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Abstract
The purpose of this study is to solve the multi-instance classification problem by maximiz-
ing the area under the Receiver Operating Characteristic (ROC) curve obtained for witness
instances. We derive a mixed integer linear programming model that chooses witnesses and
produces the best possible ROC curve using a linear ranking function for multi-instance clas-
sification. The formulation is solved using a commercial mathematical optimization solver
as well as a fast metaheuristic approach. When the data is not linearly separable, we illus-
trate how new features can be generated to tackle the problem. We present a comprehensive
computational study to compare our methods against the state-of-the-art approaches in the
literature. Our study reveals the success of an optimal linear ranking function through cross
validation for several benchmark instances.

Keywords Multi-instance learning · Mixed integer linear programming · Area under curve

1 Introduction

Supervised learning studies pairs of (xi , yi ), where xi is a set of features (attributes) for
instance i ∈ I and yi is the corresponding response or label [1]. The goal is to learn a
mapping function from input matrix X to vector y with approximations. This mapping
function is used for prediction of an output variable, when there is new input data. Multi-
instance learning (MIL) identifies this mapping over bags rather than instances. A bag is a
collection of instances that are collectively labeled, where instance labels are not necessarily
known. One of the classical examples is drug activity classification, where the drugs can be
labeled as positive or negative depending on their effectiveness. A positive label indicates
a drug is effective, that is an effective conformation of that drug exists. However, that does
not necessarily imply all these conformations are effective. This and similar ambiguities
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in instance labels is what makes MIL settings particularly attractive and computationally
challenging.

Supervised learning algorithms such as Bayesian classifiers, logistic regression, decision
trees, random forests, neural networks, support vector machinesmap input matrix X to vector
y, but with different approaches and assumptions [2]. These procedures mostly arise from
numerical analysis or optimization theory depending on the type of data mining problems.
Indeed, diversity among these algorithms demonstrate the need of various applications with
different settings. Each method addresses a particular level of sufficiency on computational
complexity and performance offerings. That is why there is no best method for any type of
data mining problem. This motivates our research on observing the performance of an exact
optimization method on a key metric.

Decision support and machine learning literature have increasing attention on binary
classification problems [3]. We study multi-instance binary classification with bags of data.
Under thewidely-used standard assumption, positive labeledbags contain at least onepositive
instance (witness) and negative labeled bags are full of negative instances [4, 5]. This approach
leads to a straightforward transition from instance level prediction to bag level prediction,
when a classifier is obtained. A bag is predicted as positive unless all instances in the bag are
predicted to be negative. Several decision problems benefit from multi-instance learning in
domains such as image annotation, economic predictions, audio processing, and text mining
[6].

1.1 Related literature

There are several aspects of MIL. Aside from the standard assumption we adopt, there is
also collective assumption, where one witness instance is not enough; but a distribution, an
interaction, or an accumulation of instances is desired [7, 8]. Further approaches based on
presence, threshold, and count can be found in [9]. Further characteristics of theMIL problem
arises from prediction level, bag composition, data distributions, and label ambiguity [8].
The transition from classical instance label predictions to bag label predictions are made by
existence of a witness, rate of witnesses, or relationship between instances. Bag compositions
are studied using relationship between instances with measures such as intra-bag similarities,
instance co-occurrences, or structure. Data distributions are examined using multimodal
distributions of positive instances and non-representative negative distribution. The former
refers to shapes of distributions, if positive instances are located in one cluster or not. The latter
refers to hardness of modeling the negative class distributions. Finally, there are variations
of ambiguities: aside from the standard label ambiguity (on positive bags), label noise and
different label spaces are studied.

MIL is awidely-studied data-driven decision supportmechanism.Zhou [10] introduces the
origin of MIL and discusses the learning algorithms, applications, and extensions. A unified
view of themost frequently used approaches is also presented: DiverseDensity [11], Citation-
kNN [12], ID3-MI and RIPPER-MI [13], and BP-MIP [14]. Appraches to MIL problems
utilize a cost function that is optimized during training, based on maximum likelihood or
margin [15]. Maximum likelihood is frequently used in standard supervised learning due to
its flexibility. Margin based approaches focus on the distance between hyperplane and data
points, which is maximized for classification and minimized for regression.

Binary classification is one of the most widely-studied problems in MIL. Dietterich et al.
[16] present and compare three different types of algorithms that solve drug activity predic-
tion problem via learning axis-parallel rectangles. Maron and Lozano-Pérez [11] describe the
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idea of diverse density through a motivating example of moleculer shape, where molecules
are represented as manifolds in an n-dimensional space; and labeled positive if at least one
place along the molecules’ manifold fit into the target protein. Andrews et al. [17] derive two
newmixed integer quadratic programming formulations to solvemulti-instance classification
problem as extensions to Support Vector Machines (SVMs). They can only solve these mod-
els heuristically but report excellent classification results. In contrast to the widely adopted
standard assumption, Weidmann et al. [9] approach the MIL from a different angle, consid-
ering the labels of bags according to the interaction between instances. Kundakcioglu et al.
[18] derive a new combinatorial optimization formulation and solve themarginmaximization
problem, in accordance with SVMs, for multi-instance binary classification. They show that
their formulation isNP-hard, present how kernel trick can be applied, and propose a branch
and bound algorithm to solve their formulation. There are studies that address a major prac-
tical issue for MIL: robustness of classifiers to outliers. Poursaeidi and Kundakcioglu [19]
propose using hard margin loss formulations and Carbonneau et al. [20] present a random
subspace instance selection procedure to provide a more robust classifier for different data
distributions. More recent approaches employ deep-learning algorithms that usually yield a
higher testing accuracy [21, 22].

