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A B S T R A C T

Deep learning-based segmentation methods provide an effective and automated way for assessing the structure
and function of the heart in cardiac magnetic resonance (CMR) images. However, despite their state-of-the-art
performance on images acquired from the same source (same scanner or scanner vendor) as images used during
training, their performance degrades significantly on images coming from different domains. A straightforward
approach to tackle this issue consists of acquiring large quantities of multi-site and multi-vendor data, which is
practically infeasible. Generative adversarial networks (GANs) for image synthesis present a promising solution
for tackling data limitations in medical imaging and addressing the generalization capability of segmentation
models. In this work, we explore the usability of synthesized short-axis CMR images generated using a
segmentation-informed conditional GAN, to improve the robustness of heart cavity segmentation models in a
variety of different settings. The GAN is trained on paired real images and corresponding segmentation maps
belonging to both the heart and the surrounding tissue, reinforcing the synthesis of semantically-consistent
and realistic images. First, we evaluate the segmentation performance of a model trained solely with synthetic
data and show that it only slightly underperforms compared to the baseline trained with real data. By further
combining real with synthetic data during training, we observe a substantial improvement in segmentation
performance (up to 4% and 40% in terms of Dice score and Hausdorff distance) across multiple data-sets
collected from various sites and scanner. This is additionally demonstrated across state-of-the-art 2D and 3D
segmentation networks, whereby the obtained results demonstrate the potential of the proposed method in
tackling the presence of the domain shift in medical data. Finally, we thoroughly analyze the quality of
synthetic data and its ability to replace real MR images during training, as well as provide an insight into
important aspects of utilizing synthetic images for segmentation.
1. Introduction

Deep learning (DL) methods have made a tremendous impact on a
variety of visual tasks across many fields, including medical imaging,
particularly in medical diagnostic and prognostic tasks (Lundervold and
Lundervold, 2019). These methods have the ability to automatically
model high-level discriminatory data features, crucial for object de-
tection. DL models are data-driven, relying on a significant amount
of annotated data with sufficient variation in relevant distinguishable
image factors for training (Nalepa et al., 2019). Adequate variation
in data ensures that the model captures a wide range of probable
alterations and does not simply ‘‘memorize’’ the data seen during
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training. In fact, an effective DL model should perform robustly in
the presence of unseen data, such that no unexpected increase in the
testing error is observed compared to the training error (Abdollahi
et al., 2020). However, the requirement of large and variable data-sets
remains a significant obstacle for adaptation of DL models in medical
image analysis domain.

Acquiring high-quality ground-truth data annotated by experts is
a time-consuming process prone to human errors, as well as inter-
and intra-annotator variability, but is also liable to constrained sharing
policies (Yi et al., 2019; Hussain et al., 2017). Despite ongoing efforts
across multiple healthcare institutions to develop a large open access
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Fig. 1. Examples of variation observed in MR images acquired from different scanner
vendors, taken directly from the data-set used in this study.

database, the above issues still hold and constrain the number of
accessible images and annotations to researchers (Hosny et al., 2018).
Consequently, the application of DL methods in clinically realistic
environments results in poor generalization and performance, despite
the expert-level performance achieved during development (Yasaka and
Abe, 2018). A major reason for this is the existence of a domain shift
(Kondrateva et al., 2021) in data acquired across different hospitals and
scanners, such as the short-axis CMR images used in this study (Fig. 1).

Several approaches have been proposed so far to tackle the gen-
eralization and adaptation of DL models in the presence of limited
data, including transfer-learning (Cheplygina et al., 2019; Ghafoorian
et al., 2017), domain adaptation (Tzeng et al., 2017) and data aug-
mentation (Nalepa et al., 2019). While transfer-learning in the form
of fine-tuning a portion of pre-trained networks has shown significant
improvements in the tasks involving natural images, it is limited in
the medical imaging domain due to the lack of pre-trained models
developed on large sets of medical data (Zhang et al., 2020). Domain
adaptation addresses the development of models that can generalize
to known target domains whose annotations are unknown or limited
during training. However, the assumption is that examples from the
target domain are available, which is not often the case with medical
data (Choudhary et al., 2020; Zhang et al., 2020). On the other hand,
observed domain shift properties can be ‘‘simulated’’ by applying a
variety of data augmentation approaches in the image space, which
has been shown across many fields (Zhang et al., 2016; Xu et al., 2020;
Cubuk et al., 2019). Recent work performing latent space augmentation
has also showed promising results in tackling the data domain shift
(Chen et al., 2021; Jeong and Lee, 2021; Liu et al., 2018). However,
we focus this work on image space augmentation.

Generation of synthetic images using generative adversarial net-
works (GANs) has recently emerged as a potential approach to data
augmentation (Yi et al., 2019). A number of works have demonstrated
their impressive capability to transfer appearance (style) from a set of
images belonging to one domain to another domain (Frid-Adar et al.,
2018; Chuquicusma et al., 2018; Wolterink et al., 2017; Chartsias et al.,
2017), with most notable results in CT to MRI style transfer. More
recent approaches, synthesizing realistic tissue appearance from the
provided labels as input, referred to as conditional image synthesis
(Mirza and Osindero, 2014; Qasim et al., 2020), have already shown a
significant value in both computer vision and medical imaging. Using
conditional synthesis we can artificially generate large data-sets of
medical images, with enough variation to train robust models, while
avoiding the problem of data anonymization. However, the ability of
GAN synthesis approaches to represent more diverse tissue patterns,
especially pathology, as well as plausible anatomy variations, has so
far been limited.

In this work, we investigate the effectiveness and usability of a
diverse synthesized database of realistic CMR images for MRI cardiac
segmentation. The synthesized images are derived from anatomically
plausible labels using a conditional GAN architecture, which leverages
segmentation masks to guide the generation process and preserve the
anatomical information contained in real images. Once trained, the
model can synthesize realistic appearance on any given set of segmenta-
2

tion masks and generate a diverse set of realistic MR images. We present
a detailed investigation of the quality and usability of such images with
the aim to (1) handle data scarcity through either training a model with
synthesized data only or through data augmentation with synthetic data
and (2) observe the ability of such data to improve the generalization
and adaptation of the model to variations appearing in multi-vendor
and multi-center data. Through this, we want to understand how well
can synthetic data replace real MRI data, but also gain insight in the
current limitations of conditional GAN-based synthesis.

Compared to previous work in this area, we are among the first to
address the benefits of utilizing synthetic images for CMR segmentation
on images acquired across different scanner vendors and institutions
and demonstrate its potential in addressing the domain shift occurring
due to changes in acquisition. This is achieved through optimizing
the realism, diversity and quality of synthetic images by utilizing an
approach previously presented in Amirrajab et al. (2020a), extended
with multi-tissue semantic segmentation module guiding conditional
image synthesis. We additionally show that the generated synthetic
images successfully replace missing data and display good potential
to overcome challenges in medical image data scarcity. The main
contributions of this paper are:

1. We present an optimized framework for MRI cardiac segmen-
tation, which utilizes image synthesis to target segmentation
generalization. The synthesis module is a substantial extension
of the one presented in Amirrajab et al. (2020a). We introduce
a heart region detection module to restrict the field of view
(FOV) of images used for training the segmentation module, op-
timized for heart cavity segmentation and aided by the generated
synthetic images.

2. We showcase the importance of handling images of the varying
fields of view for improving the segmentation performance and
eliminating false positive predictions.

3. We extensively assess the performance of our proposed model
across multi-vendor and multi-site data and demonstrate the
benefits of training with synthetic images when handling images
that exhibit a domain shift due to differences in acquisition.

4. We quantify the effectiveness of synthetic images when used
alone for training, as well as for augmentation.

5. Finally, we assess synthetic data usability for domain adaptation,
where we replicate the style of unlabeled images and improve
the segmentation performance on test data coming from the
same source as the unlabeled data.

2. Related work

2.1. Image synthesis applied to medical image segmentation

While there are diverse approaches available in the literature ad-
dressing the task of medical image synthesis, this review focuses on
GAN-based methods, as most relevant to the work presented in this
paper. GANs show a strong potential to alleviate data scarcity and
class imbalance limitations by generating realistic-looking images from
a distribution that closely resembles the distribution of real data. The
image generation is usually performed through either unconditional or
conditional synthesis approaches. Unconditional approaches resemble
the original GAN models, which are unsupervised in nature and typi-
cally generate data from a noise vector with limited influence on the
output. Such approaches are replaced by conditional ones in medical
imaging, as they allow infusing some useful prior information into the
generation process and thus, provide more control over the generation
procedure, producing more realistic images.

