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Co-promotor: dr.ir. S. Rommel
Adviseur: dr. F. Sivrikaya
Promotiecommissieleden: prof.dr.ir. I. Tafur Monroy (Technische Universiteit Eind-

hoven, EE, Electro-Optical Communication)
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Eindhoven University of Technology, 2022

Keywords: Resource management, millimeter wave communications, game the-
ory, and virtualized networks

Copyright © 2022 by Doruk Şahinel
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“Do you not know you are in Heaven now? Or know the heavens are holy
everywhere, and all that here is done is done from zeal?”

Dante Alighieri





Summary

Three convergent processes are likely to shape the future of the internet beyond-
5G: the convergence of optical and millimeter wave (mmWave) radio networks to
boost mobile internet capacity, the convergence of machine learning solutions and
communication technologies, and the convergence of virtualized and programmable
network management mechanisms towards fully integrated autonomic network re-
source management. Aiming to enhance the joint optical and radio transport,
this thesis provides game theory-based distributed network control capability to
optimize resource allocation in the C-RAN and fronthaul segments of converged
wireless and optical networks. In addition, an external stakeholders vs. network
game is designed to extend distributed decision-making to service providers and
network users.

Autonomic network resource management concept brings dynamic network re-
configuration with learning and predicting the behavior of network entities. On
the other hand, game theory-based resource management is studied for rational,
autonomous and distributed decision-making among entities, as centralized opti-
mization is challenging in a multi-stakeholder network environment. The focus
is placed on these two approaches to design resource allocation solutions inside a
distributed and autonomous management framework perspective. Autonomic net-
working requires control loops to monitor the network status and adapt network
management by making use of observations from the monitoring stage. After pre-
senting the challenges of autonomic networking, a management framework with
monitoring and measurement, analysis and decision-making, and learning stages is
introduced. In such a framework, game theoretic models are promising solutions
to define the interactions between network stakeholders and to handle network
management operations. This framework sets the foundation for the resource
management contributions.

In light of the presented autonomic network management perspective, a system-
atic literature review is carried out as an initial step to the resource management
contributions. The review is done to analyze how resource management solutions
have dealt with optimizing millimeter wave radio and optical resources, under-
stand the dimensions of the relationship between resource allocation methods and
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x SUMMARY

mmWave 5G and FiWi fronthaul, and identify the current trends in resource allo-
cation. The results of this review is used to decide on the performance metrics and
the evaluation criteria in the games designed in this dissertation for distributed
decision-making. Based on the outcomes of the review, two experiments are de-
signed to enhance control capabilities of the network. The first experiment creates
the control interaction between fronthaul and access, whereas the second experi-
ment regulates the interaction between service providers and the transport network
represented by the infrastructure provider.

For joint access and fronthaul optimization, access — fronthaul interaction is
defined as a coalition game for aggregate demand on the access side. By observing
this demand, the transport network is able to distribute the available resources
or reject the offer if it exceeds the total available bandwidth. When the offer is
rejected, a bankruptcy game is used to distribute fronthaul resources to RRHs.
On the access side, RRH utilization is improved by cooperative resource sharing.
Different user distributions and service requirements bring dynamicity to the net-
work demands. The target is to provide a game model that achieves dynamic
bandwidth allocation with no fixed commitment of fronthaul resources and adapt-
ing to dynamic user load.

Infrastructure sharing is made possible with the help of virtualization technolo-
gies, and this fact transformed the network architecture into a novel stakeholder
called the infrastructure provider. Even though profit generation was always a fac-
tor in performance optimization for network operators, the shift in the architecture
with network virtualization makes dynamic revenue gains an apparent performance
criteria for resource allocation. The second experiment considers virtualized op-
tical network resources from this profit generation perspective with a game, in
which providers bid to share the optical transport network and the infrastructure
provider applies a Vickery – Clarke – Groves (VCG) auctioning mechanism to
provide a social-welfare maximizing outcome, while users have the switching op-
tion between service providers for user utility maximization. The outcomes of user
decision-making with blind search and guided search algorithms are also presented
for this switching option.

The ultimate objective of this thesis is to provide a realistic guideline to opti-
mize mmWave transport and radio resource use so that mmWave network imple-
mentations can be deployed in a cost-efficient manner. The presented experiments
and results contribute to understanding how autonomous and distributed decision-
making can improve network resource management and how network solutions for
capacity enhancement can be exploited in an optimal way with game-theoretical
algorithms.



Samenvatting

Drie convergente processen zullen waarschijnlijk de toekomst van het internet na
5G vormgeven: de convergentie van optische en millimetergolf (mmWave) ra-
dionetwerken om de mobiele internetcapaciteit te vergroten, de convergentie van
machine learning oplossingen en communicatie technologieën, en de convergen-
tie van gevirtualiseerde en programmeerbare netwerkbeheer mechanismen voor
volledig gëıntegreerd autonoom netwerk resourcebeheer. Met als doel het gëın-
tegreerde optische en radiotransport te verbeteren, biedt dit werk op speltheorie
gebaseerde gedistribueerde netwerkcontrole vermogen om de toewijzing van bron-
nen in de C-RAN en fronthaul-segmenten van de draadloze en optische netwerken
te optimaliseren. Daarnaast wordt een spel tussen externe belanghebbenden en het
netwerk ontwikkeld om het gedistribueerde besluitvormingsproces uit te breiden
naar serviceproviders en netwerkgebruikers.

Het concept van autonoom beheer van netwerkbronnen maakt dynamische
netwerk herconfiguratie mogelijk door het leren en voorspellen van het gedrag
van netwerk entiteiten. Aan de andere kant wordt resourcebeheer op basis van
speltheorie bestudeerd voor rationele, autonome en gedistribueerde besluitvorming
tussen entiteiten, aangezien gecentraliseerde optimalisatie een uitdaging is in een
netwerkomgeving met meerdere belanghebbenden. De focus van het proefschrift
ligt op deze twee concepten om oplossingen te ontwikkelen voor de toewijzing van
bronnen binnen een gedistribueerd en autonoom managementkader. Autonoom
netwerken vereist terugkoppeling om de netwerkstatus te bewaken en het netwerk-
beheer aan te passen door gebruik te maken van observaties uit de monitoringfase.
Na het presenteren van de uitdagingen van autonoom netwerken, wordt een man-
agementkader met monitoring en meting, analyse en besluitvorming, en leerfasen
gëıntroduceerd. De speltheoretische modellen zijn veelbelovende oplossingen in dit
kader om de interacties tussen de belanghebbenden van het netwerk te definiëren
en het netwerk te beheren. Dit kader vormt de basis voor de bijdragen aan re-
sourcemanagement.

Met het oog op het gepresenteerde perspectief van autonoom netwerkbeheer
wordt een systematisch literatuuronderzoek uitgevoerd. Het onderzoek analy-
seert hoe resourcebeheer oplossingen zijn omgegaan met het optimaliseren van
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mmWave -radio en optische bronnen, vormt begrip van de dimensies van bron-
toewijzingsmethoden in de mmWave 5G en FiWi fronthaul, en identificeert de
huidige trends in brontoewijzing. De resultaten van dit onderzoekworden gebruikt
om te beslissen over de prestatiestatistieken en de evaluatiecriteria in de spellen
die in dit proefschrift zijn ontworpen voor gedistribueerde besluitvorming. Op
basis van de resultaten van het onderzoek zijn twee experimenten ontworpen om
de controlemogelijkheden van het netwerk te verbeteren. Het eerste experiment
creëert de besturingsinteractie tussen fronthaul en toegang , terwijl het tweede
experiment de interactie tussen serviceproviders en het transportnetwerk (gerep-
resenteerd door de infrastructuurprovider) reguleert.

Voor de gezamenlijke optimalisatie van toegang en fronthaul wordt de inter-
actie tussen beide gedefinieerd als een coalitiespel voor de totale vraag aan de
toegangszijde. Door de vraag van te observeren, kan het transportnetwerk de
beschikbare middelen toewijzen of het aanbod afwijzen als het de totale beschik-
bare bandbreedte overschrijdt. Wanneer het aanbod wordt afgewezen, wordt een
faillissementsspel gebruikt om fronthaul-bronnen aan RRH’s te verdelen. Aan de
toegangszijde wordt het RRH-gebruik verbeterd door het gezamenlijk delen van
bronnen. Verschillende gebruikersdistributies en servicevereisten resulteren in een
dynamische ontwikkeling van netwerkvereisten. Het doel is om een spelmodel
te bieden dat dynamische bandbreedtetoewijzing bereikt zonder vaste inzet van
fronthaul-bronnen en dat zich aanpast aan dynamische gebruikersbelasting.

Het delen van infrastructuur wordt mogelijk gemaakt met behulp van virtual-
isatietechnologieën, en dit feit transformeerde de netwerkarchitectuur in een nieuwe
belanghebbende genaamd de infrastructuurprovider. Hoewel het genereren van
winst altijd een factor was bij prestatie optimalisatie voor netwerkoperatoren,
maakt de verandering in de architectuur met netwerkvirtualisatie dynamische
inkomstenwinsten een duidelijk prestatiecriterium voor de toewijzing van bron-
nen. Het tweede experiment bekijkt de bronnen van het gevirtualiseerde optisch
netwerk vanuit het perspectief van winst maken met een spel, waarin de service-
providers bieden op een deel van het optische transportnetwerk. De infrastruc-
tuuraanbieder past een veilingmechanisme van Vickery-Clarke-Groves (VCG) toe
om sociaal welzijn te maximaliseren, terwijl gebruikers de mogelijkheid hebben
om tussen serviceproviders te schakelen om hun nut te maximaliseren. De re-
sultaten van de besluitvormingsprocessen van gebruikers met blinde en begeleide
zoekalgoritmen worden ook gepresenteerd voor deze schakeloptie.

Het uiteindelijke doel van dit proefschrift is om een realistische richtlijn te
bieden voor het optimaliseren van mmWave-transport en het gebruik van radio-
bronnen, zodat mmWave-netwerkimplementaties op een kostenefficiënte manier
kunnen worden gëımplementeerd. De gepresenteerde experimenten en resultaten
helpen te begrijpen hoe autonome en gedistribueerde besluitvorming het beheer
van netwerkbronnen kan verbeteren en hoe netwerkoplossingen voor capaciteitsver-
betering op een optimale manier kunnen worden benut met speltheoretische algo-
ritmen.



Zusammenfassung

Drei zusammenlaufende Prozesse werden die Zukunft des Internets jenseits von 5G
gestalten: Die Annäherung von optischen und millimeterwellen Funknetzen, um
die Kapazität des mobilen Internets zu erhöhen, die Annäherung von maschinellem
Lernen und Kommunikationstechnologien sowie die Annäherung der virtualisierten
und programmierbaren Netzverwaltung für eine vollständig integrierte autonome
Verwaltung der Netzressourcen. Mit dem Ziel, den integrierten optischen und funk-
technischen Transport zu verbessern, bietet diese Arbeit eine auf der Spieltheorie
basierende verteilte Netzwerksteuerung zur Optimierung der Ressourcenzuweisung
in den C-RAN- und Fronthaul-Segmenten drahtloser und optischer Netzwerke.
Darüber hinaus wird ein Spiel zwischen externen Akteuren und dem Netzwerk
entwickelt, um die verteilte Entscheidungsverfahren auf Dienstanbieter und Net-
zwerknutzer auszuweiten.

Das Konzept der autonomen Verwaltung der Netzwerkressourcen ermöglicht
eine dynamische Umgestaltung des Netzwerks durch Lernen und Vorhersage des
Netzwerkzustands. Außerdem bietet das auf der Spieltheorie basierende Ressourcen-
management die Möglichkeit eines rationalen, autonomen und verteilten Entschei-
dungsverfahrens zwischen den Akteuren, um die Herausforderung der zentral-
isierten Optimierung mit mehreren Akteuren zu überwinden. Der Schwerpunkt der
Dissertation liegt auf diesen beiden Konzepten, um Lösungen für die Zuweisung
der Ressourcen innerhalb eines verteilten und autonomen Managementrahmens zu
entwickeln. Autonome Netzwerke erfordern Regelkreise zur Überwachung des Net-
zwerkstatus und zur Anpassung des Netzwerkmanagements unter Verwendung der
Überwachungsdaten. Nach der Darstellung der Herausforderungen der autonomen
Vernetzung wird ein Verwaltungsrahmen mit Überwachung und Messung, Analyse,
und Lernphasen vorgestellt. Die spieltheoretischen Modelle sind vielversprechende
Lösungen in diesem Rahmen, um die Interaktionen zwischen den Akteuren des
Netzes zu definieren und die Operationen der Netzverwaltung zu steuern.

Angesichts der vorgestellten Perspektive des autonomen Netzwerkmanagements
wird eine systematische Literaturanalyse durchgeführt. Dabei wird analysiert, wie
Ressourcenmanagementlösungen mit der Optimierung von mmWave funk- und
optischen Ressourcen umgegangen sind, werden die Ressourcenzuweisungsmeth-
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oden von den mmWave C-RAN- und Fronthaul verstanden und die aktuellen
Trends in der Ressourcenzuweisung identifiziert. Die Ergebnisse dieser Analyse
werden genutzt, um die Leistungs- und Bewertungskriterien für die Spiele zu
verteilten Entscheidungsverfahren in dieser Dissertation zu definieren. Basierend
auf den Ergebnissen der Analyse werden zwei Experimente entwickelt, um die
Steuerungsmöglichkeiten des Netzes zu verbessern. Das erste Experiment schafft
die Steuerungsinteraktion zwischen Fronthaul- und Funknetz, während das zweite
Experiment die Interaktion zwischen Dienstanbietern und den Infrastrukturanbi-
eter regelt.

Für die gemeinsame Optimierung von Funknetz und Fronthaul wird die In-
teraktion zwischen den beiden als ein Koalitionsspiel definiert. Durch Beobach-
tung der Funknetzanforderung kann das Transportnetz die verfügbaren Ressourcen
verteilen oder Anfragen ablehnen, wenn die gesamte verfügbare Bandbreite über-
stiegen wird. Wird die Anfrage abgelehnt, werden die Fronthaul-Ressourcen mit
Hilfe eines Bankruptcy Game an die RRHs verteilt. Unterschiedliche Nutzerverteilun-
gen und Dienstanforderungen bringen eine dynamische Entwicklung der Netzan-
forderungen. Ziel ist es, ein Spielmodell bereitzustellen, das eine dynamische Band-
breitenzuweisung ohne feste Bindung von Fronthaul-Ressourcen erreicht und sich
an die dynamische Nutzerlast anpasst.

Die gemeinsame Nutzung von Infrastrukturen wird mit Hilfe von Virtual-
isierungstechnologien ermöglicht, und diese Tatsache hat der Netzarchitektur einen
neuen Akteur, den Infrastrukturanbieter, hinzugefügt. Obwohl die Gewinnerzielung
schon immer ein Faktor bei der Leistungsoptimierung von Netzbetreibern war,
macht die Architekturveränderung mit der Virtualisierung dynamische Umsätze
zu einem Leistungskriterium für die Ressourcenzuweisung. Das zweite Experiment
betrachtet die Ressourcen des virtualisierten Netzwerks aus der Perspektive der
Gewinnerzielung mit einem Spiel, bei dem die Diensteanbieter ihre Gebote für die
gemeinsame Nutzung des optischen Transportnetzwerks abgeben. Der Infrastruk-
turanbieter wendet einen Vickery-Clarke-Groves (VCG)-Auktionsmechanismus an,
um ein die soziale Wohlfahrt maximierendes Ergebnis zu erzielen. Außerdem haben
die Nutzer die Möglichkeit, zwischen den Diensteanbietern zu wechseln, um ihren
Nutzen zu maximieren. Die Ergebnisse der Entscheidungsverfahren der Nutzer
mit blinder Suche und geführten Suchalgorithmen werden ebenfalls für diese Wech-
seloption vorgestellt.

Das Hauptziel dieser Dissertation ist es, ein realistisches Framework zur Opti-
mierung der Vergabe von mmWave-Funkressourcen zu erstellen, damit mmWave-
Netzwerke kostengünstig implementiert werden können. Die vorgestellten Exper-
imente und Ergebnisse tragen dazu bei, zu verstehen, wie autonome und verteilte
Entscheidungsverfahren die Verwaltung von Netzressourcen verbessern können und
wie Netzlösungen zur Kapazitätserweiterung mit spieltheoretischen Algorithmen
optimal genutzt werden können.
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CHAPTER 1

Introduction

The growth trend expected for beyond-5G and 6G networks is likely to trans-
form wireless networks from a facilitator of person to person communications to
the provider of connectivity among everything, by which ever means and every-
where [1], forming the basis of future societies [2]. Ericsson Mobility Report ex-
pects 5G subscriptions to reach from 1 billion by the end of 2022 to 4.4 billion in
2027, and total mobile subscriptions is expected to surpass 9 billion in 2027 [3].
The Mobile Economy 2022 report by GSMA Intelligence [4] expects the number of
unique mobile subscribers worldwide to increase from 5.3 billion in 2021 to 5.7 bil-
lion in 2025, the number of licensed cellular Internet of Things (IoT) connections
with machine-to-machine (M2M) communication capability is going to increase
from 2.1 billion in 2021 to 4.1 billion in 2025, and the mobile data traffic to in-
crease from 11.4 billion GB per month in 2021 to 41 billion GB per month in 2027.
The increase in the numbers are also displayed in Figure 1.1.

Categorized under enhanced mobile broadband (eMBB), ultra-reliable low-
latency communications (URLLC), and massive machine-type communications
(mMTC) by ITU-R [5], many services and concepts were envisioned for 5G. Ambi-
tious targets were set for 5G by the research initiatives, such as the 1000x challenge
set by METIS [6] and the target set by 5GPPP [7] to establish up to a million con-
nections per km2, to realize the ever-increasing number of services such as smart
cities [8], Industry 4.0 [9], digital twins [10], IoT [11], and autonomous driving [12].
Not being able to reach all the technological targets simultaneously forced the in-
dustry and the research initiatives to postpone the realization of these concepts
to beyond-5G and 6G networks era. In addition, the creation of new verticals
with multiple services and applications in domains such as entertainment, health-
care, education, and industry widened the need for physical and virtual network
resources, and customization of these utilized resources [1].

1



2 CHAPTER 1. INTRODUCTION

5G subscriptions
0

1

2

3

4

5

6

7

To
ta

l N
um

be
r (

bi
lli

on
s)

1.0

4.4

a)

2022
2027

mobile
subscribers

cellular IoT
connections

0

1

2

3

4

5

6

7

To
ta

l N
um

be
r (

bi
lli

on
s) 5.3

2.1

5.7

4.1

b)

2021
2025

mobile data traffic
0
5

10
15
20
25
30
35
40
45

G
B

 p
er

 m
on

th

11.4

41.0
c)

2021
2027

Figure 1.1: The growth trend predictions of Ericsson [3] and GSMA Intelligence [4] for
wireless communications. a) shows the expected increase in 5G subscriptions from 2022 to
2027[3], b) shows the expected increase in the number of mobile subscribers and cellular
IoT connections from 2021 to 2025[4], c) shows the expected increase in monthly mobile
data traffic from 2021 to 2027 [4]

Beyond-5G and 6G networks are envisioned to enable rich interactions to trans-
fer large amounts of data among heterogeneous entities, ranging from simple sens-
ing devices to complex robotic devices and from autonomous service agents to
human actors. This explains why more and more industry and research efforts
emerge to define the use cases, driving characteristics, performance targets, and
technical requirements of beyond-5G and 6G networks [1], [13]–[15]. Example 6G
use cases, grouped in Figure 1.2, require a 6G network communication infrastruc-
ture that is able to respond to the key performance indicators (KPIs) of these use
cases. For example, collective perception of environment use case of Vehicle-to-
everything (V2X) requires peak data rates of 1Gbps for all the vehicles involved in
the use case [16], and streaming light field video for holographic communications
require data rates ranging from 100Gbps to 2Tbps [17]. In general, user experi-
ence rate is set to 1Gbps and peak data rate is expected to be over 1Tbps in 6G
networks [14]. The emphasis on ultra-low latency also increases with the challeng-
ing URLLC requirements of the use cases [18], defined as the “1ms challenge” for
delay sensitive applications, such as tactile internet [19] and augmented/virtual
reality.

1.1 Motivation

The novel KPI targets of 6G networks can be translated as a remarkable increase
in the demand for network resources. For this reason, network architectures pro-
viding resource expansion, the shift towards reconfigurable network architectures
to manage these resources, and the increased use of artificial intelligence (AI)
and machine learning (ML) techniques extracting knowledge from the increased
communication data are expected to become three main pillars of beyond-5G/6G
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Figure 1.2: Envisioned 6G use cases [1], [13]–[15]

networks. An important step towards realizing these networks is to discuss the
relations between autonomic reconfiguration, the management issues of wireless re-
source enhancement techniques, and the potential solutions provided by AI-based
learning algorithms.

1.1.1 Wireless Network Capacity Expansion with Millimeter Wave

An essential source for capacity enhancement in dense networks is the use of
millimeter wave (mmWave) spectrum bands around 28GHz, 38GHz, 71GHz to
76GHz, and 81GHz to 86GHz frequencies [20]. A total of 16GHz bandwidth
is available to use in these spectrum regions. In spite of the availability of large
bandwidth, these bands were not used in cellular networks due to the high power
consumption of the devices utilizing these bands [21] and the challenging propaga-
tion characteristics due to high path loss, poor signal penetration and reflection,
the sensitivity to blockage from various objects outdoors and the high Doppler
effect observed in frequency bands deployed until long term evolution (LTE) tech-
nology [22].

Extensive studies are carried out in order to understand whether mmWave
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spectrum bands can be used in dense networks despite these challenging char-
acteristics [20]–[33]. A list of some of the key challenges that are addressed by
the resource management solutions in the selected studies are as follows: In or-
der to reach the extreme data rates, beamforming with adaptive antenna arrays
and highly directional transmissions are required for narrow beam operations [23],
[25], bringing in the problem of dynamic adjustment of antenna elements in ana-
log beamforming to support multiple directed beams with massive Multiple-input
and multiple-output (MIMO) [29], [31]. Synchronization and broadcasting should
also be designed properly for these directional transmissions [32], as narrow beams
can cause loss of connectivity in mmWave mobile networks when they are mis-
aligned [27]. In addition, efficient beam-tracking and alternative directed spatial
channels need to be provided to users in case of blockage [25] or outage [26] – one
probable solution can be to serve a user at the same time over several access points
(APs) [20].

Integration of capacity enhancement techniques, namely the use of mmWave
and massive MIMO is also complementary to the small cell evolution [31]. In ad-
dition to this, utilizing higher frequency spectrum bands for capacity gains drives
toward use of more small cells, as the propagation characteristics of mmWave
signals lead to higher attenuation and reduced coverage area, requiring the de-
ployment of more APs. Ultra-dense networks (UDN) is an attractive technology
to boost the capacity in a coverage area [33], as increasing the number of access
nodes enables radio frequency (RF) reuse in a certain coverage area. To unfold
the added capacity provided by UDN, end-to-end network management has to deal
with increased dynamics of radio access due to the complexity of the architecture
with increasing number of nodes, massive data generation, and dynamic topology
changes requiring quicker network reconfiguration.

The introduction of mmWave frequency bands for wireless access with dense
deployments also leads to a major increase in fronthaul capacity, and fiber net-
work solutions can provide the required data rates for this fronthaul. Radio-over-
fiber (RoF) implementations for mmWave have long been considered to distribute
mmWave radio signals to dense APs from a central station [34], [35]. Multiple
wireless services can thus share the huge amount of bandwidth in the same optical
fronthaul network, achieving optical-wireless convergence [36].

1.1.2 Autonomic Network Management Concept

Compared to existing wireless networks, a much more dynamic environment is
foreseen due to mmWave propagation characteristics and massive deployments
of small cells, leading to a dynamically changing large scale network topology.
Furthermore, the changing network demand characteristics, such as the increase
in traffic, the increased number of mobile users, heterogeneous user types ranging
from humans to complex devices, and fluctuation in data traffic make dynamic
user behavior an integral part of network management. As a natural result of
this, providing a stable network communication that is able to withstand varying
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network conditions will become more complex, pushing any human dependent
network management approach out of the equation. Predefined rules will also not
be suitable for the dynamic environment of beyond-5G networks, and the lack
of a management approach that is generic enough to capture the dynamics of
most network technologies and user types prevents dynamic adaptation, both for
additional resource provisioning and for avoiding over-provisioning, depending on
the use case.

A number of approaches to transfer the intelligence to mobile networks have
been around for many years from auto-configuration of network entities [37] to self-
optimization of network operations [38], leading to the autonomic network manage-
ment (ANM) paradigm for anticipating and diagnosing impairments in networks
driven by operations and maintenance (O&M) layer goals [39]. At the same time,
the emergence of software-defined networking (SDN) contributed to network opti-
mization efforts by offering programmability and network system reconfigurability
to 5G networks by decoupling the control plane from data plane [40]. Today, with
the support of network function virtualization (NFV), cloud technologies, and
SDN, softwarization and programmability are considered as the main enabling
technologies to manage the dynamic topologies in a responsive way and achieve
5G and beyond traffic requirements [41]. In addition, the developments in the
network elements with hardware support for dynamic reconfiguration introduce a
lot more capabilities for autonomic network management.

An autonomic networking framework for 5G and beyond requires translating
of high level O&M goals into low-level technical parameters and then monitoring
the network to adapt the network status by making use of observations from the
monitoring stage [J1]. The management paradigm shifts towards avoiding the
rigid properties and the limitations arising from the difficulties in modeling the
entire state space beforehand. The type of data to be collected for monitoring,
the possible actions and control rules, the learning algorithms and data analytics
functions should also be defined properly, resulting in a control loop through which
multiple stakeholders can become involved in decision-making inside a hierarchical
functional decomposition.

1.1.3 Learning-based Solutions for Network Resource Management

Mobile wireless networks have been commercially available for decades, and a lot of
management challenges have been addressed by learning methods for optimization,
diagnosis, and prediction. Probabilistic models, game theoretic models and ML
models provided different solutions in application areas such as mobility manage-
ment, call admission control, link optimization, load balancing, and resource shar-
ing [J1]. Implementing self-organizing networks (SON) functionality with learning
algorithms also enabled network elements to explore their environments, respond
to the stochastic changes in the network environment, and to cooperate with other
network elements [42].



6 CHAPTER 1. INTRODUCTION

The increase in data traffic and the number of users, devices and network com-
ponents lead to a huge increase in data which can be analyzed with ML techniques
for optimization in user quality of service (QoS), network management, and service
provisioning. At the same time, the increasing number of unknowns in the system
expands the interest in the use of learning techniques in network management. It
is expected that the convergence of learning solutions and communication tech-
nologies will improve significantly in beyond-5G/6G networks era, with a special
focus on AI/ML-assisted approaches for channel measurements, estimation, data-
driven localization [43], AI-enabled new applications that transfer processing and
knowledge creation to diverse network elements such as smartphones [44], creating
a collective AI for 6G [15].

All these ANM framework requirements and the increasing interest in AI/ML-
assisted approaches to resource orchestration and optimization led to the efforts
of ITU-T [45], ETSI [46], and 3GPP [47] to define the architectural framework for
integrating ML solutions to 5G and beyond networks, whereas exploiting AI solu-
tions in every network segment possible to learn and adapt to network dynamics is
conceptualized as the ‘AI Everywhere’ principle for networks [48], [49]. 3GPP has
introduced the network data analytics function (NWDAF) and the management
data analytics function (MDAF) for core services [50] that can be used for cen-
tralized optimization of the network resources. On the other hand, the 5G radio
access network (RAN) data analytics function (DAF) is proposed for radio resource
management [51], which targets managing ML and AI solutions in the RAN with
open interfaces inside the O-RAN project [41]. RAN DAF can also be extended
with local monitoring lightweight data analytics capabilities for decision-making at
different types of RAN nodes inside a distributed and hierarchical framework [52],
allowing local and distributed resource management optimizations to take place
inside the network.

1.2 Research Objectives and Dissertation Overview

In this section, the research questions covered in the dissertation, the contributions
of the author, and the dissertation structure are presented.

1.2.1 Research Questions

Resource management mechanisms are required to offer solutions that keep the
network performance at a level that maintains a seamless and robust connection for
network end users. Taking all these changes towards beyond-5G/6G networks into
account, we can reformulate the resource management problem with the following
research question:

How can a resource management composition be created for a converged opti-
cal and mmWave radio network architecture? How can multiple stakeholders get
involved in decision-making process to maximize their utilities?



1.2. RESEARCH OBJECTIVES AND DISSERTATION OVERVIEW 7

To provide a well-defined framework to answer the main research question, the
dissertation is extended with the following sub research questions:

� What are the enabling concepts of autonomic network management? What
are the challenges ahead for achieving the technology agnostic autonomic
network management framework? What are the design goals of ANM for
converged optical and mmWave radio networks?

