃(t0)

)
≤
∫ 1

0

∫ t1

t0

sδ

(
wδ(τ, λ), zδ(τ, λ)

)
dτ dλ. (B.79)

We now consider the right-hand side of the inequality (B.79). Substituting (Q,S,R)
supply function (5.12) and hanging the order of integration gives∫ t1

t0

∫ 1

0
(⋆)⊤

[
Q S
⋆ R

] [
wδ(τ, λ)
zδ(τ, λ)

]
dλ dτ. (B.80)
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We now solve the individual terms in the inner integral,∫ 1

0
(⋆)⊤

[
Q S
⋆ R

] [
wδ(τ, λ)
zδ(τ, λ)

]
dλ =

∫ 1

0
(⋆)⊤Qwδ(τ, λ) dλ+

2
∫ 1

0
wδ(τ, λ)⊤Szδ(τ, λ) dλ+

∫ 1

0
(⋆)⊤Rzδ(τ, λ) dλ. (B.81)

Taking w̄(t, λ) = w̃(t) + λ(w(t) − w̃(t)) as a parametrization, we obtain wδ(t) =
∂w̄(t,λ)

∂λ = w(t)−w̃(t). Hence, the first term in (B.81) resolves to (⋆)⊤Q(w(τ)−w̃(τ)),
while the second term gives

2(w(τ) − w̃(τ))⊤S

∫ 1

0

∂z̄(τ, λ)
∂λ

dλ = 2(w(τ) − w̃(τ))⊤S (z̄(τ, 1) − z̄(τ, 0)),

= 2(w(τ) − w̃(τ))⊤S (z(τ) − z̃(τ)).
(B.82)

For the third term in (B.81) where R ⪯ 0, i.e., −R ⪰ 0, we use Lemma C.4.1 in
Appendix C.4 to obtain an upper bound:∫ 1

0
(⋆)⊤R

∂z̄(τ, λ)
∂λ

dλ ≤ (⋆)⊤R

(∫ 1

0

∂z̄(τ, λ)
∂λ

dλ

)
=

(⋆)⊤R (z̄(τ, 1) − z̄(τ, 0)) = (⋆)⊤R (z(τ) − z̃(τ)). (B.83)

Combining these results, yields∫ t1

t0

(⋆)⊤
[
Q S
⋆ R

] [
w(τ) − w̃(τ)
z(τ) − z̃(τ)

]
dτ, (B.84)

as an upper bound for (B.80). Thus, if (5.10) holds, we know that (B.73) holds,
which in turn implies, considering a supply function (5.12) with R ⪯ 0, that

Vi
(
x(t1), x̃(t1)

)
− Vi

(
x(t0), x̃(t0)

)
≤
∫ t1

t0

(⋆)⊤
[
Q S
⋆ R

] [
w(τ) − w̃(τ)
z(τ) − z̃(τ)

]
dτ, (B.85)

via the upper bound (B.84) and using (B.75) together with (B.78). Hence, if the
system is differentially (Q,S,R) dissipative w.r.t. the supply function (5.12) with
R ⪯ 0, then the system is incrementally (Q,S,R) dissipative w.r.t. the equally
parametrized supply function (5.14).

Proof of Lemma 5.1 (Induced incremental storage function)

Based on the proof for Theorem 5.2, starting with (B.73), we need to compute the
terms ∫ 1

0
Vδ(x̄(t1, λ), xδ(t1, λ)) dλ, (B.86a)

and
−
∫ 1

0
Vδ(x̄(t0, λ), xδ(t0, λ)) dλ. (B.86b)
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Based on Assumption 5.1, we can decompose M(x̄) into

M(x̄) = N(x̄)⊤PN(x̄), (B.87)

where P ∈ Snx with P ≻ 0 and, because of Condition 5.1, N(x̄(t, λ)) ∈ Rnx×nx is
invertible on X , i.e., detN(x̄) ̸= 0, ∀ x̄ ∈ X . Furthermore, by Assumption 5.1, there
exists a diffeomorphism µ : Rnx → Rnx such that dµ

dx̄ (x̄) = N(x̄), ∀ x̄ ∈ X . Next,
define ν̄(t, λ) := µ(x̄(t, λ)), resulting in

νδ(t, λ) = ∂

∂λ
ν̄(t, λ) = N(x̄(t, λ))xδ(t, λ). (B.88)

This allows to rewrite (5.11) as

Vδ(x̄, xδ) = x⊤
δ M(x̄)xδ = x⊤

δ N
⊤(x̄)PN(x̄)xδ = ν⊤

δ Pνδ. (B.89)

Using this relation, the first term (B.86a) can be written as∫ 1

0
νδ(t1, λ)⊤Pνδ(t1, λ) dλ. (B.90)

Applying Lemma C.4.1, see Appendix C.4, to (B.90) results in(∫ 1

0
νδ(t1, λ) dλ

)⊤

P

(∫ 1

0
νδ(t1, λ) dλ

)
≤
∫ 1

0
νδ(t1, λ)⊤Pνδ(t1, λ) dλ.

Hence,

(⋆)⊤P
(
µ(x(t1)) − µ(x̃(t1))

)
= (⋆)⊤P

(
ν̄(t1, 1) − ν̄(t1, 0)

)
≤∫ 1

0
νδ(t1, λ)⊤Pνδ(t1, λ) dλ =∫ 1

0
xδ(t1, λ)⊤M(x̄(t1, λ))xδ(t1, λ) dλ. (B.91)

Before looking at the second term, i.e., (B.86b), let us recall some definitions. As
aforementioned, the parametrized initial condition x̄(t0, λ) = x̄0(λ) can be taken as
any smooth parametrization x̄0 ∈ ΓX (x0, x̃0). Recall that µ is a diffeomorphism,
implying that µ−1 : Rnx → Rnx exists and µ, µ−1 ∈ C1. Hence, w.l.o.g. we take

x̄0(λ) = µ−1(ν̄(t0, λ)), (B.92)

where ν̄(t0, λ) = µ(x̃0) + λ(µ(x0) − µ(x̃0)). Note that this choice of x̄0(λ) satisfies
the aforementioned conditions. Consequently, we have that

νδ(t0, λ) = ∂

∂λ
ν̄(t0, λ) = µ(x0) − µ(x̃0). (B.93)

Using this result and (B.89), the second term (B.86b) gives∫ 1

0
(µ(x0)−µ(x̃0))⊤P (µ(x0)−µ(x̃0)) dλ = (µ(x0)−µ(x̃0))⊤P (µ(x0)−µ(x̃0)).

(B.94)
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Combining the results of (B.91) and (B.94), it holds that

(⋆)⊤P (µ(x(t1)) − µ(x̃(t1))) − (⋆)⊤P (µ(x(t0)) − µ(x̃(t0))) ≤∫ 1

0
Vδ(x̄(t1, λ), xδ(t1, λ)) − Vδ(x̄(t0, λ), xδ(t0, λ)) dλ, (B.95)

where Vδ is given by (5.11). Combining this result with (B.84) gives

Vi(x(t1), x̃(t1)) − Vi(x(t0), x̃(t0)) ≤
∫ t1

t0

(⋆)⊤
[
Q S
⋆ R

] [
w(τ) − w̃(τ)
z(τ) − z̃(τ)

]
dτ, (B.96)

where Vi is according to (5.15). Hence, (5.15) qualifies as an incremental storage
function for (5.1).
In case M(x̄) = M ∈ Snx for all x̄ ∈ X with M ≻ 0, the decomposition in
(B.87) simplifies to N = I and P = M , hence, µ(x) = x and we obtain (5.16).
Note that the same result is obtained when solving (B.74) and (B.75) directly for
Vδ(x̄, xδ) = x⊤

δ Mxδ, as in that case χ(x,x̃) = x̃+ λ(x− x̃) and hence Vδ is given by
(5.16).

Proof of Theorem 5.3 (Induced dissipativity)

If the system is incrementally (Q,S,R) dissipative w.r.t. the supply function (5.14)
under the storage function Vi, then it holds that

Vi
(
x(t1), x̃(t1)

)
− Vi

(
x(t0), x̃(t0)

)
≤
∫ t1

t0

(⋆)⊤
[
Q S
⋆ R

] [
w(t) − w̃(t)
z(t) − z̃(t)

]
dt,

for all t0, t1 ∈ R+
0 with t0 ≤ t1. Let the trajectory (x̃, w̃, z̃) ∈ B be equal to

the equilibrium point (x∗, w∗, z∗) ∈ E for all t ∈ R+
0 , i.e., (x̃(t), w̃(t), z̃(t)) =

(x∗, w∗, z∗), ∀ t ∈ R+
0 . Hence, for all t0, t1 ∈ R+

0 with t0 ≤ t1

Vi
(
x(t1), x∗

)
− Vi

(
x(t0), x∗

)
≤
∫ t1

t0

(⋆)⊤
[
Q S
⋆ R

] [
w(t) − w∗
z(t) − z∗

]
dt. (B.97)

By Assumption 4.1, we have that for each w∗ ∈ W = πw∗ E there is a unique
x∗ ∈ X = πx∗ E , i.e., there exists a bijective map κ : W → X s.t. x∗ = κ(w∗).
Defining

Vs(x,w∗) := Vi(x, κ(w∗)), (B.98)
which satisfies that Vs(·, w∗) ∈ Qx∗ for every (x∗, w∗) ∈ πx∗,w∗ E , as Vi ∈ Qi.
Substituting (B.98) in (B.97) results in holding for every (x∗, w∗, z∗) ∈ E that for
all t0, t1 ∈ R+

0 with t1 ≥ t0,

Vs(x(t1), w∗) − Vs(x(t0), w∗) ≤
∫ t1

t0

(⋆)⊤
[
Q S
⋆ R

] [
w(t) − w∗
z(t) − z∗

]
dt, (B.99)

for all (x,w, z) ∈ B, meaning that the system is universally shifted (Q,S,R)
dissipative, see Definition 4.2. Note that Assumption 4.1 is satisfied if the system is
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incrementally asymptotically stable, see Definition 5.4, as each trajectory has to
converge towards one another as t → ∞ (for the same input). Hence, there cannot
exist a x∗,1, x∗,2 ∈ πx∗ E s.t. (x∗,1, w∗), (x∗,2, w∗) ∈ πx∗,w∗ E , as x∗,1 and x∗,2 do
not converge towards one another (as they are by definition equilibrium points).
By Theorem 4.2, we have that universal shifted (Q,S,R) dissipativity implies
(Q,S,R) classical dissipativity, assuming that (0, 0, 0) ∈ E , thereby completing the
proof.

Proof of Theorem 5.5 (Incremental stability implied by incre-
mental dissipativity)

If the system given by (5.1) is incrementally dissipative w.r.t. a supply function si
for which (5.20) holds for all w ∈ W and all z, z̃ ∈ Z, then, it holds that

Vi
(
x(t1), x̃(t1)

)
− Vi

(
x(t0), x̃(t0)

)
≤
∫ t1

t0

si(w(t), w(t), z(t), z̃(t)) dt ≤ 0, (B.100)

for all t0, t1 ∈ R+
0 with t0 ≤ t1 and (x, z), (x̃, z̃) ∈ πx,z Bw(w) for all measurable

and bounded w ∈ WR+
0 . As Vi ∈ C1, this also means that

d

dt
Vi
(
x(t), x̃(t)

)
≤ 0, (B.101)

for all t ∈ R+
0 and (x, z), (x̃, z̃) ∈ πx,z Bw(w) for all measurable and bounded

w ∈ WR+
0 . Moreover Vi also satisfies the conditions for Vi in Theorem 5.4, we

consequently have that (5.19) is satisfied. For incremental asymptotic stability,
we have that the supply function also satisfies (5.20), but with strict inequality
when z ̸= z̃. As we assume that the system is observable, see Definition 2.2,
this means that z, z̃ ∈ πz Bw(w) with w ∈ WR+

0 , for which z = z̃, implies that
x = x̃ ∈ πx Bw(w). Hence, we have that (B.101) with the inequality sign being
strict holds for all t ∈ R+

0 and x, x̃ ∈ πx Bw(w) for which x ̸= x̃.