1.2 Our contribution

This work circumvents the search for an algorithm to solve classification problems within
MIL.Based on [23],we develop amixed integer linear programmingmodel formulti-instance
binary classification. Our model maximizes the area under Receiver Operating Characteristic
(ROC) Curve (i.e., AUC) for the witness instances of an MIL problem. AUC is known to be
the golden standard in measuring the success of a classifier [24, 25]. On the development of
our model, we make use of standard MIL assumption and witness selection procedure. We
take into account the witness (a single instance) from each positive bag. Similar to the model
presented in [23], selection of witness instances for positive bags is performed by pairwise
comparison of instances within the bags. This is essentially a supervised bipartite ranking
problem, which is synonymous with AUC maximization in binary classification [26]. This
also explains why these problems are generally favored in the machine learning community
[27].

Small and medium-sized problems can be solved to optimality in acceptable time using
our model with a commercial solver. Our approach also provides a bound on the optimal
objective value for large-scale problems. Furthermore, model objective can be altered based
on different rank statistics for different cases or specialized problems, making this approach
flexible. As our main concern is the generalization performance of the classifier, an exact
solution approach with a commercial solver might be impractical for large cases. In order
to address this issue, we also present how a metaheuristic approach, namely Particle Swarm
Optimization (PSO), can be used to solve the optimization problem. PSO scales up better than
the exact approach in terms of computation time, and our results show that the solution quality
and generalization performance are acceptable.Weprovide benchmark results onwell-known
multi-instance classification datasets for our exact and metaheuristic approach against five
algorithms from the literature. Furthermore, in order to perform nonlinear classification, we
accommodate a feature generation approach from the literature and present numerical results.
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1.3 Organization

The remainder of this paper is organized as follows: In Sect. 2, we derive a novelmathematical
formulation for the multi-instance classification problem. We develop a reformulation that
can be solved more effectively and present a metaheuristic approach that provides fast near-
optimal solutions in Sect. 3. We compare our methods with the state-of-the-art approaches
in the literature using publicly available datasets in Sect. 4. We provide concluding remarks
and directions for future research in Sect. 5.

2 Problem definition

In this section, we present the foundations of our approach, and elaborate on the details of
our mathematical optimization model.

2.1 Multi-instance bipartite ranking

The supervised bipartite ranking problem consists of a set of training instances and their
associated binary labels, hence the term supervised. In binary classification, classes are usu-
ally labeled as+1 or−1, to denote positivity or negativity, i.e., to show the (non)existence of
some characteristic for the instance. Scorer function is crucial in bipartite ranking problem,
which assigns a real number to each instance. Without loss of generality, positive instances
are expected to have higher scores, whereas negative instances are expected to have relatively
lower scores. In fact, it would be the ideal ranking if all negative instances have a lower score
than each and every one of the positive instances. This is formalized with the following
iterative procedure that assigns different ranks to each instance:

• Minimum rank for each instance is the number of instances that have a strictly lower
score that that instance.

• Rank of each instance is equal to the minimum rank unless there is another instance with
the same minimum rank.

• In case of more than one instance with the sameminimum rank (i.e., same score), positive
instances receive lower ranks. Among more than one positive or more than one negative,
ties are broken arbitrarily.

The ultimate goal is to minimize the number of misranks. There occurs a misrank, if a
negative instance has a higher rank than a positive instance. That implies a score for a negative
instance that is greater than or equal to that of a positive instance.

Bertsimas et al. [23] study a supervised bipartite ranking problem for single instance
classification. Our approach in this notation is to transform the single instance classification
problem to a multi-instance classification problem. Note that labels are defined over bags
of instances with a standard assumption. Thus, the multi-instance bipartite ranking problem
can be formalized similar to the single instance case, except for the definition of misranking.

Remark 1 The goal of multi-instance bipartite ranking problem is to minimize the number of
misranks across bags. There occurs a misrank, if an instance from a negative bag has a higher
rank than all instances in a positive bag. That implies the largest score among instances of a
negative bag is greater than or equal to the largest score among instances of a positive bag.
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It should be noted that we use a linear ranking/scoring function in this study. That is
f (xi ) = wT xi is the scorer function, where w ∈ IRd is the orthogonal of the ranking
hyperplane.

2.2 Maximizing the area under ROC curve

ROC curve is developed around the 1950s to detect signals. ROC curve is constructed by
plotting true positive rate (TPR) on y axis and false positive rate (FPR) on x axis for various
values of a threshold parameter; fromone extremevalue that classifies all instances as negative
(i.e., TPR=0, FPR=0) to the other extreme that classifies all instances as positive (i.e., TPR=1,
FPR=1). For a random classification, curve is expected to be a straight line from (0,0) to (1,1),
therefore any classifier that outperforms a random classifier should dominate this line. AUC
stands for the area under ROC curve and is the ultimate measure for success in classification
tasks.

AUC metric is proven to be also obtained by pairwise comparison of rankings: There is a
three stage proof for this proposition. First, Green and Swets [28] prove the equality of AUC
and probability P(X > Y ), where X and Y are the random variables generated using the
distribution of the positive and negative examples, respectively. Next, Hanley and McNeil
[29] prove that the Wilcoxon-Mann-Whitney statistic is exactly equal to the aforementioned
probability in discrete cases, hence the AUC as follows:

P(X > Y ) =
∑K

i=1
∑L

j=1 1mi >n j

K L
(1)

In (1), m1,…,mK and n1,…,nL are the outputs of a fixed classifier for positive and negative
data points respectively. Finally, AUC’s relation with ranking quality of the classification and
pairwise comparison is explained and statistically proven in [30]. In the light of these, our
approach of directly maximizing AUC for the witnesses of the multi-instance classification
problem, we expect to maximize the probability of correctly classifying new data generated
coming from the distributions of (i) positive witnesses and (ii) negative instances.

