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ABSTRACT: Characterization of the number and distribution of
biological molecules on 2D surfaces is of foremost importance in
biology and biomedicine. Synthetic surfaces bearing recognition
motifs are a cornerstone of biosensors, while receptors on the cell
surface are critical/vital targets for the treatment of diseases.
However, the techniques used to quantify their abundance are
qualitative or semi-quantitative and usually lack sensitivity,
accuracy, or precision. Detailed herein a simple and versatile
workflow based on super-resolution microscopy (DNA-PAINT)
was standardized to improve the quantification of the density and
distribution of molecules on synthetic substrates and cell
membranes. A detailed analysis of accuracy and precision of
receptor quantification is presented, based on simulated and
experimental data. We demonstrate enhanced accuracy and sensitivity by filtering out non-specific interactions and artifacts. While
optimizing the workflow to provide faithful counting over a broad range of receptor densities. We validated the workflow by
specifically quantifying the density of docking strands on a synthetic sensor surface and the densities of PD1 and EGF receptors
(EGFR) on two cellular models.
KEYWORDS: DNA-PAINT, single-molecule, super-resolution microscopy, biosensors, receptors, quantification

Q uantitative analytical tools to measure (bio)molecular
concentrations are of foremost importance in funda-

mental, clinical, and industrial research. Although there are
many techniques to measure the concentration of molecules in
solution,1 it becomes more complicated when they are bound
to a surface.2,3 This presents similar issues for both synthetic
surfaces (i.e., biosensors) or biological surfaces (i.e., cell
membranes). The density and distribution of molecules on
surfaces are critically important for the interactions with the
local environment: for instance, how a biosensor interacts with
its analyte or a cell with a therapeutic agent.4 Moreover,
proteins on the surface of the cells, such as receptors, are not
only important because of their interactions with therapeutics,
but they are also used as predictive biomarkers for
diagnostics.5,6

Most of the available techniques to quantify the density of
molecules on surfaces tend to lack sensitivity and do not give
information about the distribution. For instance, classical
optical microscopy lacks the resolution to distinguish nearby
molecules at the nanoscale.7 Flow cytometry does not reveal
spatial information, or ensemble measurements, such as
ELISA, require the separation of the target molecule from
the surface into the solution (i.e., cell lysate). Therefore, a
sensitive method to quantify the density and measure the

distribution of molecules on surfaces with accuracy and
precision is imperative.

In the last decade, super-resolution fluorescence techniques
that overcome the resolution limitation of conventional
fluorescence microscopy have enabled fluorescence imaging
at the nanoscale in many fields.8 These techniques not only
improve the resolving potential for structures below the
diffraction limit but also can be used as powerful quantitative
tools.9 For instance, single-molecule photobleaching measures
the photobleaching steps of a fluorescently labeled sample to
determine the number of molecules on a synthetic surface with
each bleaching step representing a single-molecule. However, it
is limited to low density samples and thus is vulnerable to
noise.10,11 Alternatively, balanced SOFI analysis which relies
on photo-switchable dyes can be used to count discrete
molecules on a surface.12 However, it is limited to low emitter
densities and single-molecule photo-switching rate variation.
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Intensity-based methods (e.g., IBC) can provide information
about the number of labels and the amount of molecules but
still requires an intensity standard and decent flat-top type
illumination for homogeneous excitation.13 Recently, examples
of quantitative single-molecule localization microscopy in cell
biology9 and in synthetic materials14 have emerged. Due to the
nanometric spatial resolution and single molecule sensitivity,
these are promising tools to quantify the number and
distribution of receptors in biosensors,15−17 cells,18−20 and
extracellular vesicles.21,22

DNA-PAINT (Point Accumulation for Imaging in Nano-
scale Topography) has become one of the quantitative
methods for single-molecule localization microscopy
(SMLM). It is based on the short transient interaction of a
labeled DNA probe (imager) to a complementary DNA target
molecule (docking).23 The bound time of the DNA−DNA
interaction is highly dependent on the length DNA duplex that
is formed and can be optimized by tuning the length base pair
(bp) leading to typical bound times in the order of
milliseconds or seconds and independent of the imager
concentration.24 Therefore, only a fraction of the target
molecules is localized at a time, and the process is repeated
over time to produce a complete reconstructed image of all
target molecules. The quantitative properties of DNA-PAINT
are superior to other SMLM techniques since the quantifica-
tion is based on DNA interaction kinetics rather than
photophysical properties such as the stochastic blinking of
dyes.25 Recent experiments in well-controlled systems based
on DNA origami showed the potential of quantitative PAINT
and fluorescence correlation spectroscopy (FCS) to achieve
molecular counting.26 Pioneering studies then applied DNA-
PAINT to image cellular structures27 and biomaterials.17

However, the methods are still far from standardization. For
instance, the quantification of single molecules on a surface
with DNA-PAINT can be achieved by identifying single sparse
emitters using their spatial information�repeated binding
events would create dense spots that can be identified using
multiple clustering algorithms9,28 �or through the expected
kinetics of the specific DNA binding sequence (qPAINT), but
there is no objective assessment of which is more adequate.
Moreover, the experimental conditions such as imager
concentration, imaging area, and imaging duration as well as
the analysis workflows are often empirically chosen because the
interplay between imaging conditions, quantification accuracy,
and precision are variable.

Here, a standardized DNA-PAINT workflow is presented to
quantify density and distribution of molecules on surfaces, by
finding the optimal acquisition parameters and tailored filtering
of non-specific interactions to maximize precision and
accuracy. In this work, the following considerations were
addressed: (i) which is the most adequate DNA-PAINT
quantification approach based on molecular density; (ii) what
are the optimal conditions to obtain the fastest, more accurate,
and precise qPAINT measurement, and (iii) non-specific
localization filtering on complex substrates such as cell
membranes. With the help of simulations and experiments,
the optimum experimental conditions were determined for
diverse samples to offer a robust quantification over a broad
range of molecular densities. First, the workflow was applied to
a controlled in vitro environment by functionalizing a glass
surface with DNA strands with controllable varying densities.
The model was used as a synthetic surface, such the one found
on a biosensor, which allowed for elucidating the effect of

imaging parameters for the optimal quantification precision.
Finally, these insights were applied in combination with a non-
specific localization filtering to quantify the density and
distribution of membrane receptors on different cell lines,
while keeping a high precision and accuracy.