Proof of Corollary 5.2 (Li2-gain bound)

First, we show that if for all (x̄, w̄) ∈ X × W , (5.26) holds with M ≻ 0, the system
given by (5.1) is incrementally dissipative w.r.t. the supply function

si(w, w̃, z, z̃) = γ2w⊤w − z⊤z, (B.102)

and storage function

Vi(x, x̃) = (x− x̃)⊤M(x− x̃), M ≻ 0. (B.103)

Applying the Schur-complement on (5.26), we obtain

(⋆)⊤
[
0 M
⋆ 0

] [
I 0

Aδ(x̄, w̄) Bδ(x̄, w̄)

]
−

(⋆)⊤
[
γI 0
0 −γ−1I

] [
0 I

Cδ(x̄, w̄) Dδ(x̄, w̄)

]
⪯ 0, (B.104)
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and by multiplying by γ,

(⋆)⊤
[
0 M̃
⋆ 0

] [
I 0

Aδ(x̄, w̄) Bδ(x̄, w̄)

]
−

(⋆)⊤
[
γ2I 0
0 −I

] [
0 I

Cδ(x̄, w̄) Dδ(x̄, w̄)

]
⪯ 0, (B.105)

where M̃ = γM ≻ 0. Therefore, we have the (Q,S,R)-triple (γ2I, 0,−I), for which
R = −I ≺ 0, see Theorem 5.1. Hence, from Corollary 5.1, we have that the system
given by (5.1) is incrementally dissipative w.r.t. the storage function (B.103), and
supply function

si(w, w̃, z, z̃) =
[
w − w̃
z − z̃

]⊤ [
γ2I 0
⋆ −I

] [
w − w̃
z − z̃

]
, (B.106)

which is equivalent to the supply function (B.102). Therefore, if (5.26) holds with
M ≻ 0, the system given by (5.1) is incrementally dissipative w.r.t. supply function
(B.102). Among the lines of (Van der Schaft 2017, Prop. 3.1.7), we now show that
this implies a bounded Li2-gain of γ for (5.1).
Note that if the system is incrementally dissipative w.r.t. (B.102), meaning there
exists a Vi such that for all t ≥ 0 and (x,w, z), (x̃, w̃, z̃) ∈ B it holds that

− Vi(x(0), x̃(0)) ≤ Vi(x(t), x̃(t)) − Vi(x(0), x̃(0)) ≤∫ t

0
γ2 ∥w(τ) − w̃(τ)∥2 − ∥z(τ) − z̃(τ)∥2

dτ. (B.107)

which is equivalent to∫ t

0
∥z(τ) − z̃(τ)∥2

dτ ≤ γ2
∫ t

0
∥w(τ) − w̃(τ)∥2

dτ + Vi(x(0), x̃(0)), (B.108)

holding for all t ≥ 0 and (x,w, z), (x̃, w̃, z̃) ∈ B. Using the L2e signal norm definition,
see Definition 2.10, this is equivalent to

∥z − z̃∥2
2,T ≤ γ2 ∥w − w̃∥2

2,T + Vi(x(0), x̃(0)), (B.109)

holding for all T ≥ 0 and (x,w, z), (x̃, w̃, z̃) ∈ B with w, w̃ ∈ L2e. Taking the square
root on both sides, we obtain

∥z − z̃∥2,T ≤
√
γ2 ∥w − w̃∥2

2,T + Vi(x(0), x̃(0)) ≤ γ ∥w − w̃∥2,T +
√

Vi(x(0), x̃(0)),
(B.110)

which is equivalent to (5.25) with ζi(x0, x̃0) =
√

Vi(x0, x̃0).

Proof of Corollary 5.3 (Li∞-gain bound)

The concept of this proof is based on (Scherer 2000, Section 10.3) and (Scherer and
Weiland 2015, Section 3.3.5). Pre- and post-multiplying (5.27a) with col(xδ, wδ)⊤

and col(xδ, wδ), respectively, yields that, omitting dependence on t, λ for brevity,

ẋδx
⊤Mxδ + x⊤

δ Mẋδ + βx⊤
δ Mxδ − αw⊤

δ wδ ≤ 0, (B.111)
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For a storage function Vδ of the form (5.11) (and by abusing notation by omitting
the x̄ argument), (B.111) is equivalent to

d

dt

(
Vδ(xδ(t, λ))

)
+ βVδ(xδ(t, λ)) − α ∥wδ(t, λ)∥2 ≤ 0. (B.112)

Next, we have that (B.112), by Grönwall’s Lemma (Khalil 2002, Lemma A.1),
implies that

Vδ(xδ(t, λ)) ≤ e−βtVδ(xδ(0, λ)) + α

∫ t

0
e−β(t−τ) ∥wδ(τ, λ)∥2

dτ. (B.113)

Moreover, we can define an upper bound for the integral in (B.113) as follows,

α

∫ t

0
e−β(t−τ) ∥wδ(τ, λ)∥2

dτ ≤ α ∥wδ(λ)∥2
∞,t

∫ t

0
e−β(t−τ) dτ ≤ α

β
∥wδ(λ)∥2

∞,t .

(B.114)
Furthermore, it holds that,

e−βtVδ(xδ(0, λ)) ≤ Vδ(xδ(0, λ)), (B.115)

for all t ≥ 0 and λ ∈ [0, 1]. Therefore, by combining the result of (B.114) and (B.115),
it holds that for all t ≥ 0 and λ ∈ [0, 1]

βVδ(xδ(t, λ)) ≤ βVδ(xδ(0, λ)) + α ∥wδ(λ)∥2
∞,t . (B.116)

As we have that

xδ(0, λ) = ∂x̄0(λ)
∂λ

= ∂

∂λ
(x̃0 + λ(x0 − x̃0)) = x0 − x̃0, (B.117)

and as Vδ is of the form (5.11), we have that

Vδ(xδ(0, λ)) = xδ(0, λ)⊤Mxδ(0, λ) = (x0 − x̃0)⊤M(x0 − x̃0) = Vi(x0, x̃0). (B.118)

Moreover, as βVδ(xδ(t, λ)) ≥ 0, it then follows from (B.116) that the following is
true,∫ 1

0
βVδ(xδ(t, λ)) dλ = β

∫ 1

0
xδ(t, λ)⊤Mxδ(t, λ) dλ ≤∫ 1

0
βVδ(xδ(0, λ)) + α ∥wδ(λ)∥2

∞ dλ = βVi(x0, x̃0) + α ∥w − w̃∥2
∞,t . (B.119)

The latter equality comes from (B.118) and the fact that wδ(λ) = ∂w̄
∂λ = w− w̃. We

will use the bound in (B.119) later in the proof.
Consider now the second inequality (5.27b), which can be rewritten using the Schur
complement as

γ−1(⋆)⊤ [Cδ(x̄, w̄) D(x̄, w̄)
]

⪯
[
βM 0

0 (γ − α)I

]
.
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Pre- and post-multiplying the latter with col(xδ, wδ)⊤ and col(xδ, wδ), respectively,
gives that,

γ−1zδ(t, λ)⊤zδ(t, λ) ≤ β xδ(t, λ)⊤Mxδ(t, λ) + (γ − α)wδ(t, λ)⊤wδ(t, λ)⊤. (B.120)

As (B.120) only consists of positive terms, we know the following is true as well,∫ 1

0
γ−1zδ(t, λ)⊤zδ(t, λ) dλ ≤∫ 1

0
β xδ(t, λ)⊤Mxδ(t, λ) + (γ − α)wδ(t, λ)⊤wδ(t, λ) dλ. (B.121)

Using Lemma C.4.1, we know that the left-hand side of the inequality in (B.121), is
bounded from below by

γ−1
(∫ 1

0
zδ(t, λ) dλ

)⊤(∫ 1

0
zδ(t, λ) dλ

)
= γ−1(⋆)⊤(z(t) − z̃(t)). (B.122)

Again due to the selection of the path parametrization of w̄(λ) = w̃+ λ(w− w̃), we
have that the last term in (B.121) is not dependent on λ, as wδ(t, λ) = w(t) − w̃(t).
Hence, we have that (B.121) can be rewritten to

γ−1 ∥z(t) − z̃(t)∥2 ≤ β

∫ 1

0
xδ(t, λ)⊤Mxδ(t, λ) dλ+(γ−α) ∥w(t) − w̃(t)∥2

. (B.123)

By substituting the inequality (B.119) in the inequality (B.123), we obtain the
following relationship,

γ−1 ∥z(t) − z̃(t)∥2 ≤ βVi(x0, x̃0) + α ∥w − w̃∥2
∞,t + (γ − α) ∥w(t) − w̃(t)∥2

.

By taking the supremum over all t ∈ [0, T ] for T > 0, we infer

∥z − z̃∥2
∞,T ≤ γ2 ∥w − w̃∥2

∞,T + γβVi(x0, x̃0).

Therefore, for all T ≥ 0 and (x,w, z), (x̃, w̃, z̃) ∈ B with w, w̃ ∈ L∞e

∥z − z̃∥∞,T ≤ γ ∥w − w̃∥∞,T +
√
γβVi(x0, x̃0).

Which gives us the definition of the incremental L∞-gain, see Definition 5.5, with
ζi(x0, x̃0) =

√
γβVi(x0, x̃0), proving the claim.

Proof of Corollary 5.5 (Li2-Li∞-gain bound)

The concept of this proof is based on (Scherer and Weiland 2015, Section 3.3.4).
We have that the first matrix inequality (5.30a) is equivalent to the condition for
differential dissipativity of a system with the supply function

sδ(wδ(t, λ), zδ(t, λ)) = γ ∥wδ(t, λ)∥2 = γ

∥∥∥∥∂w̄(t, λ)
∂λ

∥∥∥∥2
, (B.124)
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as a result from Theorem 5.1. Therefore, it holds from (5.10) for all t ≥ 0 that

xδ(t, λ)⊤Mxδ(t, λ)︸ ︷︷ ︸
=Vδ(xδ(t,λ))

−xδ(0, λ)⊤Mxδ(0, λ)︸ ︷︷ ︸
=Vδ(xδ(0,λ))

≤ γ

∫ t

0
∥w(τ) − w̃(τ)∥2

dτ, (B.125)

using the fact that ∂ū(t,λ)
∂λ = ∂

∂λ (w̃(t) + λ(w(t) − w̃(t))) = w(t) − w̃(t). Moreover, as
here also (B.117) holds, we have that (B.118) holds. Furthermore, as Vδ(xδ(t, λ)) ≥ 0,
we have from (B.125) that the following holds true as well∫ 1

0
Vδ(xδ(t, λ)) dλ ≤

∫ 1

0

(
Vδ(xδ(0, λ)) + γ

∫ t

0
∥w(τ) − w̃(τ)∥2

dτ

)
dλ,

that is, using (B.118),∫ 1

0
Vδ(xδ(t, λ)) dλ ≤ Vi(x0, x̃0) + γ

∫ t

0
∥w(τ) − w̃(τ)∥2

dτ. (B.126)

Consider now the second matrix inequality (5.30b), which can be rewritten using
the Schur complement, such that for γ > 0 it holds that

M − γ−1Cδ(x̄, w̄)⊤Cδ(x̄, w̄) ⪰ 0. (B.127)

The matrix inequality (B.127) can be rewritten to

Cδ(x̄, w̄)⊤Cδ(x̄, w̄) ⪯ γM. (B.128)

Pre- and post-multiplication of (B.128) with xδ(t, λ)⊤ and xδ(t, λ), respectively,
gives

zδ(t, λ)⊤zδ(t, λ) ≤ γVδ(xδ(t, λ)), (B.129)
as Dδ(x̄, w̄) = 0 for all (x̄, w̄) ∈ X × W. Clearly, if (B.129) holds, we know that∫ 1

0
zδ(t, λ)⊤zδ(t, λ) dλ ≤ γ

∫ 1

0
Vδ(xδ(t, λ)) dλ, (B.130)

holds. As in the proof for the Li∞-gain, we use Lemma C.4.1 to obtain a lower
bound for the left-hand side of (B.130). The lower bound is(∫ 1

0
zδ(t, λ) dλ

)⊤(∫ 1

0
zδ(t, λ) dλ

)
= (z(t) − z̃(t))⊤(z(t) − z̃(t)) = ∥z(t) − z̃(t)∥2

,

and gives that (B.130) implies that for all t ≥ 0

∥z(t) − z̃(t)∥2 ≤ γ

∫ 1

0
Vδ(xδ(t, λ)) dλ. (B.131)

Combining the result of (B.126) and (B.131) gives that for all t ≥ 0

∥z(t) − z̃(t)∥2 ≤ γVi(x0, x̃0) + γ2
∫ t

0
∥w(τ) − w̃(τ)∥2

dτ. (B.132)
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Taking the supremum over t ∈ [0, T ] gives that for all T ≥ 0

∥z − z̃∥2
∞,T ≤ γVi(x0, x̃0) + γ2 ∥w − w̃∥2

2,T . (B.133)

Therefore, from (B.133), it also follows that

∥z − z̃∥∞,T ≤ γ ∥w − w̃∥2,T +
√
γVi(x0, x̃0),

for all T ≥ 0 and (x,w, z), (x̃, w̃, z̃) ∈ B with w, w̃ ∈ L2e, giving us the definition
of Li2-Li∞-gain where ζi(x0, x̃0) =

√
γVi(x0, x̃0), corresponding to incremental

generalized H2 performance, proving the statement.

