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Temporal Logic Control of Nonlinear Stochastic
Systems Using a Piecewise-Affine Abstraction

B. C. van Huijgevoort , S. Weiland , and S. Haesaert , Member, IEEE

Abstract—Automatically synthesizing controllers for
continuous-state nonlinear stochastic systems, while giv-
ing guarantees on the probability of satisfying (infinite-
horizon) temporal logic specifications crucially depends on
abstractions with a quantified accuracy. For this similar-
ity quantification, approximate stochastic simulation rela-
tions are often used. To handle the nonlinearity of the
system effectively, we use finite-state abstractions based
on piecewise-affine approximations together with tailored
simulation relations that leverage the local affine structure.
In the end, we synthesize a robust controller for a nonlinear
stochastic Van der Pol oscillator.

Index Terms—Formal specifications, stochastic
systems, nonlinear dynamical systems, automatic control,
cyber-physical systems.

I. INTRODUCTION

THE DESIGN of controllers for safety-critical systems,
such as airplanes, cars, and power systems, requires

guarantees on their correct functioning. Although obtaining
guarantees via analysis and verification is important, many
of these systems are difficult to analyze and verify as they
evolve over continuous spaces in a stochastic and gener-
ally nonlinear fashion. Therefore, we need methods that can
handle simultaneously complex safety-critical requirements,
large-scale continuous states, and stochastic and nonlinear
state evolutions. Recent work [1], [2], has shown progress
in the design of methods based on temporal logic specifica-
tions that can handle relevant safety specifications. Although
these approaches scale to, respectively, more complex spec-
ifications [1] and larger stochastic systems with continuous
states [2], they are still limited to linear or pseudo-linear
stochastic systems.

For the nonlinear stochastic difference equations consid-
ered in this letter, less progress has been shown. Synthesizing
a provably correct controller that guarantees the satisfac-
tion of temporal logic specifications for nonlinear stochastic
systems remains a very challenging problem and the number
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of methods that exist is very limited. More specifically, meth-
ods either focus on a specific type of specification [3], [4],
use slope restrictions on the nonlinearity (pseudo-linearity)
of the systems [2], [5] or consider a bounded stochastic
disturbance [6], [7], [8]. When focusing on local behavior,
many nonlinear systems behave almost linear. Therefore, a
widely adopted approach in classical control [9], [10], [11]
and for the verification of nonlinear deterministic systems [12]
is performing a piecewise-affine approximation of the non-
linear system. In this letter, we leverage piecewise-affine
approximations to synthesize a controller for temporal logic
specifications.

To apply such a formal synthesis method with guarantees,
the continuous-state behavior of systems is often approximated
by a finite-state model [13], known as an abstraction. By quan-
tifying the similarity between the continuous-state model and
its finite-state abstraction, we obtain guarantees on the satis-
faction of formal specifications. As in [1], [5], the similarity
or deviations in probability and output of stochastic systems
is expressed using approximate simulation relations [14].
Together with [15], this allows us to handle co-safe linear tem-
poral logic specifications that are unbounded in time. In this
letter, we develop tailored methods for the provably correct
control design of nonlinear stochastic systems. More specifi-
cally, the conditions under which simulation relations can be
established exist for nonlinear stochastic systems [14], [15].
However, the main challenge is to find such relations with effi-
cient computation methods, where existing methods can only
handle linear systems [16] or nonlinear systems with bounded
slope [2], [5]. In this letter, we perform a piecewise-affine
approximation step, such that we can use a method like [16].
By doing so, the computational cost can be managed and we
enable an efficient implementation.

Literature. The existing methods for temporal logic con-
trol of nonlinear stochastic systems can be classified into
abstraction-based and abstraction-free methods. As mentioned
before, available results on abstraction-based methods for
nonlinear stochastic systems [2], [5], [6], [7], [8] are either
restricted in the type of systems or with respect to the specifi-
cation. On the other hand, abstraction-free methods directly
synthesize controllers for continuous-state systems and are
generally based on Barrier certificates, which are either lim-
ited to finite-time horizon specifications [3], [4] or require
supermartingale conditions [17].

