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a b s t r a c t

Conformance checking techniques are widely used to monitor the execution of organization processes
and to pinpoint possible violations of the prescribed behavior. State-of-the-art approaches adopt a
crisp evaluation of deviations: namely, every step in the execution which is not perfectly compliant
with the procedural rules is marked as deviant. However, many real-world processes are driven by
decisions taken by human actors, which are often characterized by uncertainty. As a consequence,
deviations are often tolerated, within some boundaries. In these contexts, assessing small violations
at the same level as significant ones hampers the accuracy of the provided diagnostics. In this work,
we propose a novel conformance checking approach which allows to consider actors’ tolerance to
violations when assessing the magnitude of detected deviations, taking into account different kinds of
deviating behaviors. Experiments conducted on two real-life clinical data sets have shown that taking
the extent of deviations into account leads to more fine-grained diagnostics, thus illustrating the value
of the approach.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Organizations often define process models to describe how
heir processes should be performed. These are graphic or logic
ormalisms representing constraints defined on organization’s
rocesses, e.g., the order of execution of the activities, the autho-
ization to perform a given set of tasks, and so on [1]. However,
n many contexts these procedures are used mainly as guidelines
or the process actors, rather than being enforced. While this
lexibility turns out to be valuable in many situations (e.g., to
llow the actors to react to unforeseen or exceptional situations
nd guarantee business continuity), or even necessary (e.g., doc-
ors in hospitals must have the freedom to decide against the
uidelines for the sake of their patients’ well-being), at the same
ime it is well documented that it also paves the way to perfor-
ance issues, costly frauds, and so on [2]. It is hence crucial for
rganizations to be able to assess the compliance level of their
rocess executions and to detect the occurred deviations, in order
o identify undesirable and/or risky ones.

In recent years, the increasing use of information systems by
rganizations (e.g., ERP, SAP, MRP and so on) to support and

∗ Corresponding author.
E-mail address: lvxd@zju.edu.cn (X. Lu).
ttps://doi.org/10.1016/j.asoc.2022.109710
568-4946/© 2022 Elsevier B.V. All rights reserved.
track the execution of their processes enabled the development
of automatic conformance checking techniques, able to assess the
overall level of compliance of process executions and to pinpoint
where deviations occurred, thus providing the analyst with valu-
able diagnostics [3–7]. Nevertheless, these techniques still suffer
from some important limitations. First, in many domains experts’
decisions are often characterized by some level of uncertainty. For
instance, in the clinical medicine often exists some tolerance to
deviations from clinical protocols [8–10], while the risk versus
benefit are balanced in the bounded rational or deviated decision
making problems [11]. To give an example, in the clinical process
for atrial fibrillation treatment, there is a guideline stating that
a patient who is potential to have blood clots, i.e. International
Normalized Ratio (INR) less than 2.0, is not recommended for
an ablation cure due to the high risk of stroke. Adopting a crisp
evaluation, the INR value 2.0 would be considered fully compliant
to this pre-operative requirement, while 1.9 would be fully not
compliant. This kind of sharp estimate is intuitively unreasonable
and discrepant to the clinical experts’ decisions, where multi-
ple factors are considered with complementary, contradictory,
or competitive relations with a different degree on the overall
clinical decision [12]. Not accounting for this uncertainty does not
allow to consider the magnitude of the deviation risks. Besides,

small and large deviations are considered at the same level of

https://doi.org/10.1016/j.asoc.2022.109710
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109710&domain=pdf
mailto:lvxd@zju.edu.cn
https://doi.org/10.1016/j.asoc.2022.109710


S. Zhang, L. Genga, L. Dekker et al. Applied Soft Computing 130 (2022) 109710

c
o

f
t
a
i
a
a
i
F
f
a
f
o
a
c
n
c
n

d
i
o
o
b
e
m
r
w
o
t
s
b
t
t
s
f
t
a
t

o
o
r
d
p
b
o
o
f
t
c

i
i
i
S

t
a
t

ompliance, which hampers both the accuracy and the flexibility
f the provided diagnostics.
Another under-investigated topic within state-of-the-art con-

ormance checking techniques regards the possibility of tailoring
he generated diagnostics to the needs and preferences of the
nalyst. Indeed, in the presence of multiple non-compliant behav-
ors detected in a process execution, the approaches in [7,13,14]
ssess the overall compliance level by summing up the costs for
ll the violated constraints. However, this strategy poses some
mportant limitations when investigating the data compliance.
irst, it introduces an asymmetry in the assessment of control-
low and data deviations. While control-flow deviations for each
ctivity express the level of compliance of the activity to control-
low constraints (either fully compliant or wrong), in the presence
f multiple data constraints the obtained value does not give
n indication of the overall level of compliance to the set of
onstraints. Furthermore, the method is not adaptive to the user’s
eeds. For instance, in this setting data violations tend to be
onsidered more severe than control-flow ones, even if this might
ot fit with user’s intention.
To address the aforementioned challenges, we argue that

ata-driven approaches to multi-perspective compliance check-
ng should take into account the tacit knowledge and preferences
f the user, as well as the knowledge about the specific properties
f the process. The way humans combine information can also
e quite rich, depending on the context of the application (see,
.g., [15]). This implies that the conformance checking algorithm
ust rely on a versatile formalism in order to obtain alignment

esults that match the goals of the conformance analysis. In this
ork, we use fuzzy sets theory [16] as the formalism upon which
ur novel approach to conformance checking is based in order
o deal with the challenges mentioned above. In particular, fuzzy
ets are used to represent expert knowledge about the flexible
oundaries in process constraints, to account for contexts where
here is usually some tolerance to imprecision (e.g. the INR condi-
ion in atrial fibrillation, as explained above). Furthermore, fuzzy
et aggregation operators [17] are used for complex information
usion, similar to the way humans combine information in order
o assess process compliance. The extensive set of fuzzy set
ggregation operators provide a versatile formalism to capture
his combination.

In other works in [18,19], we performed an exploratory study
n the use of fuzzy sets in conformance checking. While the
btained results provided promising evidence that fuzzy sets
epresent a valuable asset to represent uncertainty in human
ecision making process, the work still has some limitations. In
articular, the approach is not able to detect deviations involving
oth ordering and data constraints, thus decreasing the accuracy
f the results. In this work, we extend the approach in [18,19] in
rder to overcome these drawbacks. Furthermore, we extend the
ormalization of the approach and we discuss its application in
wo real-world case studies in the healthcare domain. The main
ontributions of the present work are then the following.

• We introduce a novel multi-perspective conformance check-
ing approach, based on fuzzy sets theory, able to detect
data deviations also for skipped activities and to account
for uncertainty when assessing (multiple) data constraints
violations.

• We carry out an experimental validation on two real-world
case studies, to validate the approach and to prove its feasi-
bility for real-world problems.

The remainder of this paper is organized as follows. Section 2
ntroduces basic notions used throughout the paper. Section 3
llustrates our approach. Section 4 discusses the results obtained
n the case studies. Section 5 discusses related work. Finally,
ection 6 draws some conclusions and discusses future work.
2

2. Background

This section introduces concepts that are used through the
paper. We first recall core concepts related to event logs and
process models. Then, we introduce basic elements of fuzzy sets
theory.

2.1. Process models, events, logs

Conformance checking techniques aim at detecting discrepan-
cies between a process model and the real process executions.
Our approach aims at multi-perspective conformance checking,
which takes into account not only control-flow constraints, related
to the activity execution order, but also data guards, i.e., con-
straints on the admissible values for the process variables in
different parts of the process. A guard can be any formula over
the process variables using relational operators (<, >, = ) as well
as logical operators such as conjunction (∧), disjunction (∨), and
negation (¬). We denote with Formulas(X) the universe of such
formulas defined over a set X of variables. For each xi ∈ X , xi ∈ R.

A plethora of formalisms have been proposed in the literature
to represent process models, e.g., Petri net [20], BPMN [21] and so
on. Since our approach is not constrained to the use of a specific
formalism, here we define the notion of process model using
the general notion of transition systems, employing the notation
from [4] enriched with data-related notions, similarly to what has
been done in [13]. This allows for more simple descriptions of our
algorithms.

Definition 1 (Process Model). A process model M = (AM , V ,U,

Val,W , T , Λ,P,PI,PF ) is a transition system involving [7]:

• a set of process activities AM ;
• a set of transition identifiers Λ;
• a set of process variables V ;
• a set of variable values U; note that U also includes the

special symbol ⊥, that stands for ‘‘undefined value’’;
• a function Val : V → 2U that defines the values admissible

for each variable v, i.e., Val(v) is the (potentially infinite)
domain of v;

• a set of locations P , with initial location(s) PI and final
location(s) PF ;

• a set of transitions T : Λ → (P × AM × P);
• a write function W : Λ → 2V that labels each transition

with the set of variables written/updated by the transition;
• a guard function G : Λ → Formulas(V×V ), which associates

each transition with a guard.1

Definition 2 (State of A Process Model). Let M be a process model.
We define a state of M as any pair p = (P, Φ) of location P and
variable assignment Φ : V → U , and indicates the set of process
states with Γ = P × (V → U) [7].

Example 1. Let us consider the process model M in Fig. 1. Here
we have the activity set AM = {a, b, c}, the variable set V =

{v1}, the variable the value set U = {xi ∈ R}. Circles corre-
spond to locations; we have the location set P = {P1, P2, P3, P4},
with initial location PI = {P1} and final location PF = {P4}.
Edges between circles correspond to the transition set T =

{(t1, (P1, a, P2)), (t2, (P2, b, P3)), (t3, (P2, c, P4)), (t4, (P3, c, P4))}. For
he sake of simplicity, the figure only shows the process activities
s edge labels, together with the guards if defined. In this model,
he variable v1 is updated only once, by the activity a; so, the

1 If no guard is defined for a transition λ, G(λ) = True.
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Fig. 1. An example process model by transition systems.
i

Fig. 2. A process model in BPMN notation equivalent to the model in Fig. 1.

rite function W (a) = v1. We represent this by linking a to v1
y means of a dashed arrow. Furthermore, two guard functions
are defined on the admissible values for v1 in two transitions,

.e. (G(t2) = {v1 < 30}), (G(t3) = {v1 ≥ 30}); both are represented
n the corresponding edges. It is straight to see that the set of
tates for this example is infinite, since v1 can assume any value
ithin the reals domain and we have for each collection as many
tates as the possible assignment for each variable. Therefore, we
ill have a state with v1 = 0, another with v1 = 1 and so on.