This work provides guidelines to perform quantitative
measurements on surfaces, providing single-molecule sensitiv-
ity, while at the same time offering means to optimize precision
and accuracy over a broad range of molecular densities.
Routine usage of super-resolution microscopy for the
quantification of surfaces will provide a route to tailored
synthetic surfaces and provide a tool to quantify molecular
distributions on cell membranes.

■ RESULTS AND DISCUSSION
In order to standardize and objectively select the optimal
acquisition and analysis of DNA-PAINT data, it is vital to
introduce a means to assess the robustness of a counting
method by two metrics: (i) the counting precision which
indicates the spread of the counted number of molecules
(could be a DNA strand on a glass surface or a membrane
receptor) when repeated measurements are performed and (ii)
counting accuracy, which denotes to what degree the mean
number of counted molecules deviates from the true number
(the ground truth). To investigate these two metrics,
experiments were first performed on DNA-functionalized
glass slides. This approach allows for quantifying the density
and distribution of docking strands at multiple molecular
densities in a controlled manner by varying the functionaliza-
tion conditions.

Figure 1 highlights schematically the single-molecule DNA-
PAINT measurements on DNA-functionalized glass slides.
First, a BSA-biotin-streptavidin antifouling coating is used as
the support to functionalize our slides with biotinylated DNA
docking strands (Table 1) at different concentrations�low,
intermediate, and high�as shown in Figure 1a−c (more
densities are displayed in Figure S1). This biotin-streptavidin-
based functionalization allows us to access a wide range of
densities in a controlled fashion. Subsequently, the comple-
mentary fluorophore-labeled DNA imager strand is added to
the solution. Transient hybridization of the imager to the
docking strands generates diffraction-limited fluorescence
bursts that are detected across thousands of frames in a single
movie (Figure S2a). These fluorescent bursts or PSFs (point-
spread functions) are fitted with a Gaussian function to obtain
the center of the diffracted-limited spot and precisely
determine the position of the target molecule. The merging
of all single-molecule positions results in super-resolved
reconstruction maps as illustrated in Figure 1a(ii),b(ii),c(ii),
for the low, intermediate, and high-density samples,
respectively. As expected, increasing the DNA docking
concentration added to the slides resulted in an increased
number of localizations in the DNA-PAINT reconstructed
images, which reflected the higher amount of docking strands
bound to the glass.

Figure 1a(ii) illustrates a reconstructed image that contains
the retrieved localizations from a low-density sample
(concentration of 2.5 nM). Multiple points occurring
stochastically throughout the imaging time at a specific spot
[multicolor clustered localizations, inset in Figure 1a(ii)] were
observed, which correspond to the specific binding events on a
single isolated docking strand. Increasing the density of
docking strands (by increasing the docking concentration to
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12.5 nM during the substrate functionalization) results in an
increased number of isolated clusters as seen in Figure 1b(ii)
(multicolor clustered localizations in the inset). However, in
Figure 1c(ii), which highlights a higher docking density
(concentration of 30 nM), these clusters cannot longer be
observed since they spatially overlap due to their distance,
which is lower than their actual size (determined by the
localization precision of the measurement). There are two
approaches to analyzing and quantifying these data: (i)
identifying single molecules by the resulting spatial clustering
of localizations due to repeated binding events (here referred

as direct counting), generally through a clustering algorithm,
and (ii) extracting the molecular count from the expected
binding kinetics of the DNA pair (docking imager), known as
qPAINT25 (here referred to as kinetic counting). In the next
section, the performance of the two counting approaches is
shown in terms of their precision and accuracy across the
broad range of synthetic surface densities visualized in Figure
1.

Direct Counting on Synthetic Surfaces with Mean-
Shift Clustering. Currently, there are several image-
processing methods able to identify and characterize clusters
of localizations.28 These kinds of approaches require molecules
sparse enough to prevent spatial overlap of the localizations
that belong to neighboring clusters. This means that, in
practice, the clusters (i.e., the docking strands) should be
separated by more than the spatial localization precision of the
microscope (Figure 2a). If this is the case, information about
the ground truth position and spatial distribution can be
extracted, which is of crucial importance for synthetic and
biological surfaces.29 Here, a custom MATLAB algorithm was
employed (see Methods section for detailed description),
based on mean-shift clustering, to group localizations into
clusters using a pre-specified cluster size. This clustering
algorithm was chosen since it has been used extensively in
single-molecule localization microscopy data to identify single
molecules and nanoparticles and does not require a priori
knowledge of the amount of clusters.28,30 In this procedure,
non-specific interactions are routinely discarded because they
appear as sparse single points on the coverslip and do not
belong to a cluster (black triangle in Figure 2a). Therefore,
after filtering out the sparse points, only clusters of a certain
size (50 nm), which have a minimum number of events are
selected (black circle in Figure 2a). This was assessed with
control measurements to show that approximately only 15% of
the clusters are non-specific, thanks to the antifouling BSA
coating (Figure S4a). Then, the number of specific clusters
(docking strands) per surface area is counted to obtain the
average density as well as a Voronoi tessellation was used to
visualize the spatial distribution on the coverslip (Figure 2b).

This approach quantifies the density of docking strands,
which is varied by exposing the substrate to increasing
concentrations during the functionalization step, ranging
from 0.2 nM to 1 μM (Figure 2d). Clusters appeared
adequately separated at docking concentrations below 15 nM
and were directly counted showing an average of 3 to 65
molecules/μm2 from 0.2 to 15 nM of docking, respectively.
Notably, across these conditions, the number of binding events
per cluster is comparable and follows the expected Poisson
statistics, confirming that each identified cluster indeed
represents a single docking strand (Figure S2e). Hence, the
direct counting approach on the synthetic surface allowed for

Figure 1. Schematic representation of the DNA-PAINT workflow on
glass slides. a(i), b(i), and c(i) show the sample geometry with
different concentrations of biotinylated DNA docking strands (blue),
conjugated to a glass surface through fixed BSA-biotin (red-green)
and streptavidin (blue) passivation. Fluorescently labeled (ATTO
655) imager strands (red) transiently bind to their complementary
docking sequences. The resulting fluorescent bursts are localized
using a Gaussian fitting, resulting in the reconstructed images in the
right. The datapoints are colored based on the camera frame in which
the event occurred. [a(ii), b(ii), and c(ii)] DNA-PAINT reconstruc-
tions for three different docking densities; low (2.5 nM), intermediate
(12.5 nM), and high (30 nM), respectively. The insets show a
magnification of a small area. Scale bar: PAINT images (200 nm),
PAINT insets (50 nm).