2.3 Multi-instance AUCmaximizationmodel

In this section we present our mathematical modeling approach. Our multi-instance AUC
maximizer is formulated as a mathematical optimization formulation for the multi-instance
bipartite ranking problem. Tables 1 and 2 contain the nomenclature we use in our mathemat-
ical developments.

Next, we present the initial version of our multi-instance bipartite ranking formulation as:

[MI-BR] max
∑

p∈S+

∑

n∈S−
�pn (2a)

subject to vi = wT xi i ∈ I + ∪ I − (2b)

− 1 ≤ w j ≤ 1 j ∈ {1, . . . , d} (2c)

zik ≤ vi − vk + 1 − ε i ∈ I +, k ∈ I − (2d)
∑

k∈In

zik ≥ |In |γin i ∈ I +, n ∈ S− (2e)
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Table 1 Nomenclature — Sets and Parameters

Sets and Description
Parameters

d Number of features, i.e., number of dimensions for feature space

I+ Set of instances in positive bags

I− Set of instances in negative bags

xi ∈ IRd Vector of features for data instance i ∈ I+ ∪ I−
S+ Set of positive bags

S− Set of negative bags

Ip Set of instances in bag p ∈ S+ ∪ S−

Table 2 Nomenclature — Decision Variables

Decision Description
Variables

vi Score of instance i ∈ I+ ∪ I−
w j Hyperplane coefficient variable j ∈ {1, . . . , d}
w Hyperplane vector of variables

zik 1 if score of instance i ∈ I+ is larger than instance k ∈ I−, 0 otherwise

γin 1 if score of instance i ∈ I+ is larger than all instances in bag n ∈ S−, 0 otherwise

θi 1 if instance i ∈ I+ is selected as a witness instance, 0 otherwise

χin 1 if i ∈ I+ is a witness instance and score of i ∈ I+ is
larger than all instances in bag n ∈ S−, 0 otherwise

�pn 1 if score of witness instance of positive bag p ∈ S+ is
larger than all instances in bag n ∈ S−, 0 otherwise

∑

i∈Ip

θi = 1 p ∈ S+ (2f)

θi + γin ≥ 2χin i ∈ I +, n ∈ S− (2g)
∑

i∈Ip

χin = �pn p ∈ S+, n ∈ S− (2h)

zik ∈ {0, 1} i ∈ I +, k ∈ I − (2i)

θi ∈ {0, 1} i ∈ I + (2j)

χin, γin ∈ {0, 1} i ∈ I +, n ∈ S− (2k)

�pn ∈ {0, 1} p ∈ S+, n ∈ S− (2l)

Our objective function (2a), as mentioned in previous sections, maximizes correct rankings
between pairs of bags. Constraint (2b) computes the scores of all instances. Constraint (2c)
is for scaling as well as bounding the feasible region to speed up the solution procedure.
Constraint (2d) ensures correct ranking among each pair of instances is reflected with the
associated binary variable. Here, ε is a small enough number that has to be input by the
user to ensure same scored positive and negative instances are misranked, as explained in
Sect. 2.1. Constraint (2e) implies that if a positive instance scores greater than all instances
of a negative bag, then the associated binary variable reflects that. Constraint (2f) ensures that
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there can be only one witness instance in a positive bag. Constraints (2g) and (2h) guarantee
if an instance of a positive bag is a witness and scores greater than all instances of a negative
bag, then these two bags are correctly ranked.

It should be noted that the formulation in (2) is a mixed integer linear programming
problem, which are computationally challenging unless they possess a special structure.
Even the single instance bipartite ranking problem, which is a special case of multi-instance
problem with bags of size one, isNP-hard [23]. Thus, we conclude that the formulation (2)
cannot be solved efficiently. The binary restrictions for �pn can be relaxed for all p ∈
S+, n ∈ S− and the solution would still be integral. However, there are still |I +||I −| +
|I +|+2|I +||S−| ∼ O(|I +||I −|) binary variables. Next, we present our solution approaches
for this challenging problem.

3 Solution approaches

In this section, we present our approach in solving themathematical optimization formulation
in (2). We propose an exact approach that uses a reformulation and a commercial solver as
well as a metaheuristic approach.

3.1 Reformulation for an exact approach

The mathematical model we propose in the previous section aims to find the best ranking
hyperplane in terms ofROCperformance. However, themodel is computationally intractable,
making it impractical for a validation scheme, where the model needs to be solved several
times. and not eligible to be solved in commercial solvers in a reasonable time and also not
suitable for cross validation. Therefore, to speed up the solution, we propose reformulations
on the constraints and variables.

First, in proposed model we have four sets of binary variables in O(|I +||S−|). In order
to address the computational burden created due to these binary variables, we transformed
constraint (2e) to a tighter constraint as

zik ≥ γin i ∈ I +, k ∈ In, n ∈ S−. (3)

Instead of constraint (2g), we use

θi ≥ χin i ∈ I +, n ∈ S−, (4a)

γin ≥ χin i ∈ I +, n ∈ S−. (4b)

After these modifications, θi , γin and χin can be relaxed to a continuous variable between
0 and 1 even though they can only take the values 0 and 1, due to the tightness of the renewed
feasible region definition. Thus, we have

0 ≤ θi ≤ 1 i ∈ I +, (5a)

0 ≤ χin ≤ 1 i ∈ I +, n ∈ S−, (5b)

0 ≤ γin ≤ 1 i ∈ I +, n ∈ S−. (5c)

After these modifications, variables γin for i ∈ I +, n ∈ S− become auxiliary, and can
be omitted without changing the optimal solution. The associated constraints in (3) and (4b)
can then be replaced with

zik ≥ χin i ∈ I +, k ∈ In, n ∈ S−. (6)
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and our enhanced multi-instance bipartite ranking formulation can be presented as follows:

[eMI-BR] max
∑

p∈S+

∑

n∈S−
�pn (7a)

subject to vi = wT xi i ∈ I + ∪ I − (7b)

− 1 ≤ w j ≤ 1 j ∈ {1, . . . , d} (7c)

zik ≤ vi − vk + 1 − ε i ∈ I +, k ∈ I − (7d)

zik ≥ χin i ∈ I +, k ∈ In, n ∈ S− (7e)
∑

i∈Ip

θi = 1 p ∈ S+ (7f)

θi ≥ χin i ∈ I +, n ∈ S− (7g)
∑

i∈Ip

χin = �pn p ∈ S+, n ∈ S− (7h)

0 ≤ �pn ≤ 1 p ∈ S+, n ∈ S− (7i)

0 ≤ θi ≤ 1 i ∈ I + (7j)

0 ≤ χin ≤ 1 i ∈ I +, n ∈ S− (7k)

zik ∈ {0, 1} i ∈ I +, k ∈ I − (7l)

Solving [eMI-BR] with the multi-instance training data, we obtain the coefficients of the
ranking hyperplane (w), which performs the bipartite ranking, thus classification of bags.
To clarify, zik are the only binary variables defined in this formulation that is defined for
each i ∈ I +, k ∈ I − pair. There are still O(|I +||I −|) binary variables, similar to [MI-BR],
but the number of binary variables are reduced by |I +| + 2|I +||S−|. The binary variables
in [MI-BR] that are relaxed are bounded from above by zik , and are not aggregated except
for (7h). Thus, the optimal objective function value for [MI-BR] is always equal to that of
[eMI-BR], and the integral optimal solution can be obtained using [eMI-BR]. The following
lemma formally proves this.

Theorem 3.1 The optimal objective function values of [eMI-BR] and [MI-BR] are equal
and an integral optimal solution of [MI-BR] is an optimal solution for [eMI-BR].

Proof The proof is by contradiction. The objective functions of [MI-BR] and [eMI-BR] are
the same, and equal to

∑
p∈S+

∑
n∈S−

∑
i∈Ip

χin , using (2h) and (7h), respectively. Suppose

that the optimal objective function value of [eMI-BR] (zeMI-BR) and the optimal objective
function value of [MI-BR] (zMI-BR) are different. In the same fashion, assume each prob-
lem name as a superscript denotes the associated value of a variable at optimality for the
corresponding problem.

First, suppose zeMI-BR < zMI-BR. It can be seen that a feasible (hence integral) solution
of [MI-BR] is guaranteed to be feasible for [eMI-BR]. As a tighter formulation can never
have a more favorable objective function value and we have a maximization problem, we
conclude zeMI-BR < zMI-BR cannot be valid.

Next, suppose zeMI-BR > zMI-BR. Notice that any ranking hyperplane is feasible for both
problems. That implies the optimal ranking hyperplane for [eMI-BR], weMI-BR, while being
feasible to [MI-BR], definitely has a worse objective function value. Formally, there exists at
least one positive bag p′ ∈ S+ and one negative bag n′ ∈ S−, where

∑
i∈Ip′ χin′ = 0, when

weMI-BR is used on (2b–2l), whereas
∑

i∈Ip′ χin′ > 0, whenweMI-BR is used on (7b–7l). That
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implies there exists an i ′ ∈ Ip′ with χi ′n′ > 0. The only way this is possible within (7b–7l)
is if both of the following two conditions hold:

1. zi ′k = 1,∀k ∈ In′ , that is the score of instance i ′ is larger than all instances in bag n′ as
per (7e), and

2. θ ′
i > 0, that is instance i ′ is selected as one of the witnesses1 within its bag as per (7g).

Now we use these facts to see how constraints (2b–2l) come into play. Condition 1 ensures
that γi ′n′ = 1 is possible as per (2e). Using condition 2, witness selection constraint (2f)
can be satisfied by choosing i ′ as the only witness within that bag, i.e., θi ′ = 1. Note that,
despite the fact that there might exist other instances with zik = 1, one such instance with
witness variable set to one is sufficient. Using (2g) with γi ′n′ = 1 and θi ′ = 1, we obtain∑

i∈Ip′ χin′ = 1, when weMI-BR is used on (2b–2l), which is a contradiction.
	


Testing Procedure. Once training is completed, we use the output ranking vector w∗, with
the same mathematical model for testing with the following updates:

1. Testing instances are used as vector of features
2. Decision variable vector is enforced to satify w = w∗ through additional constraints
3. Update constraint (7d) as follows:

Mzik ≤ vi − vk + M − ε i ∈ I +, k ∈ I −, (8)

where M is a sufficiently large number, input by the user.
4. Solve to obtain the optimal values of remaining decision variables, ultimately �pn values

to compute the testing AUC

The procedure is straightforward except the constraint modification in step 3. This mod-
ification is needed due to possible differences in the scale of training and test data. In other
words, constraint (7d) also scales the ranking vector based on training data, ensuring a max-
imum functional distance between pairs of instances, i.e., either vi − vk + 1 − ε ≥ 0 or
vi − vk + 1 − ε ≥ 1. However, neither one of these possibilities (vi − vk ≥ −1 + ε,
vi − vk − ε ≥ 0) are satisfied if vk >> vi for some pair i ∈ I +, k ∈ I − in the test data. In
order to address this issue, we propose using the constraint in (8), which ensures zik becomes
1 if vi > vk , and becomes 0 otherwise, without any issue, no matter the functional distance.
It should also be noted that, these undesired so-called fixed-charge constraints do not cause
a major computational issue here, because AUC computation for the testing set with fixed w
is not an optimization challenge, but a straightforward evaluation of functions.