Following the success of GANs for synthesizing medical images,
a number of works have attempted to utilize synthetic data in the
tasks of classification and segmentation. Chartsias et al. (2017) uses
a conditional GAN to synthesize CMR images from CT images and

demonstrates that using synthetic data alongside real images results in a
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Fig. 2. An overview of the proposed synthesis and segmentation pipeline. The image synthesis module is based on a conditional image synthesis framework, utilizing both cavity
labels and labels of the tissue surrounding the heart, generated by the multi-tissue segmentation network, to guide the synthesis and style transfer. A heart region detection module
can be applied to detect a bounding box around the heart and crop the images accordingly. This step can boost the performance in terms of generalization. Finally, the synthesized
images are used to train a network for the task of heart cavity segmentation. Note that the heart region detection module can be turned off, which means that the input images
for training the segmentation module contain the original acquisition FOV of the heart.
better segmentation performance. Similarly, Zhang et al. (2018) utilize
GANs for volume-based synthesis of MR volumes from corresponding
CT volumes and vice versa and show that synthetic volumes obtained
using their approach improve the segmentation performance on cardio-
vascular MRI. Other approaches (Costa et al., 2017; Vemulapalli et al.,
2015; Yi et al., 2019) demonstrate that utilizing unsupervised transla-
tion can generate data that can overcome the problem of insufficient
labeled data. Combined with transfer learning, unsupervised multi-
modal translation has also been successfully utilized for adapting a
pre-trained segmentation network to the data from a different modality,
without any available annotations during training (Chen et al., 2019).

One of the main challenges observed in image synthesis, despite
prior conditioning, is the fact that semantic information and spatial
relations between different classes is often not retained (Park et al.,
2019). This results in generated images that lack in realism, contain
blurred regions, and are difficult to synthesize in high resolution.
Moreover, the quality of synthetic data is still limited by the number
of existing data-sets used for training, which introduces difficulties
for generating high dimensional data reflecting realistic motion and
volumetric changes. Consequently, synthetic data is only partly used
during training — some methods utilize synthetic images for pre-
training or weight initialization, while some amount of real images
is later used to refine the model (Onishi et al., 2019). Finally, the
generator often produces multiples of similar examples, which does not
improve generalization, known as the mode collapse problem (Wang
et al., 2017).

2.2. Improving generalization and adaptation of DL-based methods on
multi-site and multi-vendor CMR images

There have been a number of works aimed at developing sophis-
ticated deep learning approaches tackling CMR image segmentation
on specific data-sets (Baumgartner et al., 2017; Bernard et al., 2018;
Ammar et al., 2021; Pérez-Pelegrí et al., 2020; Yang et al., 2020). While
these models demonstrate high performance on samples extracted from
the same data-set, they have not been tested in cross-data settings.
Initial approaches tackling generalization typically focus on training a
model derived from one set (source domain) and testing it on other
data-sets (Tran, 2016; Bai et al., 2018; Khened et al., 2019; Tao et al.,
2019). However, these approaches either require re-training or fine-
tuning or a collection of a large set of annotated data from multiple
vendors and sites for training, which is impractical.

A recently organized M&Ms challenge is the first of its kind to tackle
CMR segmentation on data from different centers, vendors, diseases and
3

countries at the same time (Campello et al., 2021). Many approaches
tackling generalization have been presented throughout this challenge,
including domain adaptation methods (Acero et al., 2020), adversarial
approaches (Scannell et al., 2021), disentangled representations (Liu
et al., 2021) and utilization of specific processing blocks (Kong and
Shadden, 2020) to alleviate the differences among domains. While
some approaches have utilized unsupervised GANs for style transfer (Li
et al., 2021; Zhang et al., 2021; Kong and Shadden, 2020; Li et al.,
2020) to aid with training and transfer images from different domains
to the same general style, there are rare attempts to utilize synthetic
images directly during training. Moreover, the evaluation of the ability
of synthetic data to replace real MR data during training is very rarely
discussed, especially in the context of CMR segmentation.

3. Proposed method

A general overview of the complete pipeline proposed in this paper
is shown in Fig. 2. The method consists of three main modules, image
synthesis, heart region detection and heart cavity segmentation using
synthetic data. We use a conditional image synthesis approach to gener-
ate realistic short-axis cardiac MR images. The quality of the generated
images is improved by utilizing labels of various tissues surrounding
the heart, which are typically present in the imaging FOV. These labels
are generated by the multi-tissue segmentation network, trained on
XCAT phantom-based simulated MR images, described in Section 3.1.1.
We then utilize the synthesized images to train a CNN for the task
of heart cavity segmentation, with separate segmentation maps of the
right ventricle (RV), left ventricle (LV) and myocardium (MYO). To
further improve the performance of the cavity segmentation network,
we add a heart region detection module, used to detect a bounding box
that encompasses the complete heart and accordingly crops the input
image and its respective label ensuring that the heart is centralized in
the cropped image.

A detailed description of each module is provided in the sections
below. The proposed method visualized in Fig. 2 is just a general
overview of the whole pipeline. However, in our experiments we utilize
the synthesized data in a variety of ways to assess its effectiveness.
Since the focus of this paper is on the usability of synthesized images
for the task of segmentation, we do not describe the synthesis module
in detail. A more comprehensive description can be found in Amirrajab
et al. (2020a).



Medical Image Analysis 84 (2023) 102688Y. Al Khalil et al.
3.1. CMR data

3.1.1. Simulated data from variable XCAT phantoms
The first stage of our image synthesis module consists of a multi-

tissue segmentation network that generates segmentation maps of
anatomies typically present in the FOV of short-axis CMR images. Since
the network is trained in a supervised manner, it requires the same
number of tissue labels for corresponding organs in images during
training. However, curating a database of real MRI data with such
dense labels is a tedious process. Instead, we propose to train this net-
work with the simulated cardiac MR images provided by the openGTN
project,2 consisting of 100 virtual subjects with diverse anatomical and
contrast variations (Amirrajab et al., 2020b; Al Khalil et al., 2020a,b).
The anatomy of each virtual subject is derived from 4D XCAT phantoms
(Segars et al., 2010), while the simulation is based on Bloch equations
for cine MR acquisition. Due to the versatility of the simulation process
and XCAT phantoms, we generate segmentation maps with separate
labels for the LV, RV, myocardium, lung, skeletal muscle, skin fat and
abdominal organs. Fig. 2 shows an example of a simulated image and
its respective multi-tissue segmentation map.

3.1.2. Multi-center, multi-vendor and multi-disease cardiac image segmen-
tation challenge (M&Ms) data

The M&Ms3 challenge data-set consists of 350 images from a mix
of healthy controls and patients with hyptertrophic and dilated car-
diomyopathies. All patients were scanned in clinical centers across
three different countries (Spain, Germany and Canada) using four
different MRI scanner vendors (Siemens, Philips, General Electric-GE
and Canon). The provided training set contains 150 annotated patient
scans from two different scanner vendors (Philips and Siemens, 75
each) and 25 un-annotated scans from a third vendor (GE). The in-
plane resolution of the training images varies between 1.18 to 1.72 mm,
with slice thickness ranging between 9.2 to 10.0 mm. Annotations
have been provided by experienced clinicians at both end-diastolic
and end-systolic phases, including contours for the left (LV) and right
ventricle (RV) blood pools, as well as the left ventricular myocardium
(MYO). This amounts to 300 annotated and 50 un-annotated images,
taking both phases into consideration. We use the training set images
from the M&Ms challenge for training both the synthesis and segmen-
tation models. However, for training the synthesis module, we first
generate multi-tissue maps using the multi-tissue segmentation network
and combine them with original cavity labels provided in the M&Ms
data-set.

For testing we utilize the additional images provided by the M&Ms
challenge as a separate test-set. These consist of an additional 50 studies
from each of the vendors provided, as well as another 50 studies
from a vendor unseen during training (Canon), with in-plane resolution
ranging from 0.68 to 1.8 mm. Due to different acquisition sources
(centers and vendors), a domain shift between the data is expected.
Some of these variations can be observed in Fig. 1 per vendor. In the
rest of this paper, we refer to different data domains for data acquired
with different scanner vendors, where Philips, Siemens, GE and Canon
scanners are denoted as domain or vendor A, B, C and D, respectively.