Table 1. DNA Imager and Docking Sequences

name docking sequence supplier imager sequence supplier experiment

Sequence 1 (9mer) ATTO655 Biotin- TTA TAC ATC TA IDT CTA GAT GTA T�ATTO655 IDT Figures 1,2 and 3 and S1,S2
and S4

Sequence 1 (10mer) ATTO655 NH2- TTA TAC ATC TAG IDT CTA GAT GTA T�ATTO655 Eurofins Figure S6
Sequence 1 (9mer) ATTO647N NH2- TTA TAC ATC TA IDT CTA GAT GTA T�ATTO647N IDT Figure S5
Sequence 1 (10mer) ATTO647N NH2- TTA TAC ATC TAG IDT CTA GAT GTA T�ATTO647N IDT Figures 5 and S5
Sequence 2 ATTO647N - - TAT GTA GAT C�ATTO647N IDT Figure S5
Sequence 2 ATTO655 - - TAT GTA GAT C�ATTO655 IDT Figure S4
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identification and localization of receptors with single-molecule
sensitivity at low surface densities.

Conversely, when the substrate is incubated using
concentrations above 20 nM, docking strands are separated
by less than the localization precision of our technique and the
reconstructed images start to saturate (Figure 2c). Although
the density of docking strands increases with docking
concentration, their counted density using clustering does
not increase further (Figure 2d). This depicts a upper and
lower bound of the counting range of the method of around
190 ± 15 and 4 ± 3 molecules/μm2 (density ± SE), as
extracted from a logistic fitting in Figure 2d. Moreover, the
mid-point docking concentration of the method is 14 ± 2 nM,
which corresponds to 95 ± 2 molecules/μm2 The upper bound
level denotes a systematic undercounting of the direct counting
method when used on high docking concentrations (>20 nM)
with the higher density counts lying into the upper bound
level. Therefore, the counting is no longer increasing with
increasing docking concentration (Figure 2d). To confirm this
finding, clusters at different densities were simulated to assess

the accuracy of the counting methodology. Consistent with the
experimental data, the accuracy starts to drop notably between
50 and 100 molecules/μm2, setting a limit for the direct
counting at higher densities (Figure S3a).

Hence, direct counting is capable of accurately localizing and
counting individual receptors at molecular densities below 100
molecules/μm2 providing single-molecule sensitivity while
ignoring non-specific interactions based on the absence of
repeated localizations on the same location. Since single
molecules are directly observed, the variability error from the
method is minimal offering extreme precision. However, the
method has limited applicability for higher molecular densities,
for which kinetic counting is preferable as shown in the
following section.

Kinetic Counting on Synthetic Surfaces with qPAINT.
At high molecular densities, dockings are densely packed. This
inevitably leads to spatial overlap of single clusters; thus, direct
counting approach is no longer feasible to be applied.
Therefore, we applied a statistical approach (namely
qPAINT25), in which the distribution of times between

Figure 2. Direct counting of DNA docking strand receptors on glass slides by mean-shift clustering. (a) Reconstructed PAINT localizations (red
points) of a 12.5 nM docking slide, (b) Voronoi tessellation after clustering analysis displaying the density and distribution (black crosses denote
single clusters representing single docking strands). (c) Reconstructed PAINT localizations of a 30 nM docking slide, where it is not possible to
distinguish single receptors. (d) Density of DNA docking strands retrieved with direct counting, where model surfaces were prepared by exposing
BSA/biotin/streptavidin-coated glass slides to increasing concentrations of biotinylated docking strands (black dots represent mean ± σ of eighteen
counting areas as depicted in a−c). Logistic equation fit (transparent line) yields a mid-point concentration of 14 ± 2 nM; a slope of 1.8 and R2 of
0.98. Scale bar: PAINT images (500 nm).
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binding events (dark times) is measured to extract the total
number of docking strands (n) in a surface area (A). As an
example, the fluorescence time trace of a typical field of view
covered with dockings is shown in Figure S2. The fluorescence
bursts correspond to binding events, from which we can extract
the dark times in between those events. With the fitted average
value of dark times (τd), we can obtain the number of dockings
in that area using eq 1 (see Methods section). A calibration of
the kon value of the specific docking−imaging pair is needed in
the equation, which we obtained from the distribution of dark
times of individual clusters on a low-density sample (Figure
S4b). It yielded a kon = 1.31 × 106 M−1s−1, in good agreement
with previously reported values.17,24

In this way, the set of docking functionalized slides was
assessed. It was observed that at the point that the direct
counting approach saturated due to overlapping of clusters, the

qPAINT showed a response to increasing docking concen-
tration beyond that point. This is visualized in Figure 3a, where
kinetic counting keeps its linear dependency in a much broader
range of docking concentrations. As the graph shows, for
concentrations above 15 nM, we counted almost a 3-fold
higher docking density compared to direct counting. For
instance, the 30 nM docking slide yielded approximately 180
molecules/μm2 using the direct counting approach (which
showed previously that there was cluster overlapping), while
with the kinetic approach yields 554 molecules/μm2. In order
to assess the counting dynamic range of the kinetic method, a
logistic fit was applied on the kinetic data sets (Figure 3a). This
leads to a lower bound of 6 ± 3 molecules/μm2, higher bound
of 771 ± 112 molecules/μm2, and a mid-point docking
concentration at 23 ± 3 nM, which corresponds to 386 ± 3
molecules/μm2 (density ± SE). This corroborates the clear