The behaviors expressed by the process model in Fig. 1 can
e expressed also by other commonly used process model for-
alisms. As an example, Fig. 2 shows a process model in BPMN
otation which is semantically equivalent to the one discussed in
xample 1. The rectangles with rounded corners represent pro-
ess activities, while arrows represent ordering relations among
ctivities. The white rectangles with the folded corner represent
ata variables, linked by means of a dotted arrow with the activity
hich writes/updates them. Diamond-shaped elements are called
ateways and allow to model activity routing. Gateways with
he plus symbol are called ‘‘AND split-join’’ (the starting and
he closing gateway, respectively) and they represent concurrent
ctivities. The cross gateways are ‘‘XOR split-join’’ and they model
lternative choices. Data guards impacting activity routing are
xpressed as textual labels over the branches of the XOR gateway
hey refer to.2

For the sake of simplicity, for the remainder of the paper we
se process models in BPMN, since it is a widely used formalism
n industry. However, note that our approach can be used for any
anguage for which it is possible to build a transition system like
he one described in Definition 1.

A process model describes all the admissible process execu-
ions, hereafter referred to as process traces. Generating a process
race means executing every activity from an initial state to a final
tate, i.e. to generate an execution path of the graph from one of
he states corresponding to a location in PI to one of the states
orresponding to a location in PF , updating the process variables
hen needed. Note that every time an activity is executed, only
ne of the states in each states collection is chosen, i.e., the one
onsistent with the current variables assignment. We refer to the
xecution of an activity as a transition firing [7].

2 For a more detailed overview of the BPMN notation, the reader can refer
o http://www.bpmn.org/.
3

Definition 3 (Transition Firing). Let M be a process model. A
transition firing is a tuple3 s = (λ, w) ∈ Λ × (V ̸→ U).

A transition firing s = (λ, w) is valid in a state (P, Φ) if the
following conditions are satisfied [7]:

• ∃ P ′
∈ P | T (λ) = (P, a, P ′);

• λ writes new values to the defined set of variables,
i.e. dom(w) = W (λ);

• ∀v ∈ dom(w), w(v) ∈ Val(v);
• G(λ) evaluates to true with respect to Φ and Φ ′, where Φ ′

is defined as follows:

∀v ∈ V Φ ′(v) =

{
w(v) if
Φ(v) otherwise.

If any of the previous conditions does not hold, the firing is
invalid.

In the remainder, the set of valid and invalid transition firings
of a process model M is denoted as SM . On firing of an activity, the
process moves from the current state to the next one. This is de-
noted as (P, Φ)

s
−→ (P ′, Φ ′). The concept of single transition firings

can easily be extended to firing sequences σ = ⟨s1, . . . , sn⟩, which
can be expressed as (P0, Φ0)

σ
−→ (Pn, Φn) and it is equivalent to

writing (P0, Φ0)
s1
−→ (P1, Φ1)

s2
−→ (P2, Φ2) . . .

sn
−→ (Pn, Φn). A firing

sequence is valid if any final state of a transition firing is equal to
the initial state of the subsequent one. The set of all valid firing
sequences from the initial state(s) to the final state(s) represents
the set of process traces, i.e., the set of all possible behaviors
allowed by the model. In the remainder, given an initial set of
locations PI and a final set of locations PF we indicate with BPI ,PF
the set of all valid process traces leading from the initial state to
the final state, i.e., BPI ,PF = {σ ∈ S∗

M
4

| ∃PF (PI , ΦI )
σ
−→ (PF , ΦF )}.

The technique described in this paper requires a process model
to be relaxed data sound, which means that there exists at least
one valid firing sequence that leads from the initial to the final
state(s).

Process executions are often recorded by means of an infor-
mation system in event logs. An event log consists of traces,
each collecting the sequence of events generated during a process
execution.

Definition 4 (Event, Event Trace, Event Log). An event e = (a,
D, c, i) ∈ AM × (V ̸→ U) × C × N+ is a tuple consisting of an
executed activity a ∈ AM [7], a function D : V → dom(V ), which
assigns a value to some process variables (possibly all of them), a
case identifier c belonging to the case set C and a number i ∈ N+.
A case corresponds to a single process execution; the number i
identifies the position of the event within the sequence of events
occurred within a case. The set of events is denoted by E . An event
trace σL ∈ E∗ is a sequence of events. An event log is a multi-set
of event traces L.

3 We use 2V
̸→ U to denote partial functions, i.e., functions whose domain

s a subset of V .
4 S∗ is the set of all the sequences built with the elements in S .
M M

http://www.bpmn.org/
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.2. Fuzzy set theory

Classic set theory define crisp, dichotomous functions to de-
ermine membership of an object to a set. Although crisp sets
ave proven to be useful in various applications, human thoughts
nd decisions are often characterized by some degree of un-
ertainty and flexibility, which are hard to represent in a crisp
etting [22]. Fuzzy sets extend the classic set theory to rep-
esent the uncertainty and flexibility often involved in human
ecision-making [22,23], providing a meaningful representation
f vague concepts expressed in natural language and close to
uman thinking [23].
While the characteristic function of a crisp set assigns a value

f either 0 or 1 to each element in the universal set, the fuzzy
ets generalize the values to fall within a specified range and
ndicate the membership grade of these elements [23]. This grade
orresponds to the degree to which that individual is similar or
ompatible with the concept represented by the fuzzy set [24].
hus, individuals may belong in the fuzzy set to a greater or lesser
egree as indicated by a larger or smaller membership grade. The
xtreme values in this interval, 0 and 1, then represent, respec-
ively, the total denial and affirmation of the membership in a
iven fuzzy set as well as the falsity and truth of the associated
roposition [23]. Formally, a fuzzy set is defined as follows.

efinition 5 (Fuzzy Sets). Let N be a collection of objects. A fuzzy
et [23] F over N is defined as the set of ordered pairs F = {n ∈

N, µF }, where µF is called the membership function, defined as
µF : N → [0, 1].

Fuzzy sets are extensions of classical sets, with the charac-
teristic function allowed to take any value between 0 and 1. In
the literature several standard membership functions have been
defined for practical applications (see, e.g., [23] for an overview
of commonly used functions).

In addition to the assessment of single membership functions,
the fuzzy set theory also provides various functions to combine
multiple variables. Indeed, many decision making processes need
to evaluate multiple criteria before taking a final decision. To
model these contexts, within the fuzzy set theory the notion of
aggregation operations (AOs) is introduced. These are mathemat-
ical functions that satisfy several set boundary and monotonic
conditions, which allow to specify how to combine the different
criteria that are relevant when making a decision [25,26].

3. From crisp to fuzzy multi-perspective conformance check-
ing

This work introduces a compliance checking approach aimed
to take into account possible uncertainty affecting the defini-
tion of data-guards by quantifying the degree of deviations. We
argue that such a choice allows to obtain more accurate diag-
nostics, possibly closer to human interpretation. To this end, we
investigate the use of fuzzy sets theory.

A conformance checking framework requires to define three
main components; a set of moves, which determine the kind of
deviations that can be detected and from which an alignment
can be obtained; a cost function, which determines the severity
of each deviation; and an alignment building function, which
computes the alignment at minimum cost.

Each of these components is detailed in the following subsec-

tions. m

4

3.1. Defining the moves set

Given an event log L and a process model M with the set
M of transition firings s = (λ, w), conformance checking builds
n alignment between L and M , whose goal consists in relating
ach event e = (aL,D, c, i) (we use aL to emphasize the activity
in the log) occurring in the event trace to the activity in the
rocess trace and vice versa. To this end, we need to map ‘‘moves’’
ccurring in the event log (i.e., events) to possible ‘‘moves’’ in
he model (i.e., transition firings). However, since the executions
ay deviate from the model [4], we might have log/model moves
hich cannot be mimicked by model/log moves respectively. A

‘no move‘‘ symbol ‘‘≫ ’’ is used to represent moves which cannot
e mimicked. For convenience, we introduce the set S≫

M = SM ∪

≫}, and the set E≫
= E ∪ {≫}. Hereafter, we refer to a move

n a event trace as sL = (aL,D, c, i) and to a move in a process
race as sM = ((λ, (p, aM , p′)), w), with the previous position
= (P, Φ), the next position p′

= (P ′, Φ ′), and the activity aM . In
he following, we introduce the notion of Legal Move set.

efinition 6 (Legal Move Set). A legal move is represented by
pair (sL, sM ) ∈ E≫

× S≫

M , where sL = (aL,D, c, i) and sM =

(λ, (p, aM , p′)), w), with p = (P, Φ) and p′
= (P ′, Φ ′), such that:

• (sL, sM ) is a move in log if sL ∈ E and sM = ≫;
• (sL, sM ) is a move in model with fulfilled guards if sM ∈ SM

and sL = ≫ and the data guard G(sM ) evaluates True over
Φ and Φ ′;

• (sL, sM ) is a move in model with violated guards if sM ∈ SM
and sL = ≫ and G(sM ) evaluates False over Φ and Φ ′;

• (sL, sM ) is a move in both with fulfilled guards if sL ∈ E ,
sM ∈ SM and aL = aM and G(sM ) evaluates True over Φ and
Φ ′;

• (sL, sM ) is a move in both with violated guards if sL ∈ E ,
sM ∈ SM and aL = aM and G(sM ) evaluates False over Φ

and Φ ′.

For the remaining of this manuscript, we refer to these set of
oves as ‘‘extended moves’’, since it extends the move set used

n previous approaches [18,19]. In particular, there the data costs
ere considered only for synchronous moves, with the result that
ata violations occurring for moves on model go undetected. To
olve these issues, we introduce here a distinction between move
n model with fulfilled guards and move in model with violated
uards. By doing so, we can assess data constraints from the point
f the process where they are defined, regardless of whether
r not we find a matching event in the log. Once we defined
he move set, we are able to formally introduce the notion of
lignment, defined below.

efinition 7 (Data-relaxed Alignment). Let M = (AM , V ,U,

al,W , T , Λ,P,PI ,PF ,G) be a process model and let M ′
=

AM , ∅,U ′,Val′,W ′, T , Λ,P,PI ,PF ,G′) be a model with the same
transitions and activities as M but such that dom(Val′) = dom(U ′)
= dom(W ′) = dom(G′) = ∅. Namely, M ′ represents a model
with the same control-flow of M , but with no variables, guards,
or writing operations. Let BM,PI ,PF be the set of valid traces for M .
Let ALM be the set of all legal moves. The alignment between a log
trace σL ∈ E∗ and a process trace σM ∈ S∗

M is γ ∈ A∗

LM such that
the projection of the first element (ignoring ≫) yields σL, and the
projection on the second element (ignoring ≫) yields σM and σM
s a valid process trace in BM,PI ,PF .

