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Abstract: The condition of mechatronic production equipment slowly deteriorates over time,
increasing the risk of failure and associated unscheduled downtime. A key indicator for an
increased risk for failures is the shifting of resonances. The aim of this paper is to track the
shifting resonances of the equipment online and during normal operation. This paper contributes
to real-time parametric fault diagnosis by applying and comparing parameter estimators in
this new context, highly relevant for next-generation mechatronic systems. The proposed fault
diagnosis systems consist of recursive least squares algorithms and the effectiveness is illustrated
on an overactuated and oversensed flexible beam setup, allowing to artificially manipulate its

effective resonances in a controlled manner.

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
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1. INTRODUCTION

Next-generation mechatronic production systems are be-
coming increasingly more demanding in terms of perfor-
mance and as a result, more complex. Despite excellent
system design and major developments in control theory,
the condition of these systems still deteriorates over time,
making maintenance unavoidable. Due to the high cost as-
sociated with downtime, the high-tech production industry
is shifting from traditional maintenance towards predictive
strategies, see Classens et al. (2021b) for details. To this
end, real-time fault detection and isolation (FDI) is highly
important for complex closed-loop controlled systems as it
serves as a foundation for effective, targeted, and optimal
scheduling of maintenance.

Over the past decades, real-time FDI has proven to be
crucial. Particularly, in safety critical domains, such as
the process industry, automotive applications, and the
aerospace industry. Motivated by FDI problems in these
domains, numerous surveys have appeared which illus-
trate successful application, e.g., Gertler (1991), Iser-
mann (2005), Gao et al. (2015), and Venkatasubramanian
et al. (2003). In contrast, real-time diagnosis in the high-
precision mechatronics industry has not matured yet. In
particular, fault diagnosis during normal operation, i.e.,
online and without dedicated experiments.

* This work is supported by Topconsortia voor Kennis en Innovatie
(TKI), and is supported by ASML Research, Veldhoven, The Nether-
lands.

Faults are typically split into two broad categories: ad-
ditive, such as sensor drift, and multiplicative, such as
resonance characteristics (system properties), see, e.g.,
Isermann (2005). A method to detect additive faults is
using residual generators. This method has been applied
in the context of mechatronic systems, see Classens et al.
(2021a). For multiplicative faults, other approaches are
more suitable, e.g., originating from the domain of system
identification such as the recursive least squares (RLS) al-
gorithms, see Ljung (1987); Soderstrom and Stoica (2001).
These methods are particularly tailored to dedicated per-
sistently exciting inputs. In contrast, solely data from
normal operation may be used. For that reason, additional
practical aspects need to be addressed in order to achieve
successful implementation. Shifting resonances are consid-
ered multiplicative faults. They are extremely important
as multiplicative faults affect stability margins and closed-
loop performance. Namely, the controller is typically based
on the response of the fault-free system and dedicated
controller components, such as notch filters, may even
become harmful in the case of a shifting resonance.

Although important progress has been made for fault
detection for complex engineered systems, at present ac-
curate FDI of parametric faults and its effective appli-
cation to mechatronic systems during regular operation
has received little attention. The aim of this paper is to
contribute to illustrate this potential. To this end, the con-
tribution of this paper is threefold: 1) Illustrate effective
real-time resonance tracking for mechatronic systems, 2)

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
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Develop a mechatronic system to manipulate resonances
in a controlled fashion, 3) Address the practical aspects
essential for application.

This paper is organized as follows. The paper proceeds
with the problem formulation in Section 2. Subsequently,
in Section 3 the implemented recursive parameter estima-
tor algorithms are introduced, and aspects regarding im-
plementation are described in Section 4. An experimental
case study, presented in Section 5, illustrates the effective-
ness of the proposed approach and finally, a conclusion is
given in Section 6.

2. PROBLEM FORMULATION

Consider the generic continuous-time (CT) single-input
single-output (SISO) system description, P : u +— y,
ag+ais+...+am-18

m—1
14+bis+...+bysm 7 (1)
where a; denote the numerator coefficients, and b; denote
the denominator coefficients. In particular, lightly damped
motion systems can be described in an equivalent modal
representation, P, : u — y, as

P(s) =

Ny Ns T
VW, VW,
P (s) = I e 2
m() Z 52 +Z 52+2€iwi8+0~1-2’ ()
i=1 i=n,p+1 ?

see, e.g., Gawronski (2004), Preumont (2018). The number
of rigid body modes is denoted by n,;, and the total
number of modes is denoted by ns. The mode shapes are
defined by v; and w;, whereas (;,w; € R, represent the
relative damping and natural frequencies of the flexible
modes.