3.2. Conditional image synthesis module

3.2.1. Multi-tissue segmentation
Synthetic images used in this study are generated through two

consecutive units responsible for semantic image segmentation on real
cardiac MR images and semantic image synthesis on the produced

2 Simulated data can be accessed at https://opengtn.eu/database/ and
https://osf.io/bkzhm/.

3 M&Ms data can be acquired at https://www.ub.edu/mnms/.
4

Fig. 3. Utilization of the conditional synthesis pipeline for the generation of synthetic
images in this study. We synthesize images through two different configurations based
on the domain and appearance of the data seen during the training of the synthesis
module. Configuration 1 (a) refers to the training set-up where images from vendors
A and B (M&Ms) are both seen during training. Configuration 2 (b) denotes a training
set-up where only images from one vendor (A or B) are used during training. We note
that synthesis through configuration 1 produces images with a combined style from A
and B, while in configuration 2, the style or appearance of synthetic images is more
similar to the images used during training.

segmentation maps. We refer to the segmentation unit as a multi-
tissue segmentation network, as it generates coarse segmentation maps
of cardiac structures, but also of tissues typically surrounding the
heart, such as lung, skeletal muscle, skin fat and abdominal organs.
The multi-tissue segmentation module is utilized in two ways: (i) to
provide labels for training the image synthesis network, and (ii) to
provide labels on unseen data for synthesizing new examples using the
trained network. Thus, the synthesis network utilizes multi-tissue labels
with corresponding real MR images to learn the translation from the
segmentation map to realistic MR contrast. While segmentation masks
of only cavity tissue (LV, RV and MYO) can be used directly to train
the synthesis network, our experiments show that utilizing multi-tissue
maps synthesizes images of higher quality and better consistency in
appearance for anatomical structures present in the FOV. We propose
this module as the most convenient way of obtaining detailed tissue
maps on images where such annotations are not available. However,
it could be replaced by any other algorithm able to provide the same
segmentation masks. Moreover, we hypothesize that introducing even
more annotations and improving their accuracy could further improve
the quality of synthetic images.

We adopt a U-Net architecture, completely trained on the XCAT
simulated data-set (described in Section 3.1.1) with its multi-class
ground truth masks. The network structure is similar to Ronneberger
et al. (2015), with several changes introduced to optimize the network
for the multi-tissue segmentation task. We utilize leaky ReLU and
batch normalization (BN) after each convolutional layer to stabilize
the training. Moreover, we apply dropout regularization (dropout rate
of 0.5) to avoid over-fitting and boost generalization. The network
consists of five down-sampling and up-sampling blocks, with a batch
size of 32 2D CMR images fed to the input at each iteration, generating
pixel-wise predictions for 9 tissue classes, including the background on

https://opengtn.eu/database/
https://osf.io/bkzhm/
https://www.ub.edu/mnms/
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each slice. All images are resampled to 1.25 × 1.25 mm2 across short-
axis slices, cropped to the same size of 256 × 256, according to image
center, and normalized with a mean of 0 and standard deviation of 1.
Random scaling and rotations, mirroring and horizontal/vertical flips
are applied on the fly during training. The network is trained using
a Focal Tversky loss (Abraham and Khan, 2019) and optimized using
Adam for stochastic gradient descent, with an initial learning rate of
10−4. The choice of the loss function was determined experimentally
(Al Khalil et al., 2020a), whereby we observe a significant improvement
in performance compared to the standard cross-entropy and Dice losses.
We hypothesize this could be due to extensive variation in shape and
size of various tissue present in CMR images, while the Focal Tversky
loss is specifically designed to handle such cases of class imbalance.
We apply early stopping when the learning rate drops below 10−6

and train the network for a total of 350 epochs (determined by early
stopping) using 200 simulated images for training. At test time, the
trained model is applied on real MR images to obtain multi-tissue
labels, examples of which can be seen in Fig. 3 marked under Input
Label. Before segmentation, all real images are histogram matched to
simulated images to tackle the presence of domain shift.

3.2.2. Conditional image synthesis
To synthesize data in this work, we utilize a conditional GAN

synthesis approach, a mask-guided image generation technique that
employs spatially adaptive denormalization (SPADE) layers (Park et al.,
2019), reinforcing semantically-consistent image synthesis. The net-
work is trained on paired real images and corresponding multi-tissue
labels, estimated from the multi-tissue segmentation module, to learn
the underlying modality-specific image characteristics for each tissue
label. The main advantage of this approach is provided by the utiliza-
tion of SPADE layers, as they inject information from the segmentation
map throughout the network and thus, guide the generator to cor-
rectly learn the translation between the particular tissue class and its
appearance in real MR images. More details in regards to the design
and training of the conditional image synthesis GAN are provided in
Amirrajab et al. (2020a) and Abbasi-Sureshjani et al. (2020).

The trained image synthesis module can be utilized to synthe-
size images of any style provided during training. Since we focus on
investigating whether such approach could contribute to improving
generalization and adaptation of segmentation models, we experiment
with training the synthesis network in two different configurations, as
outlined in Fig. 3. First, we combine acquired images from vendor A
with images from vendor B, along with their respective multi-tissue
labels predicted by the multi-tissue segmentation network, to train
the generator AB, capable of synthesizing images with a mixture of
style/appearance present in the images from the two vendors. We refer
to this as Configuration 1. Alternatively, in Configuration 2, we train sep-
arate generators, generator A and generator B, to synthesize images of
distinctive styles, reflecting the vendor A and vendor B appearances, re-
spectively. Consistent with the training images, generator A produces
synthetic images similar to real images from vendor A, while generator
B outputs synthetic images similar to real images acquired from vendor
B, which are brighter and with better contrast/quality compared to
images from vendor A (see Fig. 1). In the attempt to better understand
the distribution and diversity of the generated synthetic data in com-
parison to real images, we utilize the t-Distributed Stochastic Neighbor
Embedding (t-SNE) (Van der Maaten and Hinton, 2008) for distribution
visualization (see Appendix A and Fig. A1).

Note that all conditional image synthesis models are trained on
images from the M&Ms data-set, where we remove the slices below
apical and above basal location of the heart which do not contain any
cavity ground-truth labels. This is done since our experiments show
that without the presence of labels to guide the synthesis, the network
5

struggles with synthesizing plausible appearance of anatomy. p
3.3. Heart region detection

As shown in Fig. 2, the first step after generating synthetic images
is the automatic detection of the heart region, whereby a bounding box
is detected that encompasses the LV cavity, myocardium and RV cavity
and is used for cropping images at both training and inference time.
The training labels defining the bounding boxes are obtained from the
ground truth masks in the M&Ms data-set by computing the smallest
bounding box that fits the entire heart in the FOV and expanding it
by 25 voxels in each dimension to incorporate some background. All
bounding boxes are processed in a way to crop images of the size
128 × 128 voxels. Additionally, all images are resampled to a median
spatial resolution of 1.25 × 1.25 × 10 mm3 before cropping. We use a
simple convolutional neural network (CNN) designed for regression,
where the output consists of 6 continuous values. The inputs to the
network are 2D (256 × 256) mid-cavity slices extracted from the
M&Ms training set, while the outputs consist of parameters defining
the bounding box.

Inspired by the approach in Scannell et al. (2020), we first initialize
the bounding box around the center of the image, with the assumption
that the heart lies within a 100 × 100 voxel ROI defining this initial
bounding box. The CNN is then trained to output the adjustment
parameters so that it better fits the whole heart. In other words, the
output of the CNN is the displacement in 𝑥 and 𝑦 directions of the center
f the initialized ROI and its lower left corner, as well as the scaling
actors for the width and height of the initial ROI. The CNN consists of
ive convolutional layers, followed by two fully-connected layers with a
inear activation. Each convolutional layer uses 3 × 3 kernels, followed
y a 2 × 2 max-pooling layer. Batch normalization and leaky ReLU
ctivations are used in each layer, except for the output. Dropout with
he probability of 0.5 is used in the fully-connected layers.