We would like to point out that the notion of alignment used
n this work differs from the definition used in state-of-the-art
pproaches [7]. According to the latter, given the set of all legal

∗
oves ALM , the alignment between a log trace σL ∈ E and a
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Table 1
Two possible alignments built by our approach for the model in Fig. 2 and σL1 .

Alignment γ1 Alignment γ2

Log Model Guard Log Model Guard

a {v1 = 35} a {v1 = 35} N/A a {v1 = 35} a {v1 = 35} N/A
b b N b ≫ N/A
c c N/A c c N/A

process trace σM ∈ S∗

M is γ ∈ A∗

LM such that the projection of
the first element (ignoring ≫) yields σL, and the projection on
the second element (ignoring ≫) yields σM [27]. However, it is
worth noting that the set of extended moves can result in process
traces that are invalid with respect to data constraints; therefore,
we cannot refer to the standard notion of alignment. We illustrate
this behavior with the example below.

Example 2. Let us consider the model in Fig. 1 and the trace
σL1 = ⟨(a, {v1 = 35}), b, c⟩. Table 1 shows two possible align-
ments γ1 and γ2 for σL1 returned by our approach. The columns
Log and Model represent moves in log and in model, respectively,
while the Guard column provides information on whether the
values of the process variables comply with the data guards. The
symbol N/A is used to indicate where no guards are defined for
the transition, and N means the guard is violated. It is worth
noting that while the process trace in γ2 is still a valid process
trace, since b is not performed, the process trace in γ1 is an
nvalid process trace with respect to the process model, since data
onditions are violated.

While γ1 does not fulfill the standard notion of alignment,
we intend to be able to generate also this kind of diagnostics.
In fact, our approach aims at determining not only if a data
violation occurs, but also its magnitude; to this end, we need
to consider the actual value stored in the event log. Note that
this interpretation differentiates our approach from the multi-
perspective alignment [7] which, instead, strives for determining
the closest data value that would make the trace compliant with
the model, without considering the actual data variable value
when generating the diagnostics. We elaborate more upon these
differences in Section 5.

3.2. The cost function with fuzzy sets

As shown in Example 2, there can be multiple possible align-
ments for a given log trace and process model. Our goal is to find
the optimal alignment, i.e., the alignment with minimum cost. To
this end, we introduce a tailored cost function.

Definition 8 (Cost Function, Optimal Alignment). Let (sL, sM ) be a
ove between a log trace and a process trace, and σL, σM be a

og trace and a process trace, respectively. Given the set of all
egal moves AN , a cost function k assigns a non-negative cost to
ach legal move, AN → R+

0 . The overall cost of an alignment γ
etween σL and σM is computed as the sum of the cost of all the
elated moves: K (γ ) =

∑
(sL,sM )∈γ k(sL, sM ). An optimal alignment

is (one of) the alignment(s) with the lowest cost according to the
provided cost function.

Typical cost functions that accounts explicitly for the data
perspective [7] are affected by two main limitations. First, they
consider every move either as completely wrong or completely
correct. Second, they support only the interpretation of data vio-
lation in terms of the number of incorrect variables, which is not
always suitable for the analyst’s needs. To differentiate between
different magnitude of deviations and to allow the process analyst
to customize the interpretation of multiple data violations, we use
 i

5

the fuzzy sets concepts introduced in Section 2. In particular, we
propose to define for each data variable (a) a range of values ad-
missible according to the domain experts, and (b) a membership
function quantifying to which extent a given value is compliant
according to the experts’ knowledge. The membership function
is hence used to define the ‘‘violation cost ’’ of the data variable.
Aggregation functions are used to assess conditions involving
multiple variables. Note that here we aim at fuzzifying only the
computation of data moves, allowing some flexibility as to the
acceptable violations. However, an activity is either executed or
skipped, and so, there is not a notion of ‘‘partial’’ execution. Nev-
ertheless, our approach can in principle be extended to account
also for the control-flow perspective, for instance, to deal with
cases in which we can distinguish between the start and the end
of activities, or when an activity has been replaced by another
which performs similar operations or, again, to differentiate be-
tween deviations occurring under different conditions. We plan
to explore these directions regarding the uncertainty of control
flow in future work.

Definition 9 (Aggregated Cost Function With Fuzzy Sets). Let
(sL, sM ) be a move between a log trace and a process trace. We
define a membership function µ(sM , vi) indicating the compli-
ance degree of the data variable vi with respect to the data
guard in the model corresponding to the transition fired in sM .
Let π (µ1, µ2, . . . , µn) be a user-defined aggregated membership
function of multiple variables V1, . . . , Vn. Then (1 − π ) is the
overall deviation cost of a set of variables. The cost k(sL, sM ) is
defined as:

k(sL, sM ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if move in log
1 if move in model with

fulfilled guards
2 − π (µ1, . . . , µn) if move in model with

violated guards
1 − π (µ1, . . . , µn) if move in both with

violated guards
0 otherwise.

, (1)

Note that the membership function defined on a data variable
characterizes a soft constraint on that variable. The aggregation
of multiple soft constraints characterizes the combined violations
over multiple variables. Further, since a move on model with
violated guards involves two kinds of deviations, we consider
both of them in computing its cost. In particular, we compute
the cost of the moves as the sum between the cost related to the
control-flow deviation and the cost related to the violated data
guards, i.e., 1- π (µ1, . . . , µn).

For calculating the cost function in (1), we first need to define
a membership function for every data constraint we are inter-
ested in.5 For the sake of simplicity, in the remainder of the
manuscript we refer to the cost function of Definition 9 as ‘‘fuzzy
cost function’’.

Example 3. Let us consider again the alignment γ1 in Table 1 and
the model in Fig. 1. According to a crisp cost function, the cost
for the second move would be 1, since the value of the variable
v1 does not fulfill the corresponding guard. Now, let us assume
interviewing an expert of this process, who tells us that values of
v1 up to 40 are still acceptable, even though not optimal. Since
everything above a given value is not acceptable, let us assume

5 Note that multiple µ functions can be defined for the same data variable,
f it is used in multiple guards.
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e represent this knowledge using a so-called L-function, defined
s follows.

(b, V1) =

⎧⎪⎪⎨⎪⎪⎩
0 if V1 ≥ Vub
Vub − V1

Vub − Vo
if Vo < V1 < Vub

1 if V1 < Vo

, (2)

where Vub represents the upper bound the analyst is willing to
accept, while Vo represents the ideal value represented by the
constraint. Therefore, with V1 = 35, Vo = 30 and Vub = 40, we
would obtain a cost equal to 0.5 for this move.

Example 4. Consider now a trace similar to the one considered
in Example 3, but with a different data value. In particular, let
σL2 = ⟨(a, {v1 = 25}), (c, ⊥)⟩. This execution is not compliant
with respect to the model in Fig. 1 since v1 being below 30, the
activity b should have been performed. According to our set of
moves, and assuming to assign the process variables the same
values observed in the log trace, the corresponding move (≫, (b)
would be a move on model with violated guards. Using the same
membership function from Example 3, the cost of this move is
computed as 1 + 1 − 0, i.e., 2. It is worth noting that, using the
move set defined in the approaches [18], the data cost for this
move would go undetected, since b is a move on model.

While the total cost of an alignment provides an assessment
of the severity of the non-compliant behaviors shown in the
trace, conformance checking techniques usually use the so-called
Fitness metric when building the diagnostics for the analyst. This
value ranges between 0 and 1 and measures the extent to which
the log traces can be associated with valid execution paths speci-
fied by the process model [28]. Here we refer to the definition of
the fitness function for trace σL and Model M , F (σL,M) → [0, 1]
used by Mannhardt et al. [7], according to which F (σL,M) = 1 if
the trace σL can be replayed by the model from the beginning to
the end without any discrepancy. F (σL,M) = 0 corresponds to the
poorest level of the alignment. Let γO be the optimal alignment
of σL and M , and γR be the ‘‘reference alignment‘‘ that represents
the ‘‘worst case scenario’’. In particular, the reference alignment
is obtained by concatenating the alignment of the process model
with the empty trace with a sequence involving as many moves
on the log as events in the trace. It represents a case in which
none of the events in the log are matched with any of the
activities in the model.

Definition 10 (Fitness Function). Let J(γ ) to be the cost of a
complete alignment γ . Then the fitness level is defined as fol-
lows [13]:

F (σL,M) = 1 −
J(γO)
J(γR)

. (3)

3.3. Membership function and aggregation

The application of our method requires the definition of a
membership function for a fuzzy set and the selection of an
aggregation function for combining different sets. In this section,
we provide a brief discussion on how these choices could be
made, which can be used as guidelines.

The definition of a membership function depends on the ap-
plication, the problem under analysis and the preferences of the
domain experts. In general, the more information is available for
a problem, the better the membership function can be tailored to
the specific requirements of the domain. A data constraint implies
that there are some admissible values for the constraint and
others that are not allowed. This corresponds to a classical (crisp)
definition of a data constraint. In many problems, some tolerance
6

is allowed, which induces a preference structure over the data
values. Fuzzy constraints are used to model this case. In this case,
we define, for each data constraint, a membership function whose
core (i.e., the set of values for which the membership value is
1) denotes the set of admissible data values as defined by the
domain expert. Outside the core, we define a tolerance interval
in which the set of values we consider belong partially to the
set of admissible values (see also Section 2). From a conformance
point of view, this choice corresponds to determining, for a given
data constraint, which values should be considered acceptable,
although they are not optimal or preferred.

The definition of the core and the tolerance interval requires
knowledge from a process analyst or domain expert. If explicit
knowledge is not available, simple data exploration tools
(e.g., box plots) on past process executions can be used to support
this choice. For example, if we observe multiple deviations of a
data value in a given range, it might be reasonable to assume that
these deviations could be considered, to a given extent, as accept-
able. More complex methods to derive the membership functions
from sample data have also been proposed (see e.g., [29]).

After defining the core of the fuzzy constraint and the toler-
ance interval, we need to select the shape (type) of the mem-
bership function, which induces the preference structure over
(partially) admissible data values. In the literature, different types
of parameterized membership functions have been defined (see,
e.g., [23] for an overview), with different levels of complexity and
different interpretations. When there is no information regarding
a preference within the tolerance interval, a regular characteristic
function for an interval can be used for the membership. Often,
however, there is some information regarding the preference
(e.g., the smaller the deviation the better it is). In that case,
the triangular or trapezoidal functions are commonly used when
one wants the degree of membership to increase/decrease lin-
early according to the distance to the core of the set. In the
absence of specific needs expressed by the process experts, it
is a common practice to start with these functions, since they
are the most intuitive ones, and discuss the intervals with the
experts to determine whether they are in line with their ex-
pectations. Furthermore, the triangular membership functions
have the advantage that under some assumptions regarding the
underlying probability density function of the data, they reduce
the reconstruction error [30]. Similarly, if a normal distribution
of the degree of memberships is more appropriate, the Gaussian
membership functions can be used.

