
 

Active glassy dynamics is unaffected by the microscopic
details of self-propulsion
Citation for published version (APA):
Debets, V. E., & Janssen, L. M. C. (2022). Active glassy dynamics is unaffected by the microscopic details of
self-propulsion. Journal of Chemical Physics, 157(22), Article 224902. https://doi.org/10.1063/5.0127569

Document license:
TAVERNE

DOI:
10.1063/5.0127569

Document status and date:
Published: 14/12/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1063/5.0127569
https://doi.org/10.1063/5.0127569
https://research.tue.nl/en/publications/916c6882-b7a5-4295-abc6-3f49c1dbc98e


J. Chem. Phys. 157, 224902 (2022); https://doi.org/10.1063/5.0127569 157, 224902

© 2022 Author(s).

Active glassy dynamics is unaffected by the
microscopic details of self-propulsion
Cite as: J. Chem. Phys. 157, 224902 (2022); https://doi.org/10.1063/5.0127569
Submitted: 22 September 2022 • Accepted: 18 November 2022 • Published Online: 08 December 2022

 Vincent E. Debets and  Liesbeth M. C. Janssen

ARTICLES YOU MAY BE INTERESTED IN

Explicit analytical form for memory kernel in the generalized Langevin equation for end-to-
end vector of Rouse chains
The Journal of Chemical Physics 157, 224901 (2022); https://doi.org/10.1063/5.0124925

One experiment makes a direct comparison of structural recovery with equilibrium
relaxation
The Journal of Chemical Physics 157, 224501 (2022); https://doi.org/10.1063/5.0131342

Single-orientation colloidal crystals from capillary-action-induced shear
The Journal of Chemical Physics 157, 224903 (2022); https://doi.org/10.1063/5.0112602

https://images.scitation.org/redirect.spark?MID=176720&plid=1817977&setID=533015&channelID=0&CID=668198&banID=520703476&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=6a06a51a28cd72ad43dfa364682722e3de2b7626&location=
https://doi.org/10.1063/5.0127569
https://doi.org/10.1063/5.0127569
https://orcid.org/0000-0003-1889-5394
https://aip.scitation.org/author/Debets%2C+Vincent+E
https://orcid.org/0000-0001-5283-1330
https://aip.scitation.org/author/Janssen%2C+Liesbeth+M+C
https://doi.org/10.1063/5.0127569
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0127569
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0127569&domain=aip.scitation.org&date_stamp=2022-12-08
https://aip.scitation.org/doi/10.1063/5.0124925
https://aip.scitation.org/doi/10.1063/5.0124925
https://doi.org/10.1063/5.0124925
https://aip.scitation.org/doi/10.1063/5.0131342
https://aip.scitation.org/doi/10.1063/5.0131342
https://doi.org/10.1063/5.0131342
https://aip.scitation.org/doi/10.1063/5.0112602
https://doi.org/10.1063/5.0112602


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Active glassy dynamics is unaffected
by the microscopic details of self-propulsion

Cite as: J. Chem. Phys. 157, 224902 (2022); doi: 10.1063/5.0127569
Submitted: 22 September 2022 • Accepted: 18 November 2022 •
Published Online: 8 December 2022

Vincent E. Debets1 ,2 and Liesbeth M. C. Janssen1 ,2,a)

AFFILIATIONS
1 Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

a)Author to whom correspondence should be addressed: l.m.c.janssen@tue.nl

ABSTRACT
Recent years have seen a rapid increase of interest in dense active materials, which, in the disordered state, share striking similarities with
the conventional passive glass-forming matter. For such passive glassy materials, it is well established (at least in three dimensions) that
the details of the microscopic dynamics, e.g., Newtonian or Brownian, do not influence the long-time glassy behavior. Here, we investigate
whether this still holds true in the non-equilibrium active case by considering two simple and widely used active particle models, i.e., active
Ornstein-Uhlenbeck particles (AOUPs) and active Brownian particles (ABPs). In particular, we seek to gain more insight into the role of the
self-propulsion mechanism on the glassy dynamics by deriving a mode-coupling theory (MCT) for thermal AOUPs, which can be directly
compared to a recently developed MCT for ABPs. Both theories explicitly take into account the active degrees of freedom. We solve the
AOUP- and ABP-MCT equations in two dimensions and demonstrate that both models give almost identical results for the intermediate
scattering function over a large variety of control parameters (packing fractions, active speeds, and persistence times). We also confirm this
theoretical equivalence between the different self-propulsion mechanisms numerically via simulations of a polydisperse mixture of active
quasi-hard spheres, thereby establishing that, at least for these model systems, the microscopic details of self-propulsion do not alter the active
glassy behavior.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0127569

INTRODUCTION

The study of active matter has been gaining widespread atten-
tion in the field of colloidal and biological physics since the begin-
ning of the previous decade.1–3 While much focus has already been
dedicated to dilute and moderately dense self-propelled particle sus-
pensions, recent years have also seen a rising interest in high-density
active materials.4,5 Interestingly, when self-propelled particles
are pushed to sufficiently high densities, regardless of their intrinsic
driving, they will manifestly become kinetically arrested and, in
fact, show a strong resemblance to more conventional passive
glassy materials. This so-called active glassy behavior has indeed
been reported in the context of, e.g., living cells6–12 and colloidal
and granular experiments,13–15 while it has also been observed in
multiple theoretical and simulation studies.16–38 Intuitively, it might
be expected that dense active matter will eventually be dominated
by interactions. However, activity can certainly influence glassy

materials in non-trivial ways.18,21,22,24–26,36,38 The question of what
this influence precisely encompasses and to what degree it depends
on the specific details of the active self-propulsion mechanism, has,
therefore, unfolded itself as an increasingly interesting new area of
research.