The network is trained for 2000 epochs with a batch size of 32 and
arly stopping (assessed from the validation accuracy), by minimizing
he mean squared error between the computed transformation and
he actual transformation (estimated from the ground-truth) using the
dam optimizer. We start with an initial learning rate of 0.001 but
ecrease it by a factor of 0.5 every 250 epochs using a scheduler.
ote that all image dimensions and scaling/displacement parameters
ere normalized in a way to generate translations that are in the

ange from −1 to 1. Thus, after prediction, all the parameters need
o be de-normalized to reflect the original image scale. The CNN for
eart region detection is trained with a total of 750 2D mid-cavity
lices extracted from the M&Ms train set from both vendor A and
. Input images are normalized to have the intensity values in the
ange of [0,1]. On-the-fly data augmentation is applied to the training
mages, consisting of random translation, rotation, scaling, vertical
nd horizontal flips, contrast augmentation and addition of noise. At
nference time, we again use mid-cavity slices from the test images to
btain the adjustment parameters of the ROI. The predicted bounding
oxes on mid-cavity slices are then propagated through the whole
D volume, from which these slices were extracted. To evaluate the
erformance of the network, we calculate the mean Dice score (DSC)
etween the detected and manually extracted bounding box for the test
et of 120 images. The final selected model performs with a mean DSC
f 95.37 and standard deviation of 0.03. The cropped images obtained
sing the predicted bounding box are post-processed to be of the size
28 × 128 voxels, without any additional resampling, and used for
raining the segmentation networks. Expanding the bounding box to
his size ensures that we do not crop any part of the actual heart
issue throughout the volume and avoids the need for any additional
rocessing.
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Fig. 4. An overview of the cardiac segmentation network structure. The U-Net takes a batch size of b 2D CMR images as input during each iteration and propagates it through
a series of downsampling and upsampling blocks aimed at extracting multi-scale discriminatory features and generating 4 class pixel-wise predictions (backround, LV, MYO, RV).
Each block consists of a convolutional layer (Conv), batch normalization (BN) and leaky rectified linear unit (Leaky ReLU). Note that in cases when the heart region detection
module is utilized before training/inference, we use the exact architecture as shown above. Alternatively, we add one more block at the downsampling (along with the maxpool
operation) and upsampling path to adjust for the increased FOV and image size.
3.4. Cardiac MR segmentation

3.4.1. Network architecture
We adopt a U-Net architecture for a multi-structure segmentation

task, designed according to the recommendations in Isensee et al.
(2021), illustrated in Fig. 4. We opt for a 2D U-Net for a number of rea-
sons, including: (i) having the ability to work with images irrespective
of their slice thickness or severe motion artifacts between slices, as well
as unaligned slices, (ii) having a limited amount of data for training,
while 3D models are typically data-hungry and (iii) the complexity of
training a 3D network, due to its memory and time consumption, as
well as a large number of parameters, often difficult to optimize.

The network consists of either five or six convolutional blocks,
depending on whether the heart detection module is utilized, where
output images are cropped to the size of 128 × 128 voxels. Such images
are processed through five downsampling and upsampling convolu-
tional blocks in total, with 4 max-pooling layers. Alternatively, if region
detection is omitted, the input images seen during training are resized
to 256 × 256 voxels and processed through a total of six downsampling
and upsampling convolutional layers, with five max-pooling operations.
Each convolutional block consists of 3 × 3 kernel convolutional layers,
batch normalization and leaky ReLU activation. We apply batch nor-
malization to improve regularization, but also generalization, as batch
normalization on the adequate amount of images fed in one batch has
the effect of restricting the distribution of the learned weights and thus,
helps the network be less susceptible to noise and intensity variation.
Moreover, we apply dropout regularization, with a rate of 0.5, after
each concatenating operation to further avoid over-fitting.

3.4.2. Data processing pipeline
The first step of the processing pipeline is image resampling, essen-

tial to ensure that the proportion of the heart and the background in
all images is relatively consistent. One of the main aspects by which
images acquired across various scanners and sites differ is the FOV,
causing significant variations in heart sizes. The pixel spacing in the
images available for training ranges from 1.18 to 1.72 mm, while the
range in the test set spans from 0.68 to 1.8 mm. We choose a value of
1.25×1.25 mm for resampling, across short-axis slices. After resampling,
we crop all images to the size of 256 × 256 voxels. Further cropping
is done if the heart region detection module is utilized. We normalize
input images at both the training and inference time to an intensity
range from [0,1]. This is followed by contrast stretching, which rescales
the image intensity levels to include all intensities that fall within the
2nd and 98th percentile.

To increase robustness and cover a wide range of variations in heart
pose and size, we augment the training set by applying:

• random horizontal and vertical flips (𝑝 = 0.5),
• random rotation by integer multiples of 𝜋/2 (𝑝 = 0.5),
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• random scaling (scale factor s ∈ [0.85,1.25], 𝑝 = 0.3),
• random translations (𝑝 = 0.5) and random elastic deformations

(𝑝 = 0.3).

All augmentations are applied on the fly during training. Intensity or
contrast augmentations (such as random gamma correction) are not
applied in this study, in order to better evaluate the variations in
contrast supplemented by addition of synthetic data during training.
At inference time, we only apply in-plane resampling, center cropping
or cropping using the heart region detection, intensity normalization
and contrast stretching.

3.4.3. Training
After pre-processing, the network is fed with batches of 58 images

for training. We use a validation set to track the training progress and
identify overfitting, where the same augmentation approach is applied
to the validation set and the mean Dice score is calculated per each
epoch. To train the network, we use a weighted sum of the categorical
cross-entropy (𝐿𝐶𝐸) and Dice loss (𝐿𝐷𝑖𝑐𝑒):

𝐿𝐶𝐸 = −
∑

𝑘
𝑦𝑘𝑙𝑜𝑔(𝑝𝑘), 𝐿𝐷𝑖𝑐𝑒 =

∑

𝑘
1 −

2|𝑃 𝑘 ∩ 𝑌 𝑘
|

|𝑃 𝑘
| + |𝑌 𝑘

|

,

𝐿𝑇 = 𝜆1𝐿𝐶𝐸 + 𝜆2𝐿𝐷𝑖𝑐𝑒. (1)

where 𝑘 denotes a class, while 𝑝𝑘 represents the predicted probability
map per class. 𝐿𝐷𝑖𝑐𝑒 measures the similarity between the probability
map 𝑃 𝑘 and the ground truth 𝑌 𝑘. 𝜆1 and 𝜆2 are weighting parameters
set at 0.6 and 0.4, respectively, to balance the contribution of the two
losses. We use Adam for optimization, with an initial learning rate 10−4

and a weight decay of 3 ∗ 𝑒−5. During training, the learning rate is
reduced by a factor of 5 if the validation loss has not improved by at
least 5 ∗ 10−3 for 50 epochs. We apply early stopping on the validation
set to avoid overfitting and select the model with the highest accuracy.
All models are trained for a maximum of 1000 epochs, but are shown
to converge within 250 to 350 epochs.

3.4.4. Post-processing
We perform a connected component analysis on the predicted labels

and remove all but the largest connected component per class. Since
test images are both resampled and cropped, we perform bilinear
upsampling on the post-processed outputs of the network to recover
the resolution back to the original.

4. Experiments

To assess the proposed segmentation pipeline and evaluate the
usability of synthetic data generated in this study, we perform a se-
ries of experiments assessing its performance in challenging settings
containing multi-domain and scarce data:
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• First, we assess the quality of synthetic MR images by evaluating
their ability to replace real images during training of segmenta-
tion models. To this end, we train a model with real MR images
(denoted as Real), which we compare with a model trained using
synthesized images, Synth. To study the effect of adding heart
region detection to the training, we train two additional models
Real BB and Synth BB, where BB stands for bounding box. More
details about the experiment can be found in Section 4.1.

• In Section 4.2, we study the effects of augmentation with syn-
thetic images (model Synth Aug) on segmentation robustness.
We compare this to the baseline trained with standard data aug-
mentation (Baseline), as well as the models trained with severe
contrast transformations (denoted as Style Aug and Synth +
Style Aug ).

• Next, we evaluate the effectiveness of synthetic data for domain
adaptation, where available unlabeled images (vendor C) are used
to train a synthesis module to replicate their style (or contrast)
on any given labels. Synthesized images with the style of vendor
C are then used to augment the regular training set and train
a model Synth-C Aug. The performance of this model is com-
pared to models trained using histogram standardization (Hist-C
Aug) and severe contrast transformations (Style Aug). Detailed
experiment description is available in Section 4.3.