Aggregation of fuzzy sets is a topic studied extensively in the
fuzzy systems literature (see [23,31] for an overview). Different
functions have different level of complexity and different classes
of aggregation functions have different interpretations. For exam-
ple, t-norms are used for conjunctive aggregation of constraints
(aim to satisfy all the constraints at the same time), t-conorms
are used for disjunctive aggregation of constraints (aim to satisfy
at least one constraint) and averaging operators are used to allow
compensation between different constraints [32].

A suitable class of aggregation operators for compliance anal-
ysis are the t-norms, since they are used to model conjunction
of fuzzy sets, thus resulting in a convenient choice to model the
need of satisfying multiple constraints at the same time during a
process execution. Widely used t-norms are the minimum opera-
tor, which returns the minimum membership function value; the
product operator, which returns the product of the membership
functions; and the Yager t-norm, which is a parametric t-norm
and generalizes various well-known t-norms [33]. In this paper,
we focus on the product operator, since it is widely used and
allows some interaction between the values being aggregated.
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.4. Finding the optimal alignment

The problem of finding an optimal alignment is usually for-
ulated as a search problem in a directed graph and solved by
sing a search algorithm such as the A* algorithm to find a least
ostly path in the graph [34]. Let Z = (ZN , ZE) be a directed graph
with ZN being the set of nodes and ZE the set of edges, weighted
according to some cost structure. The A* algorithm finds the path
with the lowest cost from a given source node n0 ∈ ZN to a node
of a given goal set ZG ⊆ ZN . The cost for each node n is determined
by an evaluation function

f (n) = g(n) + h(n), (4)

where:

• g : ZN → R+ gives the smallest path cost from n0 to n;
• h : ZN → R+

0 gives an estimate of the smallest path cost
from n to any of the goal nodes.

Given a log trace σL and a process model M , we associate
every node of the search space with a prefix of some complete
alignments. Since a different alignment is also associated to every
search-space node and vice versa, we use the alignment to refer
to the associated state. The source node corresponds to an empty
alignment γ0 = ⟨⟩, while the set of target nodes correspond to
every complete alignment of σL and M . For every pair of nodes
1, n2 in the search space, we have that (n1, n2) ∈ ZE only if
he alignment γ2 corresponding to n2 is obtained by adding one
legal) move to the alignment γ1 corresponding to n1. The cost
ssociated with a path leading to a graph node corresponding to
n alignment γ is then defined in [7] as

(γ ) = K (γ ) + ϵ|γ |, (5)

here K (γ ) =
∑

sL,sM∈γ k(sL, sM ), with k(sL, sM ) defined as in Def-
nition 9, and |γ | is the number of moves in the alignment, while
is a negligible cost, usually added in literature to guarantee

ermination. In order to be employed in the A* start algorithm, the
ost g has to be strictly increasing. The work in [7] has formally
roved that the A* algorithm is always satisfied for cost functions
(sL, sM ) with non negative elements, which is the case for the
ost function in Definition 9.
For the definition of the heuristic cost function h(γ ), infor-

ally, the idea is computing, from a given alignment, the min-
mum number of moves (i.e., the minimum cost) that would lead
o a complete alignment. Different strategies have been defined
n literature, on the basis of the model adopted to represent the
rocess model. For our implementation, we adopt the heuristic
ost function h in [5], defined as the difference between the
umber of remaining events in the log and the number of re-
aining transitions in the process model, regardless whether or
ot the match is perfect. For example, if there are enough events
o match all the remaining activities in the model, h = 0. While a
ormal introduction on the heuristic cost function is out of the
cope of this paper, we would like to point out that previous
ork has shown that this heuristic cost function still satisfies
he admissible rule when considering other perspectives [7], thus
esulting suitable for our purposes. It is noted that there is no data
ost associated with h since it only estimates the control flow cost
ith the number of the remaining events. We would like to point
ut, however, that our approach is not constrained to the use of
specific heuristic.
Algorithm 1 provides a high-level overview of the overall

lignment algorithm. The algorithm takes as input a process
odel M, a log trace σL, a cost function K, and a policy defining
ow to deal with missing variables. B is the set of valid traces
enerated from the model. Different alternative strategies can be

sed for determining how to consider these missing variables. We

7

Algorithm 1: Multi-perspective alignment searching
process

Input : Process Model (M), log trace σL, cost function
K, missing variables policy POLICY , the set of
valid traces B.

Output: Optimal alignment γ

1 σL = preprocessMissingVariables(σL, POLICY ) ; // assign
values

2 abstract_data(M) ; // abstract the data conditions
3 γc=⟨⟩ ;
4 OPEN = ∅ ;
5 CLOSED = ∅ ;
6 while γc |M ̸∈ BM,PI ,PF ∧ γc |σL ̸= σL do
7 Γn = expand_alignment(γc,M, σL) ;
8 foreach γ ′

∈ Γn do
9 kγ ′ = compute_cost(γ ′, K ) ;

10 OPEN .add(γ ′, kγ ′ ) ;
11 γc = pick_min_cost(OPEN ) ;
12 OPEN .remove(γc) ;
13 CLOSED.add(γc) ;
14 return γc

argue that this is a choice depending on the analysts’ preference
and, consequently, we allow her to customize this choice. Exam-
ples of policies are, for instance, considering all these variables
as invalid, i.e., assigning them a value outside of their domain, so
that every guard using the variables are assigned the maximum
cost. Alternatively, the user might decide to assign them to a
default value or, for numeric variables, to the average of the
values observed in the other traces, and so on. After the missing
variables have been pre-processed according the policy, e.g., set
to be median, mean, etc. (line 1), and the data conditions are
abstracted from the process model (line 2), an initial alignment
γc and two sets, OPEN and CLOSED are initialized (lines 3–
5). The OPEN set includes all successors of the current optimal
lignment, and the alignments that have not been chosen in the
ast. It thus represents the set of all possible alignments that can
e chosen as the next node. The CLOSED set, instead, keeps track
f all the alignments that have been selected up to a given point
n the search process. The while loop (lines 6–13) involves the
ey element of the search process. The condition states that the
oop continues until we find a ‘‘final’’ alignment, i.e., an alignment
c such that its projection on the moves on model γc |M returns
process trace belonging to the process trace set BM,PI ,PF from

he initial position PI to the final position PF of model M , while
its projection on the moves on log γc |σL returns the log trace
σL. First, the algorithm invokes the function expand_alignment
(line 7), which generates the set of legal moves (according to
Definition 6) that can be obtained from γc , thus obtaining a set of
new candidate alignments Γ .

For each alignment γ ′
∈ Γ the cost is computed, according to

Definition 9. Then, the alignment is put in theOPEN set, together
with its corresponding cost (lines 9–10). Once the cost of each
expansion has been computed, the function pick_min_cost returns
the alignment corresponding to the minimum cost (line 11), and
the selected alignment becomes the new γc , and is removed from
the OPEN set. Then the current alignment is put in the CLOSED
set, to avoid this node to be expanded in further iterations. If
more than one alignment correspond to the optimal one, the
function picks one arbitrarily.

The core element of Algorithm 1 is represented by the func-
tion expand_alignment , described in Algorithm 2. On line 2, we
compute the control flow successors of an alignment γ . The set of
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γ

Fig. 3. The search process constructed to find an optimal alignment with 1.
control-flow successors γctrγ of a trace σL and a model M with
initial and final locations PI , PF is defined as [7]:

ctrγ = {γc ∈ A∗

LM | γc = γ ⊕ ⟨(sL, sM )⟩ ∧ γc |σL ∈ prefix(σL)
∧ ∃σM ∈ BM,PI ,PF | γc |σM ∈ prefix(σM )}.

The control-flow alignment γc belongs to the set of all le-
gal moves A∗

LM . The symbol ⊕ stands for sequence concatena-
tions, while |σL , |σM represent the projection over the log/process
trace σL and σM respectively. The mark prefix presents a pre-
fix of complete alignments. Hence, we only consider moves on
log/model.

Informally, γctrγ corresponds to all the possible log/model
moves that can be executed at the current point of the log/process
trace, neglecting the data, where σMc and σLc stands for the
log/model moves respectively (line 3–4). While the concrete im-
plementation depends on the adopted process model formalism,
the high level idea consists of determining (a) the successor
event sLnext in the log trace that comes after the last event sLprev
(line 5–6), and (b) the set of process activities SMnext that are
successors of the activities in the current model moves (line 8)
after the data conditions are abstracted (line 7). These elements
are then combined to generate the set of all possible moves with
a for-each loop (lines 9–18). First, we need to select a variable
assignment Φ for each move in model. It should be noted that,
in theory, this set of moves becomes infinite, since variables in
process traces can have potentially infinite domains. However,
in this work we exploit the variable assignment D of the last
event sLprev in the event log to generate a finite number of moves
with the assignment Φ , and initialize the next Φ ′ with the same
assignment (line 10–11). As explained above, we are interested
in determining if the variables written in the event log enable
compliant process executions with respect to the defined set of
guards. To this end, for each move on model from the set of
possible model successors SMnext we assign variables in the state
(P , Φ) before and after the corresponding transition λ with the
process activity aM at line 12. Note that in this way we obtain
a move with fulfilled/violated guards according to Definition 6,
depending on the values observed in the event log and the data
guards. A move in model is then added to Γn (line 13). Then, if
the next log successor has the same activity label as the next
move successor, we update the variables assignment Φ ′ of the
final state using the variable assignments D of the successor event
s (line 14–16). In this case, a move in both is also added to Γ
Lnext n

8

Algorithm 2: The expand_alignment(γ ,M, σL) function
Input : The current partial alignment γ , a process

model M, a log trace σL
Output: A list of possible alignment successors Γn

1 Γn=[] ;
2 γctrγ = control_flow(γ );
3 σMc = γctrγ |M ;
4 σLc = γctrγ |σL ;
5 sLnext = log_successor(σLc , σL) ;
6 sLprev = last_event(σLc ) ;
7 abstract_data(M);
8 SMnext = model_successors(σMc ,M) ;
9 foreach sMnext ∈ SMnext do

10 Φ = DsLprev ;
11 Φ ′

= Φ;
12 sMnext = (λ, ((P, Φ), aM , (P

′

, Φ
′

)));
13 Γn.add(sMnext , ≫) ; // move in model
14 if aL = aM then
15 Φ ′

= DsLnext
;

16 sMnext = (λ, ((P, Φ), aM , (P
′

, Φ
′

)));
17 Γn.add(sLnext , sMnext ) ; // move in both

18 Γn.add(≫, sLnext ) ; // move in log
19 return Γn

(line 17). Once all the model successors have been explored, we
finally add a move in log (line 18).

