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ARROW CONTRACTION AND EXPANSION IN TROPICAL
DIAGRAMS

R. MATVEEV AND J. W. PORTEGIES

Abstract. Arrow contraction applied to a tropical diagram of probability
spaces is a modification of the diagram, replacing one of the morphisms by
an isomorphims, while preserving other parts of the diagram. It is related
to the rate regions introduced by Ahlswede and Körner. In a companion
article we use arrow contraction to derive information about the shape of
the entropic cone. Arrow expansion is the inverse operation to the arrow
contraction.

1. Introduction

In [MP18] we have initiated the theory of tropical probability spaces and
in [MP19c] applied the techniques to derive a dimension-reduction result for
the entropic cone of four random variables.

Two of the main tools used for the latter are what we call arrow contraction
and arrow expansion. They are formulated for tropical commutative diagrams
of probability spaces. Tropical diagrams are points in the asymptotic cone of
the metric space of commutative diagrams of probability spaces endowed with
the asymptotic entropy distance. Arrows in diagrams of probability spaces are
(equivalence classes of) measure-preserving maps.

Arrow contraction and expansion take a commutative diagram of probability
spaces as input, modify it, but preserve important properties of the diagram.
The precise results are formulated as Theorems 3.1 and 3.3 in the main text.
Their formulation requires language, notation and definitions that we review
in Section 2.

However, to give an idea of the results in this paper, we now present two
examples.

1.1. Two examples.

1.1.1. Arrow contraction and expansion in a two-fan. Suppose we are given a
fan Z = (X ← Z → Y ) and we would like to complete it to a diamond

(1.1) Z◇ =
⎛
⎜⎜
⎝

Z
X Y

V

⎞
⎟⎟
⎠

such that the entropy of V , denoted by [V ], equals the mutual information
[X ∶ Y ] between X and Y . That is, we would like to realize the mutual
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[Z]

[X] [Z1] [Z2]

[X1] [X2] [U]

arrow
contraction

arrow
expansion

[Z ′]

[X] [Z ′
1] [Z ′

2]

[X1] [X2] [V ]

≅

arrow
collapse

[X] = [Z ′]

[Z ′
1] [Z ′

2]

[X1] [V ] [X2]

Figure 1. Arrow contraction and expansion in a Λ3-diagram.
The fan ([X] ← [Z] → [U]) is admissible. Spaces [Z1], [Z2]
and [Z] belong to the co-ideal ⌊U⌋.

information between X and U by a pair of reductions X → V and U → V .
This is not always possible, not even approximately.

Arrow contraction instead produces another fan Z ′ = (X ← Z ′ → V ), such
that the reduction Z ′ →X is an isomorphism and the relative entropy [X ∣ V ] of
X given V equals [X ∣U]. By collapsing this reduction we obtain as a diagram
just the reduction X → V . If need be, we can still keep the original spaces Z
and U in the modified diagram obtaining the “broken diamond” diagram

Z

X Y

V

such that [V ] = [X ∶ Y ]. Of course, no special technique is necessary to
achieve this result, since it is easy to find a reduction from a tropical space
[X] to another tropical probability space with the prespecified entropy, as long
as the Shannon inequality is not violated.

However, a similar operation becomes non-trivial and in fact impossible
without passing to the tropical limit, if instead of a single space X there is a
more complex sub-diagram as in the example in the next subsection.

To explain how arrow expansion works, lets start with the chain of reductions
Z →X → V . Can we extend it to a diamond, as in (1.1) so that [X ∶ Y ∣ V ] = 0?
This is again not possible, in general. However, if we pass to tropical diagrams,
then such an extension always exists.

1.1.2. One More Example of Arrow Expansion and Contraction. Consider a
diagram presented in Figure 1. Such a diagram is called a Λ3-diagram. We
would like to find a reduction X → V so that [X ∣U] = [X ∣ V ]. It is not possible
to achieve this within the realm of diagrams of classical probability spaces. But
once we pass to the tropical limit, the reduction [X] → [V ] can be found by
contracting and then collapsing the arrow [Z]→ [X], as shown in Figure 1.

Arrow contraction is closely related to the Shannon channel coding theorem.
This is perhaps most obvious from the proof. Furthermore, arrow contraction
has connections with rate regions as introduced by Ahlswede and Körner,
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Z

X Y

Z

X Y

U

T

U V W

X Y Z

1. A fan 2. A diamond diagram 3. Full diagram on 3 spaces

Figure 2. Examples of diagrams of probability spaces

see [AK77, AK06]. These results by Ahlswede and Körner were applied by
[MMRV02], resulting in a new non-Shannon information inequality. Moreover,
in [MMRV02] a new proof was given of the results; this new proof is similar to
the proof of the arrow contraction result in the present paper.

The main contribution of our work lies in the fact that we prove a much
stronger preservation of properties of the diagram under arrow contraction.

2. Preliminaries

2.1. Probability spaces and their diagrams. Our main objects of study
will be commutative diagrams of probability spaces. A finite probability space
X is a set with a probability measure on it, supported on a finite set. We
denote by ∣X ∣ the cardinality of the support of the measure. The statement
x ∈ X means that point x is an atom with positive weight in X. For details
see [MP18, MP19b, MP19a].

Examples of commutative diagrams of probability spaces are shown in Fig-
ure 2. The objects in such diagrams are finite probability spaces and mor-
phisms are equivalence classes of measure-preserving maps. Two such maps
are considered to be equivalent, if they coincide on a set of full measure. To
record the combinatorial structure of a commutative diagram, i.e. the ar-
rangement of spaces and morphisms, we use indexing categories, which are
poset categories satisfying an additional property, that we describe below.