3.2 Ametaheuristic algorithm: particle swarm optimization

Besides solving the proposed mathematical optimization model, we also propose a meta-
heuristic method to solve AUC maximization problem. We employ the widely-used Particle
SwarmOptimization Algorithm (PSO) [31]. PSO starts with an initial population of particles,
each representing a solution, that are traveling through the solution space with random veloc-
ities. These particles have their own memories and keep track of their previous best positions
(pbest ) and corresponding objective values throughout the iterations. They also record the

1 In [eMI-BR], the witness selection variable is relaxed, which might technically lead to more than one
variable in the same bag having nonzero values. However, as shown later in the proof, either one of these
instances can be chosen as a witness under the standard assumption.
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information on the best position of the whole swarm (gbest ) and its objective value. The idea
of PSO is to change the direction of each particle’s movement towards its best position and
best position of all particles. Velocity (Vi t ) and position (wi t ) of each particle i ∈ I PSO at
each discrete time epoch t ∈ T PSO is updated as follows:

Vi t = Vi(t−1) + ρ1C1(pbest − wi t ) + ρ2C2(gbest − wi t ) (9)

wi,t+1 = wi t + Vi t (10)

In these equations, ρ1 and ρ2 are randomly generated numbers that are uniformly dis-
tributed in [0, 1], C1 and C2 are user-defined parameters for respective weights for particle’s
own best position and the best position of whole swarm. I PSO is the number of particles
(swarm size) and T PSO is the maximum number of time epochs considered (epoch length).
In our solution approach, we consider each particles position wi t as a ranking hyperplane
and the associated AUC as the corresponding objective value to each particle, which is cal-
culated using the Wilcoxon-Mann-Whitney statistic in (1). Each particle is enclosed in a
d-dimensional hypercube with boundaries at −1 and 1 in each dimension. That is, if the
particle is out of bounds on one dimension, we force it to stay at the bound it exceeds. For
efficiency, we also add a convergence criterion to our algorithm, that is checked at the end
of each epoch. The algorithm terminates if the best solution has not changed in the last 15
iterations, that is it has converged to a high quality solution. The pseudocode of the PSO
algorithm is presented below, and a detailed flowchart is in Appendix A.

Algorithm 1 Particle Swarm Optimization Algorithm for MIL
Initialize particles
while Termination condition is not met do

for each particle do
Calculate objective value using Eq. (1)
if Objective value is better than particle best (pbest ) then

Update pbest
if pbest is better than global best (gbest ) then

Update gbest

Update velocity and position for the particle using Eqs. (9) and (10)
Update termination condition status

4 Computational results

In this section,wepresent the benchmark results for our approaches against the state-of-the-art
algorithms in the literature. In particular, we compare our results with well-known multi-
instance learningmethods such as kNN,Citation-kNN[12], EM-DD[32],MI-SVM,mi-SVM
[17], and more recent deep-learning algorithms such as mi-Net, MI-Net, MI-Net with RC
[21], and an attention-based deep-learning method that incorporates interpretability [22].
We also use techniques in [33] to extract additional features for nonlinear classification; and
compare our results against theirs, where a mathematical optimization approach is proposed
as well.
Datasets.Table 3 provides information on some of themost commonly studiedMIL datasets.
For each dataset, we present number of instances, the min and max number of instances in a
bag, number of features, total number of bags with positive and negative labeled information.
Validation. In our approach, we adapt Min-Max normalization. We normalize the training
data at each step of the cross validation process. Consequently, we fit each test data using
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Table 3 Description of common small to medium-sized MIL datasets

Name Instances Min Max Features Bags + bags - bags

Musk 1 476 2 40 166 92 47 45

Musk 2 6598 1 1044 166 102 39 63

Tiger 1220 2 13 230 200 100 100

Fox 1302 1 13 230 200 100 100

Elephant 1391 2 13 230 200 100 100

the scale obtained from the corresponding training set. Other than that, we neither change
nor generate any additional features 2. We use cross validation to compare all the methods
in this paper. We perform five replications of ten-fold cross validation (CV) procedures and
report the average of key performance indices for different methods using the same randomly
generated bootstraps. During the generation of bootstraps, we randomly partition the data
over bags, i.e., 90% of the bags to be chosen as training set and 10% of the bags to be chosen
as test set.
KPIs. In judging the performance of a classifier, we report the area under ROC curve, AUC.
As explained before, this is the ultimate metric that addresses many issues and the bias
associated with other measures. Thus, we report the average training AUC and test AUC
for each method, while we repeat 10-fold cross validation five times. Aside from these, we
also compute the widely-discussed average accuracy over test datasets during CV. In order to
predict the label of each test bag we first calculate the threshold on training data. In order to
compute the threshold for a ranking function,we consider the highest scored negative instance
from each negative bag and the witness instances from positive bags as representatives. Next,
we sort these representatives based on their scores in ascending order.We consider the average
score of each pair of consecutive instances in sorted order as a threshold, and calculate the
associated accuracy. In this calculation, an instance is misclassified if it has a lower (higher)
score than the threshold and is labeled positive (negative). We use the threshold value that
maximizes the accuracy, and use it to predict the labels for the test set. If the score of an
instance in the test set is above (below) this threshold, we predict that instance is positive
(negative). Consequently, if there is at least one positive predicted instance in a bag, that bag
is predicted positive, as per the standard assumption.
Used-defined Parameters. As far as the used defined parameters in the optimization model
are concerned, we performed minimal preprocessing to compute the scale of the data. We
compute the absolute difference between each pair of instances on each dimension and set
ε to a fraction of the minimum of these values. On the contrary, we set M to a multiple of
the sum of each input feature value. We observe that, as expected, the computations are not
sensitive to ε and M values. For the PSO algorithm, we do not perform a controlled study on
the parameters, but use three parameter sets to illustrate the approximate effect of parameters.
These parameters, presented in Table 4, are chosen based on the commonly experimented
ranges in the literature. For instance, a swarm size of 50 is known to work well in general
[34]. Thus, we use a swarm size of 50 in all parameter sets. In line with the literature, we
define acceleration coefficients (C1,C2) for the favor of global best in PSO 1, particle best in
PSO 2; and kept them equal in PSO 3.