Below we present a toy example to illustrate the application
of Algorithm 1.

Example 5. Let us consider the process model in Fig. 1 and
the example trace σL2 = ⟨(a, {v1 = 10}), (c)⟩. Fig. 3 shows
part of the search space explored while looking for an optimal
alignment. Each node n together with a move symbol corresponds
to a (partial) alignment. We highlighted in gray the nodes chosen
at each step (i.e., the ones corresponding to the minimum cost),
and marked the order of the picked nodes with a ‘‘#’’ and the
number. Every edge corresponds to a legal move. We report the
costs values computed for the displayed state. For the sake of
clarity, we indicate separately the data cost and the control-flow
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omponents respectively with variables w and g , and h6 stands
or the estimated cost value in Fig. 3.

The first node corresponds to the empty alignment, with all
he costs equal to 0. At this stage, the current event sL1 =

a, {v1 = 10}), and the possible model successor is only SM1 = {a}.
here are three possible legal moves7 (and, hence, three successor
odes): n1(a, ≫), n2(a, a) and n3(≫, a). For each of them, the
ariable v1 is assigned to 10. The data cost is w = 0 for all
f the successor nodes, since no data guards are defined on a.
he node n2(a, a) is a synchronous move with no deviation on
ontrol flow, then g(n2) = ϵ (ϵ is the negligible cost for a final
ermination, see the cost function in (5)) and h(n2) = 0, thereby
(n2) = ϵ. For other two alignment nodes n1(a, ≫) and n3(≫, a)
ith control flow deviation, g(n1) = g(n3) = 1+ ϵ and h(n1) = 1
nd h(n3) = 0, respectively (correspondingly, f (n1) = 2 + ϵ and
(n3) = 1+ϵ). All three successors are added into the OPEN set.
2(a, a) is clearly the one corresponding to the minimum cost.
herefore, it becomes the current alignment, and then be moved
o the CLOSED set. Then, the algorithm continues to search
or the successors of node n2(a, a). The set of trace successors
s sL2 = {(c)}, and the set of transition successors is SM2 =

b, c}. Therefore, the set of possible moves is {n4(≫, b), n5(≫
c), n6(c, c), n7(c, ≫)}. Note that no data were updated in the
vent log, and so, each move has the same variable assignment
s the first move, i.e., v1 = 10. For node n4(≫, b), control-flow
ost g(n4) = 1+ 2ϵ and estimated cost h(n4) = 0, as the variable
1 is compliant to the guard G(b) : v1 < 30, data cost w(n4) = 0,
o overall cost f (n4) = 1 + 2ϵ. However, for the firing of a to
, the guard G(c) : v1 >= 30 is violated. Suppose we assume
1 = 10 totally deviates the fuzzy tolerance margin, and so for
oth n5(≫, c) and n6(c, c) the data cost w = 1. For node n5(≫, c),
(n5) = 1 and g(n5) = 1 + 2ϵ, costs are f (n5) = 3 + 2ϵ. For node
6(c, c), h(n6) = 0 and g(n6) = 2ϵ costs are f (n6) = 1+2ϵ. For the
ast node n7(c, ≫), there are no corresponding data constraints,
eing a move in log, so w(n7) = 0, h(n7) = 1, g(n7) = 1+ 2ϵ and
he overall cost f (n7) = 2 + 2ϵ. Then the four nodes are added
nto the OPEN set. For all the remaining nodes in the OPEN set,
ven though both n6(c, c) and n4(≫, b) have the same minimum
ost f = 1 + 2ϵ, node n6(c, c) has firstly reached the end of both
he trace and the process model. Therefore, n6(c, c) is moved from
he OPEN set to the CLOSED set, and marked as ‘‘2#’’ selected
ode.

. Experiments

This section describes the results obtained by a set of exper-
ments we carried out on two real-life event logs to evaluate
he usefulness of the proposed approach. In particular, we are
nterested in assessing the impact on the final diagnostics of
a) the introduction of an additional data move, and (b) the
uzzification of the data costs. More precisely, we expect that the
ntroduction of the extended set allows us to pinpoint deviations
hat would go undetected with previous frameworks [19]; while
he fuzzification of the cost function is expected to increase
he fitness values of traces involving data deviations within the
stablished tolerance values. Accordingly, we consider different
etrics to evaluate the results; namely, we consider the number
f detected violations to assess the impact of factor (a), and the
itness value for factor (b). In both cases, an increasing of the
etric corresponds to an improvement of the diagnostic, i.e., an

ncreased accuracy, intended as capability of detecting different

6 For this example we use the heuristic function introduced in [5] to calculate
of all the nodes.
7 For the sake of simplicity, here we use only the activity labels and the
o-move symbols to refer to moves.
9

kinds of deviations (a), or as the capability of providing a more
fine-grained analysis tailored on domain experts’ expectations
(b).

For the sake of space, we only presented the results from
cost function with one membership function and one aggregation
function. We carried out the experiments with other membership
functions, e.g., z-shaped, and s-shaped functions, and obtained
the similar results as the trapezoidal function presented in Sec-
tion 4; therefore, we chose to only present the results of this
one, being the simplest and most commonly used. As regards
the aggregation functions, here we presented only the results
related to the t-norm, since it was the one that fit best according
to experts from the Catharina case. Interested readers can refer
to [18] for a more in-depth comparison of alternative aggregation
functions.

4.1. Catharina Hospital cryo-ablation procedure

We conducted the study on the peri-operative process of cryo-
ablation procedure in Heart and Vascular Center of Catharina Hos-
pital Eindhoven, the largest cardiovascular center in the Nether-
lands. We derived the process model by analyzing local protocols,
performing shadowing studies and conducting interviews with
cardiology experts.

4.1.1. Experiment setting
Model description. Fig. 4 shows the process model describing
the cryo-ablation procedure in BPMN language. Different col-
ors are used to highlight different execution paths. The pro-
cess starts when a patient is added into the waiting list of the
cryo-ablation procedure (Waitfor_Schedule) and the procedure
is scheduled to a specific date by the planner (Scheduled). On
the procedure day, the patient arrives to the heart launch room
and report their recent medication list (Admission). In particular,
variables related to anticoagulants, i.e. type (NOAC: non-oral
anticoagulants, or Vitamin − K), status (stop or continue), are
ecorded. Then the patient takes measurement on blood pressure
Measure_Measure), which results in an update of the variable
P (blood pressure). If the patient is taking vitamin-k (V-K) type
nticoagulants, e.g. acenocoumarol, or marcoumar, he also needs
o test the INR (international normalized ratio), a laboratory
easurement of how long it takes for blood to form a clot

Test_Test). Accordingly, the variable INR is updated. Note that
he execution of this activity depends on the data guard reported
n the corresponding gateway. After these first measurement
teps, the clinicians evaluates whether the patient’s condition sat-
sfies the requirements for starting the cryo-ablation procedure.
his means checking whether the variables BP and INR fulfill the
ata guards on the gateway. If not, the procedure is canceled
Cancellation). Otherwise, the patient goes through a standard set
f activities, from the preparation for the surgery (Prepare), to
he transfer of the patient out of the Cathlab, where the surgery
akes place (Leave_Leave). In the post-operative care, the antico-
gulant medication should be restarted (Restart_Restart) if it was
topped before the procedure. Finally, the patient is discharged
fter several hours or after an overnight rest (Discharge).

ata preparation. We received an anonymous data-set contain-
ng all the in-hospital records of the cryo-ablation process from
017 to 2019. We selected the completed cases in the procedure
ist and filtered the ones including less than four events, since
hey likely represent cases where some issues occurred in the
ogging. Events corresponding to the same activity and logged too
lose in time to each other (i.e., within a minute) are considered
s logging errors, and removed. Similarly, events without times-
amps or mandatory variables were removed. For related clinical
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Table 2
Basic statistics for two real-life event logs.
#Cases #Traces #Events Avg.

#Events
Min
#Events

Max
#Events

Cryo-ablation 1206 15068 11 4 32
Sepsis 951 7666 8 4 14

indicators like anticoagulants, since the peri-operative medica-
tion list should be collected before the procedure, we filtered the
medication records which ended 30 days before the procedure,
or started after the patient discharge. Table 2 shows some ba-
sic statistics for the two event log of the case studies, i.e., the
total number of traces/events and the average, max and min
number of events per trace. The cryo-ablation log involves 1206
traces and 15,068 events in total. On average, a trace consists
of 11 events. The shortest traces involve 4 events, and usually
correspond to patients for which the procedure was canceled.
We also observed several traces longer than expected, with a
maximum of 32 events. Digging into the log, we found out that
some process activities have been executed multiple times for
some patients. These often correspond to administrative activities
(e.g., the admission or the canceling of the procedure). Discussing
these findings with the process experts, we found out that when
a procedure had to be rescheduled for a patient, this is logged in
the system as repeated administrative activities for that patient,
rather than opening a new case. We also observed that for some
patients the administration of analgesic drugs (paracetamol) was
performed multiple times, possibly depending on the patients’
requests. Among the 1206 traces, 1167 have records on arriving
and leaving Cathlab, which can be considered to indicate the
proper completion of a cryo-ablation procedure. For the data
perspective, we consider the four variables shown in the process
model. For anticoagulant information, 878 traces have the med-
ication records during patient admission, which means variables
type and status (for anticoagulants) are missing in 289 traces.
herefore, the related rules to these variables are also not appli-
able for these cases. For other two value-type variables, blood
ressure BP is missing in 97 cases, and only one trace missed
he necessary INR information. Since these variables are critical
or the verification of the ablation procedure, we discussed with
linical experts and agreed to replace the missing value with the
edian of the existing variables.
10
The cost function setting. Dichotomous functions are used to ob-
tain binary memberships for string variables, i.e., type and status,
o the related rule compliance. For numeric variables BP and
NR, we defined membership functions following Definition Def-
nition 9 and discussing with the clinical experts. For the blood
ressure, clinicians indicated that deviations up to 200 are still
onsidered acceptable, and they would consider these values as
ess compliant to the protocol the closer to 200 they are. For the
NR, we observed that all the values are distributed within the
ange (1,3.9), so that the higher boundary of the data guard is
ever violated. Furthermore, clinicians considered the possibil-
ty of violating this high boundary very unlikely. Therefore, we
ecided to implement a simplified membership function, stating
hat INR should be higher than 2. Also in this case, clinicians are
illing to accept lower values which are reasonably close to 2,
nd 1 was indicated as the lowest acceptable value. Therefore,
or the variables we derived the following fuzzy boundaries: (180,
00) for BP, and (1,2) for INR. To model the intuition of a linearly
ecreasing level of compliance within the fuzzy boundaries, we
hose to use the trapezoidal membership function. In particu-
ar, we chose a right-shouldered trapezoid for the membership
unction of the BP variable, and a left-shouldered trapezoid for
he value of INR, since we want to model that above/below the
ighest/lowest boundary, the compliance degree drops to zero.
he membership functions are specified below.