To include piecewise-affine approximations into temporal
logic control of nonlinear stochastic systems, we quantify the
approximation error and construct a piecewise-affine abstrac-
tion (Section III). In Sections IV and V, we define a piecewise

2475-1456 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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simulation relation and describe the computation of the sat-
isfaction probability of the specification. We end with the
design of a controller for a stochastically perturbed Van der
Pol Oscillator and discuss the results.

II. PROBLEM FORMULATION AND APPROACH

For a set X in Euclidean space,1 the Borel measurable
space is denoted as (X,B(X)) with B(X) the σ -algebra of
the Borel sets [18]. A probability measure P over this space
has realizations x ∼ P with x ∈ X. The set of probability mea-
sures on the measurable space (X,B(X)) is denoted by P(X).
The weighted two-norm ||x||D is defined as ||x||D =

√
x�Dx.

Furthermore, IN denotes the identity matrix of size R
N ×R

N .
The Minkowski sum of two sets A and B is defined as
A⊕ B := {a+ b | a ∈ A, b ∈ B}.

A. Preliminaries
Model. Consider a system whose behavior can be modeled

by a discrete-time nonlinear stochastic difference equation

M :

{
xt+1 = f (xt)+ But + wt
yt = Cxt, ∀t ∈ {0, 1, 2, . . .}, (1)

with state xt ∈ X ⊆ R
nx , input ut ∈ U ⊆ R

nu disturbance
wt ∈ W ⊆ R

nw and output yt ∈ Y ⊆ R
ny . Furthermore,

we have matrices B ∈ R
nx×nu,C ∈ R

ny×nx and the nonlinear
function f : X→ X is assumed to be sufficiently smooth. The
disturbance wt is an independently and identically distributed
(i.i.d.) noise signal with realizations w ∼ Pw and the system
is initialized at x0 ∈ X.

Remark 1: Without loss of generality, we assume that the
output and input enter linearly. Systems with nonlinear terms
g(xt)ut and h(xt) instead of resp. But and Cxt, can also be
handled through piecewise-affine approximations.

A (finite) path ω→t := x0, u0, x1, u1, . . . xt of a system is
built up from inputs ut and realizations xt+1 based on (1) for
a given state xt, input ut and disturbance wt for each time
step t. A control strategy μ := μ0, μ1, . . . consists of maps
μt(ω→t) that determines an input ut for each finite path of
the model (1). In this letter, we focus on stationary control
strategies C : ut = μ(ω→t) that have a finite memory.

Specification. To express formal specifications, we use co-
safe linear temporal logic (scLTL) [13], [19]. This language
consists of atomic propositions p1, . . . , pN that are either
true or false. The set of atomic propositions is denoted as
AP = {p1, . . . , pN} and defines an alphabet 2AP. The set of
atomic propositions that are true form a letter in the alpha-
bet, that is, π ∈ 2AP. A word π = π0π1π2 . . . is formed
by a (possibly infinite) string of letters with associated suffix
π t = πtπt+1πt+2 . . . It is over these words that specifications
are checked. A formal specification, written as a temporal
logic formula φ, is formed by combining atomic propositions
with logical and temporal operators as defined in the scLTL
syntax: φ : := p | ¬p |φ1 ∧ φ2 |φ1 ∨ φ2 | © φ |φ1 U φ2, with
atomic proposition p ∈ AP. The semantics are given for suf-
fixes π t. An atomic proposition πππ t |= p holds if p ∈ πt, while
a negation πππ t |= ¬p holds if πππ t |= p. Furthermore, a con-
junction πππ t |= φ1 ∧ φ2 holds if both πππ t |= φ1 and πππ t |= φ2
are true, while a disjunction πππ t |= φ1 ∨ φ2 holds if either

1We limit our results to sets in Euclidean spaces, which are measurable
and separable.

πππ t |= φ1 or πππ t |= φ2 is true. Also, a next statement πππ t |= ©φ
holds if πππ t+1 |= φ. Finally, an until statement πππ t |= φ1 U φ2
holds if there exists an i ∈ N such that πππ t+i |= φ2 and for all
j ∈ N, 0 ≤ j < i we have πππ t+j |= φ1. Via a labeling function
L : Y→ 2AP, an output trajectory y = y0y1 . . . of a system (1)
is translated to a word π = L(y0)L(y1) . . . A system satisfies
a specification if the generated word π = L(y) satisfies the
specification, i.e., π0 |= φ.