2.1.1. Indexing Categories. A poset category is a finite category such that there
are at most one morphism between any two objects either way.

For a pair of objects k, l in a poset category G = {i; γij}, such that there is
a morphism γkl in G, we call k an ancestor of l and l a descendant of k. The
set of all ancestors of an object k together with all the morphisms between
them is itself a poset category and will be called a co-ideal generated by k
and denoted by ⌊k⌋. Similarly, a poset category consisting of all descendants
of k ∈ G and morphisms between them will be called an ideal generated by k
and denoted ⌈k⌉.

An indexing category G = {i; γij} used for indexing diagrams, is a poset
category satisfying the following additional property: for any pair of objects
i1, i2 ∈ G the intersection of co-ideals is also a co-ideal generated by some
object i3 ∈ G,

⌊i1⌋ ∩ ⌊i2⌋ = ⌊i3⌋
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In other words, for any pair of objects i1, i2 ∈ G there exists a least common
ancestor i3, that is i3 is an ancestor to both i1 and i2 and any other common
ancestor is also an ancestor of i3. Any indexing category is initial, i.e. there is
a (necessarily unique) initial object ı̂ in it, which is the ancestor of any other
object in G, in other words G = ⌈̂ı⌉.

A fan in a category is a pair of morphisms with the same domain. A fan
(i ← k → j) is called minimal, if for any other fan (i ← l → j) included in a
commutative diagram

k
i j

l

the vertical morphism (k → l) must be an isomorphism. Any indexing category
also satisfies the property that for any pair of objects in it there exists a minimal
fan with target objects the given ones.

This terminology will also be applied to diagrams of probability spaces in-
dexed by G. Thus, given a space X in a G-diagram, we can talk about its
ancestors, descendants, co-ideal ⌊X⌋ and ideal ⌈X⌉. We use square brackets to
denote tropical diagrams and spaces in them. For the (co-)ideals in tropical
diagrams, in order to unclutter notations, we will write

⌊X⌋ ∶= ⌊[X]⌋ and ⌈X⌉ ∶= ⌈[X]⌉

2.1.2. Diagrams. For an indexing category G = {i; γij} and a category Cat, a
commutative G-diagram X = {Xi; χij} is a functor X ∶ G → Cat. A diagram
X is called minimal if it maps minimal fans in G to minimal fans in Cat.

A constant G-diagram denoted XG is a diagram where all the objects equal
to X and all morphisms are identities.

Important examples of indexing categories are a two-fan, a diamond cate-
gory, a full category Λn on n spaces, chains Cn. For detailed description and
more examples, the reader is referred to the articles cited at the beginning of
this section.

2.2. Tropical Diagrams.

2.2.1. Intrinsic Entropy Distance. For a fixed indexing category G the space
of commutative G-diagrams will be denoted by Prob ⟨G⟩. Evaluating entropy
on every space in a G-diagram gives a map

Ent∗ ∶ Prob ⟨G⟩→ RG

where the target space RG is the space of real-valued functions on objects of
G. We endow this space with the `1-norm. For a fan F = (X ← Z → Y) of
G-diagrams we define the entropy distance between it terminal objects by

kd(F) ∶= ∥Ent∗Z − Ent∗X ∥1 + ∥Ent∗Z − Ent∗Y∥1

and the intrinsic entropy distance between two arbitrary G-diagrams by

k(X ,Y) ∶= inf {kd(F) ∶ F = (X ← Z → Y)}
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The triangle inequality for k and various its other properties are discussed
in [MP18].

In the same article, also a useful estimate for the intrinsic entropy distance
is proven, called the Slicing Lemma. The following corollary, [MP18, Corollary
3.10(1)], of the Slicing Lemma will be used in the next section.

Proposition 2.1. Let G be an indexing category, X ,Y ∈ Prob ⟨G⟩ and U ∈
Prob included into a pair of two-fans

X̃
X UG

Ỹ
UG Y

Then

k(X ,Y) ≤ ∫
U

k(X ∣ u,Y ∣ u)dpU(u) + 2 ⋅ [[G]] ⋅ Ent(U)
⊠

2.2.2. Tropical Diagrams. Points in the asymptotic cone of (Prob ⟨G⟩ ,k) are
called tropical G-diagrams and the space of all tropical G-diagrams, denoted
Prob[G], is endowed with the asymptotic entropy distance. We explain this
now in more detail and a more extensive description can be found in [MP19b].

To describe points in Prob[G] we consider certain sequences X̄ ∶= (X (n) ∶
n ∈ N) of G-diagrams, that grow almost linearly and endow the space of all
such sequences with the asymptotic entropy distance defined by

κ(X̄ , Ȳ) ∶= lim
n→∞

1

n
k (X (n),Y(n))

A tropical diagram [X ] is defined to be an equivalence class of such sequences,
where two sequences X̄ and Ȳ are equivalent, if κ(X̄ , Ȳ) = 0. The space
Prob[G] carries the asymptotic entropy distance and has the structure of a
R≥0-semi-module – one can take linear combinations with non-negative coeffi-
cients of tropical diagrams. The linear entropy functional Ent∗ ∶ Prob[G] →
RG is defined by

Ent∗[X ] ∶= lim
n→∞

1

n
Ent∗X (n)

A detailed discussion about tropical diagrams can be found in [MP19b]. In
the cited article we show that, the space Prob[G] is metrically complete, and
isometrically isomorphic to a closed convex cone in some Banach space.

