

A Graph Database Design for Multi-Domain Model
Management
Citation for published version (APA):
Ibrahim, M. (2023). A Graph Database Design for Multi-Domain Model Management. Technische Universiteit
Eindhoven.

Document status and date:
Published: 25/01/2023

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/c1efd53f-8a10-4096-aa73-521a25661e6a

A Graph Database Design for Multi-Domain Model Management

EngD SOFTWARE TECHNOLOGY

A Graph Database Design for Multi-Domain Model Management

Mohammad Ibrahim

March 2023

Eindhoven University of Technology

Stan Ackermans Institiute – Software Technology

EngD Report: 2023/011

Confidentiality Status:

Public

Partners

 Eindhoven University of Technology

Steering

Group

Prof.dr. M.G.J. van den Brand

H.M. Muctadir, EngD

Date March 2023

Composition of the Thesis Evaluation Committee:

Chair: Prof.dr. M.G.J. van den Brand

Members: H.M. Muctadir, EngD

Dr.ir. L.G.W.A. Cleophas

Dr. I. Kurtev

The design that is described in this report has been carried out in accordance

with the rules of the TU/e Code of Scientific Conduct.

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 5.072, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31 402743908

Partnership This project was supported by Eindhoven University of Technology.

Published by Eindhoven University of Technology

Stan Ackermans Institiute

EngD-report 2023/011

Preferred

reference

A Graph Database Design for Multi-Domain Model Management. Eindhoven

University of Technology, EngD Report 2023/011, March 2023

Abstract To remain relevant in a highly competitive marketplace, modern high-tech systems

are becoming increasingly complex, enabling advanced use cases, ease of usage,

and intelligent capabilities. Implementing various advanced features requires col-

laboration between engineering disciplines. These cross-domain collaborations,

however, are often insufficient, resulting in silos where different information is

available to other people. Therefore, the high-level global view of the system is

often incomplete.

Similar things happen to implement high-tech systems through Model-Based

Design (MBD). In this case, multidisciplinary teams work with different models

and modeling tools. Ensuring consistency among these models is a complex task

in model management. It becomes even more complicated in multi-tool and

multidisciplinary settings. Although these model artifacts are often stored in the

same repository, different teams work with other parts, and thus information

becomes localized. As a result, bugs and inconsistencies can go undetected until

appearing later in the product's lifecycle, which is often very expensive to solve.

In this project, we aimed to develop a model management tool that extracts

relationships among multi-tool models and stores them using a graph database.

Later, we queried this database for more insights, for example, identifying

inconsistencies, analyzing change propagation among model elements, detecting

hotspots, analyzing relationship dependencies, etc., among dependent models and

their elements.

Keywords Graph Database, Multi-Domain Model, Model Management, Neo4j, NeoDash,

Graph Data Visualization, EngD, Software Technology

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the Eindhoven University

of Technology. The views and opinions of the authors expressed herein do not

necessarily state or reflect those of the Eindhoven University of Technology and

shall not be used for advertising or product endorsement purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within

this report is accurate and up to date, Eindhoven University of Technology makes

no warranty, representation, or undertaking whether expressed or implied, nor does

it assume any legal liability, whether direct or indirect, or responsibility for the

accuracy, completeness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service

marks of their respective owners. We use these names without any particular en-

dorsement or with the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2023. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced, mod-

ified, or redistributed in any form or by any means, electronic or mechanical, in-

cluding photocopying, recording, or by any information storage or retrieval sys-

tem, without the prior written permission of the Eindhoven University of Technol-

ogy.

A Graph Database Design for Multi-Domain Model Management i

Foreword

It is my great pleasure to introduce the impressive work of Mohammad Ibrahim, an engineering doctoral

student who has developed a graph-based model management tool. Mohammad's tool can read depend-

ency information, along with several other properties, from popular modeling tools such as Simulink &

Rhapsody and store this data in a Neo4j graph database.

Model-Based Systems Engineering (MBSE) has become increasingly popular in recent years as a way

to improve the efficiency and effectiveness of system design and development. With its ability to pro-

vide a more comprehensive view of a system, MBSE has enabled engineers to design and develop

complex systems more efficiently, while also improving system quality and reducing costs. As a result,

MBSE has become a more popular choice for organizations that want to stay competitive in today's

fast-paced market. From aerospace to healthcare, MBSE is being used to model and design complex

systems across a variety of industries, making it a critical tool for modern engineering. However, man-

aging these models and understanding the dependencies among them can be a challenging task, partic-

ularly when dealing with multiple tools and platforms.

Mohammad's work provides a valuable solution to this challenge by developing a tool that can manage

complex block-based models with ease. By allowing dependency information to be read from Simulink

and Rhapsody and stored in a Neo4j graph database, this tool can help researchers and engineers to

better manage and analyze complex models, improving productivity and advancing our understanding

of various systems.

Mohammad's research is an excellent demonstration of his expertise and dedication to the field of en-

gineering. His graph-based model management tool demonstrates the possibilities of a graph-based ap-

proach and how it can be used in managing consistencies among complex models, and we are excited

to see how it will be utilized in the future.

On behalf of the academic community, I congratulate Mohammad on his impressive achievements and

wish him continued success in his professional pursuits. His work will undoubtedly benefit future re-

search activities.

Hossain Muhammad Muctadir, EngD

PhD Candidate

Software Engineering and Technology cluster

Eindhoven University of Technology, The Netherlands

Date: March 16, 2023

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management ii

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management iii

Preface
This report summarizes the "A Graph Database Design for Multi-Domain Model Management" project

that Mohammad Ibrahim carried out at the Eindhoven University of Technology (TU/e), Eindhoven,

the Netherlands.

This project was fully funded and initiated by TU/e as the final graduation project of the Engineering

Doctorate (EngD) in Software Technology (ST) program. It was part of the Software Engineering and

Technology cluster of TU/e. EngD ST program is a two-year technical designer program provided by

TU/e under the banner of 4TU.School of the Stan Ackermans Institute.

This project aimed to design and develop a model management tool using a graph database. We

extracted model elements, their relationships, and dependencies and stores them using graphs.

Moreover, we designed and developed a graph data model that presents models and their relationships.

This tool helps design engineers to access more insights about the system they are working with by

querying information from the database.

This report is organized from an explanation of the problem and requirements analysis to the problem's

solution, design, and implementation. This report is intended for different readers who have other

interests. Readers who want to understand the project context, stakeholders, problem domain, and

problem analysis can refer to Chapters 1 to 4. The ones interested in the detailed requirements,

corresponding solutions, and reason behind the solutions can go through Chapters 5 to 7. Those who

want to study verification and validation can read Chapter 8. Chapter 9 is for those who are interested

in the management of this project. Readers interested in the summary of the achievements in the project,

suggestions for future work, and the trainee's self-reflection can read Chapter 10.

Mohammad Ibrahim

March 2023

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management iv

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management v

Acknowledgments
The last nine months with this project have been simply incredible. This project would not have been

possible without the support of several people. To begin with, I would like to thank my supervisor, Prof.

dr. M.G.J. van den Brand, for giving me this opportunity, especially to work under his direct supervision

in this project. I want to thank him for his constructive feedback, encouragement, and continuous

support throughout the project. His critical thinking and ideas encouraged me to explore the task

differently. Without his constant assistance, this project would not have been a success.

I want to thank Hossain Muhammad Muctadir, my project client, for his continuous support, knowledge,

guidance, and expertise that I needed during this project. I could not have achieved the results and

deliverables without his help. Apart from my project client, I would like to thank David A. Manrique

Negrin and Ion Barosan for their assistance.

I want to express my gratitude to Yanja Dajsuren for the opportunity to be part of the EngD program

and especially for providing me a chance to complete my graduation project. Otherwise, I would not be

able to come to this stage. I want to thank Desiree van Oorschot and all the coaches for their

encouragement and support over the last two years, which has allowed me to grow professionally and

personally. Also, I want to thank Dr. Judith Strother, the EngD ST professor of Corporate Report

Writing, for her excellent feedback and valuable suggestions.

Finally, I extend gratitude to my beloved wife, Nishat Subah Mohana, for her love and support. Also, I

would like to show my deep appreciation to my parents, my parent-in-law, and my family members in

Bangladesh for their support. I thank my colleagues, the Software Technology Trainees of 2020, for

our two years of teamwork, support, fun, and friendship. Moreover, I want to thank my friends Jobaer

Islam Khan, Lamisha Rawshan, and Arnab Kumar Shil.

Mohammad Ibrahim

March 2023

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management vi

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management vii

Executive Summary
Systems have become more complex and extensive due to technological advancements in recent years.

These lead to system developers not being able to comprehend complex systems. Model-Based Design

(MBD) provides a mathematical and visual approach to developing complex systems. Engineers from

different teams work with other modeling tools. Therefore, collaboration among various engineering

disciplines is essential for implementing a complex system through model management. Also, model

management ensures consistency among these models.

The goal of this project was to develop a model management tool. Firstly, we extracted model elements,

their relationships, and their dependencies. We developed an interface and necessary backend

infrastructure using a graph database for querying information from a repository where various cross-

domain heterogeneous models are stored. Also, we designed and developed a graph data model that

represents model elements and their relationships. This tool can query data related to the implementation

artifacts allowing the engineers access to more insights into the system they work with.

To address the project's goal, firstly, we investigated how to get data from models created with different

modeling tools. Secondly, we identified essential elements of each model and developed a parser to

extract specific information. Also, we developed a data loader to store extracted data in a graph

database. Thirdly, we designed a graph database for storing model information with a graph data model

(meta ontology). Fourthly, we developed a visualization tool to display data from the graph database.

Finally, we verified and validated the design and implementation of the tool against the requirements.