BP =

⎧⎨⎩
1 , if BP ≤ 180
0 , if BP ≥ 200
200−BP

20 , if 180 < BP < 200

µINR =

⎧⎨⎩
1 , if INR ≥ 2
0 , if INR ≤ 1
INR − 1 , if 1 < INR < 2

Regarding the choice of an aggregation function, we choose
the Product t − norm operator, i.e., we determine the overall
compliance level as the product of the compliance level of each
single variable.

The overall cost function is thus formulated as follows, with n
standing for the number of involved variables on model firing s ,
M
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nd µi for the membership of each variable:

(sL, sM ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if move in log
1 if move in model without

fulfilled guards
2 −

∏n
i=1 µi if move in model with

deviated guards

1 −
∏n

i=1 µi if move in both with
deviated guards

0 otherwise.

(6)

As discussed in Section 2, the conformance checking algorithm
always returns one optimal alignment. It should be noted that
when multiple alignments with the same cost exist, our algorithm
returns the alignment with the higher amount of data devia-
tions. This is a design choice, decided together with the domain
experts, which considers explanations based on data guards vi-
olation closer to reality than explanations based on control-flow
deviations. However, different settings can be chosen.

Competitor cost functions. We compare the diagnostics obtained
by applying our cost function with (a) the cost function with fuzzy
sets with standard moves introduced by Zhang et al. [19] and
(b) two data-aware cost functions with standard and extended
moves respectively, both using a crisp cost assessment, as done
by state-of-the-art techniques [7]. More precisely, to assess the
impact of the introduction of the extend move set we compare
the deviation costs obtained by the crisp (fuzzy) cost functions
with the standard and the extended move set. To assess the
impact of the use of fuzzy sets, we compare the fitness results
obtained by the crisp cost function and the fuzzy cost function,
11
both with the standard and the extended move set. Finally, we
discuss differences in the alignment detected in these comparison
groups. We implemented all cost functions within our frame-
work, described by Algorithm 1, to ensure that differences in
diagnostics are due only to differences in cost function definition.
In order to have a meaningful comparison we need to ensure that
the difference in terms of fitness is due to difference in computing
the alignment cost. To this end, we set the data guards always
equal to True when computing the reference alignment γk (see
Definition 10). This ensures that the reference alignment used to
compute the fitness is the same for all the approaches. We also
validate the obtained results with domain experts from Catharina
hospital.

4.1.2. Results
Deviation cost comparison. Fig. 5 shows the deviation costs com-
puted for each trace by the tested approaches. In Figs. 5(a) and
5(b), the x-axis represents the cost returned by the crisp (fuzzy)
approach with standard moves, while the y-axis shows the results
obtained by the crisp (fuzzy) approach with extended moves.
For all traces on the main diagonal, the deviation cost remains
unchanged. Dots above (below) the diagonal represent cases in
which the approach on the y-axis obtained a cost value higher
lower) than the approach on the x-axis. As expected, the use
f the extended approach always results in the same or higher
osts than the one with standard sets, both for the crisp and the
uzzy case. In particular, we found 60 cases involving deviations
etected only by using the extended move set. Note that the
ifferences are higher for the crisp case; this is expected, since
ith a crisp cost function each additional detected deviation will
e assigned a cost of one, while in the fuzzy case it will be
ssigned to a cost between 0 and 1. This behavior is evident in
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Fig. 6. Comparison of the fitness levels returned by (a) the crisp method and the fuzzy method with standard moves; (b) a crisp approach with the extended moves
set and a fuzzy approach with the extended moves set.
Figs. 5(c) and 5(d), which show the cost variance for each of the
60 cases for the crisp and fuzzy cost function, respectively. Note
that the average increased cost using the fuzzy extended move
set is 0.487.

Fitness result comparison. In Fig. 6(a), the x-axis (y-axis) repre-
ents the fitness level of the crisp (fuzzy) approach with stan-
ard moves; similarly,in Fig. 6(b) shows the fitness level of the
risp/fuzzy cost function with extended moves. For all traces on
he main diagonal, the fitness level remains unchanged. Dots
bove (below) the diagonal represent cases in which the fuzzy
pproach obtained a fitness level higher (lower) than the bench-
ark. We see that the fuzzy approach obtains always the same or
igher fitness levels than the crisp cases. In particular, when the
tandard move set is applied, 6 traces are higher than the main
iagonal, with an average increase of 4.62% in fitness compared
o the crisp approach. This number increases to 53 traces with
igher fitness for the fuzzy approach when the extended move set
s applied, with an average increase of 6.33% in fitness compared
o the crisp approach. This difference is due to the use of the
xtended move set, which enables the detection of data violations
eglected in the standard move set.
To provide some insights on the general level of compliance of

he event log, we also report in Fig. 7 the fitness level distribution
btained by the proposed approach. The x axis shows nine bins of
itness values, each corresponding to a range of 0.1. The number
bove each bin corresponds to the number of traces with fitness
evel falling in this bin. The log is characterized by a relatively
igh level of fitness. Indeed, 877 traces (72.7% of the entire log)
how a level of compliance higher than 0.6, with a peak in the
nterval (0.6, 07]. The overall average fitness level is 0.616. Nev-
rtheless, there is a significant portion of non-compliant traces,
ome of which with a level of fitness below 0.5 (86 traces, i.e., 12%
f the log). Only a few dozen cases deviate strongly or, instead,
omply almost perfectly. In particular, only 4 out of 1206 traces
ave the fitness level lower than 0.3; while only 43 traces have
fitness level higher than 0.8 Note that this implies that even

he most compliant executions still have slight violations with
espect to the protocols.

he alignment interpretation. In addition to the detected devia-
ions and overall fitness levels, there are also differences in the
lignments obtained (and, hence, in the interpretation of the
iagnostics). These differences are mostly visible on the activities
ubjected to data-guards, i.e., whether to cancel or continue the
rocedure, which relies on the value of BP and INR respectively.
ig. 4 shows the data-aware paths of the alignment model, where
 b

12
Table 3
Number of cases that are aligned to different activities: Prepare
and Cancellation.

Prepare Cancellation

(crisp, standard) 1139 67
(crisp, extended) 1128 78

one is activity Cancellation in green striated block, and the other
is represented by activity Prepare in pure blue block, respectively.

We analyzed alignment differences grouping the approaches
pairwise. Namely, we first compare the (crisp, standard) approach
against the (crisp, extended) one, to illustrate the effect of the
extended move set; then, we compare the (crisp, extended) ap-
proach against the (fuzzy, extended) one to highlight differences
due to the introduction of the fuzzy sets.

Table 3 reports the number of traces representing the patients
aligned to the preparation path or to the cancellation path with
the (crisp, standard) and (crisp, extended) approaches.

According to Fig. 5(c), there are 60 cases were additional data
deviations are detected thanks to the use of extended sets. The
results in Table 3 show that the detection of these deviations has
a strong impact on the alignment for 11 cases, which are assigned
to the Cancellation path rather than to the Prepare. As an example,
we discuss one of these cases in the following.

Example 6. Let us consider the trace σid:682 = ⟨. . . ,

(M_S,BP = 201), (T_I, INR = 3.8), (A, {type = V − K , status =

stop}), (A_C, ⊥), (S_I, ⊥), (Para, ⊥), (S_O, ⊥), (L_C, ⊥), (D, ⊥)⟩.8
Table 4 presents the alignments determined by the (crisp,

standard) approach ( Table 4.a) and by the (crisp, extended) one
( Table 4.b) . The alignment (a) matched the trace to the path of
Prepare in the process model (in Fig. 4) with seven control-flow
deviations. This alignment hence suggests that the patient has
been rightfully undergone for the ablation procedure, but some
activities have not been logged properly. However, it should be
noted that this alignment does not take into account that the
value of the BP = 201 violates the rule of Prepare path, thus
generating a misleading diagnostics. Instead, the alignment (b)
did take the data cost into account, which led to consider the
Cancellation path as the best fit. The reason for the difference
arises from the data violations. According to the clinical rule, BP is
fully violated. The standard move set ignored the data perspective

8 For the sake of simplicity, we report only the portion of trace interested
y the data-guard.
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Table 4
Optimal alignment returned by the classical crisp approach with standard (a)
and extended (b) sets.
(a) Standard sets (b) Extended sets

Log Model cost Log Model cost

. . . . . . . . . . . . . . . . . .

M_S (BP=201) M_S 0 M_S (BP=201) M_S 0
T_I (INR= 3.8) T_I 0 T_I (INR= 3.8) T_I 0
A ≫ 1 A ≫ 1
≫ Pre 1 A_C ≫ 1
≫ Para 1 S_I ≫ 1
A_C A_C 0 Para ≫ 1
S_I S_I 0 S_O ≫ 1
Para ≫ 1 L_C ≫ 1
≫ E_I 1 D ≫ 1
S_O S_O 0 ≫ C 1

≫ E_O 1
L_C L_C 0
≫ R_N 1
D D 0

when control-flow is not aligned, so the overall cost is only 1
when Prepare is missing. Therefore, the overall cost for alignment
(a) with the path starting from Prepare is seven. However, with
he extended sets where data violation is always considered,
he cost of choosing Prepare path will be eight (7 control-flow
and 1 data cost). At the same time, the overall cost of choosing
Cancellation path is also eight. The (crisp, extended) approach
returns hence two possible optimal alignments for this trace;
however, the conformance checking algorithm always picks only
one optimal result and assign higher priority to data violation,
thus returning the alignment (b). Note that both the optimal
alignments returned by the (crisp, extended) approach suggest
the same interpretation, i.e., that the procedure should have not
been performed because of the violation of the clinical rule. This
is more in line with the clinical protocols, completely ignored in
alignment a).

We conducted a second comparison on the alignments with
the preparation path or to the cancellation path with the (crisp,
extended) and (fuzzy, extended) approaches in Table 5.