• Finally, in Section 4.4, we compare the performance of the models
trained only with images acquired from vendor A or vendor B
(Real A and Real B, respectively) to models where synthetic im-
ages generated in the style of vendor B or A are added to real ven-
dor A or vendor B images (Real_A_Synth_B and Real_B_Synth_A,
respectively). Our aim is to study the effectiveness of synthetic
data in reducing the drop in segmentation performance when data
is limited or data sharing is constrained.

4.1. Cardiac MR segmentation using images generated through conditional
synthesis

In this experiment, we quantitatively evaluate the quality and us-
ability of generated images for segmentation. First, we train two models
without the heart region detection module:

• Real: a segmentation network trained on 300 real images from
the M&Ms data-set, with half of the images acquired from vendor
A and the other half from vendor B.

• Synth: a segmentation network trained on 300 synthesized im-
ages using two separate conditional GAN models per vendor,
trained on the same data used for training the Real model. In
other words, one generator synthesizes images with the style
of vendor A on labels acquired from vendor B, while the other
generator synthesizes the style learned from vendor B images on
the labels from vendor A.

Next, we retrain Real and Synth with the addition of heart region
detection as an extra pre-processing step (Real BB and Synth BB).
Thus, the models are trained using images with a smaller FOV focused
on the heart, where the whole heart is placed in the center of the image.
All models are trained with the same training hyper-parameters and
settings described in Section 3.4, using both ED and ES images. By
utilizing the same labels and data sources for both models, we restrict
the influence of variation in shape and anatomy during training, but
allow for variation in appearance and image quality between synthetic
and real images.

We evaluate the trained models on all images available in the test
set, where vendor C and D images are not seen during training. This
allows us to additionally observe the generalization ability of all models
during segmentation. The test images are pre-processed with respect
to the pre-processing set-up used during training, where the pipeline
differs depending on the usage of the heart region detection module.
7

Fig. 5. Style transforms used as augmentation for training the Style Aug model (see
Section 4.2). These include a combination of random brightness and contrast adjustment
(Contrast Transform), total variation (TV) and bilateral filtering, Laplace transform
and a combination of solarization and posterization.

4.2. Addressing data augmentation using synthesized images

In the next set of experiments, we evaluate whether the addition
of synthetic images to the training set containing real MR images
can further boost the segmentation performance. For this, we train a
baseline model (Baseline) using a total of 600 real MR images, with
300 acquired from vendor A and the other 300 from vendor B. Note
that for both vendors, we double the number of images by utilizing 150
images from each vendor twice in order to retain the same number of
images used during training in all experiments. However, to ensure the
network is not over-fitting and seeing the same images multiple times,
we apply heavy data augmentation. In particular, we apply random
horizontal and vertical flips, as well as rotation and translation with
the probability of 0.7 instead of 0.5, we increase the probability of
random scaling from 0.3 to 0.5 with a wider range for scale factor s
([0.60, 1.50]) and increase the probability of applying random elastic
deformations from 0.3 to 0.5. Finally, we apply gamma transformation
with a probability of 0.5 and 𝛾 randomly chosen from the range of
[0.5,1.8].

We further train a model similar to the baseline, where we again use
600 images but with half of the images pre-processed differently before
training. We refer to this as style augmentation and the model as Style
Aug, where the focus is on introducing contrast diversity in the training
set using different image processing techniques and thus, focus the
optimization of the model towards the fundamental geometry features
of the target tissue. Transformation methods are chosen arbitrarily
with the main aim to increase the variety of training images. For this
experiment, we selected a combination of random brightness and con-
trast adjustment, posterization, solarization, total variation (TV) and
bilateral filtering, as well as the Laplacian transformation. While these
methods have a potential to aid the robustness of segmentation models,
they are mostly suitable under the assumption that the target shape is
fairly consistent. Examples of transformed images can be observed in
Fig. 5.

The previously described models are compared to a model aug-
mented by adding a set of 300 synthesized images generated by a
conditional GAN model trained using the setup proposed under con-
figuration 1 (see Fig. 3) on both vendor A and B images (generator
AB). In other words, to the existing training set of 300 vendor A and
B real MR images, we add 300 synthesized images by the generator
AB on labels extracted from vendors A and B. We refer to this model
as Synth Aug. Finally, we train a model similar to Synth Aug, but
with half of the train set augmented using the style augmentation
techniques utilized for training the Style Aug model. By training such
a model (Synth + Style Aug ), we wish to observe the influence of
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both augmentation methods and see if together they could add an
additional benefit to the training and model generalization. Note that
all models are trained using a heart region detection module in both
the training and testing pipeline and evaluated on the same test set as
in the previous experiments.

To evaluate the generalization and adaptation capabilities of the
proposed pipeline to larger, more heterogeneous data-sets, we evaluate
the method on other open-source CMR data-sets, recognized by the
medical imaging community, which include the data acquired from
the ACDC (Bernard et al., 2018) and M&Ms-2 challenges (Campello
et al., 2021). The detailed description of the experiment, as well as the
results, are available in Appendix D. Both data-sets contain a significant
number of pathological abnormalities, typically challenging to segment,
allowing us to evaluate whether the additional heterogeneity added
by synthetic data allows for better adaptation during segmentation.
However, please note that all evaluated models (Real, Real BB and
Synth Aug) have not been re-trained with new data and thus, are
expected to exhibit a performance drop due to the domain shift in
comparison to M&Ms data.

4.3. Domain adaptation using synthesized images

Unlike domain generalization, domain adaptation assumes the abil-
ity to leverage some extent of the target information, which typically
comes in the form of unlabeled data. We utilize 25 unlabeled images
from unlabeled vendor C available during training in the M&Ms chal-
lenge and train a conditional generator to synthesize the style learned
from vendor C (generator C) to labels acquired from vendors A and

. Note that the labels for vendor C images used during the synthesis
ipeline are acquired solely from the multi-tissue segmentation module.
hus, we train a model Synth-C Aug using 300 images from vendor A
nd B with the addition of 150 synthetic images generated in the style
f vendor C on randomly selected 75 masks from vendors A and B,
espectively.

We compare the performance of the model adapted to vendor C
sing a synthesis pipeline to a model that is trained in a similar fashion,
here instead of generated synthetic data, we utilize a histogram

tandardization approach to mimic the average intensity distribution of
endor C (model Hist-C Aug). Histogram standardization has become
common approach to tackle the domain shift appearing in medical

mages of the same modality, but acquired from different vendors and
enters (Kushibar et al., 2021; Campello et al., 2021). For this purpose,
e utilize a landmark-based histogram standardization approach pro-
osed in Nyúl et al. (2000). For our application, we use 25 unlabeled
mages from vendor C to create a standardized landmark set according
o which a randomly selected set of 75 images per vendor (A and B)
re standardized and added to the training set containing 300 images
rom vendor A and B.

Finally, we train an additional model using 300 real images from
endor A and B, with the addition of 150 images undergoing severe
ontrast transformations used for training the Style Aug model, in
rder to observe if utilizing adaptation methods to target data in
he two approaches proposed above truly has a benefit over training
ithout the target data. We refer to this model as Contrast Aug. Our
aseline is Real BB, first introduced in Section 4.1. The evaluation
s done on vendor C and D test sets, but we pay special attention to
he segmentation performance on vendor C. All models are trained
sing the same pre-processing and augmentation pipeline, as well as
y utilizing the heart region detection module.

.4. Addressing data scarcity using synthesized images

In theory, GANs enable the generation of both anonymous and
otentially infinite data-sets based on a small number of available
edical images (Singh and Raza, 2021; Yi et al., 2019). A commonly
roposed set-up considers training specific generators at each site and
8

o

haring them between sites to synthesize data on labels available at
ach site. However, many argue that generators could learn patient-
ensitive data at each site, which could further be extracted from the
earned weights and thus, present a privacy issue (DuMont Schütte
t al., 2021). An alternative approach is to restrict both the generator
raining and synthesis processes to each site, while sharing only the
lready synthesized data between sites to train a common segmentation
odel. The assumption here is that there exists a common data-set,

ccessible by all sites, which is devoid of any privacy concerns. Labels
cquired from this common data-set would be shared across sites for
he generators to synthesize on. To avoid the anatomical similarities of
uch images, we additionally randomly deform the labels.