For G = Ck a chain category, containing k objects {1, . . . , k} and unique
morphism i → j for every pair i ≥ j, we have shown that the space Prob[Ck]
is isomorphic to the following cone in (Rk, ∥ ⋅ ∥1)

Prob[Ck] ≅
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

x1

⋮
xk

⎞
⎟
⎠
∶ 0 ≤ x1 ≤ ⋅ ⋅ ⋅ ≤ xk

⎫⎪⎪⎪⎬⎪⎪⎪⎭
The isomorphism is given by the entropy functional. Thus we can identify
tropical probability spaces (elements in Prob[C1]) with non-negative numbers
via entropy. We will simply write [X] to mean the entropy of the space [X].
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Along this line we also adopt the notations [X ∣ Y ], [X ∶ Y ] and [X ∶ Y ∣Z] for
the relative entropy and mutual information for the tropical spaces included
in some diagram.

2.3. Asymptotic Equipartition Property for Diagrams.

2.3.1. Homogeneous diagrams. A G-diagram X is called homogeneous if the
automorphism group Aut(X ) acts transitively on every space in X . Homoge-
neous probability spaces are uniform. For more complex indexing categories
this simple description is not sufficient.

2.3.2. Tropical Homogeneous Diagrams. The subcategory of all homogeneous
G-diagrams will be denoted Prob ⟨G⟩h and we write Prob ⟨G⟩h,m for the
category of minimal homogeneous G-diagrams. These spaces are invariant
under the tensor product, thus they are metric Abelian monoids.

Passing to the tropical limit we obtain spaces of tropical (minimal) homo-
geneous diagrams, that we denote Prob[G]h and Prob[G]h,m.

2.3.3. Asymptotic Equipartition Property. In [MP18] the following theorem is
proven

Theorem 2.2. Suppose X ∈ Prob ⟨G⟩ is a G-diagram of probability spaces
for some fixed indexing category G. Then there exists a sequence H̄ = (Hn)∞n=0

of homogeneous G-diagrams such that

(2.1)
1

n
k(X n,Hn) ≤ C(∣X0∣, [[G]]) ⋅

√
ln3 n

n

where C(∣X0∣, [[G]]) is a constant only depending on ∣X0∣ and [[G]]. ⊠

The approximating sequence of homogeneous diagrams is evidently quasi-
linear with the defect bounded by the admissible function

ϕ(t) ∶= 2C(∣X0∣, [[G]]) ⋅ t3/4 ≥ 2C(∣X0∣, [[G]]) ⋅ t1/2 ⋅ ln3/2 t

Thus, Theorem 2.2 above states that L(Prob ⟨G⟩) ⊂ Prob[G]h. On the
other hand we have shown in [MP19b], that the space of linear sequences
L(Prob ⟨G⟩) is dense in Prob[G]. Combining the two statements we get the
following theorem.

Theorem 2.3. For any indexing category G, the space Prob[G]h is dense in
Prob[G]. Similarly, the space Prob[G]h,m is dense in Prob[G]m. ⊠

It is possible that the spaces Prob[G]h and Prob[G] coincide. At this time
we have neither a proof nor a counterexample to this conjecture.



7

2.4. Conditioning in Tropical Diagrams. For a tropical G-diagram [X ]
containing a space [U] we defined a conditioned diagram [X ∣U]. It can be
understood as the tropical limit of the sequence (X (n)∣ un), where (X (n))
is the homogeneous approximation of [X ], U(n) is the space in X (n) that
corresponds to [U] under combinatorial isomorphism and un is any atom in
U(n).

We have shown in [MP19a] that operation of conditioning is Lipschitz-
continuous with respect to the asymptotic entropy distance.

3. Arrow Contraction

3.1. Arrow Collapse, Arrow Contraction and Arrow Expansion.

3.1.1. Prime Morphisms. A morphism γij ∶ i → j in an indexing category
G = {i;γij} will be called prime if it cannot be factored into a composition
of two non-identity morphisms inG. Morphism in a G-diagram indexed by a
prime morphism in G will also be called prime.

3.1.2. Arrow Collapse. Suppose Z is a G-diagram such that for some pair
i, j ∈ G, the prime morphism ζij ∶ Zi → Zj is an isomorphism. Arrow collapse
applied to Z results in a new diagram Z ′ obtained from Z by identifying Zi
and Zj via the isomorphism ζij. The combinatorial type of Z ′ is different from
that of Z. The spaces Zi and Zj are replaced by a single space and the new
space will inherit all the morphisms in Z with targets and domains Zi and Zj.

3.1.3. Arrow Contraction and Expansion. Arrow contraction and expansion
are two operations on tropical G-diagrams. Roughly speaking, arrow contrac-
tion applied to a tropical G-diagram [Z] results in another tropical G-diagram
[Z ′] such that one of the arrows become an isomorphism, while some parts
of the diagram are not modified. Arrow expansion is an inverse operation to
arrow contraction.

3.1.4. Admissible and Reduced Sub-fans. An admissible fan in a G-diagram Z
is a minimal fan X ← Z → U , such that Z is the initial space of Z and any
space in Z belongs either to the co-ideal ⌈X⌉ or ideal ⌊U⌋.

An admissible fan will be called reduced if the morphism Z → X is an
isomorphism.

3.2. The Contraction Theorem. Our aim is to prove the following theo-
rem.

Theorem 3.1. Let ([X] ← [Z] → [U]) be an admissible fan in some tropical
G-diagram [Z]. Then for every ε > 0 there exists a G-diagram [Z ′] containing
an admissible fan ([X ′] ← [Z ′] → [U ′]), corresponding to the original admis-
sible fan through the combinatorial isomorphism, such that, with the notations
X = ⌈X⌉ and X ′ = ⌈X ′⌉, the diagram [Z ′] satisfies

(i) κ([X ′∣U ′], [X ∣U]) ≤ ε
(ii) κ(X ′,X ) ≤ ε
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(iii) [Z ′∣X ′] ≤ ε
⊠

It is not clear that constructing diagrams Z ′ as in the theorem above for a
sequence of values of parameter ε decreasing to 0, we can obtain a convergent
sequence in Prob[G] with the limiting diagram satisfying conclusions of the
theorem with ε = 0.