� How should an ANM architecture be defined to implement learning capabil-
ities for network management and enable network stakeholder interaction in
a concrete structure?

� What aspects are relevant for classification of resource management solutions
from the point of view of autonomic network management? In what ways
do the solutions in the literature consider autonomic networking to optimize
millimeter wave radio and optical resource management?

� How should the interactions and possible actions among the stakeholders that
control radio and transport networks be defined in case of limited resources
to reach optimized dynamic bandwidth allocation in converged optical and
mmWave radio networks?

� Can a balanced profit and social welfare trade-off be achieved in converged
optical and mmWave radio networks infrastructure sharing scenario with
distributed decision making?

1.2.2 Contributions

In this section, a brief summary of the independent contributions of the thesis is
provided to readers.

� Based on the ANM framework proposed in [J1], an analysis is presented on
how this concept and its principles can be applied to organize the manage-
ment of 5G use-cases and converged mmWave radio and transport networks.
The separate characteristics of the use cases and the challenges of mmWave
networks are identified to emphasize the need for an ANM framework that
defines the the degree of information about the network to be collected for
monitoring, and the possible actions of the stakeholders that take part in
the decision-making mechanism. A separate section is dedicated to discuss
how game-theoretic learning can be used to model the interaction between
network stakeholders.

� A literature survey is presented to understand the key concepts and the key
network state parameters used to evaluate the performance of AI-based net-
work optimization algorithms, to identify the future demands and to analyze
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the options for novel contributions and the limitations of resource manage-
ment in converged optical and mmWave radio networks. This survey aims at
identifying the main features, objectives, and the resource allocation solution
methods in mmWave networks by also considering the relationship between
the use of optimization algorithms for virtualized resource allocation and the
use of the ANM technological enablers in the 5G and beyond-5G network
architecture.

� In light of the network management model principles, the objectives, and
performance metrics that came into prominence in the previous contribu-
tion, a bankruptcy game is created for cooperative bandwidth allocation in
a converged mmWave radio and optical network. Jain's fairness index is
used to determine the outcomes of the division rules, and user satisfaction
are measured to determine the efficiency of resource allocation. The simula-
tion presents the effectiveness of simple strategic algorithm implementation
over pre-defined rules to optimize resource allocation.

� Even though profit generation was always a factor in performance optimiza-
tion for network operators, the shift in the architecture with network vir-
tualization makes dynamic revenue gains an apparent performance criteria
for resource allocation. In order to investigate this dimension of resource
allocation, a dynamic fronthaul path allocation game simulation is created.
The game aims to validate the hypothesis that auctioning games with VCG
outcomes and distributed learning help in providing maximized profit and
social welfare in sharing network resources. The results can be exploited
during a pre-deployment phase in which different fronthaul topology options
can be simulated to reach a desired market solution.

1.2.3 Dissertation Overview

After introducing the motivation, research questions, and the contributions, in
Chapter 1, the remainder of the thesis is divided into five chapters, which are
structured as follows:

� In Chapter 2, the autonomic network management concept is introduced
together with the evolution of management in radio network and transport
layers. The enablers of autonomic management for beyond-5G and 6G net-
works are presented with concrete examples from the expected use cases.
The design goals and functional decomposition that can achieve seamless
management of the converged optical and radio mmWave networks are clar-
ified. Finally, a literature survey on game theory-based resource allocation
is provided for autonomous management and distributed decision-making in
multi-stakeholder network environments. The definition and enabling con-
cepts of autonomous network management are provided in [J1] and examples
of use case—network management mapping are presented in [J2], [C1], [C2].
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� In Chapter 3, a converged optical and mmWave radio architecture is defined
for beyond-5G/6G networks. The main performance metrics and optimiza-
tion objectives of the architecture are classified under throughput maximiza-
tion, delay minimization, and energy-efficiency targets. As the paradigm
shift with network softwarization leads to the abstraction of network re-
sources, virtual resource allocation is also classified as a separate category.
Based on these targets, a review is presented to explain how existing re-
source management solutions deal with optimizing mmWave radio and op-
tical resources from an autonomic network management perspective. The
methodology and the outcomes of this review is first published in [J3].

� Dynamic bandwidth allocation for a multi-user environment is presented in
Chapter 4. mmWave radio network units cooperate with a coalition in a
bankruptcy game between transport network and RRHs played to achieve
fairness for radio acesss and quality of experience (QoE) maximization for
users. The results of applying different division rules for the Bankruptcy
game for resource scarcity and demand increase scenarios are presented.
Furthermore, users have different service subscription categories in order
to analyze the impact of demand heterogeneity.

� Chapter 5 focuses on a distributed network management paradigm, in which
infrastructure provider and service provider profits are optimized in a setting
that considers social welfare pursuing outcomes with a descending Vickrey-
Dutch auction. A dynamic fronthaul path allocation game is designed for
service providers that lease the resources from the infrastructure provider.
This chapter considers optical network resource allocation from a profit gen-
eration perspective with an auctioning game, in which providers bid to lease
space division multiplexing-enabled (SDM) fronthaul paths. The game aims
to distribute fronthaul resources with a social-welfare maximizing outcome.
The results of this experiment are presented in [C3].

� Chapter 6 concludes the thesis by summarizing the findings and contribu-
tions with final remarks. This chapter also provides an in-depth discussion
for future research.
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CHAPTER 2

Autonomic Management of
Beyond-5G/6G Networks

Network management consists of the activities, methods, and tools used for ad-
ministration, maintenance, and provisioning tasks of networked systems [53]. 5G
brings the newest step in the evolution of mobile network management, bringing
programmability, SDN-based flow control and on-demand network slices tailored
for various verticals into the big picture. Besides, the increase in data traffic,
number of devices and the proliferation of service types escalate the performance
requirements that 5G networks will have to support, motivating all actors to come
up with innovative KPI optimization solutions, leading to the integration of artifi-
cial intelligence into network management. All these novel technologies introduce
the next paradigm shift to network management, leading to an urge for the dy-
namic reconfiguration of networks. The new challenge in network management is
therefore to design an autonomic network management mechanism that predicts
network load, learns the behavior of different network domains, and enables coor-
dination between those domains to optimally adapt to the system-wide objectives.
In this chapter, the driving factors of ANM, ANM design goals for future networks,
and the game theory-based distributed decision-making mechanisms with multiple
network stakeholder involvement are presented.

2.1 Driving Factors of Autonomic Network Management

In mobile networks, network management must offer solutions to reduce the com-
plexity of the system and keep the network performance at a level that meets
the ever increasing capacity optimization, coverage expansion, QoS and energy-
efficiency demands from users, services and operators. The process of controlling

11
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Figure 2.1: 5G/Beyond-5G software-centric network management overview

a complex mobile network to maximize its efficiency and the pressure to cut costs
shifted mobile network management from human-centric to softwarized solutions
with simple network policies, and the next step is to move to autonomous solutions
with global policies. This section presents network management technologies that
should be considered as evolution milestones towards ANM and discusses their
impact on 5G and beyond-5G network management. A high level picture that
presents the driving factors of ANM is depicted in Figure 2.1.

2.1.1 Self-organizing Networks

Self-organization is a term that is inspired from the nature and it means au-
tonomously adapting to the changes in the environment to achieve a certain ob-
jective [38]. Used in various scientific branches from economics to computer sci-
ence, self-organized systems in general aim to reach a global equilibrium via the
distributed interaction of system elements. This equilibrium can be achieved with
the ability to remain in a stable state and quickly responding to changes. In
mobile networks, SON defines a concept that enables the network elements to
explore their environment, cooperate with other network elements, and respond
to changes without human involvement to reach a mobile network objective such
as load balancing or interference management [42]. SON functionalities for net-
work O&M procedures are grouped under self-configuration, self-optimization, and
self-healing categories.

The benefits of self-organizing functions to solve these problems were firstly
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discussed for LTE systems. 3GPP defined use of SON [54] by emphasizing the
need to reduce complexity, improve operability and minimize operational effort
with addition of self-configuration and self-optimization functions to LTE systems.
Based on the 3GPP definition, NGMN [55] defined SON use-cases and categorized
them under planning, deployment, organization and maintenance. The prominent
SON functions defined by 3GPP for LTE [56] include obtaining information from
neighbor BSs, interference mitigation, mobility robustness optimization (MRO)
to manage handovers and radio link failures, and mobility load balancing (MLB).
With the introduction of small cells in heterogeneous networks, SON functions
need modifications with the variety of handover and interference types [57].

A much more dynamic environment is foreseen for 5G and beyond-5G in com-
parison to LTE and LTE-A; creating the need to follow policies and objective func-
tions more dynamically for SON functions. For this reason, it is necessary to de-
fine new use-cases for self-organization functions whereas existing self-organization
functions should be modified to react faster and to involve conceptual changes
foreseen for 5G. For example, transmission power adjustment in a small cell en-
vironment is more likely to require AI-based solutions [58]. Furthermore, back-
hauling and transport networks in general is not defined as a SON use-case for
LTE systems; however, the massive deployment of small cells leads to the prolifer-
ation of massive fronthaul and expansion of front-/mid-/backhaul splits; therefore
defining specific transport network use cases is of key importance to an opera-
tional 5G. In addition to this, antenna parameter adjustment has to be redefined
as a self-optimization function as MIMO needs to be integrated to cellular net-
works and highly directional antennas and adaptive beamforming is required to
exploit mmWave spectrum. Knowledge extraction with cognitive radio is an at-
tractive idea where self-organizing functions learn over the extracted knowledge
from spectrum sensing and small cells can dynamically adapt to the environment,
minimizing interference towards other users. Finally, network management opti-
mization with SON is a challenging issue as conflicts exist between single opti-
mization targets. For this reason, optimization targets for network management
with self-optimization algorithms require coordination mechanisms. Fuzzy classi-
fication techniques are applied in [59] to classify network management targets in
a self-coordination framework to solve these conflicts.

SON allows collection of radio layer data from the environment and adapts
to changes at the right time, allowing policy enforcement with specific parame-
ter configurations in network elements [J1]. SON is therefore an important step
towards ANM and distributed decision-making in wireless networks. However,
when compared to ANM, SON should be considered as a use case confined to the
management and control of cellular networks, targeting at keeping the network
stable and operating, reducing the O&M costs, and optimize the overall network
performance.
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2.1.2 Software-Defined Networking

In the dynamic environment foreseen for 5G and beyond-5G networks, networks do
not only have to deal with massive mobile device connections and the expansion of
data traffic, but they also have to sustain operation under load variations, leading
to higher temporal and spatial traffic fluctuations. Efficient management of these
complex networks cannot easily be taken care of with traditional network solutions.
For this reason, there has been a paradigm shift from hardware-centric to software-
centric management to reconfigure the network and enforce new policies to different
services in a dynamic way, owing to enabling technologies such as SDN and NFV.

SDN concept addresses the ossification problem of networks by decoupling the
data plane from control plane, and makes it possible to configure network devices
at setup and update them on-the-fly order to modify the data plane behavior and
provide dynamic responses to changing network requirements [40]. This reconfig-
uration is much needed and novel architectures exist for 5G networks that deploy
SDN [60], [61] as a technological enabler to shift towards flexible, software-based
and reconfigurable solutions. The centralization of control knowledge enables con-
trolling multiple flows, leading to consistent network management decisions and
agile transport and access networks. Programmability and reconfigurability fea-
tures of SDN make it possible to configure the network components dynamically in
5G networks. SDN can change the network behavior for services by sending control
messages to the devices (routers, switches) without interrupting the end-users data
flow. The northbound interface can be used for several management applications
such as interference mitigation, centralized transmission power control, mobility
management, elastic bandwidth provisioning, vendor agnostic transport network-
ing, and energy efficiency. These applications can implement different policies to
respond to the QoS/QoE requirements of services and users.

Kreutz et al. [62] define four pillars of SDN as decoupling of control and data
planes, flexibility with match and action based forwarding decisions, logically cen-
tralized abstract view of SDN controller and programmable network applications.
SDN creates abstractions in networking and enables addition of new services such
as load balancing and energy efficiency as programmable applications that can
enforce new policies and reconfigure the network based on the logically centralized
controller view. SDN also makes it possible to use high level programming lan-
guages while modifying network applications for policy enforcement. Decoupling
of data and control planes keeps applications in the abstracted level of the control
layer, and gives them the opportunity to reconfigure forwarding paths regardless
of their geographical location.

SDN-based architectural approaches transform network designs of next gener-
ation wireless architecture. Design options based on network virtualization, SDN
and NFV exist for several RAN architectures; however centralized radio access
network (C-RAN) architecture can benefit greatly from SDN as processing is cen-
tralized at the central office that contains Baseband unit (BBU) pool. With SDN
and C-RAN approach, BBU pool is tasked with both data forwarding and a level
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of radio control functionalities [63]. Besides, a programmable fronthaul design
for C-RAN can reduce the required number of BBUs with a switching element
that establishes the links dynamically for Remote radio head (RRH)-BBU map-
pings computed by SDN [64]. An SDN resource manager is also presented for
dynamic path management between small cells and the backhaul in a similar fash-
ion in [65]. In dual-connectivity and HetNet use cases, coordinated handovers can
be managed by SDN in an architecture that separates control signaling and data
traffic between the macrocell and microcells [66]. Coordinating and optimizing
RAN traffic with SDN can also be used to distribute the traffic in congested radio
nodes, with applications that monitor QoE with a network status database for
decision-making [67]. Regarding the optical networks, SDN can be responsible
for lightpath establishment and provisioning. Physical layer parameter tuning is
possible with SDN controllers, such as modifying the amplitude and phase of the
generated optical signal or changing the modulation format [63].

SDN controller architecture plays an essential role in resource management;
however, a very commonly known challenge is SDN’s scalability due to its char-
acteristic of a logically centralized controller. Distributed SDN controllers can
also be an attractive design option for beyond-5G/6G architectures, as distributed
controllers can be deployed at the edge, and this architecture potentially enables
improved performance for edge services with lower delay, while consuming less
amount of radio and computational resources [68]. Distributed SDN architecture
involves multiple inter-connected network domains, each managed by a master
SDN controller in a hierarchical structure. In [69], the controller placement prob-
lem in distributed SDN networks is discussed. The synchronization problem among
controllers is investigated in [70] to enable efficient intra-domain routing. Joint de-
lay and overhead optimization in distributed SDN networks is considered in [71].

2.1.3 Network Function Virtualization

NFV transforms the hardware-centric management to software-centric manage-
ment by running softwarized network functions on general-purpose hardware in-
stead of hardware dedicated to the network function [72]. ETSI defines NFV as
decoupling network functions’ software from the computation, storage, and net-
working resources [73], in order to deploy new network services rapidly and support
multiple services on a single hardware with multi-tenancy. This gives the network
operator the flexibility to customize data flows of services with chained virtual
network function (VNF) middleboxes to optimize their QoS with customized data
processing, as introduced in [74]. Chaining network functions that have different
operations with virtual links is a step towards the network slicing concept ex-
plained in Section 2.1.4. NFV also has the potential to reduce capital expenditure
and operational expenses [73], [75].

The reference architecture used for NFVManagement and Orchestration (MANO)
is the ETSI framework [73] demonstrated in Figure 2.2. NFV-MANO frame-
work consists of three main components, namely network function virtualiza-
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Figure 2.2: ETSI NFV-MANO framework [73]

tion orchestrator (NFVO), VNF Manager, and virtualized infrastructure manager
(VIM). NFVO orchestrates network function virtualization infrastructure (NFVI)
resources and is responsible for the lifecycle management of network services. It is
also connected to external entities such as Operations Support System/Business
Support System (OSS/BSS). The VNF manager is responsible for the lifecycle
management of VNFs, and the VIM is responsible for controlling and managing
the virtualized compute, storage and networking resources of the NFVI. NFVI is
responsible for the abstraction of storage, compute and processing resources by
using servers and a network hypervisor that runs virtual machines. In conclusion,
ETSI framework provides an end-to-end perspective to service management and
resource orchestration [76].

The orchestration of VNF deployments in SDN/ NFV architectures is challeng-
ing as the unique kernel and software container needs of a VNF have to be consid-
ered during the resource allocation process [77]. OpenStack [78] is an open source
cloud computing platform that provides various tools and technologies to hide
the complexity of the underlying infrastructure by abstracting virtual and physi-
cal network resources. OpenStack provides virtual machines and containers, and
it offers various ready-to-use applications to manage those resources. Openstack
manages large pools of compute, storage and networking resources throughout a
datacenter, all managed and provisioned through APIs. Resource monitoring is
also possible through OpenStack APIs and its applications. Designed according to
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ETSI MANO architectural framework, Openstack NFV orchestrator Tacker also
aims at creating a Generic VNF Manager and NVF Orchestrator in order to install
VNFs and network services on an NFV platform.

NFV and SDN are associated with network softwarization technologies. A
service-oriented approach for NFV orchestration involves using SDN-based rout-
ing to compute an optimal flow for a service. This removes the constraint to pass
through the VNF node as the network orchestrator can decide to replace the node
on which the VNF server is implemented to get a better bandwidth for multiple ser-
vices using this VNF. On the other hand, SDN functions and applications can run
in virtual machines provided by the NFV MANO. Creating integrated NFV/SDN
architectures is investigated in the literature [77], with VNF performance, VNF
Scheduling and Placement, high-level policy definitions, traffic management based
on network behavior, and the overall orchestration still remaining as the main
challenges of such an integrated architecture.

2.1.4 Network Slicing

Network slicing is a technique for flexible service-specific resource provisioning [79],
and one of the key technological enablers of the paradigm shift towards software-
centric network management. The emerging use cases and applications introduced
in Chapter 1 for beyond-5G networks require dedicated network resources that can
be virtually provided over customized logical networks called slices. To simplify
service development, Service Layer Agreements (SLAs) define the service specific
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requirements such as coverage area, capacity, and QoS [80]. Network slicing pro-
vides different slices to services with different QoS levels over short or long term
SLA contracts. Network operators provision infrastructure level, network function
level, and application level resources to the services to satisfy these requirements
and create an end-to-end chain for each slice, which is conrtolled by an NFV-
MANO framework. Different slices should be managed simultaneously, as the in-
frastructure provider supports simultaneous data transmissions with different QoS
classes over the same physical infrastructure. To achieve this management goal,
the infrastructure provider should be able to provide slice isolation to the dedi-
cated bandwidth, processing, and storage resources [81]. As dynamic slice creation
and deletion are required in 5G, network slice selection function (NSSF) is added
to the 5G core in order to retrieve the network slice information during session
establishment and to subscribe, unsubscribe or notify service procedures [82].

SDN and NFV play the enabler role in network slicing, as NFV functions
required in a slice are deployed on physical nodes with network function placement,
and the virtual links that connect virtual network functions are mapped to physical
resources with the path computation engine of the SDN topology manager. The
connected virtual links and nodes create a network slice on top of the physical
infrastructure dedicated to the communication service, which is named as a tenant
of the network. Virtual Network Embedding (VNE) problem deals with dynamic
mapping of virtual nodes and links to the physical hardware to maximize the
benefit gained from existing hardware [83].

A virtualized 5G architecture is controlled by a network slice manager, NFV
orchestrator, and SDN controllers. The interactions among all these network man-
agement components should be defined with well-defined interfaces for information
exchange, dynamic reconfiguration, and efficient slice management. The creation
and customization of a network slice for a service by forming an end-to-end service-
specific virtual network connecting users’ devices and cloud-based resources are
demonstrated in Figure 2.3.

Network slice management is responsible for on-demand resource provision-
ing, i.e., associating the services with a particular network slice including a set of
network functions and network resources. The physical infrastructure contains ra-
dio access resources (spectrum bands and beams), optical network resources, and
computing resources with multi-access edge computing (MEC) [84], and a network
slice manager is responsible to allocate all these resources to slices and compute all
the routes that link these resources in a cost-effective way by taking all resource
constraints into account. In conclusion, network slice management can be con-
sidered as an optimization problem with multi-objectives from the infrastructure
provider/network operator side.

A network slice manager manages the lifecycle of network slices by dynamically
translating their QoS requirements. Depending on the service type and QoS re-
quirements, a service may require data updates over the traffic capacity, network
coverage area and user density, degree of isolation, mobility management, con-
nection priorities, service availability, and service reliability [85]. All these data
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can be used by the service with learning algorithms to maximize their objective
functions.

Depending on the service type, services can cooperate or compete with each
other to exploit the common physical infrastructure. The fact that different net-
work stakeholders have different objectives in creating slices, network slicing opens
the way for decision-making with the interrelation of stakeholders. Through this
interrelation, services can adjust their preferences depending on the QoS require-
ments and manage their resources autonomously by replacing the static partition-
ing of resources. The roles related to network slicing management can also be ex-
tended to end-users and third-party VNF / MEC providers that lease their services
to and/or from network operators during slice creation. These stakeholders have
different and sometimes conflicting objectives; therefore defining the interactions
between the stakeholders in network slicing with QoS, cost, and revenue aspects
is a challenging task. Table 2.1 shows the categories of potential stakeholders,
objective functions, and learning parameters in a network slicing scenario. There
exist network slicing games with auctioning [86], [87] and market models [88] in the
literature. Under appropriate conditions, the game associated with the strategic
decision-making of services converges to a Nash equilibrium [88].

Table 2.1: Objective functions of stakeholders during slice formation

Network Stakeholder Objective Function Learning Parameters

Network Operator maximize revenue
fair resource allocation
optimal utilization

service demand
user demand
resource availability

Service Provider maximize revenue
availability at all times
maximize user QoE

user QoE
degree of isolation
service priority
slice costs

3rd Party Computing maximize revenue
energy-efficiency

server price
service costs

End Users maximize QoE
reduce costs

user satisfaction
service cost
connection quality

2.1.5 Use Cases with Proposed Approaches

Before closing this section, two high-level use-cases are presented to demonstrate
how these novel solutions can help in realizing network applications in 5G and
beyond era.
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Smart Home Application

A high-level approach to form a network slice for a smart home application is
presented in [J2]. For a beyond 5G community, radio resources are made available
by small cells, while storage and processing resources are provided by a MEC. The
envisioned flexible infrastructure layer for a smart home application shortens the
bit pipe bringing the access point closer to the user or by directing the data traffic
between users via device-to-device communication. Self-organization of device
layer parameters (transmission power, sub-carrier spacing, etc.) deals with the
trade-off between energy efficiency and spectral efficiency. Moreover, integration
of MEC to this architecture enables applications running at the edge with low
latency, and at the same time reduces backhaul and core traffic of the network.
Pushing the on-demand service close to the last mile requires SDN control over
the content layer instead of the switch-based topology of current control systems,
bringing the idea of merging information-centric networking (ICN) with SDN.
The ICN paradigm offers a new distribution method in networks by decoupling
information and location with named data objects that correspond to the role of IP
in the traditional network [89]. When ICN and SDN concepts are merged, SDN
controllers should detect ICN requests and reroute the traffic for ICN request-
response pairs instead of finding IP servers. ICN domain creates a form of smart
traffic, in which closer communication between the demanding user and the content
provider can be established with offloading, and the traffic can be cached closer to
demand so that the user is not obliged to go through the content servers.

Smart City Application

A smart city platform is presented in [C2]. The platform is a multi-agent sys-
tem based service-oriented middleware, on which IoT services operate their tasks.
The interaction between IoT services and network devices are managed through a
network layer, which is composed of three essential blocks: network management
application (NMA), network agent, and OpenStack tools. The NMA provides
a generic concept to orchestrate the underlying network resources. The NMA
orchestrator is responsible for network resource distribution in the smart city net-
work. It also optimizes resource management by using Network Analyzer, Network
Monitoring with OpenStack Ceilometer, and Strategy Planner components. In-
frastructure manager allocates nodes and links in the physical network to network
slices, VNF servers and Fog servers. VNFs are deployed to requested nodes by
using OpenStack Tacker. When a VNF server is deployed, then this server is
added to the VNF Server Catalog so that smart city services can decide whether
to add them to their network slices. Network agents establish a bi-directional
communication between service-layer and network layer. Each smart city service
can communicate with network agents to manage their network slices.

Forming a new network slice with a specific QoS class, the measurement of
users’ quality of experience, and the direct interaction with NMA to obtain the
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available network resources are all carried out through agents. The interaction
flow of these components from network slice request to its optimization can be
explained as follows: Each smart city service requests a network slice with a QoS
class (excellent, good, fair) based on some parameters such as bandwidth, latency,
and price. Smart city service also sends its VNF and Fog server requests. The
extracted values from the requested QoS class are then shared with the NMA.
NMA first searches for suitable VNF and Fog servers with respect to the given
network parameters and send a list of available servers to the smart city service
agent. Service agent selects the suitable VNF and Fog servers based on its utility
function, and then sends this information back to the NMA. Once the orchestrator
inside the NMA gets this message, it initiates the creation of a new network slice
and then binds the servers to the slice with OpenStack Tacker. OpenStack Tacker
creates the network slice and establishes the data flow channels through an SDN
Controller. The created network slice and the VNFs are continuously monitored
by OpenStack Ceilometer.

2.2 ANM Design Goals for Beyond-5G/6G Networks

Managing the paradigm shifts listed in Section 2.1 in beyond-5G/6G networks re-
quires an evolution towards autonomic networking. Autonomic networking targets
implementing intelligent behavior in network management systems. The term is
inspired by the concept of autonomic computing, presented by IBM in 2001 [90].
This section presents ANM design goals and challenges and the proposed ANM
framework in [J1] that aims to respond to ANM design challenges.
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2.2.1 ANM Challenges and Evolution

Beyond-5G/6G networks will differ significantly from previous standards in terms
of achievable throughput, minimized delay and the massive number of devices
that need to be served. As a consequence, mobile network operators are facing
challenges to evolve their large scale network deployments to fulfill the foreseen
requirements of beyond-5G/6G networks. One major challenge in this regard is
the instatement of a self-x network management paradigm that enables autonomic
behavior at all levels of the network management hierarchy, from element man-
agement level up to the business management level.

Policy-based management is one of the earliest approaches to implement au-
tonomic behavior to network control. In 2001, IETF defined policy-based net-
working as a mechanism that can merge using software abstractions for network
monitoring and control with programmable control for configuring and operat-
ing the network [91]. This mechanism is used to convert network management
into an SLA-driven and autonomous approach by separating the network behavior
governing rules from their functionality [92]. By applying the concept of policy
refinement, the high-level goals of these SLAs are translated to control device level
network resources. An example framework for this hierarchical translation can be
seen in the policy continuum approach introduced by FOCALE project [93].

ANM evolved from policy-based network management with control loops. Au-
tonomic networking requires control loops to monitor the network status and
adapt network management by making use of observations from the monitoring
stage. MAPE-K control loop proposed by IBM defines the first stage of auto-
nomic network management with Monitor – Analyze – Plan – Execute – Knowl-
edge stages [94]. In this proposal, it is stated that an intelligent control loop is
formed when the stages of ”information collection from the system”, ”analysis of
information to decide for changes in the system”, and ”creation of a plan for a se-
quence of actions” are automated. The use of policies allows high level expression
of business goals independently from network element level control and configura-
tion. The layers are connected by the policy refinement stage, in which a control
loop autonomously enforces adaptivity of the network to the changing environ-
ment by translating policy goals into conflict-free local network control functions,
in line with the ANM design goal of closing the gap between business and network
layers with mechanisms that convert business level policies to concrete actions on
different network elements.

The network paradigm shift with SDN, NFV, and network slicing is expected
to divide mobile networks into chains of high-level services using functionalities
provided by lower-levels network services, with each layer managed by the respec-
tive service provider. In addition to the flexibility enabled by these technologies,
the increase in the complexity of the networks require a novel approach to policy
refinement in ANM that overcomes the functional rigidity, avoiding simple rule-
based solutions and a single management layer that controls all network entities.
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Another challenge of ANM is to create the right abstraction layer that fits the
network environment and different network stakeholders [J1].

In addition to the intelligent control loop proposed with MAPE-K, control
loops are required to be enhanced for beyond-5G networks so that they respond
to the problem of not being able to solve issues that are not defined by an existing
policy. Cognitive modeling is a promising method to solve this problem. Cogni-
tive modeling aims to simulate human problem solving skills and mental tasks in
computer science area [95]. Use of cognitive modeling can enhance control loops
for dynamic network management by making management processes compatible
with the architectural changes in future networks and thus define the second stage
in autonomic network management after MAPE-K, as visualized in Figure 2.4b.
As the stages of the cognitive control loop are learning-enabled, cognitive control
loops are able to anticipate the changes in a network and answer the challenge of
achieving a robust adaptation mechanism.

2.2.2 Control Loop Stages

In order to extend the autonomous management framework to control network
entities, the following control loop requirements must be satisfied [J1]:

� Defining the type of data to be collected for QoS monitoring: A reasonable
method for this is to define utility functions to different stakeholders and
create a decision-making logic that make use of the monitored data.

