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Summary

Wind and solar power generation are highly variable. In order to address this
variability, these energy sources require a method to store the generated energy.
One possible avenue is to dissociate CO2 and use the produced CO to synthesize
carbon-based fuel, storing energy in a carbon-neutral manner. To gain insight into
dissociating CO2 with plasmas, numerical simulations are an indispensible tool.
However, performing such simulations requires vast computational resources,
especially in the case of time-resolved three-dimensional multiphysics problems. In
this light, the main objective of this thesis is to improve computational efficiency
and reliability of plasma simulations.

One of the main governing equations in plasma simulations is the Advection-
Diffusion-Reaction (ADR) equation. A specific form of the ADR equation is the
multicomponent particle balance. We conduct an analysis of the Stefan-Maxwell
model for diffusion used in such equations. To solve the ADR equation for
multicomponent mixtures such as plasmas, we use a Finite Volume Method
(FVM), most notably the complete flux scheme, which is an extension of the
exponential flux scheme. After discretization with the FVM, typically a large
sparse linear system is obtained. We investigate iterative methods, specifically
Krylov subspace methods, to solve such linear systems efficiently.

The physics resulting from a simulation is only as complete as the physics
that was included in the model. To ensure exact conservation of physical
invariants such as conservation of mass and quasi-neutrality, we derive a linear
transformation of the multicomponent particle balance. This transformation is
based on the stoichiometry of the chemical reaction network. Additional benefits
of this method are a reduction in the number of unknowns and an improved
condition number of the system matrix. To expand on this, we write the solution
as a superposition of the chemical equilibrium solution and a deviation from this
equilibrium. This superposition method allows one to first solve an algebraic
system of equations to obtain the equilibrium solution, and then solve a potentially
simpler system of partial differential equations for the deviation (from equilibrium).
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Three-dimensional plasma simulations require us to solve large linear sys-
tems. Iterative Krylov subspace methods are among the most efficient solvers
for such systems. A detailed analysis of several Krylov subspace methods is
presented, where we specifically investigate the convergence and reliability of the
methods when applied to the three-dimensional ADR equation.

Additionally, we have contributed three Krylov subspace methods to the
well-known Eigen C++ library for linear algebra. In this thesis, we describe in de-
tail the implementation choices that have been fundamental to our BiCGStab(L),
IDR(S) and IDR(S)Stab(L) codes.

Finally, we take a look at MagnumPI, a toolbox for computing integrals to
obtain scattering angles and cross sections, starting from atomic interaction
potentials. We present a detailed analysis on adaptive quadrature schemes,
and demonstrate quadrature schemes that improve over existing codes for these
problems. Such scattering angles and cross sections are valuable input data for
numerical simulations.

To conclude, we have critically analyzed the Stefan-Maxwell model of diffu-
sion, produced efficient open-source Krylov subspace solvers, improved the
reliability and efficiency of multicomponent mixture simulations using a novel
linear transformation, and enhanced adaptive integration methods.



Cover of this thesis

Contrary to the expectation of many students, linear is not synonymous with
easy. The cover shows a so-called “linear cellular automaton” (CA). This kind
of CA has been classified by the famous Stephen Wolfram [1, p. 51], who is also
known to many students from a website that shares his last name.

The CA shown on this cover is “rule 165” according to Wolfram’s classifi-
cation. If we assign a value of 1 to black squares, a value of 0 to white squares,
and the letters p, q, r to three consecutive squares. Then the color of the square
below square q is determined by the rule (1 + p+ r)mod 2 where (p, q, r = 0, 1).

Even though this CA can be described with an astonishingly simple expres-
sion, a complicated pattern emerges from applying it repeatedly. Linear algebra
plays a central role in this thesis, including iteratively solving linear systems, an
undertaking that appears simple, but gives rise to great complexity.

The top row appears random, however, it is not. For the real puzzle solvers, there
is a message hidden in this row. This message is unlikely to be easy to crack, but
it is easy to verify.

vii
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numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.4 Propagation of the residual for LMR and BiCGStab . . . . 116
6.4.5 Preconditioned BiCGStab . . . . . . . . . . . . . . . . . . . 120

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.A Derivation LMR step size and residual . . . . . . . . . . . . . . . . 124
6.B Positive definite discretization matrices . . . . . . . . . . . . . . . . 126

7 From LMR to BiCGStab 129
7.1 Local Minimum Residual (LMR) . . . . . . . . . . . . . . . . . . . 131

7.1.1 Properties of the LMR algorithm . . . . . . . . . . . . . . . 132
7.1.2 LMR iteration as discretized time-dependent linear PDE . . 135
7.1.3 Extended Local Minimal Residual (LMR(2)) . . . . . . . . 135

7.2 Full Orthogonalization Method (FOM) . . . . . . . . . . . . . . . . 136
7.3 Conjugate gradient method (CG) . . . . . . . . . . . . . . . . . . . 138
7.4 Bi-Conjugate Gradient (BiCG) . . . . . . . . . . . . . . . . . . . . 144
7.5 Bi-Conjugate Gradient Stabilized (BiCGStab) . . . . . . . . . . . . 148

8 Implementation of three new Krylov solvers for the Eigen library151
8.1 Bi-Conjugate Gradient Stabilized(L) (BiCGStab(L)) . . . . . . . . 152

8.1.1 Choice of argmin method . . . . . . . . . . . . . . . . . . . 153
8.1.2 Choice of the shadow residual vector . . . . . . . . . . . . . 154
8.1.3 Reliable computation of the residual . . . . . . . . . . . . . 158
8.1.4 Right preconditioning . . . . . . . . . . . . . . . . . . . . . 159
8.1.5 Choice of default L-value . . . . . . . . . . . . . . . . . . . 162

8.2 Induced Dimension Reduction (IDR(S)) . . . . . . . . . . . . . . . 163
8.2.1 Choice of shadow space . . . . . . . . . . . . . . . . . . . . 163
8.2.2 Mitigation of numerical issues for small ω . . . . . . . . . . 163
8.2.3 Optional residual smoothing . . . . . . . . . . . . . . . . . . 166

8.3 Induced Dimension Reduction Stabilized(L) (IDR(S)Stab(L)) . . . 166
8.3.1 Choice of S and L . . . . . . . . . . . . . . . . . . . . . . . 169
8.3.2 FOM construction of initial U-matrix . . . . . . . . . . . . 169

IV Magnum PI 171

9 Numerical integration of atomic potentials 173
9.1 Atomic scattering model . . . . . . . . . . . . . . . . . . . . . . . . 174
9.2 Adaptive quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . 175
9.3 Local error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.3.1 Fractal rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.3.2 Simpson’s rule . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.3.3 Bisection based error estimate . . . . . . . . . . . . . . . . 178



Contents xi

9.3.4 Gaussian quadrature methods . . . . . . . . . . . . . . . . . 179
9.3.5 Error analysis of Gauss-Legendre quadrature . . . . . . . . 181
9.3.6 Gauss-Kronrod methods . . . . . . . . . . . . . . . . . . . . 182
9.3.7 Error analysis of Gauss-Kronrod quadrature rules . . . . . 183

9.4 Computation of the scattering angle . . . . . . . . . . . . . . . . . 184
9.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.5.1 Benchmark problem Colonna . . . . . . . . . . . . . . . . . 186
9.5.2 Lennard-Jones potential . . . . . . . . . . . . . . . . . . . . 187

9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

10 General conclusions, discussion and outlook 193
10.1 Part I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.2 Part II: Reduction and equilibrium . . . . . . . . . . . . . . . . . . 193
10.3 Part III: Krylov methods . . . . . . . . . . . . . . . . . . . . . . . 194
10.4 Part IV: Magnum PI . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Bibliography 195

Acknowledgments 209

Curriculum Vitae 211

List of publications 213





Part I

Introduction
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Chapter 1

General introduction

Net anthropogenic CO2-emissions from fossil fuel combustion and industrial
processes have increased by 67% between 1990 and 2019 [2, p. 7]. Furthermore,
reduction in CO2-emission from fossil fuels and industrial processes has been
offset by an increase in emissions caused by an increase in industry, energy
production, transport, agriculture and building use [2, p. 8]. To limit global tem-
perature increase, the CO2-emissions have to be decreased significantly [2, p. 105].

One significant obstacle to introducing renewable power sources such as
wind and solar is the intermittent power production of these sources [3]. Another
obstacle is a mismatch in space; ideal locations for solar and wind farms may not
be where the energy demand is largest. These two obstacles require an expansion
of the energy transmission system and a storage solution [4]. Electrochemical
storage in the form of solid-electrode batteries is not an ideal solution, such
batteries have two orders of magnitude too little energy to power ratio to be
suitable for storing intermittent renewable power, making this method excessively
expensive [3].

An alternative method is to capture CO2, and dissociate it into CO and
oxygen. The produced CO can then be used in the Fisher-Tropsch process [5] to
produce carbon-based fuel. If the energy required for this process is generated
in a renewable fashion, these methods can be used to store excess energy as
carbon-based fuel. This has the advantage that existing infrastructure for
carbon-based fuel can be utilized.

One of the most energy efficient methods to dissociate CO2 is by using
plasmas [6]. To optimize the process further, and gain more insight in the physics
of CO2 decomposition by plasmas, numerical simulations are an indispensable
tool. The objective of this research is to enhance the simulation efficiency of
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4 Chapter 1. General introduction

dissociating CO2 into CO and O2 using plasmas. However, simulating plasmas
is not a trivial task. A wide range of physics has to be included in the models,
ranging from electrodynamics, fluid dynamics, chemical processes and statistical
physics. In the most expensive case, a fully-resolved three-dimensional, possibly
also time dependent, simulation has to be set up.

Numerically, this results in complications such as stiffness, a large ratio be-
tween the timescales of fast and slow processes [7, p. 129]. The number of
equations to be solved is one for each species present in the plasma, multiplied
by the number of grid points. These factors combined lead to a significant
computational load, especially for three-dimensional simulations on a fine grid,
which have a substantial number of grid points.

To improve the computational efficiency of plasma simulations, several top-
ics are addressed. One of the largest costs is associated with solving large, sparse,
linear systems, resulting from a discretization of the governing equations. This
thesis discusses the use of Krylov subspace iterative solvers for solving these linear
systems. Krylov methods are a class of iterative solvers that approximate the
solution to the linear system as a linear combination of a few of the previous iter-
ates, Part III. Another important aspect is the development of reliable transport
algorithms, ensuring there are no undesirable numerical artifacts in the final result
of a simulation. More specifically, we focus on the Advection-Diffusion-Reaction
(ADR) equation, and discretization schemes using the Finite Volume Method
(FVM). Results are presented for one, two and three-dimensional discretizations
of the ADR equation throughout this thesis.

One of the methods used to avoid numerical artifacts in this thesis is by
exploiting stoichiometric relations. The set of governing equations is transformed,
allowing a simplification of the chemical reaction term, and an exact reproduction
of invariants such as total mass and net charge, Chapter 4. Additionally, a novel
method is presented for plasmas that computes a deviation from an equilibrium
solution, rather than starting from a rough initial guess. This can be performed
without including any additional approximations that would influence the final
result, Chapter 5. Finally, we examine a tool to produce valuable input data,
starting from quantum mechanical interaction potentials. Specifically, we look
into efficient integration schemes for computing cross sections. We determine
the efficiency of these techniques for a benchmark problem and compare our
computed cross sections with data from literature, Chapter 9.



Chapter 2

Physics of multicomponent
transport in plasmas

Plasma is a state of matter for which a significant number of molecules are ionized
[8, p. 1]; a gas composed of ions, neutral atoms, neutral molecules, and negatively
charged electrons. In terms of applications, it is used in manufacturing semicon-
ductors [9], producing coatings [10], welding, chemical processing, metallurgy [11]
and various medical applications [12].

To model plasmas and perform numerical simulations, we have to obtain a
set of governing equations. In the coming sections we obtain the particle balance
in differential and integral form, starting from the Boltzmann equation, Section
2.1. Subsequently, we derive one of the models for multicomponent diffusion
in plasmas, Section 2.2. An analysis is made of the existing derivations of the
Stefan-Maxwell equations describing diffusion in multicomponent mixtures.

2.1 From Boltzmann to the particle balance

One of the starting points to describe plasmas is the Boltzmann equation [13, p.
29]

∂

∂t
f + v⃗ ·∇r⃗f +

F⃗

m
·∇v⃗f =

(
∂

∂t
f

)
c

. (2.1)

Here the distribution function f(r⃗, v⃗, t) describes the number of particles in a small
volume d3r⃗d3v⃗ at a time t. The gradient operator in position space is denoted by
∇r⃗, and the operator ∇v⃗ denotes the gradient in velocity space given in Cartesian

coordinates as ∇v⃗ =
[

∂
∂vx

∂
∂vy

∂
∂vz

]T
. To obtain the particle balance from the
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6 Chapter 2. Physics of multicomponent transport in plasmas

Boltzmann equation, we integrate (2.1) over all velocity space;∫
∂

∂t
fd3v⃗ +

∫
v⃗ ·∇r⃗fd

3v⃗ +

∫
F⃗

m
·∇v⃗fd

3v⃗ =

∫ (
∂

∂t
f

)
c

d3v⃗. (2.2)

The first term can be recognized as the time derivative of the number density in a
point, which can be evaluated directly by taking the derivative outside the integral,
i.e., ∫

∂

∂t
fd3v⃗ =

∂

∂t

∫
fd3v⃗ =

∂

∂t
n(r⃗), (2.3)

where n(r⃗) is the number density in a point r⃗. To evaluate the second term, note
that since v⃗ and r⃗ are independent coordinates, it follows that v⃗ ·∇r⃗f = ∇r⃗ · (v⃗f)
and the second term simplifies to∫

v⃗ ·∇r⃗fd
3v⃗ =

∫
∇r⃗ · (v⃗f)d3v⃗. (2.4)

Next, notice that ∇r⃗ can be taken out of the integral, i.e.,∫
∇r⃗ · (v⃗f)d3v⃗ = ∇r⃗ ·

∫
(v⃗f)d3v⃗, (2.5)

and finally, the remaining integral can be identified as the particle flux Γ⃗(r⃗, t);∫
(v⃗f)d3v⃗ = Γ⃗(r⃗, t). (2.6)

The third term can be simplified assuming that F⃗ is v⃗-independent. This excludes
magnetized plasmas, as the Lorentz force depends on velocity. Then∫

F⃗

m
·∇v⃗fd

3v⃗ =
F⃗

m
·
∫
∇v⃗fd

3v⃗. (2.7)

This integral can be evaluated using the fundamental theorem of calculus for each
of the three directions vx, vy and vz. Then, since f → 0 for |v⃗| → ∞, as there are
no particles with infinite velocity, it follows that this integral vanishes;∫

∇v⃗fd
3v⃗ = 0. (2.8)

The right hand side of (2.2) is 0 in the case of a single-species mixture, as elas-
tic collisions do not produce or destroy particles, but only change their velocity.
However, for a process where particles are produced/destroyed in collisions such
as mixtures with multiple species, this term can be seen as a source or sink for
particles respectively, ∫ (

∂

∂t
f

)
c

d3v⃗ = s(r⃗, t). (2.9)



2.2. The Stefan-Maxwell equations 7

Combining (2.2), (2.3), (2.6), (2.8) and (2.9) results in the differential formulation
of the particle balance

∂

∂t
n(r⃗) +∇r⃗ · Γ⃗(r⃗, t) = s(r⃗, t). (2.10)

To obtain a description for the flux Γ⃗, in the context of multicomponent mixtures,
we turn to the Stefan-Maxwell equations in Section 2.2. For brevity we denote ∇r⃗

as ∇ from hereon.

2.1.1 Integral form of the particle balance

Starting from the differential form of the particle balance (2.10), we integrate over
a control volume V to obtain∫

V

∂

∂t
ndV +

∫
V

∇ · Γ⃗dV =

∫
V

sdV. (2.11)

Assuming the control volume V does not change in time, is regular and has a closed,
orientable, surface S, then the divergence theorem can be applied to rewrite the
second term [14, p. 907] which gives

d

dt

∫
V

ndV +

∮
S

Γ⃗ · dS⃗ =

∫
V

sdV, (2.12)

which is known as the integral formulation of the particle balance. Equation
(2.12) can be interpreted as: the change in time of the number of particles in a
volume depends on the flux in/out of the volume, and the production/destruction
inside the volume.

The integral formulation of the particle balance is used extensively in the
discretization schemes discussed in Section 3.1. In the next section we describe a
key model used to incorporate diffusion; the Stefan-Maxwell equations.

Note that also a momentum balance can be obtained from the Boltzmann
equation. However, in the next section we look at approximating the full
momentum balance using the Stefan-Maxwell equations.

2.2 The Stefan-Maxwell equations

The Stefan-Maxwell equations are a model for coupled diffusion in multicomponent
mixtures [15, 16, 17]. The properties of the ith species in the mixture can be
described with the quantities ni, mi, ρi and pi, where ni is the number density,
mi the mass per particle of a species i, ρi = mini the mass density, pi = nikBTi
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the partial pressure, with kB = 1.38× 10−23 J/K the Boltzmann constant, and N
is the number of components in the mixture. The total number density n, mass
density ρ and pressure p of the mixture are then the sum over all species i, i.e.,

n =

N∑
i=1

ni, ρ =

N∑
i=1

ρi, p =

N∑
i=1

pi, (2.13)

where it is assumed that the mixture acts as an ideal gas, and that Dalton’s law
applies. Several common fractional variables can be introduced based on these
quantities, viz.

xi =
ni
n
, yi =

ρi
ρ
, zi =

pi
p
, (2.14)

which represent the molar fractions xi, the mass fractions yi, and the pressure
fractions zi. In the coming section different velocities of the species are discussed:

• The velocity of each species, v⃗i.

• The velocity of the Center of Mass (CM), v⃗, also denoted as mass-averaged
or barycentric velocity.

• The diffusion velocity u⃗i := v⃗i − v⃗.

One-dimensional arrays representing a quantity for all species, for example arrays
of densities n = [n1, n2, ..., nN ]T, are denoted in boldface. Physical vectors are
denoted like the velocities above. Multidimensional arrays (matrices) are denoted
with a boldface capital letter A, physical tensors of order two are denoted BBB. In
Cartesian coordinates the divergence of a second order tensor BBB is given by [18,
p. 516]

∇ ·BBB =
∑
i

∑
j

∂

∂xi
Bij e⃗i, (2.15)

where e⃗i are the Cartesian unit vectors, and the gradient of a vector is given by
[18, p. 514]

∇b⃗ =


∂
∂xbx

∂
∂xby

∂
∂xbz

∂
∂y bx

∂
∂y by

∂
∂y bz

∂
∂z bx

∂
∂z by

∂
∂z bz

 , (2.16)

the dot products of a vector with a tensor are given by

b⃗ ·BBB =
∑
i

∑
j

biBij e⃗
T
j , BBB · b⃗ =

∑
i

∑
j

Bijbj e⃗i, (2.17)

which follow from the expansions

b⃗ =
∑
k

bke⃗k, BBB =
∑
i

∑
j

Bij e⃗ie⃗
T
j , (2.18)



2.2. The Stefan-Maxwell equations 9

where the unit vectors e⃗i form an orthonormal basis.

The derivation of the Stefan-Maxwell equations is based on the work of
Whitaker [15]. To start, the continuity equation for a species i is introduced. The
species continuity equation is similar to the overall continuity equation, however,
it also includes an extra source term

∂

∂t
ρi +∇ · (ρiv⃗i) = si, (2.19)

where si is a source term for species i, for example a chemical reaction producing
or consuming this species. Equation (2.19) can be obtained from Equation (2.10)
by considering the particle balance for a species i and multiplying with the species
masses mi. The momentum balance for a species i in a multicomponent mixture
in conservative form is given by

∂

∂t
(ρiv⃗i) +∇ · (ρiv⃗iv⃗ T

i ) = ρi⃗bi +∇ · TTT i +

N∑
j=1

p⃗ij + siv⃗
∗
i , (2.20)

where ρi⃗bi is a body force, for example gravity. Surface forces are captured in the
pressure tensor TTT i. The quantity p⃗ij is a force due to pairwise elastic interactions
between particles of different species, and siv⃗

∗
i is a source of momentum due to

inelastic collisions. Note, that the terms
∑N

j=1 p⃗ij and siv⃗
∗
i would be absent in

a single-component fluid. By multiplying the continuity equation, (2.19), with
the species velocity v⃗i, subtracting the result from equation (2.20), and using the
product rule of differentiation, i.e.,

∂

∂t
(ρiv⃗i) = v⃗i

∂

∂t
ρi + ρi

∂

∂t
v⃗i,

∇ · ((ρiv⃗i)v⃗ T
i ) = v⃗i∇ · (ρiv⃗i) + (ρiv⃗i) ·∇v⃗i,

(2.21)

equation (2.20) can be cast in the non-conservative form

ρi

(
∂

∂t
v⃗i + v⃗i ·∇v⃗i

)
= ρi⃗bi +∇ · TTT i +

N∑
j=1

p⃗ij + si(v⃗
∗
i − v⃗i). (2.22)

Note that due to the second relation in (2.21) the transpose of v⃗i is no longer
present in (2.22). Additionally, it can be observed that the first term in (2.22) is
the material derivative ρi

D
Dt v⃗i. Equation (2.22) is the momentum balance for the

species velocity v⃗i in non-conservative form. This form is used shortly to derive a
momentum balance in terms of the diffusion velocities u⃗i.

The next step is to obtain the total momentum balance, and subtract it
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from the momentum balance for each species, leading to an expression for the
diffusion velocities. The total momentum balance is attained by summing (2.20)
over all species i and noting that

N∑
i=1

N∑
j=1

p⃗ij = 000,

N∑
i=1

si(v⃗
∗
i − v⃗i) = 0⃗, (2.23)

as neither elastic nor inelastic collisions can change the overall momentum. Fur-
thermore, it is used that

∑N
i=1 ρi⃗bi = ρ⃗b. The total momentum balance is then

obtained as

∂

∂t

N∑
i=1

ρiv⃗i +∇ ·
N∑
i=1

ρiv⃗iv⃗
T
i = ρ⃗b+∇ ·

N∑
i=1

TTT i. (2.24)

Since no net mass transport can result from diffusion, it holds that
∑N

i=1 ρiu⃗i = 0⃗,
which allows us to rewrite the second term into the form

N∑
i=1

ρiv⃗iv⃗
T
i = ρv⃗v⃗ T +

N∑
i=1

ρiu⃗iu⃗
T
i , (2.25)

and consequently the total momentum balance is obtained as

∂

∂t
(ρv⃗) +∇ · (ρv⃗v⃗ T) = ρ⃗b+∇ ·

N∑
i=1

TTT i −∇ ·
N∑
i=1

ρiu⃗iu⃗i
T. (2.26)

To simplify the obtained total momentum balance, the continuity equation

∂

∂t
ρ+∇ · (ρv⃗) = 0, (2.27)

is multiplied by v⃗ and subtracted from (2.26), which results in a form that can
now be used to obtain the momentum balance in terms of diffusion velocities,

ρ

(
∂

∂t
v⃗ + v⃗ ·∇v⃗

)
= ρ⃗b+∇ ·

N∑
i=1

TTT i −∇ ·
N∑
i=1

ρiu⃗iu⃗
T
i . (2.28)

To derive the governing equations for the diffusion velocities, equation (2.28) is
multiplied by the mass fraction yi, and subtracted from (2.22). To simplify the
advection term we use

v⃗i ·∇v⃗i − v⃗ ·∇v⃗ = v⃗i ·∇v⃗i − (v⃗i − u⃗i) ·∇v⃗
= v⃗i ·∇(u⃗i + v⃗)− (v⃗i − u⃗i) ·∇v⃗
= v⃗i ·∇u⃗i + u⃗i ·∇v⃗,

(2.29)
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this leads to the following form of the momentum balance

ρi

(
∂

∂t
u⃗i + v⃗i ·∇u⃗i + u⃗i ·∇v⃗

)
= ρi(⃗bi − b⃗) +∇ · TTT i−

yi∇ ·
N∑
j=1

(
TTT j − ρj u⃗j u⃗T

j

)
+

N∑
j=1

p⃗ij + si(v⃗
∗
i − v⃗i).

(2.30)

To further simplify equation (2.30), assumptions about the underlying physical
properties of the fluid have to be made. It is assumed that the species in the
mixture behave as Newtonian fluids; the viscous stresses are linearly related to
the local strain rate, that the fluid is isotropic and when strain rates are zero the
pressure tensor must reduce to TTT = −pIII [19, p. 65]. Additionally, it is assumed
that

TTT =
∑
i

TTT i = −pIII + τττ , TTT i = −piIII + τττ i, (2.31)

where Dalton’s law is assumed to hold; the total pressure is the sum of partial
pressures,

p =

N∑
i=1

pi. (2.32)

Furthermore, it is assumed that the viscous stress tensor τττ can be written as a
superposition of the viscous stress tensor for each species

τττ =

N∑
i=1

τττ i = µ(∇v⃗ +∇v⃗T) + ( 32µ− κ)(∇ · v⃗)III, (2.33)

with µ the dynamic viscosity and κ the dilatational viscosity [20, p. 19]. With the
additional assumption of a Newtonian fluid the momentum balance becomes

ρi

(
∂

∂t
u⃗i + v⃗i ·∇u⃗i + u⃗i ·∇v⃗

)
= ρi(⃗bi − b⃗)−∇pi + yi∇p+

N∑
j=1

p⃗ij+

∇ · τττ i − yi∇ · τττ + si(v⃗
∗
i − v⃗i) + yi∇ ·

( N∑
j=1

ρj u⃗j u⃗
T
j

)
.

(2.34)

Shortly several additional assumptions are made to further simplify the momentum
balance. However, we first take a closer look at the definition of the pressure tensor
TTT in the next Subsection.

2.2.1 Definition of the pressure tensor according to Holt and
Whittaker

There exists a discrepancy in the definition of the pressure tensor TTT . References
[15, 21][22, p. 264] state that the pressure tensor should be as defined in (2.31),
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with the resulting equation for the momentum balance as in (2.30). However, [23,
p. 51] [24, p. 14], [8, p. 168] claim that the pressure tensor TTT should include the
extra term

N∑
i=1

ρiu⃗iu⃗
T
i , (2.35)

such that the momentum balance (2.30) reads

ρi

(
∂

∂t
u⃗i + v⃗i ·∇u⃗i + u⃗i ·∇v⃗

)
=

ρi(⃗bi − b⃗) +∇ · TTT i − yi∇ ·
N∑
j=1

TTT j +

N∑
j=1

p⃗ij + si(v⃗
∗
i − v⃗i).

(2.36)

To keep the notation consistent with [8], in the remainder of this subsection, sub-
scripts indicate components of a tensor, and the superscript (s) indicates a species.

The difference arises from the claim in [8, p. 168], that the components of
the pressure tensor for a species (s) are given by

T
(s)
ij = n(s)m(s)⟨V (s)

i V
(s)
j ⟩, (2.37)

where V
(s)
i is the velocity of species (s) in direction i defined as

V
(s)
i := v

(s)
i − ⟨v

(s)
i ⟩, (2.38)

with ⟨v(s)i ⟩ the averaged velocity, v
(s)
i the actual velocity, and V

(s)
i the velocity

relative to the averaged velocity. The averaging operator is defined in terms of the
distribution function f which satisfies the Boltzmann equation given by (2.1), to
compute the average of a variable ϕ [8, p. 108] defines the averaging operator ⟨⟩
as

⟨ϕ⟩ :=
∫
ϕfd3v⃗∫
fd3v⃗

. (2.39)

Reference [8, p. 168] argues that when writing the equations for a plasma moving
with the mass-averaged velocity v, one should calculate the pressure relative to v.
A new “peculiar velocity” or “random velocity” is introduced,

U
(s)
i = v

(s)
i − vi, (2.40)

which measures the velocity of a species (s) relative to the mass-averaged velocity.

Note that this velocity U
(s)
i is identical to the species diffusion velocities u

(s)
i as

defined previously. The total pressure tensor according to [8] is then given as

T ∗
ij =

N∑
s=1

n(s)m(s)⟨u(s)i u
(s)
j ⟩, (2.41)
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measured with respect to the velocity v∗i . Then using the relation

⟨u(s)i u
(s)
j ⟩ = ⟨V

(s)
i V

(s)
j ⟩+ ⟨u

(s)
i ⟩⟨u

(s)
j ⟩, (2.42)

the resulting pressure tensor becomes

T ∗
ij =

N∑
s=1

T
(s)
ij +

N∑
s=1

n(s)m(s)⟨u(s)i ⟩⟨u
(s)
j ⟩, (2.43)

where TTT (s) is measured relative to the averaged velocities ⟨v⃗⟩, and TTT ∗ relative to
the mass-averaged velocities vi.

If the pressure tensor is isotropic, reference [8, p. 168] argues that the hy-

drostatic pressure p is defined as p = 1
3

∑N
i=1

∑N
j=1 T

∗
ijδ

ij , where δij is the

Kronecker delta. The interpretation of the pressure tensor is that, TTT ∗ · a⃗ is the flux
of molecular momentum, of all species across a surface with unit normal a⃗, where
this surface moves with a velocity v⃗. This implies that (2.41) can be interpreted
as a pressure tensor, due to diffusion velocities, if we follow the definition of the
pressure tensor [8, p. 111] and the derivation of [8, p. 169]. Note that this does
not include pressure due to motion of the CM in this term, since the CM does
not move in this reference frame.

A possible explanation of the difference between [8, p. 168] and [15] is
that, [15] uses a thermodynamic pressure in a lab frame of reference, whereas [8, p.
168] uses a hydrostatic pressure in a reference frame moving along with the CM.
Similarly, reference [21], which arrives at the same pressure tensor as [15] refers to
a “local equilibrium pressure”. However, since the pressure tensor is not a scalar
this difference in definition of the pressure may not completely explain the discrep-
ancy, except in the case of zero strain Newtonian fluids, since in that case TTT = −pIII.

Another possible cause of this discrepancy is the absence of the averaging
operator ⟨⟩ in [15], which may lead to misidentifying (2.41) and (2.43).

However, note that the velocity V⃗i is the same as the mass-averaged veloc-
ity v⃗ in single-component fluids, or if all species masses are identical. In that
case this discrepancy would not arise, since there is no difference between the
average velocity and mass-averaged velocity frames of reference. As a result,
(2.37) and (2.41) would be identical since Vi = ui in this situation. Considering
the masses of heavy particles in a plasma are typically of the same order of
magnitude, the effect of this extra term in the pressure tensor is expected to be
small. Furthermore, if the plasma is weakly ionized the low mass electrons may
not have a large contribution either.
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Additionally, note that this extra term does not impact the further deriva-
tion of the Stefan-Maxwell equations, since the additional term is assumed to be
negligible in the next steps.

2.2.2 Simplifying the momentum balance

It is shown in [15] that |v⃗ ∗
i − v⃗i| ≈ |u⃗i|, if the species masses are all the same order

of magnitude. Note, in plasmas the electron is 3 − 5 orders of magnitude lighter
than other species, nevertheless to continue the derivation of the Stefan Maxwell
equations, this assumption is made. Additionally, it is assumed in [15] that:

1. |ρi ∂
∂t u⃗i| ≪ |∇pi|; quasi-steady state,

2. |ρi(v⃗i ·∇u⃗i + u⃗i ·∇v⃗)| ≪ |∇pi|; inertial effects on the diffusion velocities are
negligible,

3. |yi∇ ·
∑N

j=1 ρj u⃗j u⃗
T
j | ≪ |∇pi|; the diffusive stress is negligible,

4. |(∇ · τττ i − yi∇ · τττ)| ≪ |∇pi|; viscous stresses are negligible,

5. |si(v⃗ ∗
i − v⃗i)| ≪ |∇pi|; momentum source due to chemical reactions is negli-

gible.

With these assumptions, and using ∇pi = p∇zi + zi∇p, equation (2.34) simplifies
to

N∑
j=1

p⃗ij = ρi(⃗b− b⃗i)− (yi − zi)∇p+ p∇zi. (2.44)

Assuming thermal diffusion is also negligible, as it creates small fluxes [25], the
pairwise interactions p⃗ij can be modeled as

p⃗ij = p
zizj
Dij

(u⃗i − u⃗j), (2.45)

with Dij the binary diffusion coefficients. Finally, dividing by p we obtain the
Stefan-Maxwell equations

N∑
j=1

zizj
Dij

(u⃗i − u⃗j) = −∇zi + (yi − zi)
∇p
p

+
ρi
p
(⃗b− b⃗i), (2.46)

i.e., the linear combination of diffusion velocities is equal to the combined effects
of the gradient in the pressure fractions, the gradient in pressure itself, and the
difference in external forces between species. Note that (u⃗i − u⃗j) = (v⃗i − v⃗j),
therefore the Stefan-Maxwell equations can also be interpreted to describe the
emergence of a difference in species velocities. If the pressure is constant, and if
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there are no external forces, equation (2.46) can be simplified to the final form of
the Stefan-Maxwell equations

N∑
j=1

zizj
Dij

(u⃗i − u⃗j) = −∇zi. (2.47)

The Stefan-Maxwell equations are used in chapters 4 and 5, as a model for diffu-
sion in plasmas as multicomponent fluids. In those chapters the Stefan-Maxwell
equations are used to obtain a diffusion matrix E .





Chapter 3

Finite Volume and Krylov
methods

The main system of equations used in this thesis is of the form

∂

∂t
φ+

∂

∂x
(Uφ− E ∂

∂x
φ) = s, (3.1)

equation (3.1) is the so-called (coupled) Advection-Diffusion-Reaction (ADR)
equation. Here φ is the array of unknowns, such as the mass fractions of all
species. The vector u⃗ is a known velocity field, E is the symmetric, positive
definite diffusion matrix, and s a source. In this thesis E is obtained via the
Stefan-Maxwell equations introduced in Section 2.2. The source s is used to model
chemical reactions involving the species present in the plasma. A linearly trans-
formed version of the coupled ADR system (3.1) is used in Chapter 4. Another
variant of the coupled ADR equation is used in Chapter 5, there an extension
is introduced to describe the solution vector φ relative to the chemical equilibrium.

We also cover the scalar, three-dimensional variant

∂

∂t
φ+∇ · (u⃗φ− E∇φ) = s. (3.2)

In Chapter 6 the scalar version (3.2) is used in one, two and three-dimensional
form to investigate the convergence of some Krylov subspace methods.

To the best of our knowledge, there is no general solution to the ADR
equations. In Section 3.1 we consider the FVM, a method where the domain of
interest is covered with disjunct control volumes. For each of the control volumes
an approximation is set up, after which we obtain a set of algebraic equations
describing the relation between the variables in neighboring control volumes.

17
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Solving the resulting set of algebraic equations then yields an approximate solution.

Solving the set of algebraic equations resulting from the discretization typi-
cally involves solving a large linear system. Classical methods such as Gaussian
elimination may not scale favorably with the number of unknowns in the problem,
requiring excessive CPU time. In Section 3.2 we consider methods for solving
large linear systems iteratively, more specifically Krylov subspace methods.

3.1 Discretization with the Finite Volume Method

In this section the Finite Volume Method (FVM) is introduced. The FVM is
applied to the one-dimensional, scalar ADR equation by covering the domain of
interest by disjunct control volumes, and obtaining an approximation in each of
them. We start with

∂

∂t
φ+

∂

∂x
Γ = s(x, φ), Γ(x, φ) = uφ− E ∂

∂x
φ, (3.3)

where Γ is the flux density of the variable φ. The next step is to integrate (3.3)
over the control volume, also referred to as a cell, [xi−1/2, xi+1/2] centered at xi.
We also define ∆x = xi+1 − xi as the distance between two nodes xi+1 and xi.
Since the second term can be integrated in a straightforward manner we obtain

d

dt

∫ xi+1/2

xi−1/2

φdx+ Γ(xi+1/2, t)− Γ(xi−1/2, t) =

∫ xi+1/2

xi−1/2

sdx, (3.4)

which describes the accumulation of φ in a control volume due to a net influx
and production due to chemical reactions. In this thesis we are mostly interested
in the stationary ADR equation, therefore steady state is assumed and the time
dependence is neglected from hereon in this section.

Our objective is to derive an equation for φi ≈ φ(xi) in terms of φ at the
neighboring control volumes, φi−1 and φi+1;

aEφi+1 + aCφi + aWφi−1 = si∆x, (3.5)

where the coefficients aE, aC and aW have to be determined. In general the coef-
ficients aE, aC and aW also depend on the position, and should have an index i.
However, for brevity we assume in this Chapter that u⃗ and EEE do not depend on po-
sition, and therefore also these coefficients do not depend on position. The integral
over the source term has been approximated using the midpoint rule. In the FVM
we determine the coefficients aE, aC and aW by approximating the physical flux
Γ(xi+1/2) with a numerical flux Γi+1/2 at each of the control volume boundaries.
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Here we consider schemes that describe Γi+1/2 as a function of φi and φi+1. The
discrete conservation law in terms of numerical fluxes is thus given by

Γi+1/2 − Γi−1/2 = si∆x. (3.6)

Four guidelines for discretizing equations of the type (3.3) are discussed in
the book of Patankar, [26, p. 36]:

1. Conservative at the control volume faces; the flux from cell 1 to cell 2, must
be the same as the flux from cell 2 to cell 1 with opposite sign.

2. Signs of the coefficients must be such that aWaC ≤ 0, aEaC ≤ 0. Consider a
source-free case with three cells, where a Dirichlet boundary condition fixes
the values of φ on the outermost cells, then the value at the center cell
must be between the values set at the outermost two cells. Since in this
case aCφi = −aEφi+1 − aWφi−1, with φi+1 and φi−1 set by the boundary
conditions, we demand that aE ≤ 0, aW ≤ 0 and aC ≥ 0.

3. The source term must only be linearized if it is a sink, otherwise a lineariza-
tion can lead to unphysical results; a detailed discussion can be found in [26,
p. 48] and [26, p. 143].

4. Coefficients must add up to zero, more specifically aW+aE = −aC. Assuming
constant u, E and s = 0, given a solution φ to (3.3) and ignoring boundary
conditions, then φ+ c for any constant c ̸= 0 is also a solution to (3.3). The
discrete scheme gives aEφi+1 + aCφi + aWφi+1 = 0, however, since φ + c
is also a solution aEc + aCc + aWc = 0 must hold for any c. Therefore,
aE + aC + aW = 0 for a good discretization scheme.

Next, we present several flux approximations Γi+1/2, discuss the resulting
numerical scheme and verify if these schemes satisfy the criteria set out in [26].

A first idea to estimate the flux Γ at xi+1/2 would be to approximate φi+1/2 by
linearly interpolating φi+1 and φi, which results in the flux approximation

ΓCD
i+1/2 = 1

2ui+1/2(φi+1 + φi)− Ei+1/2
φi+1 − φi

∆x
. (3.7)

Assuming constant u and E , the resulting numerical scheme is

1
2u(φi+1 − φi−1)− E

φi+1 − 2φi + φi−1

∆x
= si∆x. (3.8)

The scheme (3.8) is referred to as the Central Differencing (CD) scheme. An
alternative representation of this scheme is given by

aCD
E φi+1 + aCD

C φi + aCD
W φi−1 = si∆x, (3.9)
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where the coefficients are given by

aCD
E = 1

2u−
E
∆x , aCD

C = 2 E
∆x , aCD

W = − 1
2u−

E
∆x . (3.10)

Referencing to the four rules of a good discretization scheme from [26, p. 36], it is
observed that indeed aCD

W + aCD
E = −aCD

C . However, for 1
2 |u| >

E
∆x the coefficients

aCD
W and aCD

E will be of opposite sign, which violates the second rule of [26, p.
36]. It can indeed be shown that in this case the CD scheme can yield unphysical
oscillations.

An alternative to the CD scheme is the upwind scheme, which computes
the numerical flux at xi+1/2 by approximating

φi+1/2 =

{
φi if u ≥ 0
φi+1 if u < 0

, (3.11)

for the diffusive term we again use central differencing. Taking u constant and
u > 0, this results in the approximation of the flux as

Γi+1/2 = uφi −
E
∆x

(φi+1 − φi). (3.12)

The resulting upwind (UW) scheme uses the upwind value of φ as an approximate
value for φ(xi+1/2), instead of the linear profile assumed by the CD scheme. The
resulting scheme has coefficients given by

aUW
E = − E

∆x , aUW
C = u+ 2 E

∆x , aUW
W = −u− E

∆x , (3.13)

where u > 0, and indeed aUW
W + aUW

E = −aUW
C , and aUW

E ≤ 0, aUW
W ≤ 0 and

aUW
C ≥ 0. The upwind scheme does not produce unphysical oscillations, however,

this comes at the cost of adding extra numerical diffusion, since the upwind
scheme can also be obtained if an extra term 1

2 |u|∆x is added to the diffusion
coefficient in (3.10). Additionally, the UW scheme is less accurate, as this scheme
is only first order in ∆x, whereas the CD scheme is second order.

