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Abstract

On Layer-Wise Representations in Deep Neural Networks It is well-known
that deep neural networks are forming an efficient internal representation of the
learning problem. However, it is unclear how this efficient representation is dis-
tributed layer-wise, and how it arises from learning. In this thesis, we develop a
kernel-based analysis for deep networks that quantifies the representation at each
layer in terms of noise and dimensionality. The analysis is applied to backpropaga-
tion networks and deep Boltzmann machines, and is able to capture the layer-wise
reduction of noise and dimensionality. The analysis also reveals the disrupting
effect of learning noise, and how it prevents the emergence of highly sophisticated
deep models.

Zusammenfassung

Schichtweise Repräsentationen in Tiefen Neuronalen Netzen Es ist bekannt,
dass tiefe neuronale Netze eine effiziente interne Repräsentation des Lernproblems
bilden. Es ist jedoch unklar, wie sich diese effiziente Repräsentation über die
Schichten verteilt und wie sie beim Lernen entsteht. In dieser Arbeit entwickeln
wir eine Kernel-basierte Analyse für tiefe Netze. Diese Analyse quantifiziert die
Repräsentation in jeder Schicht in Bezug auf Rauschen und Dimensionalität. Wir
wenden die Analyse auf Backpropagation-Netze und tiefe Boltzmann-Maschinen
an und messen die schichtweise Reduzierung von Rauschen und Dimensionalität.
Die Analyse zeigt auch den störenden Einfluss des Lernrauschens: Dieses verhin-
dert die Entstehung komplexer Strukturen in tiefen Modellen.
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1. Introduction

A large number of machine learning problems are believed to benefit from hierar-
chical deep representations. Unlike simple similarity-based methods, deep learning
aims to solve the prediction problem by applying a sequence of global nonlinear
transformations to the input. This provides a more efficient way to fight the curse
of dimensionality (Bengio and LeCun 2007).

In many applications, we need to predict a small set of output variables (e.g. a
binary outcome) from a large set of input variables. The learning algorithm has
to find and extract the small subset of variations in the data, that are relevant for
prediction. A first example is handwritten digit recognition: In such problem, the
symbol to be recognized (0–9) can take a variety of forms in the input space (trans-
lations, rotations). This variability has to be filtered out. A second example in the
field of quantum chemistry is the prediction molecular atomization energy: From
a high-dimensional geometric description of the molecule (Rupp et al. 2012), the
system is progressively coarse-grained to produce the desired molecular electronic
property.

Deep networks have been proposed to solve these dimensionality reduction prob-
lems and have been applied with success (LeCun et al. 1998, Ciresan et al. 2010,
Montavon et al. 2012b). Among proposed methods, we can distinguish (1) super-
vised methods such as backpropagation networks (Rumelhart et al. 1986) where
the mapping between input and output is learned explicitly by providing labels and
backpropagating errors, and (2) unsupervised methods such as deep Boltzmann
machines (Salakhutdinov and Hinton 2009), where the unsupervised learning al-
gorithm creates as a by-product a low-dimensional representation of task in top
layers.

An important requirement of deep learning algorithms for dimensionality re-
duction is to be able to progressively reduce the dimensionality of data without
introducing noise. The convolutional neural network (LeCun 1989) is an example
of a model that structurally incorporates several levels of dimensionality reduction
through spatial pooling. Stacked autoencoders (Hinton et al. 2006) are able to re-
duce the dimensionality of data by progressively simplifying the representation in
a greedy layer-wise fashion. Unfortunately, such progressive dimensionality reduc-
tion is more delicate to achieve in a setting where all layers of representation are
learned jointly and where no predefined structure is available.

The goal of this thesis is to develop new methods based on the analysis of the
representation at each layer, in order to better understand the intrinsic difficulties
of learning multiple layers of representation at the same time. The main contri-
bution of this thesis is to quantify representations at each layer of a deep network
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1. Introduction

in terms of noise and dimensionality. Viewing a deep network as a composition of
functions y = fL ◦ . . . ◦ f1(x), we can construct a kernel at each layer:

k0(x, x
′) = kRBF(x, x

′)

k1(x, x
′) = kRBF(f1(x), f1(x

′))

...

kL(x, x
′) = kRBF(fL ◦ . . . ◦ f1(x), fL ◦ . . . ◦ f1(x′)).

We then apply for each kernel the method of Braun et al. (2008), that looks at the
correlation between the vector of labels and the kernel principal components. Of
these correlations, only a few (corresponding to the leading eigenvectors) contain
signal, and the remaining ones are essentially noise. This observation provides the
basis for computing an estimate of the noise and dimensionality of the problem at
each layer.

Our kernel-based analysis aims to provide a richer feedback on the training pro-
cess than a simple top-layer error estimate. By this, we aim to identify statistical
and computational bottlenecks in practical implementations of deep networks. For
example, a sharp dimensionality reduction in the first layers combined with a noise
increase may make learning more difficult by forcing subsequent layers to denoise
the low-dimensional representation.

The kernel analysis is applied to test several hypotheses on the layer-wise evo-
lution of the representation in backpropagation networks and deep Boltzmann
machines. These hypotheses arise from the careful examination of small deep net-
works made of few units, and are extended by deduction to larger models. After
showing that these hypotheses can be framed in terms of noise and dimensional-
ity within our kernel-based framework, we train large deep networks on real data
and estimate the noise and dimensionality of representations at each layer. Our
analysis is then able to test the validity of these hypotheses at real scale.

Description of Chapters

This thesis consists of four main chapters:

• Chapter 2 (Kernels and Deep Networks): In this chapter, we review
the kernel principal component analysis and the relevant dimension esti-
mates, an analysis that measures the noise and dimensionality of a kernel
with respect to a learning problem. Then, we explain how the analysis can
be used to analyze representations at each layer of a deep network, and how
it can help to better understand deep representations.

• Chapter 3 (Backpropagation Networks): In this chapter, we first re-
view the backpropagation network and its training procedure. Then, several
hypotheses on the layer-wise evolution of the representation are formulated,
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including the layer-wise denoising and dimensionality reduction of the learn-
ing problem, and an early discrimination effect caused by the presence of
learning noise. Hypotheses are tested with the kernel analysis of Chapter 2.

• Chapter 4 (Deep Boltzmann Machines): In this chapter, we apply
the same kernel analysis to deep Boltzmann machines (DBMs) and stacked
restricted Boltzmann machines (stacked RBMs). We first review the DBM
and how the learned solution can be understood in terms of modes of inter-
action. Then, based on these modes of interaction, several hypotheses are
formulated on the layer-wise evolution of the representation. In particular,
we predict the emergence of invariant top-layer representations in DBMs,
and a layer-wise oscillation effect in stacked RBMs.

• Chapter 5 (Predicting Molecular Electronic Properties): In this
chapter, we review an application of machine learning to quantum chem-
istry. We discuss the multiple challenges that arise from solving the problem
with neural networks, in particular, the difficulty of finding a good repre-
sentation of molecules, and the special wide-range and multiscale nature
of the problem. We propose several techniques including random Coulomb
matrices and input binarization in order to overcome these difficulties. We
finally apply these techniques to train successfully a neural network on the
prediction task.

Main Contributions of the Thesis

The thesis includes four main contributions:

• Application of RDE to Deep Networks: The main contribution of
this thesis is the application of the relevant dimensionality estimates (RDE)
method of Braun et al. (2008) to analyze layer-wise representations in deep
networks in terms of noise and dimensionality. We motivate the use of RBF
kernels as a proxy to measure these two quantities at each layer of the net-
work. We perform extensive experiments showing the capacity of the method
to capture and quantify the layer-wise transformation of representations in
deep networks.

• Deductive Methods for Understanding Layer-Wise Representa-
tions: In backpropagation networks, the qualitative analysis of the response
function of a simple two-unit deep network allows us to deduce an early dis-
crimination effect in presence of learning noise. For deep Boltzmann ma-
chines and stacked RBMs, we propose the use of binomial Boltzmann ma-
chines as a proxy to model their macroscopic complex behavior. We identify
several modes of interaction in DBMs that we call “preserve” and “comple-
ment” and that can be quantified using the layer interaction number. This
novel analysis allows us to deduce the emergence of invariance in DBMs, a
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1. Introduction

layer-wise oscillation effect in stacked RBMs, and to better understand the
effect of learning noise on the quality of emerging representations.

• Enhanced Training Procedures for Deep Boltzmann Machines: Our
analysis of representations in DBMs have led us to develop enhanced meth-
ods for training these models. This includes the centering trick, a technique
that consists of reparameterizing the energy of the DBM as a function of
centered states. The additional stability of the resulting learning algorithm
is verified by the analysis of the Hessian of the objective, showing that cen-
tered DBMs have a much better condition number than their non-centered
counterpart. The training procedure is further enhanced by structural sam-
pling, a recursive sampling procedure that further reduces learning noise in
top layers at reasonable computational cost.

• Learning Molecular Electronic Properties with Neural Networks:
We investigate the use of several neural network techniques for addressing
the specific challenges posed by the problem of predicting molecular elec-
tronic properties. We propose the random Coulomb matrices (a technique
to extract more statistical information from the data), and input binariza-
tion, that we show to better handle some scaling issues with the problem
representation. Applying these techniques leads to a significant performance
improvement on our learning task.

Relation to Previously Published Work

Many results in this thesis have already been previously published in conference
proceedings, books and journals. They are taken mainly from the following papers:

• Grégoire Montavon, Mikio L. Braun, and Klaus-Robert Müller. Kernel anal-
ysis of deep networks. Journal of Machine Learning Research, 10:2579–2597,
September 2011

• Grégoire Montavon, Katja Hansen, Siamac Fazli, Matthias Rupp, Franziska
Biegler, Andreas Ziehe, Alexandre Tkatchenko, O. Anatole von Lilienfeld,
and Klaus-Robert Müller. Learning invariant representations of molecules for
atomization energy prediction. In P. Bartlett, F.C.N. Pereira, C.J.C. Burges,
L. Bottou, and K.Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 449–457, 2012b

• Grégoire Montavon and Klaus-Robert Müller. Deep Boltzmann Machines
and the Centering Trick, volume 7700 of LNCS, chapter 25, pages 621–637.
Springer, 2nd edition, 2012

• Grégoire Montavon, Mikio L. Braun, Tammo Krueger, and Klaus-Robert
Müller. Analyzing local structure in kernel-based learning: Explanation,
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complexity, and reliability assessment. Signal Processing Magazine, IEEE,
30(4):62–74, 2013a

• Grégoire Montavon, Mikio L. Braun, and Klaus-Robert Müller. A study of
representations in deep Boltzmann machines. under review, 2013b

The thesis also borrows ideas, results and figures from the following papers:

• Grégoire Montavon, Mikio L. Braun, and Klaus-Robert Müller. Layer-wise
analysis of deep networks with Gaussian kernels. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances
in Neural Information Processing Systems 23, pages 1678–1686, 2010

• Grégoire Montavon, Mikio L. Braun, and Klaus-Robert Müller. Deep Boltz-
mann machines as feed-forward hierarchies. Journal of Machine Learning
Research - Proceedings Track, 22:798–804, 2012a

• Grégoire Montavon and Klaus-Robert Müller. Neural networks for compu-
tational chemistry: Pitfalls and recommendations. MRS Online Proceedings
Library, 1523, 2013

• Katja Hansen, Grégoire Montavon, Franziska Biegler, Siamac Fazli, Matthias
Rupp, Matthias Scheffler, O. Anatole von Lilienfeld, Alexandre Tkatchenko,
and Klaus-Robert Müller. Assessment and validation of machine learning
methods for predicting molecular atomization energies. Journal of Chemical
Theory and Computation, 9(8):3404–3419, 2013

• Grégoire Montavon, Matthias Rupp, Vivekanand Gobre, Alvaro Vazquez-
Mayagoitia, Katja Hansen, Alexandre Tkatchenko, Klaus-Robert Müller,
and O. Anatole von Lilienfeld. Machine learning of molecular electronic
properties in chemical compound space. New Journal of Physics, 15(9):
095003, 2013c
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2. Kernels and Deep Networks

There is a simple relation between kernels and deep networks: They both produce
a nonlinear representation of data φ(x)—implicit for kernels, or explicit for deep
networks—in which the problem is supposed to be more easily solvable. In this
chapter, we explore how the kernel framework can be used to better understand
the functions learned by deep networks.

A generic way of defining a representation of data is through a kernel. The
kernel maps each pair of samples (x, x′) to a score k(x, x′), typically, some measure
of similarity. By definition, the kernel must satisfy a positive semi-definiteness
constraint where

∑
ij αik(xi, xj)αj > 0 for all vectors α, and for all sequences of

data points x1, . . . , xn. If this condition is satisfied, there exists a nonlinear feature
map φ(x) such that the Euclidean dot product in such space is equivalent to the
kernel operator, that is:

k(x, x′) = φ(x)⊤φ(x′).

This correspondence between kernel and dot product in the feature space is known
as the kernel trick. The advantage of this feature map representation is that
many ideas developed in the context of linear models such as large margin clas-
sification and principal component analysis can be extended to nonlinear models.
In particular, any model of the form f(x) =

∑
i αik(x, xi) can be rewritten as

f(x) = β⊤φ(x). Conversely, many algorithms developed for linear models can be
“kernelized”, that is, transformed in a way that only the kernel operator needs to be
accessed. This avoids to work explicitly in the possibly high-dimensional feature
space. See, for example, Müller et al. (2001) for an introduction to kernel-based
learning algorithms.

In the next sections, we review the kernel principal component analysis (Schölkopf
et al. 1998), and the relevant dimensionality estimates proposed by Braun et al.
(2008). Then, based on these two methods, a comprehensive framework for ana-
lyzing layer-wise representations in deep networks is introduced.

2.1. Kernel Principal Component Analysis

(kPCA)

Kernel principal component analysis (Schölkopf et al. 1998) finds the main direc-
tions of variance in the kernel feature space φ(x). For finite data sets, such kernel
principal components can be approximated empirically. For this, we first collect a
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2. Kernels and Deep Networks
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Figure 2.1.: Interpretation of kernel principal components for Gaussian kernels
with different scale parameters σ. The input distribution p(x) is cho-
sen to be normal with mean zero and unit variance. Plots show the
five leading kernel principal components (shown from blue to red, and
scaled by their corresponding eigenvalues).

dataset of n samples,

D = {x1, . . . , xn},

drawn i.i.d. from some probability distribution p(x). Then, we compute the Gram
matrix K of size n×n associated to this dataset, where Kij = k(xi, xj). In general,
the feature map φ(x) produced by the kernel is not necessarily centered. The strict
version of PCA requires centering (

∑
i φ(xi) = 0). Centering of the feature map

can be done by centralizing the Gram matrix: Kc
ij = Kij − 1

n

∑
j Kij − 1

n

∑
iKij +

1
n2

∑
ij Kij. However, because of the relatively large number of kernel principal

components considered here, the effect of centering is minor. In our application,
centering may in fact discard useful information. In this work, the kernel will
always be taken non-centered. Once the Gram matrix K is computed, we solve
the linear eigenvalue problem:

Ku = λu

Due to the positive semi-definiteness of the kernel, all eigenvalues λ1, . . . , λn are
nonnegative. The eigenvectors u1, . . . , un, sorted by decreasing associated eigen-
value, are the kernel principal components. Each kernel principal component is an
n-dimensional vector and can be interpreted as a map from each data point in the
dataset to a certain value. In the continuous case, kernel principal components be-
come infinite-dimensional and can be interpreted as a function in the input space
ui(x) weighted by the input distribution p(x). Kernel principal components can
be used as a feature space representation by rescaling them as φi(x) = ui(x) ·

√
λi.

An interpretation of kernel principal components is given in Figure 2.1 for a
Gaussian kernel of parameter σ and an input probability distribution N (0, 1).
The five leading kernel principal components are shown ordered from blue to red,

8



2.2. Dimensionality and Noise Estimates

for scales σ corresponding to the 0.1, 0.3, and 0.6 quantiles of the distribution of
pairwise distances in the dataset. We can observe that for a given kernel, the kernel
principal components have an increasing level of detail (or higher frequencies).

A second observation that can be made from Figure 2.1 is that principal com-
ponents vary significantly depending on the value of the kernel scale parameter
σ: Kernels with large scale parameters tend to produce “risky” extrapolation on
the fringe of the data distribution. On the other hand, a small scale parameter
produces kernel principal components that are bounded in the input space.

2.2. Dimensionality and Noise Estimates

We present here an analysis by Braun et al. (2008) that looks at the structure
of the learning problem in the space of kernel principal components. Learning
predictive models is often achieved by joint minimization of two terms,

min
f∈F

Remp(f,D) + Ω(f),

where f ∈ F is a function taken from the set of functions that the learning machine
can implement, and D = {(x1, y1), . . . , (xn, yn)} is a dataset of input-output pairs.
The fitting term Remp(f,D) encourages functions f that predict accurately yi from
xi. On the other hand, the regularization term Ω(f) penalizes too complicated
functions.

When applied to the kernel-based models, such regularization scheme often ig-
nores an important structural property of kernel feature spaces: Braun et al. (2008)
found that for a given learning problem satisfying some smoothness properties, the
label information is implicitly contained in a limited number of kernel principal
components and the remaining components contain essentially noise. More pre-
cisely, the projection of the label vector y onto the leading components Z(i) = u⊤i y
typically takes the form

Z(i) = S(i)i>d +N(i) (2.1)

where S(i) is a signal component that is restricted to a small number of dimen-
sions d, and N(i) is a noise baseline that has similar statistical properties for all
i. This decomposition provides an estimate of noise and dimensionality, and al-
lows us to distinguish between four different scenarios: (1) high noise and high
dimensionality, (2) high noise and low dimensionality, (3) low noise and high di-
mensionality and (4) low noise and low dimensionality. Scenario 1 is the worst
possible. Scenario 4 is the best.

An important aspect of the noise and dimensionality estimates proposed by
Braun et al. (2008) is the advantageous convergence property of the signal com-
ponent S(i) with respect to the infinite sample case. In essence, Braun (2006) and
Braun et al. (2008) show that the signal relevant part S(i) of the spectrum Z(i) is
close to its asymptotic counterpart (when n → ∞), and that projection error for

9



2. Kernels and Deep Networks
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Figure 2.2.: RDE analysis for estimating noise and dimensionality on two of the
kernels of Figure 2.1. We consider the toy problem of modeling the
function y = tanh(10 ·x). On the left, the spectrum coefficients Zi are
plotted for each kernel principal component i. On the right, the same
signal is plotted in a cumulative fashion. While the spectrum is in-
structive of the signal-noise structure of the problem, cumulative plots
are generally more appropriate for comparing kernels quantitatively.

non-leading principal components is typically much smaller than for leading com-
ponents. The fact that noise and dimensionality estimates are both invariant and
robust to sample size implies that the analysis can be used to compare representa-
tions with very different sampling rates. In particular, Cadieu et al. (2013) show
the importance of such property when comparing representations in the brain (low
sampling rate) and in artificial neural networks (high sampling rate).