� Defining the possible actions and control rules of the decision-making mech-
anism of users: Game theory-based models are a promising alternative to
concretely define these actions and control rules and to distribute these rules
to different stakeholders.

� Designing learning algorithms for decision-making and improving the QoS:
Implementing learning algorithms have the advantage of adapting or replac-
ing the decision logic without requiring a substantial change in management
design.

These three requirements can be mapped to the three main control loop stages,
namely monitoring & measurement, analysis & decision-making, and learning.
Before presenting the architecture of the proposed framework, these control loop
stages should be explained in more detail:

� Monitoring: Samaan – Karmouch [39] classify monitoring methods as active
vs. passive, and centralized vs. distributed. Methods with different monitor-
ing granularity, i.e., measurement at byte, packet, flow or aggregated traffic
level, different monitoring timing and and different level of monitoring pro-
grammability indicate the level of scalability and flexibility required in these
systems. In order to provide useful data to the control loop, all these aspects
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have to be considered during the design phase of a monitoring system. With
the convergence of wireless technologies, increasing number of nodes and in-
troduction of novel applications, mobile networks demand more scalability
and flexibility at all layers, and network monitoring is no exception. For
this reason, the paradigm in monitoring systems shifts towards cloud-based
systems, and Openstack [78] is a widespread cloud-based monitoring service.

� Analysis and decision-making: This stage aims to adapt the network environ-
ment by making use of the observations obtained by monitoring the network
status. The possible actions and control rules of the decision-making mech-
anism define the policy execution step in network management. Convert-
ing this mechanism from a reactive rule-based decision-making to proactive
decision-making that is able to respond to previously unknown problems is
one of the main targets of ANM [J1].The aim of introducing the learning
step is to modify this rigid structure to proactive decision-making.

� Learning: The learning mechanisms are used for inference and anticipatory
decision-making. Through these mechanisms, control loops are enhanced
with autonomous behavior, so that they respond to the problem of not be-
ing able to solve issues that are not defined by an existing policy, bringing
in the requirement for self-x characteristics. Autonomic behavior in a man-
agement system is achieved by implementing learning approaches; therefore
a learning stage with AI/ML techniques is added to the control loop struc-
ture of beyond-5G/6G networks to manage the unknowns in the envisioned
management framework.

2.2.3 Proposed ANM Framework

As part of the autonomic networking concept, a cognitive control loop framework
is proposed in [J1] to organize control decisions and adaptation with monitoring,
decision-making and learning steps at each layer. The hierarchical structure of
the framework aims to provide a mechanism that concretely decomposes differ-
ent network domains into functional components, and the interactions between
those components and the external stakeholders should be clearly defined. In the
proposed framework, the segmentation of mobile networks remains unchanged,
and each domain is controlled with a separate cognitive control loop, as shown in
Figure 2.5.

Another motivation in the design of this management framework hierarchy
is to contain different abstraction levels of functionality. In order to achieve a
framework that is agnostic to underlying heterogeneous technologies, the objec-
tive functions are distributed from global to local domain within the network. The
main objective functions of mobile networks are presented in Section 2.2.4. The
cognitive loop of each layer is able to interact with the other layers in the hierarchy,
and global policy execution is handled at the operator layer. As adjusting each
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Figure 2.5: Hierarchical autonomic networking framework defined in [J1]

individual parameter from the operator level creates a scalability issue, the aim of
the hierarchical framework is to avoid concrete specification of low-level behavior
with an abstraction based on sending key aggregate values to upper layers. Learn-
ing based on aggregate values at higher layers can speed up predictions for future
network states and replace rule based policies to reduce complexity.

The objective functions of external stakeholders such as users and service
providers are independent from the framework, creating a distributed learning
framework with self-evolving characteristics. To give an example, the objective
functions of network and external stakeholders can be mapped to the proposed
ANM framework as follows: Global policies of reducing operational costs of a
service and increasing the satisfied users are defined in the operator layer. The
management of the aggregated flows of service users, the required core network
functionalities, and sparing core and transport network resources for this service
without affecting other services are the issues to be planned at the cluster layer.
The local objective functions of load balancing, congestion avoidance, call admis-
sion control, handover optimization, and link adaptation come into play at the
radio layer. To optimize these objective functions, learning algorithms are imple-
mented at radio, transport and core layers that adjust the controlling parameters,
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and control each network element to effectively manage end-to-end QoS. The users
can define their own objectives such as throughput maximization to experience the
best possible service, and optimizing the mean opinion score (MOS), which is a
direct indicator of the overall satisfaction of the users. The functionalities at each
layer and the interactions between them should be clearly defined in order to
provide concrete management solutions to network operations.

2.2.4 Mobile Network Objective Functions

Before closing this section, the main network management objective functions that
can exploit this ANM framework in different network domains and use cases are
presented.

Load Balancing

Load balancing encompasses the approaches that address system overload issues
when exposed to increasing requests and demand. Load balancing solutions are
typically designed in such a way that system components under load can horizon-
tally be scaled by instantiating additional resources and distributing load inside
the resource pool. Load balancing is therefore a common local objective function
in most network domains, i.e., radio, transport, and core networks, both in data
and control layers. The load balancing solution approach influences the selection
of monitoring points in the system. After capturing the required information via
monitoring, this information is processed by the learning approaches.

In dense mmWave networks, the high density of users may lead to load balanc-
ing issues for RU, DU, and CU, especially if one of the units forms a bottleneck
with one-to-many connections. If the density of users in a zone is very high and
all the antennas in the zone are connected to a single BBU, the load on the BBU
will become very high [96]. Load distributions also show a different pattern in
mmWave networks, as obstacles that cause blocking in a region lead to different
loads due to mmWave propagation characteristics [97].

Handover Optimization

Network management is supposed to cope with dynamics in access and user layers,
which often include user mobility and resource relocation among others. The
transfer of state information from one component to the next due to changes in
locations or outcomes of load balancing decision is called a handover, and the
mechanisms that aim to ensure QoS of mobile users by providing session and call
continuity are grouped under the handover optimization objective function.

Creating an autonomous handover optimization framework at the network edge
is required to make the best use of the capacity enhancement provided by mmWave
deployments. As adjusting each parameter in a centralized way creates a scalability
issue, in this optimization framework, each stakeholder takes part in management
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decisions with their learning rules created according to their informational and
computational requirements.

Route Optimization

Route optimization deals with solution approaches that implement efficient routing
in the core and transport network topology for avoiding congestion and meeting
application QoS requirements. The main route management issues arise in guar-
anteeing fair allocation of network resources to services in order to meet their
QoS requirements defined in SLAs. For example, in an overloaded network traffic
situation, when less capacity is allocated to a service than indicated in certain
SLA, punishment mechanisms may discourage resource under-allocation between
the infrastructure provider and service provider. However, from service provider’s
perspective, compensation is not as important as guaranteed network performance.
Autonomic management approaches resolve those issues by dynamically reconfig-
uring the virtual network topology, taking into account current and future service
demands.

Resource Sharing

This is the local objective function that deals with approaches for network resource
sharing, which may belong to any network segment of the end-to-end network
stretch, e.g., resources at core, transport, and radio. The measurements and con-
trol parameters are specific to the implemented resource sharing approach and the
resource allocation SLA agreement between the infrastructure provider and the
service provider. Radio resource sharing has the potential to increase capacity in
future networks without any infrastructural expenditures, as in the case of using
millimeter wave for data transmission. As this objective function is also consid-
ered as a capacity enhancement technique for mmWave networks, the details of
relevant use cases are presented under the title spectrum sharing in Section 3.1.4.

Link Adaptation

Link adaptation is a local objective function that adapts the links of end-to-end
data transmission partially in network domains or completely with a global network
view to optimize resource utilization. Selecting modulation schemes, frequencies,
waveforms, or beam direction are all covered by link adaptation functions. Inter-
ference mitigation techniques can also become part of link adaptation by using
frequency assignment and power control schemes.

For future networks, maintaining a seamless and robust connection for users
with link adaptation is likely to be more challenging. Firstly, introduction of mil-
limeter wave bands to mobile networks brings more dynamic channel conditions.
In future networks, mmWave transmissions require pencil beam transmission chan-
nels created by beamforming with multiple antennas [23]. To overcome propaga-
tion issues, learning methods can be used for link adaptation on the base station
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side by adjusting the angles of the base station on a per user basis to form optimal
beamwidth and optimize signal to interference plus noise ratio (SINR) of pencil-
beam channels. Autonomic reconfiguration of modulation parameters according
to different network scenarios is likely to be part of link adaptation in future
self-organizing network management systems. Instead of a single pre-defined sub-
carrier spacing with a single numerology like LTE, a tilting concept that adjusts
radio frames based on user specific subcarrier spacing schemes, frame design and
adjustable TTI length for different network scenarios is proposed in [98].

With 5G NR, service specific objectives can be achieved by adapting trans-
mission parameters thanks to key link adaptation technologies such as flexible
numerology [99]. The choice of the appropriate numerology can be made with
ML frameworks, according to energy requirements of a mMTC service, whereas
URLLC services are given priority with innovative puncturing techniques [100].
5G NR also has a new frame structure in which a subframe is formed by adjacent
slots with 7 or 14 OFDM symbols. OFDM symbols can be assigned as flexible,
and then can be adapted for both downlink and uplink transmissions.

2.3 Game Theory-based Learning

As mentioned several times throughout this dissertation, creating a decision-making
structure in which multiple stakeholders can interact is one of the most important
design goals of ANM. Game theoretic models are an alternative to define the net-
work stakeholder interaction as game theory provides methods to define a group
of rational players, who make decisions strategically and the interactions among
this group [101], and the concepts used in this explanation are defined as follows:

� Group defines the set of players in any game, in which each player is consid-
ered as a decision-maker.

� Interaction among players directly affects other players, and the action of
any one individual player affects at least one other player in the group.

� Strategic decisions are taken when an individual player is able to learn the en-
vironment and the interdependence to actions of other players when deciding
for her action.

� Rational choices are made when each player in the group chooses her best
action by taking this interdependence into consideration. The best action of
a decision-maker is at least as good as every other available action.

A strategic game therefore consists of a set of players N = {1, . . . , n}, a set
of actions ai for each player i, and preferences u over the set of action profiles a
for each player [102]. John Nash introduces the solution concept of equilibrium
to game theory in [103]. A strategic game has a Nash equilibrium for the action
profile a∗, if no player i can do better by choosing an action different from a∗i,
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given that every other player j chooses a∗j . If a player attains a probability
distribution over her set of actions, this is defined as a mixed strategy, whereas
assigning a probability of 1 to a single action is called a pure strategy. A game
can have a single Nash equlilbrium, many Nash equilibria or no Nash equilibrium
for pure strategies, depending on the game type.

In strategic games, the players choose their action simultaneously and the event
occurs only once. To examine the effect of past behaviour of other players, re-
peated games are considered [101]. In finitely repeated games, a strategic game is
repeated t times, therefore the effect of cooperation or learning can be observed in
such games. The behavior of network stakeholders can be defined in several differ-
ent game models, such as auctions, coalition formation games, evolutionary games
to observe population dynamics, or Stackelberg games where follower acts sequen-
tially after the leader’s action. Several examples of these game theoretic models
are provided in Section 2.3.1. Player behavior may change based on the type of
game that they are playing with other players (cooperation game, non-cooperative
game, evolutionary game, etc.).

Learning in games is studied in the literature as the concept of equilibrium
brings to question of how the players in a game can reach an equilibrium state.
Learning model in a game is defined by Fudenberg and Levine [104] as any model
that defines the learning rules of players and studies the interaction when the game
is played in a repeated fashion. In order to consider game theory-based learning,
the game should be repeated so that the players can learn by making observations
from the history of the game and updating their knowledge in a distributed way.

For learning in games, three dynamic adjustment processes have received the
most attention, namely best response dynamics, fictitious play, and replicator
dynamics [104]. Best response dynamics occur if the player plays her best response
to the other players’ actions in the previous period [102]. The game converges to
a pure Nash equilibrium if an action profile remains the same from period to
period. In best response dynamics, the players’ actions change from period to
period and each player believes that other players’ actions are pure strategies. In
fictitious play, players think they are facing a distribution of opponents strategies
as realization of a mixed strategy, and they consider actions in all the previous
periods when forming a belief about their opponents’ strategies.

Replicator dynamics is considered mostly in population games, in which a
strategy is used by a higher proportion of the population if the current payoff of
the strategy is higher than other available strategies [104]. Players take part in
an evolutionary game and they are able to imitate other players’ strategies with
replicator dynamics to maximize their payoffs. A strategy is called an evolutionar-
ily stable strategy, if the equilibrium is able to “repel invaders”, meaning that any
small group of invaders using another strategy will eventually die off over multiple
generations. An evolutionarily stable strategy is a refinement of Nash equilibrium.
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2.3.1 Network Stakeholder Interaction Modeling with Games

This section presents the existing game theory-based approaches in for multi-party
decision making. The categorization for network stakeholder interaction in [105]
is used as an example for this section.

Network vs. Network Interactions

Table 2.2: Mobile network games between network components

Ref. Stakeholder
Interaction

Game Model Objective

[106] AP vs. AP Coalition Formation
Game

Computational
Resource Allocation

[107] AP vs. AP Non-cooperative game Frequency assignment

[108] AP vs. AP Network Formation
Game

Energy Efficient
Route Optimization

[109] AP vs. AP Non-Cooperative Sym-
metric Game

Energy Efficient
Mobility Management

[110] ONU vs. ONU
(Transport)

Bidding Game Load Balancing and
Bandwidth Allocation

[111] Controller vs.
Controller

Trial and Error Learn-
ing

Route Optimization

[112] Radio Domain vs.
Transport Domain

Replicator Dynamics Backhaul
Resource Allocation

[113] Network Operator vs.
Network Operator

Multi-leader and Fol-
lower Game

Network Selection

[114] Network Operator vs.
Network Operator

Cooperative Game Handover Minimiza-
tion & Load Balancing

Network vs. network games can define the hierarchical structure and the inter-
domain interactions inside the ANM framework proposed in Section 2.2.3. For ex-
ample, radio network and transport network inter-domain interactions are defined
with a game in [112], in which resource allocation is optimized with replicator dy-
namics. On the other hand, network operators that serve users in the same region
can define the interactions between them in a game model to compete in providing
network resources to the users [113], or to cooperate to minimize handovers and
balance the load [114].

As seen from Table 2.2, the increase in the number of network nodes with
dense deployments make centralized optimization challenging and game-based dis-
tributed decision-making among the AP nodes are used to achieve different objec-
tives with inner-domain interactions. Depending on the use case, both cooperative
and non-cooperative games are studied among small cells [106]–[109]. As the sup-
porting transport nodes also increase to provide the required bandwidth to dense
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networks, bandwidth allocation and load balancing games are proposed for the
optical network units (ONUs) in the transport domain [110] for efficient resource
allocation. For the core network domain with distributed network controllers,
route optimization games are introduced between these network controllers [111].
In Chapter 4, a cooperative game among RRHs is introduced to solve a fronthaul
bandwidth allocation problem with a bankruptcy game.

External Stakeholder vs. Network Interactions

Table 2.3: Mobile network games between external stakeholders and network components

Ref. Stakeholder
Interaction

Game Model Objective

[115] User vs. Network Non-Cooperative
Strategic Game

Handover Optimiza-
tion

[116] User vs. Network Non-cooperative Game Power Control with
Price Setting

[117] User vs. Network Non-cooperative Game Transmission Power
Allocation

[118] User vs. Network Stackelberg Game Bandwidth Allocation

[119] User vs. Network Two sequential non-
cooperative games

Bandwidth Allocation

[120] Service vs. Network Hierarchical Game Virtual Resource Allo-
cation

[121] Service vs. Network Stackelberg game Price-based Resource
Optimization

The games between users and networks are used to optimize different mobile
network objective functions, such as handover optimization [115], link adapta-
tion [116], [117], and bandwidth allocation [118]. Most games are designed as
non-cooperative games, in which users aim to maximize their own utility function
and networks optimize resource allocation or their profit by setting prices based
on observing user’s behavior in the game. The virtualization of networks and net-
work slicing concepts introduce novel games to network managment, such as the
games between service providers and network operators, which are also defined as
infrastructure providers depending on the use case. Hierarchical games are pre-
ferred between services and networks in [120], [121], in which networks and services
make decisions sequentially. In [120], physical resources of small cells are virtual-
ized to provide customized service to virtual resource requesters on a price-based
mechanism. A similar price adjustment mechanism is used in a Stackelberg game
in [121] to lease MEC computing resources of a virtualized network. The network
acts as the data center operator that sets the prices and services are the followers
that compete to obtain computing resources.
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External Stakeholder vs. External Stakeholder Interactions

Table 2.4: Mobile network games between external stakeholders

Ref. Stakeholder
Interaction

Game Model Objective

[122] Service vs. Service Non-cooperative Game Resource Allocation

[87] Service vs. Service Vickrey-Dutch Auction Path Allocation

[88] Service vs. Service Fisher Market Model Resource Sharing

[87] Service vs. User Matching Game Path Allocation

[123] Service vs. User Stackelberg Game Bandwidth Allocation

[124] Service vs. User Stackelberg Game Pricing

[124] User vs. User Replicator Dynamics Path Allocation

[125] User vs. User Vickrey-Clarke-Groves
Auction

Bandwidth Allocation

[126] User vs. User Cooperative Bargain-
ing

Bandwidth Allocation

[127] User vs. User Non-cooperative Pois-
son Game

Spectrum Sharing

[128] User vs. User Non-cooperative Game Cloud Resource Allo-
cation

Allocating network resources in a distributed fashion with games that define
the interaction between external stakeholders is a common method game theory-
based network management researches. Users or services that demand resources
from the network have their own utility functions that take into consideration the
QoS requirements and the cost of leasing or allocating the network resources. In
user vs. user games, selfish users can be modelled in non-cooperative games in
which users optimize their utility function, i.e., minimize their cost for bandwidth
allocation or maximize their throughput in spectrum sharing scenarios [127] while
competing with other network users. Alternatively, cooperative games are mod-
elled between users in which excess resources are distributed to other users [126].
Besides, users a of network can be modelled inside a population game, and users in
a population imitate evolutionary stable strategy of the population with replica-
tor dynamics [124]. Finally, in virtualized networks, computational resources are
allocated with non-cooperative games between users, in which users decide to rent
MEC services based on a pricing strategy [128].

Game theory-based resource allocation in virtualized networks and network
slicing concept convert service providers into active decision-makers with dynamic
resource provisioning. Network operators can use auctioning or different market
models as games that lease network resources to external stakeholders. Apply-
ing Vickrey-Clarke-Groves (VCG) auctioning for leasing provides a social-welfare
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maximizing outcome for resource allocation among self-interested players; there-
fore it is used both for modeling service vs. service [87] and user vs. user [127]
games. Alternatively, Fisher market model is used in [88] to increase network slice
utility and provide isolation between network slices. Games between services and
users are also found in the literature, examples can be found in [123] and [124]. In
these papers, service vs. user games are interlinked with games among services for
pricing as a second step of resource optimization. In [87], users have the option
to choose the service that they expect to bring the highest utility after services
form their network slices with auctioning. In Chapter 5, an auctioning game is
presented to distribute fronthaul resources by distributing decision-making among
external stakeholders, namely service providers and users.

2.4 Summary

Network capacity enhancement solutions and the remarkable shift towards recon-
figurable network management architectures are expected to become two pillars
of beyond-5G/6G networks. For this reason, an important step towards design-
ing future networks is to discuss the relations between technological enablers of
autonomic reconfiguration techniques and management issues of beyond-5G/6G
networks. As a consequence, this chapter aims to provide answers to the following
research questions:

What are the enabling concepts of autonomic network management? What
are the challenges ahead for achieving the technology agnostic autonomic network
management framework? What are the design goals of ANM for converged opti-
cal and mmWave radio networks? How should an ANM architecture be defined
to implement learning capabilities for network management and enable network
stakeholder interaction in a concrete structure?

The chapter first describes the driving factors that lead to radical break-
throughs from existing management approaches towards software-centric solutions
in the 5G era, and shows conceptual examples of how these solutions can be applied
to novel network applications. Policy-making with specific network parameter con-
figurations with SON, controlling the network with a globally centralized logical
view and enforcing new policies with applications over SDN, and the integration
of NFV to abstract network policy implementation replace the existing hardware-
centric management in previous generations. Network slicing exploits all these
technological developments to replace static resource partitioning and offer a dy-
namic service-centric management framework that enables decision-making with
the interrelation of stakeholders. To sum up, an ANM framework should be able
to handle the flexibility enabled by these technologies, allow autonomic behavior
of stakeholders and network domains, and provide policy refinement options to
overcome the functional rigidity.

The evolution of network management approaches from a simple management
layer to policy based approaches with self-x network management requires de-
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vice layer abstraction, learning mechanisms to analyze network behavior, and pro-
grammability to dynamically respond to changes. Having identified the challenges
of creating such a mechanism, an ANM Framework that is based on cognitive
control loops is presented in this chapter. Monitoring and measurement, anal-
ysis and decision-making, and learning are introduced as cognitive control loop
stages of this framework. Through this framework, mobile networks are divided
into chains of high-level services and network domains, with each network man-
aged by the respective cognitive control loop, and services implement their own
decision logic independently. The functionalities at each layer and the interactions
between them should be clearly defined in order to provide concrete management
solutions to network operations. Finally, network management objective func-
tions are briefly described to explain why these functions require an ANM based
approach. However, it should be stated that most of the network management
problems are interrelated and conflicts occur if one of the problems are singled out
without defining network optimization inside a structured framework.

The final section presents the existing game theory-based approaches for multi-
party decision making with common or conflicting interests. The existing re-
searches are classified based on the stakeholder interaction that they model in
the game. The state-of-the-art shows that game theory is a viable approach for
stakeholder interaction definition for network performance optimization in terms
of utility function maximization and is widely used to deliver network policy mak-
ing mechanisms in a distributed way. Furthermore, it can be seen that the impact
of virtualization, increasing number of nodes in the network, and the architec-
tural changes in network domains are reflected in recent network game research.
In conclusion, game theory-based learning approaches are implemented as part
of this study to involve multiple network stakeholders in decision-making and to
maximize their utilities.



CHAPTER 3

Resource Management in Converged
Optical and mmWave Radio Networks

The key objective of this chapter is to reveal how the use of mmWave spectrum
bands and the supplementary capacity enhancement techniques have changed the
5G network architecture and the resource management targets. The first section
examines 5G capacity enhancement techniques and the resource management is-
sues that they introduce. Then, the following section provides a state-of-the-art on
the 5G resource management solutions for converged optical and mmWave radio
networks, classified under throughput optimization, delay minimization, energy-
efficiency, and virtual resource allocation targets. The outcomes of this review are
used to select the utility function parameters, the learning algorithms, and the
game models presented in Chapter 4 and Chapter 5.

3.1 Converged Optical and mmWave Radio Networks

The expected increase in the performance indicators such as data volume per area,
number of devices, and user experienced data rates determined the targets of 5G
initiatives and organizations in years 2014 and 2015, as seen in Table 3.1. These
targets are directly translated into the need for a substantial increase in capacity for
5G networks. The wireless network capacity of a single cell is found by multiplying
the spectral efficiency and the spectrum used by the AP [129]. The wireless network
capacity in a coverage area is then proportional to the multiplication of the capacity
of a single AP to the number of total cells in the area. The capacity can therefore
be increased either by utilizing more spectrum bands, by deploying technologies
to increase the spectral efficiency (bps/Hz) or by increasing the number of APs in
the coverage area.

35
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Table 3.1: 5G targets of 5G initiatives and companies for several performance indicators
between 2014 and 2015

5G Initiative or
Company

Data
Volume
per Area

Number of
Connected
Devices

Data Rate

NGMN [130] 1000x LTE 2000 users per km2

200000 M2M con-
nections per km2

Peak: 1Gbps

5GPPP [7] 1000x LTE 1000x LTE Guaranteed: 50Mbps
Peak: 10Gbps

DOCOMO [131] 1000x LTE per
km2

100x LTE Peak: 1Gbps

ITU-R /
IMT-2020 [132]

10Tbps per km2 1 million per km2 User Experienced:
1Gbps
Peak: 10Gbps

SAMSUNG [133] - 1 million per km2 Peak: 6Gbps

NOKIA [134] 1000x LTE 10 to 100x Guaranteed: 100Mbps
Peak: 10Gbps

Capacity enhancement techniques for 5G networks do not exclude each other.
On the contrary, dense deployments and use of massive MIMO are considered as
pre-requisites to wide range use of mmWave radio networks due to the charac-
teristics of mmWave. Furthermore, the transport network implementations have
to respond to the capacity expansion at the radio network, with fiber transport
network solutions expected to provide feasible data rates [36]. Thus, many 5G
resource management solutions aim to implement multiple capacity enhancement
techniques inside a converged optical and mmWave radio network architecture.
Use of mmWave spectrum bands, network densification, massive MIMO, resource
sharing, and fiber-wireless integration are presented as the promising capacity en-
hancement options in the following subsections.

3.1.1 Utilizing mmWave Bands for Radio Access Networks

An essential source for capacity enhancement is the use of mmWave frequency
bands in cellular communication, especially for use cases with challenging capacity
demands, reflected in Table 3.1 for 5G and demonstrated in Figure 1.2 for beyond-
5G/6G. Despite the fact that the channel propagation challenges at mmWave
frequencies require fundamental changes in the network architecture, mmWave
propagation models are investigated both for outdoor urban street scenarios such
as V2I connections [135], and indoor scenarios such as smart factories [136]. This is
obviously due to the fact that mmWave bands offer huge spectrum bands between
20GHz and 90GHz, as shown in Figure 3.1. Data rates are expected to scale
with the increased utilization of the available mmWave spectrum bands [137],
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Figure 3.1: Available spectrum in mmWave bands between 20GHz and 90GHz [20]

and providing dense deployments and massive MIMO as technological enablers to
overcome the challenges of the propagation characteristics.

The channel characteristics and the existence of line-of-sight (LOS) path be-
tween the antennas play a more important role in mmWave radio networks than
the legacy cellular networks at lower frequencies due to the path loss, signal pen-
etration and reflection of the signals at mmWave frequencies. Friis transmission
equation [138] in Eq. (3.1) shows that the free space path loss increases with
the square of the transmission frequency, and it can only be compensated by the
increase in the transmit power or antenna gains. Besides that, in mmWave fre-
quencies, natural changes such as rain attenuation and oxygen absorption [139],
and blockage from dynamic obstacles impact the path loss and limit the commu-
nication distance. The path loss exponents at mmWave transmisison frequencies
and the impact of rain attenuation and oxygen absorption at 200m are listed in
Table 3.2.

Prx

Ptx
= GtxGrx

(
c

4πfcR

)2

(3.1)

Channel measurements are carried out to analyze whether these unfavourable
characteristics can be overcome by the increases in antenna gain and by adjusting
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the transmitter – receive distance. The path loss measurements at 28GHz and
73GHz in [30] show that the omnidirectional path loss is approximately 20 dB
to 25 dB higher in mmWave when compared to 700MHz-2.6GHz bands; however,
this path loss can be compensated by increases in antenna gain, and a hypothetical
1GHz bandwidth mmWave system with a 100m cell radius can provide 25 times
greater cell throughput than an LTE system, when the users are able to receive
multiple antenna transmissions. Another measurement at 28GHz [26] demon-
strates that inside a coverage area of 200 meters, atmospheric absorption does not
create additional path loss. 73GHz bands indicate comparable path loss behavior
with 28GHz bands when directional and high-gain antenna arrays are used, ac-
cording to [32]. Based on the path loss measurements in [140], operational ranges
of 200 and 100 meters can be maintained in LOS worst case for 35 and 60GHz,
respectively.