Figure 3. Kinetic counting of receptors on glass. (a) Comparison of the number of single docking sites per area retrieved with direct counting
(black dots from Figure 2) and qPAINT (colorful squares), on the same raw data (mean ± σ). Logistic equation fit (transparent line) yields a mid-
point concentration of 23 ± 1 nM, a slope of 3.5, and an R2 of 0.94. (b) Experimental counting precision of qPAINT for the different docking
concentrations, as a function of the ratio of dark over bright times, using a fixed counting area of 1 μm2 (mean ± σ). Each colored dot corresponds
to the same docking incubation concentration from a. (c) Experimental counting precision for three docking concentrations (2.5, 12.5, and 20 nM),
as a function of τd/τb by varying the counting area from smaller to bigger three. The three docking slides (2.5, 12.5, and 20 nM) were imaged with
2.5 nM imager concentration τd/τb for 2.5 nM docking. The color (Inset) of a single precision graph versus τd/τb for the 2.5 nM docking slide. The
colored line grading depicts the varying size of the counting areas for the given docking concentration (2.5 nM). (d) Docking density distribution
(30 nM) on the glass slide measured with qPAINT. Scale bar: 2 μm. Receptor imaging and quantification on the membrane of cells.
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undercounting of the clustering approach at higher molecular
densities and confirms that the kinetic approach extends the
dynamic range of counting for high concentrations (>20 nM).
This result proves the high accuracy of qPAINT in counting
the exact number of receptors on 2D surfaces for a broad range
of densities. In theory, the qPAINT approach can be applied to
any density range and obtain the same precision and accuracy,
if the average dark time (τd) is accurately retrievable. This
depends on the number of dark times used to extract this
value; therefore, we calculated the accuracy and precision of
qPAINT on the simulated time traces with different statistics
(Figure S3b). While it is observable that the accuracy reaches a
plateau quite quickly (above 10 dark times), the precision
seems optimum from 100 dark times onward. Therefore, a
minimum of 100 dark times was set as the target for highly
accurate and precise qPAINT measurements.

Although qPAINT performance is mainly influenced by
statistics and could be applied at any density range, we observe
that the density calculations also reach a plateau and display
higher variability in the slides above 100 nM docking (note the
error bars in Figure 3a). This is because all experiments were
performed using a constant area (A) and imager concentration
(ci), resulting in temporal overlap of binding events at higher
docking densities. This is easily circumvented by reducing A or
ci,

25 so we decided to explore which are the optimal conditions
to achieve precise counting. To evaluate the counting
precision, the ratio of dark and bright time (τd/τb) was
tuned in two ways: (i) fixed ci and A at different docking
concentrations (Figure 3b) and (ii) fixed ci and docking
concentration with varying A (Figure 3c). The precision was
plotted as a coefficient of variation, that is, the standard
deviation of the count divided by its mean, obtained from
repeated experiments on the same sample. In both cases, a
similar behavior is observed; an optimal τd/τb ratio around 1
maximizes precision, which is in agreement with previous
studies.16 In Figure 3b, a lower ratio (τd/τb < 1) shows a higher
coefficient of variation because binding events overlap in time,
resulting in undercounting. Similarly, a higher ratio (τd/τb > 1)
also shows a higher coefficient of variation, in response to a
lower amount of events collected (Figure S3b). This was
evaluated in a different way in Figure 3c, where instead of
varying the concentrations to tune the τd/τb, we varied only the
counting area on a given docking concentration. The graph
corresponds to τd/τb values at different counting areas of three
docking concentrations from Figure 3b. They all follow the
same trend with a maximum precision at an approximate τd/τb
ratio of 1, showing that for each docking concentration, there is
an optimum counting area. Since the τb is inversely
proportional to koff, τd is the dominant factor in tuning the
τd/τb ratio for optimum counting precision. As shown in eq 1,
the τd can be altered by docking concentration (n), counting
area (A), and imager concentration (ci). These three
parameters can be tuned independently to achieve the desired
τd/τb ratio.

Additionally, the counting precision can be further increased
by longer acquisition times (t) by a factor of t , owing to the
underlying Poisson statistics. This indicates that precision is a
tradeoff between time and all the aforementioned parameters
in eq 1. Recently, there have been efforts in improving the
DNA-PAINT imaging speed.27,31−33 All these parameters
influence qPAINT precision and accuracy by affecting the
amount of events sampled. However, there is no benchmark on
how many events should be collected for optimal precision and

accuracy. Using simulated data, we correlated the number of
events with the counting precision and accuracy (Figure S3b).
We observed that requirements for an optimal accuracy are
lower (accuracy saturates from 30 events) than those for an
optimal precision, which reaches a plateau from 100 events.
Here, we present the benchmark for accurate and precise
qPAINT measurements with an acquisition of 100 times (τd +
τb) to achieve around 100 events, at a τd/τb ratio of 1 for
optimum imaging speed.

Kinetic counting offers precise and accurate counting
through all range of densities if the right conditions are met.
However, for lower density samples, direct counting is still less
disturbed by non-specific interactions since we can use the
spatial information to filter them out. Moreover, direct
counting retrieves the exact position of each molecule giving
a more accurate visualization of the distribution. Although
kinetic counting cannot observe the nano-distribution of all
molecules, it can observe fluctuations of density across the
surface as shown in the density map for a 30 nM docking
concentration coverage (Figure 3d). By optimizing the
counting area based on Figure 3c, the number of dockings
was counted precisely, revealing notable density fluctuations
across the functionalized coverslip. The heterogeneity of
surface functionalization may have critical implications in the
behavior of these synthetic surfaces with their environment.

Quantifying the density of proteins and receptors on the
membranes of cells is of foremost importance for biological
and clinical research,6,34,35 and the importance of super-
resolution imaging in this field is increasing. The applicability
of DNA-PAINT to cell samples presents further challenges
since the complexity of the cell membrane composition and
the hydrophobicity of the lipid bilayer induce increased non-
specific interactions compared to previously studied synthetic
surfaces. Moreover, membranes cannot be designed with
antifouling properties as synthetic surfaces; therefore, there are
certain aspects that need to be considered and a further
adaptation of the previously described workflow is presented.
Briefly, three aspects are discussed in this work in the context
of DNA-PAINT in cell membranes: the kinetic filtering of the
non-specific interactions by (i) bright times (τb) and (ii) dark
times (τd) and (iii) the influence of imager’s organic dye on the
number of non-specific interactions.