Another flux approximation can be derived from a local homogeneous con-
stant coefficient boundary value problem, viz.,

d

dx

(
uφ− E d

dx
φ

)
= 0, xi < x < xi+1,

φ(xi) = φi, φ(xi+1) = φi+1,

(3.14)

where u and E are assumed constant on xi < x < xi+1. This leads to a flux
approximation scheme on the control volume interface at xi+1/2 as

ΓHF
i+1/2 =

E
∆x

(
B(−P )φi − B(P )φi+1

)
, (3.15)
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with P the grid Péclet number and B(z) the Bernoulli function defined as

P :=
u∆x

E
, B(z) :=

z

ez − 1
, B(0) = 1. (3.16)

This flux approximation leads to a scheme known as the exponential scheme [26,
p. 87], or the Homogeneous Flux (HF) scheme [27]. The resulting scheme has
coefficients

aHF
E = − E

∆xB(P ), aHF
C = E

∆x (B(P ) + B(−P )), aHF
W = − E

∆xB(−P ). (3.17)

aHF
E , aHF

W < 0 and aHF
W > 0 since the Bernoulli function B(z) > 0, and these

coefficients thus satisfy criterion four. It can be verified that the HF scheme
reduces to the CD scheme in the limit of P → 0, and to the UW scheme if
|P | → ∞. As a result, the HF scheme does not have the extra numerical diffusion
of the UW scheme for small P , and unlike the CD scheme, the HF scheme does
not yield unphysical oscillations for large P . The scalar HF scheme is also applied
to discretize a three-dimensional conservation law in Chapter 6. Extending the
HF scheme to two and three dimensions is straightforward and the reader is
referred to [28].

Another extension is to include a piecewise constant source term in the
flux approximation, taking the scalar version of the scheme given in [29], yielding
the Complete Flux (CF) scheme originally described in [30],

aHF
E φi+1 + aHF

C φi + aHF
W φi−1 = ∆x

(
bCF
E si+1 + bCF

C si + bCF
W si−1

)
, (3.18)

where the coefficients for the source term part are given by

bCF
E = − 1

2Q(1− σ), bCF
C = 1−Qσ, bCF

W = 1
2Q(1 + σ), (3.19)

and the functions, σ and Q are defined as

σ = sgn(P ), Q = 1
2 −W(P ), W(z) =

ez − 1− z
z(ez − 1)

, W(0) = 0, (3.20)

with sgn the signum function such that sgn(0) = 1. These coefficients are
constructed such that only the source term in the upwind direction is included
in the numerical flux. The CF scheme is discussed in more detail in Section 4.4.
Unlike the HF scheme, the CF scheme does not reduce to the UW scheme in the
limit of large P . The CF scheme can be extended by including a linearized source
term in the derivation of the discretization scheme, this is presented in [27] and [31].

Since we are mainly interested in describing plasmas as multicomponent
systems, we require a coupled version of the discretization scheme. The derivation
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of such a scheme is performed in [29], of which we cite the results here. For
coupled systems the HF scheme becomes

aHF
E φi+1 + a

HF
C φi + a

HF
W φi−1 = si∆x, (3.21)

where the coefficients are now matrices

aHF
E = − E

∆xB(P ), aHF
C = E

∆x (B(P ) + B(−P )), aHF
W = − E

∆xB(−P ). (3.22)

The Péclet number is replaced by the Péclet matrix P = E−1U∆x, with E the
diffusion matrix and U a matrix containing the advection velocities for each of
the species. In this thesis we take U to be a scalar matrix U = uI. Assuming P
has a complete set of eigenvectors, the matrix function B(P ) can be computed
using the spectral decomposition P = V ΛV −1, where V is the eigenvector
matrix and Λ a diagonal matrix containing the corresponding eigenvalues. Then
B(P ) = V B(Λ)V −1, where B(Λ) is a diagonal matrix consisting of the Bernoulli
function applied to each eigenvalue. B(−P ) and other matrix functions can be
computed similarly.

The CF scheme for coupled systems becomes

aHF
E φi+1 + a

HF
C φi + a

HF
W φi−1 = ∆x(bCF

E si+1 + b
CF
C si + b

CF
W si−1), (3.23)

with the matrix coefficients of the source part given by

bCF
E = − 1

2Q(I − σ), bCF
C = I −Qσ, bCF

W = 1
2Q(I + σ), (3.24)

where the matrices Q and σ are

Q = 1
2I − EW(P )E−1, σ = sgn(P ). (3.25)

The finite volume CF scheme is applied to a one-dimensional system of coupled
conservation laws in Chapter 4; a more detailed discussion of the coupled scheme
can also be found in that chapter. The coupled HF scheme is used in Chapter 5
on a multicomponent system.

3.2 Solving sparse linear systems

Solving sparse linear systems is featured in Chapters 4, 5, 6, 7 and 8. These linear
systems stem from discretization of the ADR-equation. In the current chapter
we introduce the concept of sparsity, discuss the shortcomings of direct meth-
ods that perform a matrix decomposition, and introduce several iterative methods.

After the discretization step a set of algebraic equations is obtained. If the
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set of algebraic equations is nonlinear, a linearization step is performed, or a
nonlinear solver such as Newton or Picard iteration has to be applied. This results
in a set of linear equations of the form

Ax = b, (3.26)

where A is the discretization matrix, x contains the unknown quantity of interest,
for example φ in every cell, b typically contains the source term and boundary
values of the unknowns.

The resulting matrices typically contain a vast number of zeros, as only a
relation between neighboring cells is implemented in the discretization step. One
might define an N ×N matrix A as sparse if

lim
N→∞

nnz(A)

N2
= 0, (3.27)

where nnz(A) is the number of nonzero elements of A. However, [32, p. 75]
regards a matrix as sparse if there is a linear algebra technique that can take
advantage of the large number of zero elements and their locations in the matrix.
An example that would not satisfy (3.27), but does satisfy the definition of [32,
p. 75] would be an upper-triangular matrix U with a full upper-triangular part.
Such an upper-triangular system can be efficiently solved using back substitution,

however, limN→∞
nnz(U)

N2 = 1/2. In the coming paragraphs we will introduce
several methods that exploit the sparsity, in the sense of Equation (3.27), of
matrices generated by discretization of PDEs.

Even though after discretization, the matrix A is typically sparse, the number of
unknowns can be large, especially for three-dimensional problems. As an example,
consider a domain where M cells are used in each direction, then the number of
unknowns scales as M3.

A starting point for solving linear systems would be the well-known LU de-
composition [32, p. 96]. This method factorizes the matrix A into a lower
triangular matrix L and an upper triangular matrix U such that

Ax = LUx = b, (3.28)

where the factorized system is then solved by subsequently solving two systems,
viz.,

Ly = b, Ux = y. (3.29)

It should be noted that L and U are never inverted explicitly, but rather
forward/backward substitution is used to solve the triangular systems in (3.29).
The main downside of LU decomposition for sparse matrices, is that the factors
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L and U are not guaranteed to be sparse, even though A is sparse. This fill-in
comes with a cost in terms of both memory and time complexity. The time
complexity of factorizing A for the CD discretization of the three-dimensional
Poisson equation is O(N7/3) [33]. After the factorization is complete, solving the
two triangular systems has a complexity of O(N5/3) [33], thus the factorization is
more expensive than the two triangular solves.

An alternative strategy for solving linear systems is to use iterative meth-
ods. The idea of iterative methods for linear systems is shown in Algorithm 1.
In this algorithm an iterand xi is updated every iteration, and the quality of the
solution is estimated based on the corresponding residual ri := b−Axi.

Algorithm 1 An iterative procedure for solving linear systems.

1: function Solve(A, b,xi, tolerance)
2: Set i = 0
3: Start with an initial guess for xi

4: Compute initial residual ri = b−Axi

5: while ∥ri∥ > tolerance do
6: Compute ui, an update to xi

7: Compute the new solution xi+1 = xi + ui

8: Compute the new residual ri+1 = ri −Aui

9: Increment i by one
10: end while
11: return xi

12: end function

One of the simplest iterative methods is Richardson iteration, which simply takes
ui = ri. Even though this method avoids the extra fill-in of the LU decompo-
sition, it only converges if ρ(I−A) < 1 [32, p. 116], with ρ the spectral radius ofA.

A more modern iterative method for positive definite, symmetric A is the
Conjugate Gradient (CG) method. This method is a Krylov subspace method
which produces an approximate solution xk as a projection on the affine space
xk ∈ x0 +Kk(A, r0) = x0 + span{r0,Ar0,A2r0, ...,A

k−1r0}.

CG is especially efficient compared to the LU decomposition for linear sys-
tems obtained from the discretization of three-dimensional elliptic PDEs. As
an example, for a discretized Poisson problem in three dimensions, with a grid
spacing proportional to N−1/3, the CG method requires O(N4/3) FLoating point
OPerations (FLOPs) to reach a given tolerance ϵ [33], whereas the LU decompo-
sition requires O(N7/3) for such systems. Additionally, CG is an optimal Krylov
method in the sense that in each iteration the error is minimized over the A-norm
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[34]. CG also is a so-called “short recurrence” method. Short recurrence methods
express the next residual and solution approximation in terms of a fixed (practi-
cally small) number of previous residuals and solutions respectively, as opposed
to long recurrence methods where the number of terms in the recurrence grows
with the iteration count. The CG method is discussed in more detail in Section 7.3.

For more general invertible matrices the Faber-Manteuffel theorem [35] states that
there is no Krylov subspace method using Kk(A, r0) which has short recurrences
and optimality [36]. Therefore, for a general invertible matrix A one has to either,
drop the optimality requirement, use long recurrences, use a space different from
Kk(A, r0), or settle for a compromise. This leads to a wide variety of Krylov
methods, each with different tradeoffs.

One possible extension of CG to solve non-symmetric systems is the BiCG
algorithm originally described in [37]. The idea of BiCG is to use a second Krylov
subspace denoted as the “shadow space”; Kk(A

T, r̃0), where the vector r̃0 is
arbitrary but commonly chosen as r0. In Section 7.4 we take a closer look at the
derivation of BiCG.

Another common method is the well-known BiCGStab algorithm. This
method was originally described in [38] and has since then been incorporated in
many popular linear algebra packages such as MATLAB [39] and Eigen [40], and
in simulation software such as PLASIMO [41] and COMSOL [42]. BiCGStab
combines one iteration of BiCG with a Local Minimal Residual (LMR) step [43];
this step can also be seen as performing one iteration of the GMRES method
[44]. LMR chooses the current residual as the search direction, and takes a step
in this direction such that the next residual is minimized, which results in a
smoother decrease of the residual norm of BiCGStab compared to BiCG. Even
though implementing Krylov subspace methods appears straightforward, Section
7.5 addresses several pitfalls and implementation choices for BiCGStab.

Other Krylov subspace methods are the BiCGStab(L), IDR(S) and combined
IDR(S)Stab(L) methods. The BiCGStab(L) method combines L steps of BiCG
with a GMRES(L) step [45]. GMRES(L) constructs an orthogonal L-dimensional
Krylov subspace over which it minimizes the residual. The recent IDR(S) algo-

rithm can be seen as using S different shadow spaces; Kk(A, R̃) with R̃ an N ×S
matrix. IDR(S) is constructed such that the residuals are forced into a subspace
that decreases in dimension each iteration [46]. Even though not as widespread as
BiCGStab, IDR(S) outperforms BiCGStab for a wide class of problems [46, 47].
Finally, IDR(S)Stab(L) combines the ideas of both BiCGStab(L) and IDR(S) [48].

In this thesis we investigate the convergence of the LMR, BiCGStab and
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IDR(S) Krylov subspace methods in the context of the Advection-Diffusion-
Reaction equation in Chapter 6. A simplified derivation of the LMR, CG and
BiCG methods is presented in Chapter 7. Chapter 8 discusses in detail the
implementations of BiCGStab(L) [49], IDR(S) [50] and IDR(S)Stab(L) [51] that
have been contributed in the framework of this project to the Eigen C++ linear
algebra library [40].
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Chapter 4

Multicomponent transport in
plasmas;exploiting stoichiometry

This chapter is based on:
Multicomponent transport in plasmas; exploiting stoichiometry
Schoutrop, C., van Dijk, J., and Ten Thije Boonkkamp, J.,Journal of Computa-
tional Physics, 428, p.109979, 2021

Abstract. A system of mass balance equations is set up for plasma-
chemical simulations; we derive the diffusion velocities from Stefan-Maxwell
theory. An algorithm to linearly transform the system of mass balance
equations in the context of non-LTE plasmas is described. This transfor-
mation is derived from the reaction set, and eliminates part of the chemical
source term, enforces invariants such as conservation of mass and quasi-
neutrality up to machine precision, provides a reduction in the number of
unknowns, and significantly improves conditioning of the discretized system.
The MATLAB code used in the numerical experiments is available on GitLab:
https://gitlab.com/ChrisSchoutrop/stoichiometric-transformation.
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4.1 Introduction

Multicomponent, chemically reacting flows are ubiquitous in nature and tech-
nology, for example in combustion, chemical reactors and plasma physical
applications [52, 53, 54]. For such systems multiphysics models have to be
considered, to account for example for the flow field, EM field, particle balances,
energy balances and chemical reactions. In particular when the number of
components (chemical species) and reactions is large, the governing equations lead
to an increasingly large set of (nonlinear) equations and typically a wide range of
time scales due to chemical reactions. Both the large number of equations, and
the spread in time scales result in a significant computational load, by requiring
solutions to large linear systems and excessively small time steps. In addition,
physical invariants must be respected throughout the simulation. An important
consequence of the bottom-up approach is apparent in the modeling of plasmas;
if invariants such as conservation of charge and mass are not properly taken into
account, they are not guaranteed.

Even if such invariants are satisfied by the governing equations, the dis-
cretized approximation must also respect the same invariants [55]. This sparked
discretization schemes such as the complete flux scheme presented in [56]. For the
complete flux scheme, if the continuous governing equations satisfy conservation
of charge and mass on the boundaries, then they will be satisfied throughout the
domain in exact arithmetic.

However, even in the continuous governing equations, care has to be taken
when setting up the original equations describing the problem. When modelling
coupled diffusion via the Stefan-Maxwell relations, it is important to be aware of
singular diffusion matrices arising in the model as identified by Giovangigli [16],
additionally small binary diffusion coefficients can lead to numerical difficulty
[57]. Another challenge that presents itself is the inclusion of finite rate chemistry,
which manifests itself primarily as a nonlinear source term. However, in such
chemical reactions there are fundamental invariants that can be exploited; a chem-
ical reaction cannot create net electric charge, nor change the number of chemical
elements present for example. Such invariants are implicit in the stoichiometry
of each chemical reaction. This chapter provides a linear-algebraic perspective
on multicomponent transport problems, and derives a linear transformation of
the governing equations based on the stoichiometry. Using this approach physical
invariants can be enforced by directly imposing them on the transformed system.
This results in conservation of mass and charge, accurate up to machine precision.

To close the set of mass balance equations, a relation is needed to express
diffusion in terms of gradients of mass fractions. The well-known work of
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Giovangigli [16] presents a description of Stefan-Maxwell diffusion, that treats all
species in the mixture on an equal footing. An important physical law is that
diffusion does not transport net mass. Additionally, when working with mass
fractions, it is important that these must sum to 1. This necessarily implies
that not all mass fractions are linearly independent. A possible remedy is to
single out one of the species to ensure the sum is always 1. However, such
an approach leads to numerical issues when this species is a trace species. In
the work of Giovangigli, all species are treated in the same way, none of the
species is singled out. This treatment eventually leads to a singular diffusion
matrix, which must be regularized. However, in this procedure there is a free,
positive parameter which can be chosen arbitrarily. A similar regularization
procedure is required in the context of ambipolar diffusion, where the charges
of species have a significant impact on the diffusion velocities. In our work we
present an approach to derive these parameters from an optimization problem, by
choosing the parameter such that the condition number of the resulting diffusion
matrix and the ambipolar diffusion matrix is minimized. Another important
step is to derive a relation between the gradients of mass, and mole fractions.
Here we show that this relation is not unique, and we provide an alternative
derivation that leads to a different linear relation between these two quantities.
An essential difference is that in our work we show that after linearly transform-
ing the original set of mass balance equations one can single out one species,
which ultimately leads to improved conservation of mass in numerical experiments.

The main contents of this chapter describes a linear transformation of the
governing equations based on the stoichiometry of the reactions present in the
system. An early example of exploiting stoichiometry to simplify the governing
equations has been elaborated and applied in the work of Butler and Brokaw
[58] to aid the calculation of the thermal conductivity for systems in local ther-
modynamic equilibrium (LTE). This early example of exploiting the dependency
between species in a multicomponent mixture presents a detailed analysis of
computing the thermal conductivity of a mixture in the presence of chemical
reactions. This work makes the observation that in every chemical reaction
set, it is possible to identify independent and dependent species, where species
can be constructed from the other species present in the mixture, for example
H2O = CO2 −CO+H2, in a linear-algebraic way using the species CO2, CO and
H2 as a basis to construct H2O. This formalism has the benefit that only the
independent contributions of the particle flux have to be considered. However, to
complete their analysis chemical equilibrium is assumed.

In the context of chemically reacting flows under LTE, the concept of con-
structing a linear transformation has been exploited extensively in the work of
Rini [59]. Under the assumption of LTE there exist formation reactions that allow
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every species to be constructed from a set of species chosen as a “basis”. Here
a matrix, referred to as the stoichiometric matrix, is introduced which defines
the number of basis species present in the remaining species. The structure of
this matrix is then taken advantage of to obtain a homogeneous mass balance
for the species chosen as building blocks. This simplified system is then used to
describe the mass diffusion flux of elements in terms of gradients of the elemental
mass fractions and temperature, eventually leading to a system described by
the conventional Navier-Stokes equations complemented by advection-diffusion
equations for the chemical elements present in the mixture. In our work we
show that the stoichiometric matrix of Rini can also be extended to improve
the numerical properties of the solution methods in the context of non-LTE
systems. The key difference is that in LTE all reactions with correct stoichiometry
exist, whereas in the non-LTE case incomplete reaction sets have to be con-
sidered, and the “basis species” have to be derived from the species in the mixture.

Linearly transforming the set of governing equations is common in porous
media [60, 61, 62]. One such application of linearly transforming the equations
describing multicomponent transport-reaction in porous media is presented in
[60]. In essence in this work the authors derive two projection matrices based
on the stoichiometry, which have the effect of changing the basis of the chemical
source vector. The new (linear-algebraic) basis is constructed such that part of
the source term is eliminated. Even though this strategy is effective in eliminating
part of the source term, the transformation is not unique. We argue in our work
that the non-uniqueness of such transformation strategies can also be applied to
enhance the numerical properties of the transformed system in plasmas as well.

Another study in the context of porous media was conducted in [62] by
Fan et al., where a reactive-transport problem was investigated for the application
of CO2-storage. In the work of Fan et al. a multicomponent transport problem
in the presence of chemical reactions was investigated. Here a quasi-element
description of chemical reactions is taken advantage of to eliminate part of the
source term in the system of mass balance equations. It is here where the
definition of an “element” is coined as: “an atom or a compound that does
not partition into smaller entities by chemical reactions in the system under
consideration”. Importantly, this implies a broader notion of element, than just
the chemical elements present on the periodic table. This broad notion of element
is what allows a “quasi-element basis” to be constructed, even if pure chemical
elements are not present in the mixture under consideration. Summarizing, our
model of multi-species diffusion includes the following;

1. A transformation of the governing equations in order to derive the quasi-
element mass fractions balance equations. These quasi-elements are built
from the available reaction mechanism closely related to a classical elemental
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decomposition. This allows for partial elimination of the chemical source
vector.

2. Various extra assumptions may be easily implemented using the reformulated
equations, like quasi-neutrality or constant quasi-elemental conditions and
this may lead to a reduction of the number of unknowns.

3. Minimization of the condition number for matrices involved in Stefan-
Maxwell diffusion based by optimizing the regularization procedure.

4. Decreased condition number of the resulting discretization matrices for the
reformulated system.

This chapter is organized as follows. We start by introducing the governing con-
servation laws for plasmas as multicomponent mixtures in Section 4.2. Next,
in Section 4.3, the core part of our work is presented on obtaining a stoichio-
metric transformation to improve the numerical properties of the model. To
discretize the governing equations, we summarize the discretization scheme pre-
sented in [56]. We report and discuss the results of our numerical experi-
ments in Section 4.5. We close with concluding remarks in the final section.
The MATLAB code used in the numerical experiments is available on GitLab:
https://gitlab.com/ChrisSchoutrop/stoichiometric-transformation.

4.2 Mathematical model

The difference between a gas and a plasma is the significant effects of charged par-
ticles. Even simple plasmas containing only one type of neutral species, positively
charged ions and electrons have to be regarded as multicomponent mixtures, first,
due to the difference in charge of each species, and second due to the substantial
difference in mass; on one hand the heavy ions and neutrals, on the other hand the
light electrons. To describe plasmas, the mass and charge balances are introduced.
To close the set of equations we derive a relation for the diffusion velocities from
the Stefan-Maxwell equations, where we also take the effects of ambipolar diffusion
into account.

4.2.1 Continuity equations for plasmas as multicomponent
mixtures

Multicomponent mixtures are described by conservation laws, such as particle,
momentum and energy balances. We first introduce the mass balances in Section
4.2.1.1, next the charge balance in Section 4.2.1.2 to account for charged species.
The main focus of this chapter is on transforming the mass balances, therefore we
consider a multicomponent mixture with a constant flow field, and diffusion via

https://gitlab.com/ChrisSchoutrop/stoichiometric-transformation
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the Stefan-Maxwell relations. For isothermal mixtures the energy balance does
not have to be taken into account.

4.2.1.1 Mass balances

For each species i there is a balance equation describing how its number density
ni changes as a function of position and time, given by

∂tni +∇ · (niv⃗i) = ωi. (4.1)

Here v⃗i is the velocity of species i and ωi is the production/consumption rate
for this species. Here an arrow is used to denote a spatial vector, for example
the electric field E⃗ or the velocity v⃗. Boldface lower case letters denote arrays of
variables associated with the species in the mixture, for example n = [n1, ..., nNs ]

T

is the array containing the number densities for all Ns species.

Multiplying the particle balance for species i with its mass mi, the well-known
mass balance is obtained

∂t(ρyi) +∇ · (ρyiv⃗i) = miωi, (4.2)

with the corresponding mass density ρ and mass fractions yi defined as

ρ :=
∑

i ρi, ρi := mini, yi := ρi/ρ, (4.3)

where the summation runs over all species i. We also introduce the mass-averaged
velocity v⃗

v⃗ :=
∑

i yiv⃗i, (4.4)

this allows for the introduction of diffusion velocities u⃗i := v⃗i − v⃗; the velocity
of each species relative to the mass-averaged velocity. Using this definition, the
second term in the mass balance (4.2) can be split into a bulk and a diffusive
contribution;

∂t(ρyi) +∇ · (ρyiv⃗) +∇ · (ρyiu⃗i) = miωi. (4.5)

The formulation of the particle balance in terms of mass fractions yields three
invariants. First, by their definition in (4.3) the mass fractions sum to unity.
Second, since the diffusion velocities u⃗i are defined relative to the mass-averaged
velocity v⃗, we have ∑

i yiu⃗i = 0⃗, (4.6)

i.e., diffusion does not transport net mass. Finally, in chemical reactions the total
mass must be conserved; ∑

imiωi = 0. (4.7)
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As a result, the sum over all mass balances yields the overall continuity equation,
i.e.,

∂tρ+∇ · (ρv⃗) = 0. (4.8)

For later use we also need the diffusive mass fluxes, defined as

ϕ⃗i = ρyiu⃗i, (4.9)

and the mole fractions
χi =

ni∑
j nj

. (4.10)

Equation (4.5) is the system that will be solved numerically. However, to include
the effects of charged species first the charge balance has to be introduced.

4.2.1.2 Charge balance

Lieberman [13, p. 6] defines a plasma as “a collection of free charged particles
moving in random directions that is, on average, electrically neutral”. One key
aspect of a plasma is thus the significant presence of charged species, most notably
positive ions and electrons. To incorporate the effect of these charged species
Maxwell’s equations should be solved. More specifically, Gauss’ law should be
used to calculate the electrostatic field E⃗ induced by the particles

∇ · (ϵE⃗) = ρc, (4.11)

where ρc is the charge density and ϵ the electric permittivity of the medium.
However, in the continuum approach it is preferable to assume the plasma is
quasi-neutral. Such a situation arises when charged particles are effective in
shielding the electric field of other particles. The characteristic length scale over
which significant charge densities can exist is the Debye length λD[13, p. 38], i.e.,
when the length scales of interest are much larger than λD then the assumption
of quasi-neutrality is valid. This is generally the case for high pressure plasmas,
or in the core of a plasma.

Another effect is that each charged species has an impact on the diffusion
velocities of all charged species. For example consider a positive ion and an
electron moving apart, the electric field directed from the ion to the electron will
accelerate the ion, while at the same time decelerating the electron. Consequently,
electrons will diffuse slightly slower than they would in a neutral environment,
whereas ions will diffuse slightly faster. This effect is known as ambipolar
diffusion, and must be reflected by the diffusion velocities u⃗i [13, p. 135]. The
electric field that is generated in this effect is known as the ambipolar electric field
E⃗amb and will play a key role in describing ambipolar diffusion in Section 4.2.2.2.
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Similar to the mass balances (4.5), one can obtain the charge balances. Multi-
plying (4.1) with the charge qi of each species and introducing the decomposition
v⃗i = v⃗ + u⃗i, we find

∂t(qini) +∇ · (qiniv⃗) +∇ · (qiniu⃗i) = qiωi. (4.12)

Due to the assumption of quasi-neutrality, the net charge in the continuum limit
is zero ∑

i qini = 0. (4.13)

Additionally, chemical reactions cannot produce net electric charge;∑
i qiωi = 0. (4.14)

The total current density j⃗ is given by a summation over all individual contribu-
tions;

j⃗ :=
∑

i qiniv⃗i. (4.15)

As a consequence of the invariants (4.13) and (4.14), summing (4.12) over all
species a constraint on the current density j⃗i := qiniv⃗i is obtained;

∇ ·
(∑

i j⃗i

)
= 0, (4.16)

i.e., the total current density j⃗ must be divergence-free. However, note that
for quasi-neutral plasmas

∑
i qiniv⃗ = v⃗

∑
i qini = 0⃗ and (4.15) reduces to

j⃗ =
∑

i qiniu⃗i. Therefore, any currents present in the plasma due to boundary
conditions can only be described by the diffusive contribution to the species veloc-
ities;

j⃗ =
∑

i j⃗i =
∑

i qiniu⃗i = j⃗ext, (4.17)

i.e., the charge transported by diffusive processes must be equal to the external
current density j⃗ext, see [55]. Thus, without externally driven currents, diffusion
does not transport net charge. Assuming no currents on the boundaries, this cor-
responds to a zero-current approximation. Since quasi-neutrality is also imposed
on the boundaries of the system, there is no net charge flux. For details we refer
to [55, 63].

4.2.2 Diffusion velocities

In the previous section the particle balances have been introduced, as well as
its relation to the charge and mass balance. To close the system of the particle
balance equations the Stefan-Maxwell description for multicomponent diffusion
is used to obtain the diffusion velocities as function of the mass fractions. The
Stefan-Maxwell description of diffusion is an active area of research, with both
recent developments in numerical strategies [17, 64, 65, 66, 67] and theoretical work
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[68]. Here, we follow the approach of Giovangigli [16]. Alternatively, [69] presents
a DAE-like idea with an augmented matrix formalism. However, in the method
presented here we do not have to solve DAEs. Generally DAEs are more difficult
to solve than ODEs. To a certain extent enforcing properties such as conservation
of mass and quasi-neutrality can be seen as imposing algebraic constraints, in
addition to the governing conservation laws (a system of PDEs). These algebraic
constraints are present in the system without the need to explicitly solve a set of
DAEs.

4.2.2.1 Stefan-Maxwell diffusion

To close the model a relation for the diffusion velocities u⃗i is required. To do this
the Stefan-Maxwell equations are introduced based on the work of Giovangigli [16]∑

j fij(u⃗i − u⃗j) = −d⃗i, (4.18)

where fij are the friction coefficients and d⃗i the so-called driving forces. This

variable d⃗i can incorporate effects such as concentration, pressure, thermal and
ambipolar diffusion. However, here only the contributions of concentration and
ambipolar diffusion will be taken into account. For clarity only the one-dimensional
case is considered here, since for non-magnetized plasmas the spatial components
of the diffusion velocities are decoupled [70] and each of the spatial directions
can be viewed independently. Therefore, it suffices to consider only one spatial
component, the x-direction. Equation (4.18) then reduces to∑

j fij(ui − uj) = −di. (4.19)

The friction coefficients fij in (4.19) are expressed as

fij =
zizj
Dij

> 0, (4.20)

with Dij the binary diffusion coefficients [71] and zi := pi/
∑

j pj the pressure
fractions, where pi indicates the partial pressure of a species i. The diffusion
coefficients are adopted from Ramshaw [71], which introduces a correction factor
to the earlier work in [72] to account for the effects of charged particles to the
(thermal) diffusion coefficients. The models in [71, 72] are based on a first order
approximation of Chapman-Enskog theory. Assuming the ideal gas law, it follows
for an isothermal plasma that zi = χi. Since the friction coefficients (4.20) describe
pairwise interactions between species, fij = fji and Dij = Dji. Using these
properties of fij , the original set (4.19) can be compactly written as a linear
system;

Fu = −d, (4.21)
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with F the friction matrix

F = (Fij), Fij :=

{
−fij i ̸= j∑
k ̸=i fik i = j

, (4.22)

where u = [u1, ..., uNs ]
T is the array of diffusion velocities for each species, and

d = [d1, ..., dNs ]
T describes the driving forces for each species. It should be noted,

since diffusion is always relative to the mass-averaged velocity of the flow, that
the driving forces must sum to zero. Otherwise, a net force would be present, and
diffusion would also affect the mass-averaged velocity v. The criterion 1Td = 0 is
required for the system (4.21) to be consistent.

From the definition in (4.22) it can be seen that each row and column of
F sums to 0, since fij ≡ fji. This implies that 1 := [1, .., 1]T is a left eigenvector
of F with eigenvalue 0, and therefore F is singular; 1TF = 0T. As a consequence
system (4.21) may not have a solution for u. However, since 1Td = 0, the vector
d resides in the range of F denoted as R(F ). This implies that if the dimension
of the nullspace, N (F ), of F is 1, then (4.21) does have a solution. To prove
that d ∈ R(F ) such that eq. (4.21) has a solution. We start by proving that F
is symmetric, nonnegative definite, cf. [16]. Given a nonzero vector v, it follows
after some basic manipulations, and by using fij = fji that

vTFv =
∑

i

∑
j>i fij(vi − vj)2 ≥ 0, (4.23)

for fij > 0. Therefore F is symmetric, nonnegative definite. Note vTFv = 0 if all
elements of v are equal, i.e., v = λ1. Next, we show that N (F ) = {1} using proof
by contraction. Obviously 1 ∈ N (F ). Assume there exists a vector other than
v = λ1 in the nullspace of F . Then Fv = 0 and vTFv = 0 which contradicts
the earlier finding that vTFv = 0 if all elements of v are equal, from which we
concluded v = λ1, therefore N (F ) = {1}. To complete the proof we apply the
rank-nullity theorem; dimN (F ) + dimR(F ) = Ns therefore dimR(F ) = Ns − 1.
Moreover, since F is symmetric R(F ) = N (F )⊥ = {1}⊥. Clearly d ∈ {1}⊥ since
1Td = 0.

To obtain this solution u from (4.21), we use the diffusive mass-flux con-
straint (4.6), written in matrix-vector form as;

yTu = 0. (4.24)

The idea is then to combine the linear system (4.21), with (4.24) to obtain a

regularized friction matrix F̃ . This regularization can be performed by adding the
diadic product αyyT with α > 0 to F in equation (4.21);

F̃ u =
(
F + αyyT

)
u = −d. (4.25)
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Since α(yyT)u = αy(yTu) = 0 this addition does not change u.

Now the velocities u can be obtained by inverting the regularized matrix
F̃ as

u = −F̃−1d = −D̃d, (4.26)

where we have introduced the matrix D̃ := F̃−1. This matrix is symmetric and
positive definite for α > 0 [16], as can be shown from the definition of F and
the positivity of fij . In [73] it is suggested to choose α = 1/max(Dij), such
that elements of the matrices F and αyy will have the same order of magnitude.
Another choice for α is presented in [74], where a (slightly different) friction matrix
was regularized, there the choice α = max(F )/(yT1) was made. However, it was
also noted that this choice may not always be the optimal one. An alternative
approach would be to minimize the condition number κ of the friction matrix. We
choose to determine α from a minimization problem;

α = argmin
α>0

κ(F + αyyT). (4.27)

Such minimization requires only a few iterations of the function fminbnd in Matlab
2019a [39]. A low condition number is a useful property to have since the matrix

F̃ has to be inverted to obtain the diffusion matrix D̃. In the next section D̃ will
be modified to include the effects of ambipolar diffusion. Alternatively, there exist
cheap approximate inversions of Stefan-Maxwell matrices for plasmas [57].

4.2.2.2 Ambipolar diffusion

From the previous section an expression for the diffusion velocities u in terms of
the driving forces d has been obtained. Following the approach of Peerenboom et
al. [55] and the earlier work presented by Giovangigli in [63], we include the effect
of ambipolar diffusion The total driving force is given by

d = dcon + damb, (4.28a)

where dcon is the driving force due to concentration diffusion and damb the am-
bipolar diffusion contribution, given by

dcon = ∂xχ, damb = −ρc
Eamb

p
, (4.28b)

where ρc is the charge density array with components niqi and Eamb the x-
component of the ambipolar electric field. Due to ambipolar diffusion, charged
particles cannot diffuse independently of each other, as argued in Section 4.2.1.2.
Additionally, we conclude from equation (4.16) that the diffusive current density j⃗
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must be divergence-free. However, if there is no current due to an external electric
field, then it follows as a special case from equation (4.17) that∑

i ji ≡ ρTc u = 0. (4.29)

Combining equation (4.26) with the driving forces given in (4.28) and left-
multiplying with ρTc it follows that

ρTc u = −ρTc D̃
(
∂xχ−

Eamb

p
ρc

)
= 0. (4.30)

From (4.30) an expression for the ambipolar electric field Eamb can be obtained;

1

p
Eamb =

ρTc D̃∂xχ

ρTc D̃ρc
, (4.31)

and as a result, using associativity of matrix multiplication,

u = −Damb∂xχ, Damb := D̃ − D̃ρcρ
T
c D̃

ρTc D̃ρc
, (4.32)

with Damb the (singular) ambipolar diffusion matrix. Combining equation (4.30)
and (4.32) we see that the matrix Damb is singular, since ρTcDamb = 0T. To
regularize the matrix, a similar procedure is applied as in (4.25)

D̃amb :=Damb + βqqT, (4.33)

with β > 0. To justify the addition of the dyadic product βqqT the constraint
set by the quasi-neutrality approximation (4.13) is used. Since qTn = 0 implies
qTχ = 0, it becomes clear that the diffusion velocities can be obtained from

u = −D̃amb∂xχ. (4.34)

Since the addition of βqqT does not change the solution to (4.34), the value for β
in (4.33) is again chosen to minimize the condition number;

β = argmin
β>0

κ(Damb + βqqT). (4.35)

It can be shown that for β > 0 the matrix D̃amb is symmetric positive definite
and thus regular, this is shown in Section 4.A. Again, we opt for minimizing the
condition number, as later on in the discretization the inverse of the diffusion
matrix will be needed.
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4.2.2.3 Diffusion in terms of mass fluxes

The next step is to relate the spatial variation in the mass fractions to the spatial
variation in mole fractions. To do this ∂xχ has to be related to ∂xy, and for this

purpose we seek a matrix M̃ such that

∂xχ = M̃∂xy. (4.36)

Previously, in the work of Giovangigli [16] it is argued that imposing
∑

i χi = 1

and
∑

i yi = 1 a priori leads to a singular matrix M̃. In this work, the problem
was overcome by defining

(
∑

i χi)W =
∑

i χimi, W :=

∑
i yi∑

i yi/mi
, (4.37)

which leads to
∑

i χi =
∑

i yi, as opposed to imposing
∑

i χi =
∑

i yi = 1 directly.
In our work we start with χi and yi defined from number densities and species
masses, from this we indeed obtain a singular matrix relating ∂xχ and ∂xy.
However, we show that this matrix can be regularized by adding a dyadic product.

Recall that the mole and mass fractions introduced earlier in (4.10) and
(4.3) can both be defined in terms of densities;

χi := ni

(∑
j nj

)−1

, yi := mini

(∑
j mjnj

)−1

, (4.38)

from which a direct relation between χi and yi can be found

χi =
yi
mi

(∑
j

yj

mj

)−1

. (4.39)

Taking the derivative of χi with respect to the spatial coordinate x gives

∂xχi =
1

mi
∂xyi

(∑
j

yj

mj

)−1

− yi

mi

(∑
j

yj

mj

)−2(∑
j

1
mj
∂xyj

)
. (4.40)

To write this more compactly we introduce the number averaged molecular weight
m, defined by

m :=
∑

j mjχj =
(∑

j
yj

mj

)−1

. (4.41)

Using m, equation (4.40) can be simplified to

∂xχi =
m

mi
∂xyi −

yi
mi

m2∑
j

1
mj
∂xyj . (4.42)

To obtain (4.42) in matrix form, the Kronecker delta δij is introduced. With
the Kronecker delta and introducing a vector µ with components µi := m/mi,
equation (4.42) can be written as

∂xχi = µi

∑
j

(
δij − yiµj

)
∂xyj , (4.43)
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which in matrix-vector form reads

∂xχ = diag(µ)
(
I − yµT

)
∂xy. (4.44)

However, this linear transformation is not invertible, which is due to the constraint
on the mass fractions. Since

∑
i yi = 1, it is clear that

1T∂xy = ∂x(1
Ty) = 0. (4.45)

This phenomenon arises here since for Ns species the vector ∂xy has only Ns − 1
independent components. From the definition in (4.41) it is obvious that µTy = 1.
Consequently,

1T diag(µ)
(
I − yµT

)
= µT

(
I − yµT

)
= 0, (4.46)

hence diag(µ)
(
I − yµT

)
is singular. To regularize the transformation in (4.44)

we seek a new transformation of the form

∂xχ = diag(µ)
(
I − yµT + γaaT

)
∂xy, (4.47)

for some scalar γ > 0 to be determined shortly and a vector a that is chosen such
that

aT∂xy = 0, (4.48)

such that the regularization will not change ∂xχ. Using the constraint (4.45) this
vector a can be identified as a = 1. The resulting regularized system is then given
by:

∂xχ = diag(µ)
(
I − yµT + γ11T

)
∂xy. (4.49)

To determine γ we left-multiply (4.49) by 1T, resulting in

1T∂xχ = µT
(
I − yµT + γ11T

)
∂xy. (4.50)

Using µTy = 1 and the requirement that 1T∂xχ = 1T∂xy we obtain

1T∂xχ = γµT11T∂xy, (4.51)

from which it is obvious that

γ =
1

µT1
> 0. (4.52)

The regularized relation between ∂xχ and ∂xy is thus given by

∂xχ = M̃∂xy = diag(µ)

(
I − yµT +

11T

µT1

)
∂xy. (4.53)

It can be shown by computing the inverse relation by applying the Sherman-

Morrison formula [75] twice and using yT1 = 1 that the matrix M̃ in (4.53) is
indeed regular, and the inverse relation reads;

∂xy =

(
I +

(
1 +

Ns

µT1

)
yµT − y1T − 1µT

µT1

)
diag(µ)−1∂xχ. (4.54)
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Finally, we want to express the diffusive mass flux ϕ in the form ϕ = −E∂xy, where
E is referred to as the diffusion matrix. To that purpose, we have to combine the
relations (4.34) for the diffusion velocity u and (4.53), relating the derivatives ∂xχ
and ∂xy. This way we obtain

ϕ = diag(ρy)u

= − diag(ρy)D̃amb∂xχ

= − diag(ρy)D̃ambM̃∂xy

= −E∂xy

. (4.55)

Finally, the mass balance for a species i is then given by

∂t(ρyi) + ∂x
(
ρvyi +

∑
j Eij∂xyj

)
= miωi, (4.56)

which in matrix-vector form reads

∂t(ρy) + ∂x(ρvy + E∂xy) = diag(m)ω. (4.57)

4.3 Stoichiometric transformation

Fortunately, for chemical reactions, some source terms in the system of mass
balances (4.56) can be eliminated using linear transformations. The idea is to
use reaction invariants, such as 1Ty = 1 and qTn = 0 (assuming a quasi-neutral
plasma), to linearly transform the source vector. These two properties can also
be exploited to simplify the system.