This tool will assist design engineers to identify more insights, especially model inconsistencies.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management viii

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management ix

Table of Contents

Foreword ... i

Preface ... iii

Acknowledgments ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures .. xii

List of Tables .. xiv

1. Introduction ... 1

1.1 Project Context ... 1

1.2 Report Outline .. 3

2. Stakeholder Analysis ... 5

3. Domain Analysis .. 7

3.1 Model-Based System Engineering .. 7

3.2 Model-Based Design .. 7
3.2.1. Simulink ... 7
3.2.2. IBM Rhapsody - SysML .. 8
3.2.3. OpenModelica.. 9

3.3 Model Management .. 10

3.4 Graph Databases .. 10

3.5 Neo4j .. 11

4. Problem Analysis ... 13

4.1 Problem Definition ... 13

4.2 Project Goal and Scope .. 13

4.3 Use Case Scenarios .. 13
4.3.1. Mismatching Inputs/Outputs (Interfaces) .. 14
4.3.2. Change Propagation ... 14
4.3.3. Model Evolution .. 14
4.3.4. Input/Output Connectivity ... 15
4.3.5. Hotspot Detection .. 15
4.3.6. Relationship Dependency .. 15

5. Requirement Analysis ... 17

5.1 Requirement Overview ... 17

5.2 Functional Requirements .. 18

5.3 Non-Functional Requirements .. 19

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management x

6. System Architecture and Design .. 21

6.1 System Context ... 21

6.2 4 + 1 Architectural View .. 22
6.2.1. Use Case .. 23
6.2.2. Logical View ... 23
6.2.3. Process View ... 24
6.2.4. Development View .. 25
6.2.5. Physical View .. 26

7. Implementation .. 27

7.1 Technology Choice ... 27
7.1.1. System Requirements .. 27
7.1.2. Database Selection ... 27
7.1.3. Visualization tool Selection ... 28

7.2 Simulink Model Implementation ... 28
7.2.1. Simulink Model ... 28
7.2.2. Simulink Parser Workflow .. 29
7.2.3. Simulink Graph Data Model .. 30
7.2.4. Simulink Graph Data ... 31

7.3 Rhapsody SysML Model Implementation ... 32
7.3.1. Rhapsody Model .. 32
7.3.2. Rhapsody Parser Workflow ... 33
7.3.3. Rhapsody Graph Data Model .. 34
7.3.4. Rhapsody Graph Data .. 35

7.4 Combined Graph Data Model .. 36

7.5 Data Visualization .. 36

8. Verification & Validation .. 39

8.1 Verification ... 39
8.1.1. Unit Testing ... 39
8.1.2. Integration Testing ... 42

8.2 Validation ... 43
8.2.1. Regular Stakeholder Feedback .. 43
8.2.2. Project Goal Evaluation ... 43

9. Project Management ... 45

9.1 Work-Breakdown Structure (WBS) ... 45

9.2 Project Planning and Scheduling ... 45

9.3 Communication .. 46

9.4 Risk Management ... 47

10. Conclusion... 49

10.1 Results and Deliverables .. 49

10.2 Recommendations and Future Work ... 49

10.3 Self-Reflection ... 50

Glossary ... 51

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management xi

Bibliography .. 53

References ... 53

Appendix A. Neo4j Existing Visualization Tools ... 55

Appendix B. Extracted Data in JSON ... 56

About the Author .. 58

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management xii

List of Figures

Figure 1. 1: Multi-tool modeling – Importing and Executing a Simulink Model in Rhapsody 2

Figure 3. 1: A simple Simulink Model ... 8
Figure 3. 2: SysML Diagram Hierarchy ... 9
Figure 3. 3: Example Block Definition Diagram – SysML .. 9
Figure 3. 4: A simple feedback control model in OpenModelica ... 10
Figure 3. 5: An example of a graph and its corresponding graph data model 11

Figure 4. 1: Tracking model changes using time-based versioning in graph [24] 15

Figure 5. 1: Requirement Overview .. 17

Figure 6. 1: High-level Context diagram of our system.. 21
Figure 6. 2: Overview of the System Architecture ... 22
Figure 6. 3: Use cases diagram of the system ... 23
Figure 6. 4: Data extractor and loader class diagram .. 24
Figure 6. 5: Data visualization Sequence diagram .. 24
Figure 6. 6: Storing model data into database Sequence Diagram.. 25
Figure 6. 7: System component diagram .. 25
Figure 6. 8: System deployment diagram ... 26

Figure 7. 1: An example dashboard developed in NeoDash ... 28
Figure 7. 2: Simulink example model ... 29
Figure 7. 3: Simulink parser workflow ... 29
Figure 7. 4: Simulink parser algorithm ... 30
Figure 7. 5: Simulink Graph Data Model with entities and their properties ... 31
Figure 7. 6: Generated graph from the Simulink model ... 32
Figure 7. 7: Rhapsody Model Structure with Block Definition Diagram ... 33
Figure 7. 8: Rhapsody parser workflow .. 33
Figure 7. 9: Rhapsody parser algorithm .. 34
Figure 7. 10: Rhapsody Graph Data Model with entities and their properties 35
Figure 7. 11: Generated graph from the Rhapsody model .. 35
Figure 7. 12: Combined graph data model with only entities ... 36
Figure 7. 13: Dashboard to visualize data ... 37

Figure 8. 1: The unit testing status result of the Simulink models implemented in MATLAB 41
Figure 8. 2: Unit test status implemented in Pytest ... 42

Figure 9. 1: Project Work-Breakdown Structure .. 45
Figure 9. 2: Project timeline summary .. 46

Figure A. 1: Neo4j existing visualization tools [30] ... 55

Figure B. 1: JSON data file format of a Simulink model .. 56

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management xiii

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management xiv

List of Tables
Table 2. 1: Stakeholders and their concerns.. 5

Table 5. 1: Functional Requirements .. 18
Table 5. 2: Non-functional requirements .. 19

Table 8. 1: Existing sample test cases for the project ... 39
Table 8. 2: Manual test cases for checking the integration of different components 42

Table 9. 1: Probable risks and their mitigation plans .. 47

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management xv

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 1

1.Introduction

The system complexity has increased with recent technological advancements. In many cases, models

are used to describe systems. These models become larger and more complex due to the size and

complexity of the system. Therefore, model management becomes more important when organizing

and maintaining models for ensuring consistency [1]. It becomes more urgent when multidisciplinary

teams work on models from different domains. In this project, we propose a solution to the problem of

managing models. This chapter provides an overview of the project context in Section 1.1. Finally, this

chapter presents an outline of this report in Section 1.2.

1.1 Project Context

Systems are becoming more complex with the expansion and development of technology, system engi-

neering, and customer demands for high-tech products [2]. Also, there exists a strong relationship be-

tween the various disciplines because they integrate with hardware (electronics, machinery) and soft-

ware components. The cost and difficulty of developing a product can be affected by these relationships.

The Model-Based Systems Engineering (MBSE) approach is progressing and leading the way and is

expected to become a standard practice in systems engineering [3]. An MBSE methodology focuses on

modeling as its primary artifact, and its benefits include faster development, earlier system analysis,

and more manageable complexity. It is used in many domains, including Robotics, Automotives, and

Software Systems.

A heterogeneous system is a system that consists of components from different domains. For example,

a mechatronic system includes mechanical, electrical, and computer components [4]. Each part belongs

to a particular discipline that requires specific domain knowledge to interpret its purpose and function.

The complexity of developing heterogeneous systems increases when engineers from different expertise

and domains combine their models [5]. A model represents reality, an abstraction of things relevant to

stakeholders described clearly and unambiguously. For developing models, several tools are available,

including MathWorks Simulink, IBM Rhapsody, OpenModelica, LabVIEW, Enterprise Architect, and

UML [33]. This project focuses on block-based models and modeling tools to see how they are inter-

connected. Figure 1.1 shows an example of multi-tool modeling. Here, a Rhapsody SysML model uses

another model of Simulink. The interfaces (inputs/outputs) are marked as circles by which these two

multi-tool models are connected and pass information to each other.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 2

Figure 1. 1: Multi-tool modeling – Importing and Executing a Simulink Model in Rhapsody

When multidisciplinary teams work on the same system, they use different models with overlapping

semantic definitions [6]. Although these artifacts are often stored in the same repository, different teams

work with other parts, thus making the information localized. Consequently, bugs and inconsistencies

can be undetected until later in the product's life cycle, which is often quite expensive to fix. A robot is

an example of such a complex multi-domain system. Combining models created by mechanics, elec-

tronics, and software experts may be necessary. These models might be created using domain-specific

tools of each domain.

Model changes in one domain can affect models from other disciplines, resulting in input/output incon-

sistencies throughout the system. Inconsistencies can occur at many stages throughout the entire life

cycle of the development of a system. The sooner an inconsistency is detected, the cheaper it will be to

fix [7]. Inconsistencies can lead to catastrophic events such as the following two examples. In 1999,

NASA's unmanned MARS Climate Orbiter [8] was destroyed due to inconsistent metric units, and Air-

bus had a 6-billion-dollar loss due to varying specifications in different versions of design tools in 2006

[9].

Managing models belonging to the same domain may not be a complex task because of the features

provided by the development tools. However, managing interrelated models from different domains can

be challenging [10]. Therefore, model management recognizes and maintains models and ensures con-

sistency. The structure and development of model management may include a model repository, mod-

eling tools, and a database for storing model information.

In this project, we proposed a model management tool that uses a graph database to store the

relationships between models to solve the problem of input/output inconsistency. We proposed to

design a graph data model to specify how data is structured and stored in the graph database. This design

contained the metadata of the model and the relationships between the models. This tool can be used to

query artifacts for gaining more insights and identifying inconsistencies and dependencies among

models earlier.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 3

1.2 Report Outline

The rest of the report is organized as follows:

• Chapter 2 - Stakeholder Analysis: We describe the stakeholders of this project, their concerns,

and communication way in this chapter.

• Chapter 3 - Domain Analysis: We provide information about the domain analysis to understand

better where the problem resides.

• Chapter 4 - Problem Analysis: We refer to the problem definition and project goal and scope

to realize the current situation based on domain analysis in this chapter.

• Chapter 5 - Requirement Analysis: This chapter defines the requirement elicitation and the

functional and non-functional requirements.

• Chapter 6 - System Architecture and Design: We illustrate the architecture and design for de-

veloping the tool.

• Chapter 7 - Implementation: This chapter explains the tool's implementation in more detail.