Proof of Lemma 5.3 (DPV behavioral embedding)

As the LPV representation (5.31) is a Differential Parameter-Varying (DPV) em-
bedding of the system given by (5.1) on the region X × W = X × W, for any
trajectory (xδ, wδ, zδ) ∈ Bδ(x̄, w̄) and any (x̄, w̄) ∈ πx,w B, we also have that
(xδ, wδ, zδ) ∈ Bp(η(x̄, w̄)). Moreover, as X × W = X × W and η(X ,W ) ⊆ P, we
get the following relation

B̆δ =
⋃

(x̄,w̄)∈πx,w B

Bδ(x̄, w̄) ⊆
⋃

(x̄,w̄)∈(X ,W)R
Bp(η(x̄, w̄)) ⊆

⋃
p∈PR

Bp(p) = B̆p.

(B.134)

Proof of Theorem 5.7 (Incremental dissipativity through the
LPV framework)

Through the DPV embedding (5.31) on the region X × W = X × W and by
Lemma 5.3 we have that we describe the full behavior of the differential form of
(5.1), given by (5.7). Hence, if the LPV representation (5.31) is classically dissipative,
i.e. for all p ∈ PR, then the differential form (5.7) is classically dissipative, i.e.,
for all (x̄, w̄) ∈ πx,w B, corresponding to system given by (5.1) being differential
(Q,S,R) dissipative. As R ⪯ 0 this then implies by Theorem 5.2 incremental
(Q,S,R) dissipativity of (5.1).
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B.4 Proofs of Chapter 6

Proof of Theorem 6.1 (Closed-loop differential form)

The proof follows in the same manner as the proof of Theorem 4.9 regarding the
velocity form, where ẋ, ẋk, u̇, u̇k, ẏ, and ẏk then become xδ, xδ,k, uδ, uδ,k, yδ, and
yδ,k, respectively, and Pv and Kv become Pδ and Kδ. Therefore, the proof is not
repeated.

Proof of Theorem 6.2 (Differential closed-loop L2-gain)

By synthesis, we obtain a controller Kδ (6.9) such that the closed-loop intercon-
nection Fl(Pdpv,Kδ) has a bounded L2-gain of γ for all p ∈ PR. Moreover, as Pdpv
is a DPV embedding on the region X ⊆ X we have through Lemma 5.3 (see also
Remark 5.6) that B̆δ,X ⊆ B̆p. Consequently, these two results imply that Fl(Pδ,Kδ)
with p = η(x̄) for Kδ is L2-gain stable with a L2-gain ≤ γ for all x̄ ∈ πx BX .

Proof of Theorem 6.3 (Incremental controller realization)

Based on the definition of the differential variables2 we have that xδ,k(t) = ∂
∂λ x̄k(t, λ),

uδ,k(t, λ) = ∂
∂λ ūk(t, λ), yδ,k(t, λ) = ∂

∂λ ȳk(t, λ). The family of parameterized trajecto-
ries is defined as (x̄k(λ), ūk(λ), ȳk(λ)) with λ ∈ [0, 1] such that (x̄k(1), ūk(1), ȳk(1)) =
(xk, uk, yk) is the current trajectory and (x̄k(0), ūk(0), ȳk(0)) = (x∗

k, u
∗
k, y

∗
k) is the

steady-state trajectory. Consequently,

yk(t) = y∗
k(t) +

∫ 1

0

∂

∂λ
ȳk(t, λ) dλ, (B.135a)

= y∗
k(t) +

∫ 1

0
yδ,k(t, λ) dλ. (B.135b)

Based on Kδ, in terms of (6.9b), we get

yk(t) = y∗
k(t) +

∫ 1

0
Ck(η(x̄(t, λ))xδ,k(t, λ) +Dk(η(x̄(t, λ))uδ,k(t, λ) dλ. (B.136)

The closed-loop differential storage function is V (xcl, xδ,cl) = x⊤
δ,clMxδ,cl with

M ≻ 0, corresponding to a constant Riemannian metric. Hence, the homotopy path
connecting xcl(t) and x∗

cl(t) can be considered a straight line, i.e., by

x̄cl(t, λ) = x∗
cl(t) + λ(xcl(t) − x∗

cl(t)), (B.137)

see (Manchester and Slotine 2018) and Lemma 5.1. Therefore, x̄(t, λ) = x∗(t) +
λ(x(t)−x∗(t)) and x̄k(t, λ) = x∗

k(t)+λ(xk(t)−x∗
k(t)). This implies that xδ,k(t, λ) =

∂
∂λ x̄k(t, λ) = ∂

∂λ (x∗
k(t) + λ(xk(t) − x∗

k(t))) = xk(t) − x∗
k(t) = x∆,k(t) and similarly

2See Chapter 5 for more details.
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xδ(t, λ) = x(t) − x∗(t). Furthermore, define the parameterized trajectory w̄(t, λ) =
w∗(t) + λ(w(t) − w∗(t)), such that wδ(t, λ) := ∂

∂λ w̄(t, λ) = w(t) − w∗(t). Hence,
as uδ,k(t, λ) = yδ(t, λ) = Cyxδ(t, λ) + Dywwδ(t, λ) is linear in xδ and wδ, and
as wδ(t, λ) = w(t) − w∗(t) and xδ(t, λ) = x(t) − x∗(t), we obtain uδ,k(t, λ) =
uk(t) − u∗

k(t) = u∆,k(t). Using these relations for the differential state equation of
Kδ in (6.9a), filling these relations in (B.136), and using that p̄(t, λ) = η(x̄(t, λ)),
result in

ẋ∆,k(t) =
(∫ 1

0
Ak(p̄(t, λ)) dλ

)
x∆,k(t) +

(∫ 1

0
Bk(p̄(t, λ)) dλ

)
u∆,k(t); (B.138a)

yk(t) = y∗
k(t) +

(∫ 1

0
Ck(p̄(t, λ)) dλ

)
x∆,k(t) +

(∫ 1

0
Dk(p̄(t, λ)) dλ

)
u∆,k(t);

(B.138b)

giving us K (6.10). Next, it is shown that the differential form of K (6.10) is Kδ

(6.9). Based on (B.138) define:

˙̄xk(t, λ) = ẋ∗
k(t) +

(∫ λ

0
Ak(p̄(t, λ)) dλ

)
x∆,k(t) +

(∫ λ

0
Bk(p̄(t, λ)) dλ

)
u∆,k(t);

(B.139a)

ȳk(t, λ) = y∗
k(t) +

(∫ λ

0
Ck(p̄(t, λ)) dλ

)
x∆,k(t) +

(∫ λ

0
Dk(p̄(t, λ)) dλ

)
u∆,k(t);

(B.139b)

Differentiating (B.139) w.r.t. λ, we obtain

∂

∂λ
˙̄xk(t, λ) = Ak(p̄(t, λ))xδ,k(t) +Bk(p̄(t, λ))uδ,k(t); (B.140a)

∂

∂λ
ȳk(t, λ) = Ck(p̄(t, λ))xδ,k(t) +Dk(p̄(t, λ))uδ,k(t). (B.140b)

Then, using that uδ,k(t) = uδ,k(t, λ), xδ,k(t) = xδ,k(t, λ), xδ,k(t, λ) = ∂
∂λ x̄k(t, λ) and

yδ,k(t, λ) = ∂
∂λ ȳk(t, λ), we get

δẋ(t) = Ak(p(t))xδ,k(t) +Bk(p(t))uδ,k(t); (B.141a)
δy(t) = Ck(p(t))xδ,k(t) +Dk(p(t))uδ,k(t); (B.141b)

which is Kδ (6.9), completing the proof.

Proof of Theorem 6.4 (Closed-loop Li2-gain stability)

By Theorem 6.2, it holds that Kδ ensures L2-gain stability with a bounded L2-gain γ
for Fl(Pδ,Kδ) for all x̄ ∈ πx BX . Furthermore, by Theorem 6.3, the differential form
of K given by (6.10) is equal to Kδ given by (6.9). Consequently, by Theorem 6.1,
the differential form of Fl(P,K) is given by Fl(Pδ,Kδ). Moreover, we consider the
set W̃ ⊆ W , for which Xcl = X ×Xk is invariant, meaning that for any w,w∗ ∈ W̃R+

0 ,
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the resulting x(t), x∗(t) ∈ X , ∀ t ∈ R+
0 . Hence, we will remain in the design set on

which L2-gain stability of the differential form is ensured. Based on Theorem 5.2,
this then implies that Fl(P,K) is incrementally dissipative w.r.t. the Li2-gain
supply function, hence, there exists a function ζi : Xcl × Xcl → R s.t.∥∥Fl(P,K)(w, xcl,0) − Fl(P,K)(w∗, x∗

cl,0)
∥∥

2,T
≤ γ ∥w − w∗∥2,T + ζi(xcl,0, x

∗
cl,0),
(B.142)

for all T ≥ 0, xcl,0, x̃cl,0 ∈ Xcl and any w,w∗ ∈ W̃R+
0 with w − w∗ ∈ L2e, which

implies (6.14).
As Fl(P,K) is incrementally dissipative (for the Li2-gain supply function), it is
also incrementally stable based on Theorem 5.5. The differential storage function
is given by Vδ(xcl, xδ,cl) = x⊤

δ,clMxδ,cl, which implies that the incremental storage
function is given by Vi(xcl, x

∗
cl) = (xcl − x∗

cl)⊤M(xcl − x∗
cl), see Lemma 5.1. The

latter also qualifies as an incremental Lyapunov function, see Theorem 5.5.
Moreover, the (desired) steady-state trajectory ϑ ∈ BX is a valid solution of P with
corresponding (x∗

cl, w
∗, z∗) ∈ (Xcl ×W ×Z)R+

0 due to the well-posedness of Fl(P,K).
Consequently, this implies by (Rüffer et al. 2013, Theorem 11) that all solutions
converge towards (x∗

cl, w
∗, z∗). Meaning, for all w ∈ W̃R+

0 , when w(t) → w∗(t) as
t → ∞, (xcl(t), w(t), z(t)) → (x∗

cl(t), w∗(t), z∗(t)) as t → ∞.