This section elaborates on constructing a linear transformation that elimi-
nates part of the source term, and allows for the exploitation of 1Ty = 1 and
qTn = 0. First, an example for a simple argon system is presented in Section
4.3.1. Second, in Section 4.3.2, this example is generalized to a generic set of
species and reactions. To construct the linear transformation, we propose a
method that combines techniques presented in [61] by Kräutle et al. and in [59]
by Rini et al. In the work of Kräutle a linear transformation was used in the
context of porous media, to simplify the system of equations and partly eliminate
the source vector. However, here we expand on a transformation similar to what
was presented in the context of LTE systems by Rini to eliminate source terms.
Here we use LTE as defined in [76], section 3.1.5 and section 4.4.4 from [77]. LTE
requires that collisional processes are in local equilibrium. I.e. four conditions
have to be locally satisfied;

1. The translational energy distribution is Maxwellian.

2. The population of excited states is described by a Boltzmann distribution.
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3. Ionization processes can be described by the Saha equation.

4. The chemical equilibrium is described by a dissociation balance, e.g.
Guldberg-Waage [78].

In the present work, we follow the LTE method for calculating the quasi-elemental
fractions, but the system of equations for the mass fractions is completed by ad-
ditional mass balances, rather than by a local application of thermodynamic equi-
librium relations.

4.3.1 Three-component argon system

4.3.1.1 Eliminating part of the source term

To motivate the idea of linearly combining the conservation laws, we consider the
particle balance for an argon system with three species; Ar+, Ar and e−, and the
following (net) reactions:

Ar ⇌ Ar+ + e−. (4.58)

For this simple argon system, the particle balances are given by the set of equations,

∂nAr+

∂t
+
∂ΓAr+

∂x
= ωAr+ , (4.59a)

∂nAr

∂t
+
∂ΓAr

∂x
= ωAr, (4.59b)

∂ne−

∂t
+
∂Γe−

∂x
= ωe− , (4.59c)

where we have introduced Γi as the particle flux of species i. Note, however,
that there are restrictions on the source terms, viz. conservation of charge and
conservation of number of argon nuclei:

1. Conservation of charge:
ωAr+ = ωe− , (4.60a)

for every positively charged argon ion introduced in the system, a corresponding
electron must be produced as well.

2. Conservation of argon nuclei:

ωAr+ = −ωAr, (4.60b)

in the reaction set (4.58) argon can only be converted between its ionic state Ar+

and normal state Ar, but there is no net production of the chemical element argon.

It is possible to take linear combinations of the equations in (4.59) such
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that two terms on the right-hand side vanish. For the remaining equation we can
take any linear combination, as long as it does not result in a linear dependency
between the new set of equations. A possible combination that achieves this is
given by,

∂

∂t
(nAr+ − nAr + ne−) +

∂

∂x
(ΓAr+ − ΓAr + Γe−) = ωAr+ − ωAr + ωe− , (4.61a)

∂

∂t
(nAr+ + nAr) +

∂

∂x
(ΓAr+ + ΓAr) = ωAr+ + ωAr = 0, (4.61b)

∂

∂t
(−nAr+ + ne−) +

∂

∂x
(−ΓAr+ + Γe−) = −ωAr+ + ωe− = 0, (4.61c)

by convention the homogeneous equations are positioned last. Note that the
linear combination that leads to the elimination of two source terms is not unique.
Any linear combination of (4.61b) and (4.61c), still results in a zero source term.
Neither is the choice of (4.61a) unique.

Note that the conversion of (4.59) into (4.61) can be formulated as a ma-
trix multiplication of the original system of equations. I.e. we multiply the
system

∂n

∂t
+
∂Γ

∂x
= ω, (4.62)

from the left by the constant matrix

M =

 1 −1 1
1 1 0
−1 0 1

 , (4.63)

where n, Γ and s are the vector of particle densities, fluxes and chemical source
terms respectively;

n =

nAr+

nAr

ne−

 , Γ =

ΓAr+

ΓAr

Γe−

 , ω =

ωAr+

ωAr

ωe−

 . (4.64)

The matrix M is constructed such that the last two rows of M constitute an
orthogonal complement to the source vector ω;

M =

M
T
1

MT
2

MT
3

 , (4.65)

where by construction ⟨ω⟩⊥ = ⟨M2,M3⟩, and consequently MT
2 ω = 0 and

MT
3 ω = 0. Using this transformation matrixM , a transformed system of particle
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balance equations can be introduced;

∂

∂t
(Mn) +

∂

∂x
(MΓ ) =Mω. (4.66)

To construct the matrix M , in (4.63), the concept of a “quasi-element basis”
must be introduced, similar to what was presented in Rini [59]. However, we use
the broader notion of element as inspired by the definition of Fan et al. in [62],
who defined an element as “an atom, or a compound that does not partition into
smaller compounds by chemical reactions in the system under consideration”.
In this work we define a quasi-element as: “an atom, or a compound present in
the mixture, of which the amount is unchanged by all chemical reactions in the
system under consideration”.

We add to this definition the concept of a “quasi-element basis”; “if all
non-quasi-element species present in a mixture can be constructed in chemical
reactions from the set of quasi-elements, then this set of quasi-elements is called
a quasi-element basis.” Spectator particles without reactions are necessarily
quasi-elements. An algorithm for finding such a basis, from an arbitrary chemical
reaction system is elaborated in Section 4.3.2. Note that our definition allows a
transformation similar to the one introduced in [59] also for non-LTE -systems,
where formation reactions allow every species to be converted into other species as
long as the stoichiometry is correct. To illustrate why choosing chemical elements
as basis species would not suffice in general, consider the example mixture from
[58] containing HF and (HF)6. The species HF and (HF)6 can be converted via
the reaction

HF ⇄ (HF)6, (4.67)

indeed there would be no (net) production of H nor of F. However, this may lead
one to the conclusion that two source terms could be eliminated, which is not the
case.

To elaborate on these definitions, consider the mixture with Ar+,Ar, e−

which can be used as a simple model for argon. Note that if we choose Ar and e−

as quasi-elements, the remaining species can be constructed from these species

Ar+ ⇄ Ar− e−. (4.68)

Since all species can be constructed from quasi-elements via chemical reactions, the
chosen set of quasi-elements forms a quasi-element basis. As such the species Ar+

can be seen as the quasi-element Ar minus e−. Since by definition quasi-elements
cannot be produced or consumed in chemical reactions, one can conclude that for
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any chemistry set which has Ar and e− as its only quasi-elements;

{ω} =

[
1 1 0
−1 0 1

]ωAr+

ωAr

ωe−

 = 0, (4.69)

i.e., the chemical sources for quasi-elemental are zero. Here quasi-element quanti-
ties are denoted by {}, for example {n} would be the number density of a quasi-
element. A useful consequence of this is that it is possible to also construct a linear
relation to obtain the total number density of each quasi-element;

{n} =

[
{nAr}
{ne−}

]
=

[
1 1 0
−1 0 1

]nAr+

nAr

ne−

 . (4.70)

The first entry, {nAr}, is the total amount of “quasi-elemental Ar” present in all
species combined. The second entry is the total amount of “quasi-elemental e−”.
We use the convention that basis species are put at the end of a vector, and define
Ne as the number of quasi-elements. In the argon example Ne = 2.

Note that in LTE the chemical composition is given by thermodynamic
equilibrium relations. These relations give the ratio between the concentrations
of two species, irrespective of the specific reaction path between them. However,
in non-LTE the specific reaction path and reaction rate is relevant. The reaction
network does not have to include the formation reactions, nor linear combinations
of specific formation reactions. As a consequence the reaction network does not
have to provide a possible path to convert two species.

For example, consider a mixture at 293K with H2, O2 a trace amount of
H2O and one reaction 2H2 + O2 → 2H2O. Even though this reaction is allowed,
the reaction rate may be negligible at this temperature. In such a case the
modeler may choose to not include this reaction as part of a chemical reduction
technique. By omitting this reaction, the reaction network is “incomplete”, as
there is no available conversion between H2, O2 and H2O.

In terms of linear algebra, if the reaction is included the source vector ex-
ists in a one-dimensional subspace of span{ωHe⃗1, ωOe⃗2, ωH2Oe⃗3} for an arbitrary
set of basis vectors e⃗1, e⃗2 and e⃗3 in R3. If the reaction is removed the source
vector exists in a zero-dimensional subspace, i.e., no chemical reactions.

The challenge of completing non-LTE reaction sets is founded in that non-
LTE requires the specific reaction mechanism, and corresponding reaction rates to
be known. First, a presented reaction set may not be valid under all conditions,
for example the mechanism described in [79] is only valid for temperatures be-
tween 950 and 2500K. Second, several reaction mechanisms may exist for similar
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chemistry sets, for example the 25 species CO2 network presented in [80] and the
72 species CO2 network in [81, 82]. Third, complex reaction mechanisms can lead
to excessive computational load for one, two and three-dimensional studies and
chemical reduction techniques have to be applied. A practical example would be
the dissociation of CO2; in LTE the ratio of CO2 to CO would be determined
by a thermodynamic equilibrium relation like Guldberg-Waage. However, in the
case of non-LTE the dissociation process involves a complex reaction mechanism
involving the vibrational states of CO2 [81].

4.3.1.2 Exploiting spatial invariants

With the transformation matrix M constructed, part of the source-vector can be
eliminated. However, it was also noted that the construction of such a transforma-
tion matrix is not unique. One can left-multiply the bottom two rows of the matrix
M constructed in the argon example by any arbitrary, non-singular matrix of size
2×2 without destroying the property that the last two source terms are eliminated.

We exploit this additional degree of freedom by altering M such that one
of the transformed variables becomes 1Ty, and another one becomes; qTn. This
reformulation can then be used to enforce 1Ty = 1 and qTn = 0 throughout
the domain. To simplify the analysis we consider the case with only one charged
species in the set of quasi-elements.

If we are working in terms of mass fractions instead of number densities
the transformation matrix M has to be scaled first to account for this. This
can be seen by comparing the particle balances, equation (4.1), and the mass
balances, equation (4.5). The transformation matrix when working with mass
fractions becomes

T := diag(m)M diag(m)−1, (4.71)

this is equivalent to first transforming the source vector for mass fractions to the
one required for number densities, next applying matrixM , and finally converting
back to mass fractions. The transformed system in terms of mass fractions is given
in matrix-vector form as

∂

∂t
(ρTy) +

∂

∂x
(TΓy) = T diag(m)ω, (4.72)

with Γy the mass fluxes. Continuing with the argon example, with Ar and e−

chosen as quasi-elements, we get the transformation matrix T as follows;

T =


1 −mAr+

mAr

mAr+

me−

mAr

mAr+
1 0

− me−
mAr+

0 1

 . (4.73)



4.3. Stoichiometric transformation 49

To uncover an interpretation of the transformed variables, we first carry out the
matrix product Ty, from which it can be seen that

[Ty]3 = − me−

mAr+
yAr+ + ye− , (4.74)

which can be identified as the condition for quasi-neutrality;

[Ty]3 =
me−

ρ
(−nAr+ + ne−), (4.75)

the term in parentheses is proportional to the charge density, and since we assume
a quasi-neutral plasma [Ty]3 = 0 throughout the domain. In Section 4.3.2.3 it
will be shown that the charge density of the quasi-elements must equal the charge
density of all species. Hence, if quasi-neutrality is assumed, the charge density of
the quasi-elements must also be zero.

A second spatial invariant is present in the system, namely, conservation of
mass. Starting from the quasi-element number densities

{nAr} = nAr+ + nAr, {ne−} = −nAr + ne− , (4.76)

we obtain the quasi-element mass fractions

{yAr} =
mAr

mAr+
yAr+ + yAr, {ye−} = −

me−

mAr+
yAr+ + ye− , (4.77)

from which it can be seen that

{yAr}+ {ye−} = yAr+ + yAr + ye− = 1, (4.78)

which is also constant throughout the entire domain. To achieve a transformation
matrix T̃ that results in a variable representing

∑
i yi = 1, we multiply T from

the left by another matrix that performs a summation of the quasi-element mass
fractions {yAr}+ {ye−};

T̃ =

1 0 0
0 1 1
0 0 1

T =


1 −mAr+

mAr

mAr+

me−

mAr

mAr+
− me−

mAr+
1 1

− me−
mAr+

0 1

 . (4.79)

This operation only affects the second variable, which now reads,

[T̃ y]2 =

(
mAr

mAr+
− me−

mAr+

)
yAr+ + yAr + ye− , (4.80)

then, since mAr −me− = mAr+ , it follows that [T̃ y]2 = 1. I.e. {yAr}+ {ye−} = 1
throughout the domain. It will be shown in Section 4.3.2.3 that this property
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generalizes to a generic set of species as well. With this we arrive at the final form
of the transformation for the argon system;

∂

∂t

(
ρT̃ y

)
+

∂

∂x

(
T̃ Γy

)
= T̃ diag(m)ω, (4.81)

where now two components of the source term have been eliminated and two
transformed variables are known beforehand and can be set constant throughout
the domain. This results in a modest reduction of the number of equations.
Additionally, by choosing the transformation in this way it is possible to enforce
both 1Ty = 1 and qTn = 0 explicitly.

An example where even further reduction can be achieved by exploiting
spatial invariants is in the context of atmospheric re-entry studies, here it is
common to assume the nitrogen and oxygen element fractions as constant [83].

4.3.2 Transforming a generic system

4.3.2.1 Constructing the transformation matrix

A generic reaction r in a mixture with Ns species Xp can be written as

Ns∑
p=1

νf(p, r)Xp →
Ns∑
p=1

νb(p, r)Xp. (4.82)

The coefficients νf(p, r) and νb(p, r) represent the number of particles of type
Xp that are consumed or produced by the reaction r, respectively. The
two sets of coefficients for a collection of Nr reactions form two matrices
νf = (νf(p, r)), νb = (νb(p, r)) ∈ QNs×Nr . The coefficients of reaction r
are located in column r of these matrices. The net number of particles of type
Xp that is produced in reaction r is given by the number ν(p, r) = νb(p, r)−νf(p, r).

Let us now define a matrix with coefficients Me(i, p) as the number of
quasi-elements of type i that is present in a species of type p. These coefficients
Me(i, p) are the stoichiometric coefficients of the species p with respect to the
quasi-elements chosen as a basis. These coefficients form a matrixMe ∈ QNe×Ns .
The matrix Me can always be decomposed as

Me =
[
B INe

]
, (4.83)

where B is a matrix with Ne rows and Ns −Ne columns and INe is the identity
matrix of rank Ne. To obtain the square transformation matrix M , we use an
orthogonal complement to Me to ensure M is invertible;

M =

[
INs−Ne −BT

B INe

]
. (4.84)
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Note, that this specific choice also offers a clear interpretation to the top part of
M , i.e., each row describes which combination of quasi-elements it takes to create
one of the remaining species. Additionally, this specific form is used in [59] to link
species enthalpies to reaction enthalpies.

For a reaction r, with coefficients given by νf(:, r) and νb(:, r), the rth col-
umn of the matrices νf and νb indicates the reaction components. The total
number of quasi-elements that are consumed or produced by one occurrence of the
reaction r are given by the column vectorsMeνf (:, r) andMeνb(:, r), respectively.
However, since quasi-elements are conserved in reactions we conclude that for
every reaction r

Meνf (:, r) =Meνb(:, r), (4.85)

and as a consequence, in terms of the matrix ν = νb − νf,

Meν = 0. (4.86)

The net source obtained by taking all reactions into account is compactly written
as

ω = νZ, (4.87)

where the vector Z describes the volumetric rate of each reaction. Multiplying
(4.87) with Me we get the quasi-elemental production rates; since matrix multi-
plication is associative and Me(νb − νf) = 0 we again find the result that

Meω =MeνZ = 0. (4.88)

Relation (4.88) expresses once more that no quasi-elements are produced or de-
stroyed in reactions. This completes the derivation that for generic systems a
matrix M can be used to partially eliminate the source terms.

4.3.2.2 Constructing a quasi-element basis

To find a suitable set of quasi-elements E in the basis, Algorithm 2 can be applied.
First we construct the set U of all species present in the mixture, including spec-
tator particles that do not take part in any chemical reaction. Next, we reduce
the original reactions in the system to their net form. For example the reaction

e− +Ar→ 2e− +Ar+, (4.89a)

would be reduced to the net reaction

Ar→ e− +Ar+. (4.89b)

We then write the reactions as a collection of unordered sets S and run Algorithm
2. After it completes, the set E will contain a suitable set of quasi-elements, the
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set R will contain all remaining species. Note that this algorithm does not provide
a unique result, since the step “Choose a species i from U” allows for an arbitrary
choice. An example for a 9-species mixture is provided in Section 4.C. Once the
basis is determined, the construction of M then follows a similar procedure as
elaborated in [59]. However, in the procedure in [59] chemical elements are chosen
as a basis and all conversions are assumed to exist in the context of LTE. In
this work, Algorithm 2 allows a quasi-element basis to be obtained even when
certain conversions are not allowed. The main characteristics of this method can
be summarized as follows:

1. There is freedom of choice of basis species; cf. line 9 in Algorithm 2. This
allows for further exploitation of the transformation.

2. This method automatically identifies linear dependence between species.

3. (Non-trivial) Molecules may also be chosen as quasi-elements. For example,
adding the species ArH with reaction 2Ar + H2 → 2ArH to the reaction set
given in Appendix 4.C, results in a possible basis E = {Au,ArH, e−,H2,Al+}.

4. It is possible to identify a basis for incomplete reaction sets with spectator
species.

Algorithm 2 Proposed method for finding a quasi-element basis from a given
reaction set.

1: U = {All species},R = {}, E = {},S = {Collection of reaction sets}
2: for each set j in the collection S do ▷ Spectator particles are always

quasi-elements
3: if j contains exactly 1 species then
4: Add this species to E
5: Remove this species from U
6: end if
7: end for
8: while U ̸= {} do
9: Choose a species i from U

10: Add i to E
11: Remove i from U
12: while there exist sets in S, which have exactly 1 species k that is not in
R∪ E do

13: Add species k to R
14: Remove species k from U
15: end while
16: end while
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4.3.2.3 quasi-elemental properties

Rini et al. [59] showed that quasi-element diffusion fluxes can be obtained from
the full array of diffusion fluxes. Similarly, for a generic set of species, with a
corresponding quasi-elemental basis we can relate the number density of the quasi-
elements to the number density of the species, i.e., {n} =Men and also the masses
of the species chosen as quasi-elements, {m}, to masses of the species; i.e.

mp =
∑

iMb(i, p){m}i, (4.90)

which follows from the definition of Me. From the definition of the mass density
ρ in (4.3) we can derive that

ρ =mTn = (MT
e {m})Tn = {m}T

(Men) = {m}T{n}, (4.91)

i.e., the mass density of the quasi-elements and the species is the same. The quasi-
elemental mass densities are defined as {ρ}i = {m}i{n}i and follow directly from
transforming the vector of species mass densities;

{ρ} = diag({m}){n}
= diag({m})Men

= diag({m})Me diag(m)−1ρ

= Tρ.

(4.92)

As a result the sum of the quasi-elemental mass densities is given by

1T{ρ} = {m}T
Me diag(m)−1ρ =mT diag(m)−1ρ = 1Tρ. (4.93)

This shows that the total mass density equals the sum of the quasi-elemental
mass densities.

The quasi-elemental mass fractions are given by the relation {y}i = {ρ}i/(1Tρ).
Combining equations (4.92) and (4.93) we find the expected relations

{y} = diag({m})Me diag
−1(m)y. (4.94)

Moreover, left-multiplying the relation {y} = {ρ}/(1Tρ) with 1T and applying
(4.93) we obtain

1T{y} = 1. (4.95)

Analogous results can be obtained for mixtures in which one or more of the quasi-
elements carry electric charge. Then the charge of each species can be obtained
from the charge of the quasi-elements via

q =MT
e {q}. (4.96)
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The charge density ρc of the mixture can be written as

ρc = q
Tn = {q}T{n}, (4.97)

in a derivation similar to what was shown for (4.95), where we replace {m} and
m with {q} and q, respectively. With this result we arrive at the conclusion that
the sum of the quasi-element charge densities is equal to the sum of the species
charge densities.

Therefore, by invoking relations (4.95) and (4.97) we can construct a ma-

trix T̃ similar to the one shown for the argon example in (4.79), such that two of
the transformed variables are constant.

4.4 Discretization

As in general no analytical solution is known to the full multi-component particle
balance set, a numerical approximation has to be computed instead. A generic
one-dimensional system of conservation laws can be written as

∂φ

∂t
+
∂Γ

∂x
= s, (4.98a)

with the flux vector given by;

Γ := Uφ− E ∂φ
∂x

. (4.98b)

In the case of multicomponent diffusion φ = y or φ = T̃ y, the original, or
transformed mass fractions, respectively. Note that the components of φ are
coupled via the diffusion matrix E and via the source terms. The flux vector Γ
is a generic flux vector corresponding to φ. One can choose to transform the
discretized system, or choose to discretize the transformed system. In this work
we first transform, then discretize, as it requires two transformations less. Both
options yield the same discrete system of equations.

Many strategies exist to spatially discretize such partial differential equa-
tions, including finite element, finite difference, finite volume and spectral
methods. Finite Volume Methods (FVM) are based on the integral formulation
of the conservation law, which can be obtained by integrating (4.98a) over an
arbitrary interval [a, b];

d

dt

∫ b

a

φ(x, t) dx+ Γ (b, t)− Γ (a, t) =

∫ b

a

s(x, t) dx. (4.99)

The concept of the FVM is to approximate the flux vectors Γ by a numerical flux
F at the edges of each control volume. To compute this numerical flux vector we
closely follow the derivation in reference [56].
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4.4.1 Finite Volume Method

In the FVM method the domain is subdivided into a finite number of disjunct
intervals; referred to as control volumes. Here a cell-centered approach is applied,
as shown in Fig. 4.1. In such a configuration φ has to be computed in the nodal
points xj . Control volumes are defined around this nodal point, the j-th control
volume extends over [xj−1/2, xj+1/2], where xj±1/2 := 1

2 (xj + xj±1) and the width
of this volume is defined as the grid size ∆x := xj−1/2 − xj+1/2.

Figure 4.1: Cell centered grid used for discretization. The unknown φ has to be
determined at each grid point xj and the flux vector at the edges xj±1/2 of an
interval Ij = [xj−1/2, xj+1/2].

Choose [a, b] = Ij in (4.99), then approximating the integrals by the midpoint rule
yields the semi-discrete conservation law;

φ̇j(t)∆x = −(Fj+1/2(t)− Fj−1/2(t)) + sj(t)∆x. (4.100)

Here φj(t) is the numerical approximation of φ(xj , t), similarly sj(t) := s(xj , t).
Equation (4.100) states that the rate at which φ changes is given by the net influx
into the control volume, plus the local production/consumption via the source
term sj . Alternatively this can be viewed in terms of fluxes,

Fj+1/2(t)− Fj−1/2(t) = (sj(t)− φ̇j(t))∆x, (4.101)

where the factor sj(t)− φ̇j(t) can be perceived as a modified source term, which
we denote by ŝj . In the following the explicit time-dependence (t) is omitted.
Section 4.4.2 outlines the numerical approximation for the flux vectors Γ (xj±1/2)
in terms of φj and φj±1 and the sources ŝj and ŝj±1.

4.4.2 Flux approximation

The next step is to find an expression for the fluxes; for each cell face at xj+1/2

we seek to approximate the flux Γ (xj+1/2) by a “numerical flux” Fj+1/2 in terms
of the neighboring unknowns and neighboring source terms;

Fj+1/2 = αj+1/2φj − βj+1/2φj+1 +∆x(γj+1/2ŝj + δj+1/2ŝj+1). (4.102)
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Assume the advection and diffusion matrices U and E are piecewise constant on
each interval [xj , xj+1]. Then the matrix coefficients α,β,γ, δ in (4.102) are also
piecewise constant and only depend on U and E. The matrix U is often a constant,
scalar matrix (i.e., U = uI), however, for the sake of completeness we defineUj+1/2

as the advection matrix on the cell face located at xj+1/2. The values of Uj+1/2

and Ej+1/2 are estimated using the arithmetic average of φ and evaluating the

functions for U and E on the position xj+1/2; Uj+1/2 := U( 12 (φj +φj+1), xj+1/2)

and Ej+1/2 := E( 12 (φj +φj+1), xj+1/2) when needed. The idea is to compute the
numerical flux from the local system boundary value problem

d

dx
(Γ ) =

d

dx

(
Uj+1/2φ− Ej+1/2

dφ

dx

)
= ŝ, xj < x < xj+1,

φ(xj) = φj , φ(xj+1) = φj+1,

(4.103)

and use this to approximate the flux at the cell edge. Here we give a brief outline of
the derivation for the flux approximation, for more details see [56]. The numerical
approximation for the flux vector Γ is the superposition of the flux approximations
computed from the homogeneous and inhomogeneous systems;

Γ (xj+1/2) ≈ Fj+1/2 = F h
j+1/2 + F

i
j+1/2, (4.104)

where F h
j+1/2 is the flux corresponding to the homogeneous advection-diffusion

system, and F i
j+1/2 is the inhomogeneous flux vector, obtained by talking into

account s in the flux approximation. To simplify notation we define the variables

A := E−1U , P := ∆xA, S(x) :=

∫ x

xj+1/2

s(ξ) dξ. (4.105)

To compute all matrix functions needed, it is assumed that the matrix A has
only real eigenvalues λ and a complete set of eigenvectors v, which satisfy the
generalized eigenvalue problem

(U − λE)v = 0, (4.106)

such that A has the spectral decomposition

A = V ΛV −1, (4.107)

with V containing the eigenvectors and Λ a diagonal matrix containing the
corresponding eigenvalues. The assumption of real eigenvalues will be used to
determine the upwind value of the source term, to be specified in equation (4.115).
Two important cases for which this assumption holds are: first, U is a scalar
matrix and second this condition is also satisfied if E is symmetric positive definite
as elaborated in [56].
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To obtain an expression for the numerical flux, we integrate equation (4.103) from
xj+1/2 to x ∈ (xj , xj+1), which gives

Γ (x)− Γ (xj+1/2) = S(x). (4.108)

Since A is assumed piecewise constant, the flux vector given in equation (4.103)
in this interval can be written, using the integrating factor, as

Γj+1/2 = −Ej+1/2e
xAj+1/2

d

dx

(
e−xAj+1/2φ

)
. (4.109)

Substituting (4.109) into (4.108), isolating the derivative, subsequently integrating
from xj to xj+1 and applying the boundary conditions given (4.103) results in the
following expression for the flux;

Γ (xj+1/2) = Ej+1/2

[∫ xj+1

xj

e−xAj+1/2 dx

]−1

×

[
e−xjAj+1/2φj − e−xj+1Aj+1/2φj+1 −

∫ xj+1

xj

e−xAj+1/2E−1
j+1/2S dx

]
.

(4.110)

If the source term is set to 0, this results in the expression for the homogeneous
flux;

F h
j+1/2 =

E
∆x

(
B(−Pj+1/2)φj −B(Pj+1/2)φj+1)

)
, (4.111)

where B is the Bernoulli function defined by;

B(z) :=
z

ez − 1
. (4.112)

To derive the approximation for the inhomogeneous flux, the integrals in equation
(4.110) are evaluated exactly using a Green’s matrix assuming s is constant. For
more details see ref. [56]. This results in

F i
j+1/2 = ∆x

(
1
2I −W (P̃j+1/2)

)
ŝu,j+1/2, P̃j+1/2 = ∆xUj+1/2E−1

j+1/2. (4.113)

The function W (z) used here is given by

W (z) :=
ez − 1− z
z(ez − 1)

, (4.114)

and the upwind value of the source, ŝu,j+1/2, is given by the linear combination

ŝu,j+1/2 = 1
2 (I + σj+1/2)ŝj +

1
2 (I − σj+1/2)ŝj+1,

σj+1/2 = Ej+1/2sgn(Aj+1/2)E−1
j+1/2.

(4.115)
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The matrix function sgn(A) is defined via the spectral decomposition of A as

sgn(A) = V sgn(Λ)V −1, sgn(Λ) = diag(sgn(λ1), sgn(λ2), ..., sgn(λm)), (4.116)

with definition sgn(0) = 1. The complete flux approximation is then given by the
superposition

Fj+1/2 = F h
j+1/2 + F

i
j+1/2. (4.117)

Substituting the expressions for the homogeneous (4.111) and inhomogeneous
(4.113) flux vectors in the semi-discrete conservation law (4.100), the resulting
semi-discrete scheme is given by;

∆x
(
γj−1/2φ̇j−1 + (I − γj+1/2 + δj−1/2)φ̇j − δj+1/2φ̇j+1

)
−αj−1/2φj−1 + (αj+1/2 + βj−1/2)φj − βj+1/2φj+1

= ∆x
(
γj−1/2sj−1 + (I − γj+1/2 + δj−1/2)sj − δj+1/2sj+1

)
,

(4.118)

with the coefficient matrices defined by

αj+1/2 =
1

∆x
Ej+1/2B(−Pj+1/2),

βj+1/2 =
1

∆x
Ej+1/2B(Pj+1/2),

γj+1/2 =
1

2
Qj+1/2(I + σj+1/2),

δj+1/2 =
1

2
Qj+1/2(I − σj+1/2),

Qj+1/2 =
1

2
I − Ej+1/2W (P̃j+1/2)E−1

j+1/2.

(4.119)

4.5 Results and discussion

To illustrate the claims made in Section 4.3 the transformation is applied to two
example systems, the first of which is the three-species argon system as introduced
earlier, the second a more complex system with 8 species and 10 reactions. To
obtain a steady state solution to the semi-discrete system given by (4.118), we
first discretize the time derivative with implicit Euler. Next, we consider the limit
for t → ∞, equivalent to solving (4.118) with φ̇ = 0. This results in a nonlinear
algebraic system of the form

F (ψ) = b(ψ)−A(ψ)ψ = 0, (4.120)

where ψ is the vector of unknowns containing φ for each grid point. Both the
transformed, and untransformed systems yield a nonlinear system of the form
(4.120). Such systems can be solved with a variety of methods such as Newton or
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Picard iteration. Here we opt for Picard iteration to solve the resulting nonlinear
algebraic system of equations. For each Picard iteration a linear system of the
form,

A(ψk)ψk+1 = b(ψk), (4.121)

has to be solved where ψk is the k-th iterate, a vector containing φ for each
grid point, at iteration number k. Since the system matrix A and the vector b
depend on ψ, both have to be recomputed for each iteration. We iterate without
under-relaxation, and as an initial guess we take a linear interpolation between
the imposed boundary conditions. To solve each resulting linear system, we use
the mldivide functionality provided by MATLAB [39]; for these systems mldivide
utilizes LAPACK’s linear solver for a general band matrix provided by the Intel(R)
Math Kernel Library Version 2018.0.3 Product Build 20180406 for Intel(R) 64
architecture applications. Linear Algebra PACKage Version 3.7.0. We continue
the Picard iteration until the relative residual satisfies the criterion

∥b(ψk)−A(ψk+1)ψk+1∥2
∥b(ψk)∥2

< 10−7. (4.122)

We also compute the condition number κ(A), which gives an upper bound on the
ratio of the relative error in ψ and the error in the right-hand side b. As a rule
of thumb, if the condition number κ(A) = 10p, one can expect to lose p digits of
precision in solving (4.121) [84, p. 321].

It will be shown that, in our numerical experiments, the condition number
of the transformed system has significantly decreased, compared to the original
system. However, the condition number can be further reduced by rescaling the
rows and columns of each linear system. Inspired by the procedure applied in [85]
we perform a straightforward row and column scaling to the matrix A. First we
left-multiply the matrix A, with Q = diag(qi) with coefficients

qi :=

 N∑
j=1

|Aij |

−1

, (4.123)

which scales the system matrix such that the absolute row sums become equal to
1. Subsequently, a similar scaling is applied to the columns of QA with the matrix
P = diag(pj), with

pj =

(
N∑
i=1

∣∣∣(QA)ij

∣∣∣)−1

. (4.124)

As a final result this gives a scaled coefficient matrix QAP , and the resulting,
scaled system reads (

QA(ψk)P
)(
P−1ψk+1

)
= Qb(ψk). (4.125)
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4.5.1 Three-species argon system

To illustrate the stoichiometric transformation we recall the argon example from
Section 4.3.1, and apply the transformation T̃ from equation (4.79) such that two
out of three transformed variables are constant.

This numerical experiment is governed by the mass balances as given by
equation (4.5). We compute a solution over the domain extending from x = 0 to
x = L, with the length of the domain given by L = 1 × 10−4 m. Here we take a
constant ion and electron temperature, Ti = 300 K and Te = 7500 K, respectively.
The pressure has been fixed at 103 Pa, and there is a constant advection of −0.1
kgm−2s−1. On both boundaries Dirichlet data have been imposed, in such a way
that quasi-neutrality and

∑
i yi = 1 holds on both boundaries. First the values

for yAr and yAr+ are set, then the electron mass fraction is computed from the
quasi-neutrality requirement, finally each mass fraction is divided by

∑
i yi, such

that the resulting boundary conditions satisfy
∑

i yi = 1 and quasi-neutrality.
The starting values for yAr and yAr+ are given by

y =

[
yAr+

yAr

]
, yL := y(x = 0) =

[
0.04
0.96

]
, yR := y(x = L) =

[
0.96
0.04

]
. (4.126)

Two reactions are included, an ionization and a recombination reaction;

Ar + e−
ki−→ Ar+ + 2e−, (4.127a)

Ar+ + 2e−
kr−→ Ar + e−, (4.127b)

where ki and kr are the reaction rates given by an Arrhenius-type relation,
detailed in Section 4.B.

The effect of the transformation can be seen in Figure 4.2, before transfor-
mation none of the three variables are constant, after transformation it can be
observed that (T̃ y)2 = 1 and (T̃ y)3 = 0 as expected from the analysis in Section
4.3.1. These two variables represent

∑
i yi = 1 and quasi-neutrality respectively.

It will be shown shortly to which degree these variables are constant.

Since two out of three transformed variables are known, these do not need
to be solved for, resulting in a smaller system. As a result the linear system that
has to be solved in each Picard iteration has N instead of 3N degrees of freedom.
The cost of computing the transformation itself is modest, similar to the cost of
computing the coefficient matrices required by the discretization scheme.
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Figure 4.2: Computed mass fractions for the argon system, using 5 grid points.

A second effect of the transformation is that the two source terms corresponding
to quasi-elements vanish, which can be seen in Figure 4.3. After the transformation
the second and third source term have been reduced to effectively zero. This is
expected based on the meaning of the variables [T̃ y]2 = 1 and [T̃ y]3 = 0, since
chemical reactions cannot produce mass, nor (net) electric charge.
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Figure 4.3: Computed source terms for the argon system.

Next, we report the worst condition number of the system matrix encoun-
tered in Picard iteration, as function of the number of grid points, see Figure 4.4.
Applying the rescaling shows a strong reduction in condition number, see Figure
4.4. After scaling the transformed system also shows a significant reduction in
condition number compared to the original system. The slope of both the orig-
inal and transformed systems are identical, approximately 2, implying that the
condition number increases proportional to N2. Given the reduction in condition
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number, the scaled variant (4.125) is used in the Picard iteration for all numerical
experiments shown here.
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Figure 4.4: Effect of scaling the transformed and original system matrices.

Finally, a comparison is made between the transformed and original systems
for how well conservation of mass, 1Ty = 1 and quasi-neutrality qTn = 0, are
satisfied. To quantify these invariants we introduce

σm := |1− 1Ty|, σc :=

∣∣∣∣ qTne1Tn

∣∣∣∣ , (4.128)

where e is the elementary charge. For every grid cell in the domain we compute
σm and σc, then we take the infinity norm to determine the maximum deviation.
This is reported in Figures 4.5a and 4.5b, respectively. It can be seen that the
transformed system is able to represent both quantities more accurately. However,
not exactly since there is an apparent error in transforming back from T̃ y to y of
the order of the rounding errors.
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Figure 4.5: Effect on conservation of mass and quasi-neutrality, here the largest
deviation for each simulation is plotted for the argon system.

4.5.2 Aluminum-argon-hydrogen system

Next, the transformation is applied to a larger system involving 8 species and 2
ions. This system involves the species Ar+, Ar∗, Al+, H, e−, Ar, Al and H2.
Here the last four of these can be used as quasi-elements to construct all other
species. Applying the construction as proposed in Section 4.3 yields the non-
integer transformation matrix M , given by

M =



1 0 0 0 1 −1 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 1 0 −1 0
0 0 0 1 0 0 0 − 1

2

−1 0 −1 0 1 0 0 0
1 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1

2 0 0 0 1


. (4.129)

The final transformation matrix T̃ is constructed such that [T̃ y]5 = 0 represents

qTn = 0 and [T̃ y]6 = 1 represents yT1 = 1. We solve this system over a domain
from x = 0 to x = L, with L = 10−3 m. Similar to the argon experiment, we set
the mass fraction values for all species, except ye− , then the electron mass fraction
is computed from the quasi-neutrality requirement, finally each mass fraction in
the resulting array is divided by

∑
i yi such that again both

∑
i yi = 1 and quasi-

neutrality are satisfied on the boundaries. The starting values for this system are
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given by

y =



yAr+

yAr∗

yAl+

yH
yAr

yAl

yH2


, yL := y(x = 0) =



0.16
0.11
0.13
0.13
0.19
0.22
0.046


, yR := y(x = L) =



0.0081
0.11
0.094
0.26
0.22
0.25
0.054


. (4.130)

Similar to the argon system, it can be seen in Figures 4.6 that scaling the system
matrix has a strong impact on the condition number. However, for both the scaled
and unscaled systems the transformed system is significantly better conditioned
than the original. As is the case with the argon system of Section 4.5.1, the system
matrix for the transformed system is slightly smaller. The transformed system has
6N degrees of freedom, whereas the original system has 8N .
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Figure 4.6: Effect of transforming and scaling on the condition number.

It can also be seen in Figures 4.7a and 4.7b that both conservation of mass,
and quasi-neutrality are improved for the transformed system compared to the
original. The only source of error in these quantities that remains is rounding
errors.
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Figure 4.7: Effect on the conservation of mass and quasi-neutrality, here the largest
deviation for each simulation is plotted for the 8 species system.

The total time required to solve all linear systems involving the system matrix
is given in Figure 4.8a. Here it can be seen that the transformed system does
provide a speedup over the original. For more than 20 gridpoints, the slopes are
close, indicating that both the original and transformed system have the same
asymptotic complexity.

The total number of iterations required before the system converged is slightly,
but not significantly affected by the transformation. This can be seen in Figure
4.8b. The systems with N ≥ 256 reached the maximum allowed number of 500
iterations.
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Figure 4.8: Effect of the transformation on the total CPU time for the Picard
iteration.

To summarize, for the argon, and the argon-aluminum-hydrogen systems, ap-
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plying the stoichiometric transformation we can eliminate part of the source term,
reduce the condition number of both the scaled and unscaled system matrix, and
improve on both conservation of mass and quasi-neutrality. Using conservation
of mass and quasi-neutrality, allows for a reduction of the linear system involved.
Even though this does not reduce the asymptotic complexity, numerical experi-
ments show a speedup for the transformed system.

4.6 Conclusions and outlook

Starting from the mass balances and the Stefan-Maxwell relations [16, 55], we
have proposed an alternative choice of regularization parameter in the derivation
of the diffusion matrix. We have shown that an alternative derivation exists to
link the gradients of mass and mole fractions needed for computing the diffusion
velocities.

By combining ideas from porous media [62, 61], and the idea of taking lin-
ear combinations of species to derive a stoichiometric transformation similar,
but not identical to the one proposed by Rini [59], an algorithm is introduced
to identify a basis set of quasi-elements, given a mixture where only certain
reactions are allowed. For an argon example the stoichiometric transformation
has been derived explicitly, which is then generalized to an arbitrary chemistry
set. By introducing a matrix T̃ it is possible to obtain a transformation such
that two of the transformed variables are invariants of the system. We are
able to show in numerical experiments that applying this transformation re-
sults in exact enforcement of the invariants quasi-neutrality and mass conservation.

The number of iterations required to achieve the tolerance set is only mildly
affected by the transformation. The time to solve all linear systems in the Picard
iterations combined is reduced. This is caused by two effects. First, the decrease
in the number of iterations and second, each linear system for the transformed
system has 2N fewer unknowns. An additional effect is that the transformation is
able to significantly reduce the condition number, both before and after scaling.
This is expected to first of all reduce the error, but may also allow for faster
convergence of Krylov-subspace iterative methods. For example, the rate at which
the well-known Conjugate Gradient method decreases the error is proportional to
1/
√
κ [32, p. 215][32, p260-p261].

The main objective of our work is to illustrate the stoichiometric transfor-
mation for plasma-chemical systems. Based on the results presented in Section
4.5, this method is able to impose the constraints quasi-neutrality and conser-
vation of mass up to the machine precision. The slight reduction in CPU time,
combined with the decreased condition number indicate that this method may be
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more advantageous in 2D and 3D simulations, for which the cost of solving linear
systems is more significant.

A possible improvement to reduce the number of iterations required to
solve (4.120) would be to use Newton iteration instead of Picard iteration. An
additional modification, would be a strategy similar to Gummel iteration [86],
where first the source-free part would be solved, providing an improved guess for
the part that does not have a zero source. To improve convergence, it would be
an idea to incorporate the method of false transients to obtain the steady state
solution, possibly in conjunction with Gummel iteration. Since the stoichiometric
transformation guarantees that chemical reactions do not produce quasi-elements,
it may also be an option to combine the stoichiometric transformation with
chemical reduction techniques for complex chemistries, for example, by combining
the timescale analysis of CSP [87] with the stoichiometric transformation and
approximating a subset of the transformed variables as constant.