The proof of Theorem 3.1 is based on the following proposition, which will
be proven in Section 5.

Proposition 3.2. ↓ Let (X0 ← Z0 → U) be an admissible fan in some homo-
geneous G-diagram of probability spaces Z. Then there exists G-diagram Z ′
containing the admissible fan (X ′

0 ← Z ′
0 → U ′) such that, with the notations

X ∶= ⌈X0⌉ and X ′ ∶= ⌈X ′
0⌉, it holds that

(1) X ∣ u = X ′∣ u′ for any u ∈ U and u′ ∈ U ′.
(2) κ(X ,X ′) ≤ k(X ,X ′) ≤ 20 ⋅ [[G]]
(3) [Z ′

0∣X ′
0] ≤ 4 ln ln ∣X0∣

⊠

Proof (of Theorem 3.1): First we assume that [Z] is a homogeneous trop-
ical diagram. It means that it can be represented by a quasi-linear sequence
(Z(n))n∈N0 of homogeneous diagrams, with defect of the sequence bounded by
the function ϕ(t) ∶= C ⋅ t3/4 for some C > 0. This means that for any m,n ∈ N

κ(Z(m)⊗Z(n),Z(m + n)) ≤ ϕ(m + n)
κ(Zm(n),Z(m ⋅ n)) ≤Dϕ ⋅m ⋅ ϕ(n)

where Dϕ is some constant depending on ϕ, see [MP19b].
Fix a number n ∈ N and apply Proposition 3.2 to the homogeneous diagram
Z(n), containing the admissible fan X0(n)← Z0(n)→ U(n) and sub-diagram
X (n) = ⌈X0(n)⌉. As a result we obtain a diagram Z ′′ containing the fan
X ′′

0 ← Z ′′
0 → U ′′ and the sub-diagram X ′′ = ⌈X ′′

0 ⌉, such that

X ′′∣ u′′ = X (n)∣ u for any u′′ ∈ U ′′ and u ∈ U(n)
κ(X ′′,X (n)) ≤ 20[[G]](3.1)

[Z ′′
0 ∣X ′′

0 ] ≤ 4 ln ln ∣X0(n)∣

Define the two tropical diagrams

[Z ′] ∶= 1

n

Ð→
Z ′′

[Z̃] ∶= 1

n

ÐÐÐ→
Z(n)

Since X ′′∣ u′′ does not depend on u′′ and X (n)∣ u does not depend on u we

have [X ′∣U ′] = (1/n) ⋅
ÐÐÐÐÐ→
(X ′′∣ u′′) and [X̃ ∣ Ũ] = (1/n) ⋅

ÐÐÐÐÐÐ→
(X (n)∣ u). From (3.1), we
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obtain

[X ′∣U ′] = [X̃ ∣ Ũ]

κ ([X ′], [X̃ ]) ≤ 20[[G]]
n

(3.2)

[Z ′
0∣X ′

0] ≤
4 ln ln ∣X0(n)∣

n

The distance between [Z̃] and [Z] can be bounded as follows

κ ([Z̃], [Z]) = 1

n
κ (
ÐÐÐ→
Z(n), n ⋅ [Z]) = 1

n
lim
m→∞

1

m
κ (Zm(n),Z(m ⋅ n))(3.3)

≤ 1

n
Dϕ ⋅ ϕ(n)

This also implies

(3.4) κ ([X̃ ], [X ]) ≤ 1

n
Dϕ ⋅ ϕ(n)

Since conditioning is a Lipschitz continuous operation with Lipschitz constant
2, we also have

(3.5) κ ([X̃ ∣ Ũ], [X ∣U]) ≤ 2

n
Dϕ ⋅ ϕ(n)

Combining the estimates in (3.2), (3.3), (3.4) and (3.5) we obtain

κ ([X ′∣U ′], [X ∣U]) ≤ 2Dϕ ⋅
ϕ(n)
n

κ ([X ′], [X ]) ≤ 20[[G]]
n

+Dϕ
ϕ(n)
n

[Z ′
0∣X ′

0] ≤
4 ln ln ∣X0(n)∣

n
+ 2Dϕ

ϕ(n)
n

Note that ∣X0(n)∣ grows at most exponentially (it is bounded by en([X0]+C)

for some C) and ϕ is a strictly sub-linear function. Thus by choosing n suffi-
ciently large depending on given ε > 0 we obtain [Z ′] satisfying conclusions of
the theorem for [Z] homogeneous.

To prove the theorem in full generality observe that all the quantities on the
right-hand side of the inequalities are Lipschitz-continuous. Since Prob[G]h
is dense in Prob[G] the theorem extends to any [Z] by first approximating it
with any precision by a homogeneous configuration and applying the argument
above. ⊠

3.3. The expansion Theorem. The following theorem is complimentary to
Theorem 3.1. The expansion applied to a diagram containing a reduced ad-
missible fan produces a diagram with an admissible fan, such that contraction
of it is the original diagram. Thus, arrow expansion is a right inverse of the
arrow contraction operation.
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In general, contraction erases some information stored in the diagram, so
there are many right inverses. We prove the theorem below by providing a
simple construction of one such right inverse.