Proof of Theorem 6.5 (Nonlinear observer)

Define Fe(xe, x̂e, u, wm) = fe(x̂e, u, wm) + LCe(xe(t) − x̂e(t)) and
He(xe, x̂e, wm) = Cex̂e(t) + Dywwm(t). As Fe(xe, xe, u, wm) = fe(xe, u, wm) and
He(xe, xe, wm) = Cexe(t) + Dywwm(t)), we have that (6.17) is a virtual system
of (6.16), see also (W. Wang and Slotine 2005; Jouffroy and Fossen 2010). The
virtual system given by (6.17) is virtually contractive, meaning that x̂e(t) → xe(t)
for t → ∞, see (W. Wang and Slotine 2005; Reyes-Báez 2019), if

˙̂xδ,e(t) =
(
∂fe

∂x̂e
(x̂e(t), u(t), wm(t))

)
x̂δ,e(t) − LCex̂δ,e(t), (B.143)

is asymptotically stable. The differential form of the virtual system given by (B.143)
can be written as

˙̂xδ,e(t) =
(
Aδ,e(x̂e(t), u(t), wm(t)) − LCe

)
x̂δ,e(t). (B.144)

The system given by (B.144) is asymptotically stable with (differential) Lyapunov
function Vδ(x̂δ,e) = x̂⊤

δ,ePx̂δ,e if (6.18) holds for all (xe, u, wm) ∈ Xe × U × πwm W.
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B.5 Proofs of Chapter 7

Proof of Theorem 7.1 (DT differential (Q, S, R) dissipativity
condition)

The proof follows similarly as the Continuous-Time (CT) variant of Theorem 5.1.
Namely, the system given by (7.1) is differentially dissipative w.r.t. a supply function
sδ and for a storage function Vδ, if (7.9) holds for all (x̄, w̄) ∈ πx,u B and for all
t0, t1 ∈ N0 with t0 ≤ t1. This condition is equivalent with

Vδ

(
x̄(t+ 1), xδ(t+ 1)

)
− Vδ

(
x̄(t), xδ(t)

)
≤ sδ

(
wδ(t), zδ(t)

)
, (B.145)

holding for all (x̄, w̄) ∈ πx,u B and for all t ∈ N0. Substituting the differential
dynamics (7.7), the considered supply function (7.10), and storage function (7.11)
in (B.145) results in

(⋆)⊤M(x̄(t+ 1))
(
Aδ(x̄(t), w̄(t))xδ(t) +Bδ(x̄(t), w̄(t))wδ(t)

)
−

xδ(t)⊤M(x̄(t))xδ(t) ≤ wδ(t)⊤Qwδ(t) + 2wδ(t)⊤S
(
Cδ(x̄(t), w̄(t))xδ(t)+

Dδ(x̄(t), w̄(t))wδ(t)
)

+ (⋆)⊤R
(
Cδ(x̄(t), w̄(t))xδ(t) +Dδ(x̄(t), w̄(t))wδ(t)

)
, (B.146)

holding for all (x̄, w̄) ∈ πx,u B and for all t ∈ N0. If it holds for all (x̄, w̄) ∈ X × W ,
xv ∈ D, xδ ∈ Rnx , and wδ ∈ Rnw that

(⋆)⊤M(x̄+ x̄v)
(
Aδ(x̄, w̄)xδ +Bδ(x̄, w̄)wδ

)
−

x⊤
δ M(x̄)xδ ≤ w⊤

δ Qwδ + 2w⊤
δ S
(
Cδ(x̄, w̄)xδ+

Dδ(x̄, w̄)wδ

)
+ (⋆)⊤R

(
Cδ(x̄, w̄)xδ +Dδ(x̄, w̄)wδ

)
, (B.147)

then, (B.146) holds. Finally, (7.12) is equivalent to (B.147) by pre- and post
multiplication of (7.12) with col(xδ, wδ)⊤ and col(xδ, wδ), respectively.

Proof of Theorem 7.2 (Induced DT incremental dissipativity)

Similar to the CT proof for Theorem 5.2 in Appendix B.3, we start with the differ-
ential dissipativity condition, which writing out the λ-dependence and integrating
over λ results in∫ 1

0

[
Vδ

(
x̄(t1 + 1, λ), xδ(t1 + 1, λ)

)
− Vδ

(
x̄(t0, λ), xδ(t0, λ)

)
−

t1∑
t=t0

sδ

(
wδ(t, λ), zδ(t, λ)

)]
dλ ≤ 0. (B.148)

holding for all (x̄, w̄) ∈ πx,u B, λ ∈ [0, 1], and for all t0, t1 ∈ N0 with t0 ≤ t1. We
use the CT results, specifically (B.74)–(B.77), to bound the storage function part,
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i.e.,

Vi
(
x(t1 + 1), x̃(t1 + 1)

)
− Vi

(
x(t0), x̃(t0)

)
≤∫ 1

0
Vδ

(
x̄(t1 + 1, λ), xδ(t1 + 1, λ)

)
− Vδ

(
x̄(t0, λ), xδ(t0, λ)

)
dλ. (B.149)

where Vi is given by (B.75). Next, we consider the supply function part of (B.148),
which, by changing summation and integration operations, is given by

t1∑
t=t0

∫ 1

0
(⋆)⊤

[
Q S
⋆ R

] [
wδ(t, λ)
zδ(t, λ)

]
dλ. (B.150)

Again, using the CT results, specifically (B.81)–(B.83), results in

t1∑
t=t0

∫ 1

0
(⋆)⊤

[
Q S
⋆ R

] [
wδ(t, λ)
zδ(t, λ)

]
dλ ≤

t1∑
t=t0

(⋆)⊤
[
Q S
⋆ R

] [
w(t) − w̃(t)
z(t) − z̃(t)

]
. (B.151)

Combining (B.149) and (B.151) with (B.148) results in

Vi
(
x(t1 + 1), x̃(t1 + 1)

)
− Vi

(
x(t0), x̃(t0)

)
≤

t1∑
t=t0

si
(
w(t), w̃(t), z(t), z̃(t)

)
, (B.152)

for all t0, t1 ∈ N0 with t0 ≤ t1 and any two trajectories (x,w, z), (x̃, w̃, z̃) ∈ B
with Vi is given by (B.75), which is the condition for incremental dissipativity in
Definition 7.1.

Proof of Corollary 7.2 (ℓi2-gain analysis)

Using a Schur complement and a congruence transformation we have that (7.14) is
equivalent to

(⋆)⊤
[
−M̄ 0

0 M̄

] [
I 0

Aδ(x̄, w̄) Bδ(x̄, w̄)

]
−

(⋆)⊤
[
γ2I 0
0 −I

] [
0 I

Cδ(x̄, w̄) Dδ(x̄, w̄)

]
⪯ 0, (B.153)

where M̄ = γM−1. This corresponds to (7.1) being differentially (Q,S,R) dissipa-
tive with Q = γ2I, S = 0 and R = −I and storage function Vδ(x̄, xδ) = x⊤

δ M̄xδ.
By Theorem 7.2, this hence implies existence of a storage function Vi s.t. that for
all T ∈ N0, (x,w, z), (x̃, w̃, z̃) ∈ B

Vi(x(T + 1), x̃(T + 1)) − Vi(x0, x̃0) ≤
T∑

t=0
γ2(⋆)⊤(w(t) − w̃(t)) − (⋆)⊤(z(t) − z̃(t)). (B.154)
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This implies that

γ2 ∥w − w̃∥2
2,T − ∥z − z̃∥2

2,T + Vi(x0, x̃0) ≥ Vi(x(T + 1), x̃(T + 1)) ≥ 0, (B.155)

for all T ∈ N0, (x,w, z), (x̃, w̃, z̃) ∈ B with (w − w̃) ∈ ℓi2. Consequently, we have
that

∥z − z̃∥2
2,T ≤ γ2 ∥w − w̃∥2

2,T + Vi(x0, x̃0), (B.156)

which by taking the square root on both sides3 results in holding for all T ∈ N0,
(x,w, z), (x̃, w̃, z̃) ∈ B with (w − w̃) ∈ ℓi2

∥z − z̃∥2,T ≤ γ ∥w − w̃∥2,T +
√

Vi(x0, x̃0), (B.157)

which is equivalent to (7.13), for p = q = 2, with ζi(x0, x̃0) =
√

Vi(x0, x̃0).

Proof of Corollary 7.3 (DT incremental passivity analysis)

According to Definition 7.4, a system of the form (7.1) is incrementally passive if it
is incrementally dissipative with respect to the supply function si given by (7.15).
This supply function can also be written in (Q,S,R) form, see (7.5), by taking
Q = 0, S = I and R = 0. By using the results of Corollary 7.1, and filling in Q = 0,
S = I and R = 0 in condition (7.12), where the matrix function M is constant, it
can simply be rewritten into (7.16) by taking a Schur complement and congruence
transformation.

Proof of Theorem 7.4 (Differential closed-loop ℓ2-gain)

Through the DPV embedding Pdpv given by (7.30) and Lemma 5.3, we have that
B̆δ,X ⊆ B̆p. Consequently, if Fl(Pdpv,Kδ) is ℓ2-gain stable and has an ℓ2-gain of γ
for all p ∈ PN0 , then Fl(Pδ,Kδ) is ℓ2-gain stable and its ℓ2-gain is bounded by γ
for all x̄ ∈ X N0 , hence, this also holds for all x̄ ∈ BX .

Proof of Theorem 7.6 (Closed-loop ℓi2-gain)

This proof follows similarly as the proof of Theorem 6.4. Theorem 7.4 shows that
the closed-loop interconnection Fl(Pδ,Kδ) of differential form of the generalized
plant Pδ given by (7.29) and LPV controller Kδ given by (7.31) is ℓ2-gain stable
and its ℓ2-gain is bounded by γ for all x̄ ∈ πx̄ BX if the closed-loop interconnection
Fl(Pdpv,Kδ) of the DPV embedding Pdpv given by (7.30) and the LPV controller
Kδ is ℓ2-gain stable and has a bounded ℓ2-gain of γ for all p ∈ PN0 . Theorem 7.5
shows, assuming Assumption 6.1, that for the controller (7.32) its differential form
is given by (7.31). Therefore, based on Theorem 7.2, this implies that Fl(P,K) is

3Also using that for a, b > 0,
√
a+ b ≤

√
a+

√
b.
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incrementally dissipative w.r.t. the ℓi2-gain supply function, hence, there exists a
function ζi : Xcl × Xcl → R s.t.∥∥Fl(P,K)(w, xcl,0) − Fl(P,K)(w∗, x∗

cl,0)
∥∥

2,T
≤ γ ∥w − w∗∥2,T + ζi(xcl,0, x

∗
cl,0),
(B.158)

for all T ≥ 0, xcl,0, x̃cl,0 ∈ Xcl and any w,w∗ ∈ WR+
0 with w − w∗ ∈ L2e for

which x, x̃ ∈ BX . Here Fl(P,K)(w, xcl,0) denotes the output z ∈ ZN0 of Fl(P,K)
for an input w ∈ WN0 and initial condition xcl,0 = col(x(0), xk(0)) ∈ Xcl. We
have that (B.158) implies that Fl(P,K) has an ℓ2-gain bound of γ, see (7.13).
Furthermore, as the closed-loop is incrementally (Q,S,R) dissipative for a supply
function corresponding to the ℓi2-gain, it is incrementally asymptotically stable,
see Theorem 5.5. This means that all trajectories converge towards each other,
and as the steady-state trajectory ϑ = (x∗, w∗, u∗, z∗, y∗) ∈ BX is by design of
the controller (7.28) a feasible trajectory, all trajectories (x,w, u, z, y) ∈ BX will
converge towards (x∗, w∗, u∗, z∗, y∗) ∈ BX , i.e. (x,w, u, z, y) → (x∗, w∗, u∗, z∗, y∗)
as t → ∞, for w(t) → w∗(t) as t → ∞.
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B.6 Proofs of Chapter 8

Proof of Lemma 8.1 (Condition for DT velocity dissipativity)

If the system given by (8.1) is velocity dissipative, it holds that

Vv(x∆(t+ 1)) − Vv(x∆(t)) ≤ sv(w∆(t), z∆(t)), (B.159)

for all t ∈ N0 and (x∆, w∆, z∆) ∈ Bv. Using the dynamics of the velocity form
(8.10) and using that x∆(t) = x(t+ 1) −x(t), condition (B.159) equivalently holds if

Vv

(
Āv
(
x(t+ 1), x(t), w(t+ 1), w(t)

)(
x(t+ 1) − x(t)

)
+

B̄v
(
x(t+ 1), x(t), w(t+ 1), w(t)

)(
w(t+ 1) − w(t)

))
− Vv

(
x(t+ 1) − x(t)

)
≤

sv

(
w(t+ 1) − w(t), C̄v

(
x(t+ 1), x(t), w(t+ 1), w(t)

)(
x(t+ 1) − x(t)

)
+

D̄v
(
x(t+ 1), x(t), w(t+ 1), w(t)

)(
w(t+ 1) − w(t)

))
, (B.160)

for all t ∈ N0 and (x,w, z) ∈ B. Consequently, if (8.14) holds for all values
w+, w ∈ W and x ∈ X , then (B.160) holds for all for all t ∈ N0 and (x,w, z) ∈ B,
which means the system is velocity dissipative w.r.t. the supply function sv.