Two of the simplest and most widely studied models in (dense)
active matter are so-called active Brownian particles (ABPs) and
active Ornstein Uhlenbeck particles (AOUPs). Their difference rests
in the implementation of the self-propulsion force, which either has
a constant magnitude and undergoes rotational diffusion (ABPs)
or evolves in time according to an Ornstein-Uhlenbeck process
(AOUPs). This difference, however, is washed out on a coarse-
grained level where the active degrees of freedom are integrated
out, in which case both models become identical.20 Since most
theoretical attempts to study dense assemblies of these model
active particles have required coarse-graining,17–20,39,40 it has not yet
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been possible to pinpoint the effect of the specific self-propulsion
mechanism on the glassy dynamics.

An exception to the coarse-grained strategy is recent work
where a mode-coupling theory (MCT) for ABPs has been developed
in which the active degrees of freedom, i.e., the orientations of
the active force, are explicitly taken into account.16,28–30 This has
revealed several non-trivial short-time features that cannot be cap-
tured when employing coarse-grained approaches. A key ques-
tion, however, remains whether these microscopic details play a
significant role in the long-time glassy dynamics of dense active
matter. For passive systems, it is well-confirmed that (at least in
three-dimensional systems) both Brownian and Newtonian dynam-
ics yield identical long-time behavior, and hence, the microscopic
details of motion are irrelevant for the glassy dynamics. This has
been demonstrated both in theory and simulations.41–45 It would
be interesting to see if such an equivalence is maintained for active
systems. Since particle motion becomes more impeded by repul-
sion at high densities, one would expect the precise single-particle
dynamics, whether active or passive, to become increasingly less
relevant.

Here, we shed more light on the influence of the self-propulsion
mechanism on active glassy dynamics from a theoretical perspec-
tive. We provide, for the first time, a detailed derivation of a
mode-coupling theory for thermal AOUPs that explicitly takes into
account the active degrees of freedom. Our theory, which is based on
similar principles as the recently developed MCT for ABPs,16,28–30

thus allows for a convenient comparison between both models in
the high-density regime. We numerically solve the relevant equa-
tions and show that for a wide variety of different settings (packing
fractions, active speeds, and persistence times) ABPs and AOUPs
give almost identical results after mapping their single-particle
dynamics onto each other. To further verify the equivalence between
both active self-propulsion models, we also directly compare
our theoretical results to ones obtained from simulations of a
polydisperse mixture of self-propelled quasi-hard spheres.

THEORY
Active particle models

Both the ABP and AOUP model describe a two-dimensional
(2D) N-particle active fluid of area V (and number density ρ = N/V)
as a collection of self-propelling and interacting particles. In
particular, each particle i within the fluid evolves in time t according
to Refs. 1, 20, 22, and 39,

dri

dt
= ζ−1

(Fi + fi) + ξi. (1)

Here, ri denotes the position of particle i, ζ the friction con-
stant, Fi and fi the interaction and self-propulsion force acting on
particle i, respectively, and ξi a Gaussian thermal noise with zero
mean and variance ⟨ξi(t)ξj(t

′
)⟩

noise
= 2DIδijδ(t − t′), with D the

thermal diffusion coefficient and I the unit matrix. The distinction
between both models resides in the dynamics of the self-propulsion
force fi. For AOUPs, the time evolution of the self-propulsion force
is governed by an Ornstein-Uhlenbeck process,18–20,23,25,26

dfi

dt
= −τ−1fi + ηi, (2)

where τ depicts the typical decay time of the self-propulsion and ηi
an internal Gaussian noise process with zero mean and a variance
⟨ηi(t)ηj(t

′
)⟩

noise
= 2Df Iδijδ(t − t′) whose amplitude is controlled

by the noise strength D f . In contrast, the ABP model assumes a
constant absolute value of the self-propulsion speed v0, so that
ζ−1fi = v0ei = v0[cos(θi), sin(θi)], and lets the orientation angles
θi undergo rotational diffusion with a diffusion coefficient Dr . This
yields1,16,17

θ̇i = χi, (3)

with χi a Gaussian noise process with zero mean and variance
⟨χi(t)χj(t′)⟩ noise

= 2D rδijδ(t − t′).
Without particle–particle interactions, both models predict a

persistent random walk (PRW), which implies that the mean square
displacement (MSD) of each particle is given by20

⟨δr2
(t)⟩ = 4Dt + 2v2

aτp(τp(e−t/τp − 1) + t). (4)

The parameters describing such a PRW are the persistence
time, τp = τ (AOUP), τp = (D r)

−1 (ABP), an (average) active speed
va = v0 (ABP), v a =

√
2Df τpζ−1 (AOUP), and the thermal diffu-

sion coefficient D. On the single-particle level, both models can
thus strictly be mapped onto each other via the equivalency of their
MSDs.

Mode-coupling theory

To infer information on the collective level, we require the joint
N-particle probability distribution of positions and self-propulsion
forces/orientation angles PN(Γ; t). This distribution is governed by
the equation,

∂

∂t
PN(Γ; t) = ΩPN(Γ; t), (5)

with Γ = (ΓT, ΓR) = (r1, . . . , rN , f1, . . . , fN) (AOUP), Γ = (ΓT, ΓR)

= (r1, . . . , rN , θ1, . . . , θN) (ABP) denoting the configuration space,
and Ω the evolution operator (see Refs. 16 and 19 for detailed def-
initions of the latter). Now, we assume that our systems can reach
a steady-state characterized by a probability distribution P ss

N (Γ) that
obeys17,19

ΩP ss
N (Γ) = 0. (6)

In principle, we can then study our systems by calculating
steady-state averages via

⟨. . .⟩ = ∫ dΓ . . .P ss
N (Γ). (7)

However, the steady-state distribution is typically not known
exactly. To proceed and make calculations tractable, we will,
therefore, approximate our steady-state averages according to
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⟨. . .⟩ ≈ ∫ dΓ . . .P eq(Γ T)P(Γ R), (8)

where, for the AOUP model,

P(Γ R) =
1

(2πDf τp)dN/2 exp(− ∑i f2
i

2Df τp
)