Remark 1. Note that in case the system is suspended, e.g.,
by flexures, n,, = 0.

Remark 2. Given a complex pole pair of a CT dynamical
system, s;, its corresponding natural frequency w; = |s;]
and its corresponding damping ratio ¢; = — cos (£s;).

Mechatronic systems typically operate in closed-loop, see
Fig. 1. The closed-loop controlled system, subjected to
multiplicative faults, is augmented with the fault estimator
E. The main objective is to design F in order to estimate
the moving resonance parameters, (; and w;, over time
using real-time operational data u and y.

Remark 3. A typical task could be following a higher order
setpoint r or a regulator problem (r = 0).

Remark 4. In this paper, the main focus lies on SISO
systems, ie., u € R, y € R, v; € R, and w; € R. The
approach can be extended to multi-input multi-output
(MIMO) systems, where v € R, y € R™, v; € R,
and w; € R™,

3. PARAMETRIC FAULT DIAGNOSIS SOLUTION

Consider (1), with differential equation
y+biy+.. .—|—bny(") = nou+nit+...+nm_1u™ b, (3)

where (™ and (™) denote higher-order derivatives. At time-
instance k, this relation can be written as

y(k) = ¢" (k) (4)

where the output y(k) € R™v, the regressor matrix
d(k) = [—u(k) ... —y™ (k) u(k) a(k) ... um=D(k)]" € Rroxm,

u

> w,(
Y »
—>

fault(z)

Fig. 1. Overview of the closed-loop control system and
the fault diagnosis system. The controller C' (@), the
plant P (®), and the parameter estimator E (@) are
highlighted. The plant is subjected to faults and the
estimator processes the control input u and output ¥,
giving information about natural frequencies w and
the corresponding relative dampings (.

and the parameter vector
0 = [—bl .. nm_l]T c R",

The regressor contains measured signals or estimates based
on the measured signals. The regressor couples the to-be
estimated parameters 6 to the measured output y(k).

. _bn Mo N1 ...

A recursive least squares (RLS) solution is presented which
in addition to the parameter estimate generates informa-
tion about the uncertainty (variance) of the estimation,
see, e.g., Ljung (1987) for details. RLS algorithms aim to
minimize the cost function

k

(k) = 5 3 (0. A K)o @), (5)
t=1

where eqp (6, k) = y(k) — ¢ (k)0 is the prediction error
and A(k) a positive definite weighting matrix.

Note that in the previous, 6 is not a function of the
time instance k. In the case of shifting resonances, the
parameters vary over time. To the end of estimating
6(k), the forgetting factor and the Kalman algorithm are
used. Both algorithms are well-known in literature, are
computationally cheap, and give the desired knowledge,
making them attractive for online FDI.

8.1 Forgetting Factor RLS

The algorithm consists of three equations. Typically, N, <
Npy. In that case, the learning gain

L(k) = P(k = 1)o(k) (\(k)A(K) + 67 (k) P(k — 1)o(k)) ", (6)
the parameter estimate
O(k) = 0(k —1) + L(k) (y(k) — ¢ (k)0(k = 1)), (T)

and matrix

1
P(k) = 5 (P(k—1) = L(k)¢ ' (k)P(k—1)),  (8)
with forgetting factor A(k) € (0,1]. The matrix P is a
measure for the uncertainty of the estimate.

3.2 Kalman Estimator RLS

In the Kalman estimator, §(k) is considered a Gaussian
random vector with noise variance R(k) and with mea-
surements y(k) containing noise with a covariance Q(k).
Similarly, the Kalman result consists of three equations.
Namely, the learning gain

L(k) = P(k — 1)é(k) (R(k) + ¢T (k) P(k — D)g(k)) ", (9)
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the parameter estimate

O(k) = 0(k — 1)+ L(k) (y(k) — ¢ (k)0(k — 1)), (10
and the covariance matrix
P(k) = P(k—1)+ Q(k) — L(k)¢" (k)P(k —1).  (11)

Next, a number of relevant aspects are discussed which
enable successful implementation.

4. PRACTICAL ASPECTS FOR SUCCESSFUL
IMPLEMENTATION

In this section, crucial aspects are addressed which are
required for successful implementation of the presented
estimator algorithms. First, it is described how to deal
with the noisy continuous time signals and how to es-
timate derivatives. Subsequently downsampling is ad-
dressed. Then a strategy to enhance persistency of exci-
tation is presented. Finally, the numerical stability of the
resulting filters and closed-loop aspects are addressed.