It is intuitive to discuss noise and dimensionality in the context of Gaussian
kernels: As we have seen in the example of Figure 2.1, the eigenspace of Gaussian
kernels is formed by a basis of increasingly high-frequency components. Thus,
the analysis tells us that the only part of the signal that can be recovered is its
low frequencies, and that the high frequencies should be filtered out, as they are
overwhelmingly dominated by noise. We discuss two different scenarios:

• Low dimensionality, high noise: In this setting, a narrow signal component
S(i) is emerging from a relatively high noise bed N(i). Gaussian kernels with
large scale σ fall into that category: Their rigidity and global nature allow
to capture a large amount of label information within their principal compo-
nents. However the same properties also prevent the kernel from adapting
to more complex decision functions. The noise-dimensionality profile for one
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2.2. Dimensionality and Noise Estimates

of such kernels is given in Figure 2.2 (top). For this type of kernels the
performance of the learning algorithm cannot be improved by simply adding
more samples since the problem is low-dimensional. Instead, a finer-grained
kernel (e.g. with smaller scale) has to be provided.

• High dimensionality, low noise: In this setting, the signal component S(i)
spans a large number of dimensions, but the noise bed N(i) is also lower.
Gaussian kernels with small scale σ fall into that category: The small scale
provides the granularity necessary to resolve complex functions. However,
due to their local nature, these kernels also lack the ability to capture in a
compact way the most salient factors of variation in the function. The noise-
dimensionality profile of such kernel is given in Figure 2.2 (bottom). In this
context, the learning problem can be solved more accurately by adding a
large amount of labeled samples.

2.2.1. Practical Considerations

We have reviewed some of the main ideas behind the dimensionality and noise es-
timates of Braun et al. (2008), and gave an intuition for the analysis in the context
of Gaussian kernels. In practice, in order to deal with a wider range of applications
such as multidimensional regression, classification, comparing representations, or
local analysis, the original method has to be adapted in several ways. We first
recapitulate the sequence of computations that lead to the spectrum coefficients
{Z2

i }, on which the analysis is based. Let {(x1, y1), . . . , (xn, yn)} be a dataset of
n samples, where xi ∈ R

d and yi ∈ R. After computing the non-centralized kernel
Gram matrix K where Kij = k(xi, xj), kernel principal components u1, . . . , un are
obtained by solving the eigenvalue equation

Ku = λu.

Let u1, . . . , un be sorted by decreasing eigenvalues. The coefficient Zi correspond-
ing to the ith principal component is then obtained as:

Z2
i =

∑

j

(uij · yj)2.

So far, the label vector y was assumed to be one-dimensional. For multidimen-
sional regression problems or classification problems, the label information is best
represented instead as a multidimensional vector y ∈ R

c. In the classification case,
y is simply a vector of class indicators, or alternatively, class probabilities. Let Y
be the label matrix of size n× c. The spectrum Z is now computed as

Z2
i =

∑

k

(
∑

j

uij · Yjk)2, (2.2)

that is, by summing out the contributions of label projections onto each dimension
of the output space. In practice, it can be simpler or more intuitive to look

11



2. Kernels and Deep Networks

directly at the prediction error of a linear model based on the d leading principal
components. Spectrum coefficients {Z2

i } can be related to the error residuals as:

e(d) = ||
d∑

i=1

uiu
⊤
i Y − Y ||2F =

n∑

i=d+1

Z2
i . (2.3)

A flat spectrum Z2 (e.g. noise baseline) will be captured by a linear decay of
e(d). Thus, assuming a clear signal-noise decomposition of the spectrum Z2, the
error curve e(d) will decrease sharply for small d and have a slower linear decrease
for large d. Example of error curves are given in Figure 2.3 in the context of
analyzing deep networks. A sample code for the kernel analysis is available at
http://gregoire.montavon.name/code/kanalysis.py.

We have seen in the example of Figure 2.1 that the eigenfunctions of a Gaussian
kernel are taking the form of wavelets of increasing frequencies. Such basis is
appropriate for modeling smooth functions of the input space. This is typically
the case for regression problems. This is also the case for noisy classification
problems where we wish to approximate the posterior p(y|x). However, for non-
noisy classification problems, the function p(y|x) takes the form of wide class
plateaus separated by sharp cliffs corresponding to the class boundaries. The high-
frequency content of such class indicator functions implies that, if applying this
analysis straight out-of-the-box, the classification problem would always look high-
dimensional with no clear cutoff between noise and dimensionality. Two solutions
are proposed to overcome this problem: First, we can consider an alternative
probability distribution

p′(x) ∝ p(x) · 1x∈B

where B is the region of the input space representing the class boundary. This
ensures that kernel PCA does not waste its capacity to model the plateaus that
are irrelevant for classification. Alternatively, Montavon et al. (2011) proposed
an a posteriori method that consists of fitting a logistic model β on top of the d
kernel principal components built from the original probability distribution p(x).
We first find the logistic model parameter β⋆ of dimensionality d × c that solves
the optimization problem

max
β

n∏

i=1

softmax([
d∑

j=1

ujβ
⊤
j ]i)yi .

The classification error is in turn computed as e(d) = 1
n

∑n

i=1 1ŷi 6=yi where ŷi =
argmax([

∑d

j=1 ujβ
⊤
j ]i). Here, the eigenfunctions of increasing frequencies are defin-

ing implicit separating surfaces in the input space that can be combined to form
complex classification boundaries.
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2.3. Analyzing Deep Networks with Kernels

2.2.2. Extension to Similarity and Local Reliability
Estimates

The method can be easily extended to measure similarity between two different
kernels k and k′. The measure of similarity s(d) is obtained by projecting the
principal components ui of the kernel k onto the principal components u′j of the
other kernel k′:

s(d) =
1

n

d∑

i=1

d∑

j=1

(u⊤i u
′
j)

2. (2.4)

This measures the total correlation between the subspaces spanned by the d leading
components of each kernel. The similarity measure has the boundary values s(0) =
0 and s(n) = 1. A similarity curve s(d) that increases quickly with d indicates that
the two kernels are similar. We note that such measure of similarity is symmetric,
that is, the kernels can be swapped without changing the value of s(d).

Finally, Montavon et al. (2013a) have developed a local extension of dimen-
sionality and noise estimates, which consists of performing the analysis on a local
kernel defined as kξ(x, x′) = k(ξ, x) · k(x, x′) · k(x′, ξ). This last extension is pre-
sented in Appendix C.

2.3. Analyzing Deep Networks with Kernels

Deep networks are characterized by being composed of multiple layers of represen-
tation. In this respect, they are able to implement some functions more efficiently
than shallow architectures such as linear models or simple RBF kernels. A well-
known problem where depth is necessary is the bit-parity problem. The bit-parity
problem consists of determining whether a sequence of bits

0 1 1 0 0 0 1 1 0 1 . . .

of length d contains an even or odd number of “1”s. Restricting the class of models
to all possible compositions of elementary functions “AND” and “OR”, it is known
for this problem that the most efficient solution in terms of number of units consists
of a deep sequence of operations made of at least O(log(d)) layers. See Utgoff and
Stracuzzi (2002) and Bengio and LeCun (2007) for a discussion.

In addition, there is some evidence that some of the practical problems that
we are trying to solve using machine learning also require depth. For example,
studies by Hubel and Wiesel (1959), Serre et al. (2005), Wibisono et al. (2010)
provide compelling evidence that deep processing also takes place in the brain.
In particular, dimensionality reduction is achieved through a hierarchy of feature
detectors (simple cells) interleaved by pooling units (complex cells). It is often
argued, that if such processing were to be efficiently achieved with less layers of
representation, deep models would be difficult to defend from an evolutionary

13
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Figure 2.3.: Overview of the kernel analysis of a deep network. The input is prop-
agated through the deep network. A kernel is built at each layer and
produces the error curve e(d) from which noise and dimensionality
can be estimated.

standpoint, due to inherent latencies caused by processing input with multiple
layers.

As a current limitation, it is sometimes difficult to take advantage of the deep
architecture, even in the case where the problem is known to be deep. As we
will see in the next chapters, there are many factors that influence qualitatively
the solutions learned by a deep network. Being able to characterize and quantify
these qualitative differences, and to relate quantitatively the parameters of the
learning algorithm to the properties of emerging representation is therefore of
crucial importance in order to develop more informed deep learning procedures.

2.3.1. Layer-Wise Analysis of Deep Networks

We now introduce the main analytic tool used in this thesis: Quantifying repre-
sentations at each layer of a deep network in terms of noise and dimensionality
using the method of Section 2.2. An overview of the analysis is given in Figure 2.3
for a four-layer deep network that has been trained to classify noisy handwritten
digits. First, the deep network is abstracted as a composition of functions:

f(x) = fL ◦ · · · ◦ f1(x).

For example, in a simple multilayer perceptron, each subfunction would consist of
a linear transformation followed by an element-wise nonlinearity.

14



2.3. Analyzing Deep Networks with Kernels

A kernel is constructed at each layer:

k0(x, x
′) = kRBF(x, x

′)

k1(x, x
′) = kRBF(f1(x), f1(x

′))

...

kL(x, x
′) = kRBF(fL ◦ · · · ◦ f1(x), fL ◦ · · · ◦ f1(x′)).

The choice of an RBF kernel will be motivated later in Section 2.3.3. We feed the
network with some data coming i.i.d. from the input distribution p(x). Using this
data, the kernel at each layer can compute its own Gram matrix and apply the
procedure described in Section 2.2.1.

As a result, an error curve e(d) is obtained for each layer. Each error curve char-
acterizes the structure of the learning problem at a given layer. Error curves are
characterized by a noise baseline (the slope of e(d) for large d) and a dimensionality
(the value d after which the error e(d) starts to decay linearly). In this example,
the deep network achieves a layer-wise reduction of both noise and dimensionality.

2.3.2. Understanding Noise and Dimensionality Reduction

We now look at how the basic computational elements of the network (sigmoid
functions and linear projections) are transforming the problem representation in
terms of noise and dimensionality. Figure 2.4 (left) illustrates the concept of noise
and dimensionality reduction for simple linear kernels. In this example, we con-
sider three data points x1, x2, x3 with their associated label (red = +1, blue = -1).
Dimensionality reduction can be achieved by rescaling principal components such
that the discriminative subspace is moved from the second principal component
to the first principal component. Such rescaling can be achieved, for example,
by linear transformation. If the problem is linearly unsolvable (i.e. there is no
linear relation between input and label), the kernel perceives the task as noisy. In
such case, only a nonlinearity such as the sigmoid function is able to distort the
representation in order to reduce noise, as shown in Figure 2.4 (bottom left).

In addition to noise and dimensionality reduction, combined effects where low
dimensionality is traded for low noise, or vice-versa, are also possible: A noise
reduction combined with a dimensionality increase may occur if a sharp nonlinear
transformation that uncovers a more complex problem, was perceived initially as
noise by the kernel. Such scenario is depicted in Figure 2.4 (middle). Conversely, a
too aggressive dimensionality reduction may discard label-informative components
and introduce noise in the problem. Such scenario is depicted in Figure 2.4 (right).

2.3.3. RBF Kernels: A Proxy for Looking at Deep Networks

It remains to demonstrate how noise and dimensionality reduction can be under-
stood in the context of deep networks, and why RBF kernels are appropriate for
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Figure 2.4.: On the left, interpretation of dimensionality and noise reduction for a
linear kernel. On the right, example of transformations that combine
a reduction or increase of noise and dimensionality. Both examples
are shown along with a cartoon of their RDE analysis.

our layer-wise analysis: First, as we have seen in the example of Figure 2.1, princi-
pal components of an RBF kernel take the form of smooth functions of increasing
frequency in the input space. Given that the set of leading principal components
spans the set of low-frequency functions, the representation at each location can be
understood as essentially locally linear. As a consequence, the mapping performed
by deep networks can be viewed locally in the same way as in Section 2.3.2. In
particular, we can see the original monolithic nonlinear function fl(x) at layer l
as:

fl(x) =





V1 · sigm(W1 x) if x ∈ C1
...

VN · sigm(WN x) if x ∈ CN .

where C1, . . . , CN are small disjoint regions that form together a partition of the
mapped input space at layer l − 1, and {Vi · sigm(Wi x)}Ni=1 are a set of smallish
nonlinear networks implementing the basic transformations shown in Figure 2.4.
In each small region Ci, the linear kernel is therefore a good proxy to measure the
evolution of noise and dimensionality from one layer to another.

A second argument in favor of RBF kernels is that they produce a statistical
aggregate of noise and dimensionality at different locations. The easiest way to
understand this is to consider a dataset made of N compact and well separated
clusters, so that an RBF kernel views the data essentially as a set of local kernels.
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K d=1 d=2 d=3 d=4

d=5 d=6 d=7 d=8 d=9

Figure 2.5.: Toy example showing how the kernel principal components relate lo-
cally and globally. On the top-left corner, we depict a block-diagonal
Gram matrix representing a set of three disjoint one-dimensional data
manifolds. We then display better and better approximations by
adding more and more components. With every added dimension
we add one more local eigenvector. Adding three dimensions to the
model is equivalent to adding one dimension to each local model.

In such setting, the global Gram matrix takes the form of a block-diagonal matrix

K =



K1 O

. . .
O KN




where {Ki}Ni=1 are the local kernels. Let λi be the ith eigenvalue of matrix K
and λjk be the jth eigenvalue of the matrix Kk. It can be shown easily, that the
following identities hold:

1. The eigenvalues of the matrix K are the concatenation of the eigenvalues of
matrices K1, . . . , KN .

2. The eigenvalues of the matrix K preserve their associated eigenvector in
the local matrix Kk. In other words, defining u(λ) to be the eigenvector
associated with the eigenvalue λ, we have that if λi = λjk, then u(λi) =
u(λjk).

An intuition is given for such identities in Figure 2.5. We observe that considering
N principal components of the global data distribution is the same as considering
one component of each local data distribution. Overall relevant dimensionality is
the sum of local relevant dimensionalities. Similarly global noise is the average of
local noise levels. Therefore, a combination of noise or dimensionality reduction
events taking place at various locations of the representation space will translate
into similar reduction of noise or dimensionality for the global RBF kernel.
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Figure 2.6.: Layer-wise analysis of a convolutional neural network. In this network,
noise and dimensionality reduction are structurally separated. The
convolution performs a noise reduction step, as shown by the blue
arrow. The pooling mechanism performs a dimensionality reduction
step, as shown by the purple arrow. The last fully connected layer
performs both noise and dimensionality reduction, as shown by the
red arrow.

A Statistical View

Finally, we give a statistical interpretation of noise and dimensionality reduction in
deep networks from the perspective of an RBF kernel. Such interpretation is based
on the fact that the empirical feature space of RBF kernels captures reliably only
a few leading components (low frequencies) while perceiving higher frequencies as
noise due to insufficient sampling rate or insufficiently small scale parameter σ.

We have seen in Section 2.3.2, that noise reduction essentially arises from the
application of a nonlinearity to the input representation. Such nonlinearities have
to be learned from many samples in order to justify statistically the induced extra
complexity. Similarly, we have seen in Section 2.3.2, that dimensionality reduction
is essentially a reweighting of the kernel principal components. Again, in order to
amplify smaller components without introducing noise, this dimensionality reduc-
tion must be learned with high accuracy.

Figure 2.6 illustrates noise and dimensionality reduction in a convolutional neu-
ral network (LeCun et al. 1998) trained on the same noisy variant of MNIST as in
Figure 2.3, where lower contrast irrelevant handwritten digits are linearly super-
posed in the pixel space. The network is composed of three layers: a convolution
layer, a pooling layer and a fully connected layer whose output is fed to a logistic
classifier.

Each layer of the network has a particular purpose: The convolution layer is
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2.3. Analyzing Deep Networks with Kernels

directly followed by a nonlinearity and is able to learn sharp nonlinear features
that perform denoising. This is translated in our kernel analysis by a reduction of
the noise baseline in e(d), as shown by the blue arrow. The statistical robustness
of the convolution layer, caused by features sharing across multiple locations in the
pixel space, allows to learn a large number of convolutional filters. This increases
the problem dimensionality but reduces the level of noise.

On the other hand, the pooling layer is linear, parameterless, and designed to
aggregate features from similar locations and feature maps. Pooling is measured
by our analysis as a reduction of dimensionality shown by the purple arrow. In
particular, the statistical robustness of the pooling layer caused by the absence
of learned parameters allows to perform a clean dimensionality reduction step,
without introducing noise.

Finally, the last fully connected layer performs one more step of noise and
dimensionality reduction where the representation is nonlinearly mapped onto a
lower-dimensional and more discriminative subspace.
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3. Backpropagation Networks

Perhaps the most basic supervised learning algorithm is the perceptron (Rosen-
blatt 1958). The perceptron is essentially a linear classifier coming with an efficient
learning algorithm. A fundamental limitation of the perceptron is that it does not
allow for representing nonlinear decision functions. Backpropagation networks
(Rumelhart et al. 1986) extend the perceptron by adding several layers of nonlin-
ear transformations that are learned by backpropagating errors. This seemingly
simple modification of the original algorithm endows these multilayer networks
with universal approximation capabilities (Cybenko 1989, Hornik 1991), allow-
ing them to model, in practice, extremely complex tasks (e.g. Krizhevsky et al.
2012). An important feature of backpropagation networks is that they are able
to learn their own internal representation from data. In this chapter, we aim to
characterize these internal representations using the kernel analysis of Chapter 2.

A backpropagation network learns a feedforward nonlinear mapping between
input and output. In a network of L layers with N1, . . . , NL units at each layer,
the mapping can be defined by the sequence of nonlinear functions

x0 = x,

x1 = σ(W⊤
1 (x0 − β0) + b1),

...

xL = σ(W⊤
L (xL−1 − βL−1) + bL).

An illustration of a backpropagation network is given in Figure 3.1. The variables
xl ∈ R

Nl denote the representations at each layer l. {Wl}Ll=1 are the weight
matrices of size Nl−1 ×Nl, and {bl}Ll=1, {βl}L−1

l=0 are the bias and offset vectors of
size Nl. Offset vectors are usually set to the mean activation of respective units
(βl = E[xl]) in order to improve the conditioning of the optimization problem
(LeCun et al. 1998). The nonlinear function σ(x) is applied element-wise to the
representations at each layer. A common nonlinear function is the logistic sigmoid,
defined as σ(x) = ex

1+ex
. Another nonlinearity that is often used in practice is the

rectifying function, defined as σ(x) = max(0, x) (Nair and Hinton 2010, Glorot
et al. 2011).

We denote by θ = {Wl, bl}Ll=1 the set of model parameters at each layer that
has to be learned from data. For a given data point (x, t), we wish to minimize
the error function

E = L(xL, t) + Ω(x, θ)
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Figure 3.1.: Sketch of a backpropagation network with three hidden layers along
with the weight, bias and offset parameters at each layer.

with respect to the parameter θ. The loss function L measures the mismatch
between the top-layer representation xL and the label t to be predicted, and is
differentiable with respect to xL. The regularization term Ω(x, θ) penalizes pa-
rameters and representations that are too complex. Using gradient descent, the
parameter update is computed at each iteration as

θ ← θ − γ ∂E
∂θ

,

where γ is the learning rate. Let ψ(ξ) be the function mapping the representation
at a given layer to its derivative with respect to the pre-activations at the same
layer (before σ). For a sigmoid network, it is given by ψ(ξ) = ξ · (1 − ξ). For
a rectifier network, it is given by ψ(ξ) = 1ξ>0. The gradient of E with respect
to model parameters at each layer can be obtained by applying the chain rule
(Hinton and Sejnowski 1986). It is backpropagated from one layer to another as:

∂E

∂xl−1

=
∂E

∂xl
· ∂xl
∂xl−1

=
(∂E
∂xl
◦ ψ(xl)⊤

)
·Wl

where ◦ denotes the element-wise product. These gradients can be iteratively
computed starting from ∂E

∂xL
down to ∂E

∂x1

. As the error gradient is backpropagated,
it is alternatively multiplied by weights matrices and by ψ(ξ). Similarly, the
gradient with respect to parameters at each layer can be computed easily as:

∂E

∂W⊤
l

=
∂E

∂xl
· ∂xl
∂W⊤

l

= xl−1 ·
(∂E
∂xl
◦ ψ(xl)⊤

)
.