B. Problem Statement
The goal of this letter is to automatically develop a con-

troller C, such that the controlled system M × C satisfies
a specification φ. Since we consider stochastic systems, we
are interested in the satisfaction probability of a specification,
denoted as P(M × C |= φ).

Problem: Given model M as in (1), an scLTL specification
φ and a probability p ∈ [0, 1], design a controller C, such that

P(M × C |= φ) ≥ p. (2)

We approach this problem by gridding the continuous-state
space after approximating the nonlinearity of the model using
a piecewise-affine function. This yields a finite-state abstrac-
tion of the original nonlinear model that is piecewise-affine.
To compare the nonlinear model and the piecewise-affine
abstract model, we locally couple the two models and define
a piecewise approximate stochastic simulation relation similar
to [14]. This computation is implicitly based on invariant set
computations as in [16].

III. PIECEWISE-AFFINE ABSTRACTION

In this section, we discuss the first step in designing a prov-
ably correct controller, namely constructing a piecewise-affine
abstraction of the nonlinear system in (1).

Local affine approximation of f (xt). In order to handle
the non-linearity of f (xt) in (1), we use affine functions to
locally approximate it in the bounded set G ⊆ X. To this
end, we use Taylor’s Theorem2 [20, Sec. 4.10], [21, Sec. 2.4]
to approximate the function f (xt) in (1) by its first-order
Taylor polynomial f1(xt). Using Taylor’s inequality [22], an
upper bound of the remainder R1(xt) can be found. Define
the bounded difference between f (xt) and its affine approxi-
mation f1(xt) by κt = f (xt)− f1(xt) = R1(xt). Associate to this
difference, bounded set K ⊂ R

nx . Now, we get the following.
Theorem 1: Given a nonlinear function f (xt) that is suffi-

ciently smooth, there exists a bounded vector κt ∈ K, such
that f (xt) = Axt + a+ κt for x ∈ G.

The proof follows from the extension of Taylor’s Theorem
to higher-dimensional functions as in [21, Sec. 2.4].

Piecewise-affine finite-state abstraction. To construct such
an abstraction, we need two different partitionings of the state
space. A coarse partitioning to construct the piecewise-affine
approximation of the nonlinear dynamics and a fine grid to get
a finite-state approximation of the affine dynamics. To obtain
the coarse partitions, we partition the state space X with poly-
topic cells P̂i with i ∈ {1, . . . ,NP}, such that it covers the
complete state space, that is

⋃
i P̂i = X and such that the

partitions do not overlap P̂i ∩ P̂j = ∅ for i = j. Similarly, to

2The first reference discusses the most common 1D case, while an extension
to multivariate functions is given in the second reference.
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obtain the fine grid we grid the state space X in a finite num-
ber of regions Aj ⊂ X, such that

⋃
j Aj = X and Aj ∩Al = ∅

for j = l hold. In each region, a representative point x̂j ∈ Aj
is chosen. Together, these points make up the set of abstract
states, x̂ ∈ X̂ = {x̂1, x̂2, . . . , x̂NA}.

After performing the affine approximation for each of the
partitions P̂i ⊆ G, we select a finite number of inputs from
U to form the abstract input space Û. Now, we can approxi-
mate the behavior of the affine approximation of the nonlinear
dynamics by a finite-state abstract system. To this end, con-
sider the operator � : X → X̂ that maps states from the
original state space to the abstract state space. Then in region
P̂i the dynamics of the abstract system equal

x̂t+1 = �(Ax̂t + Bût + a+ ŵt), (3)

with states x̂ ∈ P̂i ⊂ X̂, initial state x̂0 = �(x0), inputs û ∈ Û,
and disturbances ŵ ∈ W with realizations ŵ ∼ Pŵ. Next, we
introduce a bounded vector β ∈ B ⊂ X, that pushes the state to
its representative point. Then, with a slight abuse of notation3

the state dynamics of the local abstract system (3) for x̂ ∈ P̂i
satisfy x̂t+1 ∈ Ax̂t + Bût + a + ŵt + B. More precisely, there
exist β ∈ B, such that x̂t+1 = Ax̂t + Bût + a+ ŵt + βt. Now,
we can write the state dynamics of the local abstract system
as an affine system described by

x̂t+1 = Ax̂t + Bût + a+ ŵt + βt for x̂ ∈ P̂i. (4)