• Chapter 8 - Verification and Validation: In this chapter, we describe the process of verifying

and validating our implementation.

• Chapter 9 - Project Management: We present an overview of how this project was managed,

including project planning, communication, and risk management.

• Chapter 10 - Conclusion: We conclude the project with results, open directions for possible

future recommendations, and self-reflection.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 5

2.Stakeholder Analysis

This chapter investigates and describes the stakeholders who can influence the project's success.

This project is an internal project of TU/e. Therefore, all the stakeholders were from TU/e. They were

responsible for ensuring that the project deliverables satisfied all the requirements. They helped to

maintain the quality of the project and provided their support. Table 2.1 lists the stakeholders and their

concerns about this project.

Table 2. 1: Stakeholders and their concerns

Name Role Communication

Way

Concerns

Mark van

den Brand

TU/e Supervisor ▪ Biweekly update

meetings

▪ PSG meetings

• Ensuring the project progress

based on milestones and plan

• Providing the required guidelines

for project success

• Ensuring the quality of the pro-

ject results

• Monitoring the progress of the

EngD trainee

• Ensuring well-written final re-

ports

Hossain

Muhammad

Muctadir

Project Client ▪ Weekly update

meetings

▪ PSG meetings

▪ On-demand

meetings when

required

• Defining the project require-

ments and deliverables

• Helping and guiding the trainee

with domain knowledge

• Monitoring progress based on

the defined plan

• Developing an effective tool

• Ensuring trainee's progress based

on observations

• Completing the project on time

David

Manrique

Negrin

Domain Expert ▪ On-demand

meetings when

required

• Transferring domain knowledge

to the trainee

• Helping with technical guideline

Ion Barosan Domain Expert ▪ On-demand

meetings when

required

• Discussing and gathering do-

main-specific knowledge

• Helping with technical guideline

Yanja

Dajsuren

Program

Director, EngD

ST

▪ TU/e comeback

days

▪ On-demand

meetings when

required

• Ensuring successful collabora-

tion with project client

• Ensuring that the project meets

the quality requirements

• Evaluating and suggesting ap-

propriate personal and profes-

sional development of the trainee

• Providing the final report's qual-

ity meets the program standards

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 6

• Ensuring trainee's graduation

Mohammad

Ibrahim

EngD ST trainee • Providing an effective tool that

meets stakeholders' expectations

• Finishing the project during the

specified period

• Boosting technical skills by de-

livering the high-quality project

• Enhancing the design and leader-

ship skills

• Writing the final report that

meets the program standards as

well as the project quality

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 7

3.Domain Analysis

At the beginning of this project, the main focus was to understand the context and identify related

artifacts, also known as domain analysis. In this section, we present the domain concepts that are

relevant and useful for this project.

3.1 Model-Based System Engineering

Model-Based Systems Engineering (MBSE) is an approach that applies models to support the whole

system lifecycle. The International Council of Systems Engineering (INCOSE) defines MBSE as the

application of modeling throughout the project life cycle, including requirements, design, analysis, ver-

ification, and validation [11]. MBSE aims to create a model of the system under development. The

entire system can be defined and understood by covering it in detail [12]. Modeling provides additional

benefits, such as analyzing complex technical interactions within a system. Therefore, the application

of MBSE has increased in recent years, and new challenges and problems have emerged [13].

3.2 Model-Based Design

Model-based design (MBD) is a mathematical and visual method of developing complex control, com-

munication, and signal processing systems [14]. It provides an efficient way to establish a common

framework for communication throughout the design process. This methodology differs significantly

from traditional design methods. A model-based design method uses continuous-time and discrete-time

building blocks to define models with advanced functional characteristics rather than relying on com-

plex structures and extensive software code. These models can facilitate rapid prototyping, software

testing, and verification using simulation tools.

In the past, design engineers relied heavily on mathematical models and text-based programming. The

process of developing these models, however, was time-consuming and highly error-prone. Debugging

text-based programs is also a tedious process, requiring a lot of trial and error before producing a fault-

free model. Conversely, model-based design tools are aimed at improving these aspects of design using

model elements or blocks. In these tools, the design process is broken down into hierarchies of individ-

ual design blocks, reducing the complexity of the design process. We call these models.

We can use several tools for modeling. In this project, we were mainly interested in block-based mod-

eling tools. We primarily identified Simulink and Rhapsody SysML tools and partially focused on

OpenModelica. We discuss these modeling tools in the following sections.

3.2.1. Simulink

Simulink is an extension of MATLAB used for graphical modeling, simulation, and model-based design

of multi-domain dynamic systems [15]. Simulink represents mathematical models of physical systems

graphically as block diagrams. It supports system-level design, simulation, automatic code generation,

and continuous testing and verification of systems. Simulink and MATLAB are tightly integrated.

Therefore, users can incorporate MATLAB algorithms into their models and export simulation results

into MATLAB.

Simulink has two major types of elements:

Blocks

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 8

Using blocks, we can create, modify, combine, output, and display signals. The Simulink library con-

sists of several general types of blocks for example sources, sinks, continuous, discrete, math opera-

tions, ports & subsystems, etc.

Lines

Lines are used for transferring signals from one block to another. A line transmits signals in the direction

indicated by an arrow. Lines must continuously transmit signals from one block's output terminal to

another's input terminal. Figure 2.1 shows a simple Simulink model.

Figure 3. 1: A simple Simulink Model

3.2.2. IBM Rhapsody - SysML

IBM Rational Rhapsody is a visual development environment for building real-time or embedded sys-

tems and software. As of this point, we refer to IBM Rational Rhapsody as Rhapsody. It supports vari-

ous modeling languages, including UML, SysML, AUTOSAR, MARTE, DDS, MODAF, etc. [31]. In

this project, we use IBM Rhapsody as System Modeling Language (SysML) modeling tool.

SysML

The Systems Modeling Language (SysML) is a standard, general-purpose, modeling language for

model-based systems engineering (MBSE) [16]. SysML supports the specification, analysis, and design

of a broad range of complex systems such as control systems. It was developed by Object Management

Group, Inc. (OMG). It is defined as an extension to UML based on UML's profile mechanism. SysML

can specify, analyze, design, verify, and validate complex hardware and software systems using these

extensions. Specifically, the language provides graphical representations with a semantic foundation

for modeling system requirements, behavior, structure, and parametric.

There exist nine kinds of SysML Diagrams [17]:

• Block Definition Diagram (BDD): BDDs display elements such as blocks and value types. In

a BDD, blocks represent classes, as in a UML diagram.

• Internal Block Diagram (IBD): The IBD diagram specifies the internal structure of a BDD

block. Additionally, it shows the connections and interfaces between all parts in a single block.

• Use case diagram: In SysML, use case diagrams are like UML diagrams. these give a graphical

overview of all the system's functionalities and the actors that can utilize them.

• Activity diagram: It is a diagram of behavior that specifies behavior through actions, inputs,

and outputs.

• Sequence diagram: An operational call and signal diagram can show how parts of a block

interact with one another.

• State machine diagram: A behavior diagram represents certain states of a system where a

system can change conditions using events.

• Parametric diagram: Constraints are linked to system properties in a parametric diagram.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 9

• Package diagram: A package diagram is a structural diagram that shows how a system's hier-

archy is structured. It is used to describe a system at a high level.

• Requirements diagram: A requirements diagram is a diagram that contains all the require-

ments for a particular system. Each of these requirements can have relationships with one an-

other.

A good overview of all the categories and relationships between SysML diagrams is presented in

Figure 3.2.

Figure 3. 2: SysML Diagram Hierarchy

Figure 3.3 shows a SysML Block Definition Diagram. It contains blocks which are the central concept

in a SysML model. Blocks are connected with association, aggregation, composition, dependency, and

generalization.

Figure 3. 3: Example Block Definition Diagram – SysML

3.2.3. OpenModelica

OpenModelica is a Modelica-based open-source framework for modeling, analyzing, and simulating

dynamic systems. It was developed by the Programming Environments Laboratory (PELAB) at Linkö-

ping University, and a non-profit organization called the Open Source Modelica Consortium (OSMC)

has supported it [18]. OpenModelica aims to provide a flexible and comprehensive model, compilation,

simulation, and systems engineering environment for research, teaching, and industrial use.

There are several subsystems in the OpenModelica environment. OpenModelica Compiler (OMC)

translates Modelica models into C code, which is compiled and executed to simulate the model.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 10

OpenModelica Connection Editor (OMEdit) is a graphical and textual connection editor for component-

based model design. It includes browsing the Modelica standard library, simulating, analyzing simula-

tions, and presenting documentation. Figure 3.4 shows a simple feedback control model developed in

OpenModelica.

Figure 3. 4: A simple feedback control model in OpenModelica

3.3 Model Management

Modeling and simulation tools are increasingly used for industrial applications [19]. These tools support

different steps in the modeling and simulation lifecycle, including defining requirements, creating mod-

els, simulating models, checking models, and writing code. However, modern industrial products' het-

erogeneity and complexity often require combining models from various domains. A seamless ex-

change of models between different modeling tools is essential for integrating a complex product model

throughout the development process. Model management is a process of managing models. It ensures

consistency among the models in a multi-tool and multidisciplinary setting. Graphs can represent rela-

tionships between models, similar to the structure of (meta) models.

3.4 Graph Databases

Graph databases are based on mathematical graph theory. A graph database is a collection of nodes and

edges. Each node represents an entity (such as a person) and each edge represents a connection or rela-

tionship between two nodes. It stores information in the nodes (or vertices) and edges (or relationships)

of a graph, as shown in Figure 3.5(b). In graph databases, relationships are stored directly with nodes,

which is a valuable feature. Therefore, foreign keys and joins are not required as in relational databases.

This makes it possible to read highly connected data very fast. In read access, individual data records

(nodes and edges) are read in place rather than being searched globally. Thus, execution time only

depends on the depth of the traversal.