According to Fig. 6(b), 53 cases return higher fitness after
the introduction of fuzzy sets from an general overview. Table 5
shows that these differences impacted the alignment of ten cases.
We also pick here a representative trace to inspect the different
alignments obtained by both approaches.

Example 7. Let us consider the trace σid:717 = ⟨. . . , (A, {type =

itamin − K , status
13
Table 5
Number of cases that are aligned to different activities: Prepare
and Cancellation.

Prepare Cancellation

(crisp, extended) 1128 78
(fuzzy, extended) 1138 68

Table 6
Optimal alignment returned by the cost functions with crisp (a) and fuzzy (b).
(a) Crisp sets (b) Fuzzy sets

Log Model k Log Model k

. . . . . . . . . . . . . . . . . .

T_I (INR= 1.9) T_I 0 T_I (INR= 1.9) T_I 0
M_S (BP= 111) M_S 0 M_S (BP= 111) M_S 0
A_C ≫ 1 ≫ Pre 1.1
S_O ≫ 1 ≫ Para 1
E_O ≫ 1 A_C A_C 0
L_C ≫ 1 ≫ S_I 1
D ≫ 1 ≫ E_I 1
≫ C 1 S_O S_O 0

E_O E_O 0
L_C L_C 0
≫ R_N 1
D D 0

= stop}), (T_I, INR = 1.9), (M_S,BP = 111), (A_C, ⊥), (S_O, ⊥)
(E_0, ⊥), (L_C, ⊥), (D, ⊥)⟩.

Table 6 presents the alignments returned by the (crisp, ex-
tended) and by the (fuzzy, extended) approach ( Table 6.a and
Table 6.b, respectively). The alignment (a) shows that (crisp,
extended) approach mapped the trace to the path of Cancellation,
assigning all the other activities to moves on log. Instead, in
alignment (b) Prepare path was picked, where an higher number
of activities was matched. In this case, the alignment difference
arises from the cost functions. According to the membership
functions, µBP = 1 and µINR = 0.9. Accordingly, with data
aware cost function, the product-norm aggregated data cost of
activity Prepare is 0.1, i.e., the patient data only slightly violates
the clinical protocol. We argue that such a fine-grained diagnostic
provides the domain experts with more knowledge than the crisp
one. Indeed, the latter does not consider the magnitude of the
deviation; therefore, the alignment corresponding to the cancella-
tion of the procedure and to the execution of the procedure with a
violation of the constraints are considered as equally valid (same
cost). In contrast, the fuzzy approach does take the magnitude
into account, thus highlighting that the execution of the proce-
dure is the more likely explanation, since the data deviation stays
within the tolerance boundaries.
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Fig. 8. The sepsis care process model.
.2. Sepsis care procedure

Our second case study has been carried on a public dataset9
egarding the care process of sepsis, a life-threatening condition
hat requires immediate treatment. The scope of this case study
as on the patients admitted to the emergency ward of the
ospital because suspected cases of sepsis.

.2.1. Experiment setting
odel description. We refer to the process model obtained by
revious studies [14]. However, we had to simplify such model
ecause of limitations of the tools we are currently using for
he analysis. Indeed, our tool exploits the process model repre-
entation implemented by [35] which, however, results in high
omputational complexity in the presence of high degree of par-
llelism and loops, up to the point of making the computation
nfeasible. To address these issues, we kept only two parallel
ranches out of four of the original model, also removing from
he event log those activities not represented by the simplified
rocess. We would like to point out that this change does not af-
ect the results of our analysis significantly. Indeed, we kept those
ctivities interested by the presence of a data guard; this allows
s to analyze and compare the results obtained by the different
ost functions we are testing, which is the main goal of these
xperiments. We plan to develop a more efficient implementation
f our approach in future work. Fig. 8 shows the resulting model
sed in this analysis. The process starts with the registration (ER)
f the patient in the emergency ward. Then, different concurrent
ctivities take place, in particular the filling of general and specific
epsis triage document (ERTriage, ERSepsisTriage), the adminis-
ering of antibiotics and of liquid via intravenous (IVAntibiotics,
VLiquid), the measurement of the lactic acid level (LacticAcid),
he admission of the patient to a normal or to an intensive care
ard (AdmissionNC , AdmissionIC). Then, the patient will be dis-
harged, with a different code (ReleaseA, B, C,D, E). In some cases,
owever, the patient will have to return to the emergency ward
ReturnER). There are only two data guard expressions, encoding
wo rules on the time perspective: from the moment of triage,
1) patients should be given antibiotics within 60 min; (2) the
actic acid measurement should be done within 180 min. The
ariable timeTriage records the time when activity ER Sepsis Triage

9 The event log can be obtained from: https://doi.org/10.4121/uuid:915d2bfb-
e84-49ad-a286-dc35f063a460.
14
was executed, while variable timeAntibiotics and timeLacticAcid
record the execution time of activity IV Antibiotics and LacticAcid
respectively.

Data preparation. The event-log covers the traces of 951 pa-
tients, collected in 1.5 years. General log statistics are reported
in Table 2, Since the time perspective is tightly related to the
control-flow executions, here we assume that when the activ-
ity, e.g. LacticAcid, is missing, then the variable execution time,
e.g. timeLacticAcid, is also considered as a missing deviation. We
filtered out the traces with less than three event, which we
consider as outliers.

The cost function setting. We define variables δtA =

timeAntibiotics− timeTriage, and δtL = timeLacticAcid− timeTriage,
and then the crisp data guards for the variables are (1) δtA ≤

60, and (2) δtL ≤ 180. Since the rules for the time variables
are independent on different activities, aggregation is not appli-
cable in the cost functions for this case. Since this is a public
dataset, we do not have expert’s knowledge available to define
the cost function; therefore, we carried out some basic data
exploration. More precisely, we used the boxplot distribution of
the violated variables, and picked the two-quarter value as the
acceptable boundary. The reason underlying this choice is that
if one observes a frequently occurring violation of a guard, it
is reasonable that such a violation is considered acceptable by
the process actors. According to this observation, we derived the
fuzzy boundaries (60, 156.96) for δtA and (180, 350.58) for δtL.
Here we also applied the commonly used right-shouldered trape-
zoid for both variables. The membership functions are defined as
below.

µtA =

⎧⎨⎩
1 , if δtA ≤ 60
0 , if δtA ≥ 156.9
156.96−δtA

96.96 , if 60 < δtA < 156.96

µtL =

⎧⎨⎩
1 , if δtL ≤ 180
0 , if δtL ≥ 350.58
350.58−δtL

170.58 , if 180 < δtL < 350.58

Note that the time perspective used to define the guards in
this model is highly connected to the control-flow. Namely, if
the required activity is not executed, the time constraints will
be violated as well, so the cost for the violation of both control-
flow and time perspective would be two. Therefore, the overall
cost function with time perspective k (S , S ) can be defined as
t L M

https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
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Fig. 9. Deviation costs returned by the fuzzy method with/without the extended moves set (a); Variance of the deviation costs returned by the fuzzy method
ith/without the extended moves set (b).
ollows, with µi corresponding to the membership function µtA
for activity IV Antibiotics) or µtL (for activity LacticAcid).

t (SL, SM ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if move in log
1 if move in model with fulfilled guards
2 if move in model with violated guards
1 − µi if move in both with violated guards
0 otherwise.

(7)

valuation metrics. We compared the same approaches described
n the cryo-ablation case, using the same metrics. However, in
hese dataset there are no data guards determining different
xecution paths; therefore, we will not delve into the alignment
omparison, since the picked execution paths are expected to be
he same with respect to the tested cost functions.

.2.2. Results
eviation cost comparison. Fig. 9 shows the deviation costs com-
uted for each case in the log. For the sake of simplicity, here
e only focus on the fuzzy method with and without the ex-
ended set (y-axis and x-axis in Fig. 9(a)), since similar results
re obtained for the crisp functions. The deviation cost remains
nchanged for all traces on the main diagonal, and the dots
bove the diagonal represent traces in which the approach with
xtended sets obtained a cost value higher than the standard
ets. We found 162 traces involving deviations detected only by
sing the extended move set. To delve into these differences, we
eport the cost variance for these traces in Fig. 9(b) Note that
he variance levels are always either 1 or 2. These crisp values
re due to the characteristic of the time perspective, which is
ighly affected by the control-flow executions. In particular, the
ost function always returns a fully violation (i.e., a cost equal
o 2) when the activity is not executed, i.e. for move in model
ith violated time guards. When compared to the deviation costs
btained with the standard and the extended move set, we can
btain a cost difference of either one, if the move-on-model
s detected by the standard move set but the data violation is
ot, or two, when the move-on-model is skipped altogether. The
eviation variances by extended sets which always returned a
risp cost when control flow is violated and marked as a ‘‘move
n model’’.
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Fig. 10. Comparison of the fitness levels returned by fuzzy/crisp method with
the extended sets.

Fitness result comparison. In Fig. 10, the x-axis (y-axis) represents
the fitness level of the crisp (fuzzy) approach with extended
moves of each trace. We see that the fuzzy approach always
obtained the same or higher fitness level than the crisp one,
and 240 cases returned higher fitness from the introduction of
fuzzy boundaries, with an average increase of 4.18%. Also in this
case, here we will not present the comparison on crisp/fuzzy ap-
proach with standard moves, since it returned the same results on
increased fitness, due to the characteristics of time perspective.

As concerns the general level of compliance of the whole event
log, we report in Fig. 11 the fitness level distribution obtained by
our approach. The x axis shows ten bins in which we grouped
the fitness values from 0 to 1, and the y axis shows the number
of traces dropped in each fitness bin. The number above each
bin corresponds to the number of cases with fitness level falling
upon this bin. The figure shows that the log has a high level of
overall average fitness, 0.78, and 82.8% of traces has reached to
a fitness higher than 0.6. In particular, only 14 out of 951 traces
have the fitness level lower than 0.4, implying that most of the
cases clinical activities are compliant to the local protocol.