When training over a dataset D, the objective becomes the average of the error for
each sample in the dataset, and the gradient of the objective with respect to the
model parameters simply becomes the average of all individual gradients. A major
difficulty when training backpropagation networks arises from the nonconvexity of
the objective E in the parameter space. Nonconvexity makes the model sensitive to
the learning procedure, in particular, the initial solution θ0, the type of optimizer,
the parameterization of the network, and more generally, the amount of noise
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injected in the learning procedure. In this chapter, we will analyze the effect of
the learning procedure, in particular, the amount of learning noise, on the layer-
wise organization of the learned solution.

3.1. Layer-Wise Simplification of Representations

We have briefly reviewed in Section 2.3 some evidence from circuit theory and
neural recordings, that deep architectures are necessary in order to efficiently
represent a certain class of learning problems. One might hypothesize that a
backpropagation network that has been trained for long enough and with enough
data will learn such deep representation of the problem. However, while such
decomposition of task is usually understood on a conceptual level, based on our
common understanding of how objects are constructed from basic features, it is
not directly obvious why the backpropagation algorithm would learn such deep
sequence of increasingly low-dimensional representations.

3.1.1. An Optimization Perspective

In this section, we argue that such layer-wise distribution of the representation
is already implicitly “contained” in the backpropagation algorithm. In particular,
the multiplicative nature of the mapping between input and output provides a
mechanism of fairness in the allocation of modeling load at each layer. This is
best illustrated by looking at simple prototypical deep networks.

Let us consider a simple narrow linear deep network composed of one unit at
each layer.

xL = wL · . . . · w1 · x =
( L∏

i=1

wi

)
· x (3.1)

The gradient of error with respect to each parameter is given by

∂E

∂wl

=
∂E

∂xL
· wL · . . . · wl+1 · wl−1 · . . . · w1 · x =

∂E

∂xL
·
( L∏

i=1

wi

)
· x
wl

(3.2)

The gradient is a simple product of weights at each layer except the weight for
which the gradient is computed. This particular structure of the gradient allows
for learning a set of weights that equally contribute to the function to be learned:
The argument consists of supposing that a weight at a given layer l is smaller than
weights at different layers. It is easy to see from Equation 3.2 that this weight
has the largest corresponding gradient, because the weight gradient has its own
small weight in the denominator. Thus, as small weights receive larger updates,
assuming that some of the weights are initially too small, the magnitude of weights
at each layer will tend to equalize over time. Figure 3.2 illustrates this effect in a
simple narrow two-layer linear network. The error surface is shown as a function
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Figure 3.2.: Error surface for a two-parameter linear network y = w2 · w1 · x. The
error in this example is the square error E = (y − t)2 for x, t = 1.
Optimal solutions are in the top right corner of the plot. We can
observe that the lowest valued parameter tends to have the strongest
update. This encourages a fair distribution of the modeling load at
each layer.

of the first layer parameter w1 and second layer parameter w2. The optimum is
located in the upper right corner. The error gradient always points to the middle
(w1 = w2), showing the tendency to fair allocation of modeling load at each layer.

The argument also holds in the nonlinear case when a nonlinearity σ(x) is
applied at each layer. Here, for a specific input x, the nonlinear mapping can be
locally approximated by a linear function. Here, an additional difficulty compared
to the pure linear case discussed before is that the locally linear approximation now
introduces multiplicative factors in both the forward pass and the backward pass.
In the forward pass, the signal is multiplied at each layer by σ(xl)/xl (the ratio
between activation and pre-activation). In the backward pass, the error gradient
is multiplied at each layer by σ′(xl) (the local derivative of the nonlinearity).
Interestingly, if the activation vs. pre-activation ratio matches the slope of the
nonlinearity, that is, if

σ(xl)/xl = σ′(xl) for all l,

multiplicative factors in the forward and backward pass cancel out. In practice,
only linear functions and some piecewise linear functions satisfy this equation
exactly. The rectifying function σ(x) = max(0, x) is one of them. The hyperbolic
tangent function and other sigmoids centered at the origin also satisfy this equation
up to some bounded error.

The argument can also be extended to higher-dimensional networks by defining
the feed-forward pass as a chain of matrix products xL = W⊤

L · . . . ·W⊤
1 · x. The

gradient with respect to the weight matrix at layer l is

∂E

∂Wl

= (Wl+1 · . . . ·WL ·
∂E

∂x⊤L
) · (x⊤ ·W1 · . . . ·Wl−1).
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Figure 3.3.: Layer-wise evolution of the representation in a backpropagation net-
work with three hidden layers. The network is trained on MNIST
and a noisy variant of it, and with two types of nonlinearities. On
the MNIST dataset, the input representation is high-dimensional but
has low noise. The network implements a progressive layer-wise re-
duction of dimensionality. On the MNIST-noisy dataset, the input
representation is low-dimensional with high-noise as we can see from
the linear decay of e(d). Here, in addition to dimensionality reduction,
the network implements a progressive denoising of the representation.

Again, a highly contributing layer (a weight matrix with large weights) does not
have itself entering its own gradient, but contributes to the gradient of all other
layers. On the other hand, a weakly contributing layer receives in its gradient
the contribution of all other layers, but inhibits the gradient in other layers by
contributing with its small weights.

3.1.2. Experiments

In this section, we test empirically the proposed hypothesis on the fair distribu-
tion of modeling load at each layer, using the kernel analysis of Chapter 2. If
such hypothesis holds, we expect to observe a progressive layer-wise reduction of
noise and dimensionality at each layer. For this, we train several backpropagation
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3. Backpropagation Networks

networks on the MNIST handwritten digits dataset described in Appendix A.1.
Details of the training procedure are given in Appendix A.2. We apply the kernel
analysis on a subset of the test set B ⊂ Dtest defined as

B = {x ∈ Dtest s.t. ||x− c|| < ε},

where c is chosen to be near the decision boundary, and ε is chosen such that
B contains exactly 1000 samples. This preliminary step reduces the number of
samples involved in the computation of kernel principal components, and lets the
analysis concentrate on the region of the input space containing the discrimination
boundary.

Figure 3.3 shows the layer-wise evolution of the representation for a simple
backpropagation network trained on MNIST and on MNIST-noisy (a noisy version
of the MNIST dataset where handwritten digits are linearly superposed in the
pixel space to an unrelated handwritten digit with lower contrast). We perform
the experiments both for a sigmoid network and a rectifier network. In all cases,
we can observe a layer-wise reduction of the problem dimensionality. This is best
seen by looking at the number of dimensions d required to achieve a certain error
e, that recedes layer after layer.

While we cannot easily distinguish a noise baseline on the MNIST dataset (the
problem is perceived as high-dimensional by the RBF kernel at each layer), such
noise baseline is clearly visible on the MNIST-noisy dataset, where the error e(d)
starts to decay almost linearly after approximately 100 dimensions. On this last
noisy dataset, we can observe that the noise baseline (i.e. the slope of the linear
part of e(d)) decreases progressively as the input is propagated onto more layers
of the network. This illustrates the capacity of deep networks to perform joint
denoising and dimensionality reduction of the input representation.

Interestingly, on the MNIST-noisy dataset, the rectifier network does not per-
form much further denoising after the first layer. This may be due to the fact that
the rectifying function does not saturate for positive values, and backpropagates
more error signal in the network. This makes the learning process noisier than
with sigmoids.

3.2. Learning Noise and Early Discrimination

In this section, we study how the noise in the learning algorithm affects the layer-
wise organization of the representation. In particular, we will observe that noise
causes an early discrimination effect, where most of the dimensionality reduction
takes place in the first few layers. Then, we will argue that such early discrimi-
nation effect is the way by which the neural network spontaneously adapts to the
high level of noise, in order to optimize for the training objective.
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3.2. Learning Noise and Early Discrimination

3.2.1. Three Sources of Noise

When learning a backpropagation network, we can distinguish at least three dif-
ferent sources of noise:

• Stochastic gradient noise: The first source of noise originates from the fact
that most learning algorithms are training the network one example at a
time (Bottou 1991; 2012). While such learning scheme is necessary in order
to scale to large datasets, it also introduces noise in the parameter update,
due to the fact that we do not descend the true gradient of the objective
function, but a random approximation of it.

• Parameter update noise: Another source of noise arises from the parameter
update rule where the local gradient (or local Hessian in the case of a sec-
ond degree method) is extrapolated to a small neighborhood of the current
parameter θ. Such extrapolation can become a major source of noise, in the
event where the optimization problem is not well conditioned, a rather com-
mon scenario when training deep networks (Martens and Sutskever 2012).

• Regularization noise: A third source of noise comes from regularization. The
regularization can be implicit, for example, by initializing the network with
small weights and using early stopping. It can also be explicit, for example,
by using weight penalties or by injecting noise into the model.

3.2.2. Understanding Early Discrimination

The Saturating Sigmoid

We consider a toy example consisting of a simple backpropagation network y =
v ·tanh(w ·x), where w and v are the parameters. The dataset to learn is shown
by black dots in Figure 3.4 (left) and admits an optimal solution at w, v = 1.
The error as a function of the parameters (w, v) is shown in Figure 3.4 (right).
We look at the stability of the optimal solution (w, v = 1) shown in blue, and a
near-optimal solution (w = 2.7 and v = 0.97) shown in red. In the first case, a
slight variation of parameter w (more exactly, a decrease in value of w) can lead
to a large error increase as shown by the narrowly spaced contour lines near the
blue dot. On the other hand, in the second case where w is larger, the sigmoid
reaches saturation and the error is not varying anymore as a function of w.

We would like to measure the effect of noise on the solution. We first note that in
presence of learning noise, the optimization procedure typically converges to a sta-
tionary time-independent probability distribution p(w, v). We consider the noise
induced by a large learning rate, combined with some small random perturbation
of the error gradient. Figure 3.5 shows the distribution p(w, v) resulting from
using a small or large learning rate. These distributions are respectively depicted
in blue and red. Note that in each case, the learning rate for the parameter w is
multiplied by 100, in order to account for the pathological curvature of the error
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Figure 3.5.: Simulation of the gradient descent for different learning rates on the
saturating sigmoid problem. Each point denotes a different iteration of
the gradient descent. High learning rate tends to move the optimizer
in the saturation mode of the sigmoid.

surface. For small learning rates, p(w, v) has most of its mass near the optimum
w, v = 1. For high learning rates, p(w, v) spreads to the robust saturated regime
of the sigmoid, while has low density near the optimum. An intuitive explanation
for this effect is that the optimizer is frequently pushed away from the optimum,
due to the strong neighboring gradients. Once it is in the saturated region, it
takes a very long time for the parameter w to move back to the optimum due to
the very small derivatives ∂E/∂w when w is large.

We now analyze the noise and dimensionality profile of each solution (blue and
red) using our kernel-based analysis:

• When w is large (red solution), all data maps to y = 0.97. This is a con-
sequence of the squashing effect of the sigmoid. Therefore, this point-wise
distribution is contained in a single kernel principal component of kRBF(y, y

′),
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3.2. Learning Noise and Early Discrimination

however, it comes at the price of raising the noise baseline.

• When w is small (blue solution), mapped data spans approximately y ∈
[0.9, 1]. Here, from the perspective of kRBF(y, y

′), the noise baseline remains
zero, since we have captured the optimal first layer feature, but this comes
at the price of higher dimensionality since it now requires several kernel
principal components to model the range [0.9, 1].

Therefore, in presence of learning noise, our analysis predicts that the first layer
representation is low-dimensional, but introduces noise. From this point, it is
difficult to further improve the representation in the following layers. On the other
hand, in absence of learning noise, the mapped representation does not introduce
noise, and a second layer of dimensionality reduction can be implemented more
easily.

A Channel View

Another way of understanding the early discrimination effect in presence of learn-
ing noise is by viewing the neural network as a communication channel between
input and output, and where noise is injected at each layer. Such setting is il-
lustrated in Figure 3.6 (left). The dimensionality reduction nature of the prob-
lem we are studying implies that labels have much less entropy than the input
(H(T ) ≪ H(X)). A solution to the problem of noise would be for the network
to use only one layer (y = f1(x)) and to use the remaining layers for redundantly
encoding y (in a way that makes it robust to the noise).

The interpretation of such channel effect in the our kernel-based framework is
illustrated in Figure 3.6 (middle). By learning a first layer representation consist-
ing of only a very few number of label-related principal components, the bulk of
remaining principal components can be filtered out, and the noise arising from the
learning algorithm can be easily removed layer after layer using low-dimensional
mappings. On the other hand, if a large number of kernel principal components
are propagated in the hierarchy, these principal components will be incrementally
corrupted by noise.

The early discriminating solution that we have argued to be more robust to
noise, assumes that the low-dimensional problem representation can be extracted
directly with only a few layers. However, when the problem requires depth in
order to be correctly represented, we are facing a trade-off between approximation
error Eapprox caused by the restricted number of layers, and noise-induced error
Enoise caused by the noise in the learning algorithm:

E(l) = Eapprox(l) + Enoise(l).

The effective number of layers implementing the learned solution is denoted by
l. Such trade-off is illustrated in Figure 3.6 (right). The approximation error
Eapprox(l) decreases with l, because more layers increase the representational power
of the network. On the other hand, the noise-induced error Enoise(l) increases with
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Figure 3.6.: Cartoon illustrating the view of a feed-forward network as a noisy
channel. Left: Diagram of a feed-forward network with noise added
at each layer. Middle: RDE interpretation of the noisy network. The
simple low-dimensional representation is more robust to noise. Right:
Tradeoff between approximation error and noise-induced error.

l, because the signal transmitted in the feed-forward pass is more easily corrupted
by noise.

Overall, we can conjecture, that there will be an optimal number of layers that
the learning algorithm will discover, in order to minimize the error. As the learning
procedure becomes less noisy, the effective number of layers will increase. On the
other hand, if learning remains noisy, the effective number of layers will stay low.

3.2.3. Experiments

We now train several backpropagation networks with different sources of noise.
Details of the training procedure are given in Appendix A.2. As a baseline, we
consider the backpropagation network of Section 3.1.1 trained on MNIST. We test
the effect of the three types of noise described in Section 3.2.1, on the layer-wise
evolution of the representation. The first network is trained using pure stochastic
gradient descent (the error gradient is computed from only one data point). The
second network has parameter update noise. Such noise is created by reparameter-
izing the network such that the optimization problem becomes badly conditioned.
In this network, we add a constant offset “+3” to the sigmoids activations at each
layer. For the third network, we inject Gaussian noise with variance 1 to the
output derivatives in order simulate a regularizer.

Figure 3.7, shows the layer-wise evolution of the representation for these three
noisy backpropagation networks. We can observe that under the effect of noise,
the bulk of discrimination becomes concentrated in the first layer. In particular,
noise causes the relevant problem dimensionality to shrink to only a few kernel
principal components in each hidden layer. This observation corroborates our early
discrimination hypothesis made earlier. This also suggests that these networks are
essentially using the deeper layers as a robust transmission channel, without much
further dimensionality reduction or denoising taking place.

There are at least two algorithms that are not subject to early discrimina-
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Figure 3.7.: Plots showing the effect of various sources of noise on the layer-wise
evolution of the representation of a network trained on the MNIST
dataset. All sources of noise consistently cause an early discrimination
effect where the first layer carries most of the dimensionality and noise
reduction.

tion: pretrained MLPs (PMLP, Hinton et al. 2006) and convolutional neural net-
works (CNN, LeCun 1989), both of them have led to significant performance
improvements in practical applications: See, for example, Salakhutdinov and Hin-
ton (2009), Rifai et al. (2011a), Dahl et al. (2011) for successful applications of
PMLPs, and LeCun et al. (1998), Krizhevsky et al. (2012), Abdel-Hamid et al.
(2012) for successful applications of CNNs.

Figure 3.8 (left) shows the layer-wise evolution of the representation for an MLP
(simple backpropagation network), a PMLP and a CNN. The training procedure
for these networks and details of the kernel analysis are described in Appendix
A.2. We display the error e(d) for d = 10 dimensions. Experiments show that the
PMLP and the CNN are less subject to the early discrimination effect, as they
discriminate considerably later than the MLP. For the PMLP, such absence of
early discrimination can be explained as follows: The PMLP has already a well-
structured feature hierarchy that only requires a small amount of supervised fine-
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Figure 3.8.: Plots taken from the paper by Montavon et al. (2011) showing the
effect of neural network architecture and capacity on the layer-wise
evolution of the representation. Error is shown for a model based on
the 10 leading kernel principal components.

tuning. As a consequence, (1) the learning noise that causes early discrimination
in standard backpropagation will disappear very fast since the initial solution is
close to the final one, and (2) the unsupervised model uses nonlinearities in a
more saturated regime, and the error gradient is consequently strongly dampened
as it flows backwards. On the other hand, the CNN, structurally prevents the
early discrimination effect, by restricting first layers to low level convolutions and
spatial pooling. Here, even a large learning noise will be unlikely to cause early
discrimination since the early discriminating solutions are simply not part of the
class of functions that the CNN can represent.

Figure 3.8 (right) shows the layer-wise evolution of the representation in sev-
eral MLPs with different numbers of units at each layer. We can observe that
more units tend to reduce the early discrimination effect. This can be explained
as follows: In the asymptotic case where the number of units in the network is
infinite, all possible solutions are already contained in the network and the train-
ing objective simply consists of extracting the correct solution among the many
possible ones. Also, the learning noise will not force the top layers of the network
to behave as a robust transmission channel, as the higher capacity better absorbs
the learning noise.

3.2.4. Discussion

We have studied the early discrimination effect in backpropagation networks and
demonstrated how pretrained architectures and convolutional neural networks are
less affected by it. Unfortunately, pretraining and convolutional networks are
not as broadly applicable as simple backpropagation networks. Convolutional
neural networks are only applicable to sequential data, where the task exhibits
some degree of spatial invariance. Unsupervised pretraining makes underlying
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3.2. Learning Noise and Early Discrimination

assumptions about the nature of the task to be solved (Ghahramani 2003), and
can be counterproductive when these assumptions are not met.

Backpropagation networks are usually initialized randomly. This introduces a
bias in favor of some randomly complex models and harms generalization. En-
semble methods deal with this random complexity by averaging model predictions
at test time between multiple networks and allow for higher generalization (Naf-
taly et al. 1997). However the computational overhead created by having several
networks is not always affordable.

Stochastic networks (Neal 1992, Bengio and Thibodeau-Laufer 2013) or stochas-
tic learning algorithms (Bottou 1991) have sometimes been advocated as a way of
reducing the initialization bias. They allow in principle to explore more exhaus-
tively the space of models of similar complexity, by randomly jumping between
these models under the effect of noise. However, our analysis suggests that noise
in deep networks causes an early discrimination effect, where the multiple lay-
ers are not used effectively. In this case, the model complexity tends to spread
horizontally rather than vertically.