Here, we present two cases to which the previous
approaches discussed in this work (direct and kinetic
counting) would be applied. First, a panel of three transfected
CHO cell lines stably expressing low levels of the PD-1
receptor would be analyzed by direct counting, and second, the
high expression of EGFR in A-431 cells would be quantified by
kinetic approach (qPAINT). To label target receptors on these
cells, antibodies coupled with docking strands were used. The
standard strategy to label antibodies is based on maleimide
click chemistry,23 which would result in a distribution of the
number of docking strands on each antibody and an arbitrary
position of those strands on the antibody. This would from one
side reduce the quantification precision and could interfere
with the binding of the antibody if the docking strand attaches
to the antigen binding site. Therefore, using a site-specific
procedure described recently by Cremers et al.,36 selectively
coupling two DNA docking strands to each antibody was
performed. This is achieved by coupling the maleimide
docking sequence to the N-terminal cysteine of protein G,
which specifically binds to two sites on the antibody Fc region.
The protein G is then photocross-linked to the antibody to
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Figure 4. Direct counting of PD1 receptors on CHO cells. (a) Scheme of antibody labeling and cell membrane receptor imaging. (b) Workflow of
data analysis: ROI selection on brightfield image (b1), reconstructed PAINT localizations (b2), density filter to remove sparse unspecific binding
(b3), clustering (b4), time-trace cluster filtering (b5), and Voronoi tessellation to display density and distribution (b6). (c) Brightfield (c1-3) and
final receptor images (c4-6) of PD1 low-, intermediate-, and high-expressing cell lines, respectively. (d) Density quantification of PD1 receptors on
50 cells per cell line. Negative control (NC) is performed on CHO cells not transfected with the PD1 receptor. Boxplot: box center represents the
median; box limits are the 25−75 percentiles; the dot is the mean; and whiskers are the σ. Scale bar: bright field images (10 μm); PAINT images
(a) (1 μm) and (b) (2 μm). Kinetic counting of EGF receptors on A-431 cells.
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ensure it remains bound. In this way, a controlled number and
narrow distribution of docking strands per antibody is
achieved, without interfering with the recognition domain
(Figure 4a).

When imaging highly expressing EGFR A-431 cells with the
9-mer complementary sequence 1 and the non-complementary
sequence 2 (Table 1), the density of binding events on the
membrane is similar, meaning that >90% of events are non-
specific interactions (Figure S5). Moreover, these events have
similar binding times, therefore making them difficult to
distinguish. However, switching from a 9-mer DNA interaction
to a 10-mer DNA pair increases τb of the specific interactions
compared to the non-specific ones due to a decrease in koff
(while kon remains similar).24 Using a longer exposure time
(150 or 300 instead of 90 milliseconds), most of the short-
lived non-specific interactions were not detected due to their
lower brightness or only appear as single-frame events. This
drastically reduces the contribution of non-specific inter-
actions, which is reduced below 2% by filtering-out these
single-frame events (Figure S5).

However, when imaging low-expressing PD-1 CHO cells,
the fraction of specific interactions is lower than that with the
A-431 cells (fewer receptors), therefore increasing the
influence of the non-specific fraction. This is mainly caused
by the increase in the imaging time (30 to 60 min) and imager
concentration (0.1 to 1 nM) in low-density samples required
to identify single receptors, which accumulate more non-
specific interactions. Since for low-density samples, we use
direct counting analysis (clustering of localizations), we can
use the spatial information to filter out the non-specific events.
We observed that there are two types of non-specific
interactions: (i) sparse one-frame events and (ii) clustered
localizations that spatially resemble clusters of specific binding
interactions. The former can be filtered out by the density
difference to the specific dense spots using a density filter and
during the clustering algorithm process (Figure 4b). The latter
would be recognized as clusters and would require further
filtering to remove these artifacts. Although having similar
densities to the specific clusters, they are kinetically different
(Figure S6b). In the dark times (τd), these two types of clusters
can be used to identify the artifacts and filter them out. With
the help of simulations of specific DNA binding, we can
determine that more than 99.99% of specific clusters would
comprise at least 50% of imaging time between the first and
last binding events (Figure S6c), removing the short-lived
artifacts (Figure 4b). Another important parameter to consider
is the nature of the organic dye on the imager sequence, which
proved to be crucial since its chemical properties have a
profound influence on the non-specific interactions with lipid
bilayers.3 In this work, two different red dyes were utilized:
ATTO647N (quantum yield of 65% but higher affinity for
lipid bilayers) for samples where non-specific interactions were
lower and there is a need for a brighter dye (imaging the apical
membrane of A-431 cells in HiLo) and ATTO655 (quantum
yield of 30%, but low affinity for lipid bilayers) for samples
where non-specific interactions were more influential but
brightness of the dye is not a limiting factor (imaging the basal
membrane of CHO in TIRF).

Direct Counting of PD1 Receptors on CHO Cells. The
expression level of receptors on the membrane of cells has a
direct impact on their behavior, and a correlation is found in
diseases such as cancer, where receptors are used as biomarkers
for diagnosis and prognosis.37−40 For instance, Nerreter et al.19

recently demonstrated that localization microscopy can detect
low expression levels on cells, not detectable by flow
cytometry, that are relevant for CAR-T cell therapy. This
opens the door to measuring smaller and earlier changes in
receptor expression to offer a better diagnosis. To demonstrate
the great sensitivity of DNA-PAINT to quantify the density of
receptors on the membrane of fixed cells, engineered PD1-
expressing CHO cells were selected as a model. This provides
cells with sparse receptors at three controlled levels (low,
intermediate, and high) and provides a good negative control
with the wild-type CHO cells that do not express this receptor.
As explained for the synthetic surfaces, with DNA-PAINT, low
densities of receptors can be quantified with high accuracy
through a clustering algorithm and non-specific interactions
can be filtered out during the analysis process. This is
particularly important on cell membranes since there is a
higher degree of non-specific interactions, not only from the
labeled imager sequences but also from impurities that may
bind to the surface.2

DNA-PAINT images were analyzed with the custom Matlab
clustering script described previously. To tackle the challenges
that imaging cell membranes present, a couple of steps were
added in the analysis. First, a spatial density filter is applied to
the DNA-PAINT localizations prior to clustering to remove
most of the sparse non-specific localizations (Figure 4b). This
does not affect receptors since they appear as a tightly packed
group of high-density localizations due to repeated interactions
with the DNA docking strands on the antibodies. After cluster
identification, clusters that are caused by repeated non-specific
interactions are filtered out by discarding clusters for which the
first and last event comprehend less than 50% of the imaging
time (Figure S6). By doing this, artifacts are removed and it is
possible to obtain the accurate density and distribution of
receptors as shown in the tessellation (Figure 4b).