Appendix

4.A On the positive definiteness of the ambipolar diffusion
matrix

The ambipolar diffusion matrix is defined in equation (4.32) as the real matrix;

Damb := D̃ − D̃ρc(D̃ρc)
T

ρTc D̃ρc
, (4.131)

where D̃ = F̃−1 is Symmetric Positive Definite (SPD) [16]. The regularized,
ambipolar diffusion matrix

D̃amb :=Damb + βqqT, β > 0, q ̸= 0, (4.132)

is symmetric, as can be seen from (4.131). Giovangigli derived an ambipolar
diffusion matrix in [63], which is then shown to be symmetric positive semidefinite
using a generalized inner product. Here, we use a similar approach to prove that
the regularized ambipolar diffusion matrix (4.132) is regular.

Our goal is to show positive definiteness of D̃amb from the definition;

∀a ̸= 0 : aTD̃amba > 0. (4.133)

Note that since D̃ is SPD, one can define an inner product for two real vectors a
and b, as

⟨a, b⟩D̃ := aTD̃b, (4.134)

since it adheres to the properties that define an inner product:
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1. Symmetry:
⟨a, b⟩D̃ = ⟨b,a⟩D̃. (4.135a)

2. Linearity in the first argument, for real scalars α, γ and a vector d:

⟨αa+ γd, b⟩D̃ = α⟨a, b⟩D̃ + γ⟨d, b⟩D̃. (4.135b)

3. Positive-definiteness:
∀a ̸= 0 : aTD̃a > 0. (4.135c)

Second, is the inner product can be used to define a norm

aTD̃a =: ∥a∥2
D̃
, (4.136)

moreover, for inner products the Cauchy-Schwarz inequality holds

⟨a, b⟩D̃ ≤ ∥a∥D̃∥b∥D̃. (4.137)

Left-multiplying D̃amb with aT and right-multiplying with a results in the
quadratic form

aTD̃amba = aTD̃a− a
TD̃ρcρ

T
c D̃a

ρTc D̃ρc
+ βaTqqTa. (4.138)

Then, using the Cauchy-Schwarz inequality on the second term it can be concluded
that

aTD̃amba = ∥a∥2
D̃︸ ︷︷ ︸

>0

−
⟨a,ρc⟩2D̃
∥ρc∥2

D̃︸ ︷︷ ︸
≤∥a∥2

D̃

+β∥aTq∥22︸ ︷︷ ︸
≥0

≥ 0, (4.139)

where ∥ · ∥2 indicates the 2-norm. Therefore aTD̃amba > 0 for all a ̸= 0, except if

aTq = 0 ∧ ⟨a,ρc⟩2D̃ = ∥a∥2
D̃
∥ρc∥2D̃, (4.140)

i.e., a is orthogonal to q, and a and ρc are linearly dependent. In any case D̃amb

is symmetric, semi -positive definite. To complete the proof that D̃amb is SPD
it must be shown that the criterion in (4.140) never holds. To do this we first
show under which conditions ⟨a,ρc⟩2D̃ = ∥a∥2

D̃
∥ρc∥2D̃, then show that this is

incompatible with aTq = 0.

To investigate which a leads to

⟨a,ρc⟩2D̃ = ∥a∥2
D̃
∥ρc∥2D̃, (4.141)
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we turn to the inner-product notation again;

⟨a,ρc⟩2D̃ = ⟨a,a⟩D̃⟨ρc,ρc⟩D̃, (4.142)

and define a scalar λ given by

λ :=
⟨a,ρc⟩D̃
⟨ρc,ρc⟩D̃

. (4.143)

Then equation (4.142) becomes after some intermediate steps

0 = ⟨a,a⟩D̃ −
⟨a,ρc⟩2D̃
⟨ρc,ρc⟩D̃

= ⟨a,a⟩D̃ − 2
⟨a,ρc⟩2D̃
⟨ρc,ρc⟩D̃

+
⟨a,ρc⟩2D̃
⟨ρc,ρc⟩D̃

= ⟨a,a⟩D̃ − 2λ⟨a,ρc⟩D̃ + λ2⟨ρc,ρc⟩D̃,
= ⟨a− λρc,a− λρc⟩D̃
= ∥a− λρc∥2D̃

. (4.144)

Therefore, the equality in equation (4.141) is satisfied if a = λρc. Next, we show
that this constraint yields that aTq ̸= 0. Using the definition of ρc,

ρc,i := niqi, (4.145)

and substituting a = λρc we get

λρTc q =
∑

i q
2
i ni ̸= 0, (4.146)

as long as there is any charged species present with a nonzero number density, this
condition is equivalent to ρc ̸= 0. In conclusion, (4.140) never holds. Therefore,

aTD̃amba > 0 and thus D̃amb is SPD. Note that this also implies that the matrix
D̃amb is regular for β > 0.

4.B Reaction list for the 8-species system

The reaction rates are given by an Arrhenius-type relation,

k = c
(

T
Tref

)q
exp(−Ea/(kBT )), (4.147)

where the coefficients are given by Table 4.B.1 and kB is the Boltzmann-constant.
For all reactions, except the dissociation of hydrogen, the temperature in (4.147)
is the electron temperature. Table 4.B.1 shows a list of the Arrhenius coefficients
for the 8-species system, for the reactions in this table the electron temperature is
used. Reaction 11 only relates hydrogen and uses the ion temperature instead of
electron temperature.
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Table 4.B.1: Table of coefficients in the Arrhenius relation (4.147) for reaction
rates of the 8-species system. Here X is the number of reactants present in the
reaction.

Reaction Equation c (m3Xs−1) q Ea (eV) Source

Argon ionization Ar + e−
k1−→ Ar+ + 2e− 2.3× 10−14 0.68 15.76 [88]

Argon recombination Ar+ + 2e−
k2−→ Ar + e− 8.75× 10−39 −4.5 0 [89]

Argon excitation Ar + e−
k3−→ Ar∗ + e− 5.0× 10−15 0.74 11.56 [90]

Ionization of excited argon Ar∗ + e−
k4−→ Ar+ + 2e− 6.8× 10−15 0.67 4.20 [91]

De-excitation of argon Ar∗ + e−
k5−→ Ar + e− 4.3× 10−16 0.74 0 [88]

Radiative de-excitation of argon Ar∗
k6−→ Ar + ℏν 3.15× 108 0 0 [92]

Aluminum ionization Al + e−
k7−→ Al+ + 2e− 1.23× 10−13 0 7.23 [93]

Penning ionization Ar∗ +Al
k8−→ Al+ + e− +Ar 5.9× 10−16 0 0 [94]

Charge exchange Ar+ +Al
k9−→ Al+ +Ar 1.0× 10−15 0 0 [94]

Dissociation of hydrogen H2
k10−−→ 2H 5.610× 10−15 0.419 4.478 [95]

4.C Obtaining a basis for a 9-species system

Starting from the reaction set given in Section 4.B.1, where one spectator particle
Au and an aluminum recombination reaction are added, we first construct the
net reactions, Table 4.C.1. We want to find some set of quasi-element species E ,
such that all species in U can be constructed either directly, or indirectly via the
reactions given in Table 4.C.1. Applying Algorithm 2 results in a basis set E ,
for example {Ar, e−,Al,H,Au}, {Au,H2,Ar+,Ar,Al+} or {Au,H2,Ar∗, e−,Al+}
would suffice. However, {Au,H2,Ar∗,Ar,Al+} would not, since reactions 3 and 5
in Table 4.C.1 would allow for conversion between two quasi-elements in a chemical
reaction, which contradicts the definition of a quasi-element. First we define the
set U containing all species in the mixture;

U = {Ar,Ar∗,Ar+,Al,Al+,H,H2, e
−,Au}. (4.148)

Next, we write the reactions as a collection of unordered sets S;

S = {{Ar,Ar+, e−}, {Ar+, e−,Ar}, {Ar,Ar∗}, {Ar∗,Ar+, e−},
{Ar∗,Ar}, {Ar∗,Ar}, {Al,Al+, e−}, {Ar∗,Al,Al+,Ar, e−},

{Ar+,Al,Al+,Ar}, {H2,H}, {Au}}
. (4.149)

Finally, we apply Algorithm 2.
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Table 4.C.1: Net reactions for the 8-particle system with Au as a spectator particle.

Reaction Equation

Argon ionization Ar
k1−→ Ar+ + e−

Argon recombination Ar+ + e−
k2−→ Ar

Argon excitation Ar
k3−→ Ar∗

Ionization of excited argon Ar∗
k4−→ Ar+ + e−

De-excitation of argon Ar∗
k5−→ Ar

Radiative de-excitation of argon Ar∗
k6−→ Ar

Aluminum ionization Al
k7−→ Al+ + e−

Penning ionization Ar∗ +Al
k8−→ Al+ + e− +Ar

Charge exchange Ar+ +Al
k9−→ Al+ +Ar

Dissociation of hydrogen H2
k10−−→ 2H

Spectator species Au





Chapter 5

Near-equilibrium description of
plasmas based on the
stoichiometric transformation

In this chapter we discuss a method to solve the Advection-Diffusion-Reaction
(ADR) equation for plasmas that are close to local chemical equilibrium. This is
achieved by computing the chemical equilibrium solution, and solving the ADR
equation for the deviation from chemical equilibrium.

If the Damköhler number is large then the plasma rapidly tends toward
the chemical equilibrium solution, for example if there is no transport in the
plasma, or the chemical timescales are much shorter than the transport timescales.
The near-equilibrium description presented in this chapter can also be interpreted
as computing the deviation from a no-transport solution. Note that this method
is broader than changing the initial guess, since the equilibrium solution can also
be changed during the simulation. For example, in systems where the temper-
ature varies over time, the chemical equilibrium solution would also vary over time.

Another potential advantage of the near-equilibrium description is that the
chemical equilibrium solution may be strongly dependent on position. For
example if there is a strong temperature gradient in the plasma, the deviation
from chemical equilibrium may still be relatively slowly varying in space if
transport terms are small.

Our near-equilibrium description method is based on the Stoichiometric
Transformation Method (STM) described in [96]. In this paper, a linear
transformation is applied to the governing set of ADR equations. The method
is based on the chemical reactions present in the plasma. The result is that

73
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invariants such as mass and charge can be enforced up to machine precision. Addi-
tionally, part of the chemical source term in the resulting set of PDEs is eliminated.

Here, we take the STM as a starting point, and add an additional step to
the method. The idea is to approximate the non-quasi-element part based on
the chemical equilibrium solution, and compute deviations from this chemical
equilibrium.

The idea of the method presented here is to approximate the non-quasi-
element part based on the chemical equilibrium solution, with a perturbation.
Application to a large test problem is left as future research. In the next section
we present the governing equations in the near-equilibrium description.

5.1 Governing equations

The particle balance for a multi-species mixture in one dimension is given by

∂

∂t
φ+

∂

∂x

(
Uφ− E ∂

∂x
φ

)
= s(φ). (5.1)

Like in Chapter 4,[96], we again apply the stoichiometric transformation to obtain
a new set of equations

∂

∂t
φ̃+

∂

∂x

(
Ũφ̃− Ẽ ∂

∂x
φ̃

)
= s̃(φ̃), (5.2)

where the transformation for a vector v is defined as ṽ := Mv and for a matrix
A as Ã := MAM−1. To simplify further analysis we assume a steady state
solution. Here M is both regular and constant.

Unlike the STM as described in Chapter 4,[96], here the transformation
matrix is computed using Gaussian elimination. Given the stoichiometric matrix
ν, the transformation matrix M is obtained by

rref(ν|I) = [νrref|M ] , (5.3)

where rref computes the row reduced echelon form, | is a concatenation operator
and I is the identity matrix with rank equal to the number of rows in the matrix ν.

To describe the plasma in terms of a chemical equilibrium and a deviation,
we split the variable φ̃ in two parts, one part containing the quasi-elements, φ̃q,
and another part containing the non-quasi-elements, φ̃n. Similarly, the matrices
Ũ and Ẽ are split into four blocks;

φ̃ =

[
φ̃n

φ̃q

]
, Ẽ =

[
Ẽnn Ẽnq

Ẽqn Ẽqq

]
. (5.4)
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Substituting these split variables in equation (5.2) results in a block-system,

∂

∂x

([
Ũnn 0

0 Ũqq

][
φ̃n

φ̃e

]
−

[
Ẽnn Ẽnq

Ẽqn Ẽqq

]
∂

∂x

[
φ̃n

φ̃e

])
=

[
s̃n
0

]
, (5.5)

note that s̃e = 0 since quasi-elements, by definition, cannot be produced or de-
stroyed in chemical reactions. The block-system (5.5) is then split into two parts,
(5.6a) and (5.6b); the non-quasi-element part

∂

∂x

(
Ũnnφ̃n − Ẽnn

∂

∂x
φ̃n − Ẽnq

∂

∂x
φ̃e

)
= s̃n, (5.6a)

and the quasi-element part

∂

∂x

(
Ũqqφ̃e − Ẽqn

∂

∂x
φ̃n − Ẽqq

∂

∂x
φ̃e

)
= 0. (5.6b)

The idea is to write φ̃n as a superposition of the chemical equilibrium solution γ̃
and a perturbation δ̃, i.e.,

φ̃n = γ̃ + δ̃, (5.7)

where the chemical equilibrium solution only depends on the quasi-elements and
possibly the position

γ̃ = γ̃(φ̃e, x). (5.8)

The chemical equilibrium solution γ̃ can be obtained by solving s̃n(γ̃, φ̃e, δ̃ =
0) = 0 for γ̃, which corresponds with finding s(φ) = 0. The process of finding
the chemical equilibrium solution is discussed in Section 5.4.

With these newly introduced variables the ‘’block-system” of equations (5.5)
becomes

∂

∂x

(
Ũnnδ̃ − Ẽnn

∂

∂x
δ̃

)
= s̃n−

∂

∂x

(
Ũnnγ̃ − Ẽnn

∂

∂x
γ̃

)
+
∂

∂x

(
Ẽnq

∂

∂x
φ̃e

)
, (5.9a)

and
∂

∂x

(
Ũqqφ̃e − Ẽqq

∂

∂x
φ̃e

)
=

∂

∂x

(
Ẽqn

∂

∂x
(γ̃ + δ̃)

)
. (5.9b)

The idea is to solve (5.9) iteratively, by first obtaining a new approximation to

φ̃e from (5.9b), then solving (5.9a) for δ̃.

In general, equations (5.9a) and (5.9b), and their discretized counterparts,
are nonlinear. In the next section we describe an application of the Newton
method for solving such systems, in a matrix-free method.
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5.2 Solving nonlinear systems using Newton-Krylov

For a scalar nonlinear function f(x) the well-known Newton method can be derived
by first computing the Taylor expansion of f around the current estimate xk,

f(xk+1) = f(xk) + f ′(xk)(xk+1 − xk) +O((xk+1 − xk)2), (5.10)

then by setting the right-hand side to zero, dropping the higher order terms and
solving for xk+1, which yields the recursive relation

xk+1 = xk − f(xk)

f ′(xk)
. (5.11)

This procedure is repeated until |f(xk+1)| and |xk+1 − xk| are sufficiently small,
or a maximum number of iterations is reached. Newton’s method can be extended
to vector-valued functions f(x) as well.

To do this, we again start by computing the first-order Taylor expansion
about the current estimate xk, i.e.,

f(xk+1) ≈ f(xk) + J(xk)(xk+1 − xk), (5.12)

where J(xk) is the Jacobi-matrix of f with elements given by

Jij =
∂fi
∂xj

. (5.13)

Then the next approximation xk+1 becomes

xk+1 = xk − J−1(xk)f(xk) = xk − ζk, (5.14)

where the linear system,

J(xk)ζk = f(xk), (5.15)

has to be solved to obtain the next iterand xk+1. If the Jacobi-matrix is singular
for some xk, there do exist modifications to Newton’s method that work around
this issue [97] and can still maintain near-quadratic convergence.

Explicitly computing J is expensive as it requires Ω(Nm2) partial deriva-
tives for a discretized nonlinear PDE problem with N grid points and m species.
However, it is possible to approximate Jv for any vector v without computing
N2m2 partial derivatives [98] by using the forward difference approximation

J(xk)v ≈
1

h
(f(xk + hv)− f(xk)), (5.16)
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or by the more accurate, and twice as expensive, central difference approximation

J(xk)v ≈
1

2h
(f(xk + hv)− f(xk − hv)), (5.17)

for some step size h > 0. The idea is then to solve the linear system (5.15)
with a Krylov subspace method. Such methods have the advantage that they
only require matrix-vector products to solve linear systems, and do not need the
matrix itself. Additionally, these methods solve a linear system iteratively, which
allows early termination if the required tolerance is reached. Krylov subspace
methods are described extensively in Part III.

A commonly used Krylov subspace method is GMRES [44], which is an
optimal method in the sense that it requires the fewest possible number of
matrix-vector products to achieve a given tolerance out of all Krylov subspace
methods.

Note that if we want to compute the derivative of a function that takes as
argument a vector of mass fractions, f(y), it is not correct to use any finite
difference approximation such as (5.16), since this can violate 1Ty = 1. Consider
a case similar to (5.16), where now f depends on all mass fractions y, i.e.,

J(y)v ≈ 1

h
(f(y + hv)− f(y)). (5.18)

Since the input argument of f is an array of mass fractions, it has to sum to 1.
Therefore, we require

1T(y + hv) = 1, (5.19)

however, note that since 1Ty = 1, it follows that 1Tv = 0. When applying a
Newton-Krylov method, the vector v cannot be chosen arbitrarily, as it is dictated
by the Krylov method, which makes it unlikely that 1Tv = 0 for all Krylov
iterations. However, if we first transform the system, and only wish to compute
the derivative of the non-element part, this issue is avoided.

In the next section we describe the model to illustrate the near-equilibrium
method.

5.3 Atomic hydrogen model

To demonstrate the near-equilibrium approximation, we use a simple atomic hy-
drogen model. In this model the atomic hydrogen ground state, the hydrogen ion
and the electron are included; this system consists of the species H, H+ and e−

with the following reactions;

e− +H
Rf−→ H+ + 2e−, (5.20a)
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H+ + 2e−
Rb−−→ e− +H, (5.20b)

for some reaction rates Rf ≥ 0 and Rb ≥ 0, to be determined shortly.

For the electron impact ionization rate we use Equation (19) from [99],
which for hydrogen is given by as a function of the electron temperature and the
energy level of the hydrogen atom, i.e.,

Rf(Tq, p) = 8πa20p
4fp

√
2kBTq
πmq

u(Tq, p)ψ(Tq, p), (5.21)

where p is the principal quantum number determining the energy level, the vari-
ables u and ψ are obtained from an integration of the cross section modeled in
[99], resulting in

u(Tq, p) =
Ep

kBTq
, ψ(Tq, p) =

∫ ∞

t=u

(1− t/u)e−t ln(1.25t/u)dt. (5.22)

The values of fp are f1 = 0.665, f2 = 0.71, f3 = 0.81, f4 = 0.94 f≥5 = 1. The
recombination reaction is also based on the principle of detailed balancing [99],
and is given by

Rb(Tq, p) =
gneutral,p
2gion

h3

(2πmqkBTq)3/2
Rf(Tq, p) exp(u(Tq, p)), (5.23)

where h is Planck’s constant, gneutral,n and gion are the statistical weights of the
neutral and ionized states, respectively. For this reaction set, which only includes
the ground state and the hydrogen ion both gneutral,1 = 1 and gion = 1.

It can be shown that the stoichiometric transformation again leads to two
transformed variables which are constant. We start by ordering the species as
follows

y =

 yHyH+

ye−

 , (5.24)

and the reactions are ordered as in (5.20). The stoichiometric matrix ν is then
given by

ν =

−1 1
1 −1
1 −1

 , (5.25)

and a stoichiometric transformation matrix by

M =

0 0 1
1 0 1
0 1 −1

 , (5.26)
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for which it can be verified that Mν results in a matrix with the bottom two
rows equal to zero.

The scaled stoichiometric matrix T as elaborated in Chapter 4 and [96] is
given by

T =

 0 0 mH/me−

mH+/mH 0 mH+/me−

0 me−/mH+ −1

 . (5.27)

We show that two of the transformed mass fractions are constant. To do this we
compute Ty and expand the bottom two rows of the result,

Ty =


mH

me−
ye−

mH+

mH
yH +

mH+

me−
ye−

me−
mH+

yH+ − ye−

 . (5.28)

It then follows that the bottom component, [Ty]3, is zero if the plasma is quasi-
neutral i.e., nH+ = ne− ,

[Ty]3 =
me−

ρ
(nH+ − ne−) = 0. (5.29)

The second component can be shown to be constant by using the result that
[Ty]3 = 0, using the relation between the masses of the species mH = mH+ +me− ,
and the definition that the mass fractions sum to one, i.e., yH + yH+ + ye− = 1;

[Ty]2 =
mH+

mH

(
yH +

mH+ +me−

me−
ye−

)
=
mH+

mH
. (5.30)

This result is used in the numerical experiments to eliminate two of the transformed
variables. In the next section it is described how the chemical equilibrium solution
for this model is obtained.

5.4 Computing the chemical equilibrium solution

To obtain the chemical equilibrium solution we integrate (5.2) as if it was a per-
fectly stirred reactor;

d

dt
φ̃ = s̃, (5.31)

over a sufficiently large time span to reach steady state, similar to the method of
false transients. If the chemical equilibrium is unique, then the time integration
should converge to the same equilibrium regardless of the initial value of φ̃n.

The idea of evaluating an ODE system instead of directly using a (constrained)
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nonlinear solver is to arrive at a solution with a stable chemical equilibrium; the
same solution the actual chemical system would reach if it were to evolve in time.
The transformed system is solved to guarantee the conservation of elements for
every time step of the ODE solver, since the element quantities are source free,
and thus do not change in time.

Chemical reaction rates can vary over a wide range of timescales, leading
to potentially high stiffness, therefore we use an ODE solver designed for stiff
ODEs, in this case the MATLAB solver ode15s [100].

Since this stiff solver employs an implicit method, a nonlinear algebraic
system has to be solved every time step. To guarantee that the concentration of
quasi-elements is constant, we explicitly include

d

dt
φ̃e = 0, (5.32)

to enforce this. Finally, a refinement step is performed, where we use the
previously computed solution of (5.31) as an initial guess for another round of
integration of the system (5.31).

The resulting chemical equilibrium solution as function of temperature for
the simple hydrogen system is shown in Figure 5.4.1. Here it can be seen that
most of the hydrogen is in atomic state at low temperatures, whereas around 104

K the chemical equilibrium shifts toward mostly ionized. In the next section it is
shown that the chemical equilibrium solution is both unique and stable.
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Figure 5.4.1: Chemical equilibrium solution as function of temperature.
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5.5 Stability and uniqueness of the chemical equilibrium

It can be shown for a simple three-species hydrogen system, under certain
conditions, that the chemical equilibrium point is stable and unique.

The chemical source term in terms of number densities is given by

S(n) = ν

[
RfnHne−
Rbn

2
e−nH+

]
, (5.33)

with ν given in (5.25). Assuming Rf > 0 and Rb > 0 there are three situations for
which S(n) = 0, namely:

1. ne− = 0, no electrons to ionize or recombine.

2. nH = 0 and nH+ = 0, a system consisting of only electrons.

3. Rf

Rb
=

ne−nH+

nH
, a balance between the forward and backward reactions.

Given that all n > 0, the only remaining solution for S(n) = 0 is when there is a
balance between ionization and recombination;

Rf

Rb
=
ne−nH+

nH
. (5.34)

To show that this chemical equilibrium is a stable equilibrium, we expand S(n) in
a Taylor-series up to first order, about the chemical equilibrium, then substitute
(5.34)

S(n) ≈ J(neq)(n− neq), (5.35)

and compute the eigenvalues of the Jacobi matrix J(neq). It can be shown in a
straightforward manner that the eigenvalues λi of J(neq) are given by;

λ1 = 0, λ2 = 0 λ3 = −Rb
ne−

nH
(ne−nH + ne−nH+ + nHnH+), (5.36)

since Rf > 0, Rb > 0 and n > 0, it can be concluded that λ3 < 0 and thus this
equilibrium is stable. Therefore, the only chemical equilibrium with n > 0 is stable.

To show that an equilibrium is stable, if the eigenvalues are negative, con-
sider (5.35) and the eigenvalue decomposition of J(neq) = V ΛV −1 given
by

V =

 nH

ne−
nH

nH+
−1

0 1 1
1 0 1

 , Λ =

λ1 0 0
0 λ2 0
0 0 λ3

 , (5.37)
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where V is invertible, as it has a strictly positive determinant;

det(V ) = 1 + nH

(
1

ne−
+

1

nH+

)
> 0. (5.38)

Since the eigenvalue decomposition exists, we can write

dn

dt
= V ΛV −1(n− neq), (5.39)

then we obtain a decoupled ODE system,

dV −1n

dt
= ΛV −1(n− neq). (5.40)

Since Λ is diagonal, the solution for each of the components of V −1n is given by

[V −1n]i = Ci exp(λit) + [V −1neq]i, (5.41)

with Ci a constant of integration. Therefore, if the real part of each λi is negative,
the solution exponentially tends toward chemical equilibrium, invariants for which
λi = 0 remain constant.

In the next section the results of the simple hydrogen model are presented
for a one-dimensional ADR problem.

5.6 Results

We compute a solution over the domain extending from x = 0 to x = L, with the
length of the domain L = 0.1 m, and use 50 grid points. The HF scheme has been
used to discretize Equations (5.9). The pressure has been fixed at 105 Pa, and
there is no advection. Dirichlet boundary conditions are used given by

y(x = 0) =

 0.49986
0.49986

2.722× 10−4

 , y(x = L) =

 0.9999
9.999× 10−5

5.445× 10−8

 , (5.42)

these are chosen such that at both boundaries quasi-neutrality and 1Ty = 0 hold.
For simplicity the electron and ion temperatures have been set equal. The temper-
ature profile shown in Figure 5.6.1 has been chosen such that there is a large drop
in temperature, which causes the equilibrium solution to also change significantly.
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Figure 5.6.1: Temperature distribution
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(a) Chemical equilibrium solution
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(b) Actual solution

Figure 5.6.2: Comparison of the chemical equilibrium solution and the actual
solution for the atomic hydrogen model.

It can be seen in Figure 5.6.2 that the equilibrium solution qualitatively shows
the same behavior as the actual solution. However, the actual solution is smoother
due to transport. In Figure 5.6.3 it can be seen that for both the chemical equilib-
rium solution and the transformed solution, y2 and y3 are constant. Furthermore,
it can also be seen that qualitatively y1 is similar for both solutions.

5.7 Discussion and conclusion

A hydrogen model has been set up to illustrate the method of the near-equilibrium
approximation. Firstly, the set of governing equations has been linearly trans-
formed based on the stoichiometry of the problem. Secondly, the non-element
variable has been written as a superposition of the chemical equilibrium solution,
and a deviation from this chemical equilibrium.
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solution
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(b) Transformed actual solution

Figure 5.6.3: Comparison of the transformed chemical equilibrium and actual
solutions for the atomic hydrogen model.

As a result, two of the three unknowns can be replaced by constants, as
these represent quasi-neutrality and conservation of mass up to a constant factor.
For the remaining equation, we illustrate the idea of using a Newton-Krylov
method. In this method the Jacobian is estimated using a finite difference
formula. In particular the stoichiometric transformation ensures that even though
the Jacobian is inexact, the invariants such as quasi-neutrality and conservation
of mass are still satisfied exactly.

The chemical equilibrium solution has been obtained by integrating a zero-
dimensional coupled ODE system. This was done as it did not get stuck in
unstable (near)equilibria, which are an issue when a nonlinear root finding
method is used to solve S(y) = 0. Similar to the one-dimensional model, the
stoichiometric transformation has been used here to ensure all invariants are
satisfied. Furthermore, the invariants reduce the number of unknowns to the
extent where we only have to tabulate the S(y) as a function of temperature.

In conclusion, the stoichiometric transformation can be used to eliminate
invariants, ensure exact conservation of invariants, and simplify tabulation of the
chemical equilibrium solution. The near-equilibrium approximation extension can
be used to get an improved estimate of the true solution.

5.8 Outlook

Even though the stoichiometric transformation matrix is relatively straightforward
to compute if the stoichiometric matrix is known, the number of variables for
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which the source term is eliminated may be modest. For example the CO2 model
of [101] has 72 species and 5732 reactions, however, the number of quasi-elements
for this reaction system likely does not exceed 3, since the only chemical elements
present are C and O. Similarly for the 78 species argon model of [92], which has
only two quasi-elements.

Furthermore, computing the chemical equilibrium solution is challenging for
complex chemistries. Since it is not known a priori to which time the zero-
dimensional model has to be integrated. Additionally, if the electron and heavy
species temperatures are not equal, or there is another similar input that is
required, tabulating the chemical equilibrium becomes much more expensive.

Nevertheless, testing the near-equilibrium extension for a complex model
may be a next step, possibly in combination with some reduction method such
as pathway analysis presented in [24]. Additionally, the Newton-Krylov method
is expected to show more favorable convergence over the previously used Picard
iteration used in [96].

Another possibly novel extension could be to apply the near-equilibrium
approximation to time dependent models. For such models the chemical equi-
librium solution would also evolve in time, whereas simply choosing a different
initial guess would not allow for this flexibility.

Finally, another outlook would be to do a timescale analysis, and investi-
gate the effect of the near-equilibrium approximation on stiffness. Typically, the
timescales of chemical reactions in plasmas span a wide range. By starting from
the chemical equilibrium solution, fast reactions may be less prevalent. Compared
to starting from a linear interpolation between the boundary conditions, which is
likely to lead to strong reactions that equilibrate on a short timescale.

5.8.1 Enhanced procedure for finding the chemical equilibrium

One of the possible improvements for this method, would be to find more efficient
methods of finding the chemical equilibrium. In Section 5.4 we found the chemical
equilibrium for a three-species hydrogen example. There have been attempts to
find the chemical equilibrium for a 20 species atomic hydrogen model. However,
the runtime of finding the chemical equilibrium with the method proposed in
Section 5.4 is far too great to be of practical use (> 137 hours). This is likely due
to the time-integration requiring a time step that is too small to make meaningful
progress. Additionally, the method does not guarantee that every mass fraction is
in the range [0, 1], only that they add up to 1, and that quasi-neutrality is achieved.

An alternative idea would be to use a constrained nonlinear optimization



86 Chapter 5. Near-equilibrium description of plasmas

procedure, for example MATLAB’s fmincon. However, the attempts made to use
such a procedure for this thesis did not lead to satisfactory chemical equilibria
results. Instead, issues such as the solver breaking down, returning a local
optimum, returning a potentially unstable equilibrium, returning a solution that
does not satisfy the constraints, were encountered.

A possibly better approach would be to assume a type of Saha/Boltzmann
equilibrium for some species and use an analytical expression. However, this
leaves an open problem: what to do with the other species?

Finally, a more advanced method of finding the chemical equilibrium could
be implemented, for example the strategy presented in [102].

5.8.2 Applications

An important application for the near-equilibrium method could be plasmas
with a strong temperature gradient and little transport. For such plasmas the
chemical equilibrium solution would largely determine the real solution. Solving
the derivation relative to the chemical equilibrium may be faster, as the chemical
equilibrium is a good reference.

Since the near-equilibrium method starts at δ = 0, i.e., it starts at the
chemical equilibrium, the chemical reactions may be less extreme compared to
starting from a linear interpolation between the boundary conditions. Similar to
what is shown in the context of ILDM, where near equilibrium only the longer
timescales remain [89]. This may lead to a numerically more favorable approach.

5.8.3 Extensions

An alternative approach to solving the system (5.9), would be to solve (5.9b) for

δ̃, and solve (5.9a) for φ̃e. This way there is no advection operator applied to the
variable we want to solve for.

To check if the near-equilibrium method is applicable, an idea would be to
consider only the diffusion part near equilibrium

−E ∂
2φ

∂x2
= J(φeq)(φ−φeq), (5.43)

then if we introduce a length scale L, a dimensionless length x̃ := x/L, and multiply
both sides with E−1, this results in

−∂
2φ

∂x̃2
= L2E−1J(φeq)(φ−φeq). (5.44)
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Here the matrix L2E−1J can be identified as a Damköhler matrix Da. Assuming
the Damköhler matrix has the spectral decomposition Da = V ΛV −1, and V −1

is “slowly varying” in x, we can solve (5.44) as

[V −1φ]k = c1 sin
(
x
√
λk

)
+ c2 cos

(
x
√
λk

)
+ [V −1φeq]k. (5.45)

One extension to the near-equilibrium method would then be to use (5.45) as a
reference solution.

Presumably the near-equilibrium method works better if the eigenvalues of
Da are large. As large Damköhler numbers indicate that the reaction rates are
much more significant than transport rates. Investigating the eigenvalues of Da
may thus give a measure of quality for the chemical equilibrium solution.
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Chapter 6

Reliability investigation of
BiCGStab and IDR solvers for the
advection-diffusion-reaction
equation

This chapter is based on:
Reliability investigation of BiCGStab and IDR solvers for the advection-diffusion-
reaction equation
Schoutrop, C., Van Dijk, J. and Ten Thije Boonkkamp, J., Communications in
Computational Physics, vol 32, p. 156-188. doi: 10.4208/cicp.OA-2021-0182.

Abstract. The reliability of BiCGStab and IDR solvers for the exponential
scheme discretization of the advection-diffusion-reaction equation is investi-
gated. The resulting discretization matrices have real eigenvalues. We consider
BiCGStab, IDR(S), BiCGStab(L) and various modifications of BiCGStab, where
S denotes the dimension of the shadow space and L the degree of the polynomial
used in the polynomial part. Several implementations of BiCGStab exist which
are equivalent in exact arithmetic, however, not in finite precision arithmetic.
The modifications of BiCGStab we consider are; choosing a random shadow
vector, a reliable updating scheme, and storing the best intermediate solution.
It is shown that the Local Minimal Residual algorithm, a method similar to
the “minimize residual” step of BiCGStab, can be interpreted in terms of a
time-dependent advection-diffusion-reaction equation with homogeneous Dirichlet
boundary conditions for the residual, which plays a key role in the convergence
analysis. Due to the real eigenvalues, the benefit of BiCGStab(L) compared to
BiCGStab is shown to be modest in numerical experiments. Non-sparse (e.g.
uniform random) shadow residual turns out to be essential for the reliability
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of BiCGStab. The reliable updating scheme ensures the required tolerance
is truly achieved. Keeping the best intermediate solution has no significant
effect. Recommendation is to modify BiCGStab with a random shadow residual
and the reliable updating scheme, especially in the regime of large Péclet and
small Damköhler numbers. An alternative option is IDR(S), which outper-
forms BiCGStab for problems with strong advection in terms of the number of
matrix-vector products. The MATLAB code used in the numerical experiments
is available on GitLab: https://gitlab.com/ChrisSchoutrop/krylov-adr, a
C++ implementation of IDR(S) is available in the Eigen linear algebra library:
http://eigen.tuxfamily.org.
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6.1 Introduction

Advection-diffusion-reaction (ADR) equations and their discrete approximations
are ubiquitous in the modeling of physical systems [103, 104, 105, 106, 107].
A wide variety of discretization schemes for the ADR equation, such as finite
difference, (pseudo)spectral, finite element and finite volume methods exist. For
the solution to be representative, the discretization scheme must not only be
convergent in the limit of infinitesimally fine grids, but also yield representative
results for more pragmatic grid sizes. A counterexample, is the discretization
of the ADR equation in the presence of strong advection where the central
differencing scheme yields spurious oscillations if the grid is too coarse [26, p.
83]. This discrepancy is reflected by the eigenvalues of the exact ADR-operator
and the discretized operator, i.e., the exact operator has real eigenvalues, whereas
the discretized version has complex eigenvalues. However, for the exponential
discretization scheme of [26, 108] which we use here, the discretized version also
has real eigenvalues.

After the discretization step a linear system is obtained which must be
solved to obtain the approximate solution. Such linear systems are of the type
Ax = b, with A a generally sparse, asymmetric, but invertible matrix of size
N × N . In this chapter we mainly consider 3D equations. Note that even with
a modest M = 102 grid points per direction this results in a linear system
with N = 106 unknowns. A robust method for solving such linear systems is
by factorizing A into a pair of lower and upper triangular matrices using the
well-known LU decomposition[32, p. 96], and subsequently computing x by
solving two triangular systems using backward and forward substitution. The
main downside of LU decomposition is that for a sparse system matrix there
can be significant fill-in; the factors L and U are not guaranteed to be sparse.
As a result the time complexity of factorizing the resulting A for discretized
three-dimensional ADR-equations is in general O(N7/3) [33].

Another approach are iterative methods, most commonly the Krylov sub-
space methods such as the Conjugate Gradient (CG) method. Such methods
seek successive approximations to the solution as a projection on the linear
subspace Kk(A, r0) = span{r0,Ar0,A2r0, ...,A

k−1r0} with r0 := b − Ax0 the
residual generated by some initial guess x0. For linear systems obtained from
discretizing a second order PDE with a grid spacing proportional to N−1/3,
the CG method requires O(N4/3) flops to reach a given tolerance ϵ [33], saving
a factor N compared to the LU decomposition. A second benefit is that the
memory requirement of O(N) is modest, as only the matrix itself and a constant
number of vectors of size N have to be stored. Additionally, CG is an optimal
Krylov method in the sense that in each iteration the error is minimized over the
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A-norm [34].

The main drawback of CG is the requirement of a symmetric, positive defi-
nite matrix A. For more general invertible matrices the Faber-Manteuffel theorem
[35] states that there is no Krylov subspace method using Kk(A, r0) that has
short recurrences and optimality [36]. Short recurrence methods express the next
residual and solution approximation in terms of a fixed (practically small) number
of previous residuals and iterands. However, in long recurrence methods the
number of terms in the recurrence grows with the iteration count. Optimality here
refers to the minimization of the error ek := x− xk ∈ span{x− x0}+ Kk(A, r0)
in some norm. Therefore, for a general invertible matrix A one has to either,
drop the optimality requirement, use long recurrences, use a space different than
Kk(A, r0), or settle for a compromise. This leads to a wide variety of Krylov
methods, each with different tradeoffs.

One possible extension of CG to solve non-symmetric systems is the BiCG
algorithm originally described in [37]. The idea of BiCG is to use a second
Krylov subspace denoted as the “shadow space”; Kk(A

T, r̃0), where the vector
r̃0 is arbitrary but commonly chosen as r0. Unfortunately, the BiCG algorithm
has several drawbacks as well. First, unlike CG the residuals produced by
the BiCG algorithm are not guaranteed to decrease each iteration in some
norm. Second, additional computational effort is needed in matrix vector
products involving AT [32, p. 247]. Third, matrix-vector products of the form
ATv may be prohibitively expensive to compute, making the BiCG method
unsuitable for some applications such as Newton-Krylov methods [32, 104, p. 241].

To alleviate these issues the well-known BiCGStab algorithm was devel-
oped. This method was originally described in [38] and has since then been
incorporated in many popular linear algebra packages such as MATLAB [39] and
Eigen [40], and in simulation software such as PLASIMO [41] and COMSOL [42].
BiCGStab combines one iteration of BiCG with a Local Minimal Residual (LMR)
step [43]; this step can also be seen as performing one iteration of the GMRES
method [44]. LMR chooses the current residual as a search direction, and takes
a step in this direction such that the next residual is minimized, which results
in a smoother decrease of the residual norm of BiCGStab compared to BiCG.
Additionally, BiCGStab does not require operations involving AT. However, this
combination of LMR and BiCG leads to several subtleties which are discussed in
Section 6.2.

To compare BiCGStab with other Krylov methods, we also include BiCGStab(L)
and IDR(S). The BiCGStab(L) method, combines L steps of BiCG with a
GMRES(L) step [45]. Another method we include is the recent IDR(S) algorithm,
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which can be seen as using S different shadow spaces; Kk(A, R̃) with R̃ an
N × S matrix. IDR(S) is constructed such that the residuals are forced into
a subspace that decreases in dimension each iteration [46]. Even though not
as widespread as BiCGStab, IDR(S) outperforms BiCGStab for a wide class of
problems [46, 47]. We focus on BiCGStab, BiCGStab(L), IDR(S), and most
importantly the differences in reliability arising in the implementations of the
BiCGStab algorithm.

In this chapter we focus on specific implementations of the BiCGStab al-
gorithm, and show that small differences in these implementations can have a
significant impact on the reliability of this solver. Here we place the effects of these
differences in a physical context by considering the advection-diffusion-reaction
equation. Furthermore, we do not use the central differencing discretization
scheme, but apply the exponential scheme for which the common critique that
BiCGStab cannot handle complex eigenvalues does not apply. We then show
that even though the eigenvalues are real, there are still pitfalls for a widely used
BiCGStab implementation, and we present possible mitigations. Additionally we
show that even for preconditioned systems these modifications are still applicable.
To summarize, the objective and novelty of this chapter is:

1. Investigate the reliability of BiCGStab, BiCGStab(L) and IDR(S) for
advection-diffusion-reaction equations discretized with the exponential
scheme, resulting in matrices with real eigenvalues.