Proof of Theorem 8.2 (DT velocity (Q, S, R) dissipativity con-
dition)

If (8.17) holds for all (x,w) ∈ X × W, we have by pre- and post multiplication of
(8.17) with col(x∆, w∆)⊤ and col(x∆, w∆), respectively, that

(⋆)⊤M(Av(x,w)x∆ +Bv(x,w)w∆) − x⊤
∆Mx∆−

w⊤
∆Qw∆ − 2w⊤

∆S
(
Cv(x,w)x∆ +Dv(x,w)w∆

)
−

(⋆)⊤R
(
Cv(x,w)x∆ +Dv(x,w)w∆

)
≤ 0, (B.161)

all x∆ ∈ Rnx , w∆ ∈ Rnw and (x,w) ∈ X × W. Consequently, it also holds for any
λ ∈ [0, 1] and x+, x ∈ X and w+, w ∈ W that

(⋆)⊤M(Av(x̄(λ), w̄(λ))x∆ +Bv(x̄(λ), w̄(λ))w∆) − x⊤
∆Mx∆−

w⊤
∆Qw∆ − 2w⊤

∆S
(
Cv(x̄(λ), w̄(λ))x∆ +Dv(x̄(λ), w̄(λ))w∆

)
−

(⋆)⊤R
(
Cv(x̄(λ), w̄(λ))x∆ +Dv(x̄(λ), w̄(λ))w∆

)
≤ 0, (B.162)

where x̄(λ) = x+ λ(x+ − x) and w̄(λ) = w + λ(w+ − w). Hence, we also have by
integration over λ that∫ 1

0
(⋆)⊤M(Av(x̄(λ), w̄(λ))x∆ +Bv(x̄(λ), w̄(λ))w∆) − x⊤

∆Mx∆−

w⊤
∆Qw∆ − 2w⊤

∆S
(
Cv(x̄(λ), w̄(λ))x∆ +Dv(x̄(λ), w̄(λ))w∆

)
−

(⋆)⊤R
(
Cv(x̄(λ), w̄(λ))x∆ +Dv(x̄(λ), w̄(λ))w∆

)
dλ ≤ 0, (B.163)
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for any x+, x ∈ X , w+, w ∈ W, x∆ ∈ Rnx and w∆ ∈ Rnw . By Lemma C.4.1, as
M ≻ 0, we have that

(⋆)⊤M

(∫ 1

0
Av(x̄(λ), w̄(λ))x∆ +Bv(x̄(λ), w̄(λ))w∆ dλ

)
≤∫ 1

0
(⋆)⊤M(Av(x̄(λ), w̄(λ))x∆ +Bv(x̄(λ), w̄(λ))w∆) dλ, (B.164)

and similarly, as R ⪯ 0, we have that

(⋆)⊤(−R)
(∫ 1

0
Cv(x̄(λ), w̄(λ))x∆ +Dv(x̄(λ), w̄(λ))w∆ dλ

)
≤∫ 1

0
(⋆)⊤(−R)

(
Cv(x̄(λ), w̄(λ))x∆ +Dv(x̄(λ), w̄(λ))w∆

)
dλ. (B.165)

Note that Av = ∂f
∂x , Bv = ∂f

∂w , Cv = ∂h
∂x , Dv = ∂h

∂w . Hence, using the definition of
Āv, . . . , D̄v in (8.11), we have that

∫ 1

0
Av(x̄(λ), w̄(λ))x∆ +Bv(x̄(λ), w̄(λ))w∆ dλ =

Āv(x+, x, w+, w)x∆ + B̄v(x+, x, w+, w)w∆, (B.166)

∫ 1

0
Cv(x̄(λ), w̄(λ))x∆ +Dv(x̄(λ), w̄(λ))w∆ dλ =

C̄v(x+, x, w+, w)x∆ + D̄v(x+, x, w+, w)w∆. (B.167)

Combining (B.164)–(B.167) with (B.163), we obtain that

(⋆)⊤M
(
Āv(x+, x, w+, w)x∆ + B̄v(x+, x, w+, w)w∆

)
− x⊤

∆Mx∆−
w⊤

∆Qw∆ − 2w⊤
∆S
(
C̄v(x+, x, w+, w)x∆ + D̄v(x+, x, w+, w)w∆

)
−

(⋆)⊤R
(
C̄v(x+, x, w+, w)x∆ + D̄v(x+, x, w+, w)w∆

)
≤ 0, (B.168)

for any x+, x ∈ X , w+, w ∈ W , x∆ ∈ Rnx and w∆ ∈ Rnw . Substituting x∆ = x+−x,
w∆ = w+ − w, and x+ = f(x,w) in (B.168), we obtain the inequality (8.14) where
Vv is given by (8.16) and sv is given by (8.15). By Lemma 8.1, this then implies
velocity (Q,S,R) dissipativity.

Proof of Theorem 8.3 (Implied universal shifted stability)

The proofs follows in a similar manner as the proof of Theorem 4.5. Namely, for
each equilibrium point (x∗, w∗, z∗) ∈ E , consider

Vs(x(t), w∗) := Vv(f(x(t), w∗) − x(t)) = Vv(x∆(t)). (B.169)
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For each (x∗, w∗, z∗) ∈ E , this choice implies that Vs(·, w∗) ∈ Qx∗ , as Vv ∈ Q0.
Note that this requires uniqueness of the equilibrium points (see Assumption 4.1),
as otherwise there exists multiple x∗ for which Vs(x∗, w∗) = 0. By this choice of Vs,
we have that for each (x∗, w∗, z∗) ∈ E ,

Vs(x(t+ 1), w∗) − Vs(x(t), w∗) = Vv(x∆(t+ 1)) − Vv(x∆(t)) ≤ 0, (B.170)

for all t ∈ N0 and x∆ ∈ πx∆ Bv,w(w ≡ w∗) and correspondingly all x ∈ πx Bw(w ≡
w∗). This implies that (8.6) holds for all x ∈ πx Bw(w ≡ w∗) and for all equilibrium
points (x∗, w∗) ∈ πx∗,w∗ E . Hence, by Theorem 8.1, (8.1) is universally shifted
stable. The asymptotic stability version follows similarly by changing (B.170) to a
strict inequality.

Proof of Theorem 8.4 (Universal shifted performance from
velocity dissipativity)

The proofs follows in a similar manner to the proof of Theorem 4.7. If the nonlinear
system given by (8.19) is velocity dissipative w.r.t. the supply function sv(w∆, z∆) =
w⊤

∆Qw∆ + z⊤
∆Rz∆, there exists a storage function Vv, such that for all t0, t1 ∈ R+

0
with t1 ≥ t0

Vv(x∆(t1 + 1)) − Vv(x∆(t0)) ≤
t1∑

t=t0

w∆(t)⊤Qw∆(t) + z∆(t)⊤Rz∆(t), (B.171)

for all (x∆, w∆, z∆) ∈ Bv, corresponding to (x,w, z) ∈ B. Hence, as Vv(x∆(0)) =
Vv(0) = 0 and Vv(xv) > 0, ∀xv ∈ Rnx\{0}, this implies that

0 <
T∑

t=0
w∆(t)⊤Qw∆(t) + z∆(t)⊤Rz∆(t), (B.172)

for all T > 0 and (x∆, w∆, z∆) ∈ Bv. Defining Q̃ := 1
∥Q∥Q and R̃ := 1

∥Q∥R, it also
holds that

0 <
T∑

t=0
w∆(t)⊤Q̃w∆(t) + z∆(t)⊤R̃z∆(t), (B.173)

Next, using (8.19)–(8.21) and as x∆(t) = x(t+ 1) − x(t), we have that, omitting
dependence on time for brevity,

z⊤
∆R̃z∆ = x⊤

∆C
⊤R̃ Cx∆, (B.174a)

= (⋆)⊤R̃ C(f(x) +Bw − x), (B.174b)
= (⋆)⊤R̃ C(f(x) +Bw − x+ x∗ − (f(x∗) +Bw∗)︸ ︷︷ ︸

=0

), (B.174c)

= (⋆)⊤R̃ C(f(x) − f(x∗) − (x− x∗) +B(w − w∗)). (B.174d)
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Through Lemma C.1.1, we have that

f(x) − f(x∗) =
(∫ 1

0

∂f

∂x
(x∗ + λ(x− x∗)) dλ

)
(x− x∗),

=
(∫ 1

0
Av(x∗ + λ(x− x∗)) dλ

)
︸ ︷︷ ︸

Āv(x,x∗)

(x− x∗), (B.175)

hence,
f(x) − f(x∗) − (x− x∗) = (Āv(x, x∗) − I)(x− x∗). (B.176)

Combining this with Assumption 4.2, we can write (B.174d) as

z⊤
∆R̃z∆ = (⋆)⊤R̃ C(Āv(x, x∗) − I)(x− x∗). (B.177)

Next, by satisfying Assumption 8.1 for T = R̃ ⪯ 0, we have that, for every x∗ ∈ X ,

z⊤
∆R̃z∆ = (⋆)⊤R̃C(Āv(x, x∗)−I)(x−x∗) ≤ α−1(⋆)⊤R̃C(x−x∗) = α−1(⋆)⊤R̃(z−z∗).

(B.178)
Moreover, by Assumption 8.2 and using that w∆(t) = w(t+ 1) −w(t), we have that,
for a given (x∗, w∗, z∗) ∈ E ,

w(t+ 1) = Aw(w(t) − w∗) + w∗,

w(t+ 1) − w(t) + w(t) = Aw(w(t) − w∗) + w∗,

w(t+ 1) − w(t) = Aw(w(t) − w∗) − (w(t) − w∗),
w∆(t) = (Aw − I)(w(t) − w∗),

(B.179)

and hence,

w∆(t)⊤Q̃w∆(t) = (⋆)⊤Q̃(Aw − I)(w(t) − w∗) ≤ β2(⋆)⊤Q̃(w(t) − w∗), (B.180)

where w ∈ W and 0 ⪯ Q̃ ⪯ I. Combining (B.173), (B.178), and (B.180), we obtain
that, for every (x∗, w∗, z∗) ∈ E ,

T∑
t=0

β2(⋆)⊤Q̃(w(t) − w∗) + α−1(⋆)⊤R̃(z(t) − z∗) > 0, (B.181)

for all T > 0 and (w, z) ∈ πw,z B with w ∈ W. Hence, also
T∑

t=0
β2(⋆)⊤Q(w(t) − w∗) + α−1(⋆)⊤R(z(t) − z∗) > 0, (B.182)

for all T > 0 and (w, z) ∈ πw,z B with w ∈ W.