To define a piecewise-affine finite-state abstraction, we
translate the abstract system (4) that locally approximates
the nonlinear system (1) to a piecewise-affine system that
approximates the complete nonlinear system as

M̂ :

{
x̂t+1 = Aix̂t + Bût + ai + ŵt + βt for x̂ ∈ P̂i
ŷ = Cx̂t,

(5)

with states x̂ ∈ X̂ ⊂ X, initial state x̂0, inputs û ∈ Û and
disturbance ŵ ∈W.

Concluding, we have constructed a piecewise-affine finite-
state system which approximates the behavior of a nonlinear
continuous-state system (1). This piecewise-affine system con-
sists of local affine dynamics defined over partitions P̂i.

IV. PIECEWISE STOCHASTIC SIMULATION RELATION

In this section, we discuss how to quantify the differ-
ence between the original nonlinear stochastic model and the
abstract model obtained via piecewise affine approximations.

A. Similarity Quantification
To quantify the similarity between the models (1) and (5),

we start by defining a local metric for the error dynamics based
on coupling the models through their inputs and stochastic
disturbances. First, we couple the inputs u and û by using an
interface function [23] denoted as

Uv : Û× X̂× X→ U. (6)

This function assigns input u to the abstract input û given the
states x̂ and x of the abstract and original model, respectively.
Next, we couple disturbances w ∼ Pw and ŵ ∼ Pŵ as in [16]
using the following definition based on [24].

3Here, the Minkowski sum of the two sets is neglected.

Definition 1 (Coupling Probability Measures): A coupling
of probability measures Pw and Pŵ on the same measurable
space (W,B(W)) is any probability measure W on the prod-
uct measurable space (W×W,B(W×W)) whose marginals
are Pw and Pŵ, that is,

W(Â×W) = Pŵ(Â) for all Â ∈ B(W)

W(W× A) = Pw(A) for all A ∈ B(W).

We can trivially extend this to Borel measurable stochastic
coupling kernels

W : Û× X̂× X→ P(W2). (7)

Now, we can quantify the similarity between the stochastic
models M (1) and M̂ (5) using a simulation relation [14].

Definition 2 [(ε,δ)-stochastic simulation relation]: Let
stochastic models M and M̂ with metric output space (Y,dY),
interface function Uv (6), and stochastic kernel W (7) be
given. If there exists a measurable relation R ⊆ X̂ × X, with
(x̂0, x0) ∈ R, and such that

1) ∀(x̂, x) ∈ R : dY(ŷ, y) ≤ ε, and
2) ∀(x̂, x) ∈ R, ∀û ∈ Û : (x̂+, x+) ∈ R holds with

probability at least 1− δ(x̂), with δ : X̂→ [0, 1].
then M̂ is (ε, δ)-stochastically simulated by M, and this
simulation relation is denoted as M̂ �δ

ε M.
We refer to ε as the (metric) output deviation and to δ

as the probabilistic or stochastic deviation function. Note
that unlike [14] the stochastic deviation is not uniform for
the whole state space. Instead it is introduced as a function
δ : X̂ → [0, 1] that depends on the abstract state x̂. If δ(x̂)
is a piecewise constant function, then we refer to the simula-
tion relation as a piecewise stochastic simulation relation. We
have defined a measure to quantify the difference between two
models on a global level, that is, over the full state space. The
question is now how we can compute it based on the given
piecewise-affine structure of the abstractions.

B. Piecewise Similarity Quantification
Consider a simulation relation given as

R :=
{
(x̂, x) ∈ X̂× X | ||x− x̂||D ≤ ε

}
, (8)

with a suitable weighting matrix D. It can be seen that

C�C � D (9)

implies that the first condition of Def. 2 is satisfied. Next,
we use relation (8) to show that a global (ε,δ)-stochastic sim-
ulation relation can be computed with a piecewise constant
probability deviation function δ : X̂→ [0, 1] defined on state
partition P̂i as δ(x̂) = δi if x̂ ∈ P̂i. Function δ assigns a con-
stant local probability deviation to each partition in the abstract
state space X̂ based on a local similarity quantification derived
using the local error dynamics.