Our kernel-based analysis provides a way to quantify such early discrimination
bias. However, we leave the discovery of generic methods that explore the space of
deep structures and that are immune to early discrimination as an open question.
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4. Deep Boltzmann Machines

Deep Boltzmann machines (DBM, Salakhutdinov and Hinton 2009) are deep
undirected generative models of data, that can be used to learn multiple layers of
representation. Deep Boltzmann machines have been proposed as an alternative
to other deep unsupervised learning algorithms such as deep belief networks (Hin-
ton et al. 2006, Hinton and Salakhutdinov 2006) or stacked autoencoders (Bengio
et al. 2007, Vincent et al. 2010, Rifai et al. 2011b, Bengio et al. 2013b). A particu-
lar feature of deep Boltzmann machines is that they integrate top-down feedback
at learning and prediction time, allowing them in practice to produce better gen-
eralizing models (Salakhutdinov and Hinton 2009, Srivastava and Salakhutdinov
2012).

In this chapter, we aim to characterize the representations that are learned
in DBMs. Here, we will narrow our analysis to centered DBMs (Montavon and
Müller 2012), where each unit of the network has mean activation 0. Centered
DBMs confer two important advantages compared to the original non-centered
version: First, they make the underlying optimization easier, which facilitates
learning of all layers at the same time. This allows us to analyze representations
at each layer, without the perturbing effect of layer-wise pretraining. Second, the
learned model can be interpreted in terms of modes of interaction that we further
develop in Section 4.1.

We consider a centered DBM with three layers x, y and z. Each layer has Nx,
Ny and Nz units. The first layer x represents the visible units (the data) and the
other layers represent the hidden units. Units at each layer are binary, so that
each configuration (x, y, z) of the DBM is in the space {0, 1}Nx+Ny+Nz . A three-
layer DBM is depicted in Figure 4.1. The centered DBM associates to each state
(x, y, z) an energy defined as

E(x, y, z) =− (x− α)⊤W (y − β)
− (y − β)⊤V (z − γ)
− (x− α)⊤a− (y − β)⊤b− (z − γ)⊤c.

The parameters of the model are the weight matrices W of size Nx × Ny and V
of size Ny × Nz, the bias vectors a, b, c and offset vectors α, β, γ of same size as
their respective layer. The offset vectors are set to correspond to the expectation
of respective units (α = E[x], β = E[y], γ = E[z]). A probability distribution is
associated to each possible configuration of the network as

p(x, y, z) =
1

Z(θ)
e−E(x,y,z).
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Figure 4.1.: Left: Sketch of a deep Boltzmann machine with two hidden layers
along with its parameters. Right: Unfolded view of the same DBM
defining a possible Gibbs sampling strategy.

The probability distribution can be marginalized over its hidden units in order
to obtain an input distribution: p(x) =

∑
y,z p(x, y, z). The constant Z(θ) is the

partition function and normalizes the probability distribution to one. In practice,
it is impossible to compute the partition function exactly as it would require to
compute the energy of an exponentially large number of states. For this reason,
sampling algorithms are often used (Hinton 2002, Tieleman 2008, Salakhutdinov
and Murray 2008).

Binomial Boltzmann Machines

For analysis purposes, one can simulate the collective behavior of n binary units
with a single binomial unit behaving according to a binomial distribution of pa-
rameters n and p (Teh and Hinton 2001). A binomial Boltzmann machine (BBM)
has the probability distribution

p(x) =
1

Z(θ)

[
N∏

i=1

(
n

xi

)]
e

1

2
(x−β)⊤W (x−β)+(x−β)⊤b. (4.1)

where N is the number of binomial units and x ∈ {0, . . . , n}N . The motivation for
using binomial Boltzmann machines instead of binary ones is that it combinatori-
ally reduces the size of the state space (from 2N ·n to (n+1)N). In our analysis, we
use a maximum of 4 binomial units with n = 25. This amounts to enumerating
(25 + 1)4 = 456976 states. If the distribution were represented by a binary Boltz-
mann machine, the number of states would become 24·25 ≈ 1030, which is clearly
intractable.

4.1. Quantifying Layer-Wise Interactions

Deep Boltzmann machines are undirected probabilistic models, where the multiple
layers interact in a non-benign fashion. In order to study emerging representations
in these models, it is important to develop an understanding of the interaction
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between the multiple layers. In this section, we propose an interpretation of these
models in terms of modes of interaction. These modes of interaction originate
from the careful analysis of simple binomial Boltzmann machines of two units,
and will then be quantified by the layer interaction number (LIN), that we use in
our empirical evaluations. We distinguish two modes of interaction:

Preserve Mode

The preserve mode between two binomial units is illustrated in Figure 4.2 (middle)
and is characterized by a joint probability distribution that is strongly bimodal.
The preserve mode is reached by setting a positive weight w between the two inter-
acting units and by having biases of same sign. More generally, it is reached when
a ·b ·w > 0. Here, the two biases a and b control how much of the probability mass
is allocated to each cluster. The preserve mode allows for modeling multimodal,
locally Gaussian distributions. Multimodality is important in order to implement
dense regions of the input space representing class manifolds separated by large low
density regions. For example, in handwritten digit recognition, low density regions
between class manifolds arise from the impossibility of continuously transforming
a handwritten digit into another digit, for example, continuously transforming the
digit “0” into “1”.

Complement Mode

The complement mode between two binomial units is illustrated in Figure 4.2
(right) and is characterized by a unimodal non-Gaussian joint distribution. Ol-
shausen and Field (1996) showed that in the context of modeling natural images,
Gaussianity is a very poor modeling assumption. This extends naturally to a wide
range of signals exhibiting similar statistics such as handwritten characters and
spectrograms. The complement mode is reached by setting a negative weight be-
tween units with similar biases. More generally, it is reached when a · b · w < 0.
Here, the nonlinear elongated shape of the joint probability distribution arises from
the conflicting requirement between the weight parameter (forcing the two units to
take different values) and the biases (forcing the two units to take the same values),
thus creating a manifold of different configurations that are all equally plausible.
This can also be understood as a result of the coincidental superposition of the
functions E[y|x] and E[x|y] (showed by solid and dashed lines).

Using Modes of Interaction to Model Physical Translations

In order to understand the importance of the complement and preserve modes of
interaction for modeling real data, we consider the toy scenario of Figure 4.3. This
simple example consists of a one-dimensional physical space with sensors x1 and
x2 placed at different locations. Each sensor detects whether an object is in front
of it.
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Figure 4.2.: Illustration of the modes of pairwise interaction in a binomial Boltz-
mann machine. Top: Diagram of the binomial Boltzmann machine
with associated parameters. Middle: Joint probability distribution
p(x, y) as computed from Equation 4.1 and represented as a cloud of
black dots. Solid and dashed lines represent a sigmoidal approxima-
tion of conditional expectations E[y|x] and E[x|y]. Bottom: Marginal
probability distribution p(x).

Such setting is very common in practical applications, for example, for pixel
images, where class manifolds usually follow directions of physical translation.
This is more generally the case in any network of sensors that are physically
limited in scope and placed at different locations.

We move a large object from left to right (or from right to left) so that sensors x1
and x2 are alternatively activated and deactivated. The translation of the object
is linear in the physical space, but describes a nonlinear path in the sensor space
(x1, x2). More precisely, physical translations are describing a loop in the sensor
space similar to the one observed in Figure 4.3 (right).

In this example, units are dynamically set in the preserve and complement
modes of interaction depending on the state of other units. In particular, when
looking at the joint distribution p(x1, y1), we can distinguish the four following
cases:
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Figure 4.3.: Toy example showing how the two modes of interaction can be com-
bined to implement physical translation in the sensor space. Left:
Physical object being translated, and whose presence is detected by
sensors x1 and x2. Middle: Binomial Boltzmann machine implemen-
tation of translation with w = 0.35. Pairs of connected units are
set dynamically in each mode of interaction depending on the state
of other units, as shown by the joint distribution p(x1, y1). Right:
Joint probability distribution over x1 and x2 modeling the physical
translation (a loop in the joint space (x1, x2)).
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4.1.1. The Layer Interaction Number (LIN)

For the purpose of our analysis, we would like to measure whether the trained DBM
is globally in the preserve or complement mode of interaction. In a fully connected
Boltzmann machine with energy function E(x) = 1

2
(x−β)⊤W (x−β)+ (x−β)⊤b,

assuming that all units are centered (i.e. E[x− β] = 0), we define the interaction
number (or IN) as:

IN =
1

2

∑

ij

biWijbj =
1

2
b⊤Wb. (4.2)

We emphasize that the IN only applies to centered Boltzmann machines. Figure
4.4 shows the IN and the three-dimensional probability distribution, for various
parameters of a three-unit fully connected binomial Boltzmann machine. A neg-
ative IN produces distributions that are unimodal and strongly non-Gaussian.
On the other hand, a positive IN produces bimodal distributions made of two
Gaussian-like clusters.
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Figure 4.4.: Illustration of the type of distributions produced for different values
of the interaction number IN in a fully connected Boltzmann machine
composed of three binomial units. We set the same weight w between
each pair of units, and the same bias b = −2.25 on each unit.

It is useful to discuss the limitations of the IN in the physical translation example
of Figure 4.3. In this example biases were set to 0, therefore, IN = 1

2
0⊤W0 = 0.

Here, the IN does not represent the fact that both modes of interaction (preserve
and complement) are used in the model and are determined dynamically depending
on the state of other units. Instead, the IN is only a statistical measure that tells
whether one of these modes is dominating over the other.

In practice, when analyzing deep Boltzmann machine or related models, it is
more instructive to look at specific layers. Let x and y be two adjacent layers in a
DBM with weight matrix W , bias vectors a, b and offsets vectors α, β. Assuming
that units at each layer are centered (E[x − α] = 0 and E[y − β] = 0), the layer
interaction number (or LIN) is measured as:

LIN =
∑

ij

aiWijbj = a⊤Wb. (4.3)

When LIN > 0, the two layers are globally in the preserve mode. When LIN < 0,
the two layers are globally in the complement mode. The LIN is easy to monitor
at training time, as it does not involve the enumeration of the exponentially large
state space. The global IN of the DBM is further related to the LIN at each layer
by

IN =
L−1∑

l=0

LIN(l, l + 1),

where LIN(l, l + 1) measures the interaction between layers l and l + 1.
Figure 4.5 shows the LIN at each layer of a DBM trained on various datasets.

The training procedure is described in Appendix A.2. The LIN is plotted at
multiple iterations of training. We observe that the LIN in the first layer tends
to be negative initially, which suggests that the complement mode of interaction
is the most appropriate, in order to quickly cover the whole data distribution. As
training proceeds, the LIN raises to positive values, supposedly because of the need
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Figure 4.5.: Evolution of the layer interaction number (LIN) at each layer of a
DBM trained on various datasets. A negative LIN indicates that
layers are globally in the complement mode of interaction. A positive
LIN indicates that layers are globally in the preserve mode.

to carve low density regions between class manifolds. Interestingly, higher layers,
despite their smaller size, contribute significantly to the global IN, suggesting that
they play an important role for carving these low-density regions. The role of each
layer in a DBM will be further discussed in Section 4.2.

4.2. The Emergence of Invariance in DBMs

Montavon and Müller (2012) have shown on the MNIST dataset, that deep Boltz-
mann machines produce low-dimensional representations of task in the top layers.
In this section, we explain why and under which conditions, these low-dimensional
representations are obtained. We first look at a simple prototypical DBM made of
a few binomial units, and relate the input distribution to the corresponding rep-
resentation in top layers. Although small prototypical models cannot be expected
to be fully representative of the complexity of real-world distributions, they are
able to retain certain key features such as non-Gaussianity or manifold structure.

Our approach is in contrast to the more classical practice of starting with an
existing data distribution and learning good model parameters. It has two main
advantages: First, we do not need a learning algorithm that maps the input distri-
bution p(x) to the model parameters θ. Therefore, the bias caused by a potentially
faulty learning algorithm is eliminated. Second, the number of units can be kept
small, since the input distribution must only meet a loose specification: In order
for a problem to be of class-manifold nature, there must be regions of low density
between the multiple manifolds, and the manifolds must not be trivially related
(i.e. not take the form of the same probability distribution replicated at different
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Figure 4.6.: RBM and DBM variant of a Boltzmann machine implementing two
distinct manifolds in the input space. Input distributions for both
models are shown on the right. Note that the weights of the RBM are
scaled upwards (from w = 0.16 to w = 0.20) in order to account for
the lack of top-down feedback.

locations).
Figure 4.6 shows a possible four-unit DBM that meets these requirements. As

it can be seen from the joint distribution p(x1, x2), the two manifolds are clearly
separated by a low density region, while at the same time not trivially related. The
rationale for choosing this DBM is the following: (1) Use a proxy variable y that
dynamically determines which pair of units (x1, y) or (x2, y) is in the complement
mode and preserve mode. This creates a banana-shaped distribution in the input
space. (2) Add a top-layer unit z, that forces y to strongly associate to either x1
or x2, thus creating a region of low density region in the bottom-right corner of
the banana-shaped distribution. This effectively creates two data manifolds with
different statistical properties.

As a comparison, we show a similar input distribution implemented by a simple
RBM. In the RBM, the weights between units must be slightly increased in order
to overcome the lack of top-down feedback. In the RBM, we can observe that the
distribution comes closer to the points (0, 0) and (25, 25) in the input space. Yet,
it is still insufficient in order to separate the two manifolds.

4.2.1. From Better Distributions to Invariant
Representations

We have shown how a DBM can produce a distribution composed of several non-
trivially related manifolds. In order to obtain this special distribution, we used an
additional top-layer unit z to force unit y to associate either with x1 or x2, and
carve a region of low data density. Not only it allows to implement the desired
input distribution, the top-layer unit z also becomes a very abstract quantity that
behaves essentially as a manifold indicator. Figure 4.7 shows the joint distribution
in the space formed by the input and the representation at each layer. The joint
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Figure 4.7.: Joint probability distribution of the input (represented as x1 + x2)
with representations at each layer (x1 + x2, y and z) of the DBM of
Figure 4.6.
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Figure 4.8.: Analysis of the DBM of Figure 4.6. Left: kernel PCA approximation
of labels obtained from the five leading components at each layer.
Right: kernel analysis at each layer of the DBM, showing the layer-
wise reduction of dimensionality.

distribution features two modes, that are becoming increasingly Gaussian-shaped
with every layer. In other words, the representation becomes layer after layer
invariant to the position within each data manifold.

The emergence of invariance can be quantified by applying the kernel-based
analysis of Chapter 2 to the representations formed at each layer. We apply the
analysis to the toy DBM of Figure 4.6. We draw 1000 samples from the input
distribution p(x1, x2) and build the representation at each layer using a mean-
field procedure. We assign to each sample the label “t = −1” if it belongs to the
first manifold (x1 + x2 < 25) and “t = 1” if it belongs to the second manifold
(x1 + x2 > 25). The analysis is shown in Figure 4.8: On the left, we plot the
projection of the class manifold indicator T onto the five leading kernel principal
components of the representation at each layer. We can observe that the transition
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near the 0.5 quantile1 of the data distribution is very sharp in the top layer. On the
right, the residual error (see Equation 2.3) is plotted as a function of the number of
kernel principal components. We can observe that the noise and dimensionality are
gradually reduced. This demonstrates the tendency of deep Boltzmann machines
to produce layer after layer simple representations of class-manifold problems.

4.2.2. Experiments

In order to test empirically the hypotheses made above about the emergence of
invariance in DBMs, we train large deep Boltzmann machines of size 1600–800–
400–200 and stacked RBMs of size 1600–800–400–200–100 on various datasets. We
consider the following models: a DBM with top-down feedback, a DBM traversed
with a feed-forward pass, a stack of RBMs trained with persistent contrastive
divergence (PCD, Tieleman 2008), and a stack of RBMs trained with simple con-
trastive divergence (CD-1, Hinton 2002). Details of the training procedure are
given in Appendix A.2. Then, we analyze the representations learned at each
layer with the kernel analysis of Chapter 2. The kernel analysis uses 1000 samples
drawn randomly from the test set and is repeated 5 times for different subsets of
data, in order to produce error bars.

Figure 4.9 shows the result of the kernel analysis. Representations at each layer
are collected by propagating the input in a feed-forward pass, or by using top-down
feedback. The analysis reveals that, as we move from the input to the top layers,
an increasingly small number of kernel principal components is necessary in order
to model the problem with a certain accuracy. This validates our hypothesis stated
in Section 4.2, that DBMs are creating low-dimensional top-layer representations
of the problem. Remarkably, the DBM is doing so while keeping the noise level
low. In stacked RBMs, the layer-wise evolution of the representation is typically
slower in terms of number of layers than in a DBM. In Section 4.3, we will argue
that stacked RBMs are plagued by a layer-wise oscillation effect that prevents the
quick emergence of abstract top-layer representations.

Figure 4.10 (top) compares side-by-side the layer-wise evolution of the repre-
sentation for each model and for various datasets. We observe that the DBMs are
building in most cases problem representations that are simpler than the stacks of
RBMs. On the spoken words dataset, the feed-forward pass produces a top-layer
representation that is similar to the one obtained with top-down feedback. How-
ever, on the more complex MNIST and handwritten character datasets, top-down
feedback still allows for more abstract top-layer representations.

Figure 4.10 (bottom) repeats the analysis for a transfer task consisting of rep-
resenting classes that have not been observed at training time. On the MNIST
dataset, the transfer task consists of representing handwritten digits that have
been flipped horizontally. On the handwritten characters dataset, the transfer
task consists of representing handwritten digits (0–9) in a model that has only
been trained on alphabetic characters (A–Z). On the spoken words dataset, the

1Quantiles are computed from the one-dimensional distribution x1 + x2.
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Figure 4.9.: Plots showing the kernel analysis of several models trained on the
MNIST dataset. Each model produces increasingly low-dimensional
and low-noise representations of the task. Among these models, the
DBM with top-down feedback achieves the largest dimensionality
reduction.

task consists of generalizing to new words that have not been observed at training
time. Interestingly, all models are able to transfer features to a certain extent
to the related task. While DBMs with top-down feedback seem to overfit on the
original task and to produce a poor top-layer representation of the transfer task,
the feed-forward DBM seems to benefit from the lower amount of processing in
order to retain a certain level of reusability.

Figure 4.11 displays the filters learned by the DBM at each layer by linearly
back-projecting units onto the input space. We observe that filters are increasingly
smooth, starting with sharp edge detectors in the first layer and finishing with
global class-related features in top layers.
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Figure 4.10.: Kernel analysis of the representation at each layer for various
datasets and models. We summarize the curve e(d) by only plot-
ting its value at d = 100. Top: Analysis of the prediction task. The
DBM features the most drastic reduction of error. Bottom: Analysis
of the transfer task. The DBM also produces low error intermediate
representations, but the top layer seems to be specific to classes in
the training set.

4.3. Layer-Wise Oscillations in Stacked RBMs

Stacked restricted Boltzmann machines (or stacked RBMs, Hinton et al. 2006) are
a widely used method to quickly and robustly pretrain backpropagation networks.
This pretraining procedure has been shown to initialize the network in a better
region of the parameter space, that is otherwise never reached if starting back-
propagation from a random initialization (Erhan et al. 2010). In many cases, it
accelerates backpropagation training and leads to better generalization. The pro-
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Layer 1 Layer 2 Layer 3

Figure 4.11.: Features learned at each layer of a DBM trained on the handwritten
character recognition task. Features in higher layers are visualized
by linear backprojection of the corresponding units onto the input
space. We observe that as we move from the input to the top layers,
filters are becoming increasingly global and invariant to small pixel-
wise variations of the input.