Table 3.2: The propagation characteristics of mmWave spectrum bands [25]

Frequency
Band
(GHz)

Path Loss Exponent Rain attenuation (@200m) Oxygen
absorption
(@200m)

LOS NLOS 5mm/h(dB) 25mm/h(dB) (dB)

28 1.8-1.9 4.5-4.6 0.18 0.9 0.04

38 1.9-2.0 2.7-3.8 0.26 1.4 0.03

60 2.23 4.19 0.44 2 3.2

73 2 2.45-2.69 0.6 2.4 0.09

Contrary to the legacy cellular networks, penetration losses that occur due to
buildings also pose a threat to mmWave radio network communications [141]. The
effect of penetration losses at 28Ghz are observed in [26], and the results show that
building penetration provides high isolation between outdoor and indoor networks.
The inability of penetration of mmWave signals from outdoor to indoor requires
additional network solutions such as relaying or finding alternative directed spa-
tial channels to extend coverage to all users. Dynamic obstacles such as blockage
by a human [142] also impacts the mmWave communications negatively, therefore
finding alternative directed spatial channels in case of blockage as quick as possible
and with minimum overhead in a proactive way is a challenging mmWave network
management problem [23]. Finally, with beamforming and directivity of transmis-
sion signals, the negative impact of interference can be mitigated, but still has to
be considered for dense network scenarios when many LOS users are connected to
a single AP or when APs have significant LOS coverage overlaps [140].
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Figure 3.2: Dense radio access network architecture options

3.1.2 Dense Radio Access Network Deployments

Network densification enhances spatial reuse in a certain area with macrocell-
microcell heterogeneous networks (HetNets) and or small cell only deployments,
and is the key enabler for capacity gains in future networks [143]. Spatial reuse
has a theoretical limit of a single access point serving a single user, until that point
new access points can be introduced for densification. Small cell densification also
brings access points closer to the user, thus improves channel propagation condi-
tions [144]. UDN is therefore an attractive technology to boost the capacity in
a coverage area. Utilizing higher frequency spectrum bands for capacity gains in
future wireless network systems also drives toward the use of more small cells, as
the propagation characteristics of millimeter-wave signals lead to higher attenua-
tion and reduced coverage area, requiring the deployment of more access points.
As a consequence, small cells and their challenges have a significant impact on
mmWave radio networks.

It is obvious that dense deployments create new challenges to network man-
agement. The complexity of the architecture with increasing number of nodes,
massive data generation, and dynamic topology changes in future dense networks
require quicker network reconfiguration. Handovers occur more frequently due to
small cell radius and increased traffic has to be handled via novel solutions for the
transport network [143]. Finally, the rise in the number of network nodes is going
to increase energy consumption in cellular networks, threatening energy-efficiency
of the network if a smart network management architecture with sleep modes is
not provided. To unfold the added capacity provided by UDN, end-to-end network
management has to deal with increased dynamics and the unknowns in the radio
access network (RAN), while at the same time guaranteeing network operation
aligned with business objectives.

The data rate demands of beyond-5G networks push towards small cells from
being the additional capacity providers to macro cells to ultra-dense networks,
in which small cells are the main capacity providers. This transformation can be
achieved with the integration of mmWave transmissions, novel adaptive waveforms
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and massive MIMO solutions. However, mmWave systems have a highly dynamic
channel quality, and providing rapid solutions to service unavailability means an
alternative path for a seamless connection is required for mmWave cells to meet
the ultra-low latency target of 5G networks [145]. Macro cells are highlighted as
anchor points that provide an alternative data path to overcome the fluctuating
channel characteristic of mmWave cells [146]. Regarding the role of macro cell
and small cells in dense networks, when mmWave networks encounter no channel
quality problems, splitting control decisions and data forwarding issues between
macro cells and small cells is considered for more efficient data transmission.

With dual-connectivity, loss of quality in a link can be solved by switching
to macrocell overlay when mmWave cells are in an outage, a handover from
a mmWave cell to another mmWave, or by changing the steering direction for
transmission without changing the serving mmWave cell. In [145]–[147], a dual-
connectivity framework for adapting beams in a mmWave network is explained.
The framework uses periodic measurement reports to track the channel quality
and steering directions for data transmission. Due to the highly directional trans-
missions in mmWave, mmWave cells and UEs will utilize directional phase arrays.
This brings the requirement to track each direction between the UE and mmWave
small cell, and then to decide for one of the transmission directions. A control loop
needs to monitor the received signal strength (RSS) on each possible direction for
possible links and build report tables based on channel quality in the beam acquisi-
tion phase. Both users and base stations in the Non-Standalone (NSA) architecture
have a predefined codebook of directions that cover the whole angular space [148],
and the user selects beam with the maximum signal-to-noise ratio(SNR) above a
predefined threshold during the 5G NR synchronization procedure of the downlink
transmission. During the uplink transmission synchronization, each Next Gener-
ation Node Base Station (gNB) sends the information on the received beams to
a central controller, which selects the best beam pair. To sum up, the optimal
density for small cells, their placement into a macro cell region for dual connec-
tivity and task division between the macro cell and small cells are the three main
deployment issues for these types of networks.

C-RAN is also considered as an enabler for dense small cell deployments. C-
RAN offers the following solutions to dense networks [J2]: It reduces signaling
load of RRHs by support of BBU pool for spectral efficiency and the use of the
BBU pool for signal processing for many small cells to reduce processing delays.
With the inclusion of many access points, the complexity of the system is going
to increase; therefore there will be more need for cooperation between network
elements. C-RAN also enables centralized and cooperative network management
solutions over a centralized controller interacting with the BBU pool. For exam-
ple, a programmable fronthaul design for C-RAN can reduce the required number
of BBUs when compared with traditional one-to-one RRH BBU mapping, which
brings flexible one-to-many mappings between the RRHs and BBUs [64]. Regard-
ing the energy-efficiency, circuit power consumption is reduced in C-RAN com-
pared to the traditional RAN architectures as processing is carried to BBU data
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centers. Dual-connectivity and C-RAN architecture options are demonstrated in
Figure 3.2.

3.1.3 Massive MIMO

Massive MIMO is defined in [149] as systems that use antenna arrays to simul-
taneously serve multiple users within the same time-frequency resource. Massive
MIMO systems can operate with less RF power than current technology, bringing
much needed energy efficiency to cellular systems. In addition, MIMO systems
can be built with inexpensive, low-power components. These systems are more
robust than traditional systems against noise, fading, and antenna failures as sig-
nals from a large number of antennas are added up constructively at the locations
of the intended terminals, resulting in huge gains in spectral efficiency.

Propagation characteristics of mmWave bands require the use of large-scale an-
tenna arrays; therefore MIMO can be deployed as a solution method to overcome
the fragile propagation characteristics of mmWave. For this reason, signal pro-
cessing issues of massive MIMO deployments with mmWave are analyzed in [140]
and pilot contamination, loss of channel orthogonality and interference during si-
multaneous transmission to LOS users that are close to each other are considered
as the main challenges. Large antenna arrays also make channel estimation a
challenging problem due to large-scale fading over the array and small-scale signal
statistics [149]. UDN scenarios with massive MIMO also require load informa-
tion [150] that can quickly vary in use cases with high-mobility, in addition to
challenging channel conditions.

AI-solutions with massive training data are taken into consideration to solve
these problems. An example channel estimation solution for mmWave massive
MIMO with deep learning that uses a large number of channel matrices as training
data is provided in [151]. Authors of [43] suggest creating a generalized ML-based
channel estimation scheme built over a massive amount of communication data
to be able to use massive MIMO without further training as a beyond-5G/6G
solution.

3.1.4 Spectrum Sharing

Network operators use licensed frequency bands to control the interference within
their licensed spectrum band and ensure QoS for their users. This; however, leads
to an underutilized spectrum which is undesired when the increase in the demand
for capacity is considered. Spectrum sharing aims to increase spectrum utilization
by allowing secondary users to use these licensed frequency bands when the band
is not utilized by the owner [129].

If a spectrum band is licensed to a user but remains idle at a location for a cer-
tain amount of time, then this spectrum band is defined as a spectrum hole [152].
Cognitive radio is proposed as a method for secondary users to detect these spec-
trum holes and transmit data through these holes. An ideal cognitive radio is
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Figure 3.3: Layered 5G transport and radio network architecture with point-to-point
fiber backhaul and PON fronthaul [155]

able to learn transmission power, carrier frequency and other required parameters
and optimizes its performance based on these parameters by performing machine
learning solutions. The detection of spectrum holes by cognitive radios is called
spectrum sensing. As a result, microcells with cognitive radio capabilities can
utilize the spectrum more effectively.

Coordination mechanisms are required between dense RAN elements to ex-
change information and share the available spectrum. Information exchange be-
tween network elements can occur by a direct communication interface in a dis-
tributed way or over a centralized element, such as the macrocell [153]. In both
distributed and centralized cases, a network resource management architecture
with spectrum sharing has substantial benefits to network operators. An example
resource management solution is provided in [154], in which the network opera-
tors with separate RANs in the same region play a non-cooperative game (e.g.,
without access to other operator’s spectrum information). The results obviously
reveal that operators provide higher data rates under high instantaneous load or
high interference with a coordination mechanism for spectrum sharing.

3.1.5 Fiber-Wireless Integration for mmWave Networks

The use of mmWave spectrum bands, network densification and the architectural
changes in 5G such as CU/DU/RU wireless systems and C-RAN require higher
bandwidth utilization and different architectural designs on the transport net-
works, as shown in Figure 3.3. Creating an efficient beyond-5G/6G transport
network structure is highly dependent on capturing the key technological advance-
ments in the optical networks that provide high-capacity solutions.

The capacity increase in the transport network mainly relies on fiber-optical
communication systems. Fiber-optical systems are deployed from radio networks
to the core as they offer the required bandwidth for the expected data rates with
a good bit error rate performance [156], and each new generation of optical sys-
tems provide longer transmission distances between the radio network and the
core with higher bit rates [157]. For the beyond-5G/6G era, photonics-assisted
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mm-wave generation is expected to provide mmWave transmissions over 40Gbps
data rates [158], and ultra-Dense WDM network is another capacity enhancement
solution to support dense radio networks, with dedicated wavelength-to-the-user
scenarios and flexible wavelength allocation providing an aggregate bandwidth of
over 100Gbps [159].

A fiber-wireless (FiWi) network consists of the optical fronthaul and the wire-
less frontend, with an optical unit (ONU) connecting the wireless frontend and
the backhaul [160]. Passive Optical Networks (PON) are considered as the op-
tical backhaul for 5G mmWave wireless frontend, as it is widely deployed and
its point-to-multipoint topology with an optical line terminal (OLT) at the cen-
tralized unit and ONUs as the radio network interface provides efficient use of
fiber resources [155]. Different PON architectures for the fifth generation new
radio (5G NR) and different functional split options are displayed in Figure 3.4.
mmWave radio network supported with a PON backhaul is a commonly used sys-
tem model for C-RAN architectures [110], [112], [161]. This C-RAN architecture
can further be supported with analog radio-over-fiber (ARoF) as it centralizes the
digital to analog and analog to digital conversion stages with analog transport of
the baseband signals from BBU to the RRH [36].

Optical-wireless convergence should be inherent to network resource manage-
ment decisions to provide the required bandwidth to multiple beyond-5G/6G ap-
plications [36], as an efficient resource allocation for 5G mmWave radio networks
can only be achieved by joint spectral and spatial resource management approaches
for optical transport networks. With the help of an SDN controller, wavelength
and spatial dimension selection can be supported for WDM and SDM, respectively.
In addition, optical network elements can be put to sleep modes in order to min-



44 CHAPTER 3. MMWAVE RESOURCE MANAGEMENT

imize overall energy consumption with network status monitoring and providing
paths in a dynamic manager by using network topology information [163]. Elastic
optical networking is also considered to improve fixed-grid optical networks with
the adaptive modulation format use and multiplexing spectrum in a flexible fre-
quency grid [164], and introducing SDM on multiple fiber cores or modes during
the optical transmission can further expand the overall transport network capac-
ity in a cost-effective way [165]. However, flexible control of spatial resources is
also a new challenge towards optical network control in beyond-5G/6G networks,
as it requires flexible switching solutions and an additional dimension of control
on different network nodes and amplifiers, which should be considered in network
slicing and virtualization solutions [166].

3.2 Resource Management Targets of Converged Opti-

cal and mmWave Radio Networks

Aiming to understand the relationship between resource management, virtualiza-
tion, and the dense 5G fronthaul with an emphasis on converged radio and optical
communication, this section presents a review of how resource management so-
lutions have dealt with optimizing mmWave radio and optical resources from an
autonomic network management perspective. The extended version of this review
is published in [J3].

3.2.1 Research Method

This section introduces the method employed for finding and selecting articles to be
included in the study and subsequently provides information on the data extracted
from the selected articles. Before presenting the works, this subsection explains
the research method of the review based on the research steps given in [167]. The
selection procedure is also illustrated in Figure 3.5.

For the selection of the papers, database searches were conducted in the As-
sociation for Computing Machinery (ACM), Elsevier/Science Direct, Institute of
Electrical and Electronics Engineers (IEEE), Institution of Engineering and Tech-
nology (IET), Multidisciplinary Digital Publishing Institute (MDPI), Optical Soci-
ety (OSA)/Optica, Springer, Taylor & Francis, and Wiley online library databases
with keywords “resource allocation AND converged mmWave fiber wireless”, “re-
source management AND converged mmWave fiber wireless”, and “resource alloca-
tion AND converged fiber wireless”. The searches in all databases were completed
in May 2021. The resulting collection was screened to exclude non-scientific texts,
book chapters, out of context papers, and survey papers. The full list of papers
can be found in [J3].
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Figure 3.5: Paper selection phases of the review [J3]

Among the remaining 189 papers found in the database search, the selection
criteria was created to present the works that are most relevant to the target net-
work architecture, providing novel implementation solutions to the requirements
of the optimization objective. The criteria selected for the eligibility step can be
summarized as follows:

� The study provided a sound research approach and published after a schol-
arly review process;
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� The study had a resource management optimization objective for mmWave
networks;

� The study explained the system model and proposed a well-defined optimiza-
tion algorithm;

� The effects of the algorithm on a performance metric was reported and the
different aspects of the performance metric were analyzed with different eval-
uation criteria.

This review is limited to the focus scope on converged optical and mmWave
radio network solutions and to the databases taken into consideration. The
prioritization of the works that address a well-defined optimization algorithm
led to the omission of relevant papers during the screening phase. After the
screening, 37 papers are identified that focused on at least one of the re-
source management objectives of throughput maximization (Section 3.2.3),
delay minimization (Section 3.2.4), energy-efficiency (Section 3.2.5), and vir-
tualized resource allocation (Section 3.2.6). The papers that have joint ob-
jectives are classified under their main optimization focus of that paper. As
one of the targets is to understand the recent optimization techniques used
in resource allocation for converged optical fronthaul and radio mmWave
access network implementations, this review focuses on the works completed
in the five years between 2016 and 2021 (both included), and approximately
95% of the selected papers fit in this category.

3.2.2 Overview of Data Collected from Selected Papers

The overview of the data collected on the current trends in the algorithms
for optimizing the performance of mmWave optical and radio networks is
presented to understand the key network state parameters. Performance
evaluation criteria of the presented algorithms are also identified. The ques-
tions to be answered in this section can be listed as follows:

– Question 1: Which algorithms are used more often in performance op-
timization in converged mmWave networks?

– Question 2: Which performance metrics are determined to show that
the optimization method achieves the objective?

– Question 3: Which criteria are used to evaluate the solution method?

Regarding the first question, Figure 3.6 shows the distribution of the op-
timization algorithms used by the selected papers. Heuristic and iterative
algorithms are frequently used in the literature, due to the fact that many
optimization problems in this field are non-deterministic polynomial time
hard (NP-hard) and thus require decomposition and simplification to create
sub-optimal solutions which can then be solved with heuristic algorithms.
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Figure 3.6: Distribution of optimization algorithms for converged optical and mmWave
radio resource management

Game theory and matching theory-based solutions are also attractive for
distributed decision-making among entities, as centralized optimization is
challenging in multi-stakeholder environments [87], [107], [110], [112], [117],
[119]. Finally, AI-based models (artificial neural network (ANN) [18], [168],
Q-learning [169]) are utilized for resource management optimization prob-
lems. The distribution of the main performance metrics according to the
resource optimization objectives is given in Table 3.3. In conclusion, the eval-
uation criteria to test the performances of the selected papers are grouped in
Table 3.4, which shows how many times each criterion is used together with
how many of the resource management objectives use the relevant criterion.

3.2.3 Throughput Maximization and Resource Allocation Algorithms

Higher throughput requirements of novel services defined under the eMBB category
are one of the main drivers of creating resource allocation solutions with learning
algorithms for throughput maximization. The learning methods for throughput
optimization in mmWave radio and optical networks are presented in this sec-
tion. The existing solutions to throughput maximization problems are given in
Figure 3.7. The list of selected papers can be found in Table 3.5. Finally, it is
discussed that the potential improvements of applying existing AI-ML solutions,
which are not parts of the existing literature for converged optical and radio net-
works.
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Table 3.3: Distribution of the main performance metrics depending on optimization
objectives

Objective Performance Metric Total Papers

Throughput
Maximization

Throughput / Sum rate (Bits/s) 7

Spectrum efficiency (bits/s/Hz) 2

Quality of Service (QoS) 2

Fairness 2

Bandwidth Utilization 1

Delay
Minimization

Delay 3

Average response time 2

End-to-end delay 1

Maximum delay 1

Energy
Efficiency (EE)

EE gain 5

Power consumption 3

Achievable EE 1

Revenue 1

Virtualized
Resource
Allocation

Virtual Network (VN) acceptance ratio 4

Resource utility / pooling gain 3

Revenue / Profit 3

Average Operator Quality of Experience (QoE) 1

Selected Papers

Regarding the technical challenges of converged optical and mmWave radio net-
works, the selected papers in Table 3.5 focus on solving the beamforming op-
timization and interference mitigation for throughput maximization. From the
ANM perspective, the selected throughput optimization algorithms reveal that
both centralized and distributed management systems are used in solving dy-
namic bandwidth allocation (DBA) problems. However, there is a shift towards
distributed throughput optimization solutions, especially with the involvement of
different network stakeholders in management decisions. The integration of mas-
sive MIMO and beamforming solutions for throughput optimization in optical and
mmWave radio networks lead to solving the multiple objective resource allocation
algorithms joint with power allocation [161] or beam selection [170] optimization
solutions. In [161], an algorithm called volume adjustable backhaul constrained
water-filling dynamic programming method is developed to maximize the downlink
throughput in a FiWi mmWave network. In [170], the downlink data arrival rate
is maximized for a mmWave small cell C-RAN with free space optical fronthaul
between RRHs and BBUs. A resource optimization solution with Lagrangian dual
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Table 3.4: Distribution of evaluation criteria

Four objectives Three objectives Two objectives One objective

Number of
users

10 Transmit power 4 Coverage radius 3 Antenna number 3

Traffic load 9 Delay 3 Bandwidth 3 Queue length 1

Number of APs 8 User location 3 Rate of requests 3 Operator number 1

Requested
service class

2 Channel
estimation error

1

Service number 2 Flow arrival rate 1

Computing
capacity

2 Offload
probability

1

Fairness 1

Rate demand 1

VN size 1

decomposition is proposed in which the sub-problems are iteratively solved with a
combination of separate optical fronthaul beam selection, fronthaul link selection,
access link power allocation, and UE-RRH association algorithms.

Interference reduction is a common objective for throughput maximization in
mmWave networks, and ML-based beamforming is used in [171], [172] to solve the
traditional interference reduction problems. A hybrid beamforming design based
on joint spatial division and multiplexing and fuzzy c-means clustering is proposed
in [172]. Fuzzy c-means gives membership grades to UEs so that they can belong
to several clusters. Dual-connectivity with a macro cell and mmWave cells is also
considered as an alternative architecture for fair scheduling in the presence of inter-
ference in [171] with approximation algorithms based on the fractional weighted
vertex coloring of conflict graphs method are used for throughput optimization
under mutual interference.

Different stakeholders get involved in the decision-making framework of con-
verged optical and radio mmWave networks, such as competing network operators
in [112], network services with different QoS demands in [173], and users in [174].
The interactions among these stakeholders are defined by distributed cooperative
and competitive models depending on their relation. Evolutionary game theory
is used to model the interactions among the BSs and the PON for DBA in [112]
and BSs change their strategies based on replicator dynamics. Three algorithms
are developed in [173] to assign appropriate bandwidth to each service with pri-
ority based differentiation of the QoS demands of different services. A user and
network sub-channel resource allocation problem is analyzed in a joint algorithm
in [174] and the interactions are defined with an optimal algorithm based on La-
grange duality and a greedy algorithm based sub-optimal solution. Distributed
resource allocation methods are used not only to define the interactions between
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Table 3.5: Analysis of resource allocation papers with throughput maximization objective

Ref. Objective Solution Method Optimization
Algorithm

[112] optical resource allocation
in two BSs from compet-
ing operators

evolutionary game theory for
BS-PON interactions

BSs change strategy based
on replicator dynamics

[161] maximize the downlink
throughput

power allocation & caching
with mixed integer nonlinear
programming

volume adjustable water
filling-dynamic program-
ming

[173] DBA responds to service
demand with fairness

different service models are
created for NS3 simulations

QoS parameter tuning for
services

[175] maximize spectral effi-
ciency

guarantees the 5G/WiFi
users coexistence on 60GHz

joint beam selection and
resource allocation

[176] improve performance by
distributing DBA tasks

access nodes exchange con-
trol information for DBA

interleaved polling with
adaptive DBA scheme

[110] optimal mapping of ONUs
to available channels

game-based bandwidth dis-
tribution

game based stochastic
DBA

[170] maximize the downlink
aggregate data arrival rate
in mmWave C-RAN

joint fronthaul and access
optimization solved by La-
grangian dual decomposition

iterative algorithm to de-
termine QoS aware data
arrival rate

[171] design a scheduler to opti-
mize backhaul efficiency

schedule-oriented optimiza-
tion with matching theory

three approximation algo-
rithms are created

[174] maximize the weighted
sum rate of all users in
downlink transmission

jointly optimizing user asso-
ciation, RRH channel selec-
tion and power allocation

Lagrange duality-based al-
gorithm and greedy search-
based heuristic

[177] maximizing the mmWave
C-RAN fronthaul capacity

jointly optimizing UE and
RRH power sharing factors

differential evolution algo-
rithm

[172] reduce interference to
achieve data rate gains

hybrid beamforming with
unsupervised ML

user selection strategy
based on fuzzy clustering

the stakeholders as in [112], but also to enable information exchange at the network
edge [110], [176]. In [176], a distributed control plane shifts control tasks to FiWi
access nodes with interleaved polling with adaptive cycle time DBA scheme. The
nodes are able to exchange control information such as queue states and trans-
mission needs with each other. In [110], a load balancing game and a bandwidth
allocation game based on a bidding system are designed to overcome the problem
of mapping the channels to ONUs in a PON for different traffic scenarios.

Throughput maximization for eMBB is a two-sided problem for mmWave radio
and optical networks, as priority based QoS-aware solutions are discussed [173] to
realize such services with QoS guarantees, whereas minimum throughput targets
for other services are also considered by applying fair scheduling [171]. Among the
existing works, centralized management decisions are mainly used to respond to the
throughput maximization - resource allocation fairness trade-off. The optimization
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Figure 3.7: Existing resource allocation optimization solutions to throughput maximiza-
tion issues

solution in [110] has a centralized regulator, as the OLT acts as the resource
manager to keep optimal fairness values. Another centralized solution is provided
in [177] for solving the UE-RRH and RRH-BBU uplink sum-rate optimization
problem with a differential evolutionary algorithm. Apart from this general trade-
off discussion, the problem of translating eMBB application specific requirements
to mmWave radio and optical resource allocation is not discussed in detail in the
existing scientific and technical researches.

Discussion

The increasing number of external stakeholders and the need for information ex-
change among the mmWave radio and optical networks are already reflected in
several works [110], [112], [173], [174], [176]. Considering the expanding level
of information with the increasing number of users, nodes, antennas in massive
MIMO mmWave networks, distributed federated learning approaches provide a
novel optimization solution on top of the existing beamforming and DBA solutions.
Among the joint optimization algorithms for radio and optical access and transport
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resources, no federated learning models were detected. This might be due to the
fact that federated learning is considered a bandwidth-consuming method with the
model updates requiring the transmission of many parameters that scale with the
size of the access node deployments [178]. However, the capacity boost provided
by the optical transport network for massive UDN deployments can overcome this
limitation, thus providing a future research direction for resource optimization in
radio and optical mmWave networks.

Regarding interference mitigation, predictive analytics can further help in in-
terference handling by monitoring channel quality and traffic load variation in
the mmWave radio and optical networks [51]. However, the computational cost
of learning from inter-channel information to mitigate inter-cell interference at
the access nodes of dense massive MIMO systems should also be considered for
throughput maximization [179]. A future research direction for throughput max-
imization might therefore be creating a multi-layer learning framework [J1] to
adjust fronthaul resources by learning the aggregate radio access node interference
behavior.

The evaluation criteria in Table 3.4 show that the number of users are moni-
tored frequently in throughput maximization solutions, bringing the integration of
user demand-driven ML solutions such as the deep reinforcement learning through-
put maximization algorithm used to achieve a minimum throughput target of
1Mbit/s for 50 users [180]. The throughput scales well above 1Mbit/s with the
available bandwidth in mmWave frequencies, dense deployments and the use of
MIMO; making eMBB applications such as V2X and mobile augmented reality,
the use case targets of mmWave radio and optical networks. For this reason, rein-
terpreting such ML solutions should be considered carefully as mmWave radio and
optical network deployments aim to achieve significantly higher the throughput
targets, e.g., 1Gbit/s for eMBB use cases such as V2X collective perception [181].

Due to the scaling up of the network elements and the dependent increase in the
amount of information, ML applications were discussed for massive MIMO, cogni-
tive radios, heterogeneous networks and small cells at an early phase of the conver-
gence of AI-ML methods and communications technologies [182]. The number of
access nodes and antennas are also taken into account as evaluation parameters in
the selected papers [170], [175], [177]. These parameters should be considered not
only in the operations and management phases, but also during the cost-effective
planning and pre-deployment phases of mmWave access and transport networks.
Finally, the communication-efficient methods to push training processes of AI mod-
els to edge nodes [183] should also be regarded to increase the distributed network
control capability and make use of the increasing amount of information at the
edge.

3.2.4 Delay Minimization and Resource Allocation Algorithms

Minimizing the delay caused by congestion or increased traffic has been a com-
mon management target throughout the evolution of mobile networks. However,
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Table 3.6: Analysis of resource allocation papers with delay minimization objective

Ref. Objective Solution Method Optimization
Algorithm

[184] maximize utility for all
users while meeting the
delay restrictions

decompose resource opti-
mization with Lagrange du-
ality theory

a distributed iterative al-
gorithm & broadcasting of
the Lagrange multipliers

[185] reduce the delay of the
high QoS class traffic

a priority based resource al-
location scheme is created

QoS class with higher pri-
ority transmissions precede
lower priority packets

[186] beamforming design to
minimize the secure trans-
mission delay

a two-phase fronthaul and
maximum access transmis-
sion delay minimization

two separate iterative algo-
rithms to solve the divided
optimization problem

[187] minimize the maximum
system delay of mmWave
MEC system

a joint hybrid beamforming
and resource allocation algo-
rithm for mmWave MEC

distributed algorithm
based on the penalty dual
decomposition framework

[188] guarantee low end-to-end
latency for FiWi access
network

user-driven computation of-
floading approach to help re-
duce the workload of APs

TDMA based polling
scheme for resource man-
agement

[189] minimize the average re-
sponse time for mobile
users

distributed cooperative of-
floading between UE, cloud
and MEC

users and MEC servers
iteratively set offloading
probabilities until conver-
gence

[18] minimize end-to-end delay decentralized cooperative
dynamic bandwidth alloca-
tion for FiWi

an ANN method (multi-
layer perceptron) is used to
forecast the samples

the emphasis on latency increased with the challenging URLLC requirements [18],
due to the “1ms challenge” of the delay sensitive applications such as tactile inter-
net [19] and augmented/virtual reality. The optimization methods, used to reach
these delay targets in converged optical and mmWave radio networks, are summa-
rized in this section. The existing solutions to delay minimization problems are
shown in Figure 3.8, and the list of selected papers can be found in Table 3.6. The
potential research directions for delay minimization in converged optical and radio
networks with AI-ML solutions are also discussed.

Selected Papers

Among the technological enablers of ANM, MEC is heavily adopted in the se-
lected works as it contributes to delay minimization [188], [189] and offloading.
In [188], a FiWi enhanced two-level edge computing concept is developed to guar-
antee low end-to-end latency with offloading capabilities. The UEs send their
computation offloading tasks to their associated ONU-APs in this the user-driven
approach. [189] introduces a cooperative offloading strategy that allows users and
MEC servers to iterate backhaul and user offloading probabilities until the mini-
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Figure 3.8: Existing resource allocation optimization solutions to delay minimization
issues

mized delay converges to a near-optimal solution. MEC is also seen as an enabler
to reach URLLC target of 1ms end-to-end delay for a tactile internet application
in [18], and an artificial neural network is used at the network edge to minimize
delay together with the offloading scheme used in [189].

Delay minimization in optical and mmWave radio networks is also considered
in the scope of QoS restrictions in [184], [185]. The delay restrictions of different
services are used as constraint in the optimization problem in [184]. The problem is
decomposed using Lagrange duality theory and solved with a distributed iterative
algorithm to maximize the utility of all users and to provide a better average
response time. A resource management scheme for FiWi fronthaul is presented
in [185] in which time slots are allocated in a way that the packets of a QoS class
with higher priority are sent using more time slots to reduce the delay of the high
QoS traffic.