According to Robinson et al. [20], graph databases are database management systems that allow users

to create, read, update, and delete graphs exposed by graph data models. The graph data model is

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 11

focused on relationships, which is why graph databases are relevant to this study. Despite the name,

traditional relational databases require foreign keys to infer relationships between entities. Therefore,

graph databases are more suitable for problems that rely on relationships between entities. We can build

models closely related to our problem of model management by using graph databases. In a graph,

domain entities are represented as vertices and their relationships as edges. There are a variety of types

of vertices, edges, and relationships between graphs that can be abstracted into meta-graphs. This meta-

graph is known as a graph data model.

Figure 3.5(a) shows an example in which a graph data model contains a movie vertex, an actor vertex,

and a director vertex. These are connected by ACTED_IN and DIRECTED edges, respectively. Movie,

Actor, Director, ACTED_IN, and DIRECTED labels indicate vertex or edge type.

Figure 3.5(b) illustrates a graph instance of this graph data model and contains five actor vertices, one

director vertex, and one movie vertex. The five actors' vertices are connected to the movie vertex, each

with an ACTED_IN edge. The one director vertex is connected to the movie vertex with a DIRECTED

edge. These vertices contain the actor and director names and the movie's title. The actor, director, and

movie labels on the vertices are ignored to keep things short.

Figure 3. 5: An example of a graph and its corresponding graph data model

3.5 Neo4j

Neo4j is a graph database platform developed by Neo4j, Inc. It is a native graph database platform built

to efficiently store, query, analyze, and manage highly connected data [21]. It is also an ACID

(Atomicity, Consistency, Isolation, Durability) compliant transactional database. Furthermore, Neo4j

is schemaless, meaning no metadata must be defined before user data is inserted. Neo4j also uses

property graphs [22], indicating that vertices and edges can have properties and need to be determined

by at least one label. In property graphs, relationships may have a direction that helps to identify

relationship dependencies.

Moreover, Neo4j supports graph scalability, high availability, clustering, cloud graphs, a large active

community, and integrated ETL. Neo4j implements the declarative graph query language Cypher, a

powerful and expressive language for querying different insights from stored data. We selected Neo4j

as the graph database management system for this study because it is the most widely adopted graph

database [23] and comes with tools that are used to manipulate the data and visualize the stored graph.

There are many advantages of the Neo4j database. These are:

• Performance: The performance remains high despite significant increases in data volume.

• Flexibility: Data structure can be upgraded without affecting existing functionality.

• Agility: The data store can evolve along with the application.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 13

4.Problem Analysis

This chapter provides an introduction to the problem this project explores. Section 4.1 briefly discusses

the problem definition. Section 4.2 addresses the goals that need to be addressed and the project's scope.

Finally, Section 4.3 explains the identified use cases.

4.1 Problem Definition

Modeling and simulation tools have become more prevalent in industrial application development [19].

These tools facilitate various activities in the modeling and simulation lifecycle, such as defining

requirements, creating, simulating, and checking models. Ensuring consistency among models in a

multi-tool and multidisciplinary environment can be a challenging task. In this project, we propose a

model management tool that extracts relationships among models and stores them using a graph

database, which can be used for more insights and identifying inconsistencies among dependent models.

4.2 Project Goal and Scope

This project aims to contribute towards solutions to the design and development of a model management

tool using a graph database. There are several sub-goals (high and low levels) in this project. The fol-

lowings are the goals and contributions:

High-level goals:

• Identify inconsistencies and more insights in the early stage

Low-level goals:

• Design a model management tool with a graph database

o We propose and design a model management tool. We check and identify the graph

representation of a model, its elements, and its relationships. We also determine the

elements of a model that should be represented in a graph.

• Design a graph data model (meta ontology) for a graph database

o We define the graph data structure to be stored in the graph database. The meta-data

makes the graph data of the model and the appropriate data required to define its rela-

tionship with other models.

• Design a parser for specific modeling tools to extract multi-domain model information

• Define use cases

o We investigate how to identify possible use cases for defining and developing the

model management process.

• Create a user interface for data visualization

Moreover, during the initial project meetings with the stakeholders, we defined our scope to focus on

only the block-based modeling tools. This is because these modeling tools work together and there is a

chance to create inconsistent situations among the dependent models. Also, we can store and represent

the model information from block-based modeling tools in a graph database. Each block or element of

the model becomes a node in the graph database.

4.3 Use Case Scenarios

Finding appropriate use cases is a challenging task. To achieve our project goal, we chose the following

use cases. We defined these use cases to narrow down and specify our project scope and objectives.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 14

4.3.1. Mismatching Inputs/Outputs (Interfaces)

One model may be connected with another model and dependent on each other regarding inputs and

outputs. We can call these inputs and outputs interfaces between the models. An interface mismatch

indicates the differences in the formats and specifications of messages exchanged between two

interfaces. For example, we are developing a project where we use Simulink and Rhapsody modeling

tools together. We need to use a Simulink model to simulate a task from a Rhapsody model. When the

Rhapsody model is using the Simulink model, we need to provide the input parameter from the

Rhapsody model to the Simulink model and receive the output result from the Simulink model. In this

case, there is a possibility to mismatch the data type of the provided input parameters and as well as

receiving parameters. In this project, these mismatching interfaces are also known as model

inconsistencies. The inconsistency can happen when:

• The expected input data type of one model element and the corresponding desired output data

type of another are different. We define it as model element-level inconsistency.

• The expected input data type of one model and the corresponding desired output data type of

another differ. We define it as model-level inconsistency.

Figure 1.1 in Section 1.1 shows an example of the interface dependencies between the two models.

Here, one Rhapsody SysML model is using another model of Simulink. The interfaces are marked as

circles by which these two multi-tool models are connected and pass information to each other. If the

data type of the model-level interfaces is not matched, then we can call it a mismatching interface.

4.3.2. Change Propagation

Change is very common in any system at any time. In a model-based development, a change not only

impacts a model but also impacts other models. It is also known as impact analysis. We define change

propagation as the required changes in other model elements to ensure consistency after a particular

element is changed in one model. It helps us to identify the impact of any changes in the current system.

Additionally, we become concerned about the modification and inform the respective team about

potential model inconsistencies.

4.3.3. Model Evolution

As new elements and relationships are implemented, the model evolves continuously. Model changes

can happen for several reasons. The model can be changed as new requirements are introduced to a

modeled system or existing one's updated. These recent changes can result in a difference between the

existing and dependent models. It allows the model management system to see what it looks like at a

particular time.

Figure 4.2 shows an example diagram of model change history using the time-based versioning concept

in a graph database. In this concept, we need to use two types of nodes. One type of node represents the

id of each model element to uniquely identify it in the system. Another type of node keeps the latest

information with a timestamp for every change.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 15

Figure 4. 1: Tracking model changes using time-based versioning in graph [24]

4.3.4. Input/Output Connectivity

We can check the input/output (interfaces) of model elements. It will help us to identify how a specific

element is connected with other elements and what kind of data is exchanged between them. This way,

we can analyze a model or its element in our modeling environment.

4.3.5. Hotspot Detection

In general, a hotspot can be defined as an area with a higher concentration of events than other events.

In multi-tool modeling, the hotspot indicates which components have more than the usual importance

or dependencies, or interconnections. It means which component has more incoming/outgoing

connections. We can check hotspots in two ways:

• Model elements that have more than usual incoming/outgoing connections

• The model itself, which is used (by) many other models

4.3.6. Relationship Dependency

Relationship dependency indicates identifying the relationship between two elements or models. It will

help us to see the full dependency path between the two elements, how they are connected, and which

changes will impact them. Although it is similar to the input/output connectivity use case, it has a little

difference. It will help us to check all possible relationship dependency paths between two specific

model elements.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 17

5.Requirement Analysis

This chapter explains the requirements that have been identified for this project. Section 5.1 describes

the requirement overview. Section 5.2 provides an overview of the system's functional needs and how

it is developed and prioritized. Finally, Section 5.3 shows the non-functional requirements of the

system.

5.1 Requirement Overview

A requirement is a statement that defines a product or process's operational, functional, or design char-

acteristic that is unambiguous, measurable, and necessary for its acceptance [25]. A clear list of require-

ments is essential to steering a project in the right direction. However, during the lifecycle of a project,

new customer requirements can emerge, and the old ones may need to be updated.

This project has two categories of requirements: Functional and Non-Functional. Figure 5.1 describes

these two categories. The functional requirement is related to the functionality that needs to be

developed. On the other hand, the non-functional requirement is the requirement that defines the

attributes of a system. Also, it directs the system's design criteria to satisfy these non-functional

requirements.

Figure 5. 1: Requirement Overview

We started with a set of initial requirements for this project. All of these requirements were revisited

and updated throughout the entire project. The following techniques were used to acquire requirements:

• Brainstorming

• Stakeholder meeting

• Prototyping

The brainstorming session was held during the initial stage of the project. We started by analyzing the

problem and possible solutions during the brainstorming session. After the session, we devised several

functional requirements listed in the next section. Additionally, we arranged regular meetings with

stakeholders to understand their needs. We developed prototypes to show and discuss our thoughts more

actively to get early feedback.

The MoSCoW method [26] prioritizes the elicited set of requirements. The word MoSCoW is an

abbreviation of four, each defining different priority levels. They are:

• Must have (M): The requirements under this category must be included in the final delivery.

• Should have (S): The requirements under this category are suggested to include in the project.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 18

• Could have (C): The requirements under this category could be satisfied depending on the

project's timeline.

• Will not have (W): The requirements under this category will not be addressed in the project

scope.

5.2 Functional Requirements

In this section, we list the functional requirements. The project is broken down into several

requirements, which are then decomposed into functions. The functional requirements are the

requirements that describe a system as a specification of behavior between inputs and outputs. The

various functional requirements are presented in Table 5.1.

Table 5. 1: Functional Requirements

Req_Id Req_Priority Req_Description

FR01 Must
The system shall allow the user to parse all models and extract data

into the corresponding JSON file.

FR02 Must
The system shall allow the user to store extracted data in the graph

database.

FR03 Must

The system shall identify all mismatching interfaces and allow the

user to store them in a graph database.

FR04 Must
The system shall allow the user to visualize all mismatching interfaces

existing in the current system.