2 One exception to this, as explained later, is where we add features for nonlinear classification; but we make
it explicit and compare against a study that uses the same approach.
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Table 4 Parameters used in PSO Swarm Size C1 C2 Epoch Length

PSO 1 50 0.5 1.5 50

PSO 2 50 1.5 0.5 50

PSO 3 50 1.0 1.0 50

Table 5 Results of the three
parameter sets for PSO —
Average train AUC and average
time spent in seconds (in
parenthesis), and average test
AUC (lower left) and accuracy
(upper right) after five repetitions
of 10-fold cross validation

Dataset Train Test

PSO 1 PSO 2 PSO 3 PSO 1 PSO 2 PSO 3

Musk1 78.4% 82.7% 78.8% 71.6% 78.8% 75.0%

(40.9) (74.5) (54.2) 69.8% 71.2% 69.2%

Musk2 76.0% 80.8% 75.6% 69.6% 76.2% 70.1%

(50.3) (89.2) (56.8) 69.2% 73.9% 68.4%

Tiger 79.8% 84.0% 80.4% 71.3% 78.0% 73.3%

(93.8) (186.4) (114.5) 70.7% 74.8% 75.0%

Fox 63.9% 68.1% 64.5% 60.9% 65.8% 62.3%

(96.0) (193.3) (116.9) 52.7% 51.0% 55.2%

Elephant 79.7% 83.9% 80.1% 72.0% 77.5% 73.3%

(96.0) (190.0) (112.1) 70.2% 74.8% 69.5%

Codebase. The source code for our approach and benchmark datasets are made freely avail-
able for download at https://github.com/OEKundakcioglu/MI-ROCMax.
Configuration. All computations are performed using Python, calling Gurobi 8.01 [35] to
solve optimization problems, on a computer running a Linux operating system with 3.6 GHz
Intel i7-7700 quad-core processor and 16 GB DDR4-2400 RAM.

4.1 Linear classification: training AUC and time

From this point forward, the best performances in each comparison table are highlighted in
bold, i.e., shortest computation time, largest training AUC, largest testing accuracy, etc.

We start our discussion with the PSO results. Table 5 shows training AUC, which is the
objective function of our PSO algorithm, and time it takes to solve an instance on average
among the 50 training bootstraps using different PSOparameters. The same table also features
test performance of the PSO, where we present test AUC and accuracy averages during five
repetitions of 10-fold cross validation.

We observe that even though results are close to each other, PSO 1 is the fastest with
poorer solution quality due to early convergence caused by larger magnitude on global best.
Likewise, PSO 3 performs poorly, never providing the best result for any dataset except the
test AUC on Tiger and Fox. Overall, PSO 2 clearly outperforms other parameters, dominat-
ing in all metrics, except for the training time. Thus, without further parameter tuning and
without sacrificing the efficiency for performance, we choose PSO 2 to compare against other
methods.

We present the average training AUC and average time needed to train the algorithms
during CV in Table 6. The algorithms we compare over each bootstrap are kNN, Citation-
kNN [12], EM-DD [32], MI-SVM, mi-SVM [17], mi-Net, MI-Net, MI-Net with RC [21],
attention-based deep-learning [22], ourmixed integer linear programming formulation [eMI-
BR] solved by Gurobi 8.01 [35], and PSO 2.
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There are three key takeaways from Table 6:

• As expected, our exact solution for formulation [eMI-BR] provides the best AUC, how-
ever, the margins are noteworthy. Regardless of the dataset, the best AUC that can be
obtained outperforms all other approaches usually by 5-20%with instances up to 35-40%.

• Our exact solution is the fastest on two out of five datasets: Musk2 and Fox. It does not
scale up well, as it is the slowest on the complex and large Tiger and Elephant datasets.
That is promising for new approaches that can be devised, e.g., preprocessing dataset to
a size that can be handled by formulation [eMI-BR]. This also shows despite the largest
number of binary variables in Musk2, the models are easier to solve due to the relatively
low number of bags and feature values for instances.

• PSO, despite lacking a tedious parameter tuning procedure, solves formulation [eMI-
BR] to a degree that occasionally outperforms some classical methods (e.g., EM-DD
in 4 out of 5 instances). It is not better than solving the exact formulation, even slower
than exact approach for smaller instances. However, considering how it scales up, the
proposed metaheuristic might be useful for larger datasets.

4.2 Linear classification: test AUC and accuracy

Next, we present the test performance for these classifiers. We present average AUC for test
set and test accuracy in CV. The test times are not presented because each algorithm takes
less than one second to compute AUC or classes of all bags on average.

Several conclusions can be deducted from the results in Table 7. First and foremost, test
AUC and accuracy are not closely associated. On the AUC side, despite outperforming all
methods in train AUC by a large margin, [eMI-BR] does not provide exalted test AUC’s.
The best test AUC’s are provided by three different deep-learning methods, and there are
relatively large gaps even among those. It should be noted thatMusk2 is a dataset that requires
a nonlinear classifier, which explains the poor performance of linear classifiers in general.