=
N

∏
i=1

1
(2πDf τp)d/2 exp(−

f2
i

2Df τp
) ≡

N

∏
i=1

p(fi), (9)

represents the distribution of self-propulsion forces, which is
factorized in independent Gaussian single-particle distributions
p(fi), while for the ABP model it is simply P(ΓR) = (2π)−N . Note
that d = 2 depicts the dimensionality of the system. The distribution
of particle positions is the same for both models and given by
the Boltzmann solution, Peq(ΓT) ∝ exp(−βU(ΓT)). This distribu-
tion depends solely on the total interaction potential U(ΓT), which
induces the interaction forces Fi = −∇iU(ΓT). Moreover, we assume
throughout that the Stokes-Einstein equation connects the inverse
thermal energy β to the friction constant via βD = ζ. As a first
approximation, we thus calculate averages based on the distribu-
tion the system would assume if the influence of the active forces
becomes negligibly small; it, therefore, neglects any correlations
between particle velocities and positions10,26,46 (though we have
checked in simulations that these remain relatively small due to the
presence of thermal noise) and becomes exact in the limit va → 0.
Note that, in principle, this approximation is similar to the lowest
order one in the integration-through-transients formalism, which
has been employed in previous work on mode-coupling theory for
ABPs and colloidal suspensions under shear flow.16,28–30,47 In this
formalism, one typically uses transient correlation functions defined
with the equilibrium average to find exact expressions for transport
coefficients. It has, for instance, been used to calculate macroscopic
stresses in colloidal suspensions.

In standard mode-coupling theory, the starting point to study
the glassy dynamics of a system is the set of density modes.48–50 Since
we want to explicitly include active degrees of freedom, these become
more complex in active-MCT and are given by51

ρl(k) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

im+n
√

N
∑

N
j=1 eik⋅rj Hm( f̄ j,x)Hn( f̄ j,y), (AOUP)

1
√

N
∑

N
j=1 eik⋅rj eilθj , (ABP)

. (10)

Here, Hm(x) denotes a normalized Hermite polynomial [see
Eq. (A3)] and f̄ ≡ f/

√
2Df τp a dimensionless self-propulsion force.

For compactness of notation, we have introduced the index l as
a general label for both AOUPs and ABPs; for AOUPs it corre-
sponds to the degree of the Hermite polynomials l = {m, n} with
m, n ∈ [0,∞], whereas for ABPs it corresponds to the angular
mode l ∈ [−∞,∞]. The equilibrium-averaged (also called transient)
time-correlation between such density modes can then be defined
via

Sl;l′(k, t) = ⟨ρ∗l (k)e
Ω†tρl′(k)⟩, (11)

with Ω† the adjoint evolution operator [see Eq. (A6) and Ref. 16],
which works on everything to its right except for the probability
distribution. Note that the lowest order term S0;0(k, t) ≡ F(k, t) is
the same for both models and corresponds to the (transient) inter-
mediate scattering function. It will, therefore, serve as the main
probe to study the glassy dynamics of our active systems. More-
over, at time zero, assuming our systems to be isotropic, the density
correlation functions are easily calculated and yield

Sl;l′(k) = ⟨ρ
∗

l (k)ρl′(k)⟩ = δll′[1 + δl0(S(k) − 1)], (12)

where S(k) denotes the equilibrium static structure factor, which, for
instance, can be obtained from liquid state theory or simulations.

We now follow the mode-coupling strategy pioneered for ABPs
in Ref. 16 and apply it to AOUPs. The full AOUP MCT derivation
is detailed in Appendix A. We finally arrive at the following general
equation of motion for the dynamic density correlation functions of
both models,

∂

∂t
Sl;l′(k, t) +∑

l1

ωl;l1(k)S
−1
l1 ;l1(k)Sl1 ;l′(k, t)

+ ∫

t

0
dt′∑

l1 l2

Ml;l1(k, t − t′)[ω T
l1 ;l2(k)]

−1

× [
∂

∂t′
Sl2 ;l′(k, t′) + ω R

l2 ;l2 Sl2 ;l′(k, t′)] = 0, (13)

where ωl;l′(k) represents the collective diffusion tensor, which gov-
erns the short-time dynamics and is split in a translational (T)
and rotational (R) term. The memory kernel encodes all non-trivial
dynamics and is given by

Ml;l′(k, t) ≈
ρ
2 ∫

dq
(2π)2∑

l1 l2
∑
l3 l4

Vll1 l2(k, q, k − q)

× Sl1 ;l3(q, t)Sl2 ;l4(k − q, t)V eq
l′ l3 l4
(k, q, k − q), (14)

For specific details of the involved parameters, in particular,
the vertices Vll1 l2(k, q, k − q) and V eq

ll1 l2
(k, q, k − q), and a precise

derivation we refer to Ref. 16 and Appendix A. We mention that in
comparison to the more familiar passive MCT equation,52 the equa-
tion of motion now includes a so-called hopping term ω R

l2 ;l2 Sl2 ;l′(k, t′)
inside the time integral. This term ensures the long-time decay of
the active degrees of freedom.16 Importantly, it must be empha-
sized that, although the structure of the MCT equation of motion
is similar for both models, the individual terms in the equation
are not necessarily the same. Most notably the collective diffusion
tensor ωl;l′(k) and the left vertex Vll1 l2(k, q, k − q) harbor the key
differences between the AOUP and ABP model.