Proof of Theorem 8.6 (DT universal shifted controller realiza-
tion)

For the proof, we first use part of the results of the proof Theorem 7.6 in Ap-
pendix B.5. For simplicity, we assume in the proof that solutions are defined on
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Z. First, based on Theorem 7.5, the differential form of the incremental controller
realization (7.32) is given by (7.31), equivalent to (8.34). Consequently (see also
Theorem 7.6), based on Theorem 7.2, this implies that Fl(P,K) is incrementally
dissipative w.r.t. the ℓi2-gain supply function. Under Assumption 6.1, this (and
through Lemma 5.1) means there exists an M ≻ 0 such that

(⋆)⊤M(xcl(t1) − x∗
cl(t1)) − (⋆)⊤M(xcl(t0) − x∗

cl(t0)) ≤
t1∑

t=t0

γ2(⋆)⊤(w(t) − w∗(t)) − (⋆)⊤(z(t) − z∗(t)). (B.183)

for all t0, t1 ∈ Z, t1 ≥ t0, and (xcl, w, z), (x∗
cl, w

∗, z∗) ∈ Bcl,X (where Bcl,X is the
behavior associated with closed-loop Fl(P,K) for which x ∈ BX ). Note that this
corresponds to the incremental storage function Vi(x, x̃) = (⋆)⊤M(x− x̃).
Now, consider the restriction of the trajectory ϑ to

ϑ(t) =
(
x∗(t), w∗(t), u∗(t), z∗(t), y∗(t)

)
,

=
(
x(t− 1), w(t− 1), u(t− 1), z(t− 1), y(t− 1)

)
,

(B.184)

i.e., the (current) trajectory delayed by one time instance. For this restriction, the
incremental controller realization (7.32) becomes

x∆,k(t+ 1) = Āk(x(t), x(t− 1))x∆,k(t)+
B̄k(x(t), x(t− 1))(uk(t) − uk(t− 1)); (B.185a)

yk(t) = yk(t− 1) + C̄k(x(t), x(t− 1))x∆,k(t)+
D̄k(x(t), x(t− 1))(uk(t) − uk(t− 1)); (B.185b)

with x∆,k(t) ∈ Rnxk and Āk, . . . , D̄k as given (8.37). By defining x̃k(t) = uk(t− 1)
and x̂k(t) = yk(t− 1), we get that

x̃k(t+ 1) = uk(t), (B.186)

then, (B.185a) becomes

x∆,k(t+ 1) = Āk(x(t), x(t− 1))x∆,k(t)+
B̄k(x(t), x(t− 1))(uk(t) − x̃k(t− 1)), (B.187)

and from (B.185b) we get that

yk(t) = x̂k(t) + C̄k(x(t), x(t− 1))x∆,k(t)+
D̄k(x(t), x(t− 1))(uk(t) − x̃k(t)), (B.188)

and

x̂k(t+ 1) = x̂k(t) + C̄k(x(t), x(t− 1))x∆,k(t)+
D̄k(x(t), x(t− 1))(uk(t) − x̃k(t)). (B.189)
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Combining (B.186)–(B.189), and defining x̆k = col(x̃k, x∆,k, x̂k), we can express the
dynamics of (B.185) as (8.35) with matrices given by (8.36) and (8.37).
Moreover, through the restriction of ϑ given by (B.184), we have from (B.183) that

(⋆)⊤M(xcl(t1) − xcl(t1 − 1)) − (⋆)⊤M(xcl(t0) − xcl(t0 − 1)) ≤
t1∑

t=t0

γ2(⋆)⊤(w(t) − w(t− 1)) − (⋆)⊤(z(t) − z(t− 1)). (B.190)

for all t0, t1 ∈ Z, t1 ≥ t0, and (xcl, w, z), (x∗
cl, w

∗, z∗) ∈ Bcl for which x ∈ BX .
Hence, we also have that

(⋆)⊤M(xcl(t1 + 1) − xcl(t1)) − (⋆)⊤M(xcl(t0 + 1) − xcl(t0)) ≤
t1∑

t=t0

γ2(⋆)⊤(w(t+ 1) − w(t)) − (⋆)⊤(z(t+ 1) − z(t)). (B.191)

By using that z∆(t) = z(t+ 1) − z(t) and w∆(t) := w(t+ 1) − w(t), and defining
x∆,cl(t) = xcl(t1 + 1) − xcl(t1), we get that

(⋆)⊤Mx∆,cl(t1) − (⋆)⊤Mx∆,cl(t0) ≤
t1∑

t=t0

γ2(⋆)⊤w∆(t) − (⋆)⊤z∆(t), (B.192)

for all t0, t1 ∈ Z, t1 ≥ t0, and (x∆,cl, w∆, z∆) ∈ ∆Bcl,X . This is the condition
for velocity (Q,S,R) dissipativity with (Q,S,R) = (γ2I, 0,−I) and Vv(x∆,cl) =
x⊤

∆,clMx∆,cl, see Definition 8.4.

Proof of Corollary 8.2 (Universal shifted realization with inte-
gral action)

For the realization of the controller in the proof of Theorem 8.6, we have that the
time-difference uk(t) − uk(t − 1) is taken, see (B.185a). This operation can also
be expressed as filtering of uk by the filter q−1

q , where q is the discrete time-shift
operator. The integration filter M that is considered is given by M(q) = q+α

q−1 , which
is also connected to the input controller the controller as depicted in Figure 4.4.
Consequently, the interconnection of the integration filter M and the filter q−1

q ,
representing the time difference, can be simplified as q−1

q · q+α
q−1 = q+α

q . Hence,
as y = uk, in the proof of Theorem 8.6, q−1

q uk(t) = uk(t) − uk(t− 1) in (B.185a)
becomes q+α

q uk(t) = uk(t) + αuk(t− 1). Consequently, (B.187)–(B.189) become

x∆,k(t+ 1) = Āk(x(t), x(t− 1))x∆,k(t)+
B̄k(x(t), x(t− 1))(uk(t) + αx̃k(t)), (B.193)

yk(t) = x̂k(t) + C̄k(x(t), x(t− 1))x∆,k(t)+
D̄k(x(t), x(t− 1))(uk(t) + αx̃k(t)), (B.194)
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and

x̂k(t+ 1) = x̂k(t) + C̄k(x(t), x(t− 1))x∆,k(t)+
D̄k(x(t), x(t− 1))(uk(t) + αx̃k(t)), (B.195)

respectively. Then, along the same lines as in the proof of Theorem 8.6, we obtain
B̆k and D̆k as given in (8.36) and Ăk and C̆k given by (8.38).





C
Other Technical Results

C.1 Function Factorization

This appendix is based on a result given in (Koelewijn and Tóth 2021a).
We provide the following useful lemma:

Lemma C.1.1 (Function factorization). For a function g : Rn → Rm with g ∈ C1,
it holds for all ς, ς̃ ∈ Rn that

g(ς) − g(ς̃) =
(∫ 1

0

dg

dς
(ς̃ + λ(ς − ς̃)) dλ

)
(ς − ς̃), (C.1)

where dg
dς denotes the Jacobian of g and the integral of the Jacobian is taken element-

wise.

Proof. Denote g(ς) =
[
g1(ς) · · · gm(ς)

]
, where gi(ς) : Rn → R for i = 1, . . . , m

and ς ∈ Rn. For ς, ς̃ ∈ Rn, define the functions ḡi(λ) = gi(ς̃ + λ(ς − ς̃)) for
i = 1, . . . , m, with ḡi : [0, 1] → R. Using the second fundamental theorem of
calculus, it holds that

ḡi(1) − ḡi(0) =
∫ 1

0

dḡi

dλ
(λ̄) dλ̄, for i = 1, . . . m, (C.2)

which results in

gi(ς) − gi(ς̃) =
∫ 1

0

(
dgi

dς
(ς̃ + λ̄(ς − ς̃))

)
(ς − ς̃) dλ̄, (C.3)

=
(∫ 1

0

dgi

dς
(ς̃ + λ̄(ς − ς̃)) dλ̄

)
(ς − ς̃), (C.4)
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for i = 1, . . . m. Consequently, we have that

g(ς) − g(ς̃) =

 g1(ς) − g1(ς̃)
...

gm(ς) − gm(ς̃)

 , (C.5)

=


(∫ 1

0
dg1
dς (ς̃ + λ̄(ς − ς̃)) dλ̄

)
(ς − ς̃)

...(∫ 1
0

dgm

dς (ς̃ + λ̄(ς − ς̃)) dλ̄
)

(ς − ς̃)

 , (C.6)

=
(∫ 1

0

dg

dς
(ς̃ + λ̄(ς − ς̃)) dλ̄

)
(ς − ς̃), (C.7)

where dg
dς denotes the Jacobian of g and the integral of the Jacobian is taken

element-wise.
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C.2 Coarser System Structure through Filtering

C.2.1 Conversion of System to Coarser Structure

Consider the nonlinear system

ẋ(t) = f(x(t), w(t)); (C.8a)
z(t) = h(x(t), w(t)); (C.8b)

where t ∈ R+
0 is time, x(t) ∈ Rnx the state, w(t) ∈ Rnw is the input of the system,

and z(t) ∈ Rnz is the output of the system.
Consider the following (low-pass) filters, denoted by Fi

ẋF,i(t) = −Ωi xF,i(t) + Ωi uF,i(t); (C.9a)
yF,i(t) = xF,i(t); (C.9b)

for i = 1, 2 and where Ωi = diag(ω1,i, . . . , ωnF,i
) with ωi,j > 0 for j = 1, . . . , nF,i

and xF,i(t) ∈ RnF,i .
Connecting F1 and F2 as given by (C.9) to (C.8), such that w = yF,1 and uF,2 = z,
results in

ẋF,1(t) = −Ω1xF,1(t) + Ω1ŵ(t); (C.10a)
ẋF,2 = −Ω2xF,2(t) + Ω2h(x(t), xF,1(t)); (C.10b)
ẋ(t) = f(x(t), xF,1(t)); (C.10c)
ẑ(t) = xF,2(t). (C.10d)

The system (C.10) with input ŵ, output ẑ, and state col(xF,1, xF,2, x) is of the form

ẋ(t) = f(x(t)) +Bw(t); (C.11a)
y(t) = Cx(t). (C.11b)

For (C.10) we have that B =
[
Ω⊤

1 0 0
]⊤ and C =

[
0 I 0

]
, and consequently

CB = 0.