In order to realize an optical and mmWave radio network, the relation between
delay and beamforming is studied in the literature [186], [187]. An iterative al-
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gorithm is proposed for the beamforming at the central processor and the RRHs
to minimize the fronthaul transmission delay for mmWave C-RAN in [186]. The
computational capabilities of MEC can be used for beamforming as well, such as
the joint beamforming and resource allocation algorithm presented in [187] for
system delay minimization. The proposed dual decomposition-based distributed
algorithm also has an information exchange mechanism between the system com-
ponents. Another work that investigates the relation between delay and the use
of beamforming is [186], in which a two-phase fronthaul and access transmission
delay minimization method is proposed.

Discussion

As seen in Table 3.6, several works consider traffic level and UE number as an
evaluation criteria for delay minimization. To achieve the delay minimization ob-
jective, AI/ML-based traffic forecasting methods are highly relevant to exploit the
data collected from monitoring. A forecasting example that uses neural networks
for delay minimization is provided for FiWi networks in [18]. By taking the op-
timal training time and forecast accuracy trade-off into account, different neural
networks approaches can also be used to detect patterns and forecast the network
traffic characteristics, such as the traffic forecasting with long-short term memory
method in [190].

Regarding the deployment of MEC solutions, deep reinforcement learning based
delay minimization solutions [191] and edge caching [192] can achieve significant
QoS improvements for applications such as video streaming. However, the impact
of integrating these application-based decision-making mechanisms to optical and
mmWave radio networks has not been studied in the existing papers, providing a
novel research direction for delay minimization.

In delay optimization papers, users [184], network services [185], and cloud
servers [189] are involved in decision-making as external stakeholders. MEC servers
could also be third party stakeholders who lease their computing resource blocks to
process or store for dynamic function placement, providing AI-as-a-Service [48] or
Security-as-a-Service to other network stakeholders and making service providers
an external decision-maker in network management for service-specific decisions.

3.2.5 Energy Efficiency and Resource Allocation Algorithms

The objective of energy efficiency is defined as maximizing the amount of data
transferred per unit energy consumed by the system [199]. This section presents
the selected papers given in Table 3.7, which provide EE solutions to converged
optical and radio networks with AI-based techniques. The existing solutions are
grouped in terms of EE problems in Figure 3.9. Finally, a discussion on the future
challenges and potential research directions are provided in this section.
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Table 3.7: Analysis of resource allocation papers with energy-efficiency objective

Ref. Objective Solution Method Optimization Algorithm

[108] routing with sleep and ac-
tive modes

formation of groups among
mesh nodes

a heuristic imitating far-
sighted network formation

[119] maximizing the sum rate
and EE of the network

one-to-many user and sub-
carrier matching game

two-sided stable matching

[193] improve downlink energy
efficiency

an iterative algorithm with
Dinkelbach method

joint access and fronthaul
allocation

[194] SDN-based routing of
traffic flows

demand based sleep mode
regulation

an SDN application con-
trols sleeping modes

[117] increasing EE by decreas-
ing path loss

joint spectrum resource and
power allocation of

a water filling operator and
price-based iterative algo-
rithm

[195] minimize total consumed
power

joint user association and
power allocation

alternating descent algo-
rithm

[107] joint EE and SE maxi-
mization

two layered game with
frequency assignment and
multi-objective optimization

small cells select the combi-
nation of frequencies max-
imizing user sum rate

[196] minimize total power con-
sumption for user associa-
tion

joint user association and
sleep mode optimization

a matching heuristic and a
user reallocation heuristic

[197] maximize EE performance joint resource allocation
with fractional program-
ming

iterative Lagrangian dual
decomposition

[168] Avoid frequent lightpath
deactivation and reactiva-
tion

training ANN model to
optimize traffic prediction
weights

Adaptive ant colony opti-
mization based optimiza-
tion

[198] minimize energy con-
sumption for joint caching
and bandwidth allocation

energy consumption and
network usage are combined
with weights

alternating direction
method of multipliers

Selected Papers

Resource allocation algorithms for EE optimization take into account the trade-off
between EE and bandwidth utilization. Thus, joint optical and radio resource
and transmission power allocation algorithms are used to minimize the total con-
sumed power in the entire network. For instance, in [117], the NP-hard problem of
the joint uplink resource allocation of small cells, spectrum resources, and trans-
mission power is decomposed into a potential game for small cell selection and
a non-cooperative game for power allocation. The EE maximization problem is
formulated in [195] in terms of number of bits delivered per Joule subject to the
QoS rate threshold for each user, and an alternating descent algorithm is applied
to separate the energy efficiency optimization problem into two sub-problems of
EE maximization problem and user throughput fairness. In [197], the EE maxi-
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Figure 3.9: Existing resource allocation optimization solutions to energy efficiency issues

mization problem is modeled as a class of optimization problems called fractional
programming to minimize the total power consumption of the entire system.

With the increased use of dense small cell deployments due to mmWave char-
acteristics, activating and deactivating these small cells with sleep modes based
on different parameters such as the number of APs and network loads [108], flow
arrival rates [194], under the presence of a macro cell [196] has become a frequently
used energy saving method. In [108], the system to optimize transmission and sleep
periods is modeled with a network formation game, in which every AP is a player,
establishing connections with its neighbors to create energy efficient routes. The
minimization of the total power consumption in user association is modeled as a
capacitated facility location problem and solved with the selection and repetition
based heuristic algorithms for sleep mode decisions in [196].

Dual-connectivity network architectures with both macro cell and mmWave
small cell options are also considered for the trade-off analysis of joint energy ef-
ficiency and throughput gain maximization under varying number of users [107],
[119], [193]. The coexistence of microwave and mmWave leads to a better per-
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formance in terms of both sum rate and EE when compared to mmWave and
microwave only networks with a one-to-many matching game for frequency band
selection in [119]. Downlink resource allocation is investigated for a non-standalone
network with macrocell and small cells in [107], and a two layered hierarchical game
approach is used for modeling the problem. A non-cooperative frequency assign-
ment game is designed for small cells in the first layer and a power and subcarrier
allocation via joint maximization of the revenue per cost based EE and spectral
efficiency (SE) in the second layer. In [193], a joint access and fronthaul radio
resource allocation method is proposed for downlink dual connectivity mode of a
power domain non orthogonal multiple access-based C-RAN system with mmWave
and microwave carriers.

The network paradigm shift towards softwarized solutions provides novel op-
tions to implement EE algorithms in the optical and radio networks, as seen from
the SDN-based solutions proposed in [168], [194], [198]. An SDN application called
energy management and monitoring application, and a power consumption opti-
mizer is developed in [194] to optimize the energy consumption of a C-RAN in-
frastructure with energy consumption estimation based on flow rates. An SDN
controller-based power control framework with an adaptive ant colony optimiza-
tion algorithm is proposed in [168] to avoid the frequent deactivation and reac-
tivation of the lightpaths when new traffic request arrives, thus saving switching
power. Finally, a joint caching, computing, and bandwidth resource allocation
is designed for SDN in [198] to minimize the energy consumption consumed by
content caching, data computing and traffic transmission.

Discussion

There are several network EE issues that should be taken into consideration for
management in optical and mmWave radio networks. The massive small cell de-
ployments increase the signalling cost as mmWave bands have smaller coverage
radii. In addition, antenna processing for massive MIMO antenna systems con-
sumes extra power [200]. The selected papers in Table 3.7 reveal that the use of
sleep modes and information exchange among small cells are some of the methods
to respond to EE requirements of mmWave UDN deployments. The EE optimiza-
tion methods identified for optical and mmWave radio networks can be enhanced
with cognitive networking methods, where each node seeks to“minimize its energy”
by minimizing the cumulative neighborhood energy function, as in [201]. Adapt-
ing cluster-based protocols used to harvest energy utilization for wireless sensor
networks [202] for UDN deployments can also provide a novel research direction
for converged optical and radio networks.

Apart from these operation and maintenance level for EE such as the sleep
modes, the reduction of energy related costs should be a target during the planning
and pre-deployment phases [203], which can be optimized by selecting the optimal
AP density and distribution. The relationship between the transmit power and
the AP density is defined as a function with the use of stochastic geometry in [204],
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Table 3.8: Analysis of virtualized resource allocation papers

Ref. Objective Solution Method Optimization Algorithm

[86] achieve social welfare with
C-RAN resource sharing

operators bid for C-RAN re-
sources in an auction

an approximation algo-
rithm for dissected graphs

[207] guarantee service connec-
tion during fog node fail-
ure

cross radio, optical and fog
layer protection scheme to
guarantee the QoS

Dijkstra algorithm for path
accommodation and spec-
trum allocation

[169] maximize InP revenue
with virtual FiWi re-
source embedding

Use VNE algorithms to em-
bed the VNs of services

traffic prediction with Q-
Learning

[87] InP slices mmWave BSs to
improve operator QoE

a heuristic three-phase
framework to price slices
and operator allocation

slice allocation with VCG
distributed auction

[208] allocate FiWi resources to
the VNs with sleep modes

collaborative sleep of nodes
with a re-embedding mecha-
nism for VNs

QoS-aware priority based
energy-saving algorithm

[209] maximize the total profit
and bandwidth utilization

centralize control and allo-
cate networking and com-
puting resources

revenue-based VNE with
two greedy approaches

[210] C-RAN resource pooling
gain for mmWave optical
network

centralized resource orches-
tration scheme for RoF fron-
thaul and BBU

a resource pooling algo-
rithm using user location

[211] maximizing InP profit in
FiWi access network

integer linear programming
model for QoS-aware VNE

breadth first search chan-
nel allocation

and solving this non-linear function gives the unique transmit power and density
that maximizes the energy efficiency. At the same time, modeling the energy
performance of APs and optical transport network together should be considered
in the planning phase [205] to increase the overall EE of the network.

Finally, creating SDN applications that aim to achieve energy minimization as
the one in [194] can be considered as strategy to overcome EE issues. However,
the architectural changes for network management by implementing SDN can at
the same time increase power consumption as it introduces new components with
controllers and SDN switches. To analyze the power consumption impact of the
architectural changes in the C-RAN fronthaul, [206] measures the power consump-
tion of SDN switches, RRHs, optical transceivers and control components, and the
results show that this architecture increases the total power consumption of the
network by about 20%. The optimal EE solution therefore requires planning of
the power consumption of the SDN components in the pre-deployment phase.
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Figure 3.10: Existing solutions to virtual resource allocation optimization issues

3.2.6 Virtual Resource Allocation Algorithms

The paradigm shift with network softwarization leads to the abstraction of network
resources and makes it possible to dynamically allocate computation and storage
resources. This section is composed of the selected virtual resource management
optimization solutions for converged optical and radio networks. The existing
solutions to virtualized resource allocation optimization issues are grouped in Fig-
ure 3.10. The selected papers are also listed in Table 3.8. This section also concerns
how these solutions can be enriched with network slicing and the use of agents for
distributed decision-making.

Selected Papers

Infrastructure sharing is made possible with the help of virtualization technolo-
gies, and this fact transformed the network architecture itself into a novel stake-
holder called the infrastructure provider (InP) [169], [211]. InP is considered as
part of the infrastructure as a service (IaaS) concept, with the main objective of
on-demand provisioning of virtual infrastructure and computing resources with
Service Level Agreements (SLAs) [212]. To maximize InP profit in FiWi access
networks, [211] proposes resource allocation in both wireless and optical subnet-
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works with a wireless channel allocation algorithm based on breadth first search
and a DBA algorithm in FiWi for both radio and virtual resources. A revenue
based bandwidth resource allocation is provided in [169] to map the idle resources
of a virtualized FiWi access network architecture to the service provider requests.
The InP uses Q-learning to predict idle bandwidth resource and the traffic load on
each physical link. This algorithm enables InPs to accept more VN requests and
obtain higher revenue.

Virtualized network resources pave the way for dynamic resource allocation
between the InPs and the network operators over auctioning algorithms. An in-
frastructure sharing scenario is created for mmWave radio networks in [87], in
which the operators use a distributed auction mechanism (Vickrey-Clarke-Groves)
to allocate mmWave AP resources by obtaining the slices. The results show that
applying these algorithms after the auction provides payoff gains to the network
operators. Another resource allocation scheme based on auctioning is discussed
in [86]. In this scheme, operators submit bids to capacitate a C-RAN subnetwork,
and the infrastructure owner (auctioneer) aims to maximize the aggregate social
welfare, defined as the sum of the aggregate operators’ utility and the C-RAN’s
revenue.

Even though profit generation is always a factor in performance optimization
for network operators, the shift in the architecture with network virtualization
makes dynamic revenue gains an apparent performance criteria for resource al-
location. This shift transforms the network into a market interaction between
different stakeholders that aim to profit from the available physical and virtual
resources in a dynamic way [208], [209]. In [209], a VNE problem is analyzed for
FiWi hybrid nodes that have abstracted physical optical and wireless resources.
The main objective is to maximize profit by considering the gains of service re-
quests and costs of the physical plane including networking and edge computing
servers’ resources. Virtual resource allocation in a FiWi network is combined with
an energy saving perspective in [208]. FiWi network resources are monitored glob-
ally to put the low-load devices to sleep mode. The results show that the algorithm
manages to provide low energy consumption, high network service profit and high
network link utilization.

The integration of network virtualization technologies creates the incentive
to dynamically reconfigure both the physical and virtual resources of converged
optical and radio networks. For this reason, the joint optimization of both radio,
optical and virtual resources is studied in the literature. The radio, optical and fog
resources are controlled with SDN in a cross-layer architecture for a fog-computing-
based radio over fiber network in [207], in which the controller selects MEC nodes
and establishes paths with spectrum and modulated radio frequency allocation.
A mmWave 5G C-RAN pooling gain solution over an ARoF fronthaul design is
presented in [210], in which both virtual and physical resources are allocated with
a resource pooling algorithm.
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Discussion

The softwarization of network functions with NFV and their live migration thanks
to the technological enablers such as SDN and MEC make it possible to dynam-
ically allocate computation and storage resources. Physical layer abstraction is
required for both optical and radio resources of the converged network to achieve
joint optimization of physical and virtual network resources at the NFV orches-
trator level. Achieving the abstraction of all physical resources is a step towards
achieving end-to-end network slicing and translating high-level O&M goals to tech-
nical parameters in beyond-5G networks, as seen in the efforts such as [84], [163]

As seen from Table 3.8, the addition of the infrastructure provider to the in-
creasing number of the stakeholders in 5G networks is also taken into account in
several studies. In addition to the abstraction of all physical and virtual resources
of the network, the common abstraction at the network management framework
is required between these stakeholders. A well-known abstraction for the design
and implementation of intelligent stakeholders in a distributed fashion is the use
of intelligent agents [J1]. The collaboration, cooperation and negotiation of mul-
tiple agents to achieve a common goal creates a multi-agent system, which is an
ideal candidate to solve complex resource management problems between multiple
stakeholders in a distributed fashion.

3.3 Summary

The aim of this chapter is to provide answers to the following research questions:

How can a resource management composition be created for a converged optical
and mmWave radio network architecture? In what ways can multiple stakeholders
get involved in decision-making to maximize their utilities?

Section 3.1 clarifies the changes that the utilization of mmWave spectrum and
the enabling technologies in 5G networks brought to the resource management
problem. As the capacity boosts with mmWave frequencies, dense radio networks,
massive MIMO and spectrum resource sharing also necessitate a parallel capacity
boost in the transport network, it was decided to focus on the converged mmWave
radio and optical networks. After identifying the technological advancements and
the resources to be managed in the whole architecture, the novel management
issues these technologies bring to converged mmWave radio and optical networks
are emphasized.

Enhancing the capacity of 5G networks is essential but not enough to meet the
requirements of the novel applications and societal goals. Smart resource man-
agement solutions are needed to complement the radio and optical network tech-
nologies to generate a network architecture that optimizes the use of the resources
provided to the external stakeholders. For this reason, AI-based resource opti-
mization techniques and dynamic management enablers are heavily investigated
in the literature.
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In Section 3.2 of this chapter, example methods from the literature are pro-
vided to explain how technological enablers can play their role in reaching the
network management targets of throughput maximization, delay minimization,
energy-efficiency, and virtual resource allocation. The key concepts and the key
network state parameters used to evaluate the performance of AI-based network
optimization algorithms are identified. The limitations of resource management
in converged optical and mmWave radio networks are also analyzed. Further-
more, dedicated discussions are provided for each resource management objective
to identify the gaps in the existing literature and to provide potential directions
for future research.

Section 3.2 can be expanded upon with further research on the resource opti-
mization algorithms. The researches that do not present a concrete optimization
algorithm were excluded from the study; however it is well-known that many con-
ceptual papers also provide a basis for solving resource management problems. It
should also be emphasized that AI-ML solutions presented in the discussion subsec-
tions do not directly include a converged optical and mmWave radio architecture;
therefore the re-interpretation of their results might be costly for some specific
optimization algorithms. Despite the limitations, the contributions of this state-
of-the-art review add value to the discussion with respect to integrating ML-based
data analytics solutions with converged optical and mmWave radio networks, and
motivate further research towards the autonomic resource management for 5G and
beyond-5G performance optimization.
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CHAPTER 4

Cooperative Bandwidth Allocation for
Converged mmWave Networks

This chapter describes the experimental results of strategic cooperative learning
behavior to improve resource allocation under dynamic network conditions. An
application of cooperative game theory to the fronthaul bandwidth allocation prob-
lem is presented with a bankruptcy game. Bankruptcy games model situations in
which the total demand from players claiming a resource exceeds the available
resources. In converged photonic and wireless mmWave networks, this situation
can occur when extra RRHs are turned into active mode after sleep modes, flex-
ible functional split decisions increase the fronthaul bandwidth demand, or when
user traffic demand reaches a sudden peak. In order to take full advantage of the
provided fronthaul capacity, the available fronthaul resources are utilized by coop-
erative sharing among the RRHs with several division rules in this game. Different
user distributions and QoS requirements bring dynamicity to the problem, giving
the transport network the opportunity to adapt to the dynamic load based on user
utility and C-RAN bandwidth allocation outcomes. The outcomes of applying the
selected division rules are evaluated in terms of fairness, total data rate, and user
satisfaction.

4.1 Bankruptcy Games

For network elements that are part of the infrastructure of the same network
operator, allowing cooperation between these elements by coalition formation is a
feasible solution for resource allocation, and studied in various works such as [106],
[108], and [114]. In such cooperative network games, the overall network architec-
ture is treated as an actor with a global objective of maximizing its users’ utility,
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Figure 4.1: Bankruptcy game between C-RAN radio access and transport networks

and network cooperation helps to reach network operator’s global objective of
network resource use optimization under varying user traffic demand and load.

The interaction between the transport network and RRHs can be turned into
a cooperative game to adapt to varying aggregate user load in a dynamic way in a
mmWave C-RAN architecture. As each RRH has a separate demand based on the
current traffic load, the aggregate demand is sent to the transport network side
in the form of a demand matrix. After sending the aggregate bandwidth demand
of the RRHs to the transport side, the demands of RRHs are satisfied according
to the demand matrix if the total demand is below the maximum capacity of
transport network. If the aggregated demand is over the capacity, the problem
can be formulated as a bankruptcy game for allocating the aggregate demand of
the RRHs.

A bankruptcy problem is used to model cases in which the total claims of
the agents on a certain resource is more than the total available resources [213].
N-player cooperative games that arise from the bankruptcy problems are called
bankruptcy games. In situations where the total available fronthaul bandwidth
is less than the sum of RRH bandwidth demands, dynamic fronthaul resource
allocation can be achieved with a bankruptcy game designed for multiple RRHs
with fronthaul network capacity constraints. A resource allocation example with
bankruptcy games for C-RAN architecture is demonstrated in Figure 4.1.

The game is formally defined with (N,M,Q), where N = {1, . . . , n} represents
the set of players, M the total value of resources, and Q = {q1, . . . , qn} the demand
vector of the agents. In the dynamic bandwidth allocation game, N is the set of
RRHs with n being the total number of RRHs, M is the total available fronthaul
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bandwidth, and Q is the set of bandwidth demands of all RRHs. The bankruptcy
problem conditions are met when 0 ≤ q1 ≤ q2 ≤ . . . ≤ qn, and 0 ≤ M ≤∑N

n=1 qn = Θ, where Θ indicates the total demand of RRHs. It should be noted
that the ordering of the demands in this description does not limit the generality of
the description. The total available fronthaul bandwidth M is distributed among
the RRHs based on the total demand of RRHs indicated with Θ, and the solution to
this problem is given as

∑N
n=1 xn = M , with xn denoting the amount of bandwidth

assigned to RRHn [214], also called the payoff of the player.
If Θ > M , then each RRH’s demand impacts other RRHs directly, creating an

interdependence among the RRHs while obtaining the fronthaul bandwidth. The
RRHs take this interdependence into consideration when deciding for their actions
as players of the game. In a cooperative game, this interdependence is used to form
coalitions between the players. Forming a coalition with other players is considered
as a rational action on the player side, as the players have the option to improve
the outcome of their individual RRH demands being rejected by the transport
network by accepting the payoff obtained after forming a coalition. In cooperative
games, a coalition S defines any subset of the player set N = {1, . . . , n}, whereas
the grand coalition defines the set N of all players [215].

Bankruptcy games are expressed with the characteristic function form [213],
defined by an ordered pair (N, v), with v : 2N → R being the characteristic
function that maps each coalition S to the value of the coalition, denoted as
v(S). An outcome of a characteristic function game consists of the partition of
players into coalitions, called the coalition structure; and the payoff vector, which
distributes the value of the coalition among its members [215]. The question of
how to divide coalitional value is dependent on the importance of each player to
the cooperation, and the expected payoff of the player from the coalition. The
Shapley value [216] is based on the intuition that the payment each agent receives
should be proportional to her contribution to the coalition.

As the total value of resources is insufficient to meet all the claims in a bankruptcy
problem, the problem of dividing the available resources among all agents is solved
with a division rule p. The division rule should satisfy the condition that no player
gets more than their claim or less than zero, and the total available resources are
totally divided among the agents, which are denoted as follows:

0 ≤ pn(M ;Q) ≤ qn,∀n ∈ N (4.1)

N∑
n=1

pn(M ;Q) = M (4.2)

The straightforward way to calculate the bandwidth shares of the RRHs is
to use proportional division (PD) and divide the total resources in proportion to
each RRH’s claim. The main advantages of this method as the division rule is
that it is effective in distributing all the available resources, and it is considered as
strategy-proof as the players have no incentive to form coalitions with this division
rule [217]. With this method, each player gets a payoff xn = M

Θ · qn.
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Two other division rules are introduced in [218], which are favorable to play-
ers with smaller demands and players with larger demands, respectively. Con-
strained equal awards (CEA) rule assigns to player min(α, qn), where α ∈ [0, qn]
is considered as a minimal right for all players. The α value has to satisfy∑N

n=1 CEAn(M ; qn) = M . On the other hand, constrained equal losses (CEL)
rule assigns to player n as payoff max(qn− β, 0), where β is considered as a maxi-
mal loss for all players and no player ends up with a negative payoff. The β value
also has to satisfy

∑N
n=1 CELn(M ; qn) = M .

By making use of the proportional division method and the minimal right
concept, the authors in [213] propose the adjusted proportional method (APM),
which consists of two steps. In the first step, each player n receives her minimal
right αn, given that

∑
αn ≤ M . In the second step, a new total resource M ′ =

M −
∑

αn, and a new demand vector with demands q′n = qn − αn are created,
and M ′ is divided proportional to the new demand vector q′. The minimal right
αn is set to min(qn) for each RRH in the simulations.

In [214], contested garment (CG) principle is introduced as a division rule. The
rule first explained for a 2-player case with players n and n′, in which the payoff
xn of the player for (M − qn) ≥ 0 and (M − q′n) ≥ 0 is given as:

xn =
M − (M − qn)− (M − q′n)

2
+ (M − q′n) (4.3)

The rule is extended from 2 players to n-players with a coalitional procedure. The
coalitional procedure of the contested garment rule is given in [214] as follows:

� Divide M between {1} and {2, . . . , n} according to consistent garment solu-
tion of the 2-player problem (M ; q1, q2 + . . . + qn), and use the n− 1 person
rule by dividing {2, . . . , n} among its members. This rule is applied when
n · q1/2 ≤ M ≤ q − (n · q1/2). If the player demand q1 or the sum of other
players’ demands q2 + . . . + qn is more than the total available resources M ,
the demand is truncated to the total available amount of resources.

� Assign equal awards to all players with CEA rule, when M ≤ n · q1/2

� Assign equal losses to all players with CEL rule, when M ≥ q − (n · q1/2)

Recursive completion (RC) method is proposed as a division rule in [217], which
produces as payoff the Shapley value of the cooperative game corresponding to the
bankruptcy problem. The division problem is solved by listing all possible orders
of arrival for the players and calculating the payoff each player would receive, and
then by taking the average payoff value of all possible orders of arrival for every
player. If a player demand qn is more than the total resources, the demand is
truncated to the total available amount of resources. For a given coalition S, the
characteristic function of the game is defined as:

v(S) = max(M −
∑

n∈N−S

qn, 0) for S ⊆ N (4.4)
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With s = |S|, the Shapley value of the game for player n is calculated as:

ϕn =
∑
n∈S

(s− 1)!(n− s)!

n!
(v(S)− v(S − {n})) (4.5)

v(S)− v(S − {n}) =


qn if M −

∑
j∈N−S(qj) ≥ qn

M −
∑

j∈N−S(qj) if qn ≥M −
∑

j∈N−S(qj) ≥ 0

0 if 0 ≥M −
∑

j∈N−S(qj)

(4.6)
Evaluating the fairness of the division rules in allocating resources is a factor in
deciding for the rule that appropriately fits the requirements of the players of the
game as the players claim different proportions of the total resources.

4.2 System Model

The network simulation setup and system evaluation parameters considered for
the bankruptcy game for dynamic fronthaul bandwidth allocation is explained in
this section.

4.2.1 Network User Distribution

Users in set I = {1, ..., i} are scattered inside a 400m2 open square area. Ten
mmWave RRHs with center frequency fc = 28GHz are distributed randomly
inside this area first by using a Poisson point process [219], and then by adjusting
these positions to ensure that the maximum distance between the RRHs is less
than 150m and the minimum distance is more than 30m. The users are connected
to the closest mmWave RRH.

The simulation of the mmWave C-RAN scenario considers different users that
demand different services inside the 400m2 simulation area. Two user profiles are
used for dense urban and massive IoT scenarios. For the dense urban user profile,
target urban user data rate DRurban value is chosen as 300Mbps, in line with the
3GPP service requirements of the dense urban downlink scenario [220]. For each
urban user connection request, RRH estimates the required fronthaul bandwidth
that provides a 300Mbps connection to a user at a 30m 2D distance.

In order to reflect the impact of user mobility on the dynamic decision-making,
the Random Waypoint Model (RWP) is selected for the simulation environment
as the model reflects the fact that people habitually stay at some locations for
a long time compared with other locations. In RWP, a user randomly selects a
destination in a 2D-plane [221]. Then, the user moves with constant speed to reach
the destination by following a straight line. Before selecting a new destination, the
user pauses for a random amount of time. In addition, the users can move with
angular directions and their speed can vary during each motion with this mobility



70 CHAPTER 4. COOOPERATIVE BANDWIDTH ALLOCATION

model. After their movements are completed, the users may or may not change
their RRH connection depending on their new position.

For the massive IoT scenario, target data rate value DRmIoT is 1Mbps, and
the number of users in the 400m2 open square area is equal to 400, as this value
reflects the high connection density target of 1 million connections per km2. For
each mIoT connection request, RRH calculates a fronthaul bandwidth demand
that provides the target DRmIoT value to a user at a 30m 2D distance. mIoT
users are initially distributed inside the area with Poisson Point Process. These
users are static; therefore they do not use a mobility model and they do not change
their position at any iteration.

4.2.2 Path Loss Model

In order to capture an urban scenario, Urban Micro (UMi) LOS channel model
of the street canyon scenario defined in 3GPP TR 38.901 [222] is used to create
the path loss values of the RRHs. In the street canyon scenario, the RRHs are
mounted below rooftop levels of surrounding buildings. In this scenario, two path
loss calculations are used depending on the breakpoint distance d′BP calculated by
using Eq. (4.7), with h′

BS denoting base station height, h′
UE denoting user height.

In addition, fc denotes center frequency of the radio unit, and c = 3x108m/s
denotes the propagation velocity in free space.

d′BP = 4 · h′
BS · h′

UE ·
fc
c

(4.7)

A different path loss formula is applied depending on the 2D Euclidean distance
d2D between the RRH and the user, and the d′BP in Eq. (4.7) is used as a threshold
value, as shown in Eq. (4.8). The distances are given in meters with unit m.