To summarize, using only the equilibrium static structure
factor S(k), the persistence time τp, active speed va, and area fraction
ϕ (or number density ρ) as input parameters, we can self-consistently
find a solution for Sl,l′(k, t) and, in particular, for the intermediate
scattering function F(k, t). The latter can then be used to compare
the glassy behavior of both models in the high-density regime.
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METHODS
Active-MCT numerics

To establish proof of principle, we numerically solve the
active-MCT equations for a monodisperse colloidal mixture of
hard disks of diameter σ. For such a mixture one can employ an
analytical expression for S(k) (as a function of the area fraction
ϕ = ρπσ2) based on density functional theory.53 The two-
dimensional integral over q in the memory kernel [Eq. (14)]
is rewritten in terms of the coordinates q = ∣q∣ and p = ∣k − q∣, whose
individual integrals are performed on an equidistant wavenumber
grid kσ = [0.6, 1.0, . . . , 39.8]. Note that we drop the smallest
wavenumber kσ = 0.2 in favor of numerical stability. For compu-
tational convenience, we only take into account the lowest order
non-trivial active modes, i.e., l ∈ [{0, 0},{1, 0},{0, 1}] (AOUP) and
l ∈ [−1, 0, 1] (ABP). It is important to realize that taking the inverse
of ω T

ll′(k), in principle, does not commute with the cutoff f active
modes. We have checked that taking the inverse at a larger cutoff
(up to 20 non-trivial active modes) and afterward reducing to the
lowest order active modes induces slight quantitative changes but
does not qualitatively change our results. Overall, the used cutoff
yields stable solutions for the presented range of active speeds and
persistence times, although we mention that above the idealized
glass transition, instabilities on very long time scales still persist. To
handle the fact that higher order correlation functions (Sl;l′(k, t)
with l, l′ ≠ {0, 0}, 0) depend explicitly on the orientation of the
wavevector k, we can invoke transformation rules that enable us to
rewrite correlators with wavevector k in terms of ones with a rotated
wavevector k′ (see Ref. 16 and Appendix B for precise details).
We can, therefore, restrict our discussion to wavevectors aligned
along a specific direction, which we have chosen to be the x-axis,
i.e., k = kex. Finally, we fix the passive diffusion coefficient at D = 1
so that our unit of time equals σ2

/D and perform the integration
over time in Eq. (13) according to the algorithm presented in Ref.
16. For this, we calculate the first Nt/2 = 16 points in time using a
Taylor expansion with a step size Δt = 10−6, numerically integrate
the equations of motion for the next Nt/2 points in time, duplicate
the timestep, and repeat the process.

Simulation details

To complement our theoretical results, we also simulated both
the AOUP and ABP dynamics of a slightly polydisperse mixture of
N = 1000 quasi-hard disks. Each particle i is described by Eq. (1)
and the interaction force Fi = −∑j≠i∇iVαβ(rij) is derived from a

quasi-hard-sphere powerlaw potential Vαβ(r) = ϵ( σαβ
r )

36.54,55 The
interaction energy ϵ, friction constant ζ, and diffusion coefficient
D are all set to a value of one. To ensure polydispersity, our
mixture consists of equal fractions of particles with diameters (in
units of σ) σαα = {0.8495, 0.9511, 1.0, 1.0489, 1.1505},56 which are
additive so that σαβ = (σαα + σββ)/2. Simulations are performed by
solving the Langevin equation [Eq. (1)] via a forward Euler scheme
and are carried out using Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS).57 We fix the square box size to set
the area fraction at ϕ = 0.75 (higher values tend to result in crys-
tallization) and impose periodic boundary conditions. We then
set the persistence time τp and active speed va, run the system

sufficiently long to ensure no aging takes place, and afterward track
the particles over time. All simulation results are presented in units
where σ, ϵ, and ζσ2

/ϵ denote the units of length, energy, and time,
respectively.42

RESULTS AND DISCUSSION

Before proceeding to the glassy dynamics, we first briefly
discuss the free-particle dynamics in more detail to elucidate poten-
tial intrinsic differences between both models. For this, we exploit
the fact that at zero density the memory kernel can be set to zero and
that S(k) = 1.16 This allows us to exactly solve Eq. (13), which yields
S(k, t) = exp(−ω(k)t). Based on this result, we have calculated the
intermediate scattering function F(k, t) for different active speeds
and persistence times and have plotted the results in Fig. 1. Note
that the free-particle solution allows for the inclusion of many active
modes, and we have verified that these results remain unaltered
upon adding more active modes. An inspection of Fig. 1 shows that
F(k, t) decays more rapidly upon increasing the active speed or per-
sistence time. Moreover, at a large wavenumber k = 6.6 both models
give the same results, which is consistent with our initial mapping
of the single-particle MSDs [see Eq. (4)]. Interestingly, it can be seen
that at a relatively small wavenumber, k = 1.0, differences between
both models start to manifest themselves, especially at larger val-
ues of the active speed and persistence time. In particular, the ABP
model yields oscillatory behavior, which has been attributed to the
persistent swimming of the ABPs.58,59 These oscillations are absent

FIG. 1. The intermediate scattering function F(k, t) for free particles (ρ = 0) as a
function of time obtained for both ABP-MCT (solid lines) and AOUP-MCT (circles)
at (a) and (b) a wavevector k = 6.6 close to the first peak of the static structure
factor and (c) and (d) a relatively small wavevector k = 1.0. Results correspond to
(a) and (c) different active speeds, and (b) and (d) different persistence times.
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for the AOUPs since the Ornstein-Uhlenbeck process is Gaussian
and correlation functions, therefore, should decay monotonically. A
mapping based on the MSD, which is essentially a zero-wavenumber
limit of the density correlation function, thus misses these
differences at finite k. In other words, the free-particle intermedi-
ate scattering function F(k, t) (ρ = 0) can distinguish between the
ABP and AOUP models.