Figure 4c shows a representative reconstruction of the
distribution of receptors for the three different cell lines. The
receptors appear disperse but homogeneously distributed.
From these examples (Figure 4c), the difference in receptor
density between the 3 cell lines is noticeable. Plotting (Figure
4d) the densities of 50 individual cells for each one of the cell
lines, the average of each population can be seen: Low = 0.08
receptors/μm2, Int = 0.14 receptors/μm2, and High = 0.25
receptors/μm2. This is in accordance with flow cytometry
measurements on these cells published by Cremers et al.41

From this, we can conclude that the approach and data analysis
procedure are not sensitive to unspecific interactions and
artifacts evidenced by the variation in the counted number of
receptors between the control and the expressing cell lines
(Figure 4d NC), even at a low receptor expression. This leads
to high sensitivity and opens the door to detect low levels of
expression due to the high specificity of the method. This is of
significant importance to future studies since it is a clear
advantage compared to the benchmark techniques employed
to measure receptor densities, such as flow cytometry,42−44

immunohistochemistry,45−47 ELISA,48,49 or fluorescence in
situ hybridization.50,51 The impact of the ability to quantify low
expression levels has already been demonstrated for cancer
diagnosis19 but is likely to be relevant for a wide range of
diseases.

The combination of the high sensitivity (down to the single-
molecule level) and the high accuracy and precision of this
approach (Figures 2 and S4) enables the distinction between
the three cell populations (Figure 4d). However, there is a high
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variability within each one of these populations. Assuming a
minimal impact on variance from methodological errors
(observing individual receptors), the coefficient of variation
of 60−80% within each cell population is mostly related to
biological factors such as transfected gene copy number or cell
cycle stage. This is important since in many cancer types, there
is a high heterogeneity within the tumor, which can cause
resistance to certain therapeutics that only target a subset of
the cells. Measuring this heterogeneity would provide guidance
in the improvement of cancer diagnostics and subsequent
treatment development.

There are cases in nature where the expression level of
receptors is significantly higher than those previously analyzed
in this work. For instance, many receptors are overexpressed in
cancer to promote faster and uncontrolled growth of the
tumor. Although this does not represent a challenge in terms of
sensitivity, many techniques are not capable of quantifying the
receptor density because it is not trivial to convert a
fluorescence intensity to a local density. In addition, most
techniques do not reveal inter-cell variability. With the kinetic
counting approach that is outlined above for synthetic surfaces,
it is possible to quantify the density and distribution of highly
packed receptors on cell membranes (Figure 3). As a model,
labeled EGFR on fixed A-431 epidermal carcinoma cells was
investigated, as they are known to have a high expression of
this receptor.52 Since it is observable that these cells exhibit an
extremely low density of receptors on the basal membrane, the
apical part of the cell was focused on. Figure 5a−c shows the

brightfield image (a), DNA-PAINT events (b), and qPAINT
analysis (c) to calculate the density and visualize the
distribution of EGFR on a single A-431 cell. The cells were
imaged using ci = 10 pM of the ATTO647N imager for 30 min
to obtain thousands of events per cell, in this way matching the
previously set goal of 100 events per counting area (black
square in Figure 5b) to achieve the optimal precision and
accuracy (Figure S4). To calculate the density of receptors
using eq 1, the calibrated value of kon on DNA-functionalized
PD1 antibodies from previous experiments was taken (Figure
S6d), together with the average dark time obtained from the
cumulative distribution of events in a counting area (Figure
5d).

Qualitatively, it is possible to observe the distribution of
receptors on a single cell basis. In this case, there seems to be a
higher concentration of receptors close to the edge of the cell
membrane (right side of Figure 5c) and more random
fluctuations of the density across the membrane. The lower
density observed on the inner part of the cell is a result of
losing events due to the membrane being out of focus (the
apical membrane gets higher where the nucleus is). The
quantitative results of density from qPAINT analysis of
different areas of cells and individual cell densities are shown
in Figure 5e,f, respectively. From the 50 A-431 cells imaged,
the EGFR are widely distributed between (Figure 5f) as well as
within cells (Figure 5e), with an average around 130 receptors/
μm2. The total variability observed among cells (σN_total

2 =
1938.6) in the different sources can be attributed to (i)

Figure 5. Kinetic counting of EGFR on an A-431 cell. Workflow of receptor quantification: (a) bright field image, (b) PAINT binding events (red
dots), and ROI selection (black box, 1 μm2) and (c) final density analysis by qPAINT and smoothing. (d) Example of a CDF of a time trace (red)
and exponential fitting (black). (e) Distribution of all the regions analyzed across all cells and Gaussian fitting. (f) Distribution of the average
density value per cell and Gaussian fitting. Scale bar: 5 μm. Optimized workflow for DNA-PAINT quantification of surface-bound molecules.
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σN_qPAINT
2 from the limited number of events (σN_qPAINT

2 =
409.5, Figure S4b), (ii) σN_poisson

2 from the natural Poisson
distribution of receptors (σN_poisson

2 = 126.5), and (iii) σN_bio
2

from other biological factors. This yields σN_bio
2 = 1402.6,

which is notably the highest contributor to the main variability.
It implies that variability due to error sources is low,
confirming that the observed variability comes from a true
biological difference between cells. Such quantifications are
crucial to discern and understand heterogeneity in cancer for
better diagnosis and treatment.