In the first experiment under this paradigm, we assume that data
rom vendor A (150 labeled images) is a publicly available data-set,
hile data from vendor B is private, located at another site. A generator

s trained at the site with private data (generator B) to synthesize
mages of style B on labels acquired from vendor A data-set. Using this
ata, we train:

• Real_A: trained on 150 images acquired from vendor A.
• Real_A_Synth_B: trained on 150 images acquired from vendor A

and 150 synthetic images generated in the style of the images
acquired from vendor B.

Furthermore, we reverse the experiment above and assume that
endor B images are publicly available, while vendor A images are
rivate. Thus, we train the additional two models:

• Real_B: trained on 150 images acquired from vendor B.
• Real_B_Synth_A: trained on 150 images acquired from vendor B

and 150 synthetic images generated in the style of the images
acquired from vendor A, where we utilize all 150 deformed
vendor B label masks for synthesis.

We hypothesize that models trained only with data acquired from
ne vendor will exhibit a significant drop in performance on data
rom multiple vendors. However, our goal is to assess if synthetic data
enerated in this work has the ability to replace real data in scenarios
here data sharing is constrained.

. Results

.1. Cardiac MR segmentation using images generated through conditional
ynthesis

There are several observations we can derive by inspecting the
esults of utilizing synthetic data through the proposed pipeline, ob-
erved in Fig. 6 and Table B.1 (Appendix B). First, Real models tend
o outperform the models trained on synthetic data and are generally
ore consistent in their predictions, as suggested by smaller standard
eviation and less outliers. These outliers are further reduced by the
ntroduction of the heart region detection module. In fact, heart region
etection improves the performance across all models. Evaluation on
mages containing a large FOV, which cover tissues such as lung
nd abdominal area, often tends to produce false positive predictions,
argely due to the presence of tissues similar in shape and appearance
o heart cavity. Constraining the FOV reduces the impact of such tissue
nd further benefits the generalization of the model in the presence
f domain shift. Given that heart region detection proves to be quite
n easy task for a CNN to learn, while not significantly increasing the
rediction time, we apply the module in all further experiments.

Despite Real models performing better, models trained on synthetic
ata show quite a remarkable ability to accurately segment real MR
mages across multiple sites/vendors. We observe that most of the
rrors appearing in Synth predictions stem from basal and apical slices,
artly due to unlabeled basal and apical slices removed during training
f these models, as explained in Section 3.2. While we observe an
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Fig. 6. Performance of the models trained with data synthesized on the M&Ms ground truth labels (Synth, n = 300) compared to the baseline trained on real M&Ms data (Real,
n = 300), with and without the region detection module. Results of the models utilizing region detection are marked with BB. All models are evaluated on all three cavity tissues
(left ventricle, myocardium and right ventricle).
Fig. 7. Average Dice score for models trained on real (Real and Real BB) and synthetic data only (Synth and Synth BB) at end-systole (ES) and end-diastole (ED), per tissue
and vendor. In addition, the performance of the models using synthetic data as augmentation (see Section 4.2) is shown, where Synth A stands for Synth Aug model and Synth
+ Style A for Synth + Style Aug model.
improvement in performance by introducing a heart region detection
module, slices around the base and apex of the heart still remain the
largest source of errors. Obtained results suggest that Synth models
perform better on images acquired from vendors B and D, particularly
in the case of RV and MYO segmentation, in comparison to their
performance on other vendors and the LV. This could be a result
of better contrast these images exhibit, with clear delineations and
a quite homogeneous appearance per each cardiac tissue. However,
Real models also under-segment such images, often performing worse
than the Synth models. We hypothesize this is caused by more images
subject to poor contrast, blurring effects and artifacts in synthetic data-
sets, which is a characteristic consequence of the synthesis and style
transfer process.

We additionally investigate the contribution of ED and ES images
on segmentation (see Fig. 7), where we observe that:
9

1. The segmentations at ED are more accurate for LV and RV, but
not for MYO, with a better performance at ES across all models.
This is partly due to myocardium becoming thicker at ES and
thus, easier to segment.

2. Segmentation performance of Synth models at ED seems to
significantly drop compared to ES, impacting the average perfor-
mance of these models reported in Table B.1. However, Synth
BB models improve this difference significantly, resulting in
higher accuracy compared to ES that positively contributes to
the overall performance.

3. The performance of the Synth BB model at ED for LV is at par
or slightly better compared to Real BB. Similar can be observed
for ES myocardium (vendor D), ED right ventricle (vendor B)
and ED myocardium (vendor C).

Finally, both Real and Synth models are susceptible to errors in
cases of myocardium thickening, as well as other pathological cases,
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Fig. 8. Comparison of segmentation results in challenging cases with poor contrast and
quality, as well as artifacts across four different testing vendors. We observe that RV is
the most challenging to segment, which is especially problematic for slices around the
base of the heart. However, the segmentation performance is consistently improved
by augmenting the real MRI data with synthetic data (Synth Aug), with additional
improvements obtained by adding style transformed data in Synth + Style Aug.

with Real models performing slightly better. This might be caused by
an insufficient representation of such cases during the training of both
synthesis and segmentation models. All in all, this experiment shows a
strong indication that synthetic MR images generated in this study can
replace real images during training of DL-based segmentation.

5.2. Addressing data augmentation using synthesized images

In this experiment we evaluate the influence of synthetic images
utilized for data augmentation in a setup described in Section 4.2.
From results in Fig. 9, we observe that the addition of synthetic data
to the training has a positive impact on segmentation performance,
both in terms of DSC and HD scores. While the Style Aug model also
shows improvement, it is not able to reduce outlier examples compared
to both Synth Aug and Synth + Style Aug , with Synth + Style
Aug performing slightly better. However, according to the Wilcoxon
signed-rank test, the differences between the two are not significant,
while both are significantly better for almost all cases compared to the
baseline and Style Aug (except for the myocardium DSC) in vendors
C and D. Prominent differences are particularly seen in HD scores,
caused by the reduction of false positive predictions, but also false
negatives related to the right ventricle. Notably, augmentation shows
the most prominent impact on the segmentation of the RV blood
pool, which has also been visually confirmed, with some examples
depicted in Fig. 8. Fig. 8 shows that both Style Aug and Synth +
Style Aug models compensate for under-segmented areas, with Synth
+ Style Aug exhibiting better ability to handle tougher cases (see Fig. 8
rows 4 and 6), particularly around the base and apex of the heart.
Other commonly occurring cases of under-segmentation improved by
augmentation with synthetic data include areas affected by artifacts
and blur, particularly impacting the LV due to blurring between the
MYO and the blood pool (causing the cavity to appear smaller), in
patients with thickened myocardium and in areas affected by brightness
heterogeneity and lack of contrast. We hypothesize that the added
synthetic images contain more examples of such cases, allowing the
network to learn how to adequately handle a part of these issues.
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Similar behavior is confirmed when evaluating Style Aug and Synth +
Style Aug models per ED and ES phases of the heart, shown in Fig. 7.
We further deduce that Synth + Style Aug shows a steeper increase in
performance compared to Style Aug at ES, while at ED the performance
mostly remains the same. Interestingly, for myocardium segmented in
vendors C and D, the addition of heavy style transformations reduces
the performance at both ES and ED phases. Visual observations of
the predictions for these cases indicates the over-segmentation of both
LV and RV, which impacts the boundary areas of the myocardium,
especially in the presence of trabeculations. Compared to the Real
model, the biggest improvements in Dice scores when augmenting with
synthetic data (Synth Aug model) are observed for LV, RV and MYO
in vendors C, D and A with an increase up to 4.5% (0.88→0.92), 3.3%
(0.90→0.93) and 3.6% (0.83→0.86), respectively. Similarly, the biggest
reduction in Hausdorff distance is obtained for LV, MYO and RV in
vendor D with a percentage decrease by 40.9% (12.2→7.2), 38.1%
(18.1→11.2) and 39% (14.1→8.6), respectively. Appendix C and Fig.
C.2 contain additional analysis in terms of two automatically derived
clinical parameters with reference to manually derived ones, namely,
the Bland–Altman plots of predicted and ground truth LV and RV
ejection fraction (EF). Per-subject, the Bland–Altman analysis shows an
improved agreement between the manual and automatically quantified
EF using the proposed pipeline (Synth Aug model), compared to other
approaches evaluated in this study.