FR05 Must

The system shall allow the user to visualize all mismatching interfaces

existing in the current system.

FR06 Must The system shall trace change propagation.

FR07 Could

The system shall detect model evolution. The system shall be able to

store all relevant change information of a model. Also, the system

shall allow the user to see the change history of a model.

FR08 Must
The system shall allow the user to investigate input/output

connectivity.

FR09 Must The system shall allow the user to detect the hotspot of a system.

FR10 Must The system shall allow the user to find out relationship dependency.

FR11 Could The system shall be able to read models from a git repository.

FR12 Should
The system shall allow the user to see all relevant visualization

diagrams as required and expected.

FR13 Should
The system shall be able to create a graph data model for an individual

modeling tool.

FR14 Should
The system shall be able to maintain a standard graph data model for

all existing tools based on their model.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 19

5.3 Non-Functional Requirements

The non-functional requirements (NFR) are criteria that assess a system's operation instead of its

specific behavior. The various non-functional requirements are presented in Table 5.2.

Table 5. 2: Non-functional requirements

Req_Id Req_Priority Req_Description

NFR01 Must

The component of the system shall be decoupled and in a modular

structure. The backend (graph database) must be separated from the

frontend (visualization). Any changes in the frontend implementation

must not affect the backend.

NFR02 Must
The system must be extensible to add new modeling tools on

demand.

NFR03 Should

The system shall be user-friendly. The system shall use regular and

appropriate user interface elements (e.g., bar graph, pie chart, table,

etc.) so the user can easily understand them.

NFR04 Could
The system shall be testable with an automatic testing standard to

make the testing process more manageable and effective.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 21

6.System Architecture and Design

Proper planning is essential to implement a software system that satisfies the stakeholders' requirements.

System architecture and design is one of the most important parts of that plan. A system architecture is

a comprehensive description of the individual components that communicate and work together to make

up the corresponding system.

This chapter describes the architecture that guided the development of the system. In Section 6.1, a

high-level context and system architecture are described. Section 6.2 contains the 4+1 view model of

architecture.

6.1 System Context

In this section, we illustrate the high-level context of the system, which explains the overall scenario

before going to the detailed architecture. The system context diagram in Figure 6.1 is used to show the

system’s architecture. First, we store block-based models of different modeling tools in local storage.

Next, our tool reads these models from the storage, extracts model information, and stores these in a

graph database. It also creates a specific meta ontology (graph data model) for each modeling tool.

Finally, we visualize data in the dashboard for identifying more insights.

Figure 6. 1: High-level Context diagram of our system

The architecture of the entire system, based on the function decomposition, is presented in Figure 6.2.

The system contains different components to extract model data, load data into the database and

visualize data into the dashboard.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 22

Figure 6. 2: Overview of the System Architecture

6.2 4 + 1 Architectural View

The 4+1 view model is one of the well-known and widely used architectural approaches for software-

intensive systems proposed by Philippe Kruchten [34]. It has multiple views to describe separately the

concerns of the various stakeholders for example system engineers, developers, and end-user.

Therefore, this project used the 4+1 architectural view to illustrate different perspectives on describing

the system.

The 4+1 architecture consists of four different views, which are:

• Logical view – describes the component (object) of the system and the interaction. In the UML

diagram, this view can be demonstrated using a class diagram or state diagram.

• Process view – shows the processes of the system. This view can be illustrated using a sequence

or activity diagram.

• Development view – illustrates a system from a programmer's perspective and is concerned

with software management. UML component and package diagrams can be used to explain this

view.

• Physical view – describes the installation, configuration, and deployment of the system. A UML

deployment diagram can be used to illustrate this view.

The one from 4+1 architecture is Scenario. This is the fifth view, which represents the use cases that

are supported by the system.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 23

6.2.1. Use Case

We show use cases to describe potential interactions between a system and its users. In the context of

this project, an admin designer is a typical user of the system. Figure 6.2 shows the potential actions

that a user can perform with this tool.

Figure 6. 3: Use cases diagram of the system

6.2.2. Logical View

This section describes the logical view of the system. The logical view is concerned with the system's

functionality to end-users. We are using the data extractor and loader class diagram for this view, as

Figure 6.3 shows.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 24

Figure 6. 4: Data extractor and loader class diagram

6.2.3. Process View

This process view includes the UML sequence diagram of the data visualization. Sequence diagrams

are used to illustrate how classes behave and interact to accomplish a specific use case functionality. It

is often easier to understand the dynamic behavior of a given system’s use case processes by the se-

quence diagram. Figure 6.5 shows the sequence diagram for the admin designer. Initialization would

start from the admin. The sequence is broken into steps and listed below:

o The admin requested the GUI module to view the data

o The GUI selects specific data visualizer from the Data Visualizer by requesting data from the

Database

o If the database contains the latest requested data, the response will be returned to the admin

user through Data Visualizer and GUI module.

Figure 6. 5: Data visualization Sequence diagram

Figure 6.6 shows the sequence diagram for storing model data in a database. The sequence is broken

into the steps below:

o The admin runs the data generator to the Updated Data Generator module

o This module generates the updated data from the models

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 25

o The generated data is sent to the Database module to store

o The response will be sent to the Admin Designer if the data is stored successfully in the Data-

base.

Figure 6. 6: Storing model data into database Sequence Diagram

6.2.4. Development View

The development view, also known as the implementation view, investigates a system from a

programmer's perspective and is concerned with software management. The component diagram

described in Figure 6.6 is used to depict the development view.

Figure 6. 7: System component diagram

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 26

6.2.5. Physical View

The physical view, also known as the deployment view, depicts the system from a system engineer's

point of view. Figure 6.7 presents a visual overview of the deployment of various entities in the system.

It shows us the different components of the system.

Figure 6. 8: System deployment diagram

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 27

7.Implementation

This chapter describes the implementation of the system. In Section 7.1, we explain the choices for

selecting tools and technologies to develop this project. Afterward, in Section 7.2, we describe the Sim-

ulink model implementation in more detail. Also, we explain the Rhapsody SysML model implemen-

tation in Section 7.3. We describe a combined graph data model in Section 7.4. Finally, we explain data

visualization in Section 7.5.

7.1 Technology Choice

The project was developed according to the architecture explained in Chapter 6. We choose several

technologies to implement this graph data modeling tool. This section explains the choices for selecting

tools and technologies to develop this project.

7.1.1. System Requirements

To develop the project, we use the following software packages.

o MATLAB & Simulink → Version R2021a

o IBM Rhapsody → Version 9.0.1

o Eclipse IDE → Version 2022-06 (4.24.0)

o Neo4j Desktop (Database) → Version 1.4.15

o Python → Version 3.7

o PyCharm (Professional Edition) → Version 2021.3

7.1.2. Database Selection

We were looking for a database, especially a graph database. We compared and investigated several

databases to select one for our project. Table 7.1 shows a comparison of different graph databases with

some criteria.

Table 7. 1: Database selection comparison [12]

Database Graph Data Model Query Language Open Source

ArangoDB multi-model
ArangoDB Query

Language

community

edition

AllegroGraph RDF SPARQL, Prolog no

InfiniteGraph
Property Graph

Model
"DO" no

OrientDB multi-model Gremlin, SQL yes

Neo4j
Property Graph

Model
Cypher

community

edition

Although there were slight differences between the databases, we have chosen Neo4j as the graph da-

tabase for this project. Following are the overall selection points of Neo4j:

• NoSQL Graph Database

• Open-source

• Enables ACID-compliant transactions

• Supporting a friendly query language called Cypher

• Offers better performance in retrieving data

• Ease of installation and use

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 28

• Largest graph data community

• Provides an easy way to utilize APIs, extensive libraries

• Exist available tools that are used to operate the data and visualize the stored graph

7.1.3. Visualization tool Selection

We explored existing dashboard tools for the Neo4j database. Based on Appendix A, we see that Ne-

oDash is a reporting tool developed as a community project. This tool has features such as:

o An open-source, low-code dashboard builder developed by Neo4j Labs

o Drag-and-drop interfaces

o Ability to add customization and interactive dashboard options

o Create visualizations directly from Cypher query

o Support different data presentation options e.g., tables, graphs, bar charts, maps, and more

o Save dashboards to the database and share them with others

o Build and publish dashboards for read-only access

Based on these features, we have chosen NeoDash to visualize data in this project. Figure 7.1 shows an

example dashboard developed in the NeoDash tool.

Figure 7. 1: An example dashboard developed in NeoDash

7.2 Simulink Model Implementation

In this section, we describe the details implementation process of the Simulink model.

7.2.1. Simulink Model

In Simulink, a model is a collection of blocks that represents a system. These blocks are connected with

lines. We can develop a Simulink model with different levels of complexity. Figure 7.2 shows an

example Simulink model with blocks. This model also has subsystem blocks. A subsystem block looks

like an inner model (model inside a model).

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 29

Figure 7. 2: Simulink example model

7.2.2. Simulink Parser Workflow

The translation of Simulink models into the graph is implemented using MATLAB-script with

MATLAB API and Python scripts described in Figure 7.3. This figure provides an overview of the

implementation. The retrieve_Simulink_model.py script reads the Simulink model and extracts blocks,

relationships, and their properties information. The extracted information is stored in JSON files. We

generate one JSON file for each Simulink model. This enables a separation of concerns for each model

and enables testing the retrieve functions. The insert_Simulink_Model_in_Neo4j.py script load the

stored JSON files and writes every component via a separate query into the Neo4j database. Finally, we

visualize graph data in a dashboard.

Figure 7. 3: Simulink parser workflow

Figure 7.4 describes the algorithm for parsing Simulink models.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 30

Figure 7. 4: Simulink parser algorithm

7.2.3. Simulink Graph Data Model

After analyzing a couple of Simulink models and based on the literature review, we created a graph

data model to represent any Simulink model. This graph data model represents the nodes as Simulink

model elements and the relationships as how these elements are connected. It also shows properties of

each node and relationship. We developed our data extraction process according to this graph data

model. Figure 7.5 represents the graph data model of Simulink models.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 31

Figure 7. 5: Simulink Graph Data Model with entities and their properties

7.2.4. Simulink Graph Data

We see the graph after loading the extracted JSON data into the database. Figure 7.6 describes the graph

for the model shown in Figure 7.2.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 32

Figure 7. 6: Generated graph from the Simulink model

7.3 Rhapsody SysML Model Implementation

In this section, we describe the details implementation process of Rhapsody SysML models.