Theorem 3.3. Let ([X] ← [Z ′] → [U ′]) be a reduced admissible fan in some
tropical G-diagram [Z ′] and λ > 0. Let [X ] ∶= ⌈X⌉. Then there exists G-
diagram [Z] containing the copy of [X ], such that the corresponding admissible
fan ([X]← [Z]→ [U]) has [Z ∣X] = λ and [X ∣U] = [X ∣U ′]. ⊠

Proof: Let [W ] be a tropical probability space with entropy equal to λ. For
any reduction of tropical spaces [A]→ [B], there are natural reductions

([A] + [W ])→ ([B] + [W ])
([A] + [W ])→ [W ]

We construct the diagram [Z] by replacing every space [V ] in the ideal ⌊U ′⌋
with [U] + [W ]. Every morphisms [V1]→ [V2] within ⌊U ′⌋ is replaced by

([V1] + [W ])→ ([V2] + [W ])

And any morphism from [V ] in ⌊U ′⌋ to a space [Y ] in ⌈X⌉ is replaced by a
composition

([V ] + [W ])→ [V ]→ [Y ]
Clearly the resulting diagram satisfies the conclusion of the theorem. ⊠

The rest of the article is devoted to the development of necessary tools and
the proof of Proposition 3.2.

4. Local Estimate

In this section we derive a bound, very similar to Fano’s inequality, on the
intrinsic entropic distance between two diagrams of probability spaces with
the same underlying diagram of sets. The bound will be in terms of total
variation distance between two distributions corresponding to the diagrams
of probability spaces. It will be used in the next section, to prove arrow
contraction theorem.

4.1. Distributions.

4.1.1. Distributions on sets. For a finite set S we denote by ∆S the collection
of all probability distributions on S and by ∥π1 − π2∥1 we denote the total
variation distance between π1, π2 ∈ ∆S.
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4.1.2. Distributions on Diagrams of Sets. Let Set denote the category of fi-
nite sets and surjective maps. For an indexing category G, we denote by
Set ⟨G⟩ the category of G-diagrams in Set. That is, objects in Set ⟨G⟩ are
commutative diagrams of sets indexed by the category G, the spaces in the
such a diagram are finite sets and arrows represent surjective maps, subject to
commutativity relations.

For a diagram of sets S = {Si;σij} we define the space of distributions on
the diagram S by

∆S ∶= {(πi) ∈∏
i

∆Si ∶ (σij)∗πi = πj}

where f∗ ∶ ∆S →∆S′ is the affine map induced by a surjective map f ∶ S → S′.
If S0 is the initial space of S, then there is an isomorphism

∆S0
≅↔∆S(4.1)

∆S0 ∋ π0 ↦ {(σ0i)∗π0} ∈ ∆S
∆S0 ∋ π0 ↤ {πi} ∈ ∆

Using the isomorphism (4.1) we define total variation distance between two
distributions π,π′ ∈ ∆S as

∥π − π′∥1 ∶= ∥π0 − π′0∥1

Given a G-diagram of sets S = {Si;σij} and an element π ∈ ∆S we can
construct a G-diagram of probability spaces (S, π) ∶= {(Si, πi);σij}.

Below we give the estimate of the entropy distance between two G-diagrams
of probability spaces (S, π) and (S, π′) in terms of the total variation distance
∥π − π′∥ between distributions.

4.2. The estimate. The upper bound on the entropy distance, that we derive
below, has two summands. One is linear in the total variation distance with the
slope proportional to the log-cardinality of S0. The second one is super-linear
in the total variation distance, but it does not depend on S. So we have the
following interesting observation: of course, the super-linear summand always
dominates the linear one locally. However as the cardinality of S becomes
large it is the linear summand that starts playing the main role. This will be
the case when we apply the bound in the next section.

For α ∈ [0,1] consider a binary probability space with the weight of one of
the atoms equal to α

Λα ∶= ( {◻,∎} ; p(◻) = 1 − α, p(∎) = α)
Proposition 4.1. For an indexing category G, consider a G-diagram of sets
S = {Si, σij} ∈ Set ⟨G⟩. Let π,π′ ∈ ∆S be two probability distributions on S.
Denote X ∶= (S, π), Y ∶= (S, π′) and α ∶= 1

2 ∥π − π′∥1. Then

k(X ,Y) ≤ 2[[G]](α ⋅ ln ∣S0∣ + Ent(Λα))
⊠
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Proof: To prove the local estimate we decompose both π and π′ into a convex
combination of a common part π̂ and rests π+ and π′+. The coupling between
the common parts gives no contribution to the distance, and the worst possible
estimate on the other parts is still enough to get the bound in the lemma, by
using Proposition 2.1.

Let S0 be the initial set in the diagram S. We will need the following obvious
rough estimate of the entropy distance that holds for any π,π′ ∈ ∆S:

(4.2) k(X ,Y) ≤ 2[[G]] ⋅ ln ∣S0∣
It can be obtained by taking a tensor product for the coupling between X and
Y.

Our goal now is to write π and π′ as the convex combination of three other
distributions π̂, π+ and π′+ as in

π = (1 − α) ⋅ π̂ + α ⋅ π+

π′ = (1 − α) ⋅ π̂ + α ⋅ π′+

with the smallest possible α ∈ [0,1].
We could do it the following way. Let π0 and π′o be the distributions on S0

that correspond to π and π′ under isomorphisms (4.1). Let α ∶= 1
2 ∥π − π′∥1 =

1
2 ∥π0 − π′0∥1 =. If α = 1 then the proposition follows from the rough esti-
mate (4.2), so from now on we assume that α < 1. Define three probability
distributions π̂0, π+0 and π′+0 on S0 by setting for every x ∈ S0

π̂0(x) ∶=
1

1 − α min{π0(x), π′0(x)}

π+0 ∶=
1

α
(π0 − (1 − α)π̂0)

π′+0 ∶= 1

α
(π′0 − (1 − α)π̂0)