Let us now look at the theoretical predictions of the ABP- and
AOUP-MCT frameworks at high densities to understand their glassy
behavior and see whether the single-particle differences between
both models persist in the glassy regime. To compare both models,
we have primarily focused on the intermediate scattering function
F(k, t), which has been plotted for a variety of different settings and
both models in Fig. 2. We note that, despite the presence of an active
self-propulsion mechanism, both ABP-MCT and AOUP-MCT still
predict an idealized glass transition upon increasing the packing
fraction (or density). This is characterized by the emergence of a
nonzero long-time value for F(k, t). Moreover, we see that increas-
ing the active speed va and the persistence time τp always yields
faster relaxation dynamics, represented by a more rapid decay to
zero of F(k, t). These predictions are all consistent with the previous
in-depth study of ABP-MCT and simulations of a polydisperse
mixture of self-propelling hard spheres,16,22 though we mention that
an increase of the persistence time at a fixed effective temperature
(instead of the active speed) can also yield non-monotonic
behavior.18 This reentrant dynamics has already been qualitatively
predicted by a recently developed MCT for athermal AOUPs18,19 and
rationalized in terms of efficient cage exploration.36

More strikingly, however, we observe that for all shown cases
and all considered time scales, both models predict almost iden-
tical results. This implies that, at least in the numerically accessi-
ble region, the mapping between ABPs and AOUPs based on the
single-particle MSDs [Eq. (4)] transfers directly to the collective
structural relaxation in the high-density regime. Interestingly, for a
relatively small wavenumber k = 1.0 the differences on the single-
particle level [see Figs. 1(c) and 1(d)] have even been washed out in
the glassy regime with F(k, t) in all cases decaying monotonically.
Since an oscillatory decay of F(k, t) has been attributed to persis-
tent swimming of the ABPs, we expect that this is suppressed by
particle–particle interactions at high densities. This in turn forces the
models to become more equivalent and give almost identical results.
We have also verified that this equivalence occurs over an even
larger parameter range than presented in Fig. 2. This suggests that,
at least for the chosen model systems, the long-time dynamics does
not depend on the microscopic details of the active self-propulsion,
which is consistent with recent simulations of (a) thermal ABPs and
AOUPs where a different parameter regime (larger active speeds and
smaller persistence times) has been probed.36 An important conse-
quence of this equivalence might reside in the modeling of more
complex dense active systems, such as confluent cell layers.35,60 For
such systems, it is often hard to infer precise details of the micro-
scopic self-propulsion mechanism. Our results suggest that these
details might be of lesser importance when studying high-density
active matter.

To place our theoretical findings in a broader context, we
now proceed to the predictions from our simulations. Based on

FIG. 2. The normalized intermediate scattering function F(k, t)/S(k) as a function of time obtained for both ABP-MCT (solid lines) and AOUP-MCT (circles) at (a)–(c) a
wavevector k = 6.6 close to the first peak of the static structure factor and (d)–(f) a relatively small wavevector k = 1.0. Results correspond to (a) and (d) different packing
fractions, (b) and (e) different active speeds, and (c) and (f) different persistence times.
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FIG. 3. The self-intermediate scattering
function Fs

(k, t) as a function of time
obtained from both ABP and AOUP sim-
ulations at a wavevector k = 6.6 close to
the first peak of the static structure factor.
Results correspond to different (a) active
speeds, and (b) persistence times.

FIG. 4. The static structure factor S(k)
as a function of the wavevector k
obtained from both (a) ABP and (b)
AOUP simulations. Results correspond
to different active speeds.

the retrieved particle trajectories, we have calculated the self-
intermediate scattering function, i.e., F s

(k, t) = ⟨e−ik⋅rj(0)eik⋅rj(t)⟩,
where we mention that in simulations the statistical averag-
ing is done with respect to the active steady-state. However, at
high densities, the differences between steady-state and transient
self-intermediate scattering functions have been found to be small
(see Ref. 28 for a more detailed discussion). The results for
both models are plotted for a variety of settings in Fig. 3. It
can be seen that the relaxation of the self-intermediate scattering
function occurs on shorter timescales upon increasing the active
speed va [Fig. 3(a)] or the persistence time τp [Fig. 3(b)].
These results are qualitatively consistent with our theoretical
predictions for the intermediate scattering function and imply that
enhanced particle speed and persistence render the material more
liquid-like.

Interestingly, we find that, also for our simulation results,
the differences between both model systems are manifestly only
marginal. This further substantiates our theoretical predictions
and indicates that for simple model active systems the active
glassy dynamics is unaffected by the microscopic details of active
self-propulsion. This behavior is analogous to more conventional
passive glass-forming materials, where it is well established that, at
least in three dimensions, different single-particle dynamics, e.g.,
Newtonian or Brownian, yield similar long-time dynamics.41–44

We finalize our discussion by mentioning that a critical
assumption in the presented active-MCT theories is the replace-
ment of the steady-state probability distribution by its equilibrium
counterpart. In other words, we assume the same (passive) structure
for both models. Although unlikely, structural differences between
both models might, therefore, still exist. To verify that our map-
ping of the dynamics also yields similar structures, we have retrieved
the static structure factor, i.e., S(k) = ⟨∑N

j=1 e−ik⋅rj∑
N
l=1 eik⋅rl⟩, for the

same parameters as for the self-intermediate scattering function.
The results for different active speeds are plotted in Fig. 4. Consis-
tent with the dynamical quantities we see that the static structure
factor also remains almost unaltered when we interchange the ABP
and AOUP models. Moreover, we see the height of the first peak
decreasing upon increasing the active speed of the particles, which
is consistent with the faster relaxation dynamics observed for the
self-intermediate scattering function.

CONCLUSION

In this work, we have presented the first derivation of an MCT
for thermal AOUPs that explicitly takes into account the active
degrees of freedom (self-propulsion forces) via the density modes.
Our derivation is based on previous work on ABP-MCT and uses
the same assumption of replacing steady-state averages with their
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equilibrium-averaged or transient counterparts. The central result
comprises an equation of motion for the (transient) intermediate
scattering function, which can be self-consistently solved using
only the equilibrium static structure factor and relevant control
parameters (packing fraction, active speed, and persistence time) as
input.

Interestingly, after mapping both models on the single-particle
(or non-interacting) level via their MSDs, our newly developed
AOUP-MCT gives almost identical results as ABP-MCT over a
wide range of values for the different control parameters. In other
words, the equivalence of both models in the non-interacting regime
transfers directly to the collective relaxation in the high-density
(glassy) regime. Although this is consistent with recent simulation
results,36 we have further confirmed the witnessed equivalence
between the different self-propulsion mechanisms by performing
simulations of a polydisperse mixture of active quasi-hard spheres.
In all cases, the differences between the AOUP and ABP simulations
are minute. We thus conclude that, at least for the considered model
systems, the microscopic details of the self-propulsion do not affect
the active glassy behavior.