7.3.1. Rhapsody Model

Rhapsody SysML has many diagrams according to Section 3.2.2. Figure 7.7 shows an example block

definition diagram.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 33

Figure 7. 7: Rhapsody Model Structure with Block Definition Diagram

7.3.2. Rhapsody Parser Workflow

Figure 7.8 provides an overview of the Rhapsody parser implementation. The system reads the SysML

models generated in Rhapsody and extracts SysML model elements and relations. We generate one

JSON file for each Rhapsody SysML diagram of a model.

Figure 7. 8: Rhapsody parser workflow

Figure 7.9 describes the algorithm for parsing Rhapsody models.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 34

Figure 7. 9: Rhapsody parser algorithm

7.3.3. Rhapsody Graph Data Model

We created a graph data model to represent any Rhapsody model based on the extracted model infor-

mation. This graph data model represents the nodes as Rhapsody model elements and the relationships

as how these elements are connected. It also shows properties of each node and relationship. As like as

Simulink model, we also developed our data extraction process according to this graph data model.

Figure 7.10 shows the graph data model of Rhapsody SysML models.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 35

Figure 7. 10: Rhapsody Graph Data Model with entities and their properties

7.3.4. Rhapsody Graph Data

Figure 7.11 describes the graph for the model shown in Figure 7.7 after loading the extracted JSON

data into the database.

Figure 7. 11: Generated graph from the Rhapsody model

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 36

7.4 Combined Graph Data Model

When we want to analyze multiple modeling tools models with a tool, we need to store these tools' data

in a common graph database. It means that we need to create a combined graph data model of these

modeling tools. This common graph data model is necessary to represent all the models and their inter-

nal relationships with different tools. We ignored the properties of each entities for the simplicity.

In this project, we developed an individual graph data model for Simulink and Rhapsody models based

on Subsection 7.2.3 and 7.3.3 respectively. We generated a combined graph data model from these two

models. Figure 7.12 shows the fusion of graph data models for Simulink and Rhapsody models.

Figure 7. 12: Combined graph data model with only entities

7.5 Data Visualization

We developed a dashboard to visualize data using the NeoDash dashboard tool. This dashboard has

separate pages (tabs) to show each use case based on model data stored in the Neo4j graph database.

This dashboard helps to query and analyze for more insights on model data stored in the Neo4j database.

It also helps to identify inconsistencies among dependent models. Figure 7.13 shows an overview page

of dashboard visualization. We can go to several pages (tabs) to see and analyze several use cases as

we described in Section 6.2.1.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 37

Figure 7. 13: Dashboard to visualize data

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 39

8.Verification & Validation

Verification and validation are vital steps in a software/system development process. Verification

evaluates whether the system is implemented well, whereas validation evaluates whether the system

meets the needs of the stakeholders [27]. In this chapter, we will describe the process of verification

and validation we used in this project and the results. As a result, the verification and validation

processes were employed to ensure that the tool implementation met the project's requirements.

8.1 Verification

Verification is usually an internal process of evaluating the correctness of a system's development and

implementation process. For the verification process, we performed two ways: unit testing and

integration testing. Each of these processes is briefly described in the following sections.

8.1.1. Unit Testing

Unit test is a software testing method that checks the individual units of the corresponding software

have expected behavior [28]. A software unit can be a function of a class. The developer typically

performs these tests by writing additional code that automatically tests the software. In the context of

this project, unit tests were used not only to test the newly implemented features but also to ensure that

existing functionalities were not broken. We developed test cases for every component. Some of these

test cases for the system are listed in Table 8.1.

Table 8. 1: Existing sample test cases for the project

Test

Case Id
Test Name Description

Expected

Results
Status

TU01

Check destination

folder was cleaned

before generating

new data files

• Run model parser

• Check the destination folder

before creating the data file

• All the existing files will be

deleted from the folder

All the existing

files will be

deleted from the

folder.

Passed

TU02

Check all model

files are identified

to read by the

model parser in

the repository

• Run Simulink parser

• Check the number of files

identified in the project

folder as Simulink model by

Simulink parser

• Check the number of files

in the folder

File count by

script and file

count by manual

will be matched

Passed

TU03

Check a given

model file is

extracted and

generated data file

• Run Simulink parser

• Check a JSON data file cre-

ated for a specific model file

The data file will

be created for a

specific model

file

Passed

TU04

Check all model

files are parsed

and generated

corresponding

data files

• Run Simulink parser

• Check all JSON data file

has been generated for this

model

JSON data files

will be generated

with relevant

model files

Passed

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 40

TU05

Check a generated

data file contains

all elements of the

model file

• Run Simulink parser

• Check a JSON data file cre-

ated for a specific model file

• Check the elements in the

data file

Elements in the

data file will

match elements

in the model file

Passed

TU06

Check database

connection with

valid data to load

model information

• Run data loader before load-

ing data

• Enter database name

• Enter database password

• Check the connection with

the database

The connection

will be

established

successfully

Passed

TU07

Test database

connection with

invalid data to

load model

information

• Run data loader before load-

ing data

• Enter an invalid database

name

• Enter a valid database pass-

word

• Check the connection with

the database

The connection

will not be

established

Passed

TU08

Test the same data

loaded

successfully into

the database

• Run data load process

• Check the query to see the

expected data loaded into

the database

The query will

return the same

data according to

the data file

Passed

TU09

Check frontend

dashboard and

backend database

connection with

valid data

• Open the NeoDash dash-

board tool

• Enter the database project

name

• Enter database name

• Enter database password

• Check the relation with the

database

The connection

will be

established with

the database

successfully

Passed

TU10

Check the

frontend

dashboard and

backend database

connection with

invalid data

• Open the NeoDash dash-

board tool

• Enter the database project

name

• Enter the valid database

name

• Enter invalid database pass-

word

• Check the connection with

the database

The connection

will not be

established and

shown a login

error message

Passed

TU11

Test graph data

model is

generated into the

database

• Insert data into the database

• Open the Neo4j query win-

dow

The graph data

model will be

shown

Passed

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 41

• Run the query to check

schema visualization

• Check the schema

TU12

The test graph

data model is

updated based on

loaded data

• Insert new modeling tools

data into the database

• Open the Neo4j query win-

dow

• Run the query to check

schema visualization

• Check the schema is up-

dated based on the new tool

The latest graph

data model will

be shown

Passed

TU13

Test graph data is

visualized in the

dashboard

• Open the NeoDash dash-

board tool

• Open a tab to visualize

hotspot detection

• See the model element with

the highest relationship

value

• Check the same element's

name and count it into our

model

Element name

and relationship

count will be the

same in both

cases

Passed

Figure 8.1 shows unit test case status results for Simulink models in MATLAB script. These tests

verified the implementation of the code for parsing Simulink model files. We used the MATLAB unit

testing framework to write and run unit tests and analyze test results.

 Figure 8. 1: The unit testing status result of the Simulink models implemented in MATLAB

For unit testing of our Python implementation, we used the PyTest library. Our decision to use PyTest

was based on its maturity and comprehensive documentation. Figure 8.2 shows the results of the unit

test cases implemented in PyTest.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 42

Figure 8. 2: Unit test status implemented in Pytest

8.1.2. Integration Testing

Integration tests are performed to determine if the units are working as expected after integrating them.

This testing is performed after the unit testing. The main goal of this testing is to check the interfaces

between the components. In the context of this project, we developed the backend and frontend

separately. For the backend development, we developed parsers for different design tools. Then we

integrated all these individual developments to make a complete backend system.

Moreover, we developed a parser of the Simulink model in MATLAB, which generated JSON data files

for each model. But we developed scripts in Python to upload data from JSON files to the Neo4j

database. Therefore, we checked the collaborated performance of system components developed in

different programming languages through integration testing. Using the specification as a guide, we

developed the frontend and integrated it with the backend. These tests indicated whether the integration

was working correctly. Table 8.2 shows the manual test cases for checking the integration of different

components.

Table 8. 2: Manual test cases for checking the integration of different components

Test

Case Id
Test Name Description

Expected

Results
Status

TI01

Check Simulink

JSON files

generated and

loaded

• Run Simulink parser with a

model

• Check a JSON file has been

generated

• Check the data file loaded

into the database success-

fully

The Simulink

model data file

will be generated

and loaded into

the database

Passed

TI02

Check Rhapdosy

JSON files

generated and

loaded

• Run the Rhapsody parser

with a model

• Check a JSON file has been

generated

• Check the data file loaded

into the database success-

fully

The rhapsody

model data file

will be generated

and loaded into

the database

Passed

TU03

Check Simulink,

and Rhapsody

module works

together

• Run Simulink and Rhap-

sody parser with a model

• Check a JSON file has been

generated for each corre-

sponding model file

JSON data file

will be generated

for each model

file together

Passed

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 43

TI04

Check the

frontend

dashboard and

backend database

connection

• Open the NeoDash dash-

board tool

• Enter the database project

name

• Enter database name

• Enter database password

• Check the connection with

the database

The connection

will be

established with

the database

successfully

Passed

8.2 Validation

Validation is primarily an external process of evaluating a system or component at the end of the

development process to determine whether it satisfies specified requirements [28]. This process aims to

ensure that the right product has been developed and meets the stakeholder's expectations. In the context

of this project, the verification process was carried out by the trainee and the key stakeholders

(stakeholder analysis in Chapter 2) in different phases, which are discussed in detail in the following

sections.

8.2.1. Regular Stakeholder Feedback

This project followed an incremental tool development process. Multiple weekly meetings were

arranged with the key stakeholders. The purposes of these meetings were to keep the stakeholders

involved and aligned in the development process, perform immediate validations, and identify varying

requirements as early as possible. We used several architectural and design diagrams during these

meetings to explain the implementation process. Based on these discussions, the stakeholders could

identify whether the development activities were progressing in the right direction. The mentioned

diagrams are presented and explained in Chapter 5 and Chapter 6.