4.1 Derivative Filter

The underlying physical relations are described by CT
differential equations instead of (approximate) discrete-
time (DT) difference equations. The reason for this is that
the CT relations directly contain physically interpretable
parameters.

The use of CT differential equations, see Section 2, comes
with the challenge that the regressor ¢(k) likely contains
CT derivatives of measured signals while the information
about the system is available only at the sampled instances
k. Hence, the derivatives must be approximated if not
available directly from sensors. Solutions in literature in-
clude for instance the state variable filter, see Chamberlin
(1980), and Peter and Isermann (1990). Next, an alterna-
tive pragmatic approach is presented, taking into account
the following.

(1) The filter should be implementable, i.e., causal.

(2) The DT filter should approximate the CT filter up to
a user-defined cut-off frequency.

(3) The filter should be of minimal order to reduce
computational burden.

(4) The entries in the DT filter should be of numerically

similar order.

Let p denote the highest derivative in ¢(k). Then define
Z=1s...5"]. (12)

Subsequently, define a p*™® order lowpass filter L with cutoff
frequency f.. Then multiplying Z with the resulting L
gives Z = LZ which is a CT (strictly-)proper approximate
of Z. Subsequently 7 is discretized using Tustin discretiza-
tion. The order of the resulting denominator polynomial is
p+ 1, implying a minimal state-space dimension of p. The
regressor and output signals are processed with the same
approximate filter, respectively.

4

4.2 Downsampling

Modern mechatronic systems operate at a very high sam-
pling rate, typically higher than 1 kHz. The estimators do
not have to run at these sampling rates and the data may

be downsampled to decrease the computational burden of
the estimator. Ultimately decreasing the sampling rate too
far comes at the cost of a less accurate, and eventually
diverging estimate with large variance.

4.8 Persistency of Excitation - Enable Disable Strategy

A system is persistently excited when the system generates
data which contains sufficient amount of information to
extract the desired system properties. See Ljung (1987)
for a formal definition.

Theoretically, it is straightforward to derive an expression
for y(k) = ¢ (k)0, and the signals may seem independent.
Consequently, a unique solution for # is available. In an
application, however, certain signals may not be excited
sufficiently or sufficiently fast. This results in non-unique
parameter estimates and a possibly large variance.

A strategy to overcome unsatisfactory results due to low
excitation is to only enable the estimators during the time
intervals of sufficient excitation of the regressor signals.
There are multiple options for this enable/disable strategy.

(1) The enable signal can be a function of the setpoint
and its derivatives. This is computationally cheap
as all signals are predictable and available prior to
operation.

(2) The enable signal can be a function of measured
signals, such as actuator input, the output or its
filtered derivatives.

(3) The enable signal can be a function of the combina-
tion of both setpoint and measured signals.

Remark 5. While disabling the algorithm, it is suggested
to hold the last estimate of the parameters 6 and corre-
sponding covariance until the estimator is re-enabled.

4.4 Numerical Stability RLS Filters

Despite the algorithms in Section 3 being correct, dur-
ing implementation Ljung (1987) proposes alternatives for
the forgetting factor and Kalman variants of the RLS
algorithm which are more numerically sound. The alter-
native solves problematic round-off errors in P(k) which
can make this matrix indefinite over time. The solution
is based on the fact that P(k) can be decomposed by
Q(K)QT (k). By recursively computing this, the corre-
sponding P(k) is forced to be positive-definite.

4.5 Closed-loop Aspects

In practice, the output y is perturbed by noise v. The
proposed approaches do not take into account the effect
of the presence of the controller C. Due to the controller
in closed-loop systems, the input u is a function of the
output y and as a result correlated with the noise v. A
consequence of the correlation between u and v is that a
(slightly) biased estimate is obtained.

Remark 6. If the correlation between noise v and control
input u is low, the consequences are limited, e.g., when
relatively accurate sensors are used such that the signal to
noise ratio at the input is high. Alternative solutions exist
in case the correlation is high, see Soderstrom and Stoica
(2001).
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Fig. 2. Prototype experimental setup. The moving part,
i.e., the flexible beam, is equipped with yellow tape
and is outlined with (#). The beam is actuated by
three voice coil actuators (@), and five fiber-optic
displacement sensors, of which three are used (m).
The steel beam is held up by four wire flexures from
the table upwards, and one sideways on the left.

(a) Flexible beam system.