We additionally perform a small study focused on bench-marking
our approach to the state-of-the-art medical image segmentation meth-
ods available in the literature. In particular, we replace the segmenta-
tion network used in this study with the nnU-Net (Isensee et al., 2021;
Full et al., 2020) model and evaluate the effect of adding different
stages of the pipeline to nnU-Net training. In addition, by utilizing both
2D and 3D nnU-Net models, we gain additional insight on the effects
of augmentation with synthetic data proposed in this study on 3D
segmentation networks. We aim to follow the same training approach
as proposed in Full et al. (2020). However, we do not apply ensembling
of 2D and 3D models to obtain final results.

In total, we train 6 additional nnU-Net models that are directly com-
pared to the results obtained by previously reported results obtained
from Real, Real BB and Synth-Aug models. These include the nnUnet
Real 2D and nnUnet Real 3D models, trained using the same data as
the Real model (300 real CMR images acquired from vendors A and
B) using 2D and 3D architecture, respectively; the nnUnet BB 2D and
nnUnet BB 3D models, trained on the same data as Real and Real
BB models with the addition of the heart region detection module;
and the nnUnet Synth Aug 2D and nnUnet Synth Aug 3D models,
trained by utilizing the heart region detection module and augmented
with 300 synthetic images in the same manner as the Synth Aug
model. The resulting Dice scores of all models are visualized in Fig. 10,
acquired by evaluating the networks on the test set across all four
vendors and cardiac tissues. We can make the following observations
from the attained results: (i) both 2D and 3D nnU-Net models exhibit
improvement when trained on images cropped around the heart area,
where we observe a significant reduction in false positive predictions,
(ii) the addition of synthetic data positively impacts the performance
of both 2D and 3D nnU-Net models, whereby the 3D model seems
to perform slightly better overall, although statistical significance is
not observed, (iii) in some cases, nnU-Net models outperform the
models belonging to the original pipeline, but the improvements in
performance are not statistically significant when comparing the final
models augmented with synthetic data.

Finally, the results obtained by evaluating the Synth Aug model on
larger, external data-sets with more inherent heterogeneity, shown in
Appendix D and Tables D.2 and D.3 suggest that augmentation with
synthetic images significantly improves model generalization. In fact,
this happens in spite of the model being trained on a completely differ-
ent data-set than the testing set, suggesting that synthetic images add
a significant amount of heterogeneity and variability to the training.
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Fig. 9. Performance of the models augmented with synthetic data per tissue (Synth Aug and Synth + Style Aug) in terms of (a) Dice and (b) HD scores, compared to the baseline
trained with classical data augmentation and a model trained with the addition of severe style transformations to the images (Style Aug). All models are tested on unseen data
acquired from four different domains/vendors. Mean DSC and HD scores are indicated per model.
Fig. 10. Comparison in performance of the baseline model (Real), the model trained on images cropped around the heart region (Real BB) and the model augmented with
synthetic data (Synth Aug) with the 2D and 3D nnU-Net segmentation models trained under the same conditions, as described in Section 5.2. The Dice score per model is reported
across all four vendors and three cardiac tissues, obtained by performing the evaluation on the test set.
5.3. Domain adaptation using synthesized images

The evaluation of synthetic data utilization in a domain adaptation
setup for segmentation, described in Section 4.3, can be observed in
Table 1. Obtained results suggest that the addition of synthetically
generated data with the style transferred from vendor C, outperforms
the rest of the models by a significant margin, especially when evalu-
ated on test images acquired from vendor C. While Hist-C Aug model
introduces improvement in terms of both Dice and HD across vendor C,
it does not add significant differences in terms of overlap for vendor D,
11
compared to Synth-C Aug. We hypothesize that this is due to a more ex-
tensive variability added to the training when utilizing synthetic data,
which introduces additional diversity in term of contrast and anatomy.
Despite the synthesis procedure being mainly focused on generating
accurate heart cavities, the surrounding tissue changes accordingly and
introduces additional variation that helps with network regularization.
This is especially pronounced when blur and other artifacts occur
around tissue boundaries, as such examples are typically considered
tough for segmentation, but benefit the training. Examples in Fig. 11
indicate that Synth-C Aug boosts the performance on challenging cases,
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Table 1
Segmentation performance of models in a domain adaptation scenario, across test images acquired from vendors C and D, where a small set of unlabeled images from vendor C
are available during training. A baseline model trained with classical augmentations is compared to a model trained with extensive style and contrast transformations (Contrast
Aug), a model augmented with data histogram-matched to vendor (Hist-C Aug) and a model augmented with synthetic data generated using a generator trained to produce images
of style C (Synth-C Aug). Last row presents the p-values obtained by a paired t-test between the Synth-C Aug and Hist-C Aug model, run under the null hypothesis that the
Synth-C Aug model performs significantly better.

Model Vendor C Vendor D

LV MYO RV LV MYO RV

DSC HD DSC HD DSC HD DSC HD DSC HD DSC HD

Baseline 0.89 (0.04) 10.2 (7.5) 0.83 (0.04) 13.0 (8.3) 0.88 (0.06) 11.7 (5.0) 0.91 (0.03) 7.1 (3.2) 0.84 (0.04) 10.4 (4.8) 0.91 (0.04) 11.3 (3.4)
Contrast Aug 0.90 (0.06) 9.3 (6.6) 0.84 (0.03) 12.6 (7.1) 0.88 (0.06) 11.1 (7.2) 0.91 (0.04) 7.2 (3.2) 0.83 (0.04) 10.5 (4.6) 0.90 (0.04) 11.0 (3.2)
Hist-C Aug 0.91 (0.05) 7.9 (4.5) 0.84 (0.04) 12.5 (7.2) 0.89 (0.05) 10.8 (5.7) 0.91 (0.04) 6.8 (3.0) 0.83 (0.04) 9.9 (3.4) 0.91 (0.05) 10.8 (3.3)
Synth-C Aug 0.92 (0.03) 6.2 (2.6) 0.86 (0.03) 10.9 (7.9) 0.90 (0.03) 10.1 (4.1) 0.92 (0.02) 6.2 (3.2) 0.85 (0.03) 9.1 (3.1) 0.91 (0.04) 10.2 (2.9)

p-value <0.01 <0.01 <0.01 <0.01 <0.01 0.029 <0.01 0.023 <0.01 0.031 0.131 0.027
Fig. 11. Performance of models trained in a domain adaptation scenario on challenging
cases from vendor C test set. For most cases, Synth-C Aug outperforms other models,
while reducing both false positive and negative predictions.

where other models under-segment, as well as in slices around the base
or apex of the heart.

5.4. Addressing data scarcity using synthesized images

This experiment focuses on assessing the capability of synthetic data
to replace real data in settings when data is limited or privacy protec-
tion restricts data sharing. Results in Fig. 12 show that the addition
of synthetic images generated from the style not originally included in
the training set can significantly boost the model performance when
evaluated across multiple domains (𝑝 < 0.01), except for vendor B
left ventricle DSC scores. In particular, we note a significant drop in
performance when Real B model is tested on vendor A images, espe-
cially for right ventricle and myocardium segmentation. The addition
of synthetic data (Real_B_Synth_A) is able to compensate for this drop
and reduce the number of outlier predictions, which negatively impacts
both the DSC and HD scores. Such drop in performance is not observed
for the Real A when evaluated on images from vendor B, suggesting
the presence of a significant domain shift between the two data-sets
and the lack of generalization capability of models trained with vendor
B images only. These results suggest that utilizing synthetic data can
aid the performance of the models across different acquisition sites and
scanners, avoiding significant performance degradation.
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6. Discussion

In this paper, we explore the usability of synthesized short-axis car-
diac MR images, generated through the conditional synthesis pipeline
(Section 3.2). Recent success of GANs for image synthesis and style
transfer has been recognized and extended to the domain of medical
imaging, as it holds a lot of promise for the generation of missing
data and addressing the limitations of scarce data in most image
analysis settings. Deficits in generalization to real-world data-sets with
moderately different characteristics (distribution-shifts) represent one
of the most common hurdles appearing due to scarce data. These
deficits significantly affect the adoption of deep learning methods
in clinical environments. However, realistically generated synthetic
images could address these deficits, particularly when it comes to
anonymization, protection of patient information and decreasing the
cost of data collection.