C.2.2 Conversion of Generalized Plant to Coarser Structure

This section is based on (Koelewijn, Tóth, Nijmeijer, et al. 2022, Appendix V).
Consider a nonlinear dynamical system, describing a generalized plant, of the form

ẋ(t) = f (x(t), u(t)) +Bww(t); (C.12a)
z(t) = hz(x(t), u(t)) +Dzww(t); (C.12b)
y(t) = hy(x(t), u(t)) +Dyww(t); (C.12c)
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where t ∈ R+
0 is time, x(t) ∈ Rnx is the state, w(t) ∈ Rnw is the generalized

disturbance, z(t) ∈ Rnz the generalized performance, u(t) ∈ Rnu the control input,
and y(t) ∈ Rny the measured output.
Moreover, consider a more restrictive class of (C.12), given by

ẋ(t) = f(x(t)) +Bww(t) +Buu(t); (C.13a)
z(t) = hz(x(t)) +Dzww(t) +Dzuu(t); (C.13b)
y(t) = Cyx(t) +Dyww(t). (C.13c)

While (C.13) may seem restrictive, the general class of nonlinear plants (C.12) can
be expressed as (C.13) by the use of appropriate filters. Connecting F1 and F2
given by (C.9) to (C.12), such that u = yF,1 and uF,2 = y, results in

ẋ(t) = f (x(t), xF,1(t)) +Bww(t); (C.14a)
ẋF,1(t) = −Ω1xF,1(t) + Ω1û(t); (C.14b)
ẋF,2(t) = Ω2 hy(x(t), xF,1(t)) − Ω2 xF,2(t) + Ω2 Dyww(t); (C.14c)
z(t) = hz (x(t), xF,1(t)) +Dzww(t); (C.14d)
ŷ = xF,2(t); (C.14e)

where û = uF,1 is the new ‘u’-input and ŷ = yF,2 is the new ‘y’-output. Note that
the system (C.14) is of the form (C.13). Moreover, if ωi,j is taken large enough
(e.g., 5× the intended bandwidth) then the desired closed-loop performance is not
affected by the conversion.
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C.3 Results on Connecting Velocity and Universal
Shifted Dissipativity

In this appendix, we highlight some additional results that were obtained during the
research into connection of velocity dissipativity and universal shifted dissipativity,
as also discussed in Chapter 4.
In this appendix, we consider nonlinear systems of the form

ẋ(t) = f(x(t), w(t)); (C.15a)
z(t) = h(x(t)). (C.15b)

Similarly to what is considered in Chapter 4, we will denote its behavior by B, set
of equilibrium points by E , etc.
For a nonlinear system (C.15), its equilibrium points (x∗, w∗, z∗) ∈ E satisfy

0 = f(x∗, w∗); (C.16a)
z∗ = h(x∗); (C.16b)

and the velocity form of (C.15) is given by

ẍ(t) = Av(x(t), w(t))ẋ(t) +Bv(x(t), w(t))ẇ(t); (C.17a)
ż(t) = Cv(x(t))ẋ(t), (C.17b)

where Av = ∂f
∂x , Bv = ∂f

∂w , and Cv = ∂h
∂x .

Before discussing some of our results, we consider the following assumption, similar
to Assumption 4.3:

Assumption C.3.1. Given a symmetric matrix R ⪯ 0, there exists an α > 0, such
that for every (x∗, w∗) ∈ πx∗,w∗ E , it holds that

(⋆)⊤RC(x)Ā(x, x∗, w∗)(x− x∗) ≤ α−1(⋆)⊤R C̄(x, x∗)(x− x∗), (C.18)

for all x ∈ X , where Ā(x, x∗, w∗) =
∫ 1

0 Av(x̄(λ), w∗)dλ, C̄(x, x∗) =
∫ 1

0 Cv(x̄(λ))dλ
with x̄(λ) = x∗ + λ(x− x∗).

Consider the nonlinear system (C.15) for which the condition (4.18) in Lemma 4.3
holds1 w.r.t. a (Q,S,R) supply function (4.17) for which Q ⪰ 0 and R ⪯ 0.
Moreover, we assume that, for this considered R, Assumption C.3.1 holds.
For a nonlinear system (C.15), the condition in (4.18) for the considered supply
function becomes

∇Vv(f(x,w)) (Av(x,w)f(x,w) +Bv(x,w)wv) ≤
w⊤

v Qwv + (⋆)⊤RCv(x)f(x,w), (C.19)
1Which implies velocity dissipativity by Lemma 4.3.
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which holds for all wv ∈ Rnw , x ∈ X , and w ∈ W . As (C.19) holds for all wv ∈ Rnw ,
x ∈ X , and w ∈ W, it also holds for every w = w∗ ∈ W and wv = 0, which results
in

∇Vv(f(x,w∗))Av(x,w∗)f(x,w∗) ≤ (⋆)⊤RC(x)f(x,w∗), (C.20)
for all x ∈ X . By Lemma C.1.1, we have that

f(x,w∗) = f(x,w∗) −f(x∗, w∗)︸ ︷︷ ︸
=0

= Ā(x, x∗, w∗)(x− x∗), (C.21)

where Ā(x, x∗, w∗) =
∫ 1

0 Av(x̄(λ), w∗)dλ with x̄(λ) = x∗ + λ(x − x∗). Hence, the
righthand side of (C.20) can be expressed as

(⋆)⊤RC(x)f(x,w∗) = (⋆)⊤RC(x)Ā(x, x∗, w∗)(x− x∗). (C.22)

Similarly, by Lemma C.1.1, we have that

z − z∗ = h(x) − h(x∗) = C̄(x, x∗)(x− x∗), (C.23)

where C̄(x, x∗) =
∫ 1

0 Cv(x̄(λ))dλ. Combining this with Assumption C.3.1, we hence
have that ∃α > 0 such that

(⋆)⊤RC(x)Ā(x, x∗, w∗)(x−x∗) ≤ α−1(⋆)⊤R C̄(x, x∗)(x−x∗) = α−1(⋆)⊤R (z−z∗).
(C.24)

Hence, together with (C.20), (C.22) and (C.23), this gives that for any (x∗, w∗, z∗) ∈
E

∇Vv(f(x,w∗))Av(x,w∗)f(x,w∗) ≤ α−1(⋆)⊤R(z − z∗), (C.25)
for all x ∈ X . This also implies that for any (x∗, w∗, z∗) ∈ E

∇Vv(f(x,w∗))Av(x,w∗)f(x,w∗) ≤ α−1(⋆)⊤Q(w − w∗)︸ ︷︷ ︸
≥0

+α−1(⋆)⊤R(z − z∗),

(C.26)
for all (x,w) ∈ X × W. Let us define:

Vs(x,w∗) := αVv(f(x,w∗)), (C.27)

which gives us that

∇xVs(x,w∗) = α∇Vv(f(x,w∗))Av(x,w∗). (C.28)

Substituting this in (C.26), we get that for any (x∗, w∗, z∗) ∈ E

∇xVs(x,w∗)f(x,w∗) ≤ (⋆)⊤Q(w − w∗) + (⋆)⊤R(z − z∗), (C.29)

for all (x,w) ∈ X × W. This condition is close, but not equal, to the condition for
universal shifted (Q,S,R) dissipativity given in Lemma 4.1. Namely, for Vs given
by (C.27), and a (Q,S,R) supply function for which S = 0, (4.8) in Lemma 4.1
becomes

∇xVs(x,w∗)f(x,w) ≤ (⋆)⊤Q(w − w∗) + (⋆)⊤R(z − z∗), (C.30)
where the difference is highlighted in orange, i.e., instead of f being evaluated at w
in (C.30), it is evaluated at w∗ in (C.29).
In conclusion, while these results again highlight there is a close connection between
velocity dissipativity and universal shifted dissipativity, they are not able to show if
velocity dissipativity implies universal shifted dissipativity.
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C.4 Norm Integral Inequality

This appendix is based on the appendix in (Koelewijn and Tóth 2021b).
We give the following useful lemma:

Lemma C.4.1 (Norm Integral Inequality). Given a positive definite M ∈ Sn, i.e.,
M ≻ 0, and a continuous function ϕ : [0, 1] → Rn, then(∫ 1

0
ϕ(t) dt

)⊤

M

(∫ 1

0
ϕ(t) dt

)
≤
∫ 1

0
ϕ(t)⊤Mϕ(t) dt (C.31)

Proof. As M is positive definite, we can define the Euclidean vector space with
norm: ∥v∥ :=

√
v⊤Mv, where v ∈ Rn. By the Cauchy-Schwarz inequality, for a

continuous function ϕ : [0, 1] → Rn∥∥∥∥∫ 1

0
ϕ(t) dt

∥∥∥∥ ≤
∫ 1

0
∥ϕ(t)∥ dt, (C.32)

see (Rudin 1976). Furthermore, it also holds that for a function ψ : [0, 1] → R∣∣∣∣∫ 1

0
ψ(t) dt

∣∣∣∣2 ≤
(∫ 1

0
1 dt
)(∫ 1

0
|ψ(t)|2 dt

)
=
(∫ 1

0
|ψ(t)|2 dt

)
. (C.33)

Hence, using (C.32) and (C.33), with ψ(t) = ∥ϕ(t)∥, we get∥∥∥∥∫ 1

0
ϕ(t) dt

∥∥∥∥2

≤
(∫ 1

0
∥ϕ(t)∥ dt

)2

≤
∫ 1

0
∥ϕ(t)∥2

dt. (C.34)

Using the norm definition, this results in (C.31).
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C.5 Decomposition of a Positive Definite Matrix
Function that is Continuously Differentiable

C.5.1 Introduction

When studying nonlinear problems in a quadratic form, it can be of interest to
decompose a continuously differentiable, positive definite matrix function A, which
maps from X ⊆ Rn to Rn×n into a constant matrix that is pre- and post multiplied
with another matrix function that maps from X ⊆ Rn to Rn×n, i.e., for all x ∈ X we
have A(x) = B(x)⊤QB(x). In this appendix, we show that this can be accomplished
under certain assumptions.
This appendix is based on the work in (Verhoek, Koelewijn, et al. 2022).

C.5.2 Problem definition

Consider the matrix function A : X → Rn×n, where X ⊆ Rn, n ∈ N, and assume
that A admits the following properties

• ∀x ∈ X , we have that A(x) is real, symmetric and bounded.

• A(x) is a C1 function, i.e., A(x) and ∂A(x)
∂x are continuous functions.

• There exist two constants 0 < c1 ≤ c2 such that ∀x ∈ X , c1I ⪯ A(x) ⪯ c2I.

Note that the last property ensures that A(x) is positive definite for all x ∈ X . The
problem is to show that A(x) can always be decomposed as

A(x) = B(x)⊤QB(x),

where the matrix Q is positive definite, i.e., 0 ≺ Q ∈ Rn×n, and the matrix
function B : X → Rn×n is a C1 function which is non-singular for all x ∈ X , i.e.,
∀x ∈ X , det(B(x)) ̸= 0.

C.5.3 Result

We now show that this decomposition is possible under the assumptions in Ap-
pendix C.5.2. First, denote the set of all real, symmetric matrices by S and the set
of all positive definite matrices by P. Note that P is open in the n(n+1)

2 –dimensional
real vector space S. The positive definite square-root function g(A) = A

1
2 is well-

defined on P (Koeber and Schäfer 2006). In fact, given A, its positive definite
square-root is uniquely determined by the Lagrange interpolation polynomial that
maps each distinct eigenvalue λ of A to

√
λ.

Now, let A0 be any positive definite matrix and let B0 = A
1
2
0 . Note that B0 is

positive definite. Define f(B) = B2 on S. Then f is C1 and its Fréchet derivative
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Df : X 7→ BX +XB is non-singular at B0. Note that X is the argument of Df
here, and serves as a dummy variable. As the Fréchet derivative of f is non-singular
at B0, by the inverse function theorem, f has a C1 local inverse defined on some
neighbourhood W containing A0. Since P is open, we may assume that W ⊆ P.
As this local inverse of f gives a positive definite square-root function on W, it
must agree with g. Hence, g is C1 on W. It follows that g is C1 on P because A0 is
arbitrary.
Finally, when A is a C1 function of x, its square root A(x) 1

2 = g(A(x)) is also C1,
by the chain rule. Therefore, the matrix function A(x) can always be decomposed
as A(x) = B(x)⊤QB(x) by taking B(x) := A(x) 1

2 and Q = I.
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C.6 Automatic Grid-based LPV Embedding of
Nonlinear Systems

C.6.1 Introduction

The Linear Parameter-Varying (LPV) framework offers systematic tools for the
analysis and control of LPV models. By embedding nonlinear systems in an LPV
representation, the tools from the LPV framework can be applied to nonlinear
systems for convex analysis and controller synthesis. However, this embedding
step is often ignored but nonetheless very important. While a few automatic
embedding procedures exist, see (Tóth 2010; Abbas, Tóth, Petreczky, Meskin, and
Mohammadpour Velni 2014) and references therein, these methods still require
expert knowledge from the user in order to be applied. In this appendix, we propose
an automated grid-based LPV embedding procedure for nonlinear systems which
only uses the nonlinear model as input and a set of grid-points.

This appendix is based on the work in (Koelewijn and Tóth 2021a).