As a follow-up, it would be intriguing to see whether the
witnessed equivalence between both models in the glassy regime
can also be formally established given that the structure of the
derived MCT equations is already identical. This could provide cru-
cial theoretical insight into the emergent universality of dense active
matter. A possible starting point for it might be to try to convert
the Hermite-polynomial basis for the AOUPs into the trigonometric
one adopted for the ABPs. Alternatively, one can look into the scal-
ing laws close to the idealized glass transition, which have already
been extensively studied for passive MCT.49

It could also be interesting to test the validity of the observed
equivalence for more complex active self-propulsion models or
when transitioning from overdamped to underdamped active
dynamics (from microswimmers to so-called microflyers61). Finally,
we mention that the derivation of AOUP-MCT can be easily
extended to three dimensions. We, therefore, hope that the
framework of AOUP-MCT will continue to be used for compar-
ison with simulation or experimental results in order to better
understand the rich phenomenology of active glassy matter.
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APPENDIX A: DERIVATION OF AOUP-MCT

As our starting point for the AOUP-MCT derivation, we take
the following fluctuating local density to describe the collective
motion of 2D AOUPs,

ρ(r, f) =
1

p(f)

N

∑
i=1

δ(r − ri)δ(f − fi)

= π3/2 exp(f̄ 2
)

N

∑
i=1

δ(r − ri)δ(f̄ − f̄i). (A1)

Here, we have introduced a dimensionless self-propulsion force
f̄ ≡ f/

√
2Df τp and added a prefactor for normalization. Next, we

Fourier-Hermite expand the microscopic density, i.e.,

ρ(r, f) =
1
V∑k
∑
mn
(−i)m+nρmn(k)e−ik⋅rHm( f̄ x)Hn( f̄ y), (A2)

with the factor (−i)m+n added for technical convenience and the
normalized Hermite polynomials being defined as

Hn(x) =
1

√
2nn!
(−1)nex2 dn

dxn e−x2

. (A3)

Invoking the orthogonality of the Hermite polynomials with
respect to the measure exp(−f̄ 2

), we obtain for the density modes,

ρmn(k) =
1
√

N
im+n

N

∑
j=1

eik⋅rj Hm( f̄ j,x)Hn( f̄ j,y). (A4)

The transient (or equilibrium-averaged) time-correlation
between such density modes can then be defined via

Smn;m′n′(k, t) = ⟨ρ∗mn(k)e
Ω†tρm′n′(k)⟩, (A5)

where the adjoint (or backward) evolution operator is given by

Ω†
= Ω†

T +Ω†
R =

N

∑
i=1
(D∇i + ζ−1

(Fi + fi)) ⋅ ∇i

+
N

∑
i=1
((Df

∂

∂fi
− τ−1

p fi) ⋅
∂

∂fi
). (A6)

We adopt the convention that the adjoint evolution oper-
ator works on everything to its right except for the probability
distribution. Note that the lowest order term S00;00(k, t) ≡ F(k, t)
corresponds to the intermediate scattering function, which will serve
as the main probe to study glassy dynamics of our active system.
At time zero, assuming our system to be isotropic, the density
correlation functions are easily calculated and yield

Smn;m′n′(k) = ⟨ρ∗mn(k)ρm′n′(k)⟩

= δmm′δnn′[1 + δm0δn0(S(k) − 1)], (A7)
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where S(k) denotes the equilibrium static structure factor.
To arrive at an equation of motion for the intermediate scatter-

ing function, we will employ a similar strategy as already introduced
for ABPs in Ref. 16. Starting from the Mori-Zwanzig projector
formalism,62,63 we introduce a projector on density modes (using the
shorthand notation l ≡ {m, n}, which will be done throughout),

P = ∑
l1
∑
l2

ρl1(k)⟩S
−1
l1 ;l2(k)⟨ρ

∗

l2(k)

= ∑
l1

ρl1(k)⟩S
−1
l1 ;l1(k)⟨ρ

∗

l1(k) , (A8)

and its orthogonal counterpart Q = 1 −P. Note that the superscript
−1 represents the inverse matrix of the respective quantity, i.e.,
X−1

l;l′ ≡ [X
−1
]l;l′ . Following standard procedure in MCT one can then

derive that

∂

∂t
Sl;l′(k, t) +∑

l1

ωl;l1(k)S
−1
l1 ;l1(k)Sl1 ;l′(k, t)

− ∫

t

0
dt′∑

l1

Kl;l1(k, t − t′)S−1
l1 ;l1(k)Sl1 ;l′(k, t′) = 0. (A9)

In this equation, the collective diffusion tensor, which governs
the short-time dynamics, is given by

ωl;l′(k) = −⟨ρ
∗

l (k)Ω
†ρl′(k)⟩

= [k2Dδll′ + ζ−1√Df τpSl;l(k) k ⋅ (δll′− − δll′+)]

+ [(m + n)τ−1
p δll′]

≡ ω T
l;l′(k) + ω R

l;l′ , (A10)

where, we have introduced the two-vector ([⋅, ⋅]) shorthand nota-
tion,

δll′± =

⎡
⎢
⎢
⎢
⎢
⎣

√

m′ +
1
2
±

1
2

δm,m′±1δnn′ ,

√

n′ +
1
2
±

1
2

δn,n′±1δmm′

⎤
⎥
⎥
⎥
⎥
⎦

.