Algorithm 1 Stacked RBMs training

• Train an RBM with two layers x and y and associated probability distribution
p1(x, y) to match the input distribution pdata(x).

• Map the input distribution onto the layer y of the RBM. This can be done in one
step of Gibbs sampling starting from randomly drawn data points:

x ∼ data

y ∼ p1(y|x).

• Train a new RBM with layers y and z and associated probability distribution
p2(y, z) to match the mapped distribution pdata(y).

• Map the input distribution onto the new layer z of the second RBM. This can be
done with two steps of Gibbs sampling starting from randomly drawn data points:

x ∼ data

y ∼ p1(y|x)
z ∼ p2(z|y).

• Repeat the procedure several times to produce a stack of arbitrarily many layers.

cedure for training and stacking RBMs is explained in details by Hinton (2012)
and Bengio (2009; Section 5 and 6). It is summarized in Algorithm 1. However,
the limitations of this method, in particular, the absence of top-down feedback,
and its consequences on emerging representations at each layer, have been recently
investigated by Arnold and Ollivier (2012) and Montavon et al. (2012a).

In this section, we predict that stacked RBMs are characterized by a layer-wise
oscillation effect (Montavon et al. 2012a) where every two layers of the hierarchy
are mutually similar. This is in contrast with deep Boltzmann machines where
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Figure 4.12.: Evolution of the layer interaction number (LIN) in the first layer of
a DBM, a stack of RBMs trained with PCD, and a stack of RBMs
trained with CD-1. Both RBMs are making more use of the comple-
ment mode of interaction than the DBM.

representations are expected to be increasingly dissimilar with every added layer.
We will argue that such layer-wise oscillation effect is a consequence of the com-
plement mode of interaction between units, that tends to alternatively expand and
compress specific regions of the input space. Figure 4.12 shows that the comple-
ment mode of interaction (as measured by the LIN) is more prevalent in RBMs
than in DBMs, presumably due to the added difficulty of mixing in shallow models
(Bengio et al. 2013a).

The concept of layer-wise oscillations is illustrated in Figure 4.13, where we
show a stack of RBMs (each of them composed of two units), where each pair of
connected layers is set in the complement mode. This is achieved by using the
same bias on each layer and negative connections between each layer so that the
layer interaction number (LIN) is negative:

LIN = a · w · b = (−2.5) · (−0.4) · (−2.5) < 0.

In the input space, the small dense area is represented by a dotted line and the
large sparse area is represented by a solid line. As we map these two distributions
(solid and dotted) onto increasingly many layers through repeated sampling, each
distribution is repeatedly switching from narrow and dense to wide and sparse.
The reason for such change in data density is the nonlinearity of the sigmoid
function that is able to compress some regions of the input space and expand
other regions. The oscillation effect is slowly dampened as the distributions are
progressively reaching their stationary mode. Similar behavior is expected for
deterministic mapping at the only difference that the distribution will become
point-wise after many layers.
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Figure 4.13.: Illustration of the layer-wise oscillation effect in a stacked model with
one unit at each layer. Each layer is set in complement mode by set-
ting the same biases at each layer and using negative connections.
We can observe that each input density (solid and dotted) alterna-
tively expands and contracts layer after layer. As a result, odd layers
are mutually similar and even layers are mutually similar.

4.3.1. Measuring Layer-Wise Oscillations with Kernels

In order to measure the layer-wise oscillation effect in larger networks, we need a
way to quantify these oscillations, for example, using the kernel analysis of Chapter
2. For this, we need to state the oscillation effect, that we initially described as
local change in data density, in terms of kernel principal components.

Interestingly, there is a close relation between data density and its expression in
the principal components of an RBF kernel: Dense regions are strongly represented
in the kernel feature space while sparse regions are not. This is best understood by
considering a dataset composed of a high density region and a low-density region.
In this context, the kernel matrix can be roughly expressed in block-diagonal form
as

K =

(
1 0
0 I

)
,

where the first block represents the high-density region (in which all samples are
mutually similar) and where the second block represents the low-density region
(where samples are only similar to themselves). Here, assuming that blocks have
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Figure 4.14.: Kernel analysis of the toy stacked RBM of Figure 4.13. On the left,
mapped distributions at each layer of the network (we draw 250 input
samples as x ∼ N (2, 1)). On the right, similarity s(l) between the
input distribution and the mapped representation at each layer l and
for various dimensionalities d. Each dimensionality (ranging from 0
to 20) is plotted as a different line, from the bottom to the top. The
analysis is able to capture the layer-wise oscillation effect, as shown
by even layers having higher similarity.

same size, the first (scaled) eigenvector of such kernel matrix can be found to be

φ1 = u1
√
λ1 =

(
1

0

)
.

Clearly, φ1 models the high density area2. A mapping that densifies a certain
region of the input space will see the corresponding kernel subspace emerge as
principal component. On the other hand, regions that are being expanded will
have their associated subspace leave the principal components.

We can quantify layer-wise changes in density, by looking at the correlation be-
tween the kernel principal components at different layers. As proposed in Chapter
2, assuming two different layers with kernels k and k′ and respective eigenvectors
(u1, . . . , un) and (u′1, . . . , u

′
n), a measure of similarity is given by:

s(d) =
1

n

d∑

i=1

d∑

j=1

(u⊤i u
′
j)

2.

As an example, we apply this measure of similarity to the toy stacked RBM of
Figure 4.13. The analysis is shown in Figure 4.14. We draw random samples from
the distribution x ∼ N (2, 1). These samples are given as input to the stacked RBM
and are mapped deterministically onto each layer. As the input is propagated in
the network, it is subject to nonlinear distortions caused by the sigmoids. In

2Note that this would not be the case if centralizing the kernel matrix. The variation of densities
would be lost.
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Figure 4.15.: Layer-wise evolution of the similarity between the representation and
the input. In stacked RBMs, even-layered representations are more
similar to the input than odd-layered representations. The similarity
measure is shown for the 100 first kernel principal components. The
oscillation effect is particularly strong for the stacks of RBMs with
tied weights (StackRBM-TW).

particular, if looking carefully at the distributions at each layer, we can observe
that the skew of the distribution tends to be reversed with every layer. Our kernel
analysis is able to capture this oscillation effect: The similarity measure s(l) that
compares the representation at each layer with the input is shown in Figure 4.14
(right) and correctly measures that even layers are more similar to the input than
odd layers.

4.3.2. Experiments

We now use the measure of similarity between representations in order to capture
the oscillation effect in the same stacked RBMs as in Section 4.2. We compare
the representations at each layer to the input representation. We consider three
types of stacked RBMs. The first one is a stack of RBMs with tied weights (where
weights at each layer as set to W,W⊤,W,W⊤, . . . ). Given that the first RBM
in the stack has 1600 visible units and 800 hidden units, the number of units at
each layer is therefore 1600, 800, 1600, 800 and 1600. The second stack of RBMs
learns its own weights at each layer and explicitly reduces the dimensionality of
the input distribution at each layer from 1600 dimensions initially, to 800, 400,
200 and 100 dimensions with every new layer. The last stack of RBMs is trained
using CD-1 instead of PCD.

Measured similarities for these three stacks of RBMs are shown in Figure 4.15
for d = 100 dimensions. The same dimensionality was also chosen for the previous
experiments in Section 4.2. The oscillation effect is clearly visible for the stacked
RBMs with tied weights (stackRBM-TW). For the standard stack of RBMs trained
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Figure 4.16.: Filters obtained at each layer of various stacks of RBM when trained
on the handwritten character recognition dataset. Filters are visu-
alized by linear backprojection onto the input. The filters at layer
2 and 4 are strongly localized and therefore similar to the input
representation.

with PCD or CD-1, oscillations are less pronounced but still distinguishable in the
first layers. The layer-wise evolution of the similarity s(d) is very different in
DBMs, where the representation at each layer is increasingly dissimilar to the
input.

The layer-wise oscillation effect can also be observed by looking at the filters
at each layer. This is shown in Figure 4.16 for several stacked RBMs trained on
the handwritten character dataset. While the first and third hidden layers exhibit
complex features covering a large range of pixels, the second layer is composed
of spatially localized features that are reminiscent of the pixel-wise activation
of the input layer. The spatially localized features at layer 2 and 4 are clearly
distinguishable for the stacked RBM with tied weights. In the two other stacked
RBMs, spatially localized filters are no longer visible at layer 4 but can still be
observed at layer 2.

In a setting where we would like to learn a hierarchy of increasingly invariant
representations, layer-wise oscillations appear as undesirable. Yet, the oscillation
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effect arises from the ability to create complementary representation in hidden lay-
ers, that are necessary in order to model the data distribution well. We could mit-
igate the layer-wise oscillations by regularizing the model in order to prevent the
emergence of the complementarity mode of interaction, however, doing so would
prevent us from fully fitting the data distribution if many samples are available.
This shows the contradiction between the global goal of learning invariant top-
layer representations, and the local objective of maximizing some unsupervised
criterion.

However, a main strength of layer-wise methods is that they are often easier to
optimize. Therefore, we see as an important requirement to develop unsupervised
algorithms that preserve the robustness of the layer-wise method, while at the
same time being able to identify the high-level abstractions in top layers necessary
to correctly represent the learning problem. This includes possible refinements to
joint training of deep Boltzmann machines and related algorithms (see, for exam-
ple, Goodfellow et al. 2013), or other forms of top down feedback, as proposed,
for example, by Arnold and Ollivier (2012) and Bengio et al. (2013a).

4.4. Effect of Learning Noise on Representations

In Section 4.2, DBMs have been shown to reduce the dimensionality of the task in
top layers. In practice, obtaining such top-level representations is not trivial and
requires carefully designed training procedures. In this section, we will show that
emerging representations at each layer are sensitive to the multiple hyperparam-
eters of the learning algorithm, for example, the parameterization of the energy
function (centered versus non-centered), the learning rate or the connectivity of
the network.

Like in Chapter 3, some of these hyperparameters can be understood in terms
of amount of noise that they inject into the optimization procedure. For example,
a large learning rate exposes the stochastic gradient noise. Similarly, a bad pa-
rameterization of the network causes overshooting in the optimization procedure,
and makes difficult for each layer in the hierarchy to exchange meaningful informa-
tion. As for backpropagation networks, a predefined architecture with restricted
connectivity is able to reduce the effect of learning noise, by forcing the network
into the right set of solutions.

4.4.1. Effect of the Parameterization

Figure 4.17 (left) shows the kernel analysis performed on the top layer of several
DBMs with different parameterizations, some of which are centered and some
of which are not. We consider all parameterizations of hidden units with bias
b ∈ {−2, 0, 2} and offsets β ∈ {sigm(−2), 0, sigm(2)}. The DBMs are trained
on the MNIST dataset and are composed of 784 visible units and two hidden
layers of 200 and 25 hidden units. “Centered+” means that the energy function
is continuously recentered at training time. We observe that non-centered DBMs
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Figure 4.17.: Plots taken from the paper by Montavon and Müller (2012) show-
ing the effect of centering on emerging representations. Left: Ker-
nel analysis performed on the input (thick dashed line) and the top
layer of several centered and non-centered DBMs trained on MNIST.
Right: Two-dimensional PCA performed on the top layer of a non-
centered and a centered DBM trained on MNIST, along with second
layer filters. Different markers indicate different classes. Filters are
visualized by linear backprojection of second layer units onto the
input space.

have a few highly discriminative kernel principal components, but that the next
ones are dominated by a large noise bed, as shown by the linearly decaying error
e(d). In contrast, centered DBMs also produce the desired highly discriminative
kernel principal components, but keep the noise level low.

Figure 4.17 (right) shows the same effect of centering from the perspective of
a two-dimensional linear PCA produced on the activity of top-layer units and
from the perspective of second layer filters (linearly backprojected onto the input
space). Two-dimensional PCA for non-centered DBMs shows two dense clusters
separated by a large margin, suggesting that the DBM is able to identify two
groups of handwritten digits with different classes, but at the same time, loses
discriminative information between different classes within these groups. Also, in
a non-centered DBM, filters are often redundant, suggesting that the top-layer
representation spans a very limited subspace. In both cases, results show that the
top-layer representation of a centered DBM is richer and has more discriminative
features than a non-centered one.

4.4.2. Effect of the Architecture

Another approach to tackle the problem of learning noise is to incorporate built-in
structure into the DBM, for example, by restricting connectivity in the first layers
and only allowing global connectivity in the top layers. Such architecture decouples
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Figure 4.18.: Plots by Montavon and Müller (2012) showing the evolution of the
quality of the top-layer representation as a function of the number of
training epochs for a plain DBM and for a locally connected DBMs.
Representations improve at different speeds throughout training.
Centering and local connections help to quickly build the desired
top-layer representation.

the modeling of local variations (small pixel-wise transformation of the input)
from more global variations, for example, jumping between different modes of the
distribution. Such decomposition restricts the space of solutions, and guides the
learning algorithm towards a smaller set of plausible solutions. As a consequence,
we can expect the training procedure to be faster. The accuracy of the method
ultimately depends on the validity of the local connectivity assumption, that is,
whether classes are truly invariant to localized variation in the pixel space.

In order to test the effect of adding structure to a DBM, we train a locally
connected DBM constructed by allocating to each hidden unit in the first layer, a
random patch of 6× 6 pixels in the input space. We use 400 and 100 hidden units
in each layer. The quality of the representation measured in AUC (area under
the curve e(d)) is shown in Figure 4.18 for plain and locally connected DBMs.
In general, locally connected DBMs produce the desired top-layer representation
quickly (after a few epochs) while it takes one order of magnitude more epochs
for plain DBMs. Interestingly, locally connected DBMs are also more resilient to
the quality of the parameterization of the model, that is, the performance gap
between centered and non-centered DBMs becomes smaller.

Finally, we measure in Figure 4.19 the generative error for the same fully con-
nected and locally connected DBMs. We observe that the effect of bad parame-
terization on generative performance is inverse to the effect on the quality of the
top layer: In a simple DBM, the top layer is simply discarded from the model
and the generative performance is not affected. However, in the locally connected
DBM, the local connections—that were supposed to favor the emergence of a good
top level representation—significantly reduce the generative performance when the
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Figure 4.19.: Plots by Montavon and Müller (2012) showing the evolution of the
generative performance of the model as a function of the number of
training epochs for a plain DBM and for a locally connected DBM.
Unlike the AUC shown in Figure 4.18, the non-centered DBM suffers
from its bad parameterization only in locally connected DBMs (i.e.
when depth is required to properly model the input distribution).

DBM StackRBM (CD-1) StackRBM (PCD)

0.00 0.05 0.10 0.15 0.20 0.25
||W ||F

−0.1

0.0

0.1

0.2

0.3

0.4

L
IN

(×
10

6
)

lr = 0.004

lr = 0.013

lr = 0.04

0.00 0.05 0.10 0.15 0.20 0.25
||W ||F

−0.1

0.0

0.1

0.2

0.3

0.4

L
IN

(×
10

6
)

lr = 0.004

lr = 0.013

lr = 0.04

0.00 0.05 0.10 0.15 0.20 0.25
||W ||F

−0.1

0.0

0.1

0.2

0.3

0.4

L
IN

(×
10

6
)

lr = 0.004

lr = 0.013

lr = 0.04

Figure 4.20.: Layer interaction number (LIN) in the first layer of each model
trained on the MNIST dataset. The LIN is plotted as a function
of the model complexity (measured as ||W ||F, where W is the weight
matrix in the first layer). Higher learning rates lead to more com-
plementarity between layers as shown by a smaller LIN.

network is non-centered. This is because the locally connected DBM is not able
anymore to discard the top layer from the generative model, since it is struc-
turally constrained to use it. As a consequence, the model is heavily exposed to
the top-layer parameterization-induced noise.
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Figure 4.21.: Comparison of the layer interaction number (LIN) at each layer of
stacks of RBMs trained with PCD (solid line) or CD-1 (dotted line),
and with a high learning rate of 0.013. The LIN sharply drops to
negative values in the late stage of PCD training, due to the increased
difficulty of mixing, while it rises steadily for CD-1.
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Figure 4.22.: Effect of the learning rate on layer-wise oscillations in a stack of
RBMs trained with PCD. In general, a higher learning rate translates
into stronger oscillations.

4.4.3. Effect of the Learning Rate

We finally look at the effect of learning rate on the DBMs and stacked RBMs of
Section 4.2 and 4.3. Figure 4.20 shows the layer interaction number (LIN) for the
first layer of a DBM and stacks of RBMs trained with different learning rates. We
observe that an increased learning rate tends to favor solutions that make more
use of the complement mode of interaction, that is, solution for which the LIN
becomes smaller. An explanation for this effect is the following: As the learning
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rate increases, there is less time for the Gibbs chains approximating the model
statistics to mix properly. Thus, for the objective to be minimized, the different
modes of the data distribution should be connected by regions of non-zero data
density (otherwise, the chains used for the negative phase of the algorithm would
not mix fast enough). Creating these large non-zero data density regions is best
achieved by the complement mode of interaction, as we have seen in Section 4.1.
This is illustrated in Figure 4.21 where the stack of RBMs trained with PCD
experiences a phase transition characterized by a sharp drop-off of the LIN in the
late stage of training.

Finally, we look at the layer-wise oscillation effect as a function of the learning
rate. We have seen in the previous example, that a high learning rate tends to
drive pairs of adjacent layers in the complement mode of interaction. Based on the
argument of Section 4.3, this increased level of complementarity should translate
into stronger layer-wise oscillations. Figure 4.22 empirically validates this hypoth-
esis, showing that increased learning rates amplify the layer-wise oscillations in
stacked RBMs.
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5. Learning Molecular Electronic

Properties with Neural

Networks

In this chapter, we present an application of deep networks to quantum chem-
istry: predicting molecular electronic properties from molecular geometries. An
illustration of the problem is shown below:

neural network

E

®

...

fZi,Rig

Here, {Zi, Ri} are the charge and Cartesian coordinates of all atoms in the molecule,
and E,α, . . . are some of the properties to predict. Quantum chemical compu-
tations are often carried out by deductive models derived from laws of physics
such as those embodied in the Schrödinger’s Equation HΨ = EΨ. Successful
physics-based methods exploit redundancies in the original equation, in order to
accelerate computations. For example, the DFT method (Hohenberg and Kohn
1964) bypasses the extremely costly computation of the wave function Ψ and
compute ground state energies E as a minimization problem over much lower-
dimensional quantities. Over the past decades, rise in computational power, and
advances in chemical theory (Zerner et al. 1980, Perdew et al. 1996), enabled the
simulation of relatively large compounds. However, none of the current methods
is able to systematically and accurately compute molecular properties for billions
of molecules.