C.6.2 Problem

Assume we have a nonlinear dynamical system of the form

ξx(t) = f(x(t), u(t));
y(t) = h(x(t), u(t));

(C.35)

where ξ is the differential operator in the continuous time case, i.e. ξ = d
dt and

ξx(t) = d
dtx(t), and where ξ is the shift operator in discrete time case, i.e. ξ = q

and ξx(t) = x(t+ 1). The functions f : Rnx ×Rnu → Rnx and h : Rnx ×Rnu → Rny

are assumed to be continuously differentiable once, i.e, f, h ∈ C1, and are assumed
such that f(0, 0) = 0 and h(0, 0) = 0. We want to embed this nonlinear system in
an LPV representation of the form

ξx(t) = A(p(t))x(t) +B(p(t))u(t);
y(t) = C(p(t))x(t) +D(p(t))u(t);

(C.36)

where p(t) = η(x(t), u(t)) is the scheduling-variable and η : Rnx × Rnu → Rnp is
the scheduling-map. Based on Definition 2.14, the LPV model (C.36) is an global
LPV embedding of the nonlinear system (C.35) on the region X × U, if there exists
a scheduling-map η such that f(x, u) = A(η(x, u))x + B(η(x, u))u and h(x, u) =
C(η(x, u))x + D(η(x, u))u for all x ∈ X ⊆ Rnx and u ∈ U ⊆ Rnu . We say a grid-
based LPV model is an embedding of the nonlinear system (C.35) on the region X ×U,
if there exists a scheduling-map η such that f(x, u) = A(η(x, u))x + B(η(x, u))u
and h(x, u) = C(η(x, u))x+D(η(x, u))u for all x ∈ X and u ∈ U, where X and U
are finite sets with X × U ⊂ X × U and such that X × U sufficiently covers X × U.
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C.6.3 Main results

To perform the embedding, we use Lemma C.1.1, see Appendix C.1, which allows
us to state the following theorem:

Theorem C.6.1 (Factorized LPV embedding). The LPV system (C.36) with

A(p) = Ā(x, u), B(p) = B̄(x, u),
C(p) = C̄(x, u), D(p) = D̄(x, u),

(C.37)

where p = η(x, u) and,

Ā(x, u) =
∫ 1

0

∂f

∂x
(λx, λu) dλ, B̄(x, u) =

∫ 1

0

∂f

∂u
(λx, λu) dλ,

C̄(x, u) =
∫ 1

0

∂h

∂x
(λx, λu) dλ, D̄(x, u) =

∫ 1

0

∂h

∂u
(λx, λu) dλ,

(C.38)

is an LPV embedding of the nonlinear system (C.35) on any region X × U ⊂
Rnx × Rnu .

Proof. Applying Lemma C.1.1 to f and h of the nonlinear system (C.35), we obtain
that

f(x, u) −f(0, 0)︸ ︷︷ ︸
=0

=
(∫ 1

0

∂f

∂x
(λx, λu)

)
x+

(∫ 1

0

∂f

∂u
(λx, λu)

)
u, (C.39a)

h(x, u) −h(0, 0)︸ ︷︷ ︸
=0

=
(∫ 1

0

∂h

∂x
(λx, λu)

)
x+

(∫ 1

0

∂h

∂u
(λx, λu)

)
u, (C.39b)

for all (x, u) ∈ Rnx × Rnu . Taking the scheduling-map as2 η(x, u) =
[
x⊤ u⊤]⊤,

using the definitions for Ā, . . . , D̄ in (C.38), and using (C.37), we obtain our result.
Moreover, as (C.39) holds for all x ∈ Rnx and u ∈ Rnu , the embedding can be taken
on any region X × U ⊂ Rnx × Rnu .

If we can analytically compute the integrals in (C.39), the above approach can even
be used to obtain LPV embeddings with a specific scheduling dependency, such
as an affine or rational dependency. We briefly demonstrate the approach in the
following example:

2Based on the dependency of the Jacobians on x and u, only certain elements of x and u might
be required in the scheduling-map.
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Example C.1 (LPV embedding of an unbalanced disk system). Consider the
dynamics of an unbalanced disk system3 given by

ẋ1(t) = x1(t); (C.40a)
ẋ2(t) = Mgl

J sin(x1(t)) − 1
τ x2(t) + Km

τ u(t); (C.40b)
y(t) = x1(t); (C.40c)

where x1 represents the angle of the disk, x2 represent its angular velocity, u the
input voltage to the motor, y is the output of the system, and M , g, l, J , τ , and
Km are physical parameters of the system. Applying Theorem C.6.1 to (C.40), we
obtain

ẋ(t) =

Ā(x,u)︷ ︸︸ ︷[
0 1

Mgl
J

∫ 1
0 cos(λx1(t)) dλ − 1

τ

]
+

B̄(x,u)︷ ︸︸ ︷[
0

Km

τ

]
u(t); (C.41a)

y(t) =
[
1 0

]︸ ︷︷ ︸
C̄(x,u)

x(t); (C.41b)

where x = col(x1, x2). As
∫ 1

0 cos(λx1(t)) dλ = sin(x1(t))
x1(t) = sinc(x1(t)), we can obtain

the following affine LPV representation:

ẋ(t) =
[

0 1
Mgl

J p(t) − 1
τ

]
+
[

0
Km

τ

]
u(t); (C.42a)

y(t) =
[
1 0

]
x(t); (C.42b)

where p(t) = sinc(x1(t)), which is an LPV embedding of (C.40) .

C.6.4 Grid-Based LPV Models

While the Jacobians of f and h can often easily be automatically computed using
various symbolic computation packages such as found in MATLAB (The MathWorks,
Inc. 2022) and Mathematica (Wolfram Research, Inc. 2022), computation of the
integrals of the Jacobians of f and h is often more difficult (although in some cases
it can still be performed, e.g., as in Example C.1). However, for grid-based LPV
models, it is not necessary to have an analytical expression of the LPV state-space
matrices, as we only require the values of the matrices at the chosen grid-points. In
that case, we can use numerical integration techniques to compute the value of the
matrices in (C.38) at different points x and u. In fact, an analytical expression for
the Jacobian is also not necessary, as Automatic Differentiation (AD) techniques
can be used to evaluate the Jacobians of f and h at different point required for
numerical integration. Numerical integration techniques and AD techniques have
been implemented in various software tools, such as in Python (Maclaurin et al.

3See Example 4.2 for more details.
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2019) and Julia (Revels et al. 2016). Hence, we can rely on numerical methods
for computation of the grid-based LPV state-space matrices using the embedding
method described above.
More formally, assume that we want to obtain a grid-based LPV model of the
nonlinear system (C.35) at the grid-points x ∈ X ⊂ X and u ∈ U ⊂ U, with
X = {x1, . . . , xN} and U = {u1, . . . , uM}, where N,M ∈ N. We can then evaluate
using numerical integration (and if necessary using AD), for all x ∈ X and u ∈ U,
the matrices in (C.38). As the scheduling-variable is p = col(x, u), we obtain set of
N ·M grid-points for p. This results in a grid-based LPV model on the compact
region X × U (at the points x ∈ X and u ∈ U) of the form (C.36) for (C.35).
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L, L̂ LPV matrix functions for scheduling dimension reduction

µ Scheduling reduction map

N Row-wise matrix normalization function

σ Activation function of an ANN

Coefficients and constants
γ Induced Lp-Lq-gain of system

Q, S, R Matrices corresponding to (Q,S,R) dissipativity

Ts Sampling time

N Number of samples

W [•] Weight matrix in a layer of an ANN

b[•] Bias vector in a layer of an ANN
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Γ, Γn, Γ̂ Data matrix of scheduling trajectories

D Data set of scheduling trajectories
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Publiekssamenvatting

Analyse en Regeling van Niet-Lineaire Systemen met
Stabiliteits- en Prestatiegaranties

Een Lineaire Parameter-Variërende Benadering

Bij technische systemen, zoals die in de lucht- en ruimtevaart of de mechatronica-
industrie, wordt voortdurend gestreefd naar betere prestaties. Bijvoorbeeld de ver-
betering van de manoeuvreerbaarheid en betrouwbaarheid van lucht- en ruimtevaar-
tuigen of de verbetering van de nauwkeurigheid en toepasbaarheid van robots. Dit
heeft geleid tot complexere systeemontwerpen, die gericht zijn op betere prestaties,
wat ook leidt tot complexer dynamisch gedrag van deze systemen.

In de afgelopen decennia is een groot aantal methodes ontwikkeld voor het ana-
lyseren en ontwerpen van regelalgoritmen voor dynamische systemen, zelfs voor
zeer complexe systemen. Desondanks, gebruiken ingenieurs in de industrie meestal
methodes die ervan uitgaan dat het onderliggende systeem lineair en tijdinvariant is.
Voor lineaire dynamische systemen bestaat namelijk een uitgebreid, systematisch
regeltechnisch-raamwerk dat relatief gemakkelijk te gebruiken is en waarmee inge-
nieurs de prestaties van systemen gemakkelijk kunnen afstellen. Bovendien wordt
het ook uitgebreid ondersteund door krachtige computerprogramma’s. Naarmate we
echter hogere prestaties nastreven, wordt het gedrag van de systemen gedomineerd
door niet-lineairiteiten en zijn deze methodes niet meer toereikend.

Hoewel voor niet-lineaire dynamische systemen er ook veel theorie bestaat voor
prestatieanalyse en regelaarontwerp, zijn de daarmee gepaard gaande methodes
vaak te complex voor gebruik in de techniek, zijn ze rekenkrachtig te duur, of
missen ze de mogelijkheid om de prestatie af te stellen. Om dit probleem aan te
pakken, hebben we in dit proefschrift een raamwerk ontwikkeld voor systematische
en rekenkundig efficiënte prestatieanalyse en regeling van niet-lineaire dynamische
systemen in de techniek. Bovendien kunnen met het ontwikkelde raamwerk de
prestaties van systemen eenvoudig worden afgesteld.

Om deze doorbraak te bereiken hebben wij eerst systematische en rekenkundig
efficiënte wiskundige analysemethodes ontwikkeld voor niet-lineaire dynamische
systemen. Met de ontwikkelde methodes kunnen wij een vrij algemene analyse
maken van de veiligheid en de prestaties van de operatie van het systeem, ongeacht
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de referentiepunten waar het systeem moet opereren of het gewenste referentiege-
drag dat het moet volgen. Dit is bijvoorbeeld nuttig om te analyseren of een
ruimtevaartuig veilig werkt en voldoet aan de gewenste prestatie-eisen gedurende
verschillende vliegroutes.
Vervolgens hebben wij systematische en rekenkundig efficiënte regelalgoritmen
ontwikkeld die deze veiligheids- en prestatieconcepten ook kunnen garanderen voor
niet-lineaire dynamische systemen. Belangrijk is dat het afstellen van de prestaties
van de ontwikkelde regelalgoritmen vergelijkbaar is met dat van bestaande lineaire
methoden. Dit maakt het afstemmen van de regelalgoritmen voor complexe niet-
lineaire systemen om de gewenste prestaties te bereiken eenvoudig voor de gebruiker.
Bovendien maakt de rekenkundige efficiëntie van de ontwikkelde regeltechnieken het
mogelijk om snel te prototypen, wat leidt tot een snellere ontwikkeling van nieuwe
en betere producten.
Tenslotte hebben wij een methode ontwikkeld om de complexiteit van dynamische
systeemmodellen te verminderen. In combinatie met de ontwikkelde analyse- en
regelalgoritmen stelt dit ons in staat zeer complexe systemen aan te pakken.
Concluderend, met het ontwikkelde raamwerk kunnen we systematisch en efficiënt
het opereren van complexe systemen analyseren en er regelaars voor ontwerpen.
Deze gereedschappen zullen ingenieurs in staat stellen hun systemen naar hogere
prestatieniveaus te tillen en tegelijkertijd een veilige en robuuste werking van deze
systemen te garanderen.
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