(A11)

The memory kernel, which represents all nontrivial dynamics,
can be formally written as

Kl;l′(k, t) = ⟨ρ∗l (k)Ω
†QeQ Ω†QtQΩ†ρl′(k)⟩

= ⟨ρ∗l (k)Ω
†
TQeQ Ω†QtQΩ†

Tρl′(k)⟩. (A12)

Here, we have used that, since active degrees of freedom (self-
propulsion forces) never slow down, the Ω†

R-terms do not contribute
to the vertices, i.e., QΩ†

Rρl(k)⟩ = ⟨ρl(k)Ω†
RQ = 0. Consequently,

only the translational degrees of freedom yield slow dynamics and
we, therefore, seek to convert the memory kernel to an irreducible
(friction) memory kernel by means of the operators,

P ′ = −∑
l1 l2

ρl1 (k)⟩[ω
T
l1 ;l2(k)]

−1
⟨ρ∗l2(k)Ω

†
T, (A13)

and Q ′ = 1 −P ′. Invoking Dyson decomposition, we may write

Kl;l′(k, t) =Ml;l′(k, t) − ∫
t

0
dt′∑

l1 l2

Ml;l1(k, t − t′)

× [ω T
l1 ;l2(k)]

−1Kl2 ;l′(k, t′), (A14)

with the irreducible memory kernel defined as

Ml;l′(k, t) = ⟨ρ∗l (k)Ω
†
TQeQ Ω†Q ′QtQΩ†

Tρl′(k)⟩. (A15)

Now, we can combine Eqs. (A9) and (A14) to arrive at an equa-
tion of motion for the intermediate scattering function, which lends
itself to mode-coupling-like approximations,

∂

∂t
Sl;l′(k, t) +∑

l1

ωl;l1(k)S
−1
l1 ;l1(k)Sl1 ;l′(k, t)

+ ∫

t

0
dt′∑

l1 l2

Ml;l1(k, t − t′)[ω T
l1 ;l2(k)]

−1

× [
∂

∂t′
Sl2 ;l′(k, t′) + ω R

l2 ;l2 Sl2 ;l′(k, t′)] = 0. (A16)

We mention that this equation is identical in structure to the
one obtained for ABPs in Ref. 16 and reiterate that, in comparison
to the more familiar passive MCT equation, there is an additional
hopping term ω R

l2 ;l2 Sl2 ;l′(k, t′) inside the time integral. This term
ensures the long-time decay of the active degrees of freedom. At the
same time, we also emphasize that the individual terms in the equa-
tion are not necessarily the same as the ones presented in Ref. 16 for
ABPs, and these terms will, therefore, harbor the differences between
the AOUP and ABP model.

To proceed and find a solution for the active-MCT equation,
we project the fluctuating forces QΩ†

Tρl′(k) onto density doublets.
Specifically, we introduce, assuming Gaussian factorization for
higher order static correlations64 and making use of the fact that
S−1

l1 ;l2(q) is diagonal, the projection operator,

P2 =
1
2∑q1q2

∑
l1 l2

ρl1(q1)ρl2(q2)⟩S
−1
l1 ;l1(q1)S−1

l2 ;l2(q2)

× ⟨ρ∗l1(q1)ρ
∗

l2(q2), (A17)

and use it to approximate

Ml;l′(k, t) ≈ ⟨ρ∗l (k)Ω
†
TQP2eQ Ω†Q ′QtP2QΩ†

Tρl′(k)⟩

= ∑
q1...q4

∑
l1...l4

⟨ρ∗l (k)Ω
†
TQρl1(q1)ρl2(q2)⟩S

−1
l1 ;l1(q1)

× S−1
l2 ;l2(q2)⟨ρ∗l1(q1)ρ

∗

l2(q2)e
Q Ω†Q ′Qtρl3(q3)ρl4(q4)⟩

× S−1
l3 ;l3(q3)S−1

l4 ;l4(q4)⟨ρ∗l3(q3)ρ
∗

l4(q4)QΩ†
Tρ∗l′ (k)⟩.

(A18)

To make this expression tractable, we explicitly calculate both
vertices. For convenience, we split the translational evolution oper-
ator into a passive and active contribution, i.e., Ω†

T = Ω†
eq + δΩ†

T,
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with δΩ†
T = ∑

N
i ζ−1fi ⋅ ∇i. Moreover, invoking the following orthog-

onality relation for Hermite polynomials,

π−1/2
∫

∞

∞

dx Hm(x)Hn(x)Hs(x)e−x2

=
√

m! n! s![(
m + n − s

2
)! (

s + n −m
2

)! (
s +m − n

2
)!]
−1

,

(A19)

when m + n + s is even, m + n ≥ s, s + n ≥ m, and s +m ≥ n, or
zero otherwise, and the conventional convolution approximation,65

allows us to define a generalized convolution approximation given
by

⟨ρ∗l (k)ρl1(q1)ρl2(q2)⟩ ≈
1
√

N
δk,q1+q2

bm,m1 ,m2

× bn,n1 ,n2 Sll(q)Sl1 l1(q1)Sl2 l2(q2). (A20)

Here, we have introduced the geometric factor,

bn,n1 ,n2 = (−1)−(n−n1−n2)/2
√

n1! n2! n!

× [(
n1 + n2 − n

2
)! (

n + n2 − n1

2
)! (

n + n1 − n2

2
)!]
−1

,

(A21)

when m + n + s is even, m + n ≥ s, s + n ≥ m, and s +m ≥ n, or zero
otherwise. Using the generalized convolution approximation, we
have for the passive contribution of the left vertex,

⟨ρ∗l (k)Ω
†
eqQρl1(q1)ρl2(q2)⟩S

−1
l1 ;l1(q1)S−1

l2 ;l2(q2)

=
ρD
√

N
δk,q1+q2

(k ⋅ q1 δl10δll2 c(q1) + k ⋅ q2 δl20δll1 c(q2)),

(A22)

where c(q) = ρ−1
[1 − S−1

(k)] depicts the direct correlation func-
tion. Note that the passive contribution is thus a straightforward
generalization of the standard MCT vertex. Furthermore, the passive
contribution to the right vertex can be shown to take on an identical
form.