On test accuracy, one of the key metrics, our exact approach clearly outperforms earlier
approaches on Musk1, Tiger, and Elephant datasets, with more than 10% improvement on
average. The relatively poor performance on the Fox and Musk2 datasets can be credited to
the fast solution time for 100% average AUC on training set, which leads us to a possibly
easy separation of classes with a leeway in the ranking vector (alternative optima for the
bipartite ranking problem) for this data. Together with our exact approach, modern deep-
learning approaches seem successful. Test performance of the PSO is even better than its
training performance, including an overall best on Fox data. However, our assessment on
PSO is still the same as before; a metaheuristic might be useful for larger datasets due to its
speed, but for small instances an exact approach is superior.

4.3 Nonlinear classification

Results in Sect. 4.1 show that our exact approach performs successfully especially on those
datasets,where instances are known to come from twodistributions that are linearly separable.
In order to make our approach more flexible, we propose introducing additional features
to handle nonlinear classification problems. We still consider the linear ranking function in
formulation [eMI-BR], but in a different feature space that accommodates additional features.

For that purpose, we use the approach introduced in [33], where two types of features
(Rinstance and RCluster ) are introduced and a solution algorithm is proposed. In Rinstance,
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new features are added for each instance according to their dissimilarities with all other
instances. In RCluster , instances are clustered with k-means clustering algorithm, and new
features are added for each instance according to their dissimilarities with cluster centers.
We fix an issue with the number of clusters (k) in the k-means clustering algorithm. In each
replication, Kucukasci et al. [33] perform ten-fold cross validation, however, their algorithm
finds k only during thefirst training,which is used for the rest of the cross validation procedure.
In that case, the number of clusters might become larger than the number of instances in a
subsequent training set and the algorithm terminates without a solution.We address this issue
using two alternative approaches: In what we call RCluster

1 , we use their algorithm in each
fold of each replication and make the number of clusters specific to each fold. With this
method it is not possible to have k that is greater than the number of instances. Alternatively,
in what we call RCluster

2 , we follow their steps and find k only in the first fold and use it in
each of the remaining folds within a replication, if possible. If the number of instances is less
than k, which means the original k cannot be used, in any fold, we reduce k only for those
folds and continue clustering.

We introduce additional features based on Rinstance and RCluster as explained, and solve
the problem using our exact and heuristic algorithms. We also include the results of the
proposed solution approach in [33]. Comparing these results with earlier results on [eMI-
BR] using original features, we aim to see the contribution of new features and our solution
approach.

Average AUC training results and training times for all solution algorithms are reported
in Table 8. As far as the PSO parameters are concerned, we only report PSO 2 results here,
as they perform relatively better. The results for all parameters are presented in Appendix B.
First thing to notice in this table is that the training performance of themodel proposed in [33]
is not as good as our proposed formulations for RCluster . Judging the contribution of these
new features is rather difficult on the training results, because [eMI-BR] can already perform
perfect ranking evenwhen using the original features only. Thus, there is no significant change
to observe after the addition of new features, except a 4.3% increase in AUC and a speed-up
in the training of challenging Tiger and Elephant datasets.

In the more important test performance results, given in Table 9, adding new features
drastically improves the test AUC and accuracy of [eMI-BR] onMusk2. This is expected, as
nonlinear classifiers are known to perform better on this dataset. There are marginal improve-
ments on most of the datasets when new features are added, especially using Rinstance. In
terms of accuracy, [eMI-BR] performs better than the methods in [33] in three out of five
instances (Musk1, Tiger, and Elephant), regardless of data representations. On the other two
instances, Musk2 and Fox, despite 100% training AUC, accuracy is relatively lower. That
clearly illustrates the existence of alternative optima, especially in the new feature space.
It worthwhile to note that, PSO 2, while performing subpar in training and testing AUC,
performs the best in Fox dataset in terms of accuracy.

Fig. 1 presents the performance profile chart that shows howerrors of allmethods compare,
which is the percentage ofmislabeled bags during cross validation.Wedonot present RCluster

variants as Rinstance performs similar, with slightly better andmore robust performance. This
chart shows that both of our exact approaches (i.e., [eMI-BR] and [eMI-BR] RInstance)
outperform other methods in the literature. Furthermore, it can be seen from the performance
profile chart that all methods except our exact approaches have errors 10 times the best
method’s error, for 3 or 4 out of 5 datasets.

In the light of these numerical experiments, we have two key observations: (i) maximizing
training AUC in the new feature space generally provides high-quality testing accuracy, (ii)
there is an alternative optima issue that needs to be addressed with Pareto efficiency, rather
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Fig. 1 Performance profile chart for the error of all methods after five repetitions of 10-fold cross validation

Table 10 Description of common medium to large-sized MIL datasets

Name Instances Min Max Features Bags + bags - bags

Mutagenesis 1 10486 28 88 7 188 125 63

Mutagenesis 2 2132 26 86 7 42 13 29

Corel, Antique 7947 2 13 9 2000 100 1900

Corel, Battleships 7947 2 13 9 2000 100 1900

Corel, Beach 7947 2 13 9 2000 100 1900

than a haphazard selection by the optimizer. Among a pool of solutions with maximal AUC,
there are some solutions that has better generalization performance for small datasets. A good
example to this is the dramatically different testing performance of several solutions (all with
100% training AUC) for Musk 1 in Table 9. This is mainly due to the standard assumption,
which leads to a large selection of feasible witnesses with different ranking alternatives.
Another reason is the nature of the dataset, where additional features contribute further to
alternative classifications of classes, leading to possible overfitting with an even larger set of
alternative optimal solutions.

4.4 Results on challenging instances

We finally perform numerical experiments on datasets that are larger or harder to classify.
We conjecture the alternative optimal solutions would not be as common in these challenging
instances. Therefore, the results in this section reveal the ultimate performance of each
approach. Table 10 shows the larger datasets that we study.