PLUMi,LOS =

{
PLLOS,1 10m ≤ d2D ≤ d′BP

PLLOS,2 d′BP ≤ d2D ≤ 5000m
(4.8)

The formulas to calculate PLLOS,1 and PLLOS,2 are given in Eq. (4.9) and Eq. (4.10),
respectively. d3D represents the 3D Euclidean distance between the user and the
RRH in meters.

PLLOS,1 = 32.4 + 21 log10 (d3D) + 20 log10 (fc) (4.9)

PLLOS,2 = 32.4+40 log10 (d3D)+20 log10 (fc)−9.5 log10 ((d′BP )
2 + (hBS − hUE)

2)
(4.10)

After obtaining the path loss value with the given equations, the RSS value of
users is calculated with Eq. (4.11), in which the power of the transmitter PTx

is
assumed as 30 dBm according to the model described in [223]. The SNR value is
obtained by subtracting the thermal noise Tnoise from the calculated RSS value,
as shown in Eq. (4.12). Tnoise equation is displayed in Eq. (4.13).

RSSuser = PTx
− PLUMi,LOS (4.11)



4.2. SYSTEM MODEL 71

SNRuser = RSSuser − Tnoise (4.12)

Tnoise = −174 + 10 · log10(bn) (4.13)

4.2.3 User Data Rate and Satisfaction

The data rate of each user DRi is calculated by using a simple user bandwidth to
rate conversion model with overhead and loss factors OF and LF in Eq. (4.14) [224].
Both OF and LF take values between 0 and 1. User bandwidth bi is a function of
the fronthaul bandwidth allocated by the RRH k, the number of users connected
to this RRH, and their bandwidth demands.

DRi = (1−OF ) · bi · log2(1 + (1− LF ) · SNR) (4.14)

The users aim to remain seamlessly connected to the network in a way that best
suits their service demands, meaning that they demand at least the minimum data
rate required for the service specific data transmission. In this scenario, the data
rate of user i determines the user utility Ui based on the user utility function
in [225], given in Eq. (4.15). DRmin value is the threshold to sustain 5G service
use with acceptable quality, and γ value characterizes the user sensitivity to data
rate. Service based data rate requirements are reflected with this utility function.
Furthermore, the satisfaction parameter ρDRi is specific to the user, and can be
adjusted to reflect user specific behavior.

Ui(DRi) =

{
0 if DRi < DRmin

ρDRi
· (1− e−γ(DRi−DRmin)) if DRmin ≤ DRi

(4.15)

4.2.4 Radio Access and Transport Network Interaction

With the proposed approach, limited fronthaul bandwidth resources are shared
among RRHs that demand bandwidth from the transport network based on the
dynamic traffic requests of the users. All RRHs are connected to a common trans-
port network path to reach the centralized controller and the total bandwidth in
this path is divided among the RRHs. This transport network path with total
bandwidth M is divided among N RRHs based on a specific pre-defined contract
between the RRHs and the transport network, defined as the division rule of the
bankruptcy game. The steps of the game is given in Figure 4.2, and can be sum-
marized as follows:

� Step 1: The game begins with an initial user distribution and the users move
or wait inside the given area for the period of an iteration and send their
traffic requests to RRHs by indicating their service type w. RRH n receives
the user connection requests and demands bandwidth from the transport
network for the next period by calculating the demand as in Eq. (4.16),
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CO

where wi indicates the service type and DRw denotes the data rate demand
for the service type.

qn =
∑
i∈I

wi ·DRw (4.16)

� Step 2: The centralized office retrieves all the requests in form of a demand
matrix Q = [q1...qn]. It accepts the offers if the aggregate bandwidth demand
is less than the maximum available bandwidth M , and offers the bankruptcy
game solution to users if the aggregate demand is more than the maximum
available bandwidth. The centralized office uses one of the division rules to
solve the bankruptcy problem and provides the outcomes as payoffs to all
RRHs.

� Step 3: The RRHs divide the obtained bandwidth among the user groups
that request different services by using proportional division rule. The users
that request traffic for the same service type obtain the same bandwidth,
but the data rate may differ depending on the RRH-user distance. The
users calculate their final utility from the two closest RRHs and send their
user satisfaction value for the given iteration.

4.2.5 Resource Allocation Fairness

Evaluating the fairness of division rule payoffs is a factor in deciding for the rule
that appropriately fits the requirements of allocating resources. The fairness in
resource allocation can be measured with several measures, such as Jain's index,
max-min fairness, proportional fairness, and α fairness [226]. Among these mea-
surements, Jain's fairness index [227] is a special case of the family of functions
that satisfy the axioms about fairness given in [228], and it is widely used in the re-
source allocation literature, with some examples also being provided in Chapter 3
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Table 4.1: Simulation parameters

Urban user γurban = 0.000 01, ρDR,urban = 1,
DRtarget,urban = 300Mbps,
DRmin,urban = 50Mbps

mIoT user γmIoT = 0.0022, ρDR,mIoT = 1.1,
DRtarget,mIoT = 1Mbps,
DRmin,mIoT = 0.1Mbps

RWP vmin = 0.1m per iteration,
vmax = 1.0m per iteration,
twait = 1 iteration

Rate LF = 0.5, OF = 0.2

such as [110] and [173]. Jain's index uses a normalized square mean to evaluate
fairness, as given in Eq. (4.17):

,x1)ג . . . , xn) =
(
∑N

n=1 xn)
2

N ·
∑N

n=1 x
2
n

(4.17)

Instead of directly evaluating the fairness of the payoffs {x1, . . . , xn},the satisfac-
tion of the RRHs from the payoffs are evaluated with an expectation index (EI),
which is equal to the payoff divided by the demand for each RRH [229]:

EIn =
xn

qn
(4.18)

4.3 Results and Discussion

The simulation parameters of the bankruptcy game for dynamic bandwidth allo-
cation are as follows: Dense urban users move inside the 400m2 open square area
by using RWP. The code library by which the mobility model is generated can be
found in [230]. According to this model, users are generated at a random 2D po-
sition inside the area. The velocity is chosen from a uniform distribution between
0.1m to 1.0m at each iteration, and the maximum waiting time is chosen as 1
iteration. DRmin threshold value in Eq. (4.15) is 50Mbps for dense urban traffic,
which is the expected experienced data rate for urban macro users according to
3GPP service requirements. DRmin threshold value for the massive IoT scenario
is 100Kbps. User sensitivity γ and the satisfaction parameter ρDR in Eq. (4.15)
are given in Table 4.1.

To evaluate the performance of the division rules presented in Section 4.1,
three experiments are designed. In the first experiment, the proportion of the
total available bandwidth to total RRH demand is changed and the outcomes of
the rules are observed. In the second experiment, the density of urban users is
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Figure 4.3: Jain's fairness index values of division rules for changing available total
bandwidth

increased in the simulation area. The third experiment is carried out to evaluate
the outcomes of the division rules while the user density increases only inside the
coverage area of one RRH. As CG principle returns the same outcomes with the
CEA rule in the experiments conducted, only the outcomes of CEA are presented.
In addition, APM division rule with a minimal bandwidth right for all RRHs is
preferred to the simple proportional division rule. For the RC rule, the payoffs are
returned to RRHs by assuming that all RRHs form a grand coalition. Together
with CEL rule, the outcomes of these four division rules are presented in the
following subsections.

4.3.1 Division Rule Results for Increasing Total Available Band-
width

In this experiment, the user distribution is adjusted to 400 mIoT users and urban
user density is set to 0.025 perm2 based on 3GPP service requirements [220], which
corresponds to 10 urban users in 400m2 area. The user number is kept constant
and the positions of the urban users change with RWP. All RRHs have mIoT
users in their coverage area; however, not all RRHs serve a dense urban user at all
iterations, creating low-demand and high-demand groups between RRHs. RRHs
estimate bandwidth demand for an average user distance of 30m; therefore the
sum of RRH demands Θ does not change with user mobility during the simulation.
The results are collected for 100 iterations with 10 different proportions of total
available bandwidth M to Θ, the proportion ranging from 0.10 to 1.00.

The results reveal that the fairness and user satisfaction outcomes differ for
the division rules for changing total available bandwidth M . Figure 4.3 shows
that CEL is the least fair division rule for all M < Θ. This result is due to the
fact that the demand qn of RRHs with mIoT users only are smaller than the β
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Figure 4.4: Bandwidth allocation for RRHs with high and low demand with different
division rules

value of CEL; therefore they are not allocated any bandwidth by CEL rule, as
shown in Figure 4.4b. CEA and APM show similar outcomes in terms of overall
Jain's fairness measurements; and Figure 4.4 shows that these methods provide a
minimal right to RRHs with only mIoT users. As seen from Figure 4.3, all these
three division rules are significantly less fair than RC when the total available
bandwidth M is equal to or less than half of the total demand Θ. However,
they converge to an index value of 1 for when the available bandwidth is high.
Figure 4.4a demonstrates that CEA provides the least bandwidth to the RRH
with the highest demand for all M < Θ. APM provides more bandwidth than RC
if the total available bandwidth proportion is less than 0.5, and RC provides more
bandwidth than APM when the value is above 0.5.

The average user satisfaction results for 100 iterations obtained by using Eq. (4.15)
are shown in Figure 4.5. As seen from Figure 4.5b, CEL provides the lowest sat-
isfaction value among mIoT users for all M < Θ. On the urban user side in
Figure 4.5a, only CEL can provide bandwidth resources to urban users for 0.1
available bandwidth proportion; however, CEL can only reach a 1.0 urban user
satisfaction after M

Θ = 0.7, as it fails to provide a satisfactory outcome to users
connected to RRHs with both urban and mIoT demand, which do not have the
highest bandwidth claim. APM and RC obtain the highest user satisfaction values
for urban users and mIoT users, whereas CEA performs similar for mIoT users
but provides lower urban user satisfaction values than APM and RC for M

Θ < 0.5.

For M
Θ > 0.5, CEA also provides the highest urban user satisfaction.
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(a) Urban user satisfaction results
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(b) mIoT user satisfaction results

Figure 4.5: User satisfaction results for changing total available bandwidth
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(a) Urban total data rate results
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(b) mIoT total data rate results

Figure 4.6: Total data rate results for increasing urban user density

4.3.2 Division Rule Results with Increasing Urban User Density

The impact of urban user density on RRH demand distribution with the division
rules are analyzed in this subsection. In this experiment, the total available band-
width M remains constant matching a user demand estimation with 400 mIoT
users and 10 urban users in 400m2 area, which is equal to 0.025 per m2 urban
user density. On the user side, the results are obtained for different urban user
densities between 0.030 per m2 and 0.120 per m2, i.e., between 12 and 44 urban
users. All urban users move or wait inside the area with the RWP parameters
given in Table 4.1.

The total data provided to urban users as the average of 100 iterations is
demonstrated in Figure 4.6a, and mIoT user results are demonstrated in Fig-
ure 4.6b. As seen from Figure 4.6, all division rules provide more total data rate
to urban users with increasing user density, contrary to the total data rate val-
ues of mIoT users. As in subsection 4.3.1, CEL provides less total data rate to



4.3. RESULTS AND DISCUSSION 77

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
Urban User Density

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Us
er

 S
at

isf
ac

tio
n

APM
CEA
CEL
RC

(a) Average urban user satisfaction results
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(b) Average mIoT user satisfaction results

Figure 4.7: Average user satisfaction results with increasing urban user density

urban users than other division rules when user density exceeds 0.03 per m2. By
allocating less bandwidth to RRHs with less demands, CEL division rule provides
the least average mIoT total data rate. When the user satisfaction results are
considered, it can be seen in Figure 4.7a that CEL provides a higher average user
satisfaction value than CEA after 0.09 per m2 urban user density. This results
from CEL rule’s support to RRHs that demand the most bandwidth. Neverthe-
less, urban users with zero satisfaction can be observed for CEL rule starting from
0.05 per m2 urban user density, meaning that the data rate provided to urban
users go below the 50Mbps DRmin threshold value. The number of urban users
with zero satisfaction value increases with increasing urban user density. Further-
more, CEL division rule provides the least average mIoT user satisfaction, and it
is the only division rule that leads to mIoT users with zero satisfaction for urban
user densities between 0.03 per m2 and 0.12 per m2, as shown in Figure 4.7b and
Figure 4.8b.

CEA rule provides the most average total data rate to urban users from 0.04 per
m2 to 0.12 per m2. However, Figure 4.7a shows that total data rate provided by
CEA and CG principle does not directly increase the users’ data rate satisfaction.
This is due to the fact that the CEA rule and CG principle provide equal payoffs
to all RRHs that demand bandwidth above the α threshold. Due to this equality
in payoffs, the RRHs that serve more urban users end up providing less data rate
to these users. Figure 4.8 depicts that the data rate provided to urban users go
below the 50Mbps DRmin threshold value for 3 urban users with CEA & CG
principle rules when urban density is equal to 0.07 per m2, hence these users have
zero satisfaction value. The number of users with zero satisfaction keeps increasing
with increasing user density, and 23 of the 44 dense users calculate zero satisfaction
for 0.12 per m2 urban user density.

AP method and RC algorithms provide similar outcomes in terms of total data
rate both for urban and mIoT users, as seen from Figure 4.6. Their user satis-
faction results are similar until urban user density reaches 0.07 per m2; however
RC outperforms AP when the user density exceeds this point, as depicted in Fig-
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(a) Number of average urban users with zero
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Figure 4.8: Average number of users with zero satisfaction for increasing urban user
density
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Figure 4.9: Jain's fairness index values of division rules for increasing urban user density

ure 4.7. The bandwidth allocation of these division rules does not result in any
users with zero satisfaction between 0.03 per m2 and 0.12 per m2 urban user densi-
ties. AP method provides slightly higher total rates than RC for urban and mIoT
users after the user density exceeds 0.08 per m2. However, as in the CEA case, the
increase in the total data rate does not lead to an increase in user satisfaction, as
seen from Figure 4.7a. Jain's fairness index results in Figure 4.9 show that APM
also differs from RC rule in terms of fairness after urban user density exceeds 0.05
per m2.
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(a) Bandwidth allocation of RRHqmax
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(b) Expectation index of RRHqmax

Figure 4.10: Bandwidth allocation and expectation index of RRHqmax for increasing
RRHqmax urban user density

4.3.3 Division Rule Results with Increasing Urban User Density
for RRH with Most Demand

In this experiment, urban user density increase only happens inside the coverage
area of a single RRH, while the user density in other areas remain the same at
0.025 per m2. Urban users can move to the coverage areas of other RRHs for
100 iterations. The RRH, which is denoted as RRHqmax , requests more of the
total bandwidth with the increasing user density inside its coverage area, and the
outcomes of the division rules are evaluated in terms of the allocated bandwidth,
Jain's fairness index, and user satisfaction for increasing user density in the RRH
area. As in subsection 4.3.2, the total available bandwidth M remains constant for
a user distribution estimation with 400 mIoT users 10 urban users in 400m2 area,
which is equal to 0.025 per m2 urban user density. For this reason, 0.025 per m2

provides a threshold user density value, as the user density inside the coverage area
of RRHqmax

is higher than the overall user density in the area after this threshold
density value.

RRHqmax bandwidth allocation and expectation index results in Figure 4.10a
and Figure 4.10b show that RC provides a close amount of bandwidth to RRHqmax

with APM until user density in RRH area reaches 0.030 per m2, and then deviates
from APM by providing less bandwidth payoff to RRHqmax

. CEL always provides
the highest bandwidth payoff to RRHqmax

. This division rule displays an extreme
case by providing all the available bandwidth to RRHqmax

after user density ex-
ceeds 0.035 per m2. On the other hand, CEA displays another extreme case by
providing a constant bandwidth payoff value to RRHqmax despite the increasing
urban user density in this RRH’s region. Thus, CEA has the worst expectation
index value for RRHqmax

, as seen in Figure 4.10b.

Regarding total data rate of urban users, RC rule provides the highest total
data rate to users after the user density inside RRHqmax coverage area exceeds
the overall user density, denoted with 0.030 per m2 user density in Figure 4.11a.
APM provides a similar total data rate curve; however, different from the results
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(a) Urban total data rate results
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(b) mIoT total data rate results

Figure 4.11: Total data rate results for increasing RRHqmax urban user density
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(a) Average urban user satisfaction results
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(b) Average mIoT user satisfaction results

Figure 4.12: Average user satisfaction results with increasing RRHqmax urban user den-
sity

in Section 4.3.2, RC outperforms APM in terms of average urban total data rate
for all user densities. Figure 4.11b shows that RC and APM results are similar
for total data rate of mIoT users. The figure also shows that CEA provides the
highest total data rate to mIoT users in all cases, and the opposite happens for
CEL for all user densities. CEL also shows the worst total data rate performance
in urban user case between 0.020 per m2 and 0.045 per m2 user densities, as this
division rule neglects the urban user demands that come from the RRHs other
than RRHqmax

.

User satisfaction values with increasing user density in RRHqmax coverage area
are displayed in Figure 4.12. The highest urban user satisfaction values are pro-
vided by RC and APM until the RRHqmax

user density reaches 0.055 per m2, then
CEL provides higher user satisfaction values than the two other division rules as
it allocates all the available bandwidth to RRHqmax

. Figure 4.12b displays that
mIoT user satisfaction results are also similar for RC and APM. As seen from
Figure 4.12a, CEA rule has the lowest urban user satisfaction results, and the sat-
isfaction values decreases with increasing user density inside RRHqmax

coverage
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Figure 4.13: Jain's fairness index values of division rules for increasing RRHqmax urban
user density

area, as CEA does not provide additional bandwidth to RRHqmax
. By doing the

exact opposite, CEL rule obtains the lowest mIoT user satisfaction value for all
user density values, as shown in Figure 4.12b.

Finally, Jain's fairness index values in Figure 4.13 show that CEL has the worst
fairness values for the demand increase in a single RRH coverage area. RC provides
the best Jain's fairness index results, which are almost equal to 1 in all RRHqmax

urban user densities. AP method deviates from RC in terms of Jain's fairness
measuremnets with increasing RRHqmax urban user densities. This is due to the
fact that APM provides less bandwidth to RRHs with both urban and mIoT
users, despite providing high expectation index values for the RRHs with only
mIoT users. CEA provides an extreme case in Jain's fairness. The average value
is high as it meets the expectations of all RRHs except the RRH with the highest
demand. For this reason, the fairness index remains constant despite providing
the lowest urban user satisfaction values, as seen in Figure 4.12a.

4.4 Summary

The aim of this chapter is to provide answers to the following research questions:

How should the interactions and possible actions among the stakeholders that
control radio and transport networks be defined in case of limited resources to reach
optimized dynamic bandwidth allocation in converged optical and mmWave radio
networks?

Bankruptcy games deal with situations in which the total demand exceeds the
available resources at that time interval, and division rules are used to solve the
problem. The approach presented in this chapter compares the division rules that
solve the bankruptcy problem and divide the limited fronthaul resources among
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RRHs to improve resource utilization with cooperative sharing in a converged opti-
cal and mmWave radio access network scenario. The logic behind this cooperative
approach is to optimize resource utilization and the data rate provided to the users
to improve their satisfaction under increasing traffic demand.

Among the several division rules that solve the bankruptcy problem, recursive
completion makes use of coalition formation and Shapley value calculation to pro-
vide fair allocation among the players. By forming a coalition consisting of a set
of C-RAN RRHs, this method makes a bandwidth allocation viable by dividing
the coalitional value among the members of the coalition. With this method, the
interaction between the radio access elements and the transport network as a coop-
erative game, and the game can involve distributed agents that control the RRHs
and make decisions on whether to join the a coalition or send its own demand
without joining the coalition. A grand coalition is formed if all the RRHs join the
coalition and send their sum demand to the transport network.

Recursive completion method is compared with the well-known division rules
that solve the bankruptcy game, namely the adjusted proportional method, con-
strained equal awards, and constrained equal losses to observe their fairness and
efficiency in providing the required data rate and satisfaction to network users un-
der different conditions. The impact of heterogeneous users on the division rules
is observed by adding dense urban users and mIoT users to the experiment, which
have different characteristics and data rate requirements. As explained in Sec-
tion 4.1, all the division rules allocate the total available bandwidth to RRHs, and
there remains no leftover fronthaul capacity after the division rules are applied.

The division rules are compared in terms of Jain's fairness index, total data
rate provided to different groups of users and user satisfaction, for changing pro-
portions of the total available bandwidth to total RRH demand, increasing urban
user density in the overall area, and inside the coverage area of one RRH. Recur-
sive completion provides the highest Jain's fairness index measurements and the
highest urban user satisfaction in all three experiments. Recursive completion also
manages to keep all data rates above the minimum thresholds defined in these ex-
periment for urban and mIoT users. Adjusted proportional method also provides
similar outcomes to recursive completion; however it also shows no clear benefit
on the RRH or user side, when these two methods are compared. Constrained
equal awards rule provides the highest mIoT user satisfaction results by securing
the minimal demand right of other RRHs, when the user demand increases ex-
tremely inside the coverage area of a single RRH. This minimal right concept can
be considered as an SLA guarantee to a service provider under extreme traffic load
increase. On the other hand, constrained equal losses return the lowest Jain's fair-
ness index measurements and most RRHs would be expected to leave the coalition
due to low returns if they are given the right to operate outside the scope of this
rule. The only benefit it can provide is keeping user satisfaction high for the RRH
with most demand under extreme traffic demand increases. The outcomes of these
experiments can be used to adjust the available fronthaul bandwidth dynamically
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by monitoring the outcomes of the user satisfaction values or to negotiate SLAs
with different service providers.
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CHAPTER 5

Infrastructure Sharing with
Auctioning Game

Different network sharing options have been discussed for next generation mobile
networks. Infrastructure sharing is one these options, and it is divided into two cat-
egories of passive sharing and active sharing [231]. Passive sharing option considers
sharing towers, sites and building premises among network operators, whereas ac-
tive sharing encompasses sharing network elements of the RAN, transport and
core networks. With the help of virtualization technologies, a physical network
can be transformed into logical networks, and the resources of these network do-
mains can be abstracted. Virtualization-based infrastructure sharing provides the
opportunity to split these abstracted network resources between service providers
(SPs) that provide different services to subscribers with the network slicing con-
cept [232]. Additional resources can dynamically be added to these slices based
on their users’ demands.

This infrastructure sharing model redefines the network operator as the infras-
tructure provider (InP). The increasing number and diversity of service providers
make slicing for shared fronthaul and radio resource allocation a complex problem
for InPs. Furthermore, the dynamic demands of service providers from the InPs re-
quire a well-defined interaction and decision-making model between them. Beyond-
5G and 6G networks necessitate a distributed network management paradigm that
takes the objective functions of different stakeholders into account to solve this
problem.

This chapter considers optical network resource allocation from a profit gener-
ation perspective with a game, in which providers bid to lease SDM-enabled fron-
thaul paths via Vickrey-Clarke-Groves (VCG) auctioning. Applying VCG auction-
ing for leasing provides a social-welfare maximizing outcome for resource allocation
among self-interested services that demand fronthaul resources for their slices. InP
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also aims to maximize its revenue in this auctioning game. Another main target of
the game is to include service providers and users in virtualized network resource
allocation decisions. Service providers maximize their revenue by predicting user
behavior and requesting bandwidth resources from the InP by bidding in the auc-
tion. Users have the option to switch between the service providers to maximize
their utility. As a result, resource allocation decisions are distributed among the
stakeholders such as the service providers, network operators and network users.

The rest of this chapter is structured as follows: The fundamental concepts
of Vickrey-Dutch auction and VCG outcomes are presented in the background
section. Then, the converged optical and mmWave radio network architecture,
the game models between the service providers, InP, and users, and the utility
functions of the stakeholders are introduced. Finally, the results of the experiments
are presented and discussed.

5.1 System Model

The main objective of this section is to present the overall network model and the
stakeholders involved in the experiment. The utility functions of the stakeholders
are also described in detail.

5.1.1 Network Model

The need for wireless network capacity expansion in mobile networks has trans-
formed the traditional network architecture that consists of base stations and the
backhaul to connect the core network to the mobile users. As C-RAN architec-
ture is an option that addresses the capacity expansion, this study is based on an
SDM-enabled C-RAN network architecture where many RRHs are connected with
a centralized BBU pool [233]. BBU pool is connected to the backhaul segment to
the core network, enabling end-to-end data transmission between the core network
and mobile users. RRHs are simplified versions base stations that consist of the
antenna units at the radio sites connecting mobile users to the cellular network,
and the BBU pool is located at the central office (CO) is responsible for base-
band processing. The centrally implemented BBUs are connected to RRHs over
the fronthaul links. The use of ARoF technology in the fronthaul links increases
centralization by removing digital to analog and analog to digital converters from
the RRH and placing them to the central office (CO), and increases the fronthaul
network capacity to support massive RRH deployments [234]. This centralization
is a step towards more flexible routing and lightpath provisioning with an SDN
controller [84]. The InP owns the RAN, transport and core parts of the network
architecture.
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Figure 5.1: Simulation with C-RAN RRHs in an open square area

mmWave Radio Interface

In this study, 100 users are scattered inside an 400m2 open square area us-
ing a Poisson point process [219]. Ten mmWave RRHs with center frequency
fc = 28GHz are distributed randomly inside this area, by ensuring that the max-
imum distance between the RRHs is less than 150m and the minimum distance
is more than 30m. The coverage zones of RRHs are separated with Voronoi tes-
sellation [235], as shown in Figure 5.1, and the users are connected to the closest
RRH. The fifth generation channel model (5GCM) open square omnidirectional
line-of-sight (LOS) urban microcell model in Eq. (5.1) is used to calculate the
path loss, in which d3D represents the 3D Euclidean distance between the user
and the RRH in meters [141]. This equation uses the close-in free space model
with a 1m reference distance based on Friis’ law.

PLLOS = 32.4 + 18.5 · log10 (d3D) + 20 · log10 (fc) (5.1)

The RSS value of users is then calculated with Eq. (5.2), in which the power
of the transmitter PTx

is arranged as 30 dBm according to the model described
in [223]. The SNR value is obtained by subtracting the thermal noise Tnoise from
the calculated RSS value, as shown in Eq. (5.3). Tnoise equation is displayed in
Eq. (5.4).

RSSuser = PTx − PLLOS (5.2)

SNRuser = RSSuser − Tnoise (5.3)

Tnoise = −174 + 10 · log10(bn) (5.4)

Finally, the data rate of each user DRn is calculated by using a simple user band-
width to rate conversion model with overhead and loss factors OF and LF in
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Figure 5.2: SDM-enabled C-RAN fronthaul topology with an SDM inner ring and a
WDM outer ring

Eq. (5.5) [224]. Both OF and LF take values between 0 and 1. User bandwidth
bn is assumed to be distributed equally among all users connected to the RRH,
before the service provider game begins. This data rate value is used in the utility
calculation of the users, as given in Section 5.1.2.

DRn = (1−OF ) · bn · log2(1 + (1− LF ) · SNR) (5.5)

Fronthaul Topology

The fronthaul topology expands in both spatial and spectral dimensions, increasing
the options for end user connectivity. Different spectral and spatial distribution
options can be allocated separately to a number of RRHs, and the total number
of supported RRHs is a product of the available spatial and spectral resources. In
this study, a mixed-stage fronthaul topology design with both space and spectrum
dimensions is taken into consideration to cover the increased fronthaul capacity
requirement of dense C-RAN RRHs. A dual stage tree connection topology is
created between the CO and the RRHs. The inner SDM tree provides the required
capacity expansion in the paths from CO to the switch nodes and wavelength
division multiplexing (WDM) paths reach from the switch nodes to the RRH [236].
The topology is depicted in Figure 5.2.

The fronthaul topology provides a number of optical paths per RRH, denoted
with the set I = {1, ..., Npath}. The bidding takes place only for the WDM paths
that reach the RRHs. The rest of the logical slice paths that connect CO to the
RRH is provided automatically by the path computation element of the control
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Figure 5.3: Stakeholder interactions and high level resource allocation architecture

plane. The losses of the network elements in optical paths and the splitting losses
are neglected so that each wavelength channel has the same value in the auction.

5.1.2 Stakeholders and their Utility Functions

Before explaining the resource allocation model at the network edge, the stake-
holders and their utility functions need to be clarified. The interactions between
the network stakeholders and the distribution of the decision-making algorithms
among stakeholders are depicted in Figure 5.3.

Infrastructure Provider (InP)

InP provides tailored network slices to service providers from the available net-
work resources by means of an auctioning game. This auction design aims to
provide a social-welfare maximizing outcome for resource allocation among differ-
ent services demanding optical resources for their network slices. A network slice
manager is responsible for creating slices for service providers and managing multi-
tenancy [237]. This network slice manager on top of the NFVO creates end-to-end



90 CHAPTER 5. INFRASTRUCTURE SHARING WITH AUCTIONING

network slices and distributes these optical resources by running distributed auc-
tions for each RRH. The slice manager obtains the required fronthaul topology
and the optical resource information from the transport network SDN controller
and NFV orchestration framework.