A radical departure from physics-based methods is to learn an inductive model
of the underlying quantum physical computation from a small set of labeled ex-
amples (Rupp et al. 2012). An advantage of the inductive paradigm is that it can
deal with risk minimization and dimensionality reduction in a more direct man-
ner: Constraining the inductive model to use only a few steps of dimensionality
reduction and nonlinear processing leads to predictive models that are much faster
than the original quantum chemical computation. Also, physics-based methods
often produce a systematic bias on the prediction, that can be in some cases dif-
ficult to correct. This is a lesser problem in inductive models, because the bias is
automatically reduced as more i.i.d. data becomes available. For this, we should
however provide unbiased labels to the learning machine.
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C =

Figure 5.1.: Alanine molecule (C3H7NO2) along with its Coulomb matrix
representation.

The general idea of applying machine learning to chemistry has existed for
a long time. Models that are often referred as quantitative structure-activity
relationships, or QSARs (Hansch et al. 1995), have been applied successfully to
both conventional chemistry (e.g. drug design, Burbidge et al. 2002, Schroeter et al.
2007), and quantum chemistry (Balabin and Lomakina 2009). QSAR methods
usually rely on human-engineered molecular descriptors, that are often application-
specific. Machine learning was also used to predict the molecular dynamics of
single molecules (Lorenz et al. 2004, Behler 2011). Machine learning was more
recently applied to modeling density functionals in small particle systems (Snyder
et al. 2012; 2013), with potential application to molecular relaxation and modeling
of quantum chemical reactions.

5.1. Representing Molecules

Molecules are highly structured graph-like objects that are not trivial to repre-
sent in a consistent way. In particular, the variety of possible molecular sizes and
configurations makes it difficult to build a simple and invariant vector space rep-
resentation. In this section, we discuss how to build a representation of molecules
that is at the same time compact, complete, and invariant to translation, rotation
or atoms ordering. Within Born-Oppenheimer approximation, a relaxed molecule
can be fully described as the charge Zi and the three-dimensional Cartesian coor-
dinates Ri of all atoms in the molecule:

M = {Zi, Ri}di=1 (5.1)

Such representation is complete as it contains in principle all necessary information
to compute the molecular properties. However, it does not handle molecules with
different numbers of atoms. This can be addressed by adding “dummy atoms”
with charge Z = 0, that do not influence the measured physical system. A more
serious issue is the lack of invariance with respect to translation, rotation and
atoms ordering.
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5.1. Representing Molecules

In order to incorporate translation and rotation invariance, Rupp et al. (2012)
proposed to represent molecules as a Coulomb matrix of size d× d defined as:

Cij =

{
1
2
Z2.4

i i = j,
ZiZj

||Ri−Rj ||2
i 6= j.

(5.2)

The diagonal terms are a polynomial fit of charges to total energies of the free
atoms. The off-diagonal terms are the repulsion energy between pairs of atom
nuclei. An example of molecule with its associated Coulomb matrix is given in
Figure 5.1. It is easy to see that the Coulomb matrix is invariant to translation
and rotation, as positions Ri are now expressed only in terms of relative distances.
However, this representation is not invariant to atoms ordering.

5.1.1. Random Coulomb Matrices

A simple technique to gain a certain level of invariance with respect to atoms
ordering is to associate to each molecule several Coulomb matrices resulting from
different atoms orderings. More precisely we can define for each molecule M a
probability distribution pM(C) over Coulomb matrices, from which we can draw
samples. A method proposed by Montavon et al. (2012b) to randomly draw
Coulomb matrices is given in Algorithm 2.

Algorithm 2 Sampling Random Coulomb Matrices
function Sample(M)

Generate a valid Coulomb matrix C of molecule M
Find the permutation P that sorts

[
||Ci||+N (0, σ2)

]d
i=1

C ← SortRowsP (SortColumnsP (C))
return C

end function

The parameter σ controls the diversity of the probability distribution from which
Coulomb matrices are drawn. Figure 5.2 shows the effect of this parameter on the
input distribution. Each color designates a different molecule and each point of
same color represents a different Coulomb matrix of the same molecule. If the
parameter σ is set to zero, we have a sorted Coulomb matrix (initially proposed
by Rupp et al. (2012)). As we consider larger values for σ, the input space becomes
more densely populated. If the parameter σ goes to infinity, we have a uniform
probability distribution over all possible atoms orderings. Generally, we face the
following tradeoff: For small values of σ, the dataset is easy to fit, but the model
easily overfits. On the other hand, if σ is large, the model is less likely to overfit,
but it takes more time to train.

The idea of extending the dataset by artificially generating more samples is a
well-known technique in machine learning. For example, Vincent et al. (2010)
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Figure 5.2.: PCA in the input space (with a Manhattan distance) showing the
effect of adding permuted Coulomb matrices. Several permutation of
the same molecules are depicted by the same color. Adding multiple
permutations of the same molecule produces a cloud of data points.
The variety of permutations is controlled by the noise parameter σ.

add noise to the input of autoencoders in order to learn more robust representa-
tions. Simard et al. (1998) or Ciresan et al. (2010) add human-engineered elastic
distortions of handwritten digits to the dataset in order to learn more invariant
representations. When generating artificial samples, care must be taken in order
to make sure that the generated distortions do not add label noise. A subtle
difference in our case is that we know in advance that the generated distortions
(i.e. atoms orderings) leave the label invariant. Indeed, the molecular property to
predict is by construction invariant to the choice of atoms ordering. Therefore, the
optimal level of noise σ will be essentially determined on a computational basis.

5.2. Predicting Molecular Electronic Properties

The problem of mapping Coulomb matrices to molecular energies gives rise to
several challenges for deep networks. Section 5.2.1 discusses the difficulty of learn-
ing accurately nonlinear functions when input and output variables have high
information content. Section 5.2.2 describes a pathological scaling issue arising in
the Coulomb matrix representation. Finally, Section 5.2.3 proposes to solve both
problems using a binarized expansion of Coulomb matrices as input to the deep
network.

5.2.1. The Problem of Wide Range Dependencies

Deep networks have been overwhelmingly studied on problems where input and
output are composed of multiple variables of low information content. For exam-
ple, the handwritten recognition problems considered in Chapters 3 and 4 assume
binary inputs describing whether pixels are activated or not, and a set of binary
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Figure 5.3.: Illustration of the problem of wide range dependencies. The label is
plotted against a simple linear model (here fitted on all data). The
two red lines represent the error bars that are produced by our best
model (based on neural networks or Laplacian KRR). Error bars are
strikingly small compared to the range of energies that has to be
predicted.

outputs that are class indicators. The output is generally invariant to small vari-
ations of the input (e.g. changing the intensity of a pixel).

Instead, in our quantum chemistry problem, input and output dimensions have
a high information content. First, because of the regression nature of the problem.
Second, because large range of energies have to be predicted with high accuracy.
There is approximately a factor 100× between the standard deviation of the labels
and the standard deviation of the prediction error obtained by our best models.
Similarly large variations also occur in the Coulomb matrix between the size of
the input domain and the allowed measurement error. These differences of scale
are illustrated in Figure 5.3, where the error bars obtained by our best model are
much smaller than the output domain.

5.2.2. The Problem of Pathological Scales

Another difficulty arises from the inability of the Coulomb matrix representation
to properly handle compositionality. This gives rise to a pathological scaling prob-
lem in the space of Coulomb matrices. To understand this, let us consider four
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Figure 5.4.: Cartoon illustrating the problem of pathological scales: Four
molecules are represented in a subspace of the Coulomb matrices
that spans the addition/removal of a carbon atom, and the addi-
tion/removal of a hydrogen bond. The variation that is relevant for
predicting the atomization energy (adding one bond) lies on the small
component of variance.

molecules along with their Coulomb matrices:

M1 = H | H M2 = C | H | H M3 = H—H M4 = C | H—H
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The letters H and C denote a hydrogen and carbon atom, respectively. The symbol
“—” indicates a bond between two atoms and the symbol “ | ” indicates that the
systems on both sides are separated by an infinite distance. We first note that the
space of Coulomb matrices spanned by these four molecules is two-dimensional
and only characterized by the presence or absence of a carbon atom and the
presence or absence of a hydrogen bond. The first dimension has high variance
and the second one has low variance. A depiction of this two-dimensional space
of molecules is given in Figure 5.4. Unfortunately, in the context of predicting
molecular atomization energies, the discriminative component—here, the presence
or absence of a hydrogen bond—corresponds to the lowest component of variance.
The problem can be made arbitrarily bad, by considering heavier atoms than
carbon or more isolated atoms. While this example suggests that we should find
better representations of molecules, we can also show that not all kernels are as
badly affected by such degenerate case.

The Laplacian kernel1 was shown to work well on empirical data (Hansen et al.
2013) and can be shown in this example to be more robust to this scaling issue:
Let us suppose that, having observed M1,M2 and M3, we would like to generalize
to M4. Clearly, we would like the similarity between M3 and M4 to be high since
both molecules have the same atomization energy. The Laplacian kernel helps with
this respect in two ways: First, the Manhattan distance used by the Laplacian
kernel favors data points that are aligned to M4 in the coordinate system (from

1The Laplacian kernel is defined as k(x, x′) = e−
||x−x

′||1
σ where ||x − x′||1 is the L1 (or Man-

hattan) distance.
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Figure 5.5.: Principal component analysis of the QM7 dataset for different dis-
tances. Data points are colored according to atomization energies.
Red points are molecules with high atomization energies (unstable)
and blue points are molecules with low atomization energies (stable).
The Manhattan distance produces a better representation.

that perspective, d(M3,M4) is substantially smaller than d(M1,M4)). Second, the
Laplacian kernel has heavier tails than a Gaussian kernel, making k(M2,M4) and
k(M3,M4) more equal. For these two reasons, the Laplacian kernel will therefore
contribute to make M3 and M4 more similar.

Figure 5.5 shows a two-dimensional PCA of the QM7 dataset (see Appendix
A.1 for details) color-coded by atomization energies. With a Chebyshev (or L∞)
distance, the input space is strongly clustered, with a lot of label variability in each
cluster. As we move to the Euclidean (or L2) distance, and finally, the Manhattan
(or L1) distance, the clusters are merged into a single giant component where
atomization energies are much better resolved. This gives empirical support to
the argument made above, about the suitability of Laplacian kernels (using a
Manhattan distance) for comparing Coulomb matrices.

5.2.3. Binarizing Representations

We propose in the context of neural networks, to address both problems of wide
range dependencies and pathological scales, by a simple method, also known as
thermometer coding (Jeon and Choi 1999), that consists of expanding each input
variable Cij into a set of many binary variables:

Φ(Cij) =
[
. . . , step(Cij − θ) , step(Cij) , step(Cij + θ) , . . .

]
, (5.3)

where step(x) = 1x>0, and where θ > 0 is the granularity parameter. (In our
experiments, the mapping is made smoother, by replacing the step function by
a sigmoid nonlinearity.) This binarization of data can be made arbitrarily fine-
grained by lowering θ. If applying this transformation to an entire Coulomb matrix
of dimension d× d, we obtain a tensor of dimension d× d×∞, most dimensions
of which, are constant across the dataset, and can therefore be pruned.
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Figure 5.6.: Linear PCA in the binarized representation space for various granular-
ities θ. As we lower θ, the principal components become increasingly
similar to those obtained with a Manhattan distance. The color code
is the same as in Figure 5.5.

The binarized representation solves the problem of wide range dependencies:
Any local variation between input and output can be easily modeled by considering
only the dimensions of the three-dimensional tensor that correlate to this local
variation.

The binarized representation also solves the problem of pathological scales: It
can be shown that for infinitely small θ, any Lp distance in such binarized space is
equivalent to a Manhattan distance in the original space. Let x and y be two vec-
tors and Φ(x),Φ(y) be two matrices corresponding to their binarized embeddings.
We show that ||Φ(x)− Φ(y)||pp = ||x− y||11:

||Φ(x)− Φ(y)||pp =
∑

i

∫ ∞

k=−∞

(Φk(xi)− Φk(yi))
p · dk

=
∑

i

∫ ∞

k=−∞

(1xi>k − 1yi>k)
p · dk

=
∑

i

∫ min(xi,yi)

k=−∞

0p · dk +
∫ max(xi,yi)

k=min(xi,yi)

1p · dk +
∫ ∞

k=max(xi,yi)

0p · dk

=
∑

i

|xi − yi| = ||x− y||11.

Figure 5.6 shows the effect of binarization on the corresponding linear PCA rep-
resentation. Like in Figure 5.5, data points are color-coded according to their
atomization energy. As θ gets small, the PCA space becomes less clustered, and
the principal components better resolve the quantity to predict. With very small
θ, we obtain similar principal components to those obtained with a Manhattan
distance.
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Figure 5.7.: Diagram taken from the paper by Montavon et al. (2012b) showing
the data flow from the raw molecular geometry to the predicted at-
omization energy. A random Coulomb matrix is built for the input
molecule (a) using Algorithm 2. The resulting Coulomb matrix (b)
is binarized using Equation 5.3, producing a binary Coulomb tensor
(c). The Coulomb tensor is pruned from its non-varying dimensions,
flattened, and fed to a deep neural network (d). The neural network
produces at its output a prediction of the molecular atomization en-
ergy (e) or other molecular electronic properties.

5.3. Results and Discussion

In this section, we report the results obtained with our neural network model on
the QM7 dataset. This dataset is described in Appendix A.1. Then, we study the
effect of the dataset size, the permutation noise σ (described in Section 5.1.1) and
the binarization parameter θ (described in Section 5.2.3) on the speed of learning
and the generalization performance.

Figure 5.7 shows the overall prediction pipeline used by our deep network. The
input molecule is represented as a random Coulomb matrix. The random Coulomb
matrix is binarized and fed to a deep network that predicts the molecular prop-
erty. When predicting multiple molecular electronic properties, we use instead
a multitask network (Caruana 1997), that predicts all properties simultaneously,
and shares low-level features between different properties. A description of the
neural network training procedure is given in Appendix A.2.

Table 5.1 shows 5-fold cross-validated results obtained on the QM7 dataset.
80% of data is used for training and the remaining 20% for testing. In order to
reduce variance of the error estimator, the dataset is stratified such that each fold
contains a representative range of molecular atomization energies. The backpropa-
gation network is compared to linear regression and to kernel ridge regression with
Gaussian and Laplacian kernels. Due to the difficulty to scale kernel-based meth-
ods to many samples, only 8 permutations per Coulomb matrix are retained. On
the other hand, neural networks are fed with an infinite stream of random Coulomb
matrices generated on the fly. We observe that there are large differences of per-
formance between studied models. Prediction errors range from 20 kcal/mol for a
simple linear predictor to 3 kcal/mol for the best models. While Laplacian kernel
ridge regression and deep networks have similar performance when trained with
random Coulomb matrices, it is interesting to note that backpropagation networks

67



5. Learning Molecular Electronic Properties with Neural Networks

Learning algorithm Representation MAE RMSE

Mean predictor None 179.02± 0.08 223.92± 0.32

Linear regression Sorted Coulomb 20.72± 0.32 27.22± 0.84

Gaussian kernel ridge regression
Sorted Coulomb 8.57± 0.40 12.26± 0.78
Random Coulomb 6.76± 0.21 10.09± 0.76

Laplacian kernel ridge regression
Sorted Coulomb 4.28± 0.11 6.47± 0.51
Random Coulomb 3.07± 0.07 4.84± 0.40

Deep network
Sorted Coulomb 11.82± 0.45 16.01± 0.81
Random Coulomb 3.51± 0.13 5.96± 0.48

Table 5.1.: Table aggregated from the papers by Montavon et al. (2012b) and
Hansen et al. (2013) showing the prediction accuracy in kcal/mol of
various models on the QM7 dataset. MAE denotes the mean absolute
error and RMSE denotes the root mean square error.

benefit to a much greater extent from using these random Coulomb matrices com-
pared to simple sorted Coulomb matrices. This illustrates how additional data
can overcome the intrinsic regularization issues of neural networks.

Table 5.2 shows prediction error for other molecular properties. Here, energies
are given in eV (1 eV ≈ 23.06 kcal/mol). We use 5000 molecules for training and
the remaining 2211 molecules for testing. We can observe that the same deep
network can predict a wide range of molecular properties to a similar level of
accuracy, at the exception of E∗

max. This shows the generic nature of the machine
learning approach when compared to physics-based methods, that would require
special algorithms and approximations for each property.

Figure 5.8 (top left) shows the effect of the granularity parameter θ used for
binarization on the learning speed. The smaller θ, the faster learning. However,
for very small values θ, computation time starts to increase as 1/θ. Therefore,
although the binarization technique is effective at implementing the Manhattan
distance in a deep network, it is not computationally efficient beyond a certain
level of granularity. Ultimately, we would like to find more direct techniques to
encode Manhattan distances in deep networks.

Figure 5.8 (top right) shows the effect of the dataset size on the training speed.
We consider the full QM7 dataset (7165 molecules) and two subsets restricted only
to the molecules of type C5N1O1 (1020 molecules) and C5N1O1H9 (319 molecules).
In the last experiments, we use 50% of data for training and 50% of data for testing.
As we decrease the dataset size, learning becomes much faster. This is in part,
because there is less information to model in a small dataset, but also because
the smaller dataset gives rise to a better conditioned optimization problem, that
suffers less from the issue of wide-range dependencies described in Section 5.2.1.

Figure 5.8 (bottom) shows the effect of the permutation noise parameter σ on
the test error, for increasingly large subsets of data. We display learning curves
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Property MAE RMSE

E (PBE0) 0.16 0.36
α (PBE0) 0.11 0.18
α (SCS) 0.08 0.12
HOMO (GW) 0.16 0.22
HOMO (PBE0) 0.15 0.21
HOMO (ZINDO) 0.15 0.22
LUMO (GW) 0.13 0.21

Property MAE RMSE

LUMO (PBE0) 0.12 0.20
LUMO (ZINDO) 0.11 0.18
IP (ZINDO) 0.17 0.26
EA (ZINDO) 0.11 0.18
E∗

1st (ZINDO) 0.16 0.36
E∗

max (ZINDO) 1.06 1.76
I∗max (ZINDO) 0.07 0.12

Table 5.2.: Prediction error taken from the paper by Montavon et al. (2013c) for
the simultaneous prediction of multiple molecular properties by a deep
network on the QM7 dataset. Errors for energies, polarizabilities and
intensity are given in eV, Å3, and arbitrary units respectively. MAE
denotes the mean absolute error and RMSE denotes the root mean
square error.

for σ = 1 (the parameter that is used in the rest of the experiments) and σ = 10
(where Coulomb matrices are drawn from a much larger distribution). A high
noise parameter tends to make learning harder, but ultimately leads to better
models due to the extra inbuilt regularization.

So far, we have considered training with small molecules and a large fraction of
samples in the training set. Our experiments have outlined the multiple tradeoffs
in designing a neural network learning algorithm that is both computationally and
statistically efficient. In particular, Figure 5.8 showed that using the whole dataset
in a single model comes with a high computational overhead, in part, due to the
larger dataset, but also, due to raised levels of learning noise that we discussed
in the first part of this thesis. Practical applications will require models that
handle much larger portions of the chemical compound space, possibly, billions of
molecules. In these big models, we can expect the learning noise to be even higher.
Therefore, we see as an important requirement to design methods that better deal
with the increased level of learning noise, in order to maintain learnability at larger
scales.
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Figure 5.8.: Top Left: Plot by Montavon and Müller (2013) showing the effect
of the binarization parameter θ on the speed of training. Top Right:
Evolution of test error when trained on various subsets of data. Bot-
tom: Effect of the noise parameter σ on the speed of learning and
generalization error.
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6. Conclusion and Discussion

The goal of this thesis was to understand what type of representations are built in
deep networks. In Chapter 3 and 4, we formulated several hypotheses on the layer-
wise evolution of representations in backpropagation networks and deep Boltz-
mann machines. These hypotheses were discovered from the careful observation
of small systems of few interacting units. Then, we showed how such hypothe-
ses can be understood in terms of noise of dimensionality within the kernel RDE
framework of Braun et al. (2008). Here, the purpose of the kernel analysis was
to serve as a proxy in order to test whether the hypotheses formulated in the
context of small networks are also valid in larger networks composed of thousands
of neurons and trained on real data.