Throughout this work, we have standardized many aspects
of the quantification of molecules on surfaces using DNA-
PAINT. In Figure 6, we have summarized the main findings in
a flowchart to guide set up of new DNA-PAINT quantification
experiments. We compared two main approaches on the basis
of molecular density on surfaces. Direct counting allowed for
the exact localization of molecules, density quantification, and
the visualization of spatial distribution. It requires a clustering
algorithm to identify the position of molecules but it uses the
spatial information to filter out non-specific interactions.
However, it is limited to low density samples (<100
molecules/μm2) since at higher densities, it is not feasible to
discriminate between different molecules. One the other hand,
kinetic counting exploits the kinetic information of DNA−
DNA interactions to quantify molecules even at high densities,
bringing a broader dynamic range than direct counting.
However, it requires a prior calibration of kon and it does
not provide the nano-scale distribution of molecules.

■ CONCLUSIONS
A standardization of the DNA-PAINT workflow is introduced
to quantify the number and distribution of molecules in two-
dimensional surfaces with high precision and accuracy. With
the help of experimental and simulated data, the best

quantification strategy was determined based on the molecular
density, providing single-molecule sensitivity on a large
dynamic range. Then, depending on the selected quantification
method, the optimal conditions for faster, accurate, and precise
counting were calculated. This is done by tackling the specific
hurdles of DNA-PAINT imaging on surfaces and using kinetic
and spatial filtering to reduce the impact of the non-specific
interactions, yielding single-molecule sensitivity and improving
counting precision and accuracy. We provided a detailed
description of the quantification performance to ensure the
robustness of the workflow.

The foreseen application of this approach is to enable more
detailed investigations and thus understanding of the design of
synthetic surfaces (i.e., biosensors) and the role of receptors
and their distribution in disease and treatment development.
Most importantly, the approach provides information on the
distribution and heterogeneity of surface-bound receptors in
fixed cells. This is key since the organization of the molecules
on the surface determines how they interact with the
environment, which can modify the behavior of a biosensor.
Moreover, it can bring information about the variety of cells in
a tumor and better predict how they would reply to a certain
treatment or help find the right combination of therapies that
would target all cell subsets. Although it is an approach
employing wide-field imaging, fine-tuning of the single-
molecule association, dissociation kinetics,31,33 and automa-
tization of processes53 will reduce the acquisition time and
further improve the throughput of this approach.

■ MATERIALS AND METHODS
Materials. DMEM/F12 medium (HEPES, no phenol red), FBS,

penicillin/streptomycin, biotinylated BSA, and streptavidin were
purchased from Thermo Fisher Scientific (Massachusetts, US).
Geneticin sulfate was purchased from Capricorn Scientific (Ebsdor-

Figure 6. Optimized workflow for quantification of molecule density and distribution on surfaces.
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fergrund, Germany). Culture 6 channel μ-Slide #1.5 glass bottom was
purchased from Ibidi (Graf̈elfing, Germany). Polystyrene nano-
particles of 340 nm were purchased from Spherotech (Illinois, US).
Gold nanoparticles of 80 nm were purchased from Sigma-Aldrich
(Missouri, US).

DNA-PAINT Sequences. Oligonucleotides were purchased
lyophilized and were resuspended in TE buffer upon arrival.
Concentration was measured with a NanoDrop 2000 (ThermoFisher
Scientific), and aliquots were stored in the freezer.

Synthetic Surface Preparation for DNA-PAINT Imaging.
Coverslips #1.5 were rinsed with ethanol and milli-Q water and then
placed into an ultrasound bath with fresh ethanol for 15 min.
Afterward, they were rinsed extensively with milli-Q and dried with
nitrogen. For the sample preparation, a coverslip (24 × 24 mm) and
glass slide (25 × 75 mm) were sandwiched by two strips of double-
sided tape to form a capillary chamber with an inner volume of ∼30
μL.

To prepare the glass surface, 30 μL of biotin-labeled bovine
albumin (fixed at 0.1 mg/mL) dissolved in buffer A (10 mM TRIS−
HCL, 50 nM NaCl, pH 8.0) was flown into the chamber and
incubated for 1 h (all incubation steps are done in a humidity box to
prevent drying). The unbound albumin was washed away by 200 μL
of buffer A. Then, 30 μL of streptavidin (fixed at 0.1 mg/mL) was
flown through the chamber and allowed to bind for 15 min. After
washing away the excess streptavidin with 200 uμL of buffer A and
subsequently with 200 μL of buffer B (5 mM TRIS−HCL, 10 mM
MgCl2, 1 mM EDTA, pH 8.0) for buffer exchange, 30 μL of biotin-
docking DNA was added and incubated for 10 min (docking
concentration ranged from 0.2 to 1000 nM). To remove the unbound
docking strands, the chamber was washed with 200 μL of buffer B.
Later, Cy3-labeled polystyrene nanoparticles were used as fiducial
markers for subsequent drift correction, incubated for 5 min, and then
washed with 200 μL of buffer B. Freshly prepared ATTO655 imager
strand 1 in buffer B was flown before imaging. Lastly, the chambers
were sealed at both ends. BSA, streptavidin, and ATTO655 imager
concentration remained fixed for all docking conditions.

Cell Culture and Immunostaining. In this work CHO−K1
(ATCC CCL-61), CHO-PD1 (monoclonal CHO−K1 cells stably
expressing low, intermediate, and high levels of PD1, kindly provided
by Aduro Biotech), and A-431 (CRL-1555) cells are used. All CHO
cells are grown in DMEM/F-12 medium supplemented with 10%
FBS, 100 units/mL penicillin, and 100 μg/mL streptomycin, and
CHO-PD1 lines are additionally supplemented with 0.6 mg/mL of G-
418. A-431 cells are grown in DMEM medium supplemented with
10% FBS, 100 units/mL penicillin, and 100 μg/mL streptomycin.
Antibodies (anti-PD1 and cetuximab) were functionalized with DNA
sequences as described by Cremers, et. al.36

For preparation for imaging, cells were cultured overnight in an 8-
channel Ibidi slide to achieve a confluence of 70−90%. Cells were first
let to equilibrate at room temperature for 5 min, following 5 min
equilibration at 4 °C. Before antibody incubation, cells were washed
with chilled DMEM containing 3% BSA. Cells were then incubated in
DMEM containing 3% BSA and 1 μg/mL of DNA-modified
antibodies for 45 min at 4 °C. Afterward, three washing steps of 5
min with PBS were performed to remove the unbound antibody,
followed by 10 min fixation with 3.7% PFA and 0.25% glutaraldehyde
in PBS at room temperature (from this point, all steps are carried out
at room temperature). Cells are again washed with PBS three times
for 5 min and incubated with glycine 0.1 M for 10 min to block any
remaining reactivity of the fixative. Lastly, after three more 5 min PBS
washing steps, cells are incubated with 80 nm gold nanoparticles at
1:5 dilution for 10 min. Unbound gold nanoparticles are removed by
three washings with PBS before samples are stored sealed in the fridge
until imaging.