The fronthaul topology is divided into sub-graphs for these slices and the paths
are leased with a descending auction. The descending auction is a non-cooperative
game among service providers. InP is also self-interested and its objective is to
reach a profit maximizing solution in this auctioning game; however, it is also
bounded with the social welfare maximization condition of the auction. With a
set of service providers B that make the payment C to lease fronthaul paths, the
revenue function of InP in each game iteration i is given as:

UInP,i =
∑
k∈B

Ck,i (5.6)

When the auction for the fronthaul paths is finalized, the resulting service provider
path allocation is forwarded to the control plane. The control plane keeps the
virtual topology information and divides the network into sub-graphs to isolate
service providers as tenants. The interaction between the service providers and
the InP starts with a network slice request by the services registered to the InP
slice manager.

Users

End users in set H = {1, ..., Nuser} want to maximize their utility by dynamically
switching between the services and remaining connected to the service that best
suits their demand at the given game iteration over the radio interface. Users
subscribe to a service by paying the price set by the service provider and connecting
to the slice dedicated to the service provider. Before the new game iteration, they
compare their current utility to the average utility of all users, and switch their
service provider based on a probabilistic function if they are below the average
in that iteration. The probability to switch increases with the difference between
user utility Uuser,n,i and average user utility Ui. If a user decides to switch from its
service provider SPn,i at iteration i, then it has the option to randomly switch to
the service providers that provide user utilities over the average user utility. The
decision-making algorithm of users are given in Algorithm 1, where SPn,i indicates
the service provider that the user is connected to at iteration i, B−SPn,i

is the set
of all service providers other than SPn,i, and SPρ ∈ B−SPn,i

.
The utility of user n at iteration i is given in Eq. (5.7), where DRn,i represents

user data rate, duser,n,i is the transmission delay, and puser,n,i is the price set by
the service provider to the users [124].

Uuser,n,i = ln (α1 ·DRn,i)− α2 · duser,n,i − α3 · puser,n,i (5.7)

As given in Eq. (5.5), data rate DRn, i is a function of the user bandwidth bn,i,

calculated as bn,i =
bk,i

nk,i
, where bk,i represents the fronthaul bandwidth allocated
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Algorithm 1 User average utility comparison

Initialize: i← 0;
repeat

i← i+ 1
for all User n ∈ H do simultaneously

calculate Uuser,n,i using Eq. (5.7);
retrieve Ui from InP;
compare Uuser,n,i with Ui;
if Uuser,n,i < Ui then

prob = |Uuser,n,i − Ui| ÷ U

SPn,i =

{
SPn,i−1 w.p. prob

SPρ w.p. 1− prob

else
SPn,i = SPn,i−1

end if
end for

until final iteration is reached.

to SP k, and nk,i is the number of users connected to this service provider. α1, α2,
α3 are the data rate, delay, and price weights of the utility function, respectively.
These weights can be adjusted depending on the data rate and delay requirements
of the service provided in the use case, and the cost requirements of the user.
The logarithmic relationship between fronthaul bandwidth and the user utility in
Eq. (5.7) shows that the users experience diminishing returns as user bandwidth
increases [124].

Service Providers

Service providers use their intelligent agents that enable them to implement their
policies based on their objective functions. The utility function of service provider
SPk at iteration i is given in Eq. (5.8).

USP,k,i = β1 · puser,n,i · nk,i − β2 · Ck,i (5.8)

where puser,n,i is the price set by SPk for users at iteration i, and nk,i is the number
of users connected to SPk. puser,n,i · nk,i calculation gives the revenue of SPk at
iteration i, whereas Ck,i is SPk’s total payment to InP for the allocated paths
at the end of the auction. β1 is the revenue weight and β2 is the cost weight,
and these weights can be adjusted according to the financial priorities of a service
provider.

In the auction, service providers use exponential reinforcement learning to pre-
dict future utilities and make bids accordingly. The bid is calculated by using
the utility USP,k,i, the total available paths in set I denoted with Npath, the
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total available bandwidth in the fronthaul paths BWk, the bandwidth bk,i allo-
cated to SPk in iteration i, and the price set for users puser,n,i [238]. The algo-
rithm is distributed as all the values mentioned are locally available on the ser-
vice side, and service providers do not need to know the topology of the system;
hence the algorithm is also regarded as stateless [124]. Exponential reinforcement
learning algorithm enables making bids in the auction by updating the marginal
utility value for the next iteration. The marginal utility calculation is given as
wk(χk(m)) = ▽kUSP,k,m(χk), where ▽k(m) denotes the differentiation with re-
spect to the fronthaul path allocation profile χk(m) at iteration m [238]. The
following equations constitute the learning algorithm of services providers:

ŨSP,k,m = β1 · pn,m ·Nuser ·
χk(m)

Npath
(5.9)

Zk(m+ 1) = Zk(m) + γm · wk(χk(m)) (5.10)

bk(m+ 1) = BWk ·
eZk(m+1)

1 + eZk(m+1)
(5.11)

Eq. (5.9) defines the maximum revenue that SPk can achieve with the user
price and InP payments in iteration m of the association game between users and
service providers. In this study, the association game iteration m is equal to the
overall game iteration i, meaning that users make their association decisions in a
single iteration. If ŨSP,k,m ≤ 0, then the service provider exits the game.

Eq. (5.10) predicts the optimal bids at the next auction, where k represents the
k-th service provider in the set of service providers in the game B = {1, . . . , NSP}.
Zk(m) represents the recursive score calculated by adding the marginal service
provider utility wk(χk(m)) to the score at previous iteration, γm is the step size
of the learning procedure, which is equal to γm = 1

m . The calculated score for the
next iteration Zk(m+ 1) is then used in a sigmoid function given in Eq. (5.11) to
determine the optimal bandwidth request for the next auction iteration bk(m+1).
This sigmoid function determines the proportion of the total available bandwidth
BWk for SPk in all fronthaul paths in the auction, which is equal to BWk =
Npath · bmax, and bmax represents the maximum available bandwidth in a single
fronthaul path.

By using the score obtained from Eq. (5.10), Eq. (5.11) computes the path
request of service provider k at the next iteration. BWk is total available band-
width per service provider, and a higher score resulting from a marginal utility
means a higher proportion of the bandwidth is to be requested by the service
provider at the next game iteration. This mechanism allows service providers to
reach closer to the equilibrium in a distributed way, and the related algorithm is
given in Algorithm 2. The algorithm terminates when the final iteration mfinal is
reached.
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Algorithm 2 Exponential reinforcement learning for bidding [124]

Parameter: step-size sequence γm (default: γm = 1/m)
Initialize: m← 0; Zk ← 0 for all k ∈ B; BWk = Npath · bmax; bk(0) = χk,0

repeat
m← m+ 1
for all Service Provider k ∈ B do simultaneously

check ŨSP,k,m using Eq. (5.9);

if ŨSP,k,m > 0 then
measure marginal utility wk,m = ▽kUSP,k,m;
update score: Zk(m+ 1) using Eq. (5.10);
request bandwidth bk(m+ 1) using Eq. (5.11);

end if
end for

until final iteration is reached.

5.2 Game Models

The dynamic decision-making mechanism between the stakeholders consists of
two games. The first game is the Vickrey-Dutch auction played among the service
providers to allocate fronthaul paths that reach RRHs. The second game is played
between the users and service providers as a leader and follower game. The game
models are explained in this section, and the sequence diagram of the games that
includes both InP auction and user association is given in Figure 5.4. As depicted
in this figure, all users send their initial network association information to the InP
before the auction starts, so that the InP records the total user number and the
list of users to transmit average user utility information. The auction begins when
InP sends the available fronhtaul paths in the auction and the price to acquire
these paths to service providers. Service providers calculate their bids by using
Algorithm 2, and InP allocates the paths to service providers for the accepted
bids. The service providers send their payments for the paths allocated to them at
the end of the auction. The second phase of the game begins after InP calculates
the average user utility value for the new path allocation distribution, and sends
this information to all users. Users make a new association decision based on
Algorithm 1, and send their association decision to service providers. At the end
of the game iteration, InP and service providers calculate their revenue, and the
users calculate their utility value after their association decision.

5.2.1 Vickrey-Dutch Auction

An auction that determines the price paid by a player based on its opponents’ bids
is considered as a Vickrey auction, also known as a second-price auction [239]. An
iterative auction is defined as a sequential price adjustment procedure that takes
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Figure 5.4: Sequence diagram of the interlinked game with Vickrey-Dutch auction be-
tween InP and SP and the Stackelberg game between user and SP

bids from buyers in each iteration, whereas a descending auction, also known as
Dutch auction, starts with a high price at the first iteration and the price drops at
each auction until the item is leased [240]. A Vickrey-Dutch auction is a modified
version of this auction, where the player with the highest sealed-bid wins the
auction; however, the player pays the amount of the second highest bid [239].

The VCGmechanism is used in problems in which the maximization of the total
sum of all players’ valuations is the main objective function [241]. The dependency
on opponent players is achieved by adding the cost of the presence of the player to
other players to the payments, making the bidding of the true valuation in every
iteration an equilibrium strategy for all players [242]. The overall maximization
property of VCG auctions is used by auctioneers that aim to optimize the use of
all the items in the auction, such as a resource manager that aims to maximize
the use of all the available spectrum resources in an area with licensed shared
access in [243], or a spectrum reuse mechanism under the existence of co-channel
interference in [244].

The objective function of the VCG mechanism is formulated in Eq. (5.12) [245],
where χ ∈ F represents a feasible allocation, and F represents the set of all
feasible allocations. A feasible allocation assigns items I = {1, . . . , N} to buyer
set B = {1, . . . , k}. vk(χk) represents the item valuation of buyer k in allocation
χ.

χ∗ = argmax
χ∈F

∑
k∈B

vk(χk) (5.12)

Set B−k defines the set of buyers other than buyer k, and l represents an element
in B−k. Using these definitions, buyer k’s VCG payment Ck is defined for a given
efficient allocation χ∗ as:

Ck = max
χ∈F

∑
l∈B−k

vl(χl)−
∑

l∈B−k

vl(χ
∗
l ) (5.13)
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Given this VCG payment, the VCG payoff of buyer k is equal to vk(χ
∗
k) − Ck.

As seen from Eq. (5.13), buyer k’s reported valuation cannot affect the seller’s
VCG payment calculation Ck. The buyer can therefore maximize its payoff only
by maximizing its valuation function vk. As each rational player bids their true
maximum valuation for the items in the auction to obtain their VCG payoffs, it
can be concluded that a VCG auction encourages truthful bidding.

Buyer k’s bid in the auction is expressed in terms of their demand Dk. The set
of all bundles of items is denoted by Ω, and for every bundle of items S ⊆ Ω, buyer k
has a valuation vk(S). With the assumption that vk(S) ≤ vk(T )∀k ∈ B, ∀S, T ∈ Ω,
with S ⊆ T , the demand set of buyer k for price vector p ∈ R|B|x|Ω| is:

Dk(p) = {S ∈ Ω : vk(S)− pk(S) ≥ vk(T )− pk(T )∀T ∈ Ω} (5.14)

InP auctioning game in this study is modelled as an Vickrey-Dutch auction, in
which fronthaul paths connected to the RRH are leased by the service providers. In
the descending auction, each game round is represented by t. The number of paths
to be allocated, the service providers registered as buyers, and the price charged in
the first round are known before the auction begins. The price demanded by the
InP is the highest in the first round, and the price descends at each round until
the auction is terminated. The descending behavior of the auction is explicit to
service providers.

Using the game theoretic model definition in Section 2.3, service providers
constitute the group in the auctioning game. Services register to the InP in order
to obtain a number of fronthaul paths that reach the RRH; therefore, there exists
a definite number of buyers in the game, and the set of buyers can be modified as
B = {1, . . . , NSP}. The items that are leased in the auction are the set of fronthaul
paths, therefore the set of items is denoted by I = {1, . . . , Npath}. As the bid of
one player in the group effects the outcome of other players, it can be concluded
that there is an interaction between this group of players. Service providers also
bid in a rational and strategic way, as they try to optimize their utility by targeting
a balance between not making an excessive payment and the risk of not obtaining
any paths to serve the users in the defined area [101].

The Vickrey-Dutch auction is designed with multiple homogeneous items, non-
increasing marginal values, and truthful bidding to obtain a VCG outcome [240]. In
this auction, homogeneous item describes that all items in the auction are identical
in an auction with multiple items. With homogeneous items, the valuation of the
sets with equal number of elements are the same in this auction. For this reason,
the number of the elements a is used to define the valuation of the buyers vk(a)
for all sets with a elements. To ensure convergent bidding behavior by the buyers
in the auction, the buyers have non-increasing marginal values for the items. The
buyers have non-increasing marginal values if the following requirement is satisfied:
vk(a)− vk(a− 1) ≥ vk(a+ 1)− vk(a).

At each auction game round t, service providers send their maximal demand
for the price set by the InP for a single path in that round, called a marginal price
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and represented with qt. Service provider payments are determined after reaching
the competitive equilibrium of the auction, therefore the payment of the service
provider does not have to be equal to qt. The demand of service provider k for a
items in round t is given with Eq. (5.15):

Dk(q
t) =

{
0 if vk(1)− vk(0) < qt

max1≤a≤Npath} s.t. vk(a)− vk(a− 1) ≥ qt otherwise
(5.15)

For the demand set definition given in Eq. (5.14), and with non-increasing marginal
valuations, the maximum demand of all service providers satisfies the condition in
Eq. (5.16) for all rounds after t > 0. This condition ensures that none of the service
providers decrease their demand from round t to round t+ 1 with the decreasing
marginal price qt+1:

Dk(q
t+1) ≥ Dk(q

t) (5.16)

A provisional allocation χt is the allocation that generates the maximum revenue
over all possible allocations in round t [240]. The paths are provisionally allocated
to the service providers if the total maximum demand is less than the available
paths, which constitute the supply set. After provisionally allocating the paths
to the demanding service providers, the game continues with the next round until
reaching the game round t′, in which the demand of all service providers exceed
the total number of paths Npath in the auction. To determine the number of paths
that can be allocated to service provider k in this case, the path allocation in the
previous round is kept, and the additional paths are allocated at random such that
the maximum demand of any service provider is not exceeded [87]. If there is a tie
in the bids of the service providers in the auction, then the tie is broken in favour
of satisfying as many service providers as possible with the provisional allocation.
If the maximum number of satisfied buyers do not change, then the tie is broken at
random among the service providers demanding the item in the same game round.

Residual demand without service provider k is calculated by Eq. (5.17) for χt

for all auction rounds t ≥ t′:

R−k(q
t) = min(χt,k,

∑
j ̸=k

[Dj(q
t)− χt,j ]) (5.17)

The minimum value of the calculation that indicates how many path demands of
other service providers remain unfulfilled at game round t, and the paths allocated
to k with the provisional allocation χt,k, gives the residual demand R−k(q

t) value.
This value is used to calculate the payment of the service provider k. The game
ends when the residual demand R−k(q

t) is equal to the number of paths allocated
to the service provider k, denoted as Nk

path, for all k ∈ B = {1, . . . , NSP}. If every
service provider bids truthfully, then this auction achieves the VCG outcome in
service provider payments [240]. The VCG payment Ck of the service provider k
is given in Eq. (5.18).

CV CG
k =

∑
t≥t′

[qt · (R−k(q
t)−R−k(q

t−1))] (5.18)
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The main economy of the auction is denoted with E(B). The collection of buyer
sets is Φ = {B,B−k}k∈B , and every E(B−k) defines a marginal economy. The
revenue of InP in Eq. (5.6) can be reformulated for price vector p and allocation
χ as:

UInP =
∑
k∈Φ

pk(χk) (5.19)

The supply set of InP for price vector p is:

L(p) = {χk ∈ F (Φ) :
∑
k∈Φ

pk(χk) ≥
∑
k∈Φ

pk(yk ∀y ∈ F (Φ)} (5.20)

A price vector p and an allocation χ form a competitive equilibrium if χk ∈ Dk(p)
for every k in B and χ ∈ L(p). Price vector p is the universal competitive equi-
librium (UCE) of economy if it is the competitive equilibrium (CE) of E(M) for
every M ∈ Φ. The VCG outcome is achieved if the auction terminates at UCE
prices.

A descending auction example is given in Table 5.1 to explain the demand,
allocation, residual demand and the payments of service providers in a setting, in
which seven homogeneous fronthaul paths (Npath) are to be leased. The marginal
price qt is decreased at each auction round t. None of the service providers make
a demand in the first iteration of the auction; therefore no paths are allocated
to any service providers. In the second auction round, maximal demand DSP3 is
equal to one, and there is no demand from other competitors. This iteration ends
with a provisional allocation χ3 = 1 for SP3, as the total supply is bigger than the
total demand (

∑
k Dk(q

t) < Npath). However, no payment is made by the service
provider at this iteration as no opponent bid is received for this item yet. The
auction continues with these provisional allocations until auction round t = 5, as
the maximum demand does not exceed the total supply.

At t = 6, the maximum demand of service providers exceed the supply of
paths Npath = 7, as the maximal demand distribution is [3, 3, 6]. Pricing mecha-
nism starts after this auction round as the CE of the main economy is reached,
and residual demands are calculated to find the payments that realize the VCG
outcome from the CE of the main economy. The provisional allocations made
before this round are priced with the marginal price q6 = 5, and the final item
that is demanded by all service providers is randomly allocated to SP2, in order
to break the tie. The final allocation is random as all demands with the current
price maximizes the InP revenue, and the number of satisfied buyers is already
maximized as all service providers are allocated at least one path. At t = 7, the
residual demand calculation shows that the termination condition, which is equal
to R−k(q

t) = χt,k for all k, is reached. The payment of the final path allocated to
SP2 is priced with the marginal price q7 = 4, and the game is terminated.
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Table 5.1: Vickrey-Dutch clinching auction example

Iteration Price Demand Clinched Paths Residual Demand Payment

t qt DSP1 DSP2 DSP3 χ1 χ2 χ3 R−1 R−2 R−3 C1 C2 C3

1 10 0 0 0 0 0 0 0 0 0 0 0 0

2 9 0 0 1 0 0 1 0 0 0 0 0 0

3 8 0 0 1 0 0 1 0 0 0 0 0 0

4 7 1 0 3 1 0 3 0 0 0 0 0 0

5 6 1 1 4 1 1 4 0 0 0 0 0 0

6 5 3 3 6 1 2 4 1 2 3 5 10 15

7 4 4 4 6 1 2 4 1 2 4 5 10 19

5.2.2 Stackelberg Game between Users and Service Providers

Once the network slice resources are allocated to all service providers, the inter-
action among users and service providers starts. Inspired by [124], the multi-
stakeholder resource allocation decision problem is defined as a two-stage Stack-
elberg game among service providers and users. The interaction among users and
service providers is modeled as a hierarchical game, in which service providers
act as leaders and users act as followers. Both service providers and users are
self-interested agents that aim to maximize their own utility; therefore they play
non-cooperative games.

In the first phase of the game, service providers compete with each other to
allocate fronthaul paths by using the exponential reinforcement learning algorithm
to anticipate the user behavior, as explained in the Vickrey-Dutch auction section.
In this way, service providers request a number of paths to cover their forecast
bandwidth demand from the InP. Service provider is the leader of the Stackelberg
competition taking the first decision by leasing paths. As followers of the game,
users remain connected to their previous service provider until the end of this path
allocation.

The leader game ends after the path allocation, and average utility value of
users is calculated and transmitted to all users by the InP. Users begin playing
their game by observing the new average utility value, which is a result of the
path allocation bids of service providers, and they compare their current utility to
the average utility of all users. If their current utility is lower than the average,
they obtain average user utility values of different service providers, and switch
randomly to a service provider that has a higher average user utility than its
current utility. If there are more than one service provider with higher average user
utility, then the a probabilistic switch occurs, and the probabilities are calculated
by using the difference between the average user utility of the service provider and
the current user utility. The price of the service providers remains constant while
the game between the users is being played.
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In this Stackelberg game, users are dependent on the InP information; there-
fore the decision-making algorithm of users is not uncoupled. The user requires
information about other user’s utilities to imitate the users with higher utilities
and choose its service provider. After converging to an equilibrium state in the
users’ game, service providers predict user behavior for the next step by calculating
their marginal utilities and request new bandwidth at the next iteration.

For the follower game, users constitute the group with a definite number of
players. The service provider selection of one user affects the outcome of other
users, as user bandwidth bn for user n decreases with the increasing number of
users connected to the same provider k, denoted by nk, there exists an interaction
between this group of players. Users make decisions in a rational and strategic
way, as they try to optimize their utility by trying to select a service provider with
a higher utility by using the average utility comparison displayed in Algorithm 1.
Hence, it can be concluded that the follower game is in line with the game theoretic
model definition in Section 2.3.

The Stackelberg equilibrium (SE) is a Nash Equilibrium in which the players
cannot have better outcomes by switching to a different strategy [246]. Stackelberg
equilibrium can be solved with backward induction method, meaning that first
solving the optimal outcome for the follower and then computing the optimal
choice of the leader in a backward way provides the desired solution. Applying
this method and starting with the follower game, it can be stated that user side
equilibrium is reached when the utility of all users are equal, i.e., Uuser,n = Uuser,n′ ,
for all n, n′ ∈ S [124]. This user side equilibrium distribution is indicated with
n∗. Given n∗, a profile is the Stackelberg equilibrium for service providers when
USP,k(b∗, n∗) ≥ USP,k(b, n∗) for all k ∈ B , where b ∈ Ψ is any bandwidth vector
that contains bandwidth requests of each service provider, Ψ is the set of all
bandwidth vectors, and b∗ ∈ Ψ indicates the bandwidth vector that satisfies the
equilibrium condition b∗ = argmaxUSP,k(bk, b∗−k, n∗). It should be noted that
this is the theoretical equilibrium condition calculated by the service providers,
which is not achievable when all users have random locations that affect their data
rates, hence they obtain unique user utility values for their locations. However,
service providers make their bids by aiming at this equilibrium condition.

5.2.3 Trial and Error Learning for Users

A network game for resource allocation optimization is likely to involve huge num-
bers of network users that can neither observe the network structure nor other
users’ actions. For this reason, it is reasonable to assume that many network sit-
uations occur in which users look for a satisfying QoS without having additional
information about the network state, such as the average user utility value provided
by the InP to users, as displayed in Figure 5.4. Modeling this user environment
as a game requires users to choose their strategies despite the lack of information.
As a consequence, probabilistic switch in Algorithm 1 that displays replicator dy-
namics behavior on the user side is replaced with trial and error learning given in
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Algorithm 3 for distributed and completely uncoupled decision making. As stated
in [247], trial and error learning rule is a completely uncoupled and distributed
learning rule, as it does not need additional information about other players or the
environment.

In trial and error learning user game Gte, a state variable called mood (mdn)
determines how a user responds to recent payoff history, based on the player’s
current expectations. Content (c), Discontent (x), Watchful (c−) , and Hopeful
(c+) are the four moods defined for the users. The state of the user at iteration i is
defined as sn,i = (mdn,i, k

′
n,i, u

′
n,i), meaning that the state depends on the mood

mdn,i of the user n, its benchmark action k′n,i, where k is a service provider in set
B = {1, ..., NSP }, and its benchmark utility u′

n,i, which is the maximum utility
value observed by the user when it has been connected to service provider SPk.
These variables are compared with the received utility Uuser,n and action SPk at
each iteration to decide for the mood at next iteration. The main structure of
the user trial and error learning algorithm is given in Algorithm 3. The state
updates for a user in Content mood is explained in Algorithm 4, Watchful and
Hopeful moods are explained in Algorithm 5, and Discontent mood is explained
in Algorithm 6.

Algorithm 3 Trial & Error Learning for all users

Initialize: i← 0, k′n,0 ← kn,0, u
′
n,0 ← Un,0;

repeat
i← i+ 1
for all User n ∈ H do simultaneously

calculate Un,i using Eq. 5.7;
compare Un,i with u′

n,i

if mdn,i is c then
Update sn,i+1 = (mdn,i+1, k

′
n,i+1, u

′
n,i+1) using Algorithm 4

end if
if mdn,i is c

− or c+ then
Update sn,i+1 = (mdn,i+1, k

′
n,i+1, u

′
n,i+1) using Algorithm 5

end if
if mdn,i is x then

Update sn,i+1 = (mdn,i+1, k
′
n,i+1, u

′
n,i+1) using Algorithm 6

end if
end for

until termination criterion is reached in Gte.

If a player’s utility value drops by another player’s change of action for two
iterations, the player becomes Discontent and randomly chooses another service
provider from set B, and updates its benchmark action and utility according to
the result of this new action. The active search leads the players toward higher
payoffs and higher benchmark utilities until an equilibrium is reached or someone’s
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Algorithm 4 Trial & Error Learning for user n in Content mood

if mdn,i is c then
if experiment is done with probability ε then

randomly choose a service provider SPuser,i ∈ B−k′
n,i

if Un,i > u′
n,i & experiment is accepted with probability εK(∆u) then

mdn,i+1 = c, k′n,i+1 = SPuser,i, u
′
n,i+1 = Un,i

else
mdn,i+1 = c, k′n,i+1 = k′n,i, u

′
n,i+1 = u′

n,i

end if
else

if Un,i > u′
n,i then

mdn,i+1 = c+, k′n,i+1 = k′n,i, u
′
n,i+1 = u′

n,i

end if
if Un,i = u′

n,i then
mdn,i+1 = c, k′n,i+1 = k′n,i, u

′
n,i+1 = u′

n,i

end if
if Un,i < u′

n,i then
mdn,i+1 = c−, k′n,i+1 = k′n,i, u

′
n,i+1 = u′

n,i

end if
end if

end if

Algorithm 5 Trial & Error Learning for user n in Watchful and Hopeful moods

if mdn,i is c
− then

if Un,i > u′
n,i then

mdn,i+1 = c+, k′n,i+1 = k′n,i, u
′
n,i+1 = u′

n,i

end if
if Un,i = u′

n,i then
mdn,i+1 = c, k′n,i+1 = k′n,i, u

′
n,i+1 = u′

n,i

end if
if Un,i < u′

n,i then
mdn,i+1 = x, k′n,i+1 = k′n,i, u

′
n,i+1 = u′

n,i

end if
end if
if mdn,i is c

+ then
if Un,i ≥ u′

n,i then
mdn,i+1 = c, k′n,i+1 = SPuser,i, u

′
n,i+1 = Un,i

else
mdn,i+1 = c−, k′n,i+1 = k′n,i, u

′
n,i+1 = u′

n,i

end if
end if
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Algorithm 6 Trial & Error Learning for user n in Discontent mood

if mdn,i is x then
randomly choose a service provider SPuser,i ∈ B
if experiment is accepted with probability εJ(u) then

mdn,i+1 = c, k′n,i+1 = SPuser,i, u
′
n,i+1 = Un,i

else
mdn,i+1 = x, k′n,i+1 = k′n,i, u

′
n,i+1 = u′

n,i

end if
end if

aspirations are disappointed before an equilibrium is reached. Even when the users
are in the Content mood, they have the option to experiment with different actions
in their action set with an experiment probability ε = e−βexp , where ε ∈ (0, 1) and
βexp > 0. Users remain in the experimented service provider only if their utility
value increases when compared to the benchmark utility. The key element that
distinguishes the trial and error learning approach in [248] is the probabilistic
acceptance of experiments in the content state with probability: εK(∆u), where
∆u = Un,i − u′

n,i > 0 and 0 < K(∆u) < 1/2. Accepting the outcome of a random
search in the Discontent state with a probability that is increasing in its realized
level of utility with probability εJ(Un,i), where 0 < J(Un,i) < 1/2n, and n is the
number of users playing the game. The log-linear format of these acceptance func-
tions are presented below, in which the coefficients φ1, φ2, γ1, γ2 are chosen so that
J(Un,i) and K(∆u) are decreasing functions and also positive for all Un,i and ∆u:

J(Un,i) = −φ1 · Un,i + φ2, φ1 > 0 (5.21)

K(∆u) = −γ1 ·∆u+ γ2, γ1 > 0 (5.22)

In a game where the users make decisions based on trial and error learning,
interdependency condition has to be satisfied for the game to reach an equilibrium
or near-equilibrium state. Interdependency is defined as any subset of players can
cause a payoff change for some player not in the subset, given any current choice of
actions [248]. Interdependence holds in this Stackelberg game as the total fronthaul
bandwidth in the paths allocated to a service provider is distributed among the
users connected to this service provider. Thus, one user’s service provider selection
affects other users’ utility values.