2. Discuss the subtleties in different BiCGStab implementations for model lin-
ear systems.

3. Discuss pitfalls and remedies for several BiCGStab implementations.

4. Highlight the critical effect of the choice of a shadow residual r̃ in BiCGStab.

5. Illustrate that for the LMR method, the residual propagates similarly to the
solution of a time-dependent advection-diffusion equation. This phenomenon
is used to obtain insight into the convergence of BiCGStab.

6. Present numerical results suggesting that the residual for BiCGStab is trans-
ported similarly to the solution of a time-dependent advection-diffusion prob-
lem to support the observation regarding the shadow residual r̃.

7. Show that even for preconditioned systems the proposed modifications are
still relevant.

Typically, large sparse linear systems are solved using preconditioned iterations.
We investigate the effect of Jacobi, incomplete LU and geometric multigrid
preconditioners for the MATLAB implementation of BiCGStab. Such precon-
ditioners do indeed significantly reduce the number of required matrix-vector
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products, however, we show that it does not alleviate all shortcomings. To
simplify the analysis, and work toward a robust BiCGStab variant that converges
for a broad range of systems we mainly consider unpreconditioned systems in the
coming sections.

The contents of this chapter are the following. First, the BiCGStab algo-
rithm and different implementations are discussed in Section 6.2. Second, the
model ADR-system along with the discretization and resulting eigenvalues are
introduced in Section 6.3. Third, several numerical experiments are presented and
discussed in Section 6.4. Finally, we end with concluding remarks in Section 6.5.

In conclusion, we recommend to use BiCGStab with a random shadow residual
r̃ and reliable updating scheme, or alternatively the efficient IDR(S) algorithm.
The MATLAB code used in the numerical experiments is available on GitLab:
https://gitlab.com/ChrisSchoutrop/krylov-adr a C++ implementation of
IDR(S) is available in the Eigen library [40].

6.2 Solver implementation

One of the main goals of this chapter is to compare BiCGStab and IDR. However,
this is not as straightforward as one might expect. For example, the BiCGStab al-
gorithm has several variants, which are not identical for finite precision arithmetic.
A common alternative to BiCGStab is BiCGStab(L), which modifies BiCGStab
to include a higher order stabilizing polynomial step and reduces to BiCGStab
for L = 1. The higher order polynomial step makes BiCGStab(L) more robust for
matrices having eigenvalues with large imaginary parts [45]. It is shown in [109]
that BiCGStab(L) can be implemented in different ways, affecting both stability
and computational complexity. There also exist other algorithms which reduce
to BiCGStab for specific parameters, such as IDR(S) [46] and IDR(S)Stab(L)
[47, 110]. In addition, there are several variants for specific situations, such as
a version of BiCGStab geared specifically for parallel computers; see e.g. [111]
and [112], a block-version [113] specialized for solving systems with multiple
right-hand sides, and a recycling version [114] optimized for solving a sequence of
linear systems.

The BiCGStab algorithm which we list here for the sake of completeness is
based on Algorithm 1 of [115] with L = 1, given here as the baseline BiCGStab
Algorithm 3. In this chapter ⟨a, b⟩ := aTb denotes the inner product of the
vectors a and b. In Algorithm 3 the MATLAB notation is used, i.e., r̂:,1 denotes
the entire first column of the matrix r̂. Unless mentioned explicitly all arithmetic
is conducted over the real numbers.
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As mentioned in the introduction, BiCGStab combines BiCG with LMR.
In Algorithm 3, specifically in Lines 2 − 6, the initial residual r̂:,1, the search
directions û and the shadow residual r̃ are initialized. The next part (lines 8−15)
performs one BiCG iteration, and the lines 16 − 19 perform the LMR-step. The
LMR-step can be seen as choosing the search direction equal to the residual r̂:,1,
and computing ω such that the norm of the next residual, ∥r̂:,1 − ωr̂:,2∥2, is
minimized. Note that r̂:,1 contains the residual and r̂:,2 is an auxiliary vector
used in the LMR step.

To illustrate some of the differences between several BiCGStab implementa-
tions, we focus on three specific modifications that require little alteration to the
baseline BiCGStab algorithm, i.e.,

1. Random shadow residual, r̃, Section 6.2.1.

2. Reliable update scheme from [116], Section 6.2.2.

3. Storing solution with the best residual thus far, Section 6.2.3.

In the next sections we illustrate shortcomings of baseline BiCGStab using small
model problems, and comment on the effect of these three modifications. In Section
6.2.4 it is shown how the initial residual is propagated similarly to the solution of
a time-dependent advection equation, which is argued to be the main reason for
the effectiveness of choosing a random shadow residual later in this chapter.
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Algorithm 3 Baseline BiCGStab

1: function Baseline BiCGStab(A, b,x, tol)
2: ρ0 ← 1, α← 1, ω ← 1, r̂ ← 0 ∈ RN×2, û← 0 ∈ RN×2

3: r̂:,1 ← b−Ax
4: r̃ ← r̂:,1 ▷ Arbitrary, such that ⟨r̃, r̂:,1⟩ ≠ 0
5: x′ ← x, x← 0
6: ζ ← ∥r̂:,1∥
7: while ζ > tol∥b∥ do
8: ρ0 ← −ρ0ω
9: ρ1 ← ⟨r̃, r̂:,1⟩

10: β ← α(ρ1/ρ0), ρ0 ← ρ1
11: û:,1 ← r̂:,1 − βû:,1

12: û:,2 ← Aû:,1

13: α← ρ1/⟨r̃, û:,2⟩
14: x← x+ αû:,1

15: r̂:,1 ← r̂:,1 − αû:,2

16: r̂:,2 ← Ar̂:,1
17: ω ← argminω ∥r̂:,1 − ωr̂:,2∥ = ⟨r̂:,2, r̂:,1⟩/⟨r̂:,2, r̂:,2⟩
18: x← x+ ωr̂:,1
19: r̂:,1 ← r̂:,1 − ωr̂:,2
20: û:,1 ← û:,1 − ωû:,2

21: ζ ← ∥r̂:,1∥
22: end while
23: x← x+ x′ return x, ζ/∥b∥
24: end function

6.2.1 Choice of shadow residual

There is quite some freedom in the implementation of BiCGStab, one example is
the choice for r̃ in Algorithm 3. This vector of the BiCGStab algorithm is the
so-called “shadow residual” and can be chosen almost arbitrarily. By default, r̃ is
chosen as the first residual b−Ax0. However, as will be demonstrated for several
model systems, the specific choice of r̃ can strongly influence the convergence of
BiCGStab.

An interesting alternative choice for r̃ stems from the IDR(S) algorithm in
[46], i.e., choosing r̃ random and complex. To illustrate this, consider linear
systems involving a matrix with eigenvalues that have a large imaginary part
compared to the real part. For such systems BiCGStab breaks down as a result
of |ω| ≪ 1 in line 17. Such systems were one of the main motivations to develop
BiCGStab(L) [45]. The simplest system for which BiCGStab will stagnate due to
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ω = 0 is a system involving a π/2-rotation matrix;

A =

[
0 −1
1 0

]
, b =

[
1
1

]
, x0 =

[
0
0

]
. (6.1)

The matrix in (6.1) has purely imaginary eigenvalues ±i. It is straightforward
to show that for any real-valued r̂:,1, the operation r̂:,2 ← Ar̂:,1 results in
⟨r̂:,1, r̂:,2⟩ = 0, since r̂:,1 ⊥ r̂:,2 and thus ω = 0. One way to avoid this is to use
a version of BiCGStab with higher-order stabilizing polynomials, as is the idea
behind BiCGStab(L) with L > 1. Alternatively, note that this issue does not arise
in complex arithmetic. This is achieved by choosing r̃ random and complex, since
this will also result in a complex-valued r̂:,1. Consequently, as the inner product
to determine ω also involves complex conjugation, it can be shown that ⟨r̂:,1, r̂:,2⟩
is purely imaginary. In this case BiCGStab does most likely not break down, how-
ever, choosing complex r̃ comes at the cost of replacing real by complex arithmetic.

But, there also exist systems with real eigenvalues for which the default
choice of r̃ will cause BiCGStab to break down. Surprisingly, this occurs for the
following system

A =

[
1 0
0 −1

]
, b =

[
1
1

]
, x0 =

[
0
0

]
. (6.2)

It can be verified that the default choice of r̃ leads to ⟨r̃, û:,2⟩ = 0 and the
algorithm stalls while not having updated x even once. The idea of choosing a
random r̃ is to avoid any correlation between the generated residuals r̂ and search
directions û, making it exceedingly unlikely for BiCGStab to break down or
stagnate due to any of these quantities having a vanishingly small inner product
with r̃. This can be achieved by choosing every element of r̃ in the interval (0, 1)
from a uniform random distribution, i.e., r̃i ∈ U(0, 1).

Inspired by the system presented in Example 3.3 of [117], another system
for which BiCGStab will break down, and which can be avoided by a different
choice of r̃ reads

A =

 λ 0 0
−λ λ 0
0 −λ λ

 , b =

10
0

 , x0 =

00
0

 , λ > 0, (6.3)

where again all eigenvalues are real, and are equal to λ. This system can be seen
as the discretization with the upwind scheme of a one-dimensional problem on a
grid with only a few grid cells. Note that for problems involving strong advection
the exponential scheme reduces to the upwind discretization scheme. Note that
each iteration the boundary value on the left is propagated one grid cell. For the
default choice of r̃ = r0 this is fatal, since r0 only has the first element nonzero,
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however, the later residuals produced have a vanishing first element, leading to
ρ1 = ⟨r̃, r̂:,1⟩ = 0 on line 9 in Algorithm 3. Because of this, combined with the
property that Aei = λ(ei − ei+1) for i < 3, α on line 13 becomes undefined due
to a zero by zero division. A straightforward calculation shows that α becomes
undefined in the second iteration of Algorithm 3. It is shown in Section 6.2.4 that
⟨r0, rk⟩ decreases exponentially for the LMR method; it is also observed later in
Section 6.4.4 that a similar phenomenon occurs for BiCGStab and LMR when
applied to discretization matrices obtained from two-dimensional ADR problems.

The idea of choosing a random r̃ is inspired by several sources. First, the
effect of choosing a random initial guess (and thus a random r̃) was shown in
[118] for BiCG algorithms to significantly impact which model problems could
be solved. Second, similar to BiCGStab, IDR(S) uses an S-dimensional shadow
space. In [46] in the context of the IDR(S) algorithm it was noted that choosing
all S vectors at random is essential for robustness. Note that IDR(1) is equivalent
to BiCGStab. Finally, it was shown in two numerical experiments of acoustics
problems that choosing a random r̃ improved convergence [119] for CGS, and
in [120] for both CGS and BiCGStab. Here CGS is the well-known Conjugate
Gradient Squared method, a derivative of BiCG that does not require operations
with AT.

6.2.2 Reliable update scheme

Note that in baseline BiCGStab, the residual r := r̂:,1 is only directly computed
from the definition r = b − Ax at the initialization step in line 3. For all
subsequent iterations both r and x are computed recursively from the results
of previous iterations. This opens an avenue through which finite precision
arithmetic can lead to discrepancies between the true residual b − Ax and the
recursively computed residual r. This discrepancy between the true residual and
the recursively computed residual is called the residual gap.

Assuming the only error is introduced by k updates of the form

xj+1 = xj +wj+1, rj+1 = rj −Awj+1, (6.4)

it is shown in [109] that the maximum residual gap due to accumulating rounding
errors is bounded by∣∣∥rk∥ − ∥b−Axk∥

∣∣ ≤ 2knAϵm∥
∣∣A∣∣∥∥A−1∥max

j≤k
∥rj∥. (6.5)

Here nA is the maximum number of nonzeros per row and ϵm the machine precision,
∥
∣∣A∣∣∥ is the 2-norm of the element-wise absolute value of A. An example of a
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problematic system Ax = b is given by

A =

 1 −γ 0
−γ 1 −γ
0 −γ 1

 , x0 =

00
0

 , b =

10
1

 . (6.6)

For this system it can be shown, in particular if γ ≥
√
2, that

∥
∣∣A∣∣∥ = 1 +

√
2γ, ∥A−1∥ = 1, (6.7)

where the matrix-norms are the 2-norm. After the first update to the residual we
obtain

r̂:,1 =

 0
2γ
0

 , (6.8)

therefore the term maxj≤k ∥rj∥ in (6.5) is at least 2γ. Using this result it follows
that a conservative estimate for the right-hand side in (6.5) is γ2, more specifically
it scales as Ω(γ2) in the limit γ →∞ for this system. Therefore, depending on γ
the upper bound for the residual gap can be arbitrarily large.

By computing the true residual from the definition b − Ax the gap is re-
duced to zero. However, this is expensive as it costs an additional Matrix-Vector
product (MV). In [116] it is suggested to compute the true residual if one of the
following conditions holds:

1. ∥r̂:,1∥ < 0.01∥b∥ and ∥b∥ ≤ maxj ∥r̂j:,1∥,

2. ∥b∥ ≤ 0.01maxj ∥r̂j:,1∥ and ∥r̂:,1∥ < maxj ∥r̂j:,1∥,

where the maximum is taken over all residuals since the last computation of the
true residual. By computing the true residual the residual gap can be significantly
decreased with only a few extra MV. Similarly, x is updated in a “group
wise” manner, collecting all the updates into a temporary vector then applying
several updates at once to x in order to minimize the effects of round-off errors.
For more details regarding the derivation of the reliable updating strategy and
the precise conditions for the groupwise updates, the reader is referred to [109, 116].

An alternative strategy is applied in MATLAB’s implementation of BiCGStab.
If ∥r∥/∥b∥ has decreased below the specified tolerance, the recursive residual
is replaced by the true residual. This has the benefit of ensuring the residual
is accurate, however, replacing the recursively computed residual by the true
residual can destroy the BiCG process [109]. We will indeed show in numerical
experiments that MATLAB’s implementation can break down after this residual
replacement.



102 Chapter 6. Reliability of BiCGStab and IDR for the ADR equation

6.2.3 Keeping the lowest residual solution

A final idea is applied in MATLAB’s variant of BiCGStab [39]. One major differ-
ence between the baseline and MATLAB’s variant of BiCGStab is keeping track of
the x with the lowest residual. After every update of x and r̂:,1 the new x is stored
separately until a solution is computed with an even lower residual. This idea has
its merits, since the convergence of BiCGStab is in general not monotonic. If the
method breaks down, the solution x computed last may be worse than a previously
computed solution. Nevertheless, it is important to keep in mind that, due to the
residual gap, a previously computed x may not actually have the smallest true
residual, even though it could have the smallest recursively computed residual as
pointed out in Section 6.2.2. The effects of this modification are discussed in more
detail in Section 6.4.2. In the next section we analyze the way the initial residual
of the LMR method changes with each iteration.

6.2.4 Propagation of the initial residual

To illustrate how the initial residual is affected by the BiCGStab process we in-
vestigate a simpler Krylov subspace method. The LMR algorithm as presented in
[43] is given in Algorithm 4. In essence this method makes a step in the direction
of the residual, and determines a step size such that the norm of the next residual
is minimal. This method can also be interpreted as GMRES(1), or the second half
of BiCGStab (Line 16-19 in baseline BiCGStab).

Algorithm 4 LMR algorithm

1: function LMR(A, b,x, tol)
2: r ← b−Ax
3: while ∥r∥2 > tol do

4: ω ← ⟨Ar,r⟩
⟨Ar,Ar⟩

5: x← x+ ωr
6: r ← r − ωAr
7: end while
8: return x
9: end function

To illustrate the LMR process, we consider a system of arbitrary size similar
to the example shown in (6.3) with λ = 1. It is shown in Appendix 6.A that for
a linear system involving a bidiagonal Toeplitz matrix A of size N ×N , with −1
on the first sub-diagonal and 1 on the diagonal the residual propagates toward
the right. Such a bidiagonal Toeplitz matrix is a model for a one-dimensional
advection equation with an upwind discretization. More specifically, given a right-
hand side e1 and initial guess x = 0 the k-th LMR residual has elements that
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follow a binomial distribution;

rki =

(
k

i− 1

)
( 12 )

k, i = 1, 2, ..., k + 1 < N, (6.9)

with r0 = e1. Importantly, note that

⟨r0, rk⟩ = 1

2k
, (6.10)

i.e., the inner product of the first and the k-th residual decreases exponentially
with k.

Another interpretation of the LMR algorithm exists if A is positive defi-
nite, since for such matrices ω > 0. Line 6 of Algorithm 4 can then be written
as

rk+1 − rk

ω
= −Ark, (6.11)

which is the forward Euler discretization with step size ω of the ODE system

dr

dt
= −Ar. (6.12)

The LMR algorithm can be seen as time integration method for a linear ODE
system. For ADR problems the matrix A represents a discretized ADR operator,
and r a discrete approximation to a boundary value problem with homogeneous
Dirichlet boundary conditions. The exact solution to (6.12) is compared with the
LMR residual in Figure 6.2.1 for the model upwind discretization resulting in a
bidiagonal Toeplitz matrix of size 100. It is shown in Appendix 6.B that the
discretization matrices obtained later in this chapter are indeed positive definite.
From Figure 6.2.1 it can be concluded that the residual starts primarily on the
left and propagates toward the interior of the domain. Additionally, it can be seen
that the LMR residual indeed resembles the exact solution of the ODE system.

6.3 The discrete advection-diffusion-reaction equation

To investigate the performance of baseline BiCGStab and the modifications pre-
sented in Section 6.2, we introduce the advection-diffusion-reaction equation as a
model problem. First, the scalar advection-diffusion-reaction equation is converted
to dimensionless form, to investigate the iterative solvers for the entire parameter
space. Second, the discretization scheme is outlined to obtain a set of difference
equations, yielding a linear system. Third, the eigenvalues of the resulting linear
system are obtained to show that the obtained matrix has real, positive eigenval-
ues.
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(a) Exact solution of (6.12) (b) LMR residual

Figure 6.2.1: Comparison of the exact solution of the time dependent ODE sys-
tem (6.12) and the LMR solution (forward Euler approximation) for the bidiagonal
Toeplitz matrix of size 100. Note that for the first 100 iterations ω = 1

2 . Impor-
tantly, this shows that the residual is advected throughout the domain, one grid
cell per iteration.

6.3.1 Dimensionless form of the ADR equation

The scalar advection-diffusion-reaction equation, used here as a test problem, is
relevant for a wide variety of physical systems, describing for example Fickian
diffusion in a binary mixture or describing a temperature distribution. Starting
from the general ADR equation given by Equation (2.13) in reference [26], with a
linearized source term the equation reads

∂ξφ

∂t
+∇ · (u⃗φ− ϵ∇φ) = sC − sPφ. (6.13)

Here u⃗ is the velocity field, ϵ > 0 a diffusion coefficient, sC and sPφ a constant
and linear reaction term, respectively, and φ the quantity of interest. For clarity
u⃗, ϵ, sC and sP are taken to be constant, furthermore sC, sP > 0. In absence
of transport, sC − sPφeq = 0 where φeq is the (chemical) equilibrium value of φ.
Then after the substituting φeq := sC/sP, the resulting model equation is given by

∂ξφ

∂t
+∇ · (u⃗φ− ϵ∇φ) = −sP(φ− φeq). (6.14)

The coefficient ξ > 0 denotes the responsiveness of the system; for small ξ the
solution can vary more rapidly compared to large values of ξ. Physically ξ can,
for example, take the role of a specific heat capacity or mass density.

Consider a Cartesian three-dimensional coordinate system, then Equation
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(6.14) can be expanded as follows

∂ξφ

∂t
+

3∑
i=1

∂

∂xi

(
uiφ− ϵ

∂φ

∂xi

)
= −sP(φ− φeq), (6.15)

with xi the i-th Cartesian coordinate, and ui the corresponding component of the
advection velocity. Next, we aim to make (6.15) dimensionless. To commence, a
scaling is performed; we scale the time t by a characteristic timescale T , and the
coordinates xi are scaled by the length scales Li for the i-th direction;

t∗ := t/T, x∗i := (xi − xi,min)/Li. (6.16)

The values of the characteristic variables are to be determined later. Using the
newly introduced quantities T and Li, the partial derivatives can be written as

∂

∂t
=

1

T

∂

∂t∗
,

∂

∂xi
=

1

Li

∂

∂x∗i
. (6.17)

Assuming constant ξ, and combining with the differentiation rules from (6.17)
Equation (6.15) can be simplified to

ξ

T

∂φ

∂t∗
+ ϵ

3∑
i=1

1

L2
i

∂

∂x∗i

(
uiLi

ϵ
φ− ∂φ

∂x∗i

)
= −sP(φ− φeq). (6.18)

Furthermore, by introducing Péclet numbers for each of the Cartesian directions

Pei :=
uiLi

ϵ
, (6.19)

we can simplify the notation. These Péclet numbers can be interpreted as the
relative strength of advection in the direction e⃗i compared to diffusion. After
some algebraic manipulations the advection-diffusion-reaction equation becomes

∂φ

∂t∗
+
Tϵ

ξ

3∑
i=1

1

L2
i

∂

∂x∗i

(
Peiφ−

∂φ

∂x∗i

)
= −sP(φ− φeq)

T

ξ
. (6.20)

We introduce the transport frequencies νt,i and the reaction frequency νr, defined
as

νt,i :=
ϵ

ξL2
i

, νr :=
sP
ξ
. (6.21)

We then obtain the advection-diffusion-reaction equation in terms of frequencies
νt,i and νr as;

∂φ

∂t∗
+ T

3∑
i=1

νt,i
∂

∂x∗i

(
Peiφ−

∂φ

∂x∗i

)
= −νrT (φ− φeq). (6.22)
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Next, by taking T such that νrT = 1 the Damköhler numbers Dai can be intro-
duced as follows,

νt,iT =
νt,i
νr

=:
1

Dai
, Dai =

sPL
2
i

ϵ
. (6.23)

Finally, the dimensionless time-dependent advection-diffusion-reaction equation is
obtained by dividing both sides by a reference value φref, such that φ∗ := φ/φref,
which results in

∂φ∗

∂t∗
+

3∑
i=1

1

Dai

∂

∂x∗i

(
Peiφ

∗ − ∂φ∗

∂x∗i

)
= −(φ∗ − φ∗

eq). (6.24)

If the characteristic length scales Li = L are the same in each of the Cartesian
directions, and assuming a stationary solution, Equation (6.24) reduces to

3∑
i=1

∂

∂x∗i

(
Peiφ

∗ − ∂φ∗

∂x∗i

)
= −Da(φ∗ − φ∗

eq), (6.25)

where now all Damköhler numbers are the same; Da. For ease of notation, ∗ is
omitted in the following sections. In the next section we discretize Equation (6.25)
and obtain a linear system which can be used to approximate the exact solution
of (6.25).

6.3.2 Discretization

6.3.2.1 One-dimensional scheme

To discretize (6.25), for ease of exposition, we start with the one-dimensional
equivalent with φeq = 0, since φeq will only affect the right-hand side of the
resulting linear system. The ADR-equation can then be written as

d

dx
Γ (φ(x)) = −Daφ(x), (6.26a)

where Γ is the flux, given by

Γ (φ) := Peφ− dφ

dx
. (6.26b)

To discretize (6.26a), we use the Finite Volume Method (FVM). In the FVM
method the domain is subdivided into a finite number of disjunct intervals;
referred to as control volumes. Here a cell-centered approach is applied on a
uniform grid; in such a configuration φ has to be computed at the nodal points xi.
Control volumes are defined around these nodal points; the i-th control volume
extends over [xi−1/2, xi+1/2], where xi±1/2 := 1

2 (xi + xi±1) and the width of this
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volume is defined as the grid size ∆x := xi+1/2 − xi−1/2.

Previously, the Péclet and Damköhler numbers were defined with respect
to a length scale L, in the following we take the length of each grid cell as the
respective length scale, that is;

L = ∆x =: h, (6.27)

defining them as the grid Péclet and Damköhler numbers. Integrating (6.26a)
over a control volume and approximating the integral over the source term with
the midpoint rule we obtain the discrete conservation law for each interval;

Fi+1/2 − Fi−1/2 = −hDaφi, (6.28)

with φi a numerical approximation of φ(xi). Several expressions for the numerical
flux Fi+1/2 at xi+1/2 exist, depending on the discretization scheme used. Here we
use the exponential flux given in [26, p. 86];

Fi+1/2 =
1

h
(B(−Pe)φi − B(Pe)φi+1), (6.29)

where B(z) is the generating function for the Bernoulli numbers; in short the
Bernoulli function, defined as [121, p. 40][122, p. 804]

B(z) :=

{ z
exp(z)−1 z ̸= 0,

1 z = 0.
(6.30)

The resulting exponential scheme is obtained from the discrete conservation law
(6.28) resulting in

1

h
(−B(Pe)φi+1 + (B(−Pe) + B(Pe))φi − B(−Pe)φi−1) = −hDaφi. (6.31)

Assuming Dirichlet boundary conditions, the discretization matrix without linear
source term, is given by a tridiagonal Toeplitz matrix. For the exponential scheme
the following discretization matrix is obtained;

Ax =
1

h
tridiag(−B(−Pe),B(−Pe) + B(Pe),−B(Pe)), (6.32)

with tridiag(a, b, c) indicating a tridiagonal Toeplitz matrix with a on the sub-
diagonal, b on the diagonal and c on the super-diagonal. Note that for strong
positive advection (Pe → ∞) the matrix Ax becomes bi-diagonal, similar to the
small model system shown in Equation (6.3), and the problem discussed in Section
6.2.4. Since this is a tridiagonal Toeplitz matrix a closed form expression for the
eigenvalues is known [123], namely, they are given by

λk(Ax) =
1

h

(
B(−Pe) + B(Pe) + 2

√
B(Pe)B(−Pe) cos

( kπ

M − 1

))
,

k = 1, 2, ...,M − 2,

(6.33)
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with M the number of grid points. Note that since B(Pe) > 0 and the cosine
factor is greater than −1, we can obtain a strict lower bound, as

λk >
1

h

(
B(−Pe) + B(Pe)− 2

√
B(Pe)B(−Pe)

)
=

1

h

(√
B(−Pe)−

√
B(Pe)

)2
≥ 0.

(6.34)

6.3.2.2 Three-dimensional scheme

To extend the discussion of Section 6.3.2.1 to three-dimensional problems, the
Kronecker sum is used. The Kronecker sum ⊕, is given by [124, p. 268]

P ⊕Q := In ⊗ P +Q⊗ Im, (6.35)

with P ∈ Rm×m, Q ∈ Rn×n and Im, In the identity matrices of size m ×m and
n×n, respectively. Here ⊗ is the well-known Kronecker product (tensor product)
defined for two matrices P ∈ RN×N and Q as

P ⊗Q =

p1,1Q . . . p1,NQ
...

. . .
...

pN,1Q . . . pN,NQ

 . (6.36)

It is then possible to construct the matrix A3D from three one-dimensional
discretization matrices using the Kronecker sum, similar to the procedure in [125].

For a three-dimensional problem on a cube of sides (M − 1)h with con-
stant coefficients and cubical cells with sides of length h, the discretization matrix
excluding the source term can be written as

A3D = (Ax ⊕Ay ⊕Az)h
2, (6.37)

where Ax, Ay and Az are the discretization matrices corresponding to the one-
dimensional problem for each direction as laid out in Section 6.3.2.1. Applying
(6.35) twice, and using the associative property of the Kronecker sum it can be
shown that

Ax ⊕Ay ⊕Az = I ⊗ I ⊗Ax + I ⊗Ay ⊗ I +Az ⊗ I ⊗ I, (6.38)

where each of the identity matrices is of size M − 2, the number of grid cells in
each direction.

Next, we show how the eigenvalues of A3D can be obtained. Consider a
vector v as right-eigenvector of P with eigenvalue λ and w a right-eigenvector of
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Q with eigenvalue µ, then by using the mixed-product property of tensor products
it follows that [124, p. 244]

(In ⊗ P +Q⊗ Im)(w ⊗ v) = Inw ⊗ Pv +Qw ⊗ Imv
= w ⊗ λv + µw ⊗ v
= (λ+ µ)(w ⊗ v).

(6.39)

Thus w ⊗ v is an eigenvector of P ⊕Q with eigenvalue λ+ µ, conform Theorem
4.4.5 in [124, p. 268]. Consequently, if λx is an eigenvalue of Ax, λy an eigenvalue
of Ay and λz an eigenvalue of Az, then λx + λy + λz is an eigenvalue of A3D,
resulting in an expression for the eigenvalues of A3D;

λ(i,j,k)(A3D) = (λi(Ax) + λj(Ay) + λk(Az))h
2, i, j, k = 1, 2, ...,M − 2. (6.40)

Finally, the effect of the linear source term has to be taken into account, namely,
a shift of the eigenvalues by h3Da resulting in the final set of eigenvalues for the
discretization matrix;

λ(i,j,k)(A) = (λi(Ax) + λj(Ay) + λk(Az))h
2 + h3Da, i, j, k = 1, 2, ...,M − 2.

(6.41)

This shows that all eigenvalues of A are positive and real for Da ≥ 0. As a result,
for all values of Pe and Da which will be used in the numerical experiments
later, the linear system is invertible and only has positive, real eigenvalues.
Furthermore, in Appendix 6.B it is shown that A is also positive definite.

In [45] an example was shown involving an advection problem where the
system matrix following from discretization with the central differencing scheme
contains eigenvalues with large imaginary parts. In such a case BiCGStab(L > 1)
is shown to outperform BiCGStab. However, it should also be noted that for
problems with strong advection the central difference scheme yields spurious
oscillations in the solution. Therefore, in our experiments we consider the ex-
ponential scheme which does not result in unphysical behavior for strong advection.

In the numerical experiments of Section 6.4 we illustrate that both of MATLAB’s
versions of BiCGStab and BiCGStab(2) do not converge for advection dominated
problems with the exponential scheme used here. Moreover, we also investigate
modifications to the baseline BiCGStab algorithm and show a potential mitigation
by using a different choice of r̃.

6.4 Results and discussion

In this section we investigate the reliability of BiCGStab, IDR and their various
implementations. To do this an ADR-equation is discretized in 3D and the true
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relative residuals ∥b − Axk∥/∥b∥ are compared over the entire range of Péclet
and Damköhler numbers. Next, convergence as function of the number of Matrix-
Vector products (MV) is compared for four specific combinations of Péclet and
Damköhler numbers. Finally, a numerical experiment is conducted to elaborate
on the effect of the residual propagating through the domain, and the effect of
choosing a random r̃ in BiCGStab.

6.4.1 Convergence as function of Péclet and Damköhler
numbers

To investigate the convergence of BiCGStab and IDR, a model problem is set up
to investigate the entire range of Péclet and Damköhler numbers. We solve (6.25)
for φ on the unit cube. To investigate the entire range of Péclet and Damköhler
numbers we choose

u⃗ =
u√
3
(e⃗x + e⃗y + e⃗z), ϵ = 1, φeq = 0,

φ(0, y, z) = φ(x, 1, z) = φ(x, y, 1) = 1,

φ(1, y, z) = φ(x, 0, z) = φ(x, y, 0) = 0,

(6.42)

for varying u, and sP. The grid contains M = 101 grid cells for each of the
three Cartesian directions such that h = 1/100. After discretization with the
exponential scheme described in Section 6.3.2 a linear system with 993 = 970, 299
unknowns is obtained. No preconditioner is used and the initial guess is set to
zero. Both Pe and Da use the grid spacing h as the characteristic length scales.
The grid Péclet and Damköhler numbers in (6.25) are varied over the range
[10−6, 106].

Each of the iterative solvers is given a maximum of 104 MV, and the toler-
ance is set such that the relative residual ∥r∥/∥b∥ is smaller than 10−12. We
will show that the most efficient solver in terms of MV requires less than 10%
of this maximum to converge. I.e., if a solver does not converge, increasing the
maximum number of iterations in an attempt to enforce convergence would be
inefficient, and may not resolve the issue either. After completion of the iteration
we compare the true residual for all four methods in Figure 6.4.1.
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(a) MATLAB’s BiCGStab (b) MATLAB’s BiCGStab(2)

(c) IDR(4) (d) Baseline BiCGStab

Figure 6.4.1: True residual of the boundary value problem given by (6.25) and
(6.42). Comparison between several solvers.

It can be seen in Figure 6.4.1a, 6.4.1b and 6.4.1d that none of the BiCGStab
variants are successful in solving the discretized advection-diffusion-reaction
problem for all Péclet and Damköhler numbers. However, Figure 6.4.1c shows
that IDR(4) is close to achieving the prescribed tolerance for a wide range of
Péclet and Damköhler numbers.

BiCGStab(2) does not show improved reliability compared to BiCGStab.
This is expected based on the eigenvalues, since the eigenvalues of the dis-
cretization matrix are real as pointed out in Section 6.3.1. The ability to handle
matrices with complex eigenvalues efficiently is one of the main advantages of
BiCGStab(2) over BiCGStab. However, for real eigenvalues this advantage is
not relevant. As a result there is little difference between the regions where
MATLAB’s implementations of BiCGStab and BiCGStab(2) converge.

In addition, it can be seen that MATLAB’s implementation of BiCGStab
performs similarly to the baseline BiCGStab algorithm. This is due to a common
issue related to propagation of the initial residual. Both of MATLAB’s implemen-



112 Chapter 6. Reliability of BiCGStab and IDR for the ADR equation

tation and the baseline algorithm share this issue, which is discussed in more detail
in Section 6.4.4. Most importantly, neither solver converges reliably for prob-
lems with dominant advection, especially when only a weak source term is present.

In the next section we show the effects of the modifications presented in
Section 6.2 when applied to the baseline BiCGStab algorithm.

6.4.2 Comparing modified solvers

To show the effects of the modifications to BiCGStab as discussed in Section 6.2,
we first show a version of BiCGStab with all modifications enabled;

• random shadow residual r̃,

• reliable updating scheme,

• keeping the best intermediate solution.

The true residual computed from the solutions returned by the modified BiCGStab
algorithm with all three modifications enabled is shown in Figure 6.4.2a. It can
be seen in this figure that for all Péclet and Damköhler numbers the modified
version of BiCGStab converges to the prescribed tolerance. Next, we enable or
disable one of the modifications in separate figures to see their effect on the final
residual.

Figure 6.4.2b shows that the effect of storing the solution corresponding to
the lowest residual thus far, rmin, compared with the baseline algorithm shown
in Figure 6.4.1d is negligible. Furthermore, if the solver were to converge, the
benefit of this modification is limited as well. If the solver converges, modified
BiCGStab always returns the solution computed in the last iteration. Thus, if
the recursively computed residual is accurate, and the solver does not stagnate,
then keeping track of the best intermediate solution is redundant. However, this
may have an unwanted effect if the maximum number of iterations set is small.
If there is no improvement over the initial residual, BiCGStab would return the
initial guess as a solution.

In Figure 6.4.2c we disable the use of a random r̃, and use the default
choice r̃ = r0 = b − Ax0. Here it can be observed that the choice of r̃ has a
substantial effect on the final residual for the region roughly given by Pe > 102

and Da < Pe. Compared to Figure 6.4.2a it is clear that for these problems the
choice of r̃ plays a significant role.

The cause of the convergence issues when using the default choice of r̃ = r0 is
a manifestation of the three-dimensional equivalent of the scenario presented in
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Equation (6.3). More specifically, the residual starts near one of the boundaries
and propagates in a wave-like manner through the domain. The important
consequence of this is that the initial residual only contains nonzero elements near
one of the boundaries and gradually these nonzero elements decrease in further
iterations. This leads to the issue that ⟨r̃, r̂:,1⟩ → 0 and indirectly ⟨r̃, û:,2⟩ → 0.
Reliable updating offers no improvement here, as the issue occurs even with
accurate residuals. This effect is shown in more detail in Section 6.4.4.

The effect of the reliable updating scheme is shown in Figure 6.4.2d. In
this figure we show BiCGStab with the modifications of random r̃ and keeping
the best intermediate solution enabled, and reliable updating disabled. For a wide
range of the Péclet and Damköhler numbers the solver converges to the required
tolerance of 10−12, except for some cases in the region Pe > 1 and Da < 103. Even
though the effect of reliable updating is not as dramatic as choosing a different
r̃, a good solver should not stop iterating prematurely. Therefore, the reliable
updating scheme is nevertheless a beneficial addition to ensure the required
tolerance has truly been achieved.
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(a) Modified BiCGStab (b) Baseline BiCGStab with rmin.

(c) Modified BiCGStab without random
r̃.

(d) Modified BiCGStab without reliable
update.

Figure 6.4.2: True residual of the system boundary value problem given by (6.25)
and (6.42). Comparison between BiCGStab and several modified variants.

In the next section we investigate the evolution of the residual as function of the
number of MV, for four selected combinations of Péclet and Damköhler numbers.

6.4.3 Comparing performance for specific Péclet and
Damköhler numbers

The convergence as function of the number of matrix-vector products for four
combinations of Péclet and Damköhler numbers is investigated. Figure 6.4.3 shows
the relative residual (as computed by the solver) ∥r∥/∥b∥ as function of number of
matrix-vector products. Here the same model problem is used as in the previous
sections.
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(a) Pe = 10−5, Da = 105
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(c) Pe = 10−5, Da = 10−5
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(d) Pe = 105, Da = 10−5

Figure 6.4.3: Relative residual of the boundary value problem given by (6.25) and
(6.42) as function of the number of matrix-vector products (MV). Note that this
Figure shows the convergence behavior corresponding to four locations shown in
Figures 6.4.1 and 6.4.2.

For large Damköhler and small Péclet numbers it can be seen in Figure 6.4.3a
that all methods converge within a few MV. When both the Péclet and Damköhler
numbers are large it can be seen in Figure 6.4.3b that the methods perform
similarly for the first 40 MV, however, after this point MATLAB’s solvers start
to slow down. For a problem with dominant diffusion, Figure 6.4.3c, all solvers
converge smoothly and perform about the same. However, the number of MV re-
quired is much larger than the case with negligible diffusion shown in Figure 6.4.3b.

Figure 6.4.3d highlights one of the points of interest with MATLAB’s im-
plementations. First, it can be seen that the residual increases significantly
above the starting value for MATLAB’s solvers. Second, the residual can be
seen to sharply increase at approximately 800 MV and 1200 MV for MATLAB’s
versions of BiCGStab and BiCGStab(L), respectively. The cause of this is
that after a certain number of iterations the recursively computed residual does



116 Chapter 6. Reliability of BiCGStab and IDR for the ADR equation

decrease, however, it strongly deviates from the true residual. When MATLAB’s
implementation detects stagnation, or when the recursively computed residual
norm is below the tolerance, the true residual is computed. After this step the
recursive residual is replaced by the true residual. However, shortly after this
replacement of the recursively computed residual by the true residual, the solvers
stagnate.

It can be seen in Figure 6.4.3d that IDR(4) converges in the least number
of matrix-vector products. Next, note that for the discretized problem, it takes
at least 300 MV to propagate the boundary conditions throughout the domain
if every MV only spreads the solution to neighboring cells, similar to what was
discussed for LMR in Section 6.2.4. Interestingly, the convergence graph for
IDR(4) shows a plateau for the first approximately 300 MV. Similarly, it can be
seen in Figure 6.4.3c that there appears to be a speedup in convergence around
300 MV. For Figure 6.4.3a it should be noted that the system matrix is strongly
diagonally dominant, nearly becoming a multiple of the identity matrix, causing
the fast convergence. Figure 6.4.3b does not show a plateau region, presumably
since the initial guess of zeros is already a good approximation throughout the
domain.

6.4.4 Propagation of the residual for LMR and BiCGStab

In this section we investigate the hypothesis on the significant impact of re-
placing the default choice of r̃ = r0 with a random r̃. It is conjectured that,
similar to the model problem discussed in Section 6.2.4, for 2D and 3D problems
the residual propagates into the interior domain, following the advection direction.

To show the effect of the residual propagating through the domain, as was
suggested by Equation (6.12), we consider a two-dimensional ADR problem on
the unit square with the following parameters;

u⃗ =
u√
2
(e⃗x + e⃗y), ϵ = 1, φeq = 0

φ(0, y) = φ(x, 1) = 1,

φ(1, y) = φ(x, 0) = 0,

(6.43)

where again both u, and sP are varied to investigate specific Péclet and Damköhler
numbers. The system is discretized using the exponential scheme using 101 grid
points per Cartesian direction. The Péclet number is set to 105 and the Damköhler
number to 10−5; the advection dominated regime. The resulting linear system is
solved using a zero initial guess for both LMR and baseline BiCGStab, modified
to include a random r̃.
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In Figure 6.4.4 two main effects can be seen. First, the nonzero residual is
propagating in the x-direction. Second, a wave-like structure traveling in the
e⃗x + e⃗y direction. Since in the two-dimensional discretization scheme cells are
coupled using a 5-point stencil, every element in the residual vector can affect at
most 4 other elements per MV, viz. their direct neighbors. Therefore to have
the grid cell representing the residual at x = 0, y = 0 affect the grid cell at
x = 1, y = 0 would take M − 2 MV. Similarly, it would take 2(M − 1) MV to have
the grid cell at x = 0, y = 0 affect the one at x = 1, y = 1, since the propagation
follows a staircase pattern.