For the active contribution to the left vertex, i.e.,

⟨ρ∗l (k)δΩ†
TQρl1(q1)ρl2(q2)⟩S

−1
l1 ;l1(q1)S−1

l2 ;l2(q2), (A23)

we recall that Q = I −P and first consider the term,

− ⟨ρ∗l (k)δΩ†
TPρl1(q1)ρl2(q2)⟩S

−1
l1 ;l1(q1)S−1

l2 ;l2(q2). (A24)

Using the generalized convolution approximation and
Eq. (A10), this term can be written as

−
ζ−1
√

N

√
Df τp δk,q1+q2

Sl;l(k) k ⋅ (bl− l1 l2 − bl+ l1 l2), (A25)

where, we have introduced

bll±1 l2 =

⎡
⎢
⎢
⎢
⎢
⎣

√

m1 +
1
2
±

1
2

bm,m1±1,m2 bn,n1 ,n2 ,

√

n1 +
1
2
±

1
2

bm,m1 ,m2 bn,n1±1,n2

⎤
⎥
⎥
⎥
⎥
⎦

. (A26)

Next, we also require an expression for

⟨ρ∗l (k)δΩ†
Tρl1(q1)ρl2(q2)⟩S

−1
l1 ;l1(q1)S−1

l2 ;l2(q2). (A27)

Exploiting the relation 2xHn(x) =
√

2(n + 1)Hn+1(x)
+
√

2nHn−1(x) and using the generalized convolution
approximation, the above term can be calculated to give

−
ζ−1
√

N

√
Df τpSl;l(k)δk,q1+q2

[q1 ⋅ (Sll−1 l2(q1) − bll+1 l2)

× S−1
l1 ;l1(q1) + q2 ⋅ (Sll−2 l1(q2) − bll+2 l1)S

−1
l2 ;l2(q2)], (A28)

and is written in terms of

Sll±1 l2(q) =
⎡
⎢
⎢
⎢
⎢
⎣

√

m1 +
1
2
±

1
2

bm,m1±1,m2 bn,n1 ,n2

× Sm1±1n1 ;m1±1n1(q),

√

n1 +
1
2
±

1
2

× bn,n1±1,n2 bm,m1 ,m2 Sm1n1±1;m1n1±1(q)
⎤
⎥
⎥
⎥
⎥
⎦

. (A29)

The only term left to calculate is the active contribution to the
right vertex. However, this term can be shown to yield a value of zero
and, thus, does not contribute to the vertices. Combining all results,
we then have for the memory kernel,

Ml;l′(k, t) ≈
ρ2

4N∑qq′
∑

l1...l4

Vll1 l2(k, q, k − q)

× ⟨ρ∗l1(q)ρ
∗

l2(k − q)eQ Ω†Q ′Qtρl3(q
′
)ρl4(k − q′)⟩

× V eq
l′ l3 l4
(k, q′, k − q′), (A30)

with the vertices given by

V eq
ll1 l2
(k, q, k − q) = D[k ⋅ q δl10δll2 c(q)

+ k ⋅ (k − q) δl20δll1 c(∣k − q∣)], (A31)

and

Vll1 l2(k, q, k − q)

= V eq
ll1 l2
(k, q, k − q) −

ζ−1√Df τp

ρ
Sl;l(k)

× [k ⋅ (bl− l1 l2 − bl+ l1 l2) + q ⋅ (Sll−1 l2(q) − bll+1 l2)S
−1
l1 ;l1(q)

+ (k − q) ⋅ (Sll−2 l1(∣k − q∣) − bll+2 l1)S
−1
l2 ;l2(∣k − q∣)]. (A32)
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To further simplify, the expression of the memory kernel, we
employ the MCT-approximation and replace the four-point corre-
lation function with projected dynamics by a product of two-point
density correlation functions with full dynamics. This yields

⟨ρ∗l1(q)ρ
∗

l2(k − q)eQ Ω†Q ′Qtρl3(q
′
)ρl4(k − q′)⟩

≈ Sl1 ;l3(q, t)Sl2 ;l4(k − q, t) δq,q′ + Sl1 ;l4(q, t)Sl2 ;l3

× (k − q, t) δk−q,q′. (A33)

After taking the thermodynamic limit, one finally arrives at

Ml;l′(k, t) ≈
ρ
2 ∫

dq
(2π)2∑

l1 l2
∑
l3 l4

Vll1 l2(k, q, k − q)

× Sl1 ;l3(q, t)Sl2 ;l4(k − q, t)V eq
l′ l3 l4
(k, q, k − q), (A34)

which, using only the equilibrium static structure factor S(k) as
the initial boundary condition, allows us to self-consistently find a
solution for Sl,l′(k, t) and, in particular, for the intermediate scatter-
ing function S00,00(k, t) ≡ F(k, t). We conclude by mentioning that
the above derivation can also be straightforwardly extended to three
dimensions.

APPENDIX B: ROTATIONAL SYMMETRY

Due to the inclusion of the active degrees of freedom, dynamic
correlation functions depend explicitly on the direction of the
wavevector k. However, we can bypass this problem by invoking
the rotational symmetry of our system to align every wavevector
entering correlation functions along a chosen direction. Suppose we
rotate our coordinate axes clockwise over an angle θ (or all particles
counter clockwise) such that

rj → r′j = D(θ) ⋅ rj, fj → f′j = D(θ) ⋅ fj,

with the rotation matrix given by

D(θ) =
⎛
⎜
⎝

cos(θ) − sin(θ)

sin(θ) cos(θ)

⎞
⎟
⎠

.

As a result, the AOUP density mode transforms like

ρmn(k) →
1
√

N
im+n

N

∑
j=1

eik′ ⋅rj Hm( f̄ ′j,x)Hn( f̄ ′j,y),

where k′ = DT
(θ) ⋅ k depicts the rotated wavevector. Realizing that

Ω†, Peq(ΓT), and P(ΓR) are invariant under such a rotation, and
rewriting Hl( f̄ ′j,x)Hm( f̄ ′j,y) back in terms of f̄j allows us to transform
correlation functions with wavevector k to ones with wavevector k′.
Note that k is thus rotated clockwise. In the main text, we can, there-
fore, restrict our discussion to wavevectors aligned along a specific
direction, which we have chosen to be the x-axis.
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