Using this kernel-based analysis, we have demonstrated that backpropagation
networks tend to build a hierarchy of increasingly task-relevant representations,
and that similar hierarchy is expected to emerge in deep Boltzmann machines
when data has some class-manifold structure. Then, we have studied the effect of
learning noise on the representation at each layer. In backpropagation networks,
we found that learning noise causes an early discrimination effect where most
of the modeling becomes concentrated in the first layers of the network. In deep
Boltzmann machines, we found that learning noise causes the complement mode of
interaction between layers to be used disproportionately, and effectively excludes
deeper layers from the training objective. This prevents the emergence of task-
relevant representations in top layers.

Overall, the experiments highlight the capacity of deep networks to dynamically
adapt their layer-wise structure to the different sources of noise in the learning
algorithm. Such dynamic adaptation allows to minimize the training objective
under various noise levels. However, such adaptability comes with the downside,
that the original objective (i.e. learning the true function) is no longer optimized.
Instead, the deep network optimizes the proxy objective of learning while being
robust to noise. The additional difficulty with DBMs is that the proxy objective—
learning a good generative model under noise—is now becoming very distant from
the real objective.

Unfortunately, levels of noise only increase with more data. For example, for
large datasets, it becomes impossible to wait to see all examples before updating
the model, and stochastic gradient noise becomes therefore unavoidable. Similarly,
parameterization noise also becomes unavoidable: While centering and other tricks
might be sufficient for small datasets, for bigger problems, most regions of the
input space will remain pathologically parameterized until the deep structure is
discovered.
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6. Conclusion and Discussion

In order to learn functions f ∈ Fdeep, we see as a main requirement to control
and reduce the multiple sources of learning noise. In our view, a lot progress has
already been made in this direction: For example, the gradual introduction of more
samples (curriculum learning, Bengio et al. 2009) is a possible approach to keep
sustainable levels of noise throughout training. Structurally forcing the network to
share features, for example, using a convolutional architecture (LeCun et al. 1998)
or pretraining (Hinton et al. 2006), also goes into the direction of reducing learning
noise: Gradients for different samples become correlated as feature sharing takes
place, and stochastic gradient descent is in this case no longer noisy.

All these methods still require a human-engineered curriculum, some predefined
structure or some generative assumption. Therefore, we see as a future work for
deep learning to discover truly self-structuring mechanisms that are able to lower
the learning noise in a generic manner. Moreover, these mechanisms should assume
as little knowledge as possible about the function f ∈ Fdeep to be learned.

72



A. Description of Datasets and

Training Procedures

A.1. Description of Datasets

A.1.1. Datasets of Chapter 3 and 4

MNIST The MNIST handwritten character recognition dataset (LeCun et al.
1998) can be downloaded at http://yann.lecun.com/exdb/mnist/ and consists
of 60000 training and 10000 test handwritten digits. Each handwritten digit is
represented as a grayscale image of 28 × 28 pixels and provided along with its
label (a number between 0 and 9). The number of digits of each class is balanced.
Some samples are shown in Figure A.1 (left).

Handwritten Characters The handwritten characters dataset (van der Maaten
and Hinton 2008) can be downloaded at http://homepage.tudelft.nl/19j49

and is composed of 40133 images of size 56× 56 representing handwritten charac-
ters (A–Z uppercase and 1–9) along with their label. In order to reduce compu-
tational requirements, we rescale the images to 28 × 28. Handwritten characters
are binarized and separated in two groups (Group 1: alphabetic characters, Group
2: digits). Alphabetic characters are split into 31616 training samples, 1000 valida-
tion samples and 5000 test samples. The remaining 2517 samples are handwritten
digits and are used as a transfer task. Note that the number of samples of each
class is not balanced. Some samples are shown in Figure A.1 (middle).

Spoken Words The spoken word recognition dataset is built from the TIMIT
corpus (Garofolo et al. 1993) that can be obtained from http://www.ldc.upenn.

edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1. We use the word seg-
mentation provided in the corpus to generate small spectrograms of size 28×28 for
each word in the corpus. The spectrograms are obtained by evaluating the spectral
power at 28 mel-frequencies and at 28 equidistant time steps. The mel-frequency
coefficients are obtained by applying a 20 milliseconds Hamming window at each
location, and mapping the resulting frequency power spectrum onto the mel scale.
The data is whitened by applying a two-dimensional high-pass convolutional fil-
ter on each spectrogram. As the binary units of a DBM are stochastic and have
maximum entropy at 0.5, we apply some dithering to the whitened spectrograms
(same for all images) in order to equalize entropy for pixels of various intensities.
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MNIST Handwritten characters Spoken words

Figure A.1.: Samples from the datasets used in Chapter 3 and 4. The first dataset
is composed of grayscale images of size 28 × 28 representing hand-
written digits. The second dataset is composed of grayscale images of
size 28 × 28 representing handwritten characters. The third dataset
is composed of grayscale spectrograms of size 28× 28 where 28 mel-
frequency spectrum coefficients are measured at 28 evenly distributed
time steps.

The TIMIT corpus is composed of several subsets (SA, SI and SX). The SA sub-
set constitutes our core dataset and is composed of 21 distinct words spelled by
630 different speakers. The resulting 13230 samples are split into 7230 training
samples, 1000 validation samples and 5000 test samples. We also build a transfer
task of 5319 samples that consists of predicting 66 new words taken from the SI
and SX subsets, each of them spelled by 50–150 different speakers. Some samples
are shown in Figure A.1 (right).

For each of these datasets, the input distribution is believed to be highly non-
Gaussian, in part, due to the special way translation and rotation are represented
in pixel space. The object recognition nature of each of these problems also sug-
gests that the input distribution is multimodal with each mode (or data manifold)
representing a different class. Also, these datasets are believed to be well-modeled
by a hierarchy: Handwritten characters or digits are composed of edges that can be
combined. Similarly, spoken words are composed of syllables, that are themselves
composed of phonemes and formants.

A.1.2. Dataset of Chapter 5

QM7 The QM7 dataset (Rupp et al. 2012) can be downloaded from http://

www.quantum-machine.org and is based on the GDB-13 database (Blum and
Reymond 2009). It consists of all 7165 molecules of up to 7 heavy atoms, along
with their atomization energy E computed with hybrid density functional theory
(PBE0) (Perdew et al. 1996). Molecules are represented as Coulomb matrices
using Equation 5.2. A PCA visualization of the QM7 dataset is shown in Figure
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class # molecules

C5N1O1 1020

C5N1O1H3 (20)

C5N1O1H5 (93)

C5N1O1H7 (239)

C5N1O1H9 (319)

C5N1O1H11 (287)

C5N1O1H13 (62)

C6N0O1 837

C4N2O1 837

C5N2O0 756

C6N1O0 733

C5N0O2 651

Figure A.2.: Left: Two-dimensional PCA of the QM7 dataset used in Chapter 5
with constitutional isomers C5N1O1 and C5N1O1H9 depicted in red
and green. Right : Number of distinct molecules for various classes of
isomers in the QM7 dataset.

A.2, with two particular groups of constitutional isomers highlighted in red and
green.

Montavon et al. (2013c) extend the dataset by adding other molecular electronic
properties computed with different methods. These additional properties are: av-
eraged molecular polarizabilities α, HOMO/LUMO eigenvalues, ionization poten-
tial (IP), electron affinity (EA), first excitation energy E∗

1st, excitation frequency of
maximal absorption E∗

max, and corresponding maximal absorption intensity Imax.
Methods for computing these properties include hybrid density functional theory
(PBE0) (Perdew et al. 1996), Zerner’s intermediate neglect of differential overlap
(ZINDO) (Zerner et al. 1980), self-consistent screening (SCS) (Tkatchenko et al.
2012), and Hedin’s GW approximation (Hedin 1965).

A.2. Description of Training Procedures

A.2.1. Backpropagation Networks of Chapter 3

The backpropagation networks used in the experiments of Figure 3.3 and 3.7 are
trained on the full MNIST dataset for 100000 iterations. The number of units at
each layer is 784–100–50–25–10. Each hidden layer uses a centered sigmoid acti-
vation function and the output layer is a softmax layer (Bishop 1996). Output of
sigmoids are continuously recentered by reparameterizing the network throughout
training. Weights at each layer are initialized according to a normal distribution
of scale 1/

√
m where m is the number of incoming connections. Weight updates

are rescaled by the same factor and error derivatives are multiplied from one layer
to another by

√
m/n, where m is the number of input nodes and n is the number
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of output nodes at each layer. This ensures initially, that derivatives have similar
scale at each layer. Each network is trained with stochastic gradient descent, with
a minibatch of size 25, a learning rate η = 0.1 (with minibatch averaging), no
momentum, and no weight averaging.

The backpropagation networks used in the experiments of Figure 3.8 are trained
on 10000 samples of the MNIST dataset until a training error of 2.5% is reached.
Each network is composed of one input layer, two hidden layers of 1600 units
and one softmax output layer. The hyperbolic tangent nonlinearity is applied to
each hidden layer. Weights at each layer are initialized according to a normal
distribution of scale 1/

√
m where m is the number of incoming connections. The

pretrained MLP (PMLP) is using the same architecture and training parameters
as the MLP, but is initialized by a stack of binary RBMs trained in a greedy layer-
wise fashion. The convolutional neural network (CNN) is made of two hidden
layers of convolution/nonlinearity/subsampling. Convolution kernels have size
5 × 5. We use sigmoids nonlinearities. The pooling operation linearly resizes the
feature maps by a factor 2. The number of feature maps at each layer is 100. All
networks are trained with stochastic gradient descent with minibatch of size 20, a
learning rate η = 1.0 (with minibatch averaging), no momentum, and no weight
averaging.

A.2.2. DBMs and Stacked RBMs of Chapter 4

For the experiments of Section 4.2 and Section 4.3, we train DBMs of three hidden
layers with 1600, 800, 400, 200 units at each layer and stacks of RBMs of four
hidden layers with 1600, 800, 400, 200, 100 units at each layer. Units at each layer
are centered (see Appendix B.1 for a detailed explanation). The initial bias in
each hidden layer is set to b = −1.3 (where the sigmoid has the highest second-
order derivative). The initial bias for visible units is set to b = sigm−1(〈x〉data) in
order to satisfy the centering condition. Weights are initialized to zero. For input
of size Nx, we emulate a 1600-dimensional input layer by rescaling the first layer
weight in the feed-forward pass by a factor 1600/Nx and keeping the backward
pass unchanged. In the DBM, such asymmetry is also introduced in the upper
layers. This reduces the amount of top-down feedback while allowing us to retain
a relatively large number of units in the top layers.

All layers of the DBM are trained jointly without layer-wise pretraining. The
stack of RBMs is also trained jointly by letting top layer dynamically adapt to
the evolving representations of the previous layers. (We note that for stacked
RBMs, there is no conceptual difference between joint training and greedy layer-
wise training, as first layer training is in any case independent from training of
upper layers. In practice, with appropriate learning rates at each layer, both
methods produce similar results.) Unless stated otherwise, DBMs and stacked
RBMs are trained with persistent contrastive divergence (Tieleman 2008). The
size of the minibatch and the number of free particles are both set to 25.

We use stochastic updates of the alternate Gibbs sampler both for the estimation
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of data and model statistics. In order to reduce top-layer noise, sufficient statistics
are collected with structural sampling using a branching factor b = 4 for the DBM
and b = 2 for the stack of RBMs (see Appendix B.2). Unless stated otherwise,
learning rate is set to η = 0.004 (with minibatch averaging). Each model is trained
for 240000 iterations.

A.2.3. Backpropagation Networks of Chapter 5

The neural network trained on the QM7 dataset is composed of 1800 input units,
two hidden layers of 400 and 100 units respectively, and one output unit. Input
to the neural network (random Coulomb matrices) is binarized with granularity
θ = 1.0. The network trained on the multitask variant of the dataset is composed
of 2000 input units, two hidden layers of 800 units each, and 1000 output units.
In this last network, the 14 outputs to be predicted are binarized with granularity
θ = 0.25.

Weights at each layer are initialized according to a normal distribution of mean 0
and standard deviation 1/

√
m where m is the number of input units to each layer.

The error derivatives backpropagated from layer l to layer l − 1 are rescaled by a
factor

√
m/n where m is the number of input units and n is the number of output

units at each layer. These scaling heuristics ensure that the units preactivations
fall in the correct regime of the nonlinearity and that weights at each layer evolve
at the correct speed. Input and output are normalized to have zero mean and unit
variance. The learning rate is set to η = 0.25 (with minibatch averaging).

We train the networks for 250000 iterations of stochastic gradient descent where
25 samples are presented at each iteration. We use exponential moving average on
the network parameters with averaging coefficients set such that approximately
10% of the training history is remembered. We use 90% of the training set for
training and the remaining 10% for early stopping. On sorted Coulomb matri-
ces, training the network takes less than one hour. On random Coulomb matri-
ces, training the network takes up to one day. The prediction for out of sample
molecules is obtained by averaging the prediction for 10 realizations of the random
Coulomb matrix. The prediction of all 14 properties for a given molecule takes
approximately 100 milliseconds.
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In this chapter, we describe the basic training procedure for deep Boltzmann ma-
chines and two enhancements that facilitate training in large networks. These
enhancements are particularly useful when training DBMs without layer-wise pre-
training. The first one is the centering trick (Montavon and Müller 2012) and is
the analogue to centering units in backpropagation networks (LeCun et al. 1998,
Schraudolph 1998). The second one is structural sampling and consists of sam-
pling top layers more often than lower layers. Both techniques help to reduce
learning noise and give rise to top-layer representations with better discriminative
properties.

Let us consider a DBM with three layers x, y and z. Each layer has Nx, Ny and
Nz units. In its canonical form, the energy of the DBM is defined as

E(x, y, z) = −x⊤Wy − y⊤V z − x⊤a− y⊤b− z⊤c,

where θ = {W,V, a, b, c} are the parameters of the model. W and V are the weight
matrices of size Nx×Ny and Ny×Nz respectively. Biases a, b and c have the same
size as their associated layers x, y and z. Each state of the network is associated
with a probability

p(x, y, z) =
1

Z(θ)
e−E(x,y,z),

that can be marginalized over y and z in order to obtain the input distribution
p(x). Learning a DBM from data, consists of finding model parameters θ that
produce a distribution p(x) that matches the data. The most common training
objective is the data log-likelihood

J = 〈log p(x)〉data,

where 〈·〉data denotes the expectation operator with respect to the input data
distribution. Maximizing this objective is usually achieved by stochastic gradient
descent (Bottou 1991). The derivative of the objective J with respect to the model
parameters has the simple form:

∂J

∂W
= 〈xy⊤〉data − 〈xy⊤〉model,

∂J

∂V
= 〈yz⊤〉data − 〈yz⊤〉model. (B.1)

The terms 〈.〉P appearing in the derivatives are called sufficient statistics and can
be computed by collecting many samples from this distribution P . In particular,
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data-dependent statistics 〈·〉data are collected for the factored probability distri-
bution p(y, z|x) · pdata(x), and model-dependent statistics 〈·〉model are collected for
the joint probability distribution p(x, y, z).

Unbiased samples from these distributions can be obtained using a Gibbs sam-
pler (Metropolis et al. 1953, Hastings 1970, Gelfand and Smith 1990). Gibbs
sampling is a method for drawing samples from a multivariate probability dis-
tribution without having to compute the probability density function explicitly.
It consists of sampling each variable of the joint distribution alternatively, con-
ditioned on the current state of the previously sampled variables. An important
property of Gibbs sampling is that it converges in distribution to the true prob-
ability distribution after repeated sampling. In the context of deep Boltzmann
machines, we can exploit the special layered structure of the network to derive an
efficient block-wise alternate Gibbs sampler (Salakhutdinov and Hinton 2009):

x ∼ B(sigm(Wy + a)),

y ∼ B(sigm(W⊤x+ V z + b)),

z ∼ B(sigm(V ⊤y + c)).

Here, x ∼ B(p) denotes the element-wise drawing of Bernoulli samples from a
vector of probabilities p. In practice, convergence can be prohibitively slow for
practical learning algorithms. Many techniques and approximations have been
proposed in order to accelerate sampling. For example, Tieleman (2008) proposed
to use persistent chains that sample from the model in background of the learning
procedure. These chains can be shown to mix fast under the effect of learning.
Desjardins et al. (2010) and Salakhutdinov (2010) proposed to use tempered transi-
tions, where simpler high-temperature distributions are used to accelerate mixing.
For data-dependent statistics, other techniques such as learning a feed-forward
model of inference in parallel to training have been proposed (Salakhutdinov and
Larochelle 2010).

B.1. The Centering Trick

Deep Boltzmann machines can be optimized more easily by centering the units at
each layer. The energy of the Boltzmann machine is rewritten as

E(x, y, z) =− (x− α)⊤W (y − β)
− (y − β)⊤V (z − γ)
− (x− α)⊤a− (y − β)⊤b− (z − γ)⊤c

where α, β and γ are offset vectors that are used to center the activity of each
unit in the network. The idea of centering Boltzmann machines was proposed in
various contexts by Cho et al. (2011), Arnold et al. (2011), Tang and Sutskever
(2011), and Montavon and Müller (2012). Based on this new energy function, the
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gradient of the objective with respect to the model parameters becomes:

∂J

∂W
= 〈(x− α)(y − β)⊤〉data − 〈(x− α)(y − β)⊤〉model, (B.2)

∂J

∂V
= 〈(y − β)(z − γ)⊤〉data − 〈(y − β)(z − γ)⊤〉model. (B.3)

Similarly, the alternate Gibbs sampler is rewritten as:

x ∼ B(sigm(W (y − β) + a)),

y ∼ B(sigm(W⊤(x− α) + V (z − γ) + b)),

z ∼ B(sigm(V ⊤(y − β) + c)).