It can be seen in Figure 6.4.4 that for LMR the initial residual is nonzero
close to x = 0 and zero throughout the rest of the domain, similar to the one-
dimensional case shown in Figure 6.2.1. For consecutive iterations the residual
can be seen to propagate similar to a wave traveling in the e⃗x + e⃗y direction. This
is consistent with the interpretation of LMR solving a time-dependent version of
the advection equation, as suggested by Equation (6.12).

For BiCGStab a similar effect is observed, however, a dispersion-like phenomenon
is also present; see Figure 6.4.5. The residual is pushed into the direction e⃗x + e⃗y
as well, however, unlike LMR, the wavefront is not as sharp. It can be seen
that the residual propagates in a wave-like manner through the domain prone to
dispersion. Note that the initial residual is only nonzero on the left-most grid cells.

Importantly, since the residual propagates into the interior domain this re-
sults in ⟨r0, rk⟩ → 0 on line 9 of Algorithm 3. Consequently, β → 0, û:,1 → r̂:,1.
Additional multiplications by A only shift the residual even more, ⟨r̃,Aû:,1⟩ → 0
and α becomes undetermined on line 13. Note, however, that since BiCGStab
performs 2 MV per iteration, one might expect the wave traveling in the e⃗x + e⃗y
to have crossed through the entire domain after 50 iterations. This does not seem
to be the case, suggesting that only the LMR-part is responsible for the wave
propagation.

The effect of propagating residuals is the suspected cause of BiCGStab fail-
ing to converge without a random r̃, which can be seen by comparing Figure
6.4.2a and Figure 6.4.2c. Note that this reason is completely different from the
issue due to BiCGStab failing for complex eigenvalues which result from central
difference discretization. Additionally, the propagating residuals suggest that the
LMR method needs O(M) iterations to get through the first phase of convergence
(the plateau in Figure 6.4.6). It is suspected that this effect also relates to the
conjecture in [126] which states that the first phase of convergence is determined
by the longest streamline for residual-minimizing Krylov subspace methods,
in this case 2(M − 2) cells, as it takes 2(M − 2) iterations for the residual to
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propagate from x = 0, y = 0 to x = 1, y = 1, following only the grid cells in the
direction of the advection velocity.

(a) 5 iterations (b) 25 iterations (c) 50 iterations

(d) 75 iterations (e) 100 iterations (f) 125 iterations

(g) 150 iterations (h) 175 iterations (i) 200 iterations

Figure 6.4.4: Relative residuals for LMR plotted in the x− y plane for the model
problem given by the parameters in (6.43). White in these figures indicates a
residual of exactly 0 at a given position. Here it can be seen that the residual
propagates in the direction of u⃗.
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(a) 5 iterations (b) 25 iterations (c) 50 iterations

(d) 75 iterations (e) 100 iterations (f) 125 iterations

(g) 150 iterations (h) 175 iterations (i) 200 iterations

Figure 6.4.5: Relative residuals plotted in the x− y plane for baseline BiCGStab
with random r̃ for the problem described in (6.43) (r̃ = r0 breaks down). White
in these figures indicates a residual of exactly 0 at a given position.
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Figure 6.4.6: Relative residuals for LMR and baseline BiCGStab with random r̃ for
the problem described in (6.25) and (6.43) as function of the number of iterations.
Note that BiCGStab performs 2 MV per iteration, one in the BiCG part, one in
the LMR part.

6.4.5 Preconditioned BiCGStab

Since linear systems are typically solved using preconditioned iterations, several
numerical experiments using MATLAB’s BiCGStab, have been performed for a
number of preconditioners.

Specifically, we investigate if the use of a preconditioner can alleviate the
convergence issues of MATLAB’s BiCGStab, displayed in Figure 6.4.1, in the
regime of large Péclet and small Damköhler numbers. MATLAB’s BiCGStab
was chosen as it supports the use of functions as a preconditioner, and has a
larger user base than our modified implementation of BiGCStab. Furthermore,
our modified implementation converges for all Péclet and Damköhler numbers
without requiring a preconditioner.

These experiments use the same parameters as presented in Section 6.4.1,
however, with M = 256. Several convergence plots similar to the ones shown in
Figure 6.4.3 are presented. The preconditioners used here are Jacobi, ILU(0) and
a V-cycle geometric multigrid preconditioner with a depth of 4 and Gauss-Seidel
smoothing in the direction of the advection [127, p. 95], the convergence plots
of which are shown in Figure 6.4.7. The results show that multigrid is most
efficient in terms of matrix-vector products, followed closely by ILU(0). Both
multigrid and ILU(0) converge especially quickly for strong advection, since in
this limit the system matrix becomes approximately lower-triangular. The Jacobi
preconditioner gives no significant speedup, if any at all.
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Note, however, that the issues with MATLAB’s BiCGStab are not com-
pletely resolved by adding a preconditioner. As can be seen in Figure 6.4.7h, the
issue related to the deviation between the estimated and the true residuals is still
present, as can be seen by the sudden increase in residual after the estimated
residual has reached the tolerance of 10−12.

Even though a good preconditioner does significantly lower the required
number of matrix-vector products as expected, it does not provide a remedy for
all convergence issues. Both a good preconditioner and a robust iterative method
are required for efficient and reliable convergence.
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Figure 6.4.7: Comparison of the estimated residual as function of number of MV for
MATLAB’s BiCGStab with various preconditioners with M = 256. For Pe = 105

ILU(0) and Multigrid both converge in less than 5 MV.
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6.5 Conclusions

As mentioned in the original reference of BiCGStab [38], there are many possible
variants of BiCGStab which are all equivalent in exact arithmetic, but may
have different behavior in finite precision arithmetic. In this chapter we have
reported on the reliability of different implementations of BiCGStab and IDR
for advection-diffusion-reaction (ADR) problems with real eigenvalues of the
discretization matrix.

First, a baseline BiCGStab implementation has been presented, for which
it has been shown that even for small matrices this variant can exhibit complica-
tions in converging to a solution. Three modifications to the baseline BiCGStab
algorithm have been implemented, i.e., the choice of shadow residual r̃, the re-
liable updating scheme and keeping the solution with the smallest residual thus far.

A model ADR problem has been set up and converted into dimensionless
form. Using this dimensionless form the entire parameter space of Péclet and
Damköhler numbers can be investigated. The ADR-equation has been discretized
using the Finite Volume Method in combination with the exponential scheme
of [26]. Unlike the central difference scheme, the exponential scheme yields a
discretization matrix with real eigenvalues, even for strong advection.

Since the eigenvalues are real, there is no improvement in reliability of
BiCGStab(2) compared to BiCGStab. MATLAB’s implementations of BiCGStab
and BiCGStab(2) performed no better than the baseline BiCGStab algorithm.
IDR(4) performed very well for practically all Péclet and Damköhler numbers,
clearly outperforming the modified BiCGStab implementations, in terms of the
number of matrix-vector products for problems with large Péclet number. For
roughly Pe > 1 and Da < Pe MATLAB’s solvers and the baseline BiCGStab
method do not converge. Choosing a random shadow residual, r̃, is essential in
the numerical experiments for the reliability of BiCGStab starting from a zero
initial guess. It is hypothesized that this is due to the residual moving through
the domain, eventually leading to ⟨r̃, r⟩ → 0 and a breakdown of the BiCG part.

It is shown for matrices resulting from discretized ADR equations that the
LMR method can be interpreted as a time integration method for the advection
equation subject to homogeneous Dirichlet boundary conditions. This is explicitly
shown for a one-dimensional advection equation in Section 6.2.4. However, since
the investigated discretization matrices are positive definite implying ω > 0,
this time stepping property also holds for these problems. Furthermore, it is
demonstrated that BiCGStab shows similar behavior in numerical experiments.
It is suspected that the effect of the residual moving as a wave in the advection
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direction is related to the conjecture in [126], where it was argued that the
first phase (initial plateau where the residual remains relatively constant) lasts
as long as the longest streamline takes to traverse the grid with the flow for
residual-minimizing Krylov subspace methods.

The reliable updating scheme included in BiCGStab adds an extra step to
ensure the computed residual truly achieves the prescribed tolerance. As long as
the solver converges to the tolerance required, there is no benefit in storing the
best solution thus far. If the method stalls the effect is still not significant in our
experiments.

We recommend to modify BiCGStab with a random shadow residual, in
conjunction with a reliable updating scheme, most notably if the initial residual
is sparse, for example when it is only nonzero near the boundaries of the domain.
Moreover IDR(4) is an excellent candidate, achieving the tolerance for a large
number of cases. Additionally, for strong advection, IDR(4) uses significantly less
matrix-vector products compared to BiCGStab.

In practice one cannot know beforehand which linear solver is optimal for a
given problem. We have shown in this chapter that even specific implementations
of BiCGStab have a significant impact on convergence. For example, the seem-
ingly arbitrary parameter r̃ has a major impact on the robustness of the solver
in our experiments. This observation complicates the applicability of specific
iterative methods even further. Nevertheless, we conclude, based on the numerical
results, that modified BiCGStab and IDR(S) would be preferable over standard
BiCGStab for ADR problems. A practical benefit of the modified BiCGStab
variant presented here is that choosing a different r̃ is trivial to implement in
existing codes and should be sufficient to largely mitigate issues relating to the
vanishing of ⟨r̃, r̂:,1⟩.

In this chapter, the analysis is only applied to the linear advection-diffusion-
reaction equation. However, for nonlinear problems such as the nonlinear ADR
equation and the Navier-Stokes equations a linear system is still obtained after
linearization using Newton or Picard iteration. Alternatively, one may choose to
linearize before discretizing, for example by linearizing the source term of the
ADR equation which was considered in this chapter. We believe that even for
nonlinear PDEs the results shown here can still be relevant.
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Appendix

6.A Derivation LMR step size and residual

In this appendix we show that under certain conditions the step size ω = 1
2 ;

additionally we derive an expression for the k-th residual generated by the LMR
algorithm for the problem given in Section 6.2.4.

First, the step size ω in the LMR algorithm is given by

ω :=
⟨Ar, r⟩
⟨Ar,Ar⟩

, (6.44)

where the matrix A is the tridiagonal Toeplitz matrix

A := tridiag(−1, 1, 0). (6.45)

With these definitions, we will show that ω = 1
2 for any vector r with last element

equal to zero given this specific matrix A. We start by computing the numerator
in (6.44);

⟨Ar, r⟩ =
N∑
i=1

(Ar)iri =

N∑
i=1

( N∑
j=1

aijrj

)
ri, (6.46)

then by splitting off the first term of the sum over i, and substituting the values
for the elements of A we arrive at

N∑
j=1

a1jrjr1 +

N∑
i=2

( N∑
j=1

aijrj

)
ri = r21 +

N∑
i=2

(−ri−1 + ri)ri. (6.47)

The expression in (6.47) can be seen as the squared 2-norm of r with a rest term,
since after expanding the brackets it is equal to

N∑
i=1

r2i −
N∑
i=2

ri−1ri = ∥r∥2 −
N−1∑
i=1

riri+1. (6.48)

The denominator in (6.44) is computed via a similar procedure;

⟨Ar,Ar⟩ =
N∑
i=1

(Ar)2i =

N∑
i=1

( N∑
j=1

aijrj

)2
, (6.49)

after again splitting off the first term of the i-sum and substituting the values for
A we obtain( N∑

j=1

a1jrj

)2
+

N∑
i=2

( N∑
j=1

aijrj

)2
= r21 +

N∑
i=2

(−ri−1 + ri)
2. (6.50)
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Then, expanding the squared term in the summation and relabeling the index, the
denominator becomes

r21 +

N∑
i=2

(r2i + r2i−1 − 2ri−1ri) = ∥r∥2 +
N∑
i=2

r2i−1 − 2

N∑
i=2

ri−1ri

= 2∥r∥2 − r2N − 2

N−1∑
i=1

riri+1.

(6.51)

By dividing (6.48) and (6.51) it is clear that

ω = 1
2 , if rN = 0. (6.52)

Second, we derive an expression for the k-th residual produced by LMR starting
from an initial residual of e1. The LMR recurrence for the residual, given ω = 1

2 ,
is the following

rk+1 = (I − ωA)rk = (I − 1
2A)rk. (6.53)

Next, the matrix B is introduced as

B := (I − 1
2A) = 1

2 tridiag(1, 1, 0). (6.54)

Note that the matrix B can be interpreted as a smoothing matrix, taking two
neighboring elements of a vector and computing the average value. We then define

rk0 := 0 for all k, (6.55)

and a special case of the binomial coefficients as(
0

0

)
:= 1. (6.56)

Then for any vector rk Equation (6.53) gives the recurrence

rk+1
i = 1

2 (r
k
i + rki−1), i = 1, 2, ..., N. (6.57)

We will prove that the k-th residual

rki =

(
k

i− 1

)
( 12 )

k, i = 1, 2, ..., k + 1 < N, (6.58)

with the other elements given by

rki = 0, i > k + 1. (6.59)

To prove (6.58) holds for any k, we use a proof by induction; we start by showing
the base case k = 0, then for a given k we derive the case for k + 1.
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Starting from the first residual vector r0 = e1;

r01 = 1, r0i = 0, i > 1. (6.60)

The LMR recurrence yields the next residual as

r1 = Be1 =
1

2

[
1 1 0 . . . 0

]T
, (6.61)

which agrees with (6.58). Next, we have to show that for any k, i

rk+1
i =

(
k + 1

i− 1

)
( 12 )

k+1, i = 1, 2, ..., k + 2 < N. (6.62)

Substituting rki from (6.58) into the recurrence (6.57) yields

rk+1
i = 1

2 (r
k
i + rki−1) =

1
2

[(
k

i− 1

)
( 12 )

k +

(
k

i− 2

)
( 12 )

k

]
, i = 1, 2, ..., k + 2 < N.

(6.63)
This can be rewritten to

rk+1
i =

[(
k

i− 1

)
+

(
k

i− 2

)]
( 12 )

k =

(
k + 1

i− 1

)
( 12 )

k+1. (6.64)

Since (6.64) is equal to (6.58) after relabeling the index, it follows by induction
that for any k Equation (6.58) satisfies the relation (6.53), completing the proof.

6.B Positive definite discretization matrices

A positive definite (PD) matrix has the property that xTAx > 0 for all vectors
x ̸= 0 [75, p. 140]. First, we start by showing if xT(AT + A)x > 0 then
xTAx > 0. Second, we show that the discretization matrices obtained for the
one-dimensional ADR problem are PD. Finally, we show that the two-dimensional
and three-dimensional ADR problems also yield PD discretization matrices.

First, note that

xTAx = (xTAx)T = xTATx, (6.65)

and consequently

xT(A+AT)x = 2xTAx, (6.66)

therefore if

xT(A+AT)x > 0, then, xTAx > 0. (6.67)
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Second, we show that Ax + AT
x with Ax given by (6.68) shortly, is PD. To do

this, note that the matrix Ax +AT
x is symmetric, therefore if all eigenvalues are

positive then this matrix is PD [124, p.246]. The matrix Ax +AT
x is given by

Ax +AT
x =

1

h
tridiag(−B(Pe)− B(−Pe), 2B(−Pe) + 2B(Pe),−B(−Pe)− B(Pe)),

(6.68)
which can be written as

Ax +AT
x =

1

h
(B(Pe) + B(−Pe))tridiag(−1, 2,−1). (6.69)

Since the eigenvalues of tridiag(−1, 2,−1) are positive for any number of grid
points, Ax+A

T
x is PD. It can be shown similarly that also for positive Damköhler

numbers the discretization matrix is PD, since the addition of a positive
Damköhler number term only shifts all eigenvalues toward the right on the real
axis.

To extend this derivation to the two-dimensional ADR problems, note that

(Ax ⊕Ay)
T = (I ⊗Ax +Ay ⊗ I)T = (I ⊗Ax)

T + (Ay ⊗ I)T, (6.70)

and using the property (I ⊗A)T = I ⊗AT [128, p. 40] it follows that

(Ax ⊕Ay) + (Ax ⊕Ay)
T = I ⊗ (Ax +AT

x ) + (Ay +A
T
y )⊗ I. (6.71)

By using corollary 4.2.13 [124, p.246] it is known that if (Ax +AT
x ) is symmetric

positive definite (SPD) then I ⊗ (Ax + AT
x ) is also SPD. Via a similar argu-

ment it follows that (Ay + AT
y ) ⊗ I is also SPD. Since the element-wise sum

of two SPD matrices yields another SPD matrix, we conclude that (Ax⊕Ay) is PD.

The matrices obtained from the three-dimensional discretization of the ADR
equation with the exponential scheme can be shown to be PD similarly.





Chapter 7

From LMR to BiCGStab

Linear systems are ubiquitous in computational physics, ranging from simulations
in fluid dynamics [129] to quantum mechanics [130], acoustics [119], electromag-
netism [131], plasmas [96] and many more. A linear system is described by the
equation

Ax = b, (7.1)

where A is a real N ×N matrix, x and b are real vectors of size N .

There is a wide variety of methods to solve such linear systems for x, many
of which rely on a decomposition of the matrix A, such as LU decomposition,
Cholesky decomposition etc. More specialized decompositions make use of the
sparsity of the matrix. Such methods are classified as direct methods, which de-
liver the exact solution after a known number of arithmetic operations. There also
exist iterative methods, which produce a sequence of successive approximations
by repeating some update rules, until some termination criterion is reached [132].

The methods of interest in this thesis are the iterative methods called Krylov
subspace methods; such methods seek to approximate the inverse of A with a
matrix polynomial P (A) [32, p157-p158] such that

x = A−1b ≈ P (A)b. (7.2)

To find such a polynomial, Krylov subspace methods compute projections on the
linear subspace Kk(A,v);

Kk(A,v) = span
{
v,Av,A2v, ...,Ak−1v

}
, (7.3)

this subspace Kk(A,v) is the so-called Krylov subspace, named after Aleksei Niko-
laevich Krylov who published on eigenvalue problems [133]. A wide variety of
Krylov subspace methods exist, including, but not limited to the following:

129
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1. Local Minimum Residual (LMR) [134].

2. Conjugate Gradient (CG) [135].

3. Conjugate Gradient Squared (CGS) [136].

4. BiConjugate Gradient (BiCG) [137].

5. BiConjugate Gradient Stabilized (BiCGStab) [38].

6. BiConjugate Gradient Stabilized with a higher order minimum residual step
(BiCGStab(L)) [138].

7. Induced Dimension Reduction(S) (IDR(S)) [46].

8. Induced Dimension Reduction Stabilized with a higher order minimum resid-
ual step (IDR(S)Stab(L)) [48].

9. Minimum Residual (MinRes)[139].

10. Generalized Minimal Residual (GMRES) [44].

11. Quasi-Minimal Residual (QMR) [140].

Additionally, a lot of variants exist for these methods, for example for BiCGStab
there exist:

1. The original description of [38].

2. A version adapted for efficient parallelization [112].

3. A method designed to recycle previously constructed Krylov subspaces for
sequences of linear systems [114].

4. A block version designed for systems with multiple right hand sides [113].

5. An implementation designed for computers with distributed memory [111].

6. Adaptations for improving convergence when using finite precision arithmetic
[141].

7. Variants for matrices with complex spectra [142].

In this thesis we cover only LMR, CG, BiCG, BiCGStab, BiCGStab(L), IDR(S)
and IDR(S)Stab(L), and discuss variants of BiCGStab. This chapter covers the
main concepts of Krylov methods, and discusses several pitfalls in their application.
In the coming sections we start from the relatively simple LMR method, and work
towards a description of our Eigen-implementations of IDR(S) [50], BiCGStab(L)
[49] and IDR(S)Stab(L) [51] algorithms in the next chapter.
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7.1 Local Minimum Residual (LMR)

In this section the Local Minimum Residual (LMR) method is introduced. LMR
is one of the simplest Krylov subspace methods, which we use to introduce several
key concepts. The aim of Krylov subspace methods is to solve the linear system
(7.2) using an iterative procedure. Since the linear system is solved iteratively, we
need a way to estimate the accuracy of the obtained solution. Ideally, one would
use the error ek, defined as

ek := x− xk, (7.4)

as a measure for the quality of the obtained solution. However, the error is typically
not known. An alternative measure can be obtained by left-multiplying (7.4) with
the matrix A,

Aek = Ax−Axk = b−Axk, (7.5)

and defining the residual
rk := b−Axk. (7.6)

Starting with some initial guess x0 and corresponding residual r0, the LMR
method seeks an update to xk of the form

xk+1 = xk + ωkrk, (7.7)

where ωk is a coefficient that has to be determined at each iteration. In the LMR
method, the value of ωk is chosen such that the next residual is minimized in the
2-norm. Using (7.6) and (7.7), the next residual, rk+1, is obtained as

rk+1 = b−A(xk + ωkrk), (7.8)

which can be simplified to

rk+1 = rk − ωkArk. (7.9)

To obtain ωk which minimizes ∥rk+1∥2, both sides of (7.9) are left-multiplied by
rTk+1,

rTk+1rk+1 = (rTk − ωkr
T
kA

T)(rk − ωkArk). (7.10)

After expanding (7.10), and using rTkA
Trk = rTkArk, we obtain a quadratic poly-

nomial in ωk

∥rk+1∥22 = ∥rk∥22 − 2ωkr
T
kArk + ω2

k(Ark)
TArk, (7.11)

which has a minimum at

ωk =
rTkArk

(Ark)T(Ark)
. (7.12)

This choice of ωk then minimizes ∥rk+1∥2, hence the name of the algorithm; LMR.
With ωk given in (7.12), the LMR algorithm can be set up, see Algorithm 5.
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Algorithm 5 Basic LMR algorithm

1: function LMR(A, b,x, tol)
2: r ← b−Ax
3: while ∥r∥2 > tol do

4: ω ← rTAr
(Ar)T(Ar)

5: x← x+ ωr
6: r ← r − ωAr
7: end while
8: return x
9: end function

7.1.1 Properties of the LMR algorithm

Even though the LMR algorithm will never diverge, as by construction the next
residual is at most as big as the current residual (taking ω = 0), it is possible to
construct matrices for which convergence is arbitrarily slow. Consider the rotation
matrix given by

A =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (7.13)

and the effect it has on the coefficient ωk in equation (7.12). For any r, it can be
shown that

ωk = cos(θ), (7.14)

which indicates that the reduction of the residual in equation (7.9) can be made
arbitrarily small. More specifically it can be shown that the residual vector is
updated via the recurrence

rk+1 = rk − cos(θ)Ark, (7.15)

it can be shown using ATA = I and rTkArk = cos(θ)∥rk∥2 for rk ̸= 0 that

∥rk+1∥2

∥rk∥2
= 1− cos(θ)2, (7.16)

therefore starting from r0, after k iterations the LMR algorithm produces a residual
with norm

∥rk+1∥2 = ∥r0∥2(1− cos(θ)2)k+1. (7.17)

As expected, the residual will never increase, since |1 − cos(θ)2| = | sin2(θ)| ≤ 1.
However, for θ = π/2 the LMR algorithm stalls. The number of iterations needed
for convergence of LMR as function of θ is shown in Figure 7.1.1a. Here it can be
seen that the number of iterations required sharply increases near θ = π/2 and
θ = 3π/2.
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This result can also be understood from an eigenvalue analysis. Firstly,
note that if rk is an eigenvector of A with eigenvalue λ, then choosing ωk = 1/λ
leads to rk+1 = 0. Secondly, note that if rk is real, then ωk is also real. Thirdly,
consider an expansion of rk in terms of the eigenvectors of A,

rk = ξ1v1 + ξ2v2, (7.18)

where ξi are the expansion coefficients and vi the eigenvectors of A. Then rk+1 is
given by

rk+1 = ξ1v1 + ξ2v2 − ωkA(ξ1v1 + ξ2v2), (7.19)

then by using Avi = λivi, with λi the eigenvalue corresponding to vi we obtain

rk+1 = ξ1(1− ωkλ1)v1 + ξ2(1− ωkλ2)v2. (7.20)

Note that the eigenvalues of (7.13) are e±iθ = cos(θ) ± i sin(θ), and that
ωk = cos(θ) is a real number. Furthermore, note if ωk = 1/λ1 then the v1
component of the residual is eliminated. This suggests that, complex ω may
greatly improve convergence, since choosing ω1 = 1/λ1 and ω2 = 1/λ2 achieves
r3 = 0. An alternative to complex ω is to consider a vector ω, this extension
is discussed in Section 7.1.3. The convergence issues for ω ≈ 0 are similar in
nature to the convergence issues BiCGStab [38] faces when the system matrix has
eigenvalues with a large imaginary component. The extension to a vector ω to
work around this issue, is similar to the idea of BiCGStab(L), which is presented
later.

Another example that illustrates the convergences of LMR can be obtained
by applying the LMR to the linear system with the matrix

A = I +C, C =

[
0 c
−c 0

]
, (7.21)

where C represents the anti-symmetric part of A. It is straightforward to show
that for such systems ωk is given by

ωk =
1

1 + c2
, (7.22)

and that the recurrence relation for the residual becomes

rk+1 = rk −
1

1 + c2
(rk +Crk). (7.23)

By computing the norm of rk+1 it follows that the residual decreases as

∥rk+1∥2

∥r0∥2
=

(
1− 1

1 + c2

)k

, (7.24)
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this shows that the convergence of LMR slows down with increasing c, suggesting
that for asymmetric matrices LMR may converge slowly. The effect of increasing
the skewness of A is shown in Figure 7.1.1b.
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(a) Rotation matrix (7.13)
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(b) Skew symmetric matrix (7.21)

Figure 7.1.1: Number of iterations required for LMR to converge to ∥r∥ < 10−12

starting from an initial guess of x0 = 0 and right hand side b = 1.
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7.1.2 LMR iteration as discretized time-dependent linear PDE

Note that the LMR recurrence given by Equation (7.9) can be rearranged to be-
come

rk+1 − rk
ωk

= −Ark. (7.25)

If ωk > 0 the LMR iteration can be interpreted as a time integration method for
the linear, first-order ODE

d

dt
r = −Ar. (7.26)

For positive definite A it can be shown that ωk > 0 for all k. In that case (7.25)
is a time-discretization of (7.26) using forward Euler and a variable time-step ωk.
Additionally, due to the local minimization property, the “variable timestep” ωk

is such that forward Euler does not diverge, since ∥rk+1∥2 ≤ ∥rk∥2.

In Chapter 6 a discretization of the ADR equation

∂

∂t
φ = −∇ · (u⃗φ− ϵ∇φ), (7.27)

was considered, which (depending on the discretization scheme) results in a
positive definite, but not necessarily symmetric, matrix A. This has the benefit
that previous experience with equations of the type (7.27) can be extended to
insights regarding the propagation of the LMR residual; knowledge of the PDE
can be applied to investigate convergence of LMR as demonstrated in Chapter 6.

On the one hand LMR is straightforward to investigate analytically, easy
to implement, and never diverges. On the other hand, the number of iterations
can be excessively large, even for systems with just two unknowns. Therefore,
in the coming sections we consider extensions and alternatives to the LMR method.

The LMR recurrence can be written as a polynomial of the form

rk+1 = (I − ωkA)rk, (7.28)

an extension to LMR would be to use a polynomial of degree two, similar to the
higher order polynomial step in BiCGStab(L) [45], such as

rk+1 = (I − ωk,1A− ωk,2A
2)rk, (7.29)

this idea is investigated in the next section.

7.1.3 Extended Local Minimal Residual (LMR(2))

As sketched in equation (7.29), one possible extension to the LMR algorithm is
to consider a second order polynomial in A. The idea is again to choose the
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coefficients such that ∥rk+1∥22 is minimized. To achieve this minimization, we
introduce a vector ωk,

ωk :=

[
ωk,1

ωk,2

]
. (7.30)

In order to minimize rk+1, we have to find ωk which solves the following least-
squares problem

rk+1 =
[
Ark A2rk

]
ωk. (7.31)

This least-squares problem can be solved with a variety of methods, most notably
by orthogonalizing Ark and A2rk. The resulting LMR(2) algorithm is given in
Algorithm 6. Section 7.2 discusses an extension to LMR(m), by orthogonalizing an
arbitrary number of vectors to minimize ∥rk+1∥2. Note that in some references on
Krylov subspace methods [143, 32, 47], these least-squares problems are denoted
in terms of argmin, i.e.,

argmin
ω
∥r − [Ar,A2r]ω∥2, (7.32)

which denotes finding ω such that it minimizes ∥r − [Ar,A2r]ω∥2.

Algorithm 6 LMR(2) algorithm

1: function LMR(2)(A, b,x, tol)
2: r ← b−Ax
3: while ∥r∥2 > tol do
4: ω ← argminω ∥r − [Ar,A2r]ω∥2
5: x← x+ [r,Ar]ω
6: r ← r − [Ar,A2r]ω
7: end while
8: return x
9: end function

If A is of size 2 × 2, and the vectors Ar and A2r are linearly independent,
LMR(2) will converge to the exact solution within one iteration. To extend this
favorable property to larger systems, the next section discusses the Full Orthogo-
nalization Method (FOM). A method that is guaranteed to converge inN iterations
for a linear system with N unknowns.

7.2 Full Orthogonalization Method (FOM)

In this section FOM is discussed. In essence, FOM extends the LMR(2) algorithm
to LMR(m), where the argmin step is computed by explicit orthogonalization of
the space spanned by {Ar,A2r, . . . ,Amr}.
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Algorithm 7 LMR(m) algorithm

1: function LMR(m)(A, b,x, tol,m)
2: r ← b−Ax
3: while ∥r∥2 > tol do
4: ω ← argminω ∥r − [Ar,A2r, . . . ,Amr]ω∥2
5: x← x+ [r,Ar, . . . ,Am−1r]ω
6: r ← r − [Ar,A2r, . . . ,Amr]ω
7: end while
8: return x
9: end function

In principle, it is possible to compute ω without orthogonalization of
B = [Ar,A2r, . . . ,Amr], for example by solving a system of normal equations
BTBω = Br. However, this is problematic as the columns of B tend towards
the largest eigenvector of A, and thus tend to become nearly linearly dependent.
This leads to conditioning issues, which are amplified by the property that
κ(BTB) = κ(B)2 where κ is the condition number.

In the FOM algorithm, one iteration of LMR(m) is computed by explicit
orthogonalization using (modified) Gram-Schmidt. The resulting update to x is
then obtained by solving a different linear system. The orthogonalization proce-
dure is similar to computing the QR-decomposition of B using Gram-Schmidt.
However, instead of a triangular matrix R FOM produces a Hessenberg matrixH.
In the special case of orthogonalizing a Krylov subspace like [r,Ar, . . . ,Am−1r]
this orthogonalization procedure is also known as Arnoldi iteration.

The FOM algorithm is given in Algorithm 8, based on Algorithm 6.4 of
[32]. A slightly modified version of Algorithm 8 is used in our IDR(S)Stab(L)
implementation, which will be covered in Section 8.3. Like LMR, FOM will never
diverge due to the residual minimization property. However, the cost of FOM
scales as O(m2), since every new vector vj+1 has to be made orthogonal to every
previous vector vi with i ≤ j.

In the next section we discuss a Krylov method, which builds an orthogo-
nal basis while only using one previous vector.
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Algorithm 8 Full Orthogonalization Method (FOM)

1: function FOM(A, b,x,m)
2: r ← b−Ax
3: v1 ← r/∥r∥2
4: H = 0 ▷ H ∈ Rm×m

5: for j = 1, 2, . . . ,m do
6: w ← Avj
7: for i = 1, . . . , j do
8: Hij = ⟨w,vi⟩
9: w ← w −Hijvi

10: end for
11: Hj+1,j = ∥w∥2
12: if Hj+1,j = 0 then
13: j ← m
14: y ← ∥r0∥2H−1V Tr0
15: x← x+ V y
16: return x
17: end if
18: end for
19: y ← ∥r∥2H−1V Tr0 ▷ V = [v1, . . . ,vm]
20: x← x+ V y
21: return x
22: end function

7.3 Conjugate gradient method (CG)

Ideally one would like to combine the short recurrence property of the LMR
algorithm, Section 7.1, with the guaranteed convergence and optimality properties
of the FOM algorithm, in Section 7.2. However, algorithms with these two
properties do not exist for an arbitrary matrix A, by the Faber-Manteuffel
theorem [35, 144]. Nevertheless, for an important class of matrices such an
algorithm can be constructed. In the case of symmetric, positive definite matrices
the well-known Conjugate Gradient algorithm is both a short recurrence method,
and optimal in the sense that the error is minimized over some norm [135, 34, 32].
The derivation of CG presented here is based on [34].

The goal of the Conjugate Gradient method is to solve a linear system

Ax = b, (7.33)

by starting from an initial guess x0, and iteratively improving on this guess. Here
the matrix A ∈ RN×N , and the vectors x ∈ RN×1 and b ∈ RN×1. After k
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iterations an approximate solution xk is obtained, with some error ek defined as

ek := x− xk. (7.34)

Typically, the error is unknown, however, knowing the error would allow for a
trivial computation of the exact solution; x = xk + ek. Therefore, a residual
associated with an iterate xk is used as a quantitative measure for the obtained
solution;

rk := b−Axk = Aek. (7.35)

Similar to FOM, in the CG-method we want to compute an orthogonal basis, and
use it to obtain successive approximations for the solution x. A first idea would
be to use some set of orthogonal vectors {d0, . . . ,dN−1} such that

dTi dj = 0, if i ̸= j, (7.36)

and expand x in terms of this basis

x =

N−1∑
j=0

γjdj . (7.37)

Note that, because of the orthogonality property (7.36), the coefficients γj can
be obtained by left-multiplying (7.37) with the transposed vectors from the set
{d0, . . . ,dN−1} to obtain;

dTi x =

N−1∑
j=0

γjd
T
i dj = γid

T
i di, (7.38)

which results in an expression for the expansion coefficients γi,

γi =
dTi x

dTi di
. (7.39)

Unfortunately, computing the coefficients γi using (7.39) requires the exact
solution x.

However, it is possible to obtain an orthogonal expansion for which the ex-
pansion coefficients can be computed without requiring x. The idea is to start
with a basis {p0, . . . ,pN−1}, the properties of which will be discussed shortly.
Then again expand x in terms of this basis,

x =

N−1∑
j=0

αjpj , (7.40)



140 Chapter 7. From LMR to BiCGStab

left-multiply both sides by A and use that Ax = b. This results in the expression

Ax = b =

N−1∑
j=0

αjApj . (7.41)

To compute the expansion coefficients αj , we assume A is symmetric positive
definite, which allows us to define an inner product

⟨pi,pj⟩A := pTi Apj . (7.42)

It is then possible to define orthogonal vectors with respect to this inner product.
The vectors pi and pj are said to be A-orthogonal if

⟨pi,pj⟩A = 0, if i ̸= j. (7.43)

Then a similar concept as used in (7.37) can be applied to (7.41); by left-
multiplying with vectors from the set {p0, . . . ,pN−1} the expansion coefficients
αj can be obtained;

pTi b =

N−1∑
j=0

αjp
T
i Apj = αip

T
i Api. (7.44)

This yields an expression for the expansion coefficients,

αi =
pTi b

pTi Api
, (7.45)

which can be obtained if one has a suitable set of A-orthogonal vectors
{p0, . . . ,pN−1}.

Next, we will construct a set of A-orthogonal vectors from an arbitrary,
but linearly independent set of vectors {u0, . . . ,uN−1}. Similar to the Gram-
Schmidt procedure of generating orthogonal vectors, a variant of this procedure
can also be used to generate A-orthogonal vectors;

pk = uk −
k−1∑
j=0

⟨uk,pj⟩A
⟨pj ,pj⟩A

pj = uk −
k−1∑
j=0

uT
kApj
pTj Apj

pj . (7.46)

In principle one can construct an iterative algorithm using (7.46) and (7.45)
similar to the FOM algorithm in Section 7.2, by starting from any set of
vectors {u0, . . . ,uN−1}, A-orthogonalizing, computing the expansion coefficients
α, and computing x using equation (7.40). However, note that every new
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vector pk has to be made A-orthogonal to every p<k; with each additional
vector the algorithm becomes significantly more expensive. However, using the
properties of the A-orthogonal basis a more efficient algorithm can be constructed.

To optimize the A-orthogonalization procedure some additional insight is
needed, for brevity we take x0 = 0. Note that the iterative procedure produces,
after k + 1 iterations, an approximation xk+1

xk+1 =

k∑
j=0

αjpj , (7.47)

with an associated error given by

ek+1 = x− xk+1 =

N−1∑
j=0

αjpj −
k∑

j=0

αjpj =

N−1∑
j=k+1

αjpj . (7.48)

Left-multiplying (7.48) by pTkA and using Aek+1 = rk+1 yields;

pTk rk+1 =

N−1∑
j=k+1

αjp
T
kApj . (7.49)

Then, due to the A-orthogonality of the basis vectors {p0, . . . ,pN−1} it follows
that

pTk rk+1 = 0. (7.50)

Equation (7.50) thus implies that the (k + 1)-th residual is orthogonal to all p≤k.

Using (7.47), it is clear that one can obtain a recurrence for obtaining the
next approximation of x;

xk+1 = xk + αkpk, (7.51)

from which it follows that
ek+1 = ek − αkpk. (7.52)

Using equations (7.51) and (7.52), an explicit expression for αk can be obtained.
Firstly, note that the vectors pk are constructed to be A-orthogonal. Secondly, αk

can be chosen such that the next error ek+1 is A-orthogonal to pk. This implies
that the error has no component remaining in the direction pk. This implies at
least a local optimality property, where an error or a residual is minimized each
iteration.

Since all vectors of the set {p0, . . . ,pN−1} are A-orthogonal to each other,
this implies the error cannot increase (in some norm) and the exact solution is
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obtained after N iterations, as after N iterations {p0, . . . ,pN−1} spans RN .

To construct this αk, left-multiply (7.52) by pTkA and impose pTkAek+1 = 0;

pTkAek+1 = 0 = pTkAek − αkp
T
kApk, (7.53)

this results in an expression for αk,

αk =
pTkAek
pTkApk

=
pTk rk
pTkApk

. (7.54)

Finally, a recurrence for the next residual can be obtained as follows;

rk+1 = Aek+1, (7.55a)

rk+1 = A(ek − αkpk), (7.55b)

rk+1 = rk − αkApk. (7.55c)

It can be shown that this choice of αk as constructed in (7.54) minimizes
∥ek+1∥A := eTk+1Aek+1. Starting from (7.52), the choice of αk that minimizes
∥ek+1∥A can be obtained by solving

d

dα
∥ek+1∥2A = −2eTkApk + 2αkp

T
kApk = 0, (7.56)

which results in αk as given in (7.54).

Next, we use the A-orthogonality to make computing the vectors {p0, . . . ,pN−1}
significantly more efficient. The idea is to take ui = ri in equation (7.46), obtain
an expression for {p0, . . . ,pN−1}, then use the orthogonality property (7.50) to
eliminate most terms in the summation of (7.46). This also yields that p0 = r0.

Note that equation (7.55c) shows that rk+1 is a linear combination of the
previous residual rk, and Apk. Additionally, after k iterations the spans of the
vectors r and p have the property that

Pk = span{r0, r1, ..., rk−1} (7.57a)

= span{p0,p1, ...,pk−1} (7.57b)

= span{r0,Ar0, ...,Ak−1r0} (7.57c)

= span{p0,Ap0, ...,Ak−1p0}. (7.57d)

With the observation in (7.57) a significant efficiency improvement can be obtained.
Firstly, note that

Pk+1 = span{p0,p1, ...,pk} = span{p0,Ap0, ...,Akp0}. (7.58)
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Secondly, from the orthogonality property (7.50) it follows that the next residual,
rk+1 ⊥ Pk+1. Thirdly, we use that

APk = span{Ap0,Ap1, ...,Apk−1} = span{Ap0,A2p0, ...,A
k−1p0}, (7.59)

is a subspace of Pk+1. Since rk+1 ⊥ Pk+1 it follows that rk+1 ⊥ APk, i.e., rk+1

is A-orthogonal to Pk. This leads to the conclusion

rTk+1Apj = 0, if j < k, (7.60)

therefore the residual rk+1 is already A-orthogonal to all previous search direc-
tions. This result of equation (7.60) greatly simplifies the Gram-Schmidt procedure
used to construct the A-orthogonal basis in equation (7.46);

pk+1 = rk+1 −
k∑

j=0

rTk+1Apj

pTj Apj
pj = rk+1 −

rTk+1Apk

pTkApk
pk. (7.61)

Then using equations (7.51), (7.54), (7.55) and (7.61) the complete Conjugate
Gradient algorithm becomes Algorithm 9.

Even though this algorithm uses only short recurrences, as it only takes
one previous basis vector to construct an orthogonal basis CG also guarantees to
minimize the error in some norm. However, this algorithm strongly relies on the
concept of A-orthogonality. Unfortunately this property can only be exploited if
A is symmetric, positive definite.