We do not introduce additional features presented in Sect. 4.3, and only perform scaling in
the preprocessing phase. Solving large datasets to optimality is computationally challenging;
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Fig. 2 Performance profile chart for the error of all methods after five repetitions of 10-fold cross validation
for the challenging instances

therefore, we exclude [eMI-BR] and inevitably use PSO 2 as an alternative to our exact
approach. The results are summarized in Table 11.

Table 11 confirms that test AUC and accuracy are not closely related. For instance, even
though EM-DD provides > 90% accuracy in three Corel datasets, the AUC level is < 60%.
Citation-kNN performs well in small datasets, yet it takes the longest time to terminate, and
it never provides the best AUC nor accuracy result on large datasets. In general, modern
approaches seem to provide better solution quality than classical methods reasonably fast.
Despite being a nonexact/linear classification approach with simple parameter tuning pro-
cedure, PSO yields the best accuracy in three out of five datasets and off by 0.1% in the
remaining two.

Fig. 2 shows the success of PSO 2 on a performance profile chart. Citation-kNN might
be considered the second best, where a majority of instances are solved with a small error
factor of less than 1. The best among deep-learning methods is MI-NetRC that yields an error
factor of 1.35 for 60% of the instances.

5 Concluding remarks

In this study we develop a multi-instance binary classification approach by directly max-
imizing the area under ROC curve. Our mixed integer linear programming model solves
the bipartite ranking problem to produce the best possible linear ranking hyperplane for
multi-instance data. Recent advances in the commercial optimization software make our
formulation practical for medium-sized benchmark datasets. We provide cross validation
results against well-known approaches on these instances and shed light on the potential of
optimization and hyperplane-based approaches.
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We observe that having the best ranking hyperplane for training data generally provides
the best accuracy. This remarkable accuracy difference between our exact approach and state-
of-the-art approaches clearly demonstrates the potential of solution methods that optimize
the Wilcoxon-Mann-Whitney statistic. Even suboptimal linear ranking functions through
heuristic approaches in large datasets prove success against classical and modern approaches
on benchmark instances. One potential future research direction is development of practical
and more powerful algorithms to solve the mathematical optimization problem in larger
datasets. It would be interesting to see both exact methods that utilize decomposition or
reformulation and more powerful near-optimal methods. From a data mining standpoint,
well-thought tie-breakers for alternative optima cases that potentially cause overfitting and
incorporating nonlinear classification (possible with Kernel trick) are issues that need to be
addressed in the future as well.
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Appendix

A Flowchart of the particle swarm optimization (PSO) algorithm

See Appendix Fig. 3.

Fig. 3 Flowchart of the Particle Swarm Optimization (PSO) algorithm
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B Training and test performance for PSOwith different parameters

See Appendix Tables 12 and 13.

Table 12 Training Performance — Average training AUC and average time spent in seconds (in parenthesis)
for PSO using three parameter sets after five repetitions of 10-fold cross validation

Dataset Rinstance RCluster
1 RCluster

2

PSO 1 PSO 2 PSO 3 PSO 1 PSO 2 PSO 3 PSO 1 PSO 2 PSO 3

Musk1 86.4% 89.3% 86.9% 86.4% 89.9% 85.6% 86.0% 89.3% 86.5%

(42.9) (70.4) (48.3) (40.6) (69.7) (45.1) (42.7) (69.2) (52.0)

Musk2 83.9% 87.7% 85.7% 84.3% 87.5% 84.1% 83.7% 87.4% 84.4%

(326.2) (532.6) (376.4) (52.1) (88.5) (63.6) (52.4) (90.7) (64.5)

Tiger 81.5% 85.7% 81.7% 82.2% 85.8% 82.7% 81.4% 85.5% 82.6%

(102.6) (213.0) (118.8) (92.7) (190.6) (103.6) (96.0) (184.1) (117.5)

Fox 64.6% 66.6% 64.5% 63.1% 66.9% 63.8% 63.2% 66.1% 63.9%

(103.0) (215.2) (123.3) (95.1) (199.1) (112.2) (95.9) (187.9) (117.0)

Elephant 85.3% 87.9% 85.7% 85.8% 88.3% 85.3% 84.8% 87.9% 85.7%

(105.7) (204.2) (126.6) (94.8) (182.2) (113.7) (95.1) (181.9) (112.0)

Table 13 Test Performance — Average AUC (top) and accuracy (bottom) for PSO using three parameter sets
after five repetitions of 10-fold cross validation

Dataset Rinstance RCluster
1 RCluster

2

PSO 1 PSO 2 PSO 3 PSO 1 PSO 2 PSO 3 PSO 1 PSO 2 PSO 3

Musk1 79.9% 85.1% 79.9% 78.0% 83.5% 77.0% 76.7% 82.9% 82.1%

76.8% 81.4% 77.9% 76.4% 82.6% 76.5% 76.6% 82.1% 78.2%

Musk2 77.8% 86.2% 80.2% 79.7% 83.6% 78.8% 74.9% 83.0% 81.4%

74.2% 79.6% 76.7% 74.3% 79.8% 76.1% 73.3% 79.6% 76.0%

Tiger 70.7% 80.4% 71.0% 72.6% 81.4% 72.6% 75.8% 79.1% 74.1%

71.3% 79.9% 73.0% 72.9% 79.5% 74.9% 72.2% 79.0% 75.1%

Fox 58.3% 58.3% 58.6% 57.4% 57.5% 56.9% 56.8% 60.8% 58.2%

61.0% 64.3% 62.0% 60.3% 64.6% 61.0% 60.5% 63.6% 61.3%

Elephant 80.2% 84.9% 79.8% 79.8% 83.5% 79.9% 78.2% 83.7% 83.0%

76.6% 80.9% 77.8% 75.9% 81.1% 76.8% 76.0% 80.6% 77.7%
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