Local stochastic error dynamics. Consider a local
interface function ut = Uvi(ût, x̂t, xt) as

ut = ût + Kf ,i(xt − x̂t), (10)

with feedback matrix Kf ,i ∈ R
nu×nx and a local stochastic

kernel Wi, assigning to each (û, x̂, x) a probability measure

Wi : Û× P̂i × X→ P(W2). (11)
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For x̂ ∈ P̂i, we have x̂t+1 = Aix̂t + Bût + ai + ŵt + βt and if
‖x− x̂‖D ≤ ε holds, then there exists a κt such that

xt+1 = Aixt + But + ai + wt + κt with κt ∈ Ki.

Given that xt belongs to Pi defined as

Pi := {x ∈ X | ∃x̂ ∈ P̂i : ‖x− x̂‖D ≤ ε}. (12)

Following the previous section, the set Ki is defined as

Ki := sup
x∈Pi

(R1(x)), (13)

with R1(x) the remainder of the first-order Taylor polyno-
mial [21, Sec. 2.4]. For x̂t ∈ P̂i and xt ∈ Pi, we get the error
dynamics x
t := xt − x̂t equal to

x
t+1 = (Ai + BKf ,i)x
t + (wt − ŵt)+ κt − βt (14)

with κ ∈ Ki and β ∈ B and with (ŵt,wt) ∼Wi.
Local coupling and interface functions with δ = δi.

Following [16], we make sure that the second condition
of Def. 2 is satisfied by finding a global invariant set
{x
 | ‖x
‖D ≤ ε} parameterized with a global D for the
error dynamics (14). Together with D, we have to compute
an optimal local interface function (10) and coupling (11)
for all partitions P̂i, with i ∈ {1, . . .Np}. More precisely, we
design Wi and Kf ,i such that the probability 1−δi with which
‖x
t+1‖D ≤ ε holds is maximized. To this end, consider local
coupling ŵ = w+ Fi(x− x̂) that holds with probability 1−δi.
The coupling term Fi introduced in [16] reduces the com-
plexity of the design of Wi as it allows to write the design
problem as a set of implications or matrix inequalities. That
is, a relation between this term and the probability deviation
δi can been derived as upper bound

||Fi(x− x̂)|| ≤ ri :=
∣∣∣2 idf

(
1−δi

2

)∣∣∣. (15)

Here, idf denotes the inverse distribution function of a
Gaussian distribution N (0, I).

As concluded from the error dynamics in (14), together with
the coupling, the interface function can be used to further com-
pensate for the error in the state by computing a feedback-term
Kf ,i. To satisfy the bound u ∈ U we shrink Û by α, such that
Û ⊂ αU and we compute uu, such that

||Kf ,i(x− x̂)|| ≤ uu (16)

implies Kf ,i(x − x̂) ∈ (1 − α)U. Taken together, we conclude
the following.

Lemma 1 (Piecewise Requirements): Consider stochastic
models M (1) and M̂ (5) for which a simulation relation R (8)
with weighting matrix D satisfying (9) is given. If there exist
matrices Fi, and Kf ,i such that the following implications are
satisfied for a given δ(x̂)

x�
Dx
 ≤ ε2 =⇒
⎧⎨
⎩

x�
F�i Fix
 ≤ r2
i

x�
K�f ,iKf ,ix
 ≤ u2
u

x�
t+1Dx
t+1 ≤ ε2,

(17)

with x
t+1 in (14) and ri in (15), then there exists coupling
kernels Wi and interfaces Uvi such that

∀(x̂, x) ∈ P̂i × X,∀û ∈ Û : (x̂+, x+) ∈ R (18)

holds with probability 1− δi for all P̂i, with i ∈ {1, . . .Np} and
with

⋃
i P̂i = X̂.