In the next sections we present iterative methods that do not have this re-
striction on A. However, by the Faber-Manteuffel theorem [35] there exists no
optimal Krylov subspace method with short recurrences for every matrix A, since
in general it is not possible to generate an orthogonal basis of Krylov subspaces
via only short recurrences[144]. Therefore, these methods will either have to
sacrifice optimality, short recurrence, use a different space altogether, or find a
compromise.
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Algorithm 9 Conjugate Gradient method

1: function CG(A, b,x0, tol)
2: r0 ← b−Ax0

3: p0 ← r0
4: k ← 0
5: while ∥rk∥2 > tol do
6: rk+1 ← rk − αkApk

7: pk+1 ← rk+1 −
rT
k+1Apk

pT
k Apk

pk

8: αk ← pT
i rk

pT
i Apk

9: xk+1 ← xk + αkpk
10: k ← k + 1
11: end while
12: return x
13: end function

7.4 Bi-Conjugate Gradient (BiCG)

The derivation of the BiCG algorithm as presented in this section is based on
reference [145]. In Section 7.3 it was shown that CG constructs residuals such that

rk+1 ⊥ span{r0,Ar0, ...,Akr0}, (7.62)

where it constructs these residuals efficiently by exploiting A-orthogonality.
However, CG requires that A is symmetric positive definite.

For a general matrix A it is expensive to construct an orthogonal basis of
the Krylov subspace due to the Faber-Manteuffel theorem, therefore a different
approach has to be taken. The idea of BiCG is to construct two Krylov subspaces,
and exploit bi -orthogonality, i.e., the property for two indexed families of vectors
vi and ṽj such that,

⟨vi, ṽj⟩ = 0 if i ̸= j. (7.63)

To achieve this, BiCG constructs a sequence of residuals rk, and a sequence of
“shadow” residuals r̃k such that

rk = b−Axk ∈ r0 +AKk(A, r0), r̃k ∈ r̃0 +ATKk(A
T, r̃0), (7.64)

with a bi-orthogonality requirement dictating that the residuals satisfy

rk ⊥ Kk(A
T, r̃0), r̃k ⊥ Kk(A, r0). (7.65)

The initial shadow vector r̃0 is arbitrary, as long as r̃Tj rj ̸= 0. Note that there do
exist choices of r̃0 which can significantly affect convergence. The effect of choosing



7.4. Bi-Conjugate Gradient (BiCG) 145

a different r̃0 in the context of an algorithm related to BiCG (BiCGStab), was
elaborated in Section 6. To start developing an algorithm for which the residuals
satisfy (7.64) and (7.65), note that the residuals ri+1, with i = 0, ..., k− 1, can be
written as a polynomial

ri+1 = r0 +A

i∑
j=0

b
(i)
j A

jr0. (7.66)

Similarly the shadow residual r̃i+1 can also be written as a polynomial

r̃i+1 = r̃0 +A
T

i∑
j=0

b
(i)
j (AT)j r̃0. (7.67)

The coefficients b
(i)
j can be obtained from a linear system obtained by exploiting

the orthogonality requirement rTi+1(A
T)j r̃0 = 0 as given in Equation (7.65). Since

rk ⊥ Kk(A
T, r̃0), r

T
i+1(A

T)kr̃0 = 0 for k ≤ i; one can left-multiply (7.66) by
rTi+1(A

T)k to obtain

rTi+1(A
T)kr̃0 = rT0 (A

T)kr̃0 +

i∑
j=0

rT0 (A
T)j+1+kr̃0b

(i)
j = 0. (7.68)

Furthermore, since r̃k ⊥ Kk(A, r0), r̃
T
i+1A

kr0 = 0 for k ≤ i, we can also left-

multiply (7.67) by r̃Ti+1A
k to obtain another relation for b

(i)
j ,

r̃Ti+1A
kr0 = r̃T0A

kr0 +

i∑
j=0

r̃T0A
j+1+kr0b

(i)
j = 0. (7.69)

Note that both (7.68) and (7.69) result in the same linear system for the expansion

coefficients b
(i)
j , since aTAb = bTATa for any a and b. The linear system for the

coefficients b
(i)
j is given by

−


r̃T0 r0
r̃T0Ar0

...
r̃T0A

ir0

 =


r̃T0Ar0 r̃T0A

2r0 . . . r̃T0A
i+1r0

r̃T0A
2r0 r̃T0A

3r0 . . . r̃T0A
i+2r0

...
...

. . .
...

r̃T0A
i+1r0 r̃T0A

i+2r0 . . . r̃T0A
2i+1r0



b
(i)
0

b
(i)
1
...

b
(i)
i

 . (7.70)

We do not need these coefficients b
(i)
j explicitly, however, it is shown in [145] if the

matrix in (7.70) is regular, then ri+1 exists and is unique, r̃i+1 exists and is unique,
rj and r̃j are linearly independent, and the residuals span a Krylov subspace,

span{r0, . . . , ri} = Ki+1(A, r0), span{r̃0, . . . , r̃i} = Ki+1(A
T, r̃0). (7.71)
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Since the residuals span a Krylov subspace, the polynomials in (7.66) and (7.67)
can be written in terms of a linear combination of the previous residuals;

ri+1 = ri +A

i∑
j=0

γ
(i)
j rj , r̃i+1 = r̃i +A

T
i∑

j=0

γ
(i)
j r̃j , (7.72)

where the coefficients γ
(i)
j may depend on i, which would require all coefficients

to be recalculated every iteration. To avoid this potential issue these polynomials
have to be slightly altered. The idea is to write the linear combinations (7.72) in
a way similar to the Horner form of a polynomial;

ri+1 = ri + γ
(i)
i A

(
ri +

γ
(i)
i−1

γ
(i)
i

(
ri−1 +

γ
(i)
i−2

γ
(i)
i−1

(
ri−2 + ...

γ
(i)
1

γ
(i)
2

(
r1 +

γ
(i)
0

γ
(i)
1

r0

)
...

)))
. (7.73)

It is shown in [145] that even though γ
(i)
j depend on i, the ratios γ

(i)
j−1/γ

(i)
j do

not. Therefore, once we have computed γ
(i)
j−1/γ

(i)
j for a given i, it remains valid

for all future iterations. Furthermore, it can be shown that γ
(i)
j ̸= 0 if both:

r̃Tj rj ̸= 0, and the matrix in equation (7.70) is regular.

Then by defining αi = −γ(i)i and βi−1 = γi−1/γi it becomes clear that
ri+1 can be written as a recursive relation, since

ri+1 = ri − αiA(ri + βi−1(ri−1 + βi−2(ri−2 + ...β1(r1 + β0r0)...))). (7.74)

Additionally, the search direction p has to be identified, where p0 = r0 and pj+1 =
rj+1 + βjpj . By using the recursive expression for the search directions pi+1 we
obtain the recurrence relation for the residual as

ri+1 = ri − αiApi, (7.75)

from which it follows that xi+1 is given by the recurrence

xi+1 = xi + αipi, (7.76)

since ri+1 = b−Axi+1. The recurrence for the search directions pi is given by

pi+1 = ri+1 + βipi. (7.77)

Similarly, a recursive relation for the shadow residual can be obtained

r̃i+1 = r̃i − αiA
Tp̃i, (7.78)

where p̃0 = r̃0, and the recurrence for p̃ is given by

p̃j+1 = r̃j+1 + βj p̃j . (7.79)
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Note that a “shadow solution” x̃i+1 recurrence can also be obtained

x̃i+1 = x̃i + αip̃i, (7.80)

where ATx̃ = b̃ and r̃0 = b̃ − ATx̃0, thus BiCG can be seen as solving both
Ax = b and ATx̃ = b̃ simultaneously[32, p. 247].

The next step is to derive a relation for the coefficients αi and βi. To
obtain a relation for αi we left-multiply equation (7.75) with p̃Ti to obtain

p̃Ti ri+1 = p̃Ti ri − αip̃
T
i Api, (7.81)

then as p̃i ∈ Ki(A
T, r̃0), and ri+1 ⊥ Ki(A

T, r̃0) it follows that p̃Ti ri+1 = 0, and
therefore αi is given by

αi =
p̃Ti ri
p̃Ti Api

. (7.82)

Finally, it can be shown from equation (7.79), and p̃Ti−iri = 0 that p̃Ti ri = r̃Ti ri,
after which the final form of αi becomes

αi =
r̃Ti ri
p̃Ti Api

. (7.83)

To derive the relation for βi, we start with (7.77), and left-multiply by r̃Ti . Then
by using r̃Ti ri+1 = 0, r̃Ti pi = r̃

T
i ri, we obtain

βi =
r̃Ti+1ri+1

r̃Ti ri
, (7.84)

where we used that r̃Ti pi+1 = r̃Ti+1ri+1, since

r̃Ti+1ri+1 = r̃Ti+1pi+1

= r̃Ti pi+1 − αip̃
T
i Api+1

= r̃Ti pi+1 +
αi

αi+1
p̃Ti (ri+2 − ri+1)

= r̃Ti pi+1,

(7.85)

where in the second to last step we use that Api+1 = 1
αi+1

(ri+2 − ri+1), which

can be obtained from (7.75). This completes the BiCG algorithm as stated in
Algorithm 10.

Note that Algorithm 10 can be modified to solve Ax = b and ATx̃ = b̃
simultaneously. However, also note that if the solution to the transposed system
is not required, BiCG nevertheless requires two MV per iteration. Furthermore,
if r̃0 = r0 and A is SPD, then BiCG produces the same sequence of xk as CG,
albeit at twice the number of MV.
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Algorithm 10 Bi-Conjugate Gradient method

1: function BiCG(A, b,x0, tol)
2: r0 ← b−Ax0,
3: Choose r̃0 such that r̃T0 r0 ̸= 0
4: p0 ← r0, p̃0 ← r̃0
5: k ← 0
6: while ∥rk∥2 > tol do

7: αk ← pT
k rk

p̃T
k Apk

8: xk+1 ← xk + αkpk
9: rk+1 ← rk − αkApk

10: r̃k+1 ← r̃k − αkA
Tp̃k

11: βk =
r̃T
k+1rk+1

r̃T
k rk

12: pk+1 ← rk+1 + βkpk
13: p̃k+1 ← r̃k+1 + βkp̃k
14: k ← k + 1
15: end while
16: return x
17: end function

7.5 Bi-Conjugate Gradient Stabilized (BiCGStab)

Two of the shortcomings of the BiCG algorithm are the requirement of multiplica-
tions with AT, and the relative inefficiency of solving two systems simultaneously.
The requirement of having AT is that BiCG may not be usable for so-called
“matrix-free” applications, where often AT may be excessively expensive to
obtain. One such application was presented in Section 5.2, where Krylov methods
are used to solve the linear system obtained from Newton’s method. Furthermore,
unlike LMR, the residuals produced by BiCG can increase in size.

An alternative to the BiCG algorithm that does not require AT is the
widely used Bi-Conjugate Gradient Stabilized (BiCGStab) method. This method
aims to provide both a smoother convergence compared to BiCG, and does not
require MV involving AT [32, p. 244]. BiCGStab combines the idea of building
orthogonal spaces presented in BiCG, with the smooth convergence provided by
LMR. First a BiCG step is computed, then an LMR step.

The BiCGStab algorithm given here is based on the baseline BiCGStab al-
gorithm given in Algorithm 3. However, for the sake of clarity, it has been
simplified, and additional comments have been added. It is important to
note that there is a wide variety of different implementations of BiCGStab
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[38, 112, 114, 113, 111, 141, 142], even though they should produce the same
sequence of residuals in theory, in finite precision arithmetic these may not be
identical.

Note that even though BiCGStab looks relatively straightforward to imple-
ment, there is a variety of edge cases and pitfalls that have to be taken into
account, namely:

1. When dealing with matrices that have imaginary eigenvalues, BiCGStab
breaks down as ω = 0 leads to a division by zero on line 9.

2. Some choices of r̃ lead to ⟨r̃, r⟩ → 0 on line 8, which in turn leads to β → 0,
p → r. It has been shown in Chapter 6 that for a class of matrices A this
also leads to α→ 0.

3. There can be an accumulation of round-off errors, since x is never explicitly
used to calculate the residual r, except on line 3.

4. If BiCGStab converges in the BiCG part, that is r = 0 on line 13, then there
is a division by zero on line 15.

5. If b = 0 the solution to Ax = b is trivial, nevertheless if x0 ̸= 0 BiCGStab
can get stuck in an infinite loop, due to rounding errors, ∥r∥ may never reach
0 exactly. This results in the criterion on line 5 to never be false, and thus
results in an infinite loop.

6. There are several possible optimizations, for example caching of the vectors
Ap and Ar, or skipping the update on line 18 if ∥r∥ ≤ tol∥b∥ after line 17.
Furthermore the two updates of x on lines 12 and 16 can be combined by
introducing a temporary vector variable.

7. Another implementation detail is the argmin calculation, which can be done
by solving a system of normal equations by a variety of different factoriza-
tions, or via one of several different methods to compute a QR decomposition.

Implementation aspects like the above, and others are discussed in more detail in
Chapter 8, where we present our C++ implementations of the Krylov subspace
methods IDR(S), BiCGStab(L) and IDR(S)Stab(L).
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Algorithm 11 Bi-Conjugate Gradient Stabilized (BiCGStab) method

1: function BiCGStab(A, b,x, tol)
2: ρ0 ← 1, α← 1, ω ← 1,p← 0
3: r ← b−Ax
4: r̃ ← r ▷ Arbitrary, such that ⟨r̃, r⟩ ≠ 0
5: while ∥r∥ > tol∥b∥ do
6: ▷ BiCG part
7: ρ0 ← −ρ0ω
8: ρ1 ← ⟨r̃, r⟩
9: β ← α(ρ1/ρ0), ρ0 ← ρ1

10: p← r − βp
11: α← ρ1/⟨r̃,Ap⟩
12: x← x+ αp
13: r ← r − αAp
14: ▷ LMR part
15: ω ← argminω ∥r − ωAr∥ = ⟨Ar, r⟩/⟨Ar,Ar⟩
16: x← x+ ωr
17: r ← r − ωAr
18: p← p− ωAp ▷ Update p for the next BiCG step
19: end while
20: return x
21: end function



Chapter 8

Implementation of three new
Krylov solvers for the Eigen
library

The Eigen C++ library is a template library for linear algebra. Eigen is used in a
wide variety of other projects, at the time of writing 90 projects are listed on the
main page of the project [40], including simulation toolboxes, machine learning
frameworks, computer vision and several mobile applications.

Eigen also provides several methods for solving linear systems, including di-
rect methods such as the well-known Cholesky, QR and LU decompositions. In
the context of this thesis we are interested in iterative solvers. Such solvers are
also included in Eigen, specifically the following Krylov subspace methods are
included in Eigen:

1. CG

2. BiCGStab

3. Least squares CG

4. Unsupported: DGMRES

5. Unsupported: GMRES

6. Unsupported: MinRes

7. Our contribution: BiCGStab(L)

8. Our contribution: IDR(S)

9. Our contribution: IDR(S)Stab(L)

151



152 Chapter 8. Implementation of Krylov solvers for Eigen

In Chapter 7 we described the main concepts of the underlying linear algebra,
and several pitfalls of Krylov subspace methods. In this chapter we discuss our
contributed Krylov subspace methods, and implementation choices. To the best of
our knowledge, our implementation of IDR(S)Stab(L) is the first and only open-
source C++ version.

8.1 Bi-Conjugate Gradient Stabilized(L) (BiCGStab(L))

BiCGStab(L) extends the BiCGStab algorithm to incorporate a higher order
LMR step. One of the main motivations of adding a higher order LMR step, is
that a first-order LMR step can lead to stagnation if the matrix has eigenvalues
with a large imaginary part [138].

To do this, BiCGStab(L) performs L steps of BiCG, and applies LMR(L)
to the residuals generated by the BiCG part. One possible implementation of
BiCGStab(L) is given in Algorithm 12. However, there are a variety of different
implementations and extensions to BiCGStab(L) [45, 109, 48, 115, 109]. In this
section we discuss the choices made in our Eigen-implementation of BiCGStab(L)
[49].
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Algorithm 12 BiCGStab(L) adapted from reference [47]. R = [R,a] concate-
nates a column vector a to the right side of R. Subscripts of matrices indicate
indices of a column, starting at 0. Ranges of indices are denoted with a semicolon
(:). For example, R1:3 is a matrix consisting of columns 1, 2 and 3 of R. Note
that the sizes of the matrices R and U are not constant.

1: function BiCGStab(L)(A, b,x, tol, L)
2: R← b−Ax
3: r̃ ← R0

4: U0:1 ← [R0,AR0]
5: while ∥R0∥ > tol do
6: for j = 1, ..., L do
7: ▷ The BiCG step
8: σ ← r̃TUj

9: α← σ−1r̃TRj−1

10: x← x+ αU0

11: R← R− αU1:j

12: R← [R,ARj−1]
13: β ← σ−1r̃TRj

14: U ← R− βU
15: U ← [U ,AUj ]
16: end for
17: ▷ The polynomial step (LMR step)
18: γ ← argminγ ∥R0 −R1:Lγ∥2
19: x← x+R0:(L−1)γ
20: R← R0 −R1:Lγ
21: U ← [U0 −U1:Lγ,U1 −U2:(L+1)γ]
22: end while
23: end function

8.1.1 Choice of argmin method

There are a variety of methods available to perform the argmin step in line 18 of
Algorithm 12. In effect, this step comes down to solving the following least squares
problem for γ, i.e.,

R0 = R1:Lγ. (8.1)

Eigen provides ten algorithms to do this, four of which solve the normal equations
using a decomposition of RT

1:LR1:L:

1. PartialPivLU, LU decomposition with partial pivoting.

2. FullPivLU, LU decomposition with full pivoting.

3. LLT, standard Cholesky decomposition.
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4. LDLT, robuster version of the Cholesky decomposition that includes pivoting.

and six perform some decomposition without forming the normal equations:

1. HouseholderQR, QR decomposition using Householder transformations

2. ColPivHouseholderQR, QR decomposition using Householder transforma-
tions, including possible column swaps.

3. FullPivHouseholderQR, QR decomposition using Householder transforma-
tions, including possible column and row swaps.

4. CompleteOrthogonalDecomposition, computes a decomposition of a matrix
A as AP = QTZ where P is a permutation matrix, Q and Z are unitary
and T is an upper triangular matrix.

5. BDCSVD, computes the Singular Value Decomposition (SVD) using a “bidi-
agonal divide and conquer” method.

6. JacobiSVD, computes the SVD using the Jacobi method.

To eliminate some of the available methods, note that the normal equations result
in a linear system with a symmetric, positive semi-definite matrix. Therefore
we can rule out PartialPivLU and FullPivLU, since they do not exploit the
symmetry of the resulting matrix. Furthermore, it is stated in the documentation
[146] that LLT is not stable for the semi-definite case. This only leaves LDLT as an
option out of the algorithms that use the normal equations.

It is expected that the least squares problem is “thin”, i.e., the number of
rows of R1:L far exceeds the number of columns. A benchmark of decomposition
methods in Eigen [147] shows that for a test problem with 10,000 rows and 8
columns the computation times are as given in Table 8.1.1. It can be seen that
the methods that solve the normal equations are the fastest, followed by QR
methods, and finally the SVD methods.

It is shown in [109] that solving the argmin step accurately, can also re-
duce the number of MV needed. To avoid issues such as badly conditioned normal
equations, and still maintain good performance of the argmin step, we choose the
HouseholderQR method. Since it is the cheapest of the methods that do not solve
the normal equations. Providing a balance between saving MV, and cost to solve
the argmin step.

8.1.2 Choice of the shadow residual vector

We have shown in Chapter 6 that a random r̃ avoids some stagnation problems in
BiCGStab. Similarly to BiCGStab, the choice of r̃ is arbitrary in BiCGStab(L) as
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Table 8.1.1: Execution times to solve a 10, 000 × 8 least squares problem. For
methods that solve the normal equations this includes the time needed to set up
the system of normal equations.

Algorithm Time [ms]
LLT 6.79
LDLT 6.81
PartialPivLU 6.81
FullPivLU 6.83
HouseholderQR 34.26
ColPivHouseholderQR 36.05
CompleteOrthogonalDecomposition 35.75
FullPivHouseholderQR 69.38
JacobiSVD 113.81
BDCSVD 110.53

well. However, r̃ must be chosen such that it is not orthogonal to any intermediate
residual Uj , otherwise this would lead to a division by zero on line 9 of Algorithm
12.

To avoid problems related to certain r̃, as demonstrated in Chapter 6, r̃ is
chosen at random in our implementation of BiCGStab(L). More specifically,
each element of r̃ is chosen from a uniform random distribution in [−1, 1]; this
is the default when generating random numbers using Eigen’s random number
generator. In Chapter 6 the elements were drawn randomly from (0, 1), the
default distribution used by MATLAB. To our knowledge, there is no known
advantage of choosing either distribution, or if there are other distributions that
would be preferable.

It is important to note that the vector r̃ is not normalized, unlike in our
IDR(S) [50] and IDR(S)Stab(L) [51] implementations. To argue the benefit of
not normalizing r̃, we argue that in high dimensions the inner product of two
randomly chosen normalized vectors tends to zero, whereas the inner product of
two randomly chosen non-normalized vectors does not.

To show this, consider two randomly chosen vectors a and b of size N ,
with elements from a uniform random real distribution over the range [−1, 1]. We

also define â := a/∥a∥ and b̂ := b/∥b∥. The 2-norm squared of a is given by

∥a∥2 =

N∑
i=1

a2i , (8.2)
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then by using equation (5.27) from [148, p. 258], i.e.,

E [a1 + a2 + ...+ aN ] = E [a1] + E [a2] + ...+ E [aN ] , (8.3)

and computing the mean of a uniform random variable as in [148, p. 156], it
follows that the expected value of the squared norm is

∥a∥2 = E

[
N∑
i=1

a2i

]
=

N∑
i=1

E
[
a2i
]
= N

∫ 1

−1

x2

2
dx =

N

3
. (8.4)

The expected value E [⟨a, b⟩] = 0, since E [ai] = E [bi] = 0 and

E [aibi] = E [ai] E [bi] = 0, (8.5)

where it is used that ai and bi are independent [148, p. 258]. Even though the
expected value of ⟨a, b⟩ is zero, it can be shown that the variance of ⟨a, b⟩ increases
with N , whereas the variance of ⟨â, b̂⟩ decreases with N . The variance of ⟨a, b⟩ is
given as

var(⟨a, b⟩) = var

(
N∑
i=1

aibi

)
=

N∑
i=1

var(aibi)

=

N∑
i=1

E
[
(aibi − E [aibi])

2
]
=

N∑
i=1

E
[
(aibi)

2
]
=

N∑
i=1

E
[
a2i
]
E
[
b2i
]
=
N

9
,

(8.6)

where it was used that ai and bi are independent to take the sum out of the
variance function. To show that the variance of ⟨â, b̂⟩ decreases with N , we use
the property that [148, p. 110]

var(αx) = α2var(x), (8.7)

where α is a constant and x a random variable, to argue that

var(⟨â, b̂⟩) = var

(
⟨a, b⟩
∥a∥∥b∥

)
≈ var(⟨a, b⟩)

E [ ∥a∥∥b∥ ]2
=

var(⟨a, b⟩)
(N2/9)

=
9

N
, (8.8)

and thus decreases with N .

The probability density function for a normally distributed stochastic vari-
able X with mean µ and variance σ2 is given by the Gaussian,

p(x) =
1

σ
√
2π

exp
(
− 1

2

(x− µ
σ

)2)
, (8.9)
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and the probability P(|x− µ| ≤ ϵ) with ϵ > 0 can be obtained by integrating

P(|x− µ| ≤ ϵ) =
∫ µ+ϵ

µ−ϵ

p(x)dx = erf

(
ϵ√
2σ

)
, (8.10)

where erf(z) is the error function. Assuming the distributions produced by ⟨â, b̂⟩
and ⟨a, b⟩ are normal, and since erf(z) monotonically increases from 0 to 1 over
z ∈ [0,∞), we conclude that

lim
N→∞

P(|⟨â, b̂⟩| ≤ ϵ) = 1, (8.11)

i.e., for sufficiently largeN the absolute value of the inner product |⟨â, b̂⟩| is smaller
than ϵ with high probability. However, in the non-normalized case

lim
N→∞

P(|⟨a, b⟩| ≤ ϵ) = 0, (8.12)

and therefore for sufficiently large N the absolute value of the inner product |⟨a, b⟩|
is larger than ϵ with high probability as P(|⟨a, b⟩| > ϵ) = 1−P(|⟨a, b⟩| < ϵ). These
findings have also been tested in a numerical experiment, the results of which are
shown in Figure 8.1.1. In this numerical experiment for each N , 103 random
vectors a and b were generated. Subsequently, the mean and variance of ⟨a, b⟩
and ⟨â, b̂⟩ were calculated for each N .

101 103 105 107 109

N

10 9

10 6

10 3

100

103

106

109

|E[ a, b ]|
var( a, b )
|E[ a, b ]|
var( a, b )

Figure 8.1.1: Plot of the expected value and variance for both normalized and
non-normalized inner products.
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Since nothing is known a priori about r, apart from the size N , we choose to
not normalize the random vector r̃ in order to avoid the issue of vanishing inner
product between normalized vectors.

In principle one can pick any r̃, and compute the inner product with r to
check if ⟨r̃, r⟩ ̸= 0. It is possible to restart if ⟨r̃, r⟩ is too small, as is done in the
Eigen implementation of BiCGStab. However, by choosing non-normalized r̃, the
inner product |⟨r̃, r⟩| is unlikely to be small, especially for large N . Therefore,
we opted to keep this part of the implementation simple and only implement a
random r̃, without further checks.

8.1.3 Reliable computation of the residual

Iterative methods such as BiCGStab(L) aim to minimize the residual

r = b−Ax. (8.13)

To save on the number of MV, the residual is typically not computed using (8.13),
but rather from a recursive relation of the form

rk+1 = rk −Apk, (8.14)

which does not require an extra MV as the MV Apk is used in multiple steps, for
example in BiCGStab Algorithm 11 on lines 11, 13 and 18. In exact arithmetic
the recursively computed residual (8.14) and the true residual (8.13) are equal.
However, in finite precision arithmetic there may be a significant discrepancy
between the two methods of computing the residual as we will argue shortly, and
was demonstrated numerically in Chapter 6.

Importantly, the norm of the residual is typically used as a stopping crite-
rion. If the true and updated residuals drift apart, then the method may stop
prematurely, or perform unnecessary iterations. If the method stops prematurely,
it is an option to restart the solver. However, restarting also means the super
linear rate of convergence may be lost [116].

In reference [116] methods are provided to improve the accuracy of the
computed residual, without losing speed of convergence. The idea is to:

1. Compute the true residual on some strategically chosen iterations.

2. Accumulate updates to x by using “group-wise” updates.

3. Perform “flying restarts” to maintain speed of convergence when restarting.
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An upper bound on the residual gap, the difference between the true and recur-
sively computed residual, can be obtained. Iterative methods typically use two
recurrences,

xk+1 = xk + pk rk+1 = rk −Apk. (8.15)

Even if rk = b−Axk exactly, in finite precision arithmetic there is no guarantee
that b −Axk+1 = rk+1. Here we investigate the arithmetic error introduced by
the MV Apk, given as ∆Apk. Following [116], if we consider an error of the form

rk+1 = rk −Apk −∆Apk, ∥∆A∥ ≤ nAϵm∥
∣∣A∣∣∥, (8.16)

where nA is the maximum number of nonzeros in a row ofA, and ϵm is the machine
precision, ϵm ≈ 10−16 for double-precision floating point numbers. Furthermore, if
we only consider errors of the form (8.16), then the upper bound for residual gap
over k iterations can be estimated by equation (6) in [116];

∥b−Axk − rk∥ ≤ 2nAϵm∥
∣∣A∣∣∥∥A−1∥

∑
j≤k

∥rj∥. (8.17)

Even though (8.17) only provides an upper bound on the residual gap, we can
make several observations;

1. The residual gap is expected to increase with the number of nonzeros per
row.

2. If all entries of A are positive, then the upper bound is proportional to the
condition number ∥A∥∥A−1∥.

3. Large residuals increase the upper bound.

4. If convergence is slow, the upper bound is larger due to the sum over the
residuals.

5. As expected, the residual gap vanishes in infinite precision arithmetic where
ϵm = 0. This shows the residual gap is a numerical artifact.

The version of BiCGStab(L) with shift, group-wise updating and reliable updating
is shown in Algorithm 13.

8.1.4 Right preconditioning

A few types of preconditioning can be implemented, most notably left-
preconditioning and right-preconditioning. There do exist preconditioning schemes
such as split preconditioning which utilize an incomplete LU-factorization of
A [32, p. 285]. However, in our implementation we have to support a
generic preconditioner. More specifically, the Eigen-API provides a function
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Algorithm 13 BiCGStab(L) adapted from reference [47]. R = [R,a] concate-
nates a column vector a to R. Subscripts of matrices indicate indices of a column,
starting at 0, R1:3 is a matrix consisting of columns 1, 2 and 3 of R. Note that
the sizes of the matrices R and U are not constant. Here both the shift and the
reliable updating scheme have been added to the reference implementation.

1: function BiCGStab(L)(A, b̂,x, tol, L)

2: x← x0, b← b̂−Ax0

3: y ← 0, R← b, r̃ ← R0

4: U0:1 ← [R0,AR0]
5: while ∥R0∥ > tol do
6: for j = 1, ..., L do
7: ▷ The BiCG step
8: σ ← r̃TUj

9: α← σ−1r̃TRj−1

10: x← x+ αU0

11: R← R− αU1:j

12: R← [R,ARj−1]
13: β ← σ−1r̃TRj

14: U ← R− βU
15: U ← [U ,AUj ]
16: end for
17: ▷ The polynomial step (LMR step)
18: γ ← argminγ ∥R0 −R1:Lγ∥2
19: y ← y +R0:(L−1)γ
20: R← R0 −R1:Lγ
21: U ← [U0 −U1:Lγ,U1 −U2:(L+1)γ]
22: ▷ Reliable updating part
23: if ∥r∥ ≤ 0.01∥b̂∥ and ∥b̂∥ ≤ maxj ∥rj∥ then
24: flying restart← true
25: end if
26: if (∥r < 0.01maxj ∥rj |∥ and ∥b̂∥ ≤ maxj ∥rj∥) then
27: compute residual← true
28: end if
29: if compute residual or flying restart then
30: r ← b−Ay ▷ Compute the true residual.
31: end if
32: if flying restart then
33: x← x+ y, y ← 0, b← r ▷ Add accumulated updates into x

and shift the problem.
34: end if
35: compute residual← false, flying restart← false
36: end while
37: x← x+ y ▷ Add accumulated updates into x.
38: end function
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preconditioner.solve(y) which has the effect of applying a preconditioner to
a vector y. In terms of linear algebra this can be modeled as applying a matrix
M−1y. The specific preconditioner function used is completely determined by the
user, and may use y in a complicated way, for example a multigrid preconditioner.

Left-preconditioning replaces the system Ax = b by left-multiplying both
sides with M−1,

M−1Ax =M−1b, (8.18)

the residual of the preconditioned system is then given by

M−1(b−Axk). (8.19)

Alternatively, right-preconditioning uses that M−1M = I, and works on the
system

AM−1Mx = b, (8.20)

the residual of this preconditioned system is the same as the unpreconditioned
system, since

b−AM−1Mxk. (8.21)

Note, when implementing a right-preconditioned Krylov method, one does not
need M , since

AM−1u = b, (8.22)

can be solved for u and subsequently

M−1u = x. (8.23)

The initial residual is the same for preconditioned and unpreconditioned iterations.
In practice implementing right-preconditioning broadly speaking boils down to

1. Replace A with AM−1, except when calculating r0.

2. One operation with M−1 at the end to obtain the accumulated updates to
x0.

It is important to note that both AM−1, M−1A have the same spectrum. How-
ever, there is a difference due to the difference in residuals, in left-preconditioned
GMRES M−1r is minimized, in right-preconditioned GMRES r is minimized.
For both variants of the preconditioning, the same number of M−1 operations
are required.

The main motivation for choosing right-preconditioning in our implementa-
tion of BiCGStab(L) is that operations are performed which aim to minimize
the residual r, not M−1r. Even though this choice may only yield a modest
difference in convergence behavior, except if M−1 is ill-conditioned [32, p. 287],
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we aim to make the BiCGStab(L) implementation as broadly applicable as
possible. Choosing right-preconditioning may resolve some issues when a user
uses an ill-conditioned M−1.

8.1.5 Choice of default L-value

One of the defining parameters of the BiCGStab(L) algorithm is the variable L.
This parameter determines the number of BiCG steps and the number of MV per
iteration. Importantly, it also determines the size of γ used in the LMR part.

It can be seen in line 18 of Algorithm 12 that the LMR step attempts to
minimize R0 in some space spanned by R1:L, where the columns of R are
generated from the BiCG step.

On the one hand, choosing a small L, such as L = 1, BiCGStab(L) re-
duces to a variant of BiCGStab, which brings back issues such as breakdown in
the LMR step for matrices with eigenvalues that have a large imaginary part.

On the other hand, choosing a large value of L is inefficient and may not
combine the advantages of BiCG and LMR(L), since for large L, BiCGStab(L)
first computes L BiCG steps, which may lead to increasing residuals, and only then
performs an LMR(L) step. This is also expensive in terms of vector operations,
since LMR(L) for large L would have to be performed by full orthogonalization
of some space of dimension L to ensure stability. Another problem is that the
least squares problem may become badly conditioned for large L. This issue
is addressed in [109], where different variants of BiCGStab(L) are described
that work around this issue for large L. However, it is difficult to determine
which of the presented workarounds should be used. Therefore we did not go the
route of implementing one of these variants, and instead chose a modest value of L.

Finally, based on benchmarks presented in Table 5.1 of [45] L = 2 and
L = 4 seem to perform similarly. There is a case to be made for L = 4,
based on the results shown in [109], where BiCGStab(4) converges in fewer MV
than BiCGStab(2). However, this may not be reflected in terms of CPU-time.
For a related algorithm, IDR(S)Stab(L) a benchmark for a three-dimensional
convection-diffusion problem shown in [47] reports a 15% speed advantage of
IDR(S)Stab(2) compared to IDR(S)Stab(4) for all S.

The choice was made to set L = 2 as the default, since it resolves all is-
sues BiCGStab has with complex eigenvalues, appears to be the fastest option and
avoids badly conditioned least squares problems as much as possible. Furthermore,
MATLAB’s implementation of BiCGStab(L) also defaults to L = 2.
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8.2 Induced Dimension Reduction (IDR(S))

The Induced Dimension Reduction method IDR(S) is a robust and efficient
Krylov subspace method for square, sparse, large asymmetric linear systems.

The IDR(S) method is a short-recurrence, limited memory, finite termina-
tion method [46]; IDR(S) converges in at most N + N/S iterations in exact
arithmetic, and uses a fixed number of 3S+5 vectors. In comparison, BiCGSTAB
terminates in 2N iterations and uses 7 vectors. The finite termination method
GMRES requires a maximum of N iterations, and uses I + 3 vectors, with I
the number of iterations. Restarting GMRES limits memory usage, but de-
stroys the finite termination property [32, p. 199]. Note that without restarting,
each successive GMRES iteration becomes more expensive in terms of time as well.

In the numerical experiments shown in [48], for indefinite systems IDR(4)
outperforms both BiCGStab and BiCGStab(4). Additionally, in [46] IDR(6)
outperformed BiCGStab(8) by a factor two, and a factor six compared to the
original BiCGStab for a three-dimensional complex valued Helmholtz problem.
Furthermore, IDR(S) can handle real matrices with complex eigenvalues more
efficiently than BiCGStab [46].

The implementation of the IDR(S) algorithm in Eigen can be found in
[50]. This implementation is based on [46] and a reference MATLAB code
provided by Martin van Gijzen and Peter Sonneveld. In the next sections we
discuss several implementation choices and options that are made in our C++
implementation. Schematically, the IDR(S) algorithm is given in Algorithm 14.

8.2.1 Choice of shadow space

The matrix P̃0 of size N × S is arbitrary. Here we choose every element from
a random uniform distribution over [−1, 1] and orthonormalize the columns.
This was suggested for IDR(S)Stab(L) in [110] and it was mentioned in [46]
that choosing all columns randomly improved robustness. To orthonormalize the
columns we use the HouseholderQR method built into Eigen.

Another choice is to chose every element of P̃0 random and complex, as
suggested in [46]. This improves convergence for matrices with large imaginary
eigenvalues, however, this comes at the cost of more expensive arithmetic.

8.2.2 Mitigation of numerical issues for small ω

One of the differences between the Eigen implementation and the reference MAT-
LAB code, is the computation of ω. The reference gives this computation as
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Algorithm 14 IDR(S) adapted from reference [47]

1: function IDR(S)(A, b,x, tol)
2: r ← b−Ax
3: ▷ Generate P = [r,Ar, ...,AS−1r]
4: for q = 1, ..., S do
5: if q = 1 then
6: v ← r
7: else
8: v ← Av
9: end if

10: P:,q ← v
11: end for
12: while ∥r∥2 > tol do
13: ▷ The IDR Step
14: α← (P̃T

0 AP )−1P̃T
0 r

15: x← x+ Pα
16: r ← r −APα
17: for q = 1, ..., S do
18: if q = 1 then
19: v0 ← r
20: else
21: v0 ← v1
22: end if
23: v1 ← Av0
24: β ← (P̃T

0 AP )−1P̃T
0 Av0

25: v0 ← v0 − Pβ
26: V:,q ← v0
27: v1 ← v1 −APβ
28: end for
29: ▷ The polynomial step (LMR step)
30: ω ← argminω ∥r − ωAr∥2
31: x← x+ ωr
32: r ← r − ωAr
33: P ← V − ωAV
34: end while
35: return x
36: end function
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Algorithm 15, and the Eigen version is given by Algorithm 16. One of the failure
modes of LMR is when ω = 0. In algorithms like BiCGStab |ω| ≪ 1 can lead to
breakdown. To circumvent this issue in the implementation of IDR(S), a check is
in place to replace ω if it is too small. In the reference implementation of IDR(S)
this check is given by Algorithm 15.

Algorithm 15 Calculation of ω in the reference implementation

1: function Omega(t, s, angle = 0.7)
2: ns← ∥s∥
3: nt← ∥t∥
4: ts← tHs
5: ρ← |ts/(nt · ts)|
6: ω ← ts/(nt · nt)
7: if ρ < angle then
8: ω ← ω · angle/ρ
9: end if

10: return ω
11: end function

It was pointed out during the code review process by the Eigen team that the
reference implementation could produce an undefined ω if ρ = 0. The difference
between Algorithms 15 and 16 is that in the reference implementation there is no
precaution for vanishingly small ρ, which could lead to a potential division by zero.
For small ρ, the reference implementation computes ω as

ω = ts · ts

nt · nt ·
angle

ρ
. (8.24)

To avoid the potential division by zero, in the Eigen implementation this is rewrit-
ten as

ω = angle · ns
nt

· ts

|ts|
= angle

ns

nt
· sgn(ts), (8.25)

where sgn is the complex valued signum function, which is well-behaved for all ts,
except ts = 0. Note that the potential division by nt cannot lead to a division by
zero, since if nt = 0 then ts = 0.
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Algorithm 16 Calculation of ω in the Eigen implementation

1: function Omega(t, s, angle = 0.7)
2: ns← ∥s∥
3: nt← ∥t∥
4: ts← tHs
5: ρ← |ts/(nt · ns)|
6: if ρ < angle then
7: if ts = 0 then return 0
8: else
9: return angle · (ns/nt) · (ts/|ts|)

10: end if
11: end if
12: end function

8.2.3 Optional residual smoothing

One of the options provided in this implementation of IDR(S) is residual smooth-
ing. At a modest cost of a couple vector operations the residual can be made to
decrease monotonically. However, this does not significantly influence the rate of
convergence.

Since the convergence rate is essentially the same [149], by default this op-
tion is turned off. Nevertheless, if smooth decrease of the residual is required, it
can be provided by our IDR(S) implementation.

8.3 Induced Dimension Reduction Stabilized(L)
(IDR(S)Stab(L))

The implementation of the IDR(S)Stab(L) algorithm in Eigen can be found at
[51]. This implementation is based on [110, 48]. Here we specifically implemented
the variant from [110], as it offers a reduced residual gap and requires less CPU
time than the variant of [48] as shown in the numerical experiments of [110]. This
algorithm is given in Algorithm 17.

IDR(S)Stab(L) combines IDR(S) with a higher order polynomial step such
as in BiCGStab(L).

The matrix R̃0 is chosen randomly with elements from the uniform random
distribution [−1, 1], the default random distribution in Eigen. The columns of R̃0

are then orthonormalized as suggested in [110].
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A major difference between IDR(S)Stab(L) presented in [110] and the Eigen-
implementation is the use of matrix-concatenations. For example, lines 16, 18 and
19 of the reference implementation shown in Algorithm 17 concatenate matrices.
In our implementation the space is pre-allocated, and parts of the pre-allocated
matrices are accessed directly. This reduces the number of memory allocations.