8.2.2. Project Goal Evaluation

According to the project timeline and plan explained in Section 9.2, we set several milestones in the

design and implementation phases. The system requirements and the tool implementation were

discussed during the monthly PSG meetings to ensure that the project was on track. It also confirmed

that the implemented system was built according to the agreed specifications. Moreover, several

feedbacks were received during the demonstration that indicated the direction of this project.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 45

9.Project Management

Project management is an essential aspect of any project's success. Each EngD ST project involves

challenges not only technically but also organizationally. This project uses an iterative approach,

allowing us to demonstrate the progress to the project client and get valuable feedback in the early stage.

This chapter reflects on the project management and planning of this project. First, we describe how we

managed the project. Second, we show the possible identified risk of this project.

9.1 Work-Breakdown Structure (WBS)

In this section, the Work-Breakdown Structure of the project is discussed. We divided the project period

into five phases: Planning and Management, Research, Design and Implementation, Validation and

Verification, and Project Closure. Figure 9.1 shows the activities conducted in each step.

Figure 9. 1: Project Work-Breakdown Structure

9.2 Project Planning and Scheduling

At the beginning of the project, there were some questions about the requirements. We came up with

the initial plan to start the project, and after each PSG meeting, we refined it until it was more concrete.

A project timeline is created at the initial stage of the project, and it is updated to ensure that all activities

are on track. This timeline helped to evaluate project progress and see the influence of one action on

others. We used a Gantt chart to plan and break down the project to get a better overview. In the Gantt

chart, we planned the activities that needed to be achieved to deliver a successful project. Each mile-

stone is reflected in the Gantt chart with more detail, and a deadline is assigned to each step. It was

mainly used for tracking the progress of the project. Figure 9.2 shows a summary of this project's tasks.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 46

Figure 9. 2: Project timeline summary

9.3 Communication

A clear and regular communication channel is essential to monitor and manage the project's progress

and direction. During the initial meeting, we established the means of communication and frequency

with each stakeholder, following their interest and involvement in the project. Each meeting during the

project's execution fell into one of the four categories: weekly update meetings, biweekly update meet-

ings, monthly update meetings, and other meetings called on-demand meetings. The communication

occurred online through Microsoft Teams, in person at the office, and via email. The regular meeting

frequencies and their purposes were as follows:

• Weekly Update Meetings

• Attendees: Trainee, Project Client

• Purpose:

o Demonstrate the overall status and progress of the project

o Update about completed tasks in the previous week and plans for the next week

o Identify any challenges and ask project-related questions

o Identify any misunderstanding as early as possible

o Ensure that the project is on track

• Biweekly Update Meetings

• Attendees: Trainee, TU/e Supervisor

• Purpose:

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 47

o Demonstrate the overall status and progress of the project

o Update about project tasks, plan, and challenges

o Ensure the quality of the project results

• Monthly Update Meetings - Project Steering Group (PSG) Meetings

• Attendees: Trainee, TU/e supervisor, Project Client

• Purpose:

o Inform about the project progress at the end of each month

o Discuss any identified or possible issues

o Demonstrate the significant updates implemented since the previous PSG meeting

o Discuss a high-level plan for the next month

o Get early feedback about the progress

• On-Demand Meetings

• Attendees: Trainee, any other

• Purpose:

o Understand the project context and domain

o Ask project-related questions to avoid any unexpected delay

o Succeed in the project on time

9.4 Risk Management

This section describes the risks that were identified during the project. It was essential to maintain a list

of risks from the start of the project and propose mitigation action (to reduce the chance of the risk

materializing). Table 9.1 describes the risks identified in this project, their occurrence possibility,

potential impact and result, and the mitigation strategies applied to manage each.

Table 9. 1: Probable risks and their mitigation plans

Description Probability Impact Effect Mitigation Plan

Lack of domain

knowledge and

delay in

understanding the

project context

Medium High - Not able to find

the best solution

- Not being able to

complete the

project on time

- Consulting with the

domain experts and

stakeholders

- Defining system

boundaries to reduce the

learning time of the

system

Underestimating

the project

workload

High High - Change in

expected

deliverables

- Delay in project

completion and

lead to project

failure

- Conducting

comprehensive research

- Prototyping at early

stages

- Continuous feedback

meeting

Choosing an

inappropriate

architectural

strategy that cannot

satisfy the

requirements

Medium High - Change in

deliverables

- Unexpected delay

in the progress

- Conducting research

and feasibility study

- Keeping stakeholders

in an early feedback loop

Unavailable of a

main stakeholder

due to illness

Low Medium - Delay for specific

deliverables

depending on the

role

- Not delivering the

desired artifacts

- Scheduling meetings as

early as possible

- Providing regular

progress reports

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 48

 - Trying to find out the

alternative in any

emergency

Illness for an

extended period

Low High - Not possible to

complete the full

scope of the project

- Keep a buffer time

between each task

- Negotiate requirements

with stakeholders

according to priority

Miscommunication

among

stakeholders due to

remote work

Low Medium - Create a doubtful

situation about the

project's progress

- Scheduling regular

meetings

- Working from the

office as much as

possible

High Priority

requirements

cannot be satisfied

Medium High - Create outcome as

an incomplete

solution

- Discussing with the

stakeholder for a

possible solution

- Raising the issue as

early as possible

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 49

10. Conclusion

In this chapter, we wrap up the project and summarize its achievements. It covers the recommendations

of possible open directions for future works. Finally, this chapter concludes the report with a reflection

on the project from the author’s perspective.

10.1 Results and Deliverables

This section describes the result achieved based on the requirements listed in Chapter 5. The project's

primary goal is to develop a tool that will include designing a graph database for storing model

information of different tools and visualizing several insights. To meet the project's purpose, we

developed this tool for the engineers to get an overall and clear idea about the models in a large and

complex task in model-based design.

In the following list, the main achievements of this project are mentioned:

• Investigated the models and detected the essential element properties.

- This tool requires details and relevant information about the model elements and their properties,

connectivity with other aspects of the same model, or different model elements. Therefore, we in-

vested most of the development time investigating the models and identifying the essential element

properties.

• Developed a parser for extracting model information and storing these data in a file system.

• Designed and developed a graph database for storing data from various models.

• Designed a combined graph data model to represent all model elements

- We designed a generic graph data model based on each modeling tool's graph data model. We can

get a general overview of the graph database by looking at this generic graph data model.

• Identified and implemented several use cases to visualize insights among the models.

- We chose several use cases – mismatching interfaces, input/output interfaces, change propagation,

and hotspot detection based on the available data. We implemented these into our data visualization

part. It shows the engineer how the models are internally connected and dependent on each other.

• Stored all source code artifacts, presentation slides, and project reports in the Git repository

to deliver the project.

10.2 Recommendations and Future Work

During the project's development, we identified future possibilities, improvements, and features that

were not implemented due to the time limitation. The following list can be considered as the

improvement points:

• In this tool, we did not implement the model evolution feature yet. The Neo4j labeled property

graph model and Cypher query language do not support intrinsic versioning. To version a graph,

we must ensure that our application graph data model and queries are version aware. To track

changes, we can use time-based versioning [29].

There are two principles behind time-based versioning. These are:

o Separate the object from the state that is being linked by a relationship

o Identify the date and time when the relationship between these two entities changed.

• Integrating more modeling tools to handle more complex project scenarios.

• Store all models in the Git repository and parse models from the repository.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 50

• Adding extensibility to this tool would be a good idea. It can be of two types: reusable code level

and model integration level. With this feature, we will be able to add new modeling tools with the

minimal development effort.

10.3 Self-Reflection

My last nine-month journey with this project was challenging but also a valuable and pleasing

experience. It was an excellent opportunity to combine what I gained during my previous work

experience and the knowledge I acquired in the first year of the EngD program. With this project, I

experienced a new domain and several new challenges. These challenges provided numerous

opportunities to improve my personal and professional skills.

The first challenge was to understand the context and domain of the problem. I spent the first two

months on domain study, how models are developed using different modeling tools, and how these

models are inter-dependent and inter-connected in heterogeneous cross-domain. I also created a simple

proof-of-concept to get better ideas about models. Thus, I gathered experience and knowledge in the

relevant domain quickly.

The selection of specific elements and their essential properties concerning the perspective of our

project was another challenging task. In the beginning, it was unclear how to achieve this goal. I studied

several kinds of literature to know the desired and required elements. It was more critical for me to

parse the models from different tools and extract data from them. I developed a tool-specific data parser

using several programming languages. For example, I created a parser using MATLAB API and MAT-

script for the Simulink model, Java API for IBM Rhapsody SysML models, etc.

Determining the project's requirements and use cases was another significant task. I started creating and

analyzing the models of different tools to assess the available data and develop the requirements. In the

beginning, the requirements were not more defined. I refined more concrete requirements gradually

with the suggestions and feedback from my supervisor, project client, and domain experts.

Furthermore, I gained valuable experience in project management throughout this project. In addition

to technical challenges, I faced organizational challenges. I was the leading and only designer and

project manager of the entire project. I defined the project roadmap and strategies to tackle difficulties

and risks within the project. At the end of the project, my mother had become sick with a serious illness.

It was a tough situation for me in this project to keep me motivated. Thus, I gained experience in

organizational skills such as project planning, managing risk, and taking initiative and ownership.

Throughout the execution of the project, I developed my technical skills in design and analysis, Python

and Java development, and testing. I refactored my design and code several times to increase its quality

and make it more extensible. Identifying and prioritizing all requirements and developing the tools

based on these were challenging. Additionally, gathering knowledge about the domain and keeping

progress with the timeline was highly important. Discussions with stakeholders, learning about their

concerns, and regular update meetings helped me overcome all the challenges.