(b) Equivalent system.

Fig. 3. Symmetric beam with inputs uy, us, and outputs
y1, y2. The system can be seen as a two mass-
spring-damper system, where the first mass, m; (@),
corresponds to the outer portion of the beam and the
second mass, mo (@), corresponds to the inner mass.

Remark 7. For diagnostics purposes the true parameter
values are of lesser importance as long as the estimates
are approximately representative for the physics. It is more
important that an estimation algorithm detects changes in
the estimated parameter values as this is an indication that
failure has occurred or is likely to occur in the future. For
this reason, the resulting bias is less important w.r.t. for
instance system identification for controller design.

5. EXPERIMENTAL VALIDATION

First the experimental flexible beam setup will be intro-
duced, the transformation to an equivalent two degree of
freedom mass-spring-damper system will be illustrated,
and the artificial resonance manipulation will be described.
Subsequently, the estimator results will be shown for mul-
tiple setpoints and multiple parametric fault trajectories.
Here, the main focus lies on the application of the RLS
algorithms.

5.1 Setup

A picture of the setup is shown in Fig. 2, where the
main components are highlighted. The movable part of
the system consists of a steel beam of 500 x 20 x 2 mm.
Four degrees-of-freedom (DOFs) are fixed by means of
wire flexures. Hence, two DOF's remain to be controlled, in
addition to the flexible dynamical behavior. The remaining
degrees of freedom are one translation, denoted by y, and
the rotation ¢. The setup is equipped with three current-
driven voice-coil actuators, as well as contactless fiberoptic

Fig. 4. Overview of the closed-loop control system and the
fault diagnosis system. The controller C' (@), the plant
P (m®), and the parameter estimator £ (m) are high-
lighted. The plant can be manipulated with k2 (t) and
da(t). The additional control law Pa = (ka(t) — ko, )+
(da(t) — da,) s, is a proportional derivative controller,
where ko, and dy, denote the original stiffness and
damping, respectively. Additionally, a delay compen-
sator H is incorporated in the internal feedback loop.

sensors with an accuracy of approximately 1 pm. The
system is operating at a sampling frequency of 4096 Hz
on a Raspberry Pi.

The flexible beam including the first internal resonance
mode is schematically drawn in Fig. 3a. The rotational
DOF is suppressed with a dedicated controller and due
to symmetry, the system can be seen as the schematic
drawing in Fig. 3b, with inputs u, ue, and outputs yi, ys.
The system has mechanical properties my, ma, k1, ka,, di,
and da,.

5.2 Resonance manipulation

To manipulate the effective resonances of the system, an
input and output transformation is applied to isolate the
flexible mode. An additional internal feedback loop is
created for the flexible mode of the system with time-
varying constants ko(t) and do(t) which allow to vary
the internal stiffness and damping of the beam over time,
see Fig. 4. For details regarding the implementation, see
Classens et al. (2021a).

The resulting system P can be described by the state-space
description

T = Ax + Bu, (13&)
y=Cuz, (13b)
with
i 0 1 0 0
_kitko(t) _ditda(t) k2(t)  da(t)
A — mi ma mi mi
0 0 0 1 ’
ka2 (t) da(t) k() _d2()
ma mo ma ma

0
1
| C=[1000]
L 0
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Fig. 5. Measured frequency response function where the
second resonance is manipulated. The fault-free sys-
tem (—) is indicated. Only increasing the damping
dy(t) gives (—). Only increasing the stiffness k()
gives (—), whereas decreasing ko(t) gives (). Com-
bined shifts in ks (t) and da(t) result in (—) and (—).

where the output y := y; € R, and the input u :=u; € R.
The transfer function matrix (TFM) of the system is equal
to P(s) = C(sI — A)~'B.

Remark 8. Note that the resulting transfer is now a func-
tion of ko (t) and da(t) which can be manipulated over time
to achieve time-varying resonance characteristics.

By manipulation of the stiffness ko, the frozen frequency
response function (FRF) shows, as expected, a shift in the
second resonance of the system, see Fig. 5. Increasing the
damping ds results in a higher damping as illustrated by
the measured frozen FRFs.

Next, the parameters ko (t) and dy(t) are manipulated over
time and the resonances are estimated online using the
RLS algorithms presented in Section 3.