While significant work has been done so far on the development
of synthesis methods for medical images, there is a lack of research
discussing the usability and benefits of the generated data. We show
that by utilizing the method for image synthesis, previously proposed
in Abbasi-Sureshjani et al. (2020) and optimized in Amirrajab et al.
(2020a), we can significantly aid the performance of DL-based seg-
mentation models in the task of heart cavity segmentation across data
acquired from a variety of scanners and vendors. We run extensive
experiments exploring the extent to which synthesized data can replace
real data during training of a deep learning-based segmentation model
in a challenging setting where the testing data is unseen during the
training process. Our experiments show that synthesized data exhibits
a strong potential to aid and replace real data during training, which
could be an important way to tackle data scarcity due to data sharing
restrictions. In fact, our results demonstrate an improvement in Dice
and Hausdorff distance scores up to 4% and 40%, respectively, across
augmentation and domain adaptation experiments performed in this
work.

Given that the synthesis pipeline can be trained to generate images
of any style or appearance, the generated images can be utilized to
serve as a more efficient way of augmenting data and tackling the prob-
lem of varying appearance due to differences in acquisition, common
in MR images. Consequently, this makes the models more robust and
able to generalize to unseen data. We show this through experiments
in Sections 4.2 and 4.3, where we explore the effect of boosting the
training set with synthetic data in comparison to other commonly
used approaches for both augmentation and adaptation. A similar
behavior is observed when augmenting the training of state-of-the-art
segmentation models, such as the 2D and 3D nnU-Net. Statistically
significant improvements are further observed on other external data-
sets, such as the ACDC (Bernard et al., 2018) and M&Ms-2 (Campello
et al., 2021) data, as shown in Appendix D, where the variability
provided by synthetic images improves the adaptation of the network
to pathological tissue. Another application of such data could be in
the domain of federated learning, where instead of acquiring real data
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Fig. 12. Utilizing synthetic data to compensate for data scarcity. Models Real A and
Real B are compensated with data synthesized with style generated from unavailable
vendor B and vendor A data, respectively (Real_A_Synth_B and Real_B_Synth_A). The
performance is reported across test data from vendors A and B in terms of (a) Dice and
(b) HD scores for all cardiac tissues. Mean DSC and HD scores per model are reported.

for training from multiple sites, a synthesis module could be deployed
to generate synthetic data of a similar style present in each site. At
inference time, different models could be used to synthesize images
of different appearance on an available set of labels and thus avoid
the problem of data anonymization and privacy protection. A small
example of how this could work is shown in Section 4.4.

A limitation of this work is that we cannot assess how well syn-
thesized images can tackle cases containing pathology, in spite of
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some positive results obtained on other data-sets containing pathology.
Similarly, we have not yet attempted to synthesize images containing
pathology, due to the lack of labels and pathological data. However,
since we show that images of good quality can be synthesized provided
there are enough labels present during training, we strongly believe
that this method could be extended to cases containing pathology as
well and enrich the scarce data-sets currently available. Furthermore,
we note that the current segmentation pipeline often shows a degrada-
tion in performance at the slices around the base and apex of the heart.
This is a common problem in all heart cavity segmentation models, but
is a bit more prominent in our case since we were not able to synthesize
accurate appearance and anatomy in those slices. We hypothesize this
is due to the lack of ground truth labels for the tissues surrounding the
heart in those slices, as well as inter- and intra-examiner disagreement
in those areas, common across different data-sets.

In addition, while we provide extensive experiments and report
commonly used segmentation metrics, we are limited by the lack of
confidence or uncertainty evaluation of the proposed method. How-
ever, since this is still an open-research question in the medical imaging
community (Mehrtash et al., 2020), we plan to focus some of our future
work on understanding how to properly assess the uncertainty of the
proposed method and augmentation with synthetic data, in general.
This also involves a proper assessment of the quality of generated im-
ages, which we currently evaluate through their usability in a medical
image analysis task. While a number of measurements have been so
far utilized for the quality assessment of medical images, such as the
Inception score, Frechet Inception Distance, structural similarity index,
normalized root mean squared error (Skandarani et al., 2021; Tronchin
et al., 2021), as well as scoring based on human visual perception, it is
still difficult to objectively measure the quality of GAN-derived medical
images. Finally, while the extraction of heart region proves to be a
very important step in tackling the generalization issue of segmentation
models, especially in cases where the FOV varies significantly, it is not
yet fully beneficial when applied on synthetic images. We attribute this
to the artifacts and blurring effects appearing at the edges between
cavity tissue, which are not that apparent when the FOV is considerably
larger. This is indicated by the visual assessment of the results, where
the performance of models trained on synthetic data is degraded at the
edges between the myocardium and the left ventricle, as well as the
myocardium and the right ventricle.

Future work includes tackling some of the above-mentioned issues,
as well as adapting the whole pipeline on cardiac images containing
pathology. We hypothesize that current results can be further improved
by introducing additional augmentation and processing steps, aimed
at decreasing the susceptibility to variations in appearance and shape.
Moreover, introducing plausible anatomical variations to the tissue
masks at the input of the synthesis generator could additionally con-
tribute to the diversity of generated images. This could be done through
geometrical transformations applied on the masks, but also through
more informed approaches, such as auto-encoders, able to capture the
realistic variance in the anatomy of cardiac tissue. On the other hand,
we plan to focus on better inference of what data should be synthesized
based on the characteristics of the data distribution in the training set
or testing set, as well as prior knowledge of the segmentation task at
hand. An example of this is addressing basal and apical slices of the
heart, which are typically under-represented compared to other slices
across the heart volume. Furthermore, we wish to extend this method
to other modalities and organs, as well as repeat our experiments on
a larger clinical data-set, undergoing a wider range of variation. To
do this, we plan to increase the resolution and representational power
of the conditional synthesis approach presented, in order to generate
higher quality and more diverse synthetic images. One way to possibly
tackle this is by fusing the synthesis and segmentation approaches and
train those modules, at least partly, together.

Finally, as shown in Sun et al. (2022) and Hu et al. (2022), 2D
synthesis approaches can be potentially extended to generate true 3D
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volumes, while retaining memory efficiency and the ability to generate
high resolution images. However, this might not be straightforward
for CMR synthesis, as we hypothesize that the target image shape and
acquisition type highly influence the choice of the network architec-
ture. Cardiac cine short-axis and long-axis images are characterized
by large slice thickness and inter-slice gaps and are often affected by
breath-hold related motion artifacts between consecutive slices. This
could hamper the effectiveness of 3D approaches, particularly caused
by the lack of true volumetric information in such images. Moreover,
conditional approaches typically rely on tissue labels for both training
and inference. In images with large slice thickness, the labels are often
patchy and suffer from ’’blocky’’ effects when observed in 3D, which
we hypothesize would have more detrimental effects on the training
of 3D models. Increasing the through-plane resolution in such images
could mitigate this. Thus, while an extension to 3D synthesis using
GANs is essential due to the prevalence of 3D imaging techniques, their
application needs to be carefully studied in data such as short-axis CMR
images.

7. Conclusion

In this paper, we show that synthetic images generated through
the proposed conditional synthesis framework can benefit medical
image analysis, especially in cases where data is limited or missing. In
particular, we use these images to aid the training of a deep learning-
based method for the task of heart cavity segmentation from short-axis
cardiac MR images. We are able to generate high quality, semantically
consistent and anatomically plausible images by utilizing a method that
benefits from segmentation-conditioned normalization layers. We first
demonstrate that a model trained with synthetic images only is able
to achieve competitive performance when evaluated on a test set of
real cardiac MR images and compared to the models trained with real
data only. Furthermore, we show that utilizing synthetic images aids
network generalization and adaptation to data from varying scanners
and vendors. Synthetic images show a strong potential to address
privacy issues with respect to data sharing (e.g. in federated learning).

This approach has a potential to tackle challenging cases with low
quality and poor contrast, as well as pathological cases. Finally, we
demonstrate that synthetic data can successfully tackle data scarcity
and achieve competitive performance combined with data acquired
from a single site or scanner only. Although models trained with the
addition of synthetic images still undergo a decrease in performance
on apical and basal slices containing complex structures and extremely
tiny objects, as well as images with significant deformations, they
demonstrate a strong potential for resolving major issues deep learning
models are facing in the domain of medical image analysis.
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