Proof: It can readily be seen that the first and second impli-
cation in (17) are sufficient conditions for the bounds on
resp. the coupling compensator term (15) and the feedback-
term (16). Assume that bounded sets Ki are given and
define the sets Si := {(x̂, x) ∈ P̂i × X | ||x− x̂||D ≤ ε}. The
last implication in (17) is a sufficient condition for sets Si
to be controlled invariant sets according to [16, Definition 7]
with disturbance β + κ ∈ B

⊕
Ki. If the implications in (17)

hold, then the bounds in [16, Th. 8] are satisfied and Si are
controlled-invariant sets. Following the proofs of [16, Th. 8
and Lemma 6] we can conclude that this implies the existence
of coupling kernels Wi and interfaces Uvi such that Lemma 1
holds. An algorithm to obtain matrix D and bounded sets Ki
is explained in the Appendix.

From local to piecewise similarity quantification.
To obtain a global similarity quantification, we define a
piecewise stochastic kernel W and a piecewise interface
function Uv. Since Û× P̂i × X for i ∈ {1, . . . ,NP} is a parti-
tioning of Û× X̂× X we use the local stochastic coupling
kernel Wi : Û× P̂i × X→ P(W2) to compute the piecewise
stochastic coupling kernel W : Û× X̂× X→ P(W2) as

W(· | û, x̂, x) =Wi(· | û, x̂, x) if x̂ ∈ P̂i. (19)

Similarly, the interface function can be composed as

Uv(ût, x̂t, xt) = Uvi(ût, x̂t, xt) if x̂ ∈ P̂i. (20)

We can now show that these functions constitute to a (ε, δ)-
stochastic simulation relation for simulation relation (8).

Theorem 2 (Piecewise Stochastic Similarity): Let stochas-
tic models M (1) and M̂ (5) be given. Then the interface
function Uv (20) and the global Borel measurable stochas-
tic kernel W (19) computed for the simulation relation (8)
based on (17) define an (ε,δ)-stochastic simulation relation in
a piecewise manner as given in Def. 2 if
• it holds that (x̂0, x0) ∈ R, and if
• the simulation relation satisfies matrix inequality (9).
Proof: The proof builds on Lemma 1, and can be sketched

as follows. The first condition of Def. 2 holds by choosing
matrix D, such that (9) holds. This is proven in the proof
of [16, Th. 9]. Lemma 1 shows that if (17) is satisfied then a
local stochastic kernel Wi as in (11) exists, such that (18) holds
with probability 1− δi. By choosing the interface function Uv
as (20), and the global stochastic kernel as in (19) the second
condition in Def. 2 is satisfied.

V. TEMPORAL LOGIC CONTROL

In this section, we discuss how to compute the satisfaction
probability of (infinite-horizon) temporal logic specifications
based on the dynamic programming mappings from [15]. Next,
we apply the method from this letter to a nonlinear stochastic
case study and discuss the results.

A. Dynamic Programming
In correct-by-design control synthesis, an scLTL

specification φ can be written as a deterministic finite-
state automaton (DFA), characterized by the tuple
Aφ = {Q, q0, �, τA,F} [13]. Here, the set of states is
denoted by Q with initial state q0. The input alphabet and
transition function are respectively denoted by � = 2AP and
τA : Q×�→ Q. Finally, F denotes the set of accepting
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states. The word π satisfies the specification φ, that is π |= φ,
if the word π is accepted by the DFA Aφ . This means that
there exists a trajectory q0, q1, . . . , qf with qf ∈ F starting at
q0 and evolving according to qt+1 = τA(qt, πt). By analyzing
the product composition between the system M and the
specification DFA Aφ , denoted as M ⊗Aφ , we can compute
the satisfaction probability. The composition M ⊗Aφ consists
of states (xt, qt) ∈ X× Q. For a given input ut, it evolves from
(xt, qt) to (xt+1, qt+1) by following the stochastic transition
from xt to xt+1 in (1) and from qt to qt+1 = τA(qt,L(Cxt)).
Hence, computing the satisfaction probability is equivalent to
solving a reachability problem of the composition M ⊗ Aφ ,
which can be written as a dynamic program. With a slight
abuse of notation we refer to the stationary policy of this
composed system as μ : X̂× Q→ Û.