5.8 Fault Estimator

Given the model of the manipulated beam, i.e., (13) and
its TFM P(s) in the form (1), the to-be estimated vector
0 can be derived which is equal to

di + da(t) T
b (t) ma L e duda(t)
by(t) R0 TR T Raka(t)
bg(t) d1m2+d2k(t3€’l’n(1t;>d2(t)m2
1R2
0(t) = bil(ot) = ﬁ’% , (14
ax(t) d?(lt)
as(t) Fuka (1)
L Fika (D) i
with corresponding regressor
o7 (k) = [~y(k) ... —y*(k) u(k) (k) d(k)].  (15)

The system has two resonances. In the fault-free case,
wy ~ 3 Hz, and wy ~ 33 Hz. Next, four experiments are
performed and the RLS algorithms are compared in terms
of their estimation of w; and (;.

r [mm]

y [mm)]

Fig. 6. The reference r of experiment 1 and 3 (—) and the
reference of experiment 2 and 4 (—). In addition, the
corresponding input and output signals are depicted
showing the time instances where the system is likely
to be sufficiently excited or insufficiently excited.

For all experiments, the RLS with forgetting factor has
A =0.9992 and P(0) = 1-1072]. The Kalman covariance
is set P(0) = diag(2-107%,10718,10712,1017,1074,1077,
1079).

The first experiment has a 0*" order reference, see Fig. 6
containing a snapshot of the fault-free situation. The
fault consists of a step at ¢ = 90 s in both ks and ds,
where the spring constant decreases and the damping
constant increases. The first resonance remains fault-free.
The second experiment has a 4*" order reference and the
same fault. Both resulting estimates are depicted in Fig. 7.

The third experiment has a 0" order reference and the
fault is linearly increasing from ¢ = 60 s to ¢t = 120 s for ko
and dy. The fourth experiment has a 4'" order reference
and the same fault. The resulting estimates are depicted
in Fig. 8.

The natural resonance frequency as well as the damping
constants are accurately estimated, especially with a 0"
order reference. With a 4" order reference, the spread
is larger as the regressors are excited to a lesser degree.
Despite this, the shifting resonance is clearly detected.
In addition, it can be concluded that the first damping
constant is more difficult to detect.

Finally, a Nyquist diagram over time is shown of the
estimated model during the experiment with 0" order
reference and linearly progressing fault, see Fig. 9. It can
be observed that as the fault progressively becomes worse,
stability margins drastically decrease, affecting closed-
loop performance and increasing the risk of closed-loop
instability.

6. CONCLUSION
This paper provides a model-based fault diagnosis frame-

work to estimate parametric faults. In particular, shifting
resonances in mechatronic systems. A system is designed
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Time s

Fig. 7. Experiment with a step fault at £ = 90 s in both
ko and dy. The expected parameters are indicated
(—). The results of the first experiment, with 0!
order reference are depicted. The RLS with forgetting
factor is shown in (+) and the Kalman RLS in (¢). The
estimates are both accurate and the shifting resonance
is detected. Similarly, for the second experiment with
4*0 order reference, the RLS with forgetting factor is
shown in () and the Kalman RLS in (+). The shifting
resonance is detected, despite a less exciting reference
signal.

o

0 50 100 150

0.02 ‘ ‘
0

50 100 150

Fig. 8. Experiment with a linearly varying fault from
t = 60 s until £ = 120 s in both kg and dy. The
expected parameters are indicated (—). The results
of the third experiment, with 0" order reference are
depicted. The RLS with forgetting factor is shown
in (+) and the Kalman RLS in (). The estimates are
both accurate and the shifting resonance is detected.
Similarly, for the fourth experiment with 4" order
reference, the RLS with forgetting factor is shown in
() and the Kalman RLS in (+). The shifting resonance
is detected, despite a less exciting reference signal.

to manipulate a single resonance peak in a controlled fash-
ion. In addition, the crucial practical aspects are described.
The proposed design shows real-time accurate estimation
of the corresponding characteristics, namely the natural

0.5 F ,
<)

& o

©

-0.5

-1.5
-1.5

Im(PC)

Fig. 9. Nyquist diagram over time of the second experi-
ment. The open loop PC at t = 0 s is indicated (—)
and PC at t = 180 s is indicated (—). The stability
margins decrease as the fault increases.

frequencies and damping ratios. The approach is validated
successfully on a closed-loop operated flexible beam system
in real-time during normal operation. Even for smooth 4*!-
order setpoint trajectories, promising real-time diagnosis
estimators are achieved. Hence, the potential for real-time
resonance tracking has been shown, illustrating that this
model-based fault diagnosis strategy can serve as an input
for effective predictive maintenance for many closed-loop
controlled mechatronic systems.
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