Denote by π̂, π+, π′+ ∈ ∆S the distributions corresponding to π̂0, π+0 , π
′+
0 ∈ ∆S0

under isomorphism (4.1). Thus we have

π = (1 − α)π̂ + α ⋅ π+

π′ = (1 − α)π̂ + α ⋅ π′+

Now we construct two fans of G-diagrams

(4.3) X̃
X Λα

Ỹ
Λα Y

by setting

X̃i ∶= (Si ×Λα; π̃i(s,◻) = (1 − α)π̂i(s), π̃i(s,∎) = α ⋅ π+i (s))

Ỹi ∶= (Si ×Λα; π̃′i(s,◻) = (1 − α)π̂i(s), π̃′i(s,∎) = α ⋅ π′+i (s))
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and

X̃ ∶= {X̃i; σij × id}
Ỹ ∶= {Ỹi; σij × id}

The reductions in the fans in (4.3) are given by coordinate projections. Note
that the following isomorphisms hold

X ∣◻ ≅ (S, π̂)
X ∣∎ ≅ (S, π+)
Y ∣◻ ≅ (S, π̂) ≅ X ∣◻
Y ∣∎ ≅ (S, π′+)

Now we apply Proposition 2.1 along with the rough estimate in (4.2) to
obtain the desired inequality

k(X ,Y) ≤ (1 − α)k(X ∣◻,Y ∣◻) + α ⋅ k(X ∣∎,Y ∣∎)
+∑

i

[Ent(Λα∣Xi) + Ent(Λα∣ Yi)]

≤ 2[[G]](α ⋅ ln ∣S0∣ + Ent(Λα))
⊠

5. Proof of Proposition 3.2

In this section we prove Proposition 3.2, which is shown below verbatim.

Proposition 3.2. ↑ Let (X0 ← Z0 → U) be an admissible fan in some homo-
geneous G-diagram of probability spaces Z. Then there exists G-diagram Z ′
containing the admissible fan (X ′

0 ← Z ′
0 → U ′) such that, with the notations

X ∶= ⌈X0⌉ and X ′ ∶= ⌈X ′
0⌉, it holds that

(1) X ∣ u = X ′∣ u′ for any u ∈ U and u′ ∈ U ′.
(2) κ(X ,X ′) ≤ k(X ,X ′) ≤ 20 ⋅ [[G]]
(3) [Z ′

0∣X ′
0] ≤ 4 ln ln ∣X0∣

⊠
The proof consists of the construction in Section 5.1 and estimates in Propo-

sitions 5.4 and 5.5.

5.1. The construction. In this section we fix an indexing category G, a
minimal G-diagram of probability spaces Z with an admissible sub-fan X0 ←
Z0 → U . We denote X ∶= ⌈X0⌉ and by H we denote the combinatorial type of
X = {Xi;χij}.

Instead of diagram Z we consider an extended diagram, which is a two-fan
of H-diagrams

(5.1) Y
X UHπ1
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where Y = {Yi;υij} consists of those spaces in Z, that are initial spaces of
two-fans with feet in U and in some space in X . That is for every i ∈ H the
space Yi is defined to be the initial space in the minimal fan Xi ← Yi → U in Z.
It may happen that for some pair of indices i1, i2 ∈ H the initial spaces of the
fans with one feet U and the other Xi1 and Xi2 coincide in Z. In Y , however,
they will be treated as separate spaces, so that the combinatorial type of Y is
H. Starting with the diagram in (5.1) one can recover Z by collapsing all the
isomorphism arrows. The initial space of Y will be denoted Y0.

We would like to construct a new fan X ′ π
′

1← Y ′ → V H, such that

(5.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

X ∣ u = X ′∣ v for any u ∈ U and v ∈ V
k(X ′,X ) ≤ 20[[G]]
[Y ′

0 ∣X ′
0] ≤ 4 ln ln ∣X0∣

Once this goal is achieved, we collapse all the isomorphisms to obtain G-
diagram satisfying conditions in the conclusion of Proposition 3.2.

We start with a general description of the idea behind the construction,
followed by the detailed argument. To introduce the new space V we take its
points to be N atoms in u1, . . . , uN ∈ U . Ideally we would like to choose the
atoms in such a way that X0∣ un are disjoint and cover the whole of X0. It is
not always possible to achieve this exactly. However, when ∣X0∣ is large, N is
taken slightly larger than e[X0∶U], and u1, . . . , uN are chosen at random, then
with high probability the spaces X0∣ un will overlap only little and will cover
most of X0. The details of the construction follow.

We fix N ∈ N and construct several new diagrams. For each of the new
diagrams we provide a verbal and formal description.

● The space UN . Points in it are independent samples of length N of
points in U .

● The space VN = ({1, . . . ,N} ,unif). A point n ∈ VN should be inter-
preted as a choice of index in a sample ū ∈ UN .

● The H-diagram A, where

A = {Ai; αij}
Ai = ( {(x,n, ū) ∶ x ∈Xi∣ un} ,unif )
αij = (χij, id, id)

A point (x,n, ū) in Ai corresponds to the choice of a sample ū ∈ UN , an
independent choice of a member of the sample un and a point x ∈Xi∣ un.
Recall that the original diagram Z was assumed to be homogeneous
and, in particular, the distribution on Xi∣ un is uniform. Due to the
assumption on homogeneity of Z, the space Xi∣ u does not depend on
u ∈ U . Since VN is also equipped with the uniform distribution, it
follows that the distribution on Ai will also be uniform.
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● The H-diagram B, where

B = {Bi; βij}

Bi = ({(x, ū) ∶ x ∈
N

⋃
n=1

Xi∣ un} , pBi
)

βij = (χij, id)

A point (x, ū) ∈ Bi is the choice of a sample ū ∈ UN and a point x in one
of the fibers Xi∣ un, n = 1, . . . ,N . The distribution pBi

on Bi is chosen
so that the natural projection Ai → Bi is the reduction of probability
spaces. Given a sample ū, if the fibers Xi∣ un are not disjoint, then the
distribution on Bi∣ ū need not to be uniform. Below we will give an
explicit description of pB and study the dependence of pB( ⋅ ∣ ū) on the
sample ū ∈ UN .