Several variables can be precomputed or rewritten in Algorithm 17, for ex-
ample (ATR0)

T = RT
0A. Since R0 is constant the result of this product can be

cached.

Another difference is that we use modified Gram-Schmidt for the steps on
lines 9-10, 27-37, to improve the robustness compared to the reference implemen-
tation which uses regular Gram-Schmidt.
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Algorithm 17 IDR(S)Stab(L) based on [110]

1: function IDR(S)Stab(L)(A, b,x, tol, R̃0)
2: r0 = b−Ax, r = [r0]
3: for q = 1, 2, ..., S do
4: if q = 1 then
5: u0 = r0
6: else
7: u0 = Au0

8: end if
9: µ = (U0,:,1:q−1)

Tu0, u0 = u0 −U0,:,1:q−1µ
10: u0 = u0/∥u0∥2, U0,:,q = u0

11: end for
12: while ∥r0∥ > tol do
13: for j = 1, 2, ..., L do ▷ The IDR step
14: σ = (ATR0)

TUj−1

15: if j = 1 then
16: α = σ−1(R̃T

0 r0)
17: else
18: α = σ−1((ATR̃0)

Trj−2)
19: end if
20: x = x+U0α, r0 = r0 −A(U0α)
21: for i = 1, 2, ..., j − 2 do
22: ri = ri −Ui+1α
23: end for
24: if j > 1 then
25: r = [r;Arj−2]
26: end if
27: for q = 1, 2, ..., S do
28: if q = 1 then
29: u = r
30: else
31: u = [u1;u2; ...;uj ]

32: β = σ−1((ATR̃0)
Tuj−1)

33: u = u−Uβ, u = [u;Auj−1]
34: µ = (Vj,:,1:q−1)

Tuj , u = u− V(:,1:q−1)µ
35: u = u/∥uj∥2, V(:,q) = u
36: end if
37: end for
38: U = V
39: end for
40: r = [r;ArL−1] ▷ The polynomial step (LMR step)
41: γ = [γ1; γ2; ...; γL] = argminγ ∥r0 − [r1, r2, ..., rL]γ∥2
42: x = x+ [r0, r1, ..., rL−1]γ, r0 = r0 −A([r0, r1, ..., rL−1]γ)

43: U = [U0 −
∑L

j=1 γjUj ]
44: end while
45: end function
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8.3.1 Choice of S and L

Based on numerical experiments presented in [110], S = 4, L = 2 is the most
efficient in terms of CPU time. In terms of Matrix-Vector products (MV) and
AXPY operations (αx + y), a comparison between the IDR(S)Stab(L) variants
of [48] and [110] is presented in Table 8.3.1. It can be seen that even though [110]
requires 30% more MV for S = 4, L = 2 compared to [48], the variant of [110] is
cheaper than [48] in terms of AXPY operations, [48] requires 78% more AXPY
operations.

To avoid edge cases when dealing with small matrices, we add a check to
make sure that S < N and L < N . If this check fails, we solve the linear system
directly using an LU decomposition.

Table 8.3.1: Comparison of the number of MV and AXPY operations between two
IDR(S)Stab(L) formulations.

Reference MV AXPY
[48] L(S + 1) 1

2LS(L+ 1)(S + 1) + L(S2 + 3S + 2)

[110] L(S + 1) + L+ 1 1
2LS(L+ 1)(S + 1) + 3

2L+ S + 1
2

[48],S = 4, L = 2 10 120

[110],S = 4, L = 2 13 67.5

8.3.2 FOM construction of initial U-matrix

In reference [110], lines 3-7 of Algorithm 1 represent the Arnoldi process to
generate S orthogonal vectors in the Krylov subspace KS{r0,A}. In the Eigen
implementation we combined this Arnoldi process with the FOM method to pro-
vide a possible early exit. The complete FOM algorithm is discussed in Section 7.2.

The idea of modifying the Arnoldi construction to include FOM is that:

1. The extra CPU cost is negligible, as only a small least squares problem has
to be solved and no extra MV are required.

2. The extra memory cost is negligible, only an extra matrix of O(S2) elements
has to be stored.

3. If the initial guess is sufficiently accurate, for example when solving time-
dependent problems, the solution produced by FOM can provide an early
exit, saving an entire IDR(S)Stab(L) cycle.
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Chapter 9

Numerical integration of atomic
potentials

MagnumPI [150] is a numerical integration toolbox for computing scattering
angles, cross sections and collision integrals, from basic atomic data such as an
interaction potential describing the collision between two particles.

One of the key publications in integrating atomic data is [151], where a strategy is
elaborated for computing a scattering angle, starting from an interaction potential.

Several physical parameters can be derived from the interaction potential,
firstly, a scattering angle describing the asymptotic behavior of two particles
after a collision, secondly, using the scattering angle an interaction cross section
can be computed. Such cross sections can be used as input data to calculate
chemical reaction rates. Finally, a so-called collision integral can be computed,
which gives macroscopic physical parameters such as viscosity and diffusivity [152].

The main focus of this chapter is to investigate the integration strategy
used in [151], which is an adaptive quadrature strategy referred to as the “fractal”
method in this reference. Other adaptive quadrature schemes are presented as
well. We present an error analysis of each scheme, perform numerical experiments
showing the relative efficiency, discuss convergence behavior of the schemes and
present an outlook on the integration of interaction potentials.

The current working version of MagnumPI can be found at https:

//gitlab.com/magnumpi/magnumpi.
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9.1 Atomic scattering model

The scattering angle Θ as function of the impact parameter b is given in [151] by

Θ(b) = π − 2b

∫ ∞

rm

[
1− b2

r2
− V (r)

E

]−1/2
dr

r2
, (9.1)

where rm is defined as the largest root of the term in square brackets, V (r) is the
interaction potential and E the energy of the incoming particle. The interpretation
of rm is that it is the distance of closest approach. Geometrically the scattering
process is shown in Figure 9.1.1.

Figure 9.1.1: Geometry of the atomic interaction.

The interaction cross section Q(L)(E) can be obtained by integrating over all im-
pact parameters;

Q(L)(E) = 2π

∫ ∞

0

b(1− cosL(Θ))db, (9.2)

with L a positive integer. Note that for large impact parameters, b, the distance
of closest approach, rm, is also large as is evident from Figure 9.1.1. For physically
relevant interaction potentials limr→∞ V (r) = 0. In this limit Θ approaches 0, and
the integrand of (9.2) also tends to zero in this limit. This is consistent with the
physical interpretation, as without any interaction potential, the interaction cross
section should be zero. This can also be shown from (9.1) by setting V (r) = 0,
which results in Θ = 0.

When dealing with attractive potentials, at specific energies and values of
the impact parameter an incoming particle can be nearly trapped in the potential,
similar to an asteroid approaching earth, completing several orbits and escaping
again. This is referred to as orbiting. In such cases the scattering angle Θ will
vary strongly with b. As a consequence the cosine term in (9.2) leads to a strongly
oscillatory integrand.

Note that both (9.1) and (9.2) are improper integrals. The strategy used
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in MagnumPI is discussed in Section 9.4. To demonstrate the numerical schemes
for (9.2), a model problem is presented in [151];∫ 2

10−8

sin(π ln(x))dx, (9.3)

which we use here as a starting point. We show here that, while maintaining a
similar adaptive quadrature strategy as in [151], faster convergence can be achieved
than for the previously mentioned “fractal integration method” of [151].

9.2 Adaptive quadrature

The idea of the “fractal method”, as dubbed in [151], is to estimate a definite
integral over [a, b] using some quadrature rule, and estimate the error over this
interval. If the error exceeds a defined tolerance, the interval is bisected. For each
of the subintervals the quadrature rule is applied recursively.

The motivation for this method is that the function f is sampled more effi-
ciently compared to methods with an equidistant distribution of nodes. Methods
with nodes based on a local error estimate are known as adaptive quadrature
methods [153]. A template algorithm that performs such integration strategy is
given in Algorithm 18.

Algorithm 18 Template adaptive quadrature integration of a function f on [a, b].

1: function Integrate(f, a, b, tol)
2: [integral, error estimate]← Quadrature(f,a,b)
3: if error estimate > tol then
4: integral1 ← Integrate(f, a, (a+ b)/2)
5: integral2 ← Integrate(f, (a+ b)/2, b)
6: integral← integral1 + integral2
7: end if
8: return integral
9: end function
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The function Quadrature is any quadrature rule applied on the interval [a, b], and
returns an estimate for the integral with corresponding error estimate. Several
quadrature rules and methods to estimate the error exist, which are discussed
shortly.

First, we define QX(a, b) as the approximation to the exact integral

I(a, b) :=
∫ b

a
f(x)dx computed with a quadrature rule X. Next, we also

define EX as the error in the approximation; EX(a, b) := I(a, b) − QX(a, b).
Additionally, h := b − a, the size of an interval [a, b], and m the midpoint of the
interval m := (b + a)/2. Unless explicitly denoted otherwise, QX = QX(a, b),
EX = EX(a, b) and I = I(a, b).

The first quadrature rule we discuss is the midpoint rule [154, 155], given
by;

QM = hf (m) , (9.4)

with corresponding error term

EM =
h3

24
f ′′(m) +

h5

1920
f (4)(m) +O(h7). (9.5)

The second quadrature rule is the trapezoidal rule [154, 155] given by:

QT =
h

2
(f(b) + f(a)) , (9.6)

with an error of

ET = −h
3

12
f ′′(m)− h5

480
f (4)(m) +O(h7). (9.7)

The fractal quadrature rule given in [151] combines the midpoint and trapezoidal
rules by taking the arithmetic average of the two rules;

QF = 1
2 (QM +QT), (9.8)

where the error in the combined rules is then

EF = (EM + ET)/2 = −h
3

48
f ′′(m)− h5

1280
f (4)(m) +O(h7), (9.9)

which is better than both the midpoint and trapezoidal rules by a factor two.
However, the leading term in the error is still O(h3).

Note that by taking a weighted average of QM and QT one can eliminate
the O(h3) term in equation (9.9). Define a weighted rule QS as

QS := αQM + βQT, (9.10)
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with α + β = 1. The error in QS is given by the weighted average of the error
terms;

ES = α

(
h3

24
f ′′(m) +

h5

1920
f (4)(m) +O(h7)

)
+β

(
−h

3

12
f ′′(m)− h5

480
f (4)(m) +O(h7)

)
.

(9.11)

By taking α = 2
3 and β = 1

3 the O(h3)-term can be eliminated, which results in
the quadrature rule

QS =
2

3
QM +

1

3
QT, (9.12)

or more explicitly:

QS =
h

6
(f(a) + 4f(m) + f(b)), (9.13)

better known as Simpson’s rule [154]. Similar to the “fractal method”, Simpson’s
rule can also be applied adaptively, and has a more favorable error term. The
exact error in the Simpson’s rule is given by [154, 155]

ES(a, b) = f (4)(m)
h5

2880
+O(h7). (9.14)

In the next section we seek a method of estimating the local error; the error in
a subinterval. Using the local error, the adaptive algorithm can decide whether
to bisect a given interval further. The error estimates are discussed in the next
section.

9.3 Local error estimate

9.3.1 Fractal rule

The fractal rule of reference [151] can be written as a linear combination of the
trapezoidal and the midpoint rule;

QF =
1

2
QT +

1

2
QM =

h

4
(f(a) + f(b) + 2f(m)) , (9.15)

with an error EF given by equation (9.9).

The error estimation strategy gives an approximation of the true error EF,
denoted as ϵF. To obtain the estimate ϵF reference [151] computes ϵF = QF−QT,
which results in

ϵF = −h
4
(f(a)− 2f(m) + f(b)) , (9.16)
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the term inside brackets is reminiscent of the central difference estimate for the
second derivative. The estimate for the error,

ϵF = −h
3

4

(
1

h2
(f(b)− 2f(m) + f(a))

)
= −h

3

4
f ′′(m) +O(h5), (9.17)

has the same order as the actual error, O(h3), and it estimates f ′′(m) in the actual
error (9.9) with the second order central difference method. As a consequence the
error estimated by the fractal rule is indeed representative of the true error.

9.3.2 Simpson’s rule

Simpson’s rule is a linear combination of the trapezoidal and midpoint rules, in
such a way that the O(h3) term in the error cancels. One method to obtain an
error estimate for Simpson’s rule is analogous to Section 9.3.1, namely,

ϵS = QS −QT = −2

3
QT +

2

3
QM = −1

3
h3
[
1

h2
(f(a)− 2f(m) + f(a))

]
. (9.18)

Such an estimate has two mismatches with the real leading order term in the error.
Firstly, the order of the estimated error shows O(h3) behavior, whilst the actual
error is O(h5). Secondly, the term inside square brackets approximates the second
derivative, whilst the real error is proportional to the fourth derivative.

9.3.3 Bisection based error estimate

A suggestion for computing an error estimate is given in reference [153];

ϵS = QS − (QS (a,m) +QS (m, b)). (9.19)

To investigate the properties of this estimate consider the expansion QX = I−EX;

ϵS = I − ES − (I (a,m)− ES (a,m) + I (m, b)− ES (m, b)), (9.20)

where ϵS approximates the error ES. Since I represents the exact value of the
integral, equation (9.20) can be simplified to

ϵS = −ES + ES (a,m) + ES (m, b) . (9.21)

Then using the error estimate presented in equation (9.14), the estimated error
based on bisection is

ϵS = − h5

2880
f (4)(m) +

1

25
h5

2880
(f (4)(m1) + f (4)(m2)), (9.22)

where m1 = 1
4 (3a + b), m2 = 1

4 (a + 3b) and O(h7)-terms are ignored. Equation
(9.22) seems to be a much more representative estimate than equation (9.18). First,
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equation (9.22) has the same order as the actual error term, i.e., O(h5). Second,
the leading term in the error estimate is the actual error. Third, the deviation
from the actual error, the second term in (9.22), is relatively small due to the
factor 2−5. Finally, even the deviation is proportional to the fourth derivative.
Note that the bisection method as presented here is not related to the root-finding
method with the same name.

9.3.4 Gaussian quadrature methods

Based on reference [156, p. 514] in this section Gaussian quadrature rules are
discussed. Such quadrature rules approximate an integral over the interval [−1, 1]
by a summation ∫ 1

−1

f(x)dx ≈
n∑

i=1

wG,if(xG,i), (9.23)

where wG,i are the weights and xG,i the nodes. Note that there are 2n degrees
of freedom which can be exploited to integrate polynomials up to degree 2n − 1
exactly, using properties of orthogonal polynomials. The idea of the Gaussian
quadrature method is to choose the n nodes and weights such that a polynomial
of a degree as large as possible can be integrated exactly. It turns out that with
n nodes, a polynomial of degree 2n− 1 can still be integrated exactly. Implicitly,
the Gaussian quadrature method thus approximates f as a polynomial of degree
2n− 1, and integrates the result exactly. To apply the Gaussian quadrature rules
over the interval [a, b] we use a linear transformation of the form∫ b

a

f(x)dx =

∫ 1

−1

f

(
b− a
2

y +
b+ a

2

)
b− a
2

dy. (9.24)

Consider the division of a polynomial P2n−1(x) of degree 2n − 1, by the
Legendre polynomial Ln(x) of degree n:

P2n−1(x) = q(x)Ln(x) + r(x), (9.25)

where q(x) is the quotient, a polynomial of degree n−1, and r(x) is the remainder
of degree at most n− 1. Integrating equation (9.25) yields:∫ 1

−1

P2n−1(x)dx =

∫ 1

−1

q(x)Ln(x)dx+

∫ 1

−1

r(x)dx. (9.26)

It is important to note that the Legendre polynomials of degree n are orthogonal
to all monomials xk where k < n [156, p. 514]. Since q(x) is of degree n − 1 the
orthogonality property of the Legendre polynomials gives∫ 1

−1

q(x)Ln(x)dx = 0. (9.27)
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Thus, the integration as presented in (9.26) yields∫ 1

−1

P2n−1(x)dx =

∫ 1

−1

r(x)dx. (9.28)

The idea is to choose the nodes xG,i in equation (9.23) such that they correspond
with the roots of Ln(x). This way the first term in the right-hand side of (9.26)
is integrated exactly, since

n∑
i=1

wG,iq(xG,i)Ln(xG,i) = 0, (9.29)

as Ln(xG,i) = 0. The weights wG,i can be exploited to exactly integrate the
remainder r(x), since r(x) is a polynomial of degree ≤ n− 1. Due to the linearity
of integration it is sufficient to have all monomials; 1, x1, x2, ..., xn−1 be exactly
represented by the approximation. To do this, we require that

n∑
i=1

wG,ix
k
G,i =

∫ 1

−1

xkdx =
1 + (−1)k

1 + k
, k = 0, 1, ..., n− 1. (9.30)

This can be compactly represented as a linear system of equations;
1 1 . . . 1

xG,1 xG,2 . . . xG,(n−1)

x2G,1 x2G,2 . . . x2G,(n−1)

...
...

. . .
...

xn−1
G,1 xn−1

G,2 . . . xn−1
G,(n−1)




wG,1

wG,2

...
wG,(n−1)

 =


2
0
...

(1 + (−1)n−1)/n

 . (9.31)

With the weights obtained from this linear system all polynomials up to degree
2n − 1 are integrated exactly on the interval [−1, 1]. The matrix shown in (9.31)
is a so-called “Vandermonde matrix” [157, p. 94]; such matrices are typically
ill-conditioned [157, p. 95]. However, the nodes and weights only have to be
computed once, for which there are accurate methods [157, p. 184]. Common
Gaussian quadrature nodes and weights are tabulated as well [154, p. 147].

As an example consider the three-point Gauss-Legendre quadrature rule.
The 3rd degree Legendre polynomial is given by

L3(x) =
1

2

(
5x3 − 3x

)
, (9.32)

with roots

xG,1 = −
√

3

5
, xG,2 = 0, xG,3 = +

√
3

5
. (9.33)
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To determine the weights the linear system from equation (9.31) for the case n = 3; 1 1 1

−
√

3
5 0

√
3
5

− 3
5 0 3

5


wG,1

wG,2

wG,3

 =

 2
0

2/3

 , (9.34)

has to be solved, which results in

wG,1 =
5

9
, wG,2 =

8

9
, wG,3 =

5

9
. (9.35)

The three-point rule has the special property that it shares the center node with
the one-point Gauss-Legendre rule (xG,1 = 0, wG,1 = 2) as well. Such embedded
rules can be used to obtain an error estimate, as will be shown in Section 9.3.7. A
generalization of the construction of such embedded rules is done in the derivation
of Gauss-Kronrod quadrature. These methods will be discussed in Section 9.3.6.
In the next section we investigate the error estimate and the true estimate for the
Gauss-Legendre quadrature rules.

9.3.5 Error analysis of Gauss-Legendre quadrature

For an n-point Gauss-Legendre quadrature rule the error is given by [154]

EG,n = h2n+1 (n!)4

(2n+ 1)[(2n)!]3
f (2n)(ξ), ξ ∈ (a, b). (9.36)

To simplify the notation, define

RG,n :=
(n!)4

(2n+ 1)[(2n)!]3
. (9.37)

The bisection method from Section 9.3.3 can also be applied to the general n-point
Gauss-Legendre quadrature;

ϵG,n = QG,n − (QG,n (a,m) +QG,n (m, b)) , (9.38)

then by substituting QG,n = IG,n + EG,n, and simplifying we obtain

ϵG,n = −EG,n + EG,n (a,m) + EG,n (m, b) . (9.39)

The estimated error is then obtained as

ϵG,n = −h2n+1RG,nf
(2n)(ξ) +

(
h

2

)2n+1

RG,nf
(2n)(ξ1) +

(
h

2

)2n+1

RG,nf
(2n)(ξ2),

(9.40)
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where ξ1 ∈ [m, b] and ξ2 ∈ [a,m]. This can be rewritten to obtain the bisection-
based estimated error for Gauss-Legendre methods;

ϵG,n = −h2n+1RG,nf
(2n)(ξ) + h2n+1 RG,n

22n+1

(
f (2n)(ξ1) + f (2n)(ξ2)

)
. (9.41)

While the true error is the first term in (9.41), viz.,

EG,n = h2n+1RG,nf
(2n)(ξ), (9.42)

similar to what has been obtained for Simpson’s rule in Section 9.3.3. However,
note that for the 2-point Gauss-Legendre rule the error is

EG,2 =
h5

4320
f (4)(ξ), (9.43)

thus it can integrate polynomials up to degree 3 exactly with 2 function evaluations.
Simpson’s rule can also integrate polynomials up to degree 3 exactly, however, it
requires 3 function evaluations and has a larger coefficient in the error term;

ES =
h5

2880
f (4)(ξ). (9.44)

On the other hand, since Simpson’s rule uses equidistant nodes, function evalua-
tions could be reused between bisections.

9.3.6 Gauss-Kronrod methods

The Gauss-Kronrod methods are derived similarly to the Gauss-Legendre quadra-
ture methods as elaborated in Section 9.3.4. However, they have the property
that for a given set of nodes, two quadrature rules can be obtained.

The Gauss-Kronrod method uses Stieltjes polynomials En [158], such that
the polynomial division similar to equation (9.25) becomes

P3n(x) = q(x)Ln(x)En+1(x) + r(x). (9.45)

Here the quotient q(x) is a polynomial of degree n − 1, and the remainder r(x)
a polynomial of at most degree n− 1. The Stieltjes polynomials can be obtained
from the orthogonality relations∫ 1

−1

xkLn(x)En+1(x)dx = 0, k = 0, 1, ..., n− 1. (9.46)

From equation (9.46), and an arbitrary normalization condition for En+1 another
system of equations is obtained, which can be solved to obtain the coefficients of
the polynomials En+1. With the normalization defined as∫ 1

−1

E2
n+1(x)dx := 1, (9.47)
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the first few Stieltjes polynomials are given by:

E0(x) =
1√
2
,

E1(x) =

√
3

2
x,

E2(x) =
5

2
√
2
x2 − 3

2
√
2
,

E3(x) = 7

√
5

22
x3 − 3

√
10

11
x,

(9.48)

even though E0(x) is not used in the derivation of the Gauss-Kronrod methodes,
it is listed for completeness. Similarly to the derivation of the Gauss-Legendre
quadrature rules, here the 2n+1 nodes xK,i are chosen at the nodes of Ln(x) and
En+1(x). Where q(x) and r(x) are polynomials of at most degree n. The weights

are chosen such that
∫ 1

−1
r(x)dx is integrated exactly.

Note that the roots of E2(x) are ±
√

3
5 , which are the same as two of the

nodes in the three-point Gauss-Legendre method of equation (9.33). Thus,
the three-point Gauss-Legendre quadrature rule is the same as the one-point
Gauss-Legendre rule extended with 2 additional Kronrod points. The nested
one-point Gauss-Legendre quadrature is simply the midpoint method.

9.3.7 Error analysis of Gauss-Kronrod quadrature rules

Gauss-Kronrod methods are nested methods to compute an integral that runs
over an interval [−1, 1]. The weights and nodes of this method are such that a
lower order rule is embedded in a higher order rule. For example, the three-point
Gauss-Kronrod rule has weights and nodes given by Table 9.3.1.

Table 9.3.1: Nodes xK,i and weights wK,i for the three-point Gauss-Kronrod rule.

xK,i wK,i wG,i

−
√

3
5

5
9 0

0 8
9 2

+
√

3
5

5
9 0

Using the coefficients in Table 9.3.1 one can obtain two integral estimates;

QG,1 = 2f(0), (9.49)
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and

QK,3 =
5

9
f

(
−
√

3

5

)
+

8

9
f(0) +

5

9
f

(√
3

5

)
. (9.50)

However, note that one only needs three function evaluations to compute both,
since f(0) can be reused. One can then obtain an error estimate similar to what is
shown in reference [154] for a 15-point Gauss-Kronrod rule, by taking the absolute
difference between the two integral estimates;

ϵGK,3 = |QK,3 −QG,1|. (9.51)

This produces an error estimate proportional to h3f ′′(ξ) where ξ ∈ (a, b), since
QG,1 is the largest contributor to the error here. A general expression for the
error in a GK-rule is unknown [156], however, it is known that it can integrate
polynomials up to order 3n + 1 exactly, with n the order of the embedded
Gaussian rule. So the error has to be at least proportional to the (3n + 2)th
derivative. If the error of the Gauss-Kronrod rule can be written in a form
EK,n = h3n+3QK,nf

(3n+2)(ξ), similarly to the Gauss-Legendre error, then the
actual error of QK,3 is proportional to h6f (5), not proportional to h3f ′′ as given
by (9.51).

With the bisection method one can then obtain an error estimate

ϵK,n = −h3n+3RK,n

(
f (3n+2)(ξ)− 1

23n+3

(
f (3n+2)(ξ1) + f (3n+2)(ξ2)

))
, (9.52)

where ξ2 ∈ [a,m] and ξ1 ∈ [m, b]. The bisection method is more expensive to
evaluate than (9.51). However, it may have more favorable properties. As the error
estimate provided by the bisection method is proportional to the same derivative
as the actual error, and has the same power of h as the actual error.

9.4 Computation of the scattering angle

The integral for the scattering angle in (9.1) is improper in two ways, the upper
bound is infinite, and there is a singularity of the integrand at the lower bound.
Additionally, the lower bound rm has to be obtained via a root finding process;
rm is the largest root of the term inside square brackets. In practice there is
no analytical solution, and V (r) may be in table form, further complicating
analytical investigation. The idea of this section is to treat the integral in (9.1)
as a Terminal Value Problem (TVP). We then use physical arguments to choose a
finite upper bound, and integrate towards smaller r. When the term inside square
brackets is negative, or r is negative we reject the step.

A common scheme to integrate ODEs numerically is the Dormand-Prince
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5(4) Embedded Runge-Kutta method with adaptive step size [157, p. 910]. To
convert (9.1) into a TVP, let ℵ(r) be a primitive of the integrand in (9.1), then

ℵ(∞)− ℵ(rm) =
∫ ∞

rm

[
1− b2

r2
− V (r)

E

]−1/2
dr

r2
, (9.53)

which allows us to obtain the TVP for ℵ(r),

dℵ
dr

=

[
1− b2

r2
− V (r)

E

]−1/2
1

r2
, ℵ(∞) = 0. (9.54)

Since rm is not known a priori, but has to be obtained from a root finding problem,
we integrate from r =∞ in decreasing r-direction, until

1− b2

r2
− V (r)

E
≤ 0. (9.55)

Since the potentials V (r) are atomic interactions, it is expected that at large
distances there will be little effect on the scattering angle. To completely rule out
any significant contribution we start integrating from r∞ = 10 m. Then we use
an adaptive step size to integrate efficiently over a wide range of length scales.

To integrate from large r∞ towards rm we take a step size h < 0 in the
Runge-Kutta scheme. This step size is adjusted as described in [157, p. 911]. A
fourth and fifth order accurate numerical solution is computed, and the error is
estimated by taking the difference between these estimates.

Since the right-hand side of (9.54) does not depend on ℵ, the scheme from
[157, p. 911] can be simplified to,

k1 = hℵ′(rn), (9.56a)

k3 = hℵ′(rn + 3h/10), (9.56b)

k4 = hℵ′(rn + 4h/5), (9.56c)

k5 = hℵ′(rn + 8h/9), (9.56d)

k6 = hℵ′(rn + h), (9.56e)

k2 is not needed and k7 = k6, since ℵ′ is independent of ℵ. The next values
ℵn+1 ≈ ℵ(rn+1) are then given by

ℵ(4)n+1 = 5179
57600k1 +

7571
16695k3 +

393
640k4 −

92097
339200k5 +

187
2100k6 +

1
40k7, (9.57a)

ℵ(5)n+1 = 35
384k1 +

500
1113k3 +

125
192k4 −

2187
6784k5 +

11
84k6, (9.57b)
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where ℵ(5)n+1 is a fifth and ℵ(4)n+1 a fourth order estimate. The error in this step can
then be estimated by

ϵ = |ℵ(5)n+1 − ℵ
(4)
n+1|. (9.58)

The next step size is then chosen as

hn+1 = 0.9hn

∣∣∣∣∣ tol

max(ϵ, ϵ/|ℵ(5)n+1|)

∣∣∣∣∣
1/5

, (9.59)

where changes in the step size are limited such that

1

2
≤ hn+1

hn
≤ 2. (9.60)

9.5 Results and discussion

9.5.1 Benchmark problem Colonna

The first numerical experiment is the same as presented in [151]; we integrate∫ 2

10−8

sin(π ln(x))dx, (9.61)

numerically using an adaptive integration strategy. Here we repeat the experiment
for a number of quadrature rules.

To test the quadrature schemes, we set a tolerance, then require that the
local value of the absolute error is less than this tolerance. For a given tolerance
we then approximate the integral shown in (9.61), and store the number of
integrand evaluations. The results are shown in Figure 9.5.1.
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Figure 9.5.1: Relative error as function of the number of integrand evaluations for
various adaptive integration strategies for the integral in (9.61).

It can be seen in Figure 9.5.1 that the methods that use the bisection based
error estimate (G2, SimpsonBisection and GK3Bisection) from Section 9.3.3
converge more smoothly compared to the methods that use an embedded estimate
(Simpson and GK3). The exceptions to this are GK15, which converges much
faster than the other methods, and the fractal method. The error estimate used
in the fractal method is representative of the true error, and thus converges
smoothly. For the GK3 method, the error estimate is O(h3), whereas the true
error is O(h6). This is likely the cause of the staircase shape in the convergence
graph.

The GK15 method converges by far the fastest for this problem, for strict
error requirements. Even though the fractal method converges very smoothly, the
rate of convergence is subpar.

9.5.2 Lennard-Jones potential

Here we use the Lennard-Jones potential as a model to compare our integration
strategy with results from the literature. In reference [152] the Lennard-Jones
potential has the form

V (r) = 4ϵ
((d

r

)12
−
(d
r

)6)
, (9.62)
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where ϵ and d are experimental parameters that depend on the atoms of interest.
Here d/r can be seen as a dimensionless length. A dimensionless energy β is
introduced which links the interaction strength ϵ with the energy of the incoming
particle E,

β =
ϵ

2E
. (9.63)

Our implementation splits (9.2), and integrates up to a finite upper bound, i.e.,

Q(L)(E) ≈ 2π

∫ 5×10−9

0

b(1− cosL(Θ))db+ 2π

∫ 10−8

5×10−9

b(1− cosL(Θ))db. (9.64)

A plot of the absolute value of the integrand of (9.64) is shown in Figure 9.5.2.
The integrand reaches a minimum at b = 10−8 m, and does not tend to zero for
b → ∞. For b ≳ 10−7 m the integrand is dominated by rounding error, since
1− cos(Θ) is not exactly zero.

10 20 10 17 10 14 10 11 10 8 10 5 10 2

b

10 22

10 19

10 16

10 13

10 10

10 7

10 4

b(
1-

co
s(

(b
))

Figure 9.5.2: |b(1 − cosL(Θ))| as function of b for the LJ problem, for β = 1 and
L = 1.
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A potentially more robust approach would be to use a strategy similar to the
one suggested in [151]; solve (9.2) as an initial value problem, whenever orbiting is
encountered apply another scheme in a small region. Ideally, a method specifically
constructed for oscillating integrands such as the Levin and Filon methods [159,
p. 29]. It can be seen in Figure 9.5.3 that for both L = 1 and L = 2 the computed

(a) Cross section data from [152] in units
of d2.

10 2 10 1 100 101 102

[]

100

101

[d
2 ]

L=1
L=2

(b) Cross sections computed using Mag-
numPI using GK15.

Figure 9.5.3: Comparison of our numerical results with values from literature. The
diffusion cross section corresponds to L = 1, the viscosity cross section to L = 2.

cross sections for the Lennard-Jones potential agree with reference [152]. The
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Figure 9.5.4: Relative error as function of the number of integrand evaluations for
various adaptive integration strategies for the Lennard Jones problem.
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convergence rates for the LJ-problem are shown in Figure 9.5.4. Since we do not
have an exact solution, the error is computed relative to GK15 with the lowest
setting for the absolute tolerance of 1.1 × 10−28. For this numerical experiment
d = 3.949 Å and E = 19.49 meV, which are values for xenon [160]. The convergence
graphs in Figure 9.5.4 are not as smooth, as the ones for the test problem shown in
Figure 9.5.1. One of the conjectured causes for this is that there is no direct control
over the number of integrand evaluations, we can only change the tolerance.

9.6 Conclusions

In conclusion we have shown that the adaptive quadrature method, the fractal
method, of [151] can be significantly improved without large modifications. By
changing two weights the fractal rule can be turned into an adaptive Simpson
rule, which has an error of O(h5), compared to O(h3) for the fractal rule.

We have extensively discussed other quadrature rules, such as Gaussian
quadrature and Gauss-Kronrod quadrature. Additionally, the error estimate
used to determine when an adaptive method should bisect is discussed. In our
numerical experiments it is shown that the bisection method of [153] shows a
smoother convergence for GK3 and Simpson’s rule compared to the nested error
estimates.

To compute the scattering angle, a Runge-Kutta scheme was used with
adaptive step size. Computing the scattering angle involves an integral that
is improper in two ways, the upper bound is infinite and there is a singularity
at the lower bound. Here, we integrate from some initial large r-value towards
zero until the singularity is reached. It is argued, based on physical arguments,
that this initial r is sufficiently large for any atomic interaction. However, the
current method does not guarantee that it stops at r = rm, as the term in square
brackets in (9.1) may have multiple roots and a step may skip over some roots. In
practice V (r) may be tabulated data, which makes it difficult to devise a method
to guarantee the correct root is found.

It has been shown that the current MagnumPI implementation using our
Runge-Kutta method, and quadrature schemes agree with data shown in the
literature [152].

An outlook is to compute the cross section in a way similar to the scatter-
ing angle, by treating it as an initial value problem and integrating from b = 0 to
some large b. There do exist analytical expressions for small scattering angle [13,
p. 53], which can be used to estimate the contribution from large b.
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Similarly to the idea in [151], if the integrand for the cross section is strongly
oscillatory another scheme may be better. As outlook, methods such as the Levin
and Filon methods [159, p. 29] could be considered in future versions.





Chapter 10

General conclusions, discussion
and outlook

10.1 Part I: Introduction

• The Stefan-Maxwell equations can be derived from Navier-Stokes, however,
this requires a significant number of assumptions.

• There appears to be a discrepancy between Whittaker [15] and Holt [8] re-
garding the pressure tensor.

• Discretization schemes such as the complete flux can be extended to systems
of ADR equations.

• An exact definition of sparse linear systems is not straightforward.

• There is a need for efficient solvers for large sparse linear systems, however,
there is no optimal Krylov method for every linear system.

10.2 Part II: Reduction and equilibrium

• We have introduced a linear transformation of the system of ADR equations;
the Stoichiometric Transformation Method (STM).

• The STM can be used to enforce invariants such as conservation of mass and
quasi-neutrality.

• The STM can be extended to a method which computes deviations from
equilibrium.

• Using the STM, Newton-Krylov methods can be used to solve systems of
ADR equations, without violating 1Ty = 1.

193
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• Obtaining the chemical equilibrium efficiently is an important aspect of ex-
tending the near equilibrium method.

10.3 Part III: Krylov methods

• We have identified several pitfalls in the implementation of BiCGStab.

• It has been shown that BiCGStab, for problems with strong advection and
real eigenvalues, can still break down if the shadow vector is not chosen
adequately.

• Numerical experiments have shown that LMR solves a discretized version of
the ADR equation.

• An extensive discussion has been presented to improve the implementation
of Krylov subspace methods

• The specific design choices for BiCGStab(L), IDR(S) and IDR(S)Stab(L)
have been presented, these robust methods are included in the Eigen library.

• A follow-up would be an optimization study, which repeatedly solves a given
linear system using BiCGStab, IDR(S) or IDR(S)Stab(L), and aims to find

the shadow matrix R̃ that can solve this system in the smallest number of
iterations.

10.4 Part IV: Magnum PI

• We have presented an overview of adaptive quadrature rules and their error
estimates.

• Alternatives to the fractal scheme of Colonna have been presented.

• Future work can be to implement a scheme that integrates the cross section
as an initial value problem, and integrates parts with orbiting with a scheme
designed specifically for oscillatory integrands such as the Levin or Filon
schemes.
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[61] Kräutle, S. and Knabner, P. A new numerical reduction scheme for
fully coupled multicomponent transport-reaction problems in porous media.
Water resources research, 41(9), 2005.



200 Bibliography

[62] Fan, Yaqing and Durlofsky, Louis J and Tchelepi, Hamdi A. A fully-coupled
flow-reactive-transport formulation based on element conservation, with ap-
plication to CO2 storage simulations. Advances in Water Resources, 42, 47–
61, 2012.

[63] Giovangigli, V and Graille, B. Asymptotic stability of equilibrium states for
ambipolar plasmas. Mathematical models and methods in applied sciences,
14(09), 1361–1399, 2004.

[64] Geiser, Juergen and Hueso, Jose L and Martinez, Eulalia. Adaptive It-
erative Splitting Methods for Convection-Diffusion-Reaction Equations.
Mathematics, 8(3), 302, 2020.

[65] Geiser, Juergen. Multicomponent and multiscale systems: Theory, methods,
and applications in engineering. Springer, 2015.

[66] Geiser, Jürgen. Multiscale modelling of solute transport through
porous media using homogenization and splitting methods.
Mathematical and Computer Modelling of Dynamical Systems, 22(3),
221–243, 2016.

[67] Geiser, Jürgen. Mobile and immobile fluid transport: Coupling framework.
International journal for numerical methods in fluids, 65(8), 877–922, 2011.

[68] Boudin, Laurent and Grec, Bérénice and Salvarani, Francesco. The
Maxwell-Stefan diffusion limit for a kinetic model of mixtures.
Acta Applicandae Mathematicae, 136(1), 79–90, 2015.

[69] Krishna, Rajamani. Diffusion in multicomponent electrolyte systems.
The Chemical Engineering Journal, 35(1), 19–24, 1987.

[70] K.S.C. Peerenboom, J. van Dijk, W.J. Goedheer, G. Degrez, J.J.A.M. van
der Mullen. A finite volume model for multi-component diffusion in mag-
netically confined plasmas. Journal of Physics D: Applied Physics, 44(19),
194006, 2011.

[71] J.D. Ramshaw. Simple Approximation for Thermal Diffusion in Ionized Gas
Mixtures. 1996.

[72] Ramshaw, John D. Short communication simple approximation for thermal
diffusion in gas mixtures. J Non Equilib Thermodyn, 21, 99–101, 1996.

[73] K.S.C. Peerenboom. Modeling of magnetized expanding plasmas. PhD thesis,
Department of Applied Physics, 2012.



Bibliography 201

[74] K. Peerenboom, J. Van Boxtel, J. Janssen, J. and Van Dijk. A conserva-
tive multicomponent diffusion algorithm for ambipolar plasma flows in local
thermodynamic equilibrium. Journal of Physics D: Applied Physics, 47(42),
425202, 2014.

[75] C.F. van Loan, G.H. Golub. Matrix Computations. Johns Hopkins Univer-
sity Press, 1983.

[76] Fridman, Alexander. Plasma chemistry. Cambridge university press, 2008.

[77] Maher I.. Boulos and Fauchais, Pierre and Pfender, Emil.
Thermal plasmas: fundamentals and applications. 1994.

[78] van der Heijden, Harm. Modelling of radiative transfer in light sources.
Technische Universiteit Eindhoven, 2003.

[79] Gerasimov, G Ya and Shatalov, OP. Kinetic mech-
anism of combustion of hydrogen–oxygen mixtures.
Journal of Engineering Physics and Thermophysics, 86(5), 987–995, 2013.

[80] R. Aerts, T. Martens, A. Bogaerts. Influence of vibra-
tional states on CO2 splitting by dielectric barrier discharges.
The Journal of Physical Chemistry C, 116(44), 23257–23273, 2012.
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[160] Gábor Rutkai, Monika Thol, Roland Span, and Jadran Vrabec. How well
does the lennard-jones potential represent the thermodynamic properties of
noble gases? Molecular Physics, 115(9-12), 1104–1121, 2017.

[161] Denis Demidov. Amgcl: An efficient, flexible, and extensible algebraic multi-
grid implementation. Lobachevskii Journal of Mathematics, 40(5), 535–546,
2019.





Acknowledgments

I would like to thank my highschool mathematics teacher Erich Mommers for
being the inspiration to continue my quest of exploring the exact sciences.
Furthermore, I would also like to thank both Jan van Dijk and Jan ten Thije
Boonkkamp for their continued support, the numerous insightful discussions and
the extensive proofreading.

An inspiration for best practices in C++ and soft-skills is Jens Wehner. It
was a pleasure to work together on completing the Krylov subspace solvers
IDR(S), BiCGStab(L), IDR(S)Stab(L) and several related topics.

Next, I would also like to thank my colleagues over the years with whom
I’ve had the fortune to share an office; Peter Koelman, Samaneh Tadayon
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