Overall, this project allowed me to broaden my horizons, challenge myself, and improve my skills. I

have gained valuable experience and confidence in managing a software project.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 51

Glossary
Abbreviations Explanations

EngD Engineering Doctorate

GDB Graph Database

Interface The input/output of a model element

JSON JavaScript Object Notation

Model element Each model consists of several blocks or units. We call each block

or unit a model element.

PSG Project Steering Group

Rhapsody IBM Rational Rhapsody

ST Software Technology

SysML Systems Modeling Language

TU/e Eindhoven University of Technology

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 53

Bibliography

References

[1] Hay, James. "Graph-based approach to managing model relationships."

[2] Fu, Chao, Jihong Liu, and Shude Wang. "Building SysML Model Graph to Support the System

Model Reuse." IEEE Access 9 (2021): 132374-132389.

[3] Ramos, Ana Luísa, José Vasconcelos Ferreira, and Jaume Barceló. "Model-based systems engineer-

ing: An emerging approach for modern systems." IEEE Transactions on Systems, Man, and Cybernet-

ics, Part C (Applications and Reviews) 42.1 (2011): 101-111.

[4] Dávid, István, et al. "Modeling and enactment support for managing inconsistencies in heterogene-

ous systems engineering processes." Proceedings of MODELS 2017 Satellite Event, September 17,

2017, Austin, Texas, USA/Burgueño, Loli [edit.]. 2017.

[5] Ö. Babur. “Model Analytics and Management.” English. Proefschrift. Ph.D. thesis. Department of

Mathematics and Computer Science, Feb. 2019, pages 1–175. ISBN: 978-90-386-4707-4

[6] Silva Torres, Weslley, M. G. J. van den Brand, and A. Serebrenik. "Model management tools for

models of different domains: a systematic literature review." Institute of Electrical and Electronics En-

gineers, 2019.

[7] Herzig, Sebastian JI, and Christiaan JJ Paredis. "A conceptual basis for inconsistency management

in model-based systems engineering." Procedia Cirp 21 (2014): 52-57.

[8] NASA. Report on Project Management in Nasa: Phase Ii of the Mars Climate Orbiter Mishap Re-

port, February 2000. Technical report. Mars Climate Orbiter, Mishap Investigation Board, Mar. 2000

[9] A. Qamar. “Model and Dependency Management in Mechatronic Design.” Ph.D. thesis. KTH Royal

Institute of Technology, 2013

[10] R. Hebig, H. Giese, F. Stallmann, and A. Seibel. “On the Complex Nature of MDE Evolution.” In:

International Conference on Model Driven Engineering Languages and Systems. Springer. 2013, pages

436– 453

[11] International Council on Systems Engineering (2007). Systems engineering vision 2020.

[12] Schummer, Florian, and Maximilian Hyba. "An Approach for System Analysis with MBSE and

Graph Data Engineering." arXiv preprint arXiv:2201.06363 (2022).

[13] McDermott, Thomas A., et al. "Benchmarking the benefits and current maturity of model-based

systems engineering across the enterprise." Systems Engineering Research Center (SERC) (2020).

[14] Barbieri, Giacomo, Cesare Fantuzzi, and Roberto Borsari. "A model-based design methodology

for the development of mechatronic systems." Mechatronics 24.7 (2014): 833-843.

[15] Minopoli, Stefano, and Goran Frehse. "SL2SX translator: from Simulink to SpaceEx models."

Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control. 2016.

[16] Object Management Group. OMG Systems Modeling LanguageTM, 2017.

https://www.omg.org/spec/SysML/1.5/PDF. 15, 16

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 54

[17] L. Delligatti. SysML Distilled, A Brief Guide to the Systems Modeling Language. Addison-Wesley

Professional, 2013. ISBN 9780321927866.

[18] Open-Source Modelica Consortium. “OpenModelica Home Page”(2017). url: https://openmodel-

ica.org (visited on 11/28/2017).

[19] Mengist, Alachew. Methods and Tools for Efficient Model-Based Development of Cyber-Physical

Systems with Emphasis on Model and Tool Integration. Vol. 1848. Linköping University Electronic

Press, 2019.

[20] Robinson, I. and Webber, J. and Eifrem, E. "Graph Databases." 2nd Edition. June 2015. ISBN:

9781491930892.

[21] Neo4j Database. https://neo4j.com/

[22] Harrison, Guy. Next Generation Databases: NoSQL and Big Data. Apress, 2015.

[23] Db-engine. https://db-engines.com/en/ranking/graph+dbms

[24] Graph temporal versioning. https://medium.com/neo4j/keeping-track-of-graph-changes-using-

temporal-versioning-3b0f854536fa

[25] Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requirements engineering. Springer, 2017.

[26] Agile Business Consortium, 2022. [Online]. Available: https://www.agilebusiness.org/page/Pro-

jectFramework_10_MoSCoWPrioritisation.

[27] Anne Geraci, Freny Katki, Louise McMonegal, Bennett Meyer, John Lane, Paul Wilson, Jane

Radatz, Mary Yee, Hugh Porteous, and Fredrick Springsteel. IEEE standard computer dictionary: Com-

pilation of IEEE standard computer glossaries. IEEE Press, 1991.

[28] P. Hamill, Unit test frameworks: tools for high-quality software development., O'Reilly Media,

Inc., 2004

[29] Time-based versioning. https://medium.com/neo4j/keeping-track-of-graph-changes-using-tem-

poral-versioning-3b0f854536fa

[30] Neo4j visualization tools. https://neo4j.com/developer-blog/15-tools-for-visualizing-your-neo4j-

graph-database/

[31] van der Heijden, J. J. M. J. "Defining a conversion layer between SysML models and Unity."

[32] Hassan, Ahmed E., and Richard C. Holt. "Predicting change propagation in software systems."

20th IEEE International Conference on Software Maintenance, 2004. Proceedings. IEEE, 2004.

[33] Jongeling, Robbert, et al. "Continuous integration support in modeling tools." 2018 MODELS

Workshops: ModComp, MRT, OCL, FlexMDE, EXE, COMMitMDE, MDETools, GEMOC, MORSE,

MDE4IoT, MDEbug, MoDeVVa, ME, MULTI, HuFaMo, AMMoRe, PAINS, MODELS-WS 2018, 14

October 2018 through 19 October 2018. Vol. 2245. CEUR-WS, 2018.

[34] P. B. Kruchten, "The 4+ 1 view model of architecture.," IEEE Software 12.6, 1995.

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 55

Appendix A. Neo4j Existing Visualization Tools

This section describes some of the existing Neo4j visualization tools. It was essential for us to be aware

of the categories of Neo4j's existing tools. Developers built each visualization toolkit with a specific

purpose in mind, so we'll have to make sure of the tool's purpose. It was required for us to know which

tool matched our need for this project. We found that all graph visualization tools are grouped into four

main categories [30]:

1. Development tools: Help developers to work with graphs.

2. Exploration tools: Help analysts explore data relationships.

3. Analysis tools: To reveal trends & discrepancies.

4. Reporting tools: To create and organize data reports.

Figure A.1 shows some of the most popular Neo4j graph visualization tools by their primary category.

On the vertical axis, it plotted the product type (a Neo4j product, community project, or enterprise

software).

Figure A. 1: Neo4j existing visualization tools [30]

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 56

Appendix B. Extracted Data in JSON
The extracted model information is stored in a JSON formatted file after parsing the model file. Figure

B.1 shows a sample JSON data extracted from a Simulink model.

Figure B. 1: JSON data file format of a Simulink model

Below is another representation of the first five data elements of the JSON data shown in Figure B.1:

{

"id":"sampleModel",

"type":"node",

"labels":["Model"],

"properties":{

"name":"sampleModel",

"type":"block_diagram",

"extension":".slx",

"createdDate":"Tue Oct 05 11:49:12 2021",

"creator":"ECHOLODO",

"modifiedBy":"20204920",

"modifiedDate":"Mon Mar 06 22:31:57 2023",

"modifiedComment":"",

"description":"",

"startTime":"0.0",

"stopTime":"10.0"

}

}

{

"id":"sampleModel/Scope",

"type":"node",

"labels":["Block"],

"properties":{

"name":"Scope",

"type":"Scope",

"typeDescription":"",

"description":"Displays input signals with respect to simulation time",

"numberOfInputPort":1,

"numberOfOutputPort":0,

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 57

"isCommented":"off"

}

}

{

"id":"",

"type":"relationship",

"label":"CONTAINS",

"properties":{

"type":"element"

},

"start":{

"id":"sampleModel"},

"end":{

"id":"sampleModel/Scope"

}

}

{

"id":"sampleModel/Scope1",

"type":"node",

"labels":["Block"],

"properties":{

"name":"Scope1",

"type":"Scope",

"typeDescription":"",

"description":"Displays input signals with respect to simulation time",

"numberOfInputPort":1,

"numberOfOutputPort":0,

"isCommented":"off"

}

}

{

"id":"",

"type":"relationship",

"label":"CONTAINS",

"properties":{

"type":"element"

},

"start":{

"id":"sampleModel"

},

"end":{

"id":"sampleModel/Scope1"

}

}

Eindhoven University of Technology

A Graph Database Design for Multi-Domain Model Management 58

About the Author

Mohammad Ibrahim received his Bachelor's degree in Information

Technology with a Software Engineering major from the University of

Dhaka, Bangladesh, in 2012. He also pursued his Master's degree in

Software Engineering from the same university in 2014. After

graduation, he started a professional career in the software industry in

Bangladesh. He is an enthusiastic and versatile Software Engineer

having more than five years of experience in the software industry.

Lastly, he worked as a Senior Software Engineer at IQVIA, a

multinational software firm, and Fortune 500 listed company. In 2019,

he decided to take on a new challenge in his life. Therefore, he started

to explore new opportunities outside of his country. Then, he joined as

a trainee for an Engineering Doctorate (EngD) in Software Technology

at the Eindhoven University of Technology in October 2020. During

the last two years, he completed multiple projects at well-known

companies, including Onera Health, DAF, and ESA, experiencing

different roles such as team leader, configuration manager, and

engineer. He is interested in Software Architecture, Software Design,

and Data Science.

PO Box 513

EngD SOFTWARE TECHNOLOGY