These diagrams can be organized into a minimal diamond diagram of H-
diagrams, where reductions are obvious projections.

(5.3)
A

B VN ⊗UN

UN

To describe the probability distribution on B first we define several relevant
quantities:

ρ ∶=
∣X0∣ u∣
∣X0∣

= e−[X0∶U]

N(x, ū) ∶= ∣ {n ∈ VN ∶ x ∈X0∣ un} ∣

ν(x, ū) ∶= N(x, ū)
N

= pVN {n ∈ VN ∶ x ∈X0∣ un}

Recall that the distribution pB is completely determined by the distribution
pB0 on the initial space of B via isomorphism (4.1). From homogeneity of Z it
follows that distributions on both A0 and A∣ ū are uniform. Therefore

(5.4) pB0(x∣ ū) ∶=
ν(x, ū)
ρ ⋅ ∣X0∣

The desired fan (X ′ ← Y ′ → V H) mentioned in the beginning of the section
is obtained from the top fan in the diagram in (5.3) by conditioning on ū ∈ UN .
We will show later that for an appropriate choice of N and for most choices of
ū, the fan we obtain in this way has the required properties.

First, we would like to make the following observations. Fix an arbitrary
ū ∈ UN . Then:

(1) The underlying set of the probability space B0∣ ū =X0∣ ū is X0.
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(2) The diagrams

Y ′ū ∶= A∣ ū
X ′
ū ∶= B∣ ū

are included into a two-fan of H-diagrams

Y ′ū
X ′
ū VN

which is obtained by conditioning top fan in the diagram in (5.3).
The very important observation is that diagrams X ′

ū∣n and X ∣ u are
isomorphic for any choice of n ∈ VN and u ∈ U . The isomorphism is the
composition of the following sequence of isomorphisms

X ′
ū∣n→ B∣ (ū, n)→ A∣ (ū, n)→ X ∣ un → X ∣ u

where the first isomorphism follows from the definition of X ′
ū, the sec-

ond – from minimality of the fan B ← A → VN , the third – from the
definition of A and the forth – from the homogeneity of Z.

5.2. The estimates. We now claim and prove that one could choose a number
N and ū in UN such that

(1) k(X ′
ū,X ) ≤ 20[[H]].

(2) [Y ′
ū,0∣X ′

ū,0] ≤ 4 ln ln ∣X0∣, where Y ′
ū,0 and X ′

ū,0 are initial spaces in X ′
ū

and Y ′ū, respectively.

5.2.1. Total Variation and Entropic Distance estimates. If we fix some x0 ∈
X0, then ν = ν(x0, ⋅ ) is a scaled binomially distributed random variable with
parameters N and ρ, which means that N ⋅ ν ∼ Bin(N,ρ).

First we state the following bounds on the tails of a binomial distribution.

Lemma 5.2. Let ν be a scaled binomial random variable with parameters N
and ρ, then

(i) for any t ∈ [0,1] holds

P{∣ν − ρ∣ > ρ ⋅ t} ≤ 2 ⋅ e− 1
3
⋅N ⋅ρ⋅t2

(ii) for any t ∈ [0,2] holds

P{ν
ρ

ln
ν

ρ
> t} ≤ e−

1
12
⋅N ⋅ρ⋅t2

⊠
The proof of Lemma 5.2 can be found at the end of this section.
Below we use the notation P ∶= pUN for the probability distribution on UN .

For a pair of complete diagrams C, C′ with the same underlying diagram of
sets and with initial spaces C0, C ′

0, we will write α(C,C′) for the halved total
variation distance between their distributions

α(C,C′) ∶= 1

2
∥pC0 − pC′0∥1
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Proposition 5.3. In the settings above, for t ∈ [0,1], the following inequality
holds

P{ū ∈ UN ∶ 2α(X ′
ū,X ) > t} ≤ 2∣X0∣ ⋅ e−

1
3
N ⋅ρ⋅t2

⊠

Proof: Recall that by definition X ′
ū = B∣ ū. We use equation (5.4) to expand

the left hand side of the inequality as follows

P{ū ∈ UN ∶ 2α(B∣ ū,X ) > t} = P{ū ∈ UN ∶ ∑
x∈X0

∣ν(x, ū)
ρ ⋅ ∣X0∣

− 1

∣X0∣
∣ > t}

= P{ū ∈ UN ∶ ∑
x∈X0

∣ν(x, ū) − ρ∣ > ρ ⋅ ∣X0∣ ⋅ t}

≤ P{ū ∈ UN ∶ there exists x0 such that ∣ν(x0, ū) − ρ∣ > ρ ⋅ t}
≤ ∑
x∈X0

P{ū ∈ UN ∶ ∣ν(x, ū) − ρ∣ > ρ ⋅ t}

Since by homogeneity of the original diagram all the summands are the same,
we can fix some x0 ∈X0 and estimate further:

P{ū ∈ UN ∶ 2α(B∣ ū,X ) > t} ≤ ∣X0∣ ⋅ P{ū ∈ UN ∶ ∣ν(x0, ū) − ρ∣ > ρ ⋅ t}

Applying Lemma 5.2(i) we obtain the required inequality. ⊠
In the propositions below we assume that ∣X0∣ is sufficiently large (larger

than e20).