We use the abstract model to compute the satisfaction
probability, since this is not possible for the original model
due to its continuous states. The satisfaction probability
with policy μ in time horizon [1, . . . ,N] is expressed by
the value function Vμ

N (x̂, q) : X̂ × Q → [0, 1], which is
equivalent to the probability that the trajectory starting at
(x, q) and generated by applying μ to M ⊗ Aφ reaches
the target set F within this time horizon. The value func-
tion is defined as Vμ

N (x̂, q) := Eμ(max0≤t≤N 1F(qt)|(x̂0, q0)),

with indicator function 1F equal to 1 if q ∈ F and 0
otherwise. The value function can also be computed recur-
sively for a policy μi = (μi+1, . . . , μN) with horizon
N − i as V

μk−1
N−k+1(x̂, q) = Tμk(Vμk

N−k)(x̂, q), initialized with
V0 ≡ 0. Here, operator Tμk(·) is defined as Tμk(V)(x̂, q) :=
Eμk(max{1F(q+),V(x̂+, q+)}), with DFA transitions q+ =
τAφ

(q,L(Cx+)). For a stationary policy μ, the infinite-horizon
value function is computed as Vμ∞ = limN→∞(Tμ)NV0 initial-
ized with V0 ≡ 0. The policy-optimal converged value function
V∗∞ is computed with the operator T∗(·) := supμ Tμ(·). The
corresponding satisfaction probability can now be computed
as P

μ := max(1F(q̄0,V∗∞(x0, q̄0))) with q̄0 = τ(q0,L(Cx0)).
To cope with the output deviation ε and with probability

deviations described by the function δ(x̂), we define a robust
dynamic programming mapping similar to [14], as

Tμk
ε,δ(V)(x̂, q) := L

(
Eμ( min

q+∈Q+
max

{
1F(q

+),V(x̂+, q+)
}
)− δ(x̂)

)
,

with L : R → [0, 1] a truncation function L(·) :=
min(1,max(0, ·)) and with Q+(q, ŷ+) := {τA(q,L(y+)) |
||y+ − ŷ+|| ≤ ε}. We can now compute the robust sat-
isfaction probability by considering the first time instance
based on x0, that is, R

μ := max(1F(q̄0,Vμ∞(x0, q̄0))) with
q̄0 = τA(q0,L(Cx0)). This probability is robust since it gives
a lower bound on the probability in (2), i.e., Rε,δ(M̂ × Ĉ |=
φ) ≤ P(M × C |= φ).

B. Case Study
We have applied this method to a forced, stochastically

perturbed Van der Pol oscillator with state dynamics

x1t+1 = x1t + x2tτ + w1t

x2t+1 = f2(xt)+ ut + w2t,

with nonlinear function f2(xt) = x2t + (−x1t + (1− x1
2
t )x2t)τ ).

Here, τ = 0.1 is the sampling time and w ∼ N (0, 0.2I2)

is a Gaussian disturbance. The output equals the state,
that is yt = xt and we have states x ∈ X = [−3, 3]2, input

Fig. 1. Robust satisfaction probability Rε,δ(M̂ × Ĉ |= φ).

u ∈ [−1, 1] outputs y ∈ Y = X, safe region P1 = X and goal
region P2 = [−1.2,−0.9] × [−2.9,−2]. The specification
φ = P1 ∪ P2 means stay in the safe region, while reaching
the goal region.

We obtained an abstract model with state dynamics as
in (3) by partitioning the state space with square regions of
width 0.01 leading to4 β ∈ B = [−0.01, 0.01]2 and with
û ∈ Û = {−0.6, 0, 0.6} leaving some input action for the feed-
back part, namely −0.4 ≤ Kf ,i(x− x̂) ≤ 0.4. Next, we used
1600 equally sized square partitions to obtain a piecewise-
affine abstraction as in (5). We then selected ε = 0.08 and
computed a corresponding probability deviation function δ(x̂)
such that the implications in (17) are satisfied. We com-
puted a global stochastic kernel W (19) and interface function
Uv (20) and used Theorem 2 to obtain an (ε, δ)-stochastic
simulation relation. Finally, we obtained a robust controller
C and the robust satisfaction probability shown in Fig. 1. The
MATLAB implementation takes 55 minutes on a computer with
a 2, 3 GHz Quad-Core Intel Core i5 processor and 16 GB MHz
memory, while using 225Mb memory to store the variables in
the workspace. 44.5% of the computation time is spent on
gridding and 55% on computing the matrices in Lemma 1.