4.3. Discussion

The experiments show that our fuzzy multi-perspective con-
formance checking method is capable of providing more accurate
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Fig. 11. Distribution of the fitness levels returned by fuzzy multi-perspective conformance checking method with the extended sets.
nd fine-grained diagnostics than the tested competitors. The
ntroduction of extended sets allows to highlight data devia-
ions independent to control-flow perspective, where standard
ets only count the data violations when control flow is aligned
Figs. 5 and 9). Furthermore, the approach consistently obtained
igher level of fitness than the crisp one, due to the fact that
ossible tolerance to deviations from domain experts are taken
nto account (Figs. 6 and 10). It should be emphasized that fitness
omparisons are not feasible for the extended/standard sets, since
hey detect different set of deviations. Only when the detected
eviations are the same, a higher level of fitness corresponds to
ore accurate diagnostics.
With regards to the alignment results, for the Catharina case

e observe that both the extended sets and fuzzy sets had quite
strong impact on the interpretation of some patient’s trace.
xample 6 shows that the introduction of extended sets detect
ata violations which are otherwise neglected when building the
lignment. Example 7 shows that the use of fuzzy sets is capable
f modeling tolerance on data violations, allowing the analyst
o recognize that for same patients the most likely explanation
as that the procedure continued, since the data violations were
ithin the boundaries. To better understand the consequences
f these differences, we also interviewed the cardiology experts
nd discussed with them the alignments with the strongest dif-
erences. From these interviews, it emerged that the alignment
omputed by the our method provides a more informative and
eaningful diagnostic, closer to what would be the human in-

erpretation of the occurred deviations. It is noteworthy that,
hile the alignments were not affected by the use of fuzzy sets

n the cost function for the sepsis case, the approach allowed
nyway to highlight different degrees of guards violations in
ifferent process executions. We argue that such an information
s very valuable in diagnostic terms, for instance because it allows
he analyst to focus on cases with strong violations which are
rguably the ones where more attention is needed to determine
hat caused the violations.
Similarly to any conformance checking approach, our frame-

ork is applicable for any process which satisfies three require-
ents: (1) there is a normative process model represented in a

ormal notation, e.g., BMPN, or Petri-net; (2) the model involves
onstraints defined on multiple perspectives; (3) there are data
racking historic executions available. Previous work has shown
hat conformance checking techniques proved to be valuable
n a number of domains, for instance the healthcare [1], the
inancial domain [7], the web service selection [36] or application
anagement in public administration [6].
Nevertheless, there are some limitations to this work. First,

ue to the lack of usable public datasets for multi-perspective
onformance checking, we considered only two case studies for
ur experiments. Future research should extend the experimental
et, to better investigate consequences of fuzzification of the
ost function for process models involving, e.g., more complex
16
Table 7
Overview on related work.

Multiple perspectives Uncertainty Optimal alignment

[4,37,38] X
[39–41] X
[1,13,14] X X
[42,43] X
[44] X X

control-flow construct, or more elaborated data-guards. Besides,
the validity and the usefulness of the compliance results are
strongly dependent on the correct design of the membership
function; while some guidelines can be provided and some data
exploration techniques can be used to aid the decisions, this is a
problem specific step and there is not a one-fit-all approach that
can be effortless brought from one case to another. A good col-
laboration with the domain experts is essential in order to derive
a meaningful cost function. Finally, as we mentioned in the previ-
ous section, the tool we currently use for the implementation of
the approach suffers from some computational complexity issues.
A more efficient implementation can be designed to overcome
these issues.

5. Related work

Table 7 provides an overview on related work on confor-
mance checking, highlighting three key aspects of the approaches,
namely (a) whether additional perspectives than the control-flow
are taken into account, (b) whether the approach explicitly rep-
resents uncertainty related to the process execution and/or its
modeled behavior, and (c) whether the approach outputs an
optimal alignment that can be used to interpret the observed
deviations. Note that this does not intend to be an exhaustive
review; we mention frequently-cited methods in literature for
each category.

Some approaches [39,40] propose to check whether log traces
satisfy a set of compliance rules, typically represented by using
declarative modeling, without building an alignment between
the log traces and the model. Rozinat and van der Aalst [28]
propose a token-based technique to replay event traces over a
process model to detect deviations. Since it has been shown that
token-based techniques can provide misleading diagnostics [45],
to overcome these limitations alignments have been proposed as
a robust approach to conformance checking [4]. Alignments are
able to pinpoint deviations causing nonconformity based on a
given cost function. While most of alignment-based approaches
use the standard distance cost function [4], some variants have
been proposed to enhance the quality of the provided diagnos-
tics, for instance by analyzing historical logging data to take
probability into account [37]. Other approaches investigated de-
composition strategies to enhance the computational efficiency of
the alignment building step [38].
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Besides the control flow, there are also other perspectives like
data, or resources, that are often crucial for compliance checking
analysis. Few approaches in literature have investigated how
to include these perspectives in the analysis. Some approaches
proposed to compute the control-flow first and then to assess
process executions compliance with respect to the data perspec-
tive [1,13]. These methods assume that the control flow is more
important than other perspectives for an optimal alignment, with
the result that some important deviations can be missed. On the
contrary, [41] assumes to align the data perspective to obtain
a data-aware reference trace, and then replay it with the input
trace to detect the mismatch events by classical control flow
conformance. Authors use control-flow and data-dependencies to
derive a graph representation of the log traces, then computing
for each of them a graph-based similarity metric with the most
similar execution that can be derived by the process model. The
research of Mannhardt et all [7] represents the approach closest
to our framework. They introduce a cost function able to account
and balance all process perspectives together when building the
alignment. However, there are two main differences between
their framework and ours. First, they adopt a crisp evaluation of
deviations. Second, the interpretation given in their framework
to violations of data guards consists in a wrong data writing
operation carried out by one of the process activities. Our ap-
proach, instead, assumes that data have been properly stored, but
the actors are willing to accept violations. This difference in the
semantic of the data violation has a direct impact on how the
alignments are built. In the approach of Mannhardt et all [7] the
goal consists in determining a valid variable assignment which is
as close as possible to the values observed in the log trace. To this
end, the authors employ MILP for variable assignments to per-
form a data alignment, i.e., to obtain the process trace most similar
to the log trace. In our approach, instead, the goal is to build
alignments with data and highlight the guards that have been
violated. Therefore, variables in the process trace are assigned to
the same values observed in the log. Our approach hence adopts
a more conservative position than the data alignment one. In data
alignment approach, all data costs are explained within a single
incorrect write operation. After that, an alternative, valid value is
assigned to the variable to obtain a process trace compliant with
the constraints. In our approach, instead, variables are assigned as
it is shown in the log, even if this means that no process traces
valid according to the data perspective can be generated. Guards
violations are then counted when computing the overall cost; and
so, variables that are assessed multiple times will weight more to
the definition of the final cost. Note that within this framework,
the alignments we build are still optimal. However, instead of
representing the closest valid execution, they represent the most
likely explanation with respect the given variable assignments.
We argue that both approaches, data alignment and alignment
with data, represent valid alternatives. Our approach is tailored
to contexts in which we assume data are mostly logged properly
and actors have the freedom to deviate from the guards. In these
cases, the analyst is mostly interested in understanding which
guards have been violated, and to which extent.

The approaches discussed so far did not explicitly deal with
possible uncertainty related to the event log or to the process
model. There are few recent studies about the topic. Leemans
et al. [44] propose an approach tailored to stochastic Petri net,
to take into account the probability of different execution paths
when assessing the conformance values. Van der Aa et al. [42]
propose a framework to deal with uncertain event-activity map-
pings. Instead of returning alignments, they return the probability
that a given trace is compliant with respect to a set of possible
mappings. Pegoraro et al. [43] propose a framework dealing with

intervals, rather than values, for event names and timestamps,
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computing the lower bound and the upper bound alignment cost
with respect to the defined intervals. While the framework can
in principle be extended to deal with other event attributes,
the extension of their conformance checking method to multiple
perspectives is not discussed.

We would like to conclude this overview by mentioning some
relevant studies that have proven that fuzzy sets can be success-
fully employed to represent humans’ decision making processes.
Bosma et al. [46] studied a fuzzy approach to modeling Viet-
nam farmers’ decision process in adopting integrated farming
systems; Hao et al. [47] applied a fuzzy dynamic weight determi-
nation approach to solve the risk decision making problems for
the mine emergency; Xue et al. [48] modeled a fuzzy decision
tree to realize the human-like decision-making knowledge in
inbound ship analysis. The researchers in [49] created a fuzzy
decision-making framework for treatment selection with quali-
tative flexible multiple criteria, and similarly [50] introduced on
health care applications a fuzzy linguistic method on the Multiple
Criteria Decision Making (MCDM) problem of Prioritizing the
elective surgery patient admission in a Chinese public hospital.
Some approaches also investigated the application of fuzzy sets
for process mining analysis. For example, the study in [51] ex-
ploits an existing (fuzzy) rule-based framework to characterize
the conformance problem. In [52] the researchers proposed to use
fuzzy analytic hierarchy process to manage vagueness in many
linguistic judgement. The study in [53] focuses on a fuzzy process
miner on a CT scan data-set to help the hospital administrators in
maximizing the throughput and optimal resource utilization, thus
reducing patient waiting time. However, to the best of our knowl-
edge, no previous work has investigated the use of fuzzy sets to
integrate the deviation degree in multi-perspective conformance
checking.

6. Conclusions and future work

In this work, we propose a novel compliance checking ap-
proach that allows to assess the compliance of process executions
taking into account the degree of deviations, to obtain diag-
nostics that are more accurate and possibly closer to human
interpretation. The proposed approach enhances significantly the
flexibility of compliance checking, allowing the human analyst to
customize the data cost function for multiple variables according
to the analysis needs. To achieve these goals, we define a novel
deviation cost function, by introducing a new move to account
for data-guards violations for skipped activities and by exploiting
fuzzy sets theory to compute the data costs.

We implemented the approach and tested it on two real-
life clinical processes, comparing the results obtained to the cost
functions defined by state-of-the-art techniques in terms of the
deviation cost, the overall trace fitness, and the returned align-
ment. The introduction of extended sets allows to highlight data
deviations independent to control-flow perspective, where stan-
dard sets only count the data violations when control flow is
aligned. Meanwhile the cost returned from the fuzzy approach
also remains more accurate diagnostics on the deviation degrees.
When assessing the fitness level, the fuzzy approach consistently
obtained higher level of fitness than the crisp one, due to the
possible tolerance to deviations from domain experts. With re-
gards to the alignment results, the results from the proposed
approach provides a more informative and meaningful diagnostic,
closer to what would be the human interpretation of the occurred
deviations. as the domain experts recognized.

For future work, there are several directions that we plan to
explore. First, as we discussed in Section 4.3, we plan to extend
the experimental set, in order to test the approach with differ-
ent datasets and in different contexts. Furthermore, we plan to
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nvestigate the use of fuzzy sets also for the control-flow aspects
s well. For instance, analyzing the results of the real-life experi-
ent, we noticed several control-flow deviations where one or
ore activity execution has been swapped with others with a

elatively similar timestamp. This might indicate, for example,
anual logging errors, rather than real control-flow violations.
e plan to investigate the use of fuzzy sets to introduce some
otion of similarity between events with close timestamps, taking
hen this similarity into account when assessing the control-flow
ompliance level.
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