Proposition 5.4. In the settings above and for any 10
ln ∣X0∣ ≤ t ≤ 1 holds:

P{ū ∈ UN ∶ k(X ′
ū,X ) > t(2 ⋅ [[G]] ⋅ ln ∣X0∣)} ≤ 2∣X0∣ ⋅ e−

1
3
N ⋅ρ⋅t2

⊠

Proof: We will use local estimate to bound entropy distance and then apply
Proposition 5.3. To simplify notations we will write simply α for α(X ′

ū,X ) =
α(B∣ ū,X ).

P{ū ∈ UN ∶ k(B∣ ū,X ) > (2 ⋅ [[G]] ⋅ ln ∣X0∣)t}
≤ P{ū ∈ UN ∶ 2 ⋅ [[G]](α ⋅ ln ∣X0∣ + Ent(Λα)) > (2 ⋅ [[G]] ⋅ ln ∣X0∣)t}
≤ P{ū ∈ UN ∶ α + Ent(Λα)/ ln ∣X0∣ > t}

Note that in the chosen regime, t ≥ 10/ ln ∣X0∣, the first summand on the left-
hand side of the inequality is larger than the second, and thus

P{ū ∈ UN ∶ k(B∣ ū,X ) > (2 ⋅ [[G]] ⋅ ln ∣X0∣)t}
≤ P{ū ∈ UN ∶ 2α > t}
≤ 2∣X0∣ ⋅ e−

1
3
N ⋅ρ⋅t2
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⊠

5.2.2. The “height” estimate. Recall that for given N ∈ N and ū ∈ UN we have
constructed a two-fan of H-diagrams

X ′
ū ← Y ′ū → V H

N

We will now estimate the length of the arrow Y ′
ū,0 →X ′

ū,0.

Proposition 5.5. In the settings above and for t ∈ [0,2]

P{ū ∈ UN ∶ [Y ′
ū,0∣X ′

ū,0] > ln(N ⋅ ρ) + t} ≤ ∣X0∣ ⋅ e−
1
12
N ⋅ρ⋅t2

⊠

Proof: First we observe that the fiber of the reduction Y ′
ū,0 →X ′

ū,0 over a point
x ∈ X ′

ū,0 is a homogeneous probability space of cardinality equal to N(x, ū),
therefore its entropy is lnN(x, ū).

P{ū ∈ UN ∶ [Y ′
ū,0∣X ′

ū,0] > ln(N ⋅ ρ) + t}

P{ū ∈ UN ∶ ∫
X′ū,0

[Y ′
ū,0∣ x]dpX′ū,0(x) > ln(N ⋅ ρ) + t}

= P{ū ∈ UN ∶ ∑
x∈X0

ν(x, ū)
ρ ⋅ ∣X0∣

ln (N ⋅ ν(x, ū)) > ln(N ⋅ ρ) + t}

≤ P{ū ∈ UN ∶ ∑
x∈X0

ν(x, ū)
ρ ⋅ ∣X0∣

ln (ν(x, ū)
ρ

) > t}

≤ ∣X0∣ ⋅ P{ū ∈ UN ∶
ν(x0, ū)

ρ
ln (ν(x0, ū)

ρ
) > t}

≤ ∣X0∣ ⋅ e−
1
12
N ⋅ρ⋅t2

The last inequality above follows from Lemma 5.2(ii). ⊠

5.3. Proof of Proposition 3.2. Let X ′
ū ← Y ′ū → VN be the fan constructed

in Section 5.1. The construction is parameterized by number N and atom
ū ∈ UN . Below we will choose a particular value for N and apply estimates
in Propositions 5.4 and 5.5 with particular choice of parameter t to show that
there is ū ∈ UN , so that the fan satisfies conclusions of Proposition 3.2.

Let

N ∶= ln3 ∣X0∣ ⋅ ρ−1 = ln3 ∣X0∣ ⋅ e[X0∶U]

t ∶= 10

ln ∣X0∣
With this choices of N and t Proposition 5.4 implies

P{ū ∈ UN ∶ k(X ′
ū,X ) > 20[[G]]} ≤ 1

4
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while Proposition 5.5 gives

P{ū ∈ UN ∶ [Y ′
ū,0∣X ′

ū,0] > 4 ln ln ∣X0∣} ≤
1

4
Therefore there is a choice of ū such that the fan

(X ′ ← Y ′ → V ) ∶= (X ′
ū,0 ← Y ′ū,0 → VN)

satisfies conditions in (5.2). As we have explained in the beginning of Sec-
tion 5.1, by collapsing isomorphism arrows we obtain G-diagram Z ′ satisfying
conclusions of Proposition 3.2. ⊠

5.4. Proof of Lemma 5.2. The Chernoff bound for the tail of a binomially
distributed random variable X ∼ Bin(N,ρ) asserts that for any 0 ≤ δ ≤ 1 holds

P{X < (1 − δ)N ⋅ ρ} ≤ e−
1
2
δ2N ⋅ρ

P{X > (1 + δ)N ⋅ ρ} ≤ e−
1
3
δ2N ⋅ρ

Applying the bound for upper and lower tail for the binomially distributed
random variable N ⋅ ν we obtain the inequality in (i).

The second assertion follows from the following estimate

P{ν
ρ

ln
ν

ρ
> t} ≤ P{ν

ρ
(ν
ρ
− 1) > t}

= P{ν > ρ ⋅ (
√

1 + 4t − 1

2
+ 1)}

For 0 ≤ t ≤ 2 we have
√

1 + 4t − 1 ≥ t, therefore

P{ν
ρ

ln
ν

ρ
> t} ≤ P{ν > ρ ⋅ ( t

2
+ 1)}

By the Chernoff bound we have

P{ν
ρ

ln
ν

ρ
> t} ≤ e−

1
12
N ⋅ρ⋅t2

⊠
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