Comparison to available software tools. Similar case stud-
ies have been presented in [7], [25], where [7] considers an
autonomous Van der Pol oscillator and [25] combines the
input with a multiplicative noise term. However, the results
presented in [7], [25] are limited to verification or a reachabil-
ity analysis instead of the control synthesis performed in this
letter. Furthermore, we have chosen a more stochastic variant
with a Gaussian disturbance instead of a uniform distribution
with bounded support as used in [7], [25]. The unbounded
nature of the Gaussian disturbance contributes significantly to
the difficulty of this case study.

Reduced output dimension. Consider the Van der Pol
oscillator with state dynamics as before, but with output
yt = [1, 0] xt and with Y = [−3, 3]. Since the words π are
defined over the outputs of the system, we adjust the regions
of the specification accordingly, that is P1 = [−3, 3] and
P2 = [−1.2,−0.9]. Next, we perform the same steps (with the
same parameters) as before to compute the robust satisfaction
probability in Fig. 2.

VI. CONCLUSION

Concluding, to the best of our knowledge this letter is
the first to describe a temporal logic control method for

4Normally, you get B = [−0.005, 0.005]2, however, our implementation
uses an efficient tensor-based computation that leads to a bigger set for β.
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Fig. 2. Robust satisfaction probability Rε,δ(M̂ × Ĉ |= φ) for the van der
Pol oscillator with C = [1, 0].

Algorithm 1 Get Weighting Matrix D and Bounded Sets Ki

1: Input: M, M̂, ε
2: Set D = C�C
3: Compute Pi and Ki using (12) and (13)
4: Choose Ni ≤ NP to compute a suitable value for D
5: D← solve optimization problem (21)
6: Update Pi and Ki using (12) and (13)

nonlinear stochastic models that uses piecewise-affine approx-
imations. By using a state-dependent probability deviation, a
lower bound on the satisfaction probability is computed. The
method described in this letter can handle (unbounded) scLTL
specifications and is applicable to nonlinear systems with an
unbounded disturbance. For future work, we aim to reduce
the computation time for the similarity quantification by using
alternatives to obtain the matrices in Lemma 1.

APPENDIX

IMPLEMENTATION DETAILS

Here we detail how to obtain matrices Fi and Kf ,i
such that the implications in Lemma 1 are satisfied. To
this end, we introduce Algorithm 1 to obtain bounded
sets Ki and global matrix D that satisfies (9) and likely
implies the existence of matrices Fi and Kf ,i. The algo-
rithm is based on using an optimistic preliminary estimate
of matrix D, and sets Pi and Ki (steps 2, 3). Next, we
update these estimates by solving the following optimization
problem for a small number of partitions Ni ≤ NP
(steps 4, 5).

min
Dinv,Li,Qi,ri

r2
i s. t. Dinv � 0,

[
Dinv DinvCT

CDinv I

]
� 0,∀i ∈ {1, . . . ,Ni}: (21a)[

1
ε2 Dinv LT

i

Li r2
i I

]
� 0,

[
1
ε2 Dinv QT

i

Qi u2
uI

]
� 0, (21b)

[
λDinv ∗ ∗

0 (1−λ)ε2 ∗
AiDinv+BiQi+Bw,iLi ψl Dinv

]
� 0 (21c)

where Dinv = D−1, Li = FiDinv, Qi = Kf ,iDinv and ψl ∈
vert(B

⊕
Ki). This optimization problem is parameterized in

λ ∈ [0, 1] and constructed by following [16, Sec. 4]. Together
with the given value of ε, we use matrix D to update sets
Pi and Ki (step 6). Since we already obtained matrix D, we

can compute matrices Fi and Kf ,i from Lemma 1 for all i ∈
{1, . . . ,NP} in parallel by formulating an optimization problem
similar to (21) with constraints (21b)-(21c).
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