Optical Setup and Image Acquisition. DNA-PAINT images
were obtained in an Oxford Nanoimager microscope (ONI, Oxford,
UK). The sample was illuminated using total internal reflection
fluorescence (TIRF), and fluorescence was recorded using a 100×, 1.4
NA oil immersion objective, passed through a beam splitter to obtain
a green and a red channel. Images were acquired onto a 427 × 520

pixel region (pixel size 0.117 μm) of a sCMOS camera. Images were
reconstructed using the ONI Nimos software in order to identify and
fit the point spread functions and obtain the super-resolved position
of the target molecule.

DNA-PAINT images of the synthetic surfaces were acquired with
an exposure time of 90 milliseconds under 30 mW of a 640 nm laser
for 22,000 frames. Additionally, Cy3-labeled polystyrene drift
correction particles were illuminated one every hundred frames with
5 mW of a 532 nm laser and recorded simultaneously on a second
channel, created by the beam splitter that separates the light onto two
separate parts of the camera. Drift correction was performed in the
Nimos software using the positions recorded of the Cy3B-labeled
particles. The concentration of the ATTO655 imager was set to 5 nM
for all glass-experiments.

DNA-PAINT images of PD1 receptors on CHO cells were
acquired with an exposure time of 300 milliseconds under 30 mW of a
640 nm laser for 12,000 frames. Images of EGFR on A-431 cells were
acquired with an exposure time of 150 milliseconds under 30 mW of a
640 nm laser for 12,000 frames. Drift correction is performed with 80
nm gold nanoparticles emitting on the same channel as the DNA-
PAINT imagers. Localizations are linked together using the single-
particle tacking tool in Nimos software to identify the non-blinking
spots (trajectories with 12,000 frames), corresponding to the gold
nanoparticle. Later, a custom Matlab script is used to correct the
DNA-PAINT localization positions with the information of gold
nanoparticle displacement. The imager concentrations (ATTO655
and ATTO647N) were set to 1 nM for CHO cells (direct counting)
and 0.1 nM for A-431 cells (kinetic counting).

Direct Counting Analysis. To identify sparse molecules in DNA-
PAINT images, a custom Matlab algorithm was used. Briefly, a mean-
shift clustering algorithm is employed to identify multiple events
spots, corresponding to specific binding to the target molecule. Mean-
shift clustering is a non-parametric analysis that identifies local density
maxima (dense spots) by shifting a window toward the density
maximum inside that area, until convergence. This method is selected
because it is based on the identification of dense spots with a specific
circular shape. The recorded data on cell membranes is first treated
with a density filter (minimum 5 localization in a 25 nm radius circle)
since there is a higher non-specific interaction in hydrophobic cell
membranes. Next, a mean-shift clustering (bandwidth of 50 nm and
minimum 10 localizations per cluster) is applied to identify the
positions of the target molecules and discriminate the sparse non-
specific localizations. Lastly, non-specific localizations are also found
forming clusters in cell membranes; therefore, localizations are
merged into events (maximum frame gap of 10 frames) in order to
obtain time traces. Non-specific clusters do not follow the expected
binding kinetics time trace, and events are concentrated over a short
period of time. These are filtered out by removing the clusters that do
not last for more than 50% of the imaging time.

Kinetic Counting Analysis. Analysis of DNA-PAINT images of
densely packed surfaces was done using a custom Matlab algorithm.
First, localizations were merged into binding events (maximum frame
gap of 3 frames and maximum distance between frames of 50 nm) in
order to identify time traces. Short events of only one frame, and
events with less than 1500 photons are discarded for images acquired
with the ATTO647N imager. A desired area is selected, and the dark
times between events are extracted, and the CDF is fitted with eq 2 to
obtain the mean value (τd). This value is then used in eq 1 to calculate
the number of target molecules (n) in a certain area (A), considering
the concentration of the imager (ci) and the binding rate constant kon.

=
· ·

n
A k c

1

on i d (1)

=y a1 x/ d (2)

In order to create the density maps in Figures 3d and 5c, a small-
sized ROI (9 × 9 camera pixels) is selected. Using a Matlab algorithm,
it is iterated through the entire image randomly using the camera
pixels as binning. At every position, the density of molecules is
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calculated with qPAINT inside the ROI and noted in each of the
pixels inside the ROI. Once every pixel has been iterated 100 times,
the different density values are averaged and plotted.

Logistic Fit. Quantification of the molecular counting range
(lower, higher bounds, and mid-point values) of both methods (direct
and kinetic) was performed in OriginLab using a logistic dose
response equation, where A1, A2, X0, and p correspond to the
theoretical response to zero concentration, infinite concentration,
mid-range concentration, and slope factor, respectively.

= +
+

y A
A A

2
1 2

1 ( )X
X

p
0 (3)

DNA-PAINT Simulations. DNA-PAINT simulations were
performed in MATLAB. Simulations of sparse molecules for direct
counting approach (Figure S3a) were performed by randomly
simulating the positions of molecules at specified densities. Then,
following a gaussian distribution centered on each molecule position,
single-molecule events were generated using the average experimental
precision (σ = 50 nm). On the other hand, dark times for kinetic
counting approach (Figure S3b) were generated using an exponential
decay distribution with an average τD of 401 s (derived from the
experimental kon of 2.49 × 10−6 M−1s−1 and an imager concentration
of 1 nM).
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