Throughout training, mean activations of x, y and z may diverge from zero. There-
fore, it is important to regularly adapt the offset parameters. This should be done
in conjunction with other parameters, in a way that leaves the energy function E
constant (up to some constant factor), so that the probability distribution remains
unchanged. Montavon and Müller (2012) propose the following reparameteriza-
tion:

α′ = 〈x〉 a′ = a+W (〈y〉 − β)
β′ = 〈y〉 b′ = b+W⊤(〈x〉 − α) + V (〈z〉 − γ)
γ′ = 〈z〉 c′ = c+ V ⊤(〈y〉 − β)

A simplified training procedure for a three layers centered deep Boltzmann ma-
chine is shown in Algorithm 3. The algorithm is taken from the paper by Mon-
tavon and Müller (2012) and uses persistent contrastive divergence with stochas-
tic gradient descent. A sample code of the centered DBM is available at http:

//gregoire.montavon.name/code/dbm.py.
In order to better understand the effect of centering on the resulting optimization

problem, we can analyze the properties of the Hessian of the learning objective
with respect to the model parameters. For a fully connected Boltzmann machine,
the Hessian H projected on some direction ∆ in the parameter space can be
expressed as

H∆ =
∂

∂∆

(
∂

∂W
〈log p(x;W )〉data

)

= lim
h→0

1

h

(
∂

∂W
〈log p(x;W + h∆)〉data −

∂

∂W
〈log p(x;W )〉data

)

= lim
h→0

1

h

(
(〈ξξ⊤〉W+h∆,data − 〈ξξ⊤〉W+h∆)− (〈ξξ⊤〉W,data − 〈ξξ⊤〉W )

)

= lim
h→0

1

h

(
〈ξξ⊤〉W+h∆,data − 〈ξξ⊤〉W,data

)
− lim

h→0

1

h

(
〈ξξ⊤〉W+h∆ − 〈ξξ⊤〉W

)
,

where ξ denotes the centered activity of each unit. Interestingly, we can observe
from the last line that the projected Hessian can be decomposed into a data-
dependent term and a data-independent term. If all units are visible, the data-
dependent term is zero, showing that Hessian properties are intrinsic to the model
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Algorithm 3 Centered deep Boltzmann machine
W,V = 0, 0
a, b, c = sigm−1(〈x〉data), b0, c0
α, β, γ = sigm(a), sigm(b), sigm(c)
initialize free particle (xm, ym, zm) = (α, β, γ)
loop

initialize data particle (xd, yd, zd) = (pick(data), β, γ)
loop

yd ∼ B(sigm(W⊤(xd − α) + V (zd − γ) + b))
zd ∼ B(sigm(V ⊤(yd − β) + c))

end loop

ym ∼ B(sigm(W⊤(xm − α) + V (zm − γ) + b))
xm ∼ B(sigm(W (ym − β) + a))
zm ∼ B(sigm(V ⊤(ym − β) + c))

W = W + η · [(xd − α)(yd − β)⊤ − (xm − α)(ym − β)⊤]
V = V + η · [(yd − β)(zd − γ)⊤ − (ym − β)(zm − γ)⊤]

a = a+ η · (xd − xm) + ν ·W (yd − β)
b = b+ η · (yd − ym) + ν ·W⊤(xd − α) + ν · V (zd − γ)
c = c+ η · (zd − zm) + ν · V ⊤(yd − β)

α = (1− ν) · α+ ν · xd
β = (1− ν) · β + ν · yd
γ = (1− ν) · γ + ν · zd

end loop

rather than the data. Pearlmutter (1994) shows that the projected Hessian can
be further reduced to

H∆ = 〈ξξ⊤〉W · 〈D〉W − 〈ξξ⊤D〉W (B.4)

where D = 1
2
ξ⊤∆ξ. This last expression provides a numerically more stable es-

timate of the Hessian. Drawing a few directions ∆ at random, we can build an
approximation of H from which the condition number (ratio between highest and
lowest eigenvalue) can be computed.

Montavon and Müller (2012) estimate the condition number for a simple fully
connected Boltzmann machine of 50 units with zero weights and various bias
and offset parameters. Random directions ∆1, . . . ,∆100 are drawn in the 2500-
dimensional parameter space in order to compute a low rank approximation of the
Hessian:

Ĥ = H(∆1, . . . ,∆100) = (H∆1, . . . ,H∆100).

Sufficient statistics involved in Equation B.4 are estimated from 1000 samples. Let
λ1, . . . , λ100 be the eigenvalues of the projected Hessian. The condition number
λ1/λ100 is shown below for various b and β. Centered DBMs are marked in bold.
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λ1/λ100 b = 2 b = 0 b = −2
β = sigm(2) 1.98 12.65 51.42
β = sigm(0) 22.97 1.82 22.20
β = sigm(−2) 52.72 13.40 1.94

We can observe that the condition number in a centered DBM is better by an
order of magnitude than in a non-centered one.

B.2. Structural Sampling

In deep Boltzmann machines, we would like to reduce the bias and variance of the
estimated sufficient statistics entering in the computation of the parameter update.
Low bias is particularly important for modeling data-dependent statistics: Let ξ
denote the state of the hidden units, driven by a bias parameter b that aggregates
local bias and contribution from other units. Suppose that the data statistics
〈ξ〉data are incorrectly sampled as

〈̂ξ〉b,data = 〈ξ〉b,data + δdata + εdata,

〈̂ξ〉b,model = 〈ξ〉b,model + δmodel + εmodel,

where we decompose the estimation as the true expectation plus the bias δ and
variance ε of the estimator. The sampling bias may arise, for example, from a not
fully converged Gibbs sampler. The parameter update takes the form

∆̂b = η · (〈ξ〉b,data + δdata + εdata − 〈ξ〉b,model − δmodel − εmodel)

= ∆b+ η · (δdata + εdata − δmodel − εmodel).

The data-driven bias is particularly problematic: Until the model picks up with
the data, there will be a systematic bias in the parameter update, that will cu-
mulate over time. In practice, bias can be removed by using a sufficient number
of iterations of the Gibbs sampler. The importance of producing data-dependent
statistics from a converged Gibbs sampler, or an accurate approximation of it, was
already demonstrated by Salakhutdinov and Larochelle (2010).

Similarly, low variance is also important for modeling both data-dependent and
data-independent statistics. The harmful effect of variance is that it might con-
struct random pairwise interactions that affect the layer-wise organization of the
model. The model hardly recovers from these random interactions, as they are im-
mediately perceived as “ground truth” when computing data-dependent statistics
in the next iterations.

Generally, we would like to reduce the variance of the sufficient statistics 〈·〉data

and 〈·〉model where it is the most harmful and most susceptible to occur. Such
variance is particularly susceptible to occur in top layers, because this is where
the posterior distribution has the highest entropy H. In a three layer DBM, we
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Algorithm 4 Structural Sampling
function struct(l)

sample(l)
if l < L then

for i = 1 . . . b do
struct(l + 1)
sample(l)

end for
end if

end function
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VV

xx
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1

Nz

H(z|x) > 1

Ny

H(y|x) > 1

Nx

H(x|x)

An intuition for this is that deep Boltzmann machines can be seen as a noisy
channel where each layer adds some noise to the signal x through sampling. For
reasonable distributions, we expect that the same also holds true for the sufficient
statistics at each layer,

1

NyNz

H(yz⊤|x) > 1

NxNy

H(xy⊤|x),

and that top-layer statistics are therefore particularly susceptible to exhibit sam-
pling noise.

We propose an algorithm that oversamples top layers by using a layer-wise
recursive sampling procedure that we call structural sampling. Such sampling
procedure both aims to reduce sampling noise and sampling bias, and can be shown
to have a constant computational overhead compared to the standard sampling
procedure. The recursive procedure is shown in Algorithm 4. We require that the
number of units at each layer of the DBM decreases with layer depth as Nxc

−l

where Nx is the number of input dimensions and c2 > b. For example, a two-fold
reduction of the number of units at each layer combined with a branching factor
b = 3 in the recursive procedure satisfies this inequality. The overall amount of
computation for one iteration of the recursive sampling procedure in an infinitely
deep network is:

Cost =
∞∑

l=0

A · (Nxc
−l) · (Nxc

−(l+1)) · bl

=
A ·N2

x

c

∞∑

l=0

(
b

c2

)l

= O(N2
x).

The variable A encompasses the cost per parameter of the various matrix multipli-
cations used for forward sampling, backward sampling, and collection of sufficient
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statistics. On simple sequential computers, such cost per parameter is constant.
Overall, the computational cost scales quadratically with the number of input
dimensions.
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C. Building Local Reliability

Estimates with Kernels

It is an important requirement in many applications to integrate predictive uncer-
tainty into the model. Such reliability estimates may help to implement risk averse
strategies, that are often needed in applications such as automated medical diag-
nosis, quantitative trading or computer security. Models of predictive uncertainty
may also form the basis for more refined active learning strategies.

In this section, we first review some simple and well-established models of pre-
dictive uncertainty: Gaussian processes and Parzen variance estimators. Then, we
introduce a localized extension of the relevant dimensionality estimates of Braun
et al. (2008). The localized extension is proposed by Montavon et al. (2013a) and
takes into account both noise and dimensionality in order to produce error bars.
Finally we show in which circumstances these enhanced error bars are more ap-
propriate, and compare the performance of each method on several classification
and regression tasks.

C.1. Gaussian Processes, Parzen Windows, and

Local RDE

A popular algorithm for producing localized error bars is the Gaussian process
(Williams and Rasmussen 1996, Rasmussen 2004). The predictive model y(x) is
given a prior distribution (Gaussian process) with covariance

Cov(y(x), y(x′)) =
{
k(x, x′) + λ2 x = x′

k(x, x′) else

where λ models the intrinsic noise in data and can also be seen as a regularization
parameter. Given n input samples represented as a matrix X of size n×d, and its
associated kernel Gram matrix K of size n × n, we can compute the local mean
and variance of the posterior (also a Gaussian process) as

EGP[ŷ(x)] = k(x,X) · (K + λ2I)−1Y

VarGP[ŷ(x)] = k(x, x)− k(x,X) · (K + λ2I)−1 · k(X, x).

where Y is a vector of labels of size n. It is instructive to discuss the behavior of
error bars close and far away from the data: Near the data, assuming λ = 0, the
second term of the variance estimate collapses to one, thus, leading to a variance
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Figure C.1.: Local error bars obtained with a Gaussian process model, a Parzen
window estimator of variance and an estimator based on local RDE.

of zero. Far away from the data, the terms k(x,X) and k(X, x) are zero and the
variance estimate becomes 1. Therefore, the Gaussian process tends to produce
error bars that are large outside the data and small near the data. It is important
to note, that the label is not involved in the computation of error bars. In Figure
C.1, we can see on the left, that when the label noise is correlated to the data
density, the Gaussian process produces error bars that are opposite to what it
should do. On the right, we observe that the Gaussian process is clearly not able
to raise the level of uncertainty near the cliff.

Estimating local variance using Parzen windows (Rosenblatt 1956, Parzen 1962)
is a different approach to produce error bars: Unlike Gaussian processes, Parzen
windows are incorporating local label variance in the error estimate. This is par-
ticularly important for applications where data is heteroskedastic (i.e. noise varies
as a function of the position in the input space). Densely populated regions of the
input space with high level of label noise should be modeled with large error bars.
Conversely, sparsely populated area with low label noise or low variations of y(x)
are easy to predict. Assuming a dataset {(x1, y1), . . . , (xn, yn)}, we can compute
the mean and variance estimator at position x as

EPA[ŷ(x)] =

∑n

i=1 y(xi)g(x, xi)∑n

i=1 g(x, xi)
,

VarPA[ŷ(x)] =

∑n

i=1(y(xi)− µ(x))2g(x, xi)∑n

i=1 g(x, xi)
,

where µ(x) = EPA[ŷ(x)] and g(x, ·) is a Parzen window. Here, the noise estimate
is clearly dependent on the local variability of y. Error bars produced by Parzen
windows are shown in Figure C.1. The Parzen window estimator is better adapting
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Figure C.2.: Image taken from the paper by Montavon et al. (2013a) showing
a local and global RBF kernel along with its three leading kernel
principal components. The solid, dashed and dotted lines represent
the first, second and third components and have increasing frequency
in the input space.

locally to the label noise. However, on the cliff problem, it confuses the change of
sign signal as noise and produces a too smooth signal with pessimistic estimates
of noise. Indeed, this model does not differentiate high noise from highly varying
signal.

A better solution is to build a local model of noise and dimensionality. This can
be done within the RDE framework of Braun et al. (2008) described in Chapter
2. For this, Montavon et al. (2013a) define the localized kernel kξ as:

kξ(x, x
′) = k(ξ, x) · k(x, x′) · k(x′, ξ)

where k(ξ, x) and k(x′, ξ) act as Parzen windows that localize the kernel around
the position ξ. Example of Gram matrices obtained with a global and local ker-
nel are shown in Figure C.2. Here, we consider a simple Gaussian kernel and
a uniform input distribution x ∼ U(−1, 1). Note that in order to compute the
spectrum coefficients {Z2

i } or the error residuals e(d), the label vector should first
be centered:

yξ(x) = (y(x)− µξ) · k(ξ, x),

where µξ =
∑

x y(x)k(ξ, x)/
∑

x k(ξ, x). Let
∑

x,x′ kξ(x, x
′) be the sum of entries

in the localized Gram matrix. For Gaussian kernels, we would like the sum of
elements in the local kernel to be a constant value c for each location ξ. The
appropriate scale parameter σ can be found easily by grid search or by iterating
the series σ(i+1) = σ(i) + γ(c −∑

x,x′ kξ(x, x
′)) for appropriate step size γ. In the
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case of an RBF kernel where distance is computed as an Lp norm, the product of
kernels has an interpretation as a distance in a higher dimensional space:

kξ(x, x
′) = exp

(
− ||ξ − x||

p
p

σp

)
· exp

(
− ||x− x

′||pp
σp

)
· exp

(
− ||x

′ − ξ||pp
σp

)

= exp
(
− ||ξ − x||

p
p + ||x− x′||pp + ||x′ − ξ||pp

σp

)

= exp
(
− ||[x x ξ]− [ξ x′ x′]||pp

σp

)

In the last line, the terms [x x ξ] and [ξ x′ x′] denote the concatenation of the
multiple vectors inside the brackets. This higher-dimensional mapping has a ge-
ometric interpretation when the input space is one-dimensional. For fixed ξ, the
three-dimensional parametric curves [x x ξ] and [ξ x′ x′] intersect at [ξ ξ ξ] with an
angle of 60◦. This shows that the expanded distance between x and x′ is generally
correlated to the one-dimensional distance x−x′ (because the angle is acute), but
can only be fully minimized if located near ξ.

Estimates of predictive uncertainty can now be obtained from the localized ker-
nel. Using the procedure described at the beginning of Section 2.2 but replacing
the global kernel k(x, x′) by the local kernel kξ(x, x′), we first compute the eigen-
vectors {ui}ni=1 associated with the Gram matrix Kξ. Then, the localized spectral
coefficients {Z2

i }ni=1 are computed as

Z2
i = (u⊤i (y − µξ))

2,

where y − µξ is the vector of labels y centered near ξ. These localized spectral
coefficients allow us to build a model of mean and variance at every location ξ of
the input space

ERDE[y(ξ)] = µξ +
d∑

i=1

uiu
⊤
i (y − µξ),

VarRDE[y(ξ)] =

∑n

i=d+1 Z
2
i∑n

i=1 kξ(xi, ξ)
2
.

The number of dimensions d should in theory be chosen such that it spans the
signal component and discards the rest. The small amount of data intervening
in the localized kernel can make such estimation inaccurate. In general, we find
empirically, that a small hardcoded value for d, typically d = 2 produces reasonable
models of predictive mean and variance. Figure C.1 shows the error bars produced
by the local RDE model. On the left, the error bars are noisy, suggesting a more
unstable behavior than the simple Parzen window. On the other hand, on the
right, the local RDE model is able to detect the signal component on the cliff and
produces tighter error bars near the boundary.

A last aspect of local RDE is its computational cost. In its naive implemen-
tation, it requires the computation of a local Gram matrix and its eigenvalue
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decomposition for every test point. Given that such computation has a cost of
O(n3), and assuming that the number of training points and the number of test
points are approximately the same, it brings the total computation to O(n4), which
is intractable for more than a few hundred samples. However, for larger datasets,
we can exploit the fact that the kernel is both localized and similar for two neigh-
boring locations, in order to improve computational efficiency: First, only the
non-zero subregions of the kernel needs to be computed and eigendecomposed.
Second, when implemented in an iterative manner (Kim et al. 2003, Günter et al.
2007), the computation of leading principal components can be reused from one
location to another.

C.2. Results and Discussion

We test the performance of each method (Gaussian process, Parzen variance es-
timator, and local RDE) on real data. We consider three datasets: the MNIST
dataset, the original version of the UCI Wisconsin breast cancer dataset (Man-
gasarian and Wolberg 1990) and two variants of the QM7 quantum chemistry
dataset (see Appendix A.1). Due to the high computational requirements of the
naive implementation of local RDE, we restrict ourselves to subsets of a few hun-
dred samples. On the MNIST dataset, we use 500 training and test samples (only
digits “1” and “7”). On the breast cancer dataset, we use 341 training and test
samples. For the quantum chemistry dataset, we extract 250 training and test
samples corresponding to the smallest molecules in the QM7 dataset, and the task
is to predict the corresponding first excitation energy E⋆

1st. We consider two repre-
sentations of molecules: The first one (QM7-noisy) is based only on the 12 largest
elements of the Coulomb matrix sorted element-wise. The second one (QM7-clean)
is based on all elements of the Coulomb matrix.

Results are given in Figure C.3. The true vs. predictive errors are shown as a
scatter plot. Here, the relation between both quantities (true error and predictive
error) should be as positively correlated as possible. In order to obtain quantifiable
results, we also compute precision-recall curves in the classification setting, and
we use f(x) = 0 as an implicit classification boundary. For the regression case, we
sort samples from the most trusted to the least trusted and plot the cumulative
root mean square error (RMSE).

Figure C.3 (left) shows the results for the two classification tasks. The nature
of the prediction problem is similar to the example of Figure C.1 (right) where
two plateaus are separated by a cliff—here, a classification boundary. We observe
that the local RDE (LRDE) performs best on both datasets. LRDE is able to
adjust its estimate of noise and dimensionality near the classification boundary
and therefore to produce better estimates of local variance. On the other hand, the
Gaussian process is not appropriate for this task. We also compute p-values1 that
take both predictive mean and variance in the estimate of reliability. Interestingly,

1See Montavon et al. (2013a) for more details on how these p-values are computed.
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MNIST Breast cancer Chemistry (QM7-noisy)

Chemistry (QM7-clean)

Figure C.3.: Left: Plots by Montavon et al. (2013a) showing the predictive vs.
true error, and precision-recall curves for the MNIST and breast can-
cer classification datasets. The LRDE method is performing best in
both cases, producing a few highly trusted samples. Right: Plots by
Montavon et al. (2013a) showing the average error when sorting data
from the most to the least trusted sample. In the noisy case, LRDE
performs best. However, with the full representation (QM7-clean),
Gaussian processes become the method of choice.

these p-values—based here on some Gaussianity assumption—do not improve the
precision-recall curves. This suggests that Gaussianity is a poor assumption in
these problems and that better statistical tests should be devised.

Figure C.3 (right), shows the regression error for the two variants of the quantum
chemistry dataset (noisy and clean). As expected, on the noisy variant of QM7, the
local RDE method is able to detect high level of noise when multiple molecules
with different molecular properties collapse onto the same point in the feature
space. This translates into lower mean square error for highly trusted samples.
On the other hand, on the clean variant of QM7, where all input information is
available, Gaussian processes perform the best. Indeed, the main source of noise
comes now from the uncertainty in the input space rather than the label noise.

Our study has demonstrated within the kernel framework the importance of
taking into account both noise and dimensionality in order to compute local re-
liability estimates. In the first part of this thesis, we described how the multiple
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layers of representation in a deep network can be understood as a feature space, or
a kernel. Thus, it is in principle possible to apply these local reliability estimates
at every layer of a deep network. This may inform the learning algorithm on
regions of high noise or regions of high dimensionality in the feature space. This
additional information could be in turn exploited in order to dynamically adapt
the learning strategy.
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