When all players in a game use trial and error learning, the play comes close
to pure Nash equilibrium a high proportion of the time, provided that the game
has such an equilibrium and the experimentation probability is sufficiently small
[247]. Over the long run, states that are not stochastically stable will be observed
infrequently compared to the states that are stable, provided that the probability
of mistakes is small. The convergence of the trial and error algorithm must be
understood regarding the time players remain at a given action profile [111]. Con-
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Table 5.2: Simulation parameters

User α1 = 2, α2 = 1, α3 = 1

SP β1 = 1, β2 = 2, puser = 1

Path bmax = 100MHz, duser = 5ms

Rate LF = 0.5, OF = 0.2

vergence rate also remains an open question due to the computational complexity
of the inherent Markov Chain [249].

5.3 Results and Discussion

To evaluate the proposed resource allocation and auction mechanisms, the game is
played with one InP and three service providers. As shown in Figure 5.4, the overall
game consists of the auctioning game and service provider association decision of
the users. The overall game has 10 iterations, denoted with i. The overall game
terminates when i = 10. At each game iteration, the auctioning game is played for
ten rounds, and each auction round is denoted with t. During the auction, the price
descends one unit price from ten to one at each round t. The Stackelberg game
between service proivders and users is played once at each iteration i; therefore the
exponential reinforcement learning iteration m in Algorithm 2 is equal to i. Each
fronthaul path to RRH has a maximum bandwidth of 100MHz. The transmitter
power Ptx is set to 30 dBm [223], and overhead and loss factors OF and LF are
used in the SINR to rate conversion [224]; Table 5.2 lists the simulation parameters.

In Section 5.3.2 and Section 5.3.3, Shapiro-Wilk normality test [250], Levene
equality of variances test [251], and Student T-test analysis [252] are used to
explain the results obtained in simulations. Before presenting these results, the
basic definitions of the two statistical procedures are provided here. Shapiro-Wilk
test is used to check the normal distribution claim of a dataset. The null hypothesis
H0 claims the data is from a normal distribution, and the alternate hypothesis H1
claims that the data is not from a normal distribution. If the p-value is above the
significance threshold (0.05 in this study), then the null hypothesis is either true
there is insufficient evidence to disprove it. If the p-value is below the significance
threshold, then the normal distribution claim for the dataset is rejected. Levene
test [251] null hypothesis H0 claims that population variances are equal, and the
alternate hypothesis H1 claims that the variances are not equal. For p-values
above the significance threshold of 0.05, the equal variances hypothesis is true or
there is insufficient evidence to disprove it. As for the Student T-test method,
the null hypothesis H0 claims that there is no significant difference between the
sample means [252]. If a p-value is less than 0.05, then the null hypothesis is
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Figure 5.5: Service provider path allocation, user number, and marginal utility values

rejected and it can be concluded that a significant difference exists between the
mean values of the compared samples.

5.3.1 Auctioning Game Analysis with 3 Service Providers

In order to observe the convergence behavior of the game in a path distribution
that cannot be allocated equally by all SPs, the game is played with 100 users and
7 fronthaul paths. It is assumed that the users do not disconnect or hand over to
other RRHs during the auction. The price and delay values for the users are kept
constant. As for the weighting parameters, α1 in Eq. (5.7) is given a higher value
to be able to observe the impact of the data rate on the switching behavior of users.
Similarly, β2 in Eq. (5.8) is higher than β1 for SPs to avoid high payments from
SPs to the InP. Figure 5.5 displays the distribution of the paths allocated to each
SP, users connected (nk) to each SP, and the recursive score (Zk) values of SPs at
each game iteration. Figure 5.6 shows the data rate distribution of all users and
the total number of users changing their SP association at each game iteration.
The SPs have an initial user association distribution of [34, 33, 33]. One extra user
increases the recursive score of SP1 when compared to SP2 and SP3, as shown in
Figure 5.5. As an expected outcome, SP1 bids more for the paths and gets 3 paths
at the end of the first iteration, with overall path allocation distributed as [3, 2, 2].
The user distribution at the end of the first iteration is recorded as [36, 31, 33]. As
seen from the first iteration in Figure 5.5, there is a negative difference between
the proportion of allocated paths and the number of users of SP1, resulting in a
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Figure 5.6: User data rate distribution and total number of users changing their SP
association at each iteration

higher negative difference in the recursive score of SP1 between iteration i = 1
and i = 2 , as score is calculated for the n∗ profile of the Stackelberg game. The
difference between the n∗ profile and the actual user distribution is due to the fact
that switching the association is a probabilistic function; therefore a user might
remain connected to the same SP despite having a lower utility than the average
utility.

The bids for the auction in iteration i = 2 is based on the SP recursive score
values in Figure 5.5. The scores indicate that SP2 and SP3 start demanding
fronthaul paths at higher prices than SP1. As a result, overall path allocation in
iteration i = 2 ends as [1, 4, 2]. If there is a tie in the bids of the SPs in the auction,
the additional paths are distributed at random such that the maximum demand
of any SPs is not exceeded [87]. In the given example, the ties are randomly
broken in favor of SP2. The user distribution at the end of i = 2 is [23, 40, 37].
SP2 has a lower number of users than the n∗ profile of this iteration, which is
theoretically close to [14, 57, 29]. whereas SP1 and SP3 have higher recursive
scores. Consequently, iteration i = 3 ends with [2,1,4] path allocation. The SP
that has more allocated paths also cannot reach the expected utility by reaching
the n∗ profile in the user distribution in i = 4 and i = 5. As seen from Figure 5.6,
the data rate provided to users after the first round expands to a large interval
due to the changes in SP path allocation. For instance, the data rate difference
between the user that obtains the best data rate and the worst data rate is higher
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Figure 5.7: InP and user behavior in 3SP Game

than 70Mbps at game iteration i = 4. It can also be observed that the number of
users changing their association is higher than most of the other game iterations,
as more than 12 users change their association in each round between i = 2 and
i = 4. While not reaching their expected utility values, SPs demand paths by
increasing the price of their bids, which can be observed in the increase in the InP
revenue for 7 paths in Figure 5.7a. InP revenue at each round is a direct result of
the increase in SPs payments.

The auction ends with a [3, 2, 2] distribution for seven paths after game itera-
tion i = 6, and the SP path demands converge to this distribution in the following
rounds, as seen in Figure 5.5. The user distribution at the end of the last iter-
ation is [43, 27, 30], which is close to the n∗ profile for the identical users. The
total number of users switching decays after i = 6, and the data rate difference
between least well-off and the best performing user is minimized, with all users
concentrated around the mean data rate value of 37.5Mbps, as the game con-
verges to an equilibrium. Figure 5.6 demonstrates that the convergence behavior
of users differs from the classical idea of convergence at the equilibrium due to the
probabilistic switching function of users. However, a distance minimization to a
particular n∗ profile is achieved in the user distribution, as the number of users
switching after the SP path allocation convergence is sufficiently small. Hence, it
can be concluded that Vickrey-Dutch auction with VCG outcomes and Stackel-
berg game solved with exponential reinforcement learning provide a profit – social
welfare trade-off for non-cooperative SPs in sharing fronthaul resources.

Finally, the InP revenue with different number of paths in auction and the user
utility of the least well-off user with increasing number of users are discussed. InP
revenue in Figure 5.7a is evaluated for cases from seven to ten paths with 100 users.
The markers indicate the revenue obtained in that iteration. InP revenue increases
with the increasing number of paths, with SP provider bids reaching an equilibrium
point after eight iterations in all cases. Figure 5.7b shows the difference ∆U
between the average utility of all users and the least well-off user utility for a range
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Figure 5.8: Number of allocated paths and average number of users for SP3 when user
price ranges from 0.6 to 1.5

of users between 50 and 500. The utility values with user decision-making and no
decision-making are compared, and it is shown that the utility of the least well-off
user improves with simple decision-making with increasing number of users. Thus,
the InP also increases social welfare by sharing average user utility value with the
users.

5.3.2 User Price Parameter Adjustment

As it can be seen from Eq. (5.7) and Eq. (5.8), user price (puser) impacts both
user utility Uuser and service provider utility USP, and is also used to calculate the
marginal utility value in Algorithm 2. This marginal utility value is used the calcu-
late the service provider’s valuation of a fronthaul path and its bid in the auction.
To analyze the impact of user price on service providers in the auctioning game,
the average user number and fronthaul paths allocated to the service provider in
50 experiments are presented in Figure 5.8. The average service provider payoffs
are displayed with the changing user price in Figure 5.9. It should be mentioned
that the condition for randomly allocating paths to break ties is changed with a
rule that assigns path to the service provider with more paths for these experi-
ments. This obviously is not a social-welfare maximizing outcome, but it does not
contradict with the maximum InP revenue generating allocation condition, and it
gives the opportunity to observe the service provider behavior that is only subject
to the randomness caused by the switching probability of users.

The results are obtained in a setting with 3 service providers, 7 fronthaul paths,
and 100 users. The parameters in Table 5.2 are used except for the puser parameter
of SP3, which ranges from 0.6 to 1.5. puser parameter of SP1 and SP2 are kept
constant as 1. For puser values below 0.6, SP3 cannot obtain any fronthaul paths in
the auction as its path valuation is too low when compared to SP1 and SP2. And
for values puser values above 1.5, SP2 cannot obtain a fronthaul path in the auction
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Figure 5.9: SP payoffs when SP3 user price ranges from 0.6 to 1.5

and the users are divided between two service providers. In order to measure the
user number and payoff values in a setting with three service providers, puser
range is kept between 0.6 to 1.5. The auction is iterated for a single round with
different puser to obtain the results. As in Section 5.3.1, the SPs have an initial
user association distribution of [34, 33, 33].

Figure 5.8 demonstrates the number of allocated paths and the average number
of users for SP3. When the puser value of SP3 increases from 0.6 to 1.5 with a step
size of 0.1, the auction ends with 3 different path distributions. For puser values
between 0.6 and 0.8 of SP3, SP3 obtains 1 fronthaul path, as its valuation is lower
than other SPs. This behavior is expected as the expected revenue of SP3 is lower
than its competitors when its puser value is low. For puser values between 0.9 and
1.0 of SP3, a [3, 2, 2] distribution is obtained for seven paths. For SP3, puser values
above 1.1, SP3 path valuation is higher than its competitors as it expects a higher
revenue from the connected users, hence it obtains 5 fronthaul paths at the end of
the auction.

For the obtained results, the action set of a service provider consists of changing
the user price at a level that does not change the SP path allocation, and to a
level that changes the SP path allocation. To analyze the outcomes of these
service provider actions separately, five actions of the service provider are selected
for comparison, and Student T-test [252] results are calculated for 50 experiments
with 95% confidence interval to evaluate the significance of the change in the
average user numbers in Figure 5.8, and average payoff results in Figure 5.9. Before
using Student T-test, normal distribution condition is tested for each user price.
Shapiro-Wilk [250] normal distribution test results of average payoff results are
given in Table 5.3 for all user prices, showing that the probability of a normal
distribution is high in W values and the p-value is above the significance threshold
of 0.05. Thus, the normal distribution hypothesis is true or there is insufficient
evidence to disprove it. The W value and p-value results of Shapiro-Wilk test is
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Table 5.3: Shapiro Wilk test results for SP3 average payoff values per user price

UserPrice 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

W 0.970 0.957 0.969 0.973 0.965 0.976 0.958 0.955 0.974 0.974

p− value 0.237 0.067 0.229 0.313 0.143 0.423 0.081 0.058 0.334 0.328

Table 5.4: Levene Test results for SP3 average payoff and average user number values

Test 1 Test 2 Test 3 Test 4 Test 5

Payoff Users Payoff Users Payoff Users Payoff Users Payoff Users

W 2.474 0.209 1.301 0.140 3.274 0.561 3.773 0.569 0.856 1.695

p− value 0.119 0.649 0.257 0.709 0.995 0.456 0.055 0.452 0.357 0.196

the same for average user number values of SP3.

The Student T-test results for 1 allocated path (Test 1), the change from 1 to 2
allocated paths (Test 2), 2 allocated paths (Test 3), the change from 2 to 5 allocated
paths (Test 4), and 5 allocated paths (Test 5) are evaluated. Before obtaining T-
test results, the equality of variances condition of these pairwise comparisons are
evaluated with Levene test [251]. The results are displayed in Table 5.4, and p-
values are above the significance threshold of 0.05 for all pairwise tests. Thus, the
equal variances hypothesis is true or there is insufficient evidence to disprove it.

As mentioned above, paired student T-test is used to evaluate the differences
in user prices set by SP3. If a p-value is less than 0.05, then a significant difference
exists between the mean values of the compared samples. The results obtained for
the 5 tests are as follows:

� Test 1: For 1 allocated path results, the difference in the average SP3 user
numbers between 0.6 and 0.8 puser is not significant (t = 0.339, p = 0.736);
however, there is a significant gain in the average payoff USP3 (t = 5.65, p =
0.000), as SP3 increases its revenue without changing its payment to InP, as
displayed in Figure 5.9.

� Test 2: The average payoff drops when SP3 allocates a second path with
puser = 0.9. To display this, a paired t-test is done to compare puser = 0.8
and puser = 0.9 scenarios. There is a significant average payoff drop when
switching from puser = 0.8 to puser = 0.9 (t = −5.018, p = 0.000). As the
difference between mean number of users in two cases are not significant
(t = −0.365, p = 0.716), the drop in the average payoff is due to the increase
in the InP payment with the second path. This result shows that increasing
the user price and path valuation for bidding does not linearly increase the
SP payoff.
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� Test 3: The result obtained in Test 2 indicates that SP3 needs to increase its
payoff when it obtains 2 fronthaul paths instead of 1. Comparing the means
of 2 fronthaul path cases with puser = 0.9 and puser = 1.0 shows that SP3

can increase its average payoff (t = 3.406, p = 0.001) for a similar average
number of users (t = 0.645, p = 0.522) by increasing puser value to 1.0.

� Test 4: When puser = 1.1, SP3 has the highest path valuation; therefore it
becomes the highest bidder in the auction and obtains 5 fronthaul paths.
T-test is applied to compare the means of puser = 0.9 with 2 fronthaul paths
and puser = 1.1 with 5 fronthaul paths. The significant increase in the user
number (t = 70.389, p = 0.000) and the SP payoff (t = 79.442, p = 0.000) are
also demonstrated in Figures 5.8 and 5.9. In Figure 5.9, it can be observed
that SP3 payoff is higher than the sum of the payoffs of SP1 and SP2 for
puser = 1.1.

� Test 5: After becoming the highest bandwidth supplier to the users with 5
fronthaul paths, SP3 can further increase its average payoff by increasing
puser value from 1.1 to 1.3 (t = 14.932, p = 0.000), as shown in Figure 5.9.
The change in the user number during this change is not significant (t =
1.123, p = 0.267), meaning that the user utility values remain above the
average user utility despite the increase in the user price in this scenario.

Before closing this section, it should be stated that different game outcomes can
be achieved by adjusting the system parameters. For instance, if the population
size is different or the QoS of the service provided is affected less from lower data
rates, this outcome can be changed by adjusting α1 and α3 weights in Eq. (5.7),
or by changing the InP payments of service providers.

5.3.3 Trial and Error Learning vs. Average User Utility Compari-
son

The user distribution and user utility results of Algorithm 1, which displays repli-
cator dynamics behavior on the user side, and Algorithm 3, which produces un-
coupled decision making outcomes, are compared in this section. Algorithm 1
represents a guided search example with average user utility information provided
to users by the InP, whereas Algorithm 3 displays a blind search algorithm with no
external network information provided to users. The experiments are done with
static fronthaul paths values, meaning that the service providers do not bid in the
auction or change the user price during these game iterations. In order to only
observe the impact of these two user side algorithms on the game, parameters such
as the user distance to the RRH d3D, and the simulation parameters in Table 5.2
are kept constant, apart from the total number of users. The total number of users
is increased to 105 from 100, so that the user side equilibrium profile n∗ is calcu-
lated as [45, 30, 30] with [3,2,2] static path allocation, in which Uuser,n = Uuser,m,
for all m,n ∈ S.
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Table 5.5: Trial and Error Learning parameters

Discontent mood
acceptance probability (5.21)

εJ(U) φ1 = 0.0002, φ2 = 0.0047

Content mood
acceptance probability (5.22)

εK(∆u) γ1 = 0.2, γ2 = 0.5

Experiment probability ε = e−βexp ε = 0.0018, βexp = 4

Table 5.6: Shapiro Wilk test results for SP1 average user number with Trial and Error
Learning (βexp = 4)

Iteration 1 2 3 4 5 6 7 8 9 10

W 1.000 1.000 0.970 0.969 0.965 0.966 0.957 0.959 0.983 0.980

p− value 1.000 1.000 0.238 0.208 0.149 0.152 0.069 0.083 0.678 0.535

Adjusting Experimentation Probabilities for Trial and Error Learning

The notion of convergence in trial and error algorithm is different than the classical
understanding; therefore, a sufficiently small experiment probability should be
adjusted before starting the game, in order to stay near the equilibrium state for a
high proportion of the time. The experiment probability is defined as ε = e−βexp

and is kept the same for all users. Trial and learning algorithm parameters used
in these simulations are shown in Table 5.5. It should be noted that Hopeful and
Watchful moods are transition states, and users only experiment in Content and
Discontent states. 10 iterations are run in each game to observe the behavior
in both transitory and experimenting states. The restrictions for the experiment
probability parameters are given in [248] as follows:

� Functions J(U) and K(∆u) are strictly decreasing linear functions.

� Functions J(U) and K(∆u) satsify 0 < K(∆u) < 1/2 and 0 < J(U) <
1/2n conditions, with n being the number of users playing the game. The
conditions imply that the acceptance probabilities are quite large relative to
the probability of conducting an experiment.

Table 5.7: Shapiro Wilk test results for SP2 average user number with Trial and Error
Learning (βexp = 4)

Iteration 1 2 3 4 5 6 7 8 9 10

W 1.000 1.000 0.951 0.958 0.974 0.970 0.957 0.969 0.960 0.979

p− value 1.000 1.000 0.070 0.101 0.329 0.239 0.066 0.221 0.090 0.531



112 CHAPTER 5. INFRASTRUCTURE SHARING WITH AUCTIONING

Table 5.8: Shapiro Wilk test results for SP3 average user number with Trial and Error
Learning (βexp = 4)

Iteration 1 2 3 4 5 6 7 8 9 10

W 1.000 1.000 0.954 0.967 0.971 0.979 0.981 0.953 0.974 0.977

p− value 1.000 1.000 0.052 0.170 0.250 0.527 0.581 0.054 0.343 0.445

In order to determine these parameters, simulations are done with different prob-
ability values, and Shapiro-Wilk results of the simulations are compared to decide
for the parameter values. The target of these simulations is to obtain a parameter
set for the experiment probabilities that gives a normal distribution for average
user number values of each service provider at every iteration. The simulations
are run 50 times to calculate the Shapiro-Wilk results in Table 5.6, Table 5.7, and
Table 5.8. As it can be seen from these tables, with an experimentation probability
ε = 0.0018 and βexp = 4, the probability of a normal distribution is high in W
values and the p-value is above the significance threshold of 0.05. For lower values
of βexp, the high number of experiments keep p-value lower than 0.05.

User Utility Comparison

In this section, the performance of uncoupled trial and error learning algorithm
and average user utility comparison algorithm are evaluated in terms of user utility.
The service providers start the game with an equal user distribution of [35,35,35],
whereas the fronthaul paths are distributed unequally as [3,2,2] among service
providers. The users are identical and it is assumed that all users obtain the same
data rate from the bandwidth allocated to them.

Trial and error learning is completely uncoupled and the users only aim to
maximize their own utility, without any considerations for the social welfare max-
imization or any extra information about the state of the population at any itera-
tion. On the other hand, switching based on average user utility comparison takes
population dynamics into account and it only allows users that have lower utilities
to change their service provider association to reach the theoretical equilibrium
condition, prioritizing the social welfare of all users in the game. The results given
in Figure 5.10 display these characteristics of the two algorithms. The dashed lines
in the figures show the theoretical utility value for Uuser,n = Uuser,m, for all m,n.
The guided search with average utility comparison converges to this theoretical
utility value, whereas blind search with trial and error learning does not display
such a convergence behavior and many outliers can be spotted in the utility values
during the experiments.

For the users with trial and error learning algorithm, user utility values during
the first round with the equal user distribution are recorded as the benchmark
utility value ui. The users change their mood only based on this benchmark utility
and they do not receive the average user utility value from the InP at any iteration
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(a) User utility per game iteration with Trial
Error Learning based service provider switching

(b) User utility per game iteration with average
user utility based service provider switching

Figure 5.10: User utility comparison between blind search and guided search algorithms

of the game. The benchmark utility is updated by transiting first to the Hopeful
and then to the Content stage, if the user gets a ui above ui for two consecutive
rounds. As it can be observed from Figure 5.10a, in the first two iterations of the
game, there is no utility change for the users, as all users are in Content mood
in the first iteration. The users are allowed to change their association when they
are in Content mood, and they remain connected to the new service provider if
the utility value they obtained is higher than their benchmark utility. However,
the experimentation probability ε is extremely low to impact the overall outcome
in a state in which all users are Content. The users can only switch to Hopeful or
Watchful transitory states in the second iteration. The users do not switch their
service provider if they are in one of these two transitory states. After these two
iterations, the utility difference between the peak user and the least well-off user
can get over 16% of the average value in some iterations. This ratio is 7% for the
average utility comparison algorithm, which is obtained in the first two iterations.
It can also be observed that the number of oscillations in trial and error learning
algorithm is higher than the average user utility comparison case.

In this experiment, the users connected to SP2 and SP3 are below the average
user utility in the first round, thus they have the incentive to switch their ser-
vice provider and increase their utility with the average user utility comparison
algorithm to show replicator dynamics behavior. As seen from Figure 5.10b, ∆U
between the average utility of all users and the least well-off user utility decreases
as the game iterates. As a result, a convergence behavior can be observed in the
user utilities in Figure 5.10b, and the amount of time that it takes the users to
reach a near equilibrium condition is lower than the trial and error learning case,
in which the user learning is completely uncoupled. Hence, it can be stated that
by providing average user utility information to users, InP increases the conver-
gence speed of the game, given that the users display replicator dynamics behavior.
Based on the replicator dynamics behavior premise, it can also be concluded that
the users end in a more social welfare providing result with the guided search in
comparison with the blind search observed in the trial and error learning case.
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Figure 5.11: Peak user and least well off user utility values with Trial and Error Learning
and Average Utility Comparison algorithms

Figure 5.11 demonstrates the difference ∆U between both the peak user and
least well-off user utility and the theoretical user utility at each game iteration.
As it can be seen from Figure 5.11a, a user can reach higher peak utilities than
the utility at the initial game state with trial and error learning algorithm, either
by allowing users to take random searches during the game or by the frequent
association changes of the Discontent users. The graph; however, also shows that
this peak utility values do not show a stable character. In average user utility
comparison, the users do not have the initiative to search for better outcomes if
their utility is above the average. In addition to this, more users switch to the
service provider that delivers higher user utility at each iteration, thus dropping
the peak achievable user utility value as the game iterates. On the contrary, the
least well-off user gets a better utility value in a social welfare providing manner;
however this is not the case with trial and error learning, as seen from Figure 5.11b.

Service Provider User Number Comparison

In order to understand the impact of the oscillation observed in user association on
the stability of the trial and error learning game, the pure equilibrium condition is
relaxed with staying near equilibrium with a minimized user distribution distance.
The user distribution distance shows how close the user distribution number is to
the equilibrium state. Distance 1 is equal to the 0.05 distance from the equilibrium
state, meaning that the service provider in the worst condition gets 95 percent
of the users that it would get in an equilibrium condition. Similarly, Distance
2 indicates a distance of 0.10 and Distance 3 indicates a distance of 0.15 from
the equilibrium condition. Figure 5.12 shows SP1 user number distribution with
the two algorithms per game iteration, and Figure 5.13 and Figure 5.14 display
the fraction of time in which SP1 user number is in pure equilibrium and near
equilibrium conditions. The users connected to SP2 and SP3 have the incentive
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(b) SP1 user number distribution with Average
Utility Comparison

Figure 5.12: SP1 user number distribution per game iteration

to switch to SP1, as the fronthaul paths are unequally distributed between the
service providers as [3,2,2], but the game starts with an equal user distribution of
[35,35,35] The results in this section are obtained from 50 experiments that run
for 100 game iterations. The impact of the initial phase, short-term learning, and
long-term learning periods are evaluated separately.

Figure 5.12 shows the separate convergence characteristics of the two algo-
rithms. The dashed line at n = 45 represents the theoretical equilibrium value
n∗ in the two figures. Figure 5.12a demonstrates that the system is not stable in
reaching the pure equilibrium or near equilibrium conditions without multiple iter-
ations with the trial and error learning algorithm, and a sudden jump is observed
in the number of users connected at iteration i = 3 and i = 4. As explained in the
user utility results section, all users are in Content mood after the first iteration,
and they record their current utility value as their benchmark utility value. This
benchmark utility value is the same for all users, and the utility change due to the
fronthaul path difference is only recorded at the end of the first iteration. After
recording this utility change, the users can only reach Discontent mood at the sec-
ond iteration; therefore they start to experiment and change their service provider
association action at i = 3. The shift from the group of SP1 users to Discontent
state leads to a significant decrease in the user number of SP1 at iteration i = 5,
and the user number starts to reach near equilibrium conditions with blind search
after this iteration. As it can be observed from Figure 5.12b and Figure 5.14, the
gradual increase in the user number is also not sufficient to reach near equilibrium
conditions. The users are only able to reach Distance 3 equilibrium in 6% of the
experiments at i = 5 with average utility comparison algorithm.

As it can be seen from Figure 5.13 and Figure 5.14, after reaching iteration
i = 5, the average time spent in near equilibrium state increases in both cases.
The user number results of the two algorithms between i = 5 and i = 15 can be
compared as follows:
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Figure 5.13: Fraction of times SP1 user number is close to equilibrium with Trial and
Error Learning

� Distance 3 equilibrium is reached in 68% of the cases with average utility
comparison algorithm. With trial and error learning, Distance 3 equilibrium
is observed in 64% of the experiments, with the results fluctuating between
44% to 86% at different iterations.

� Distance 2 equilibrium is reached in 46% of the cases with average utility
comparison algorithm. With trial and error learning, Distance 2 equilibrium
is observed in 53% of the experiments, with the results fluctuating between
38% to 76% at different iterations.

� Distance 1 equilibrium is reached in 11% of the cases with average utility
comparison algorithm. With trial and error learning, Distance 1 equilibrium
is observed in 26% of the experiments, with the results fluctuating between
18% to 40% at different iterations.

� Distance 0 equilibrium is reached in 2% of the cases with average utility
comparison algorithm. With trial and error learning, Distance 0 equilibrium
is observed in 9% of the experiments, with the results fluctuating between
4% to 14% at different iterations.

Distance 3, Distance 2, and Distance 1 near equilibrium results can be obtained
for a similar proportion of times with trial and error learning and average utility
comparison for short iteration periods after the sudden jump behavior in the first
iterations is surpassed. For both learning algorithms, pure equilibrium (Distance
0) condition is hard to reach with short-term learning. This similarity in the
proportion of times in reaching the near equilibrium states; however, does not
indicate a similar convergence characteristic, as shown in Figure 5.12. There is a
sharp increase in the user number towards the theoretical equilibrium in average
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Figure 5.14: Fraction of times SP1 user number is close to equilibrium with Average
Utility Comparison

utility comparison, whereas trial and error learning shows an oscillating behavior
around the equilibrium value.

As it can be clearly observed from Figure 5.13 and Figure 5.14, guided search
with average utility comparison is superior to blind search with trial and error
learning in longer term, and guided search converges both to near equilibrium and
theoretical equilibrium cases after a given iteration period. Average comparison
algorithm also shows a stable character without almost no oscillations after reach-
ing the equilibrium. As seen in Figure 5.14, this algorithm reaches a Distance 3
equilibrium in all cases after i = 18, whereas trial and error learning can reach
Distance 3 equilibrium only in 60% of the total cases after i = 18, with the result
oscillating between 44% to 78% at different iterations. Average utility comparison
reaches Distance 2 equilibrium in all cases after i = 29 and Distance 1 in 98% of
the cases after i = 35. On the other hand, trial and error learning algorithm can
only reach Distance 2 in 50% of the cases after i = 29 with a range between 34% to
64%, and Distance 1 equilibrium can be observed in 23% of the cases after i = 35
with a fluctuation between 8% and 40% at different iterations. The user number
for SP1 reaches the theoretical equilibrium (n∗) value in 96% of the experiments
after i = 50 with the use of the average utility comparison algorithm; however, this
value is only 8% with trial and error learning algorithm after i = 50. The charac-
teristics of the curves clearly show that average utility comparison can converge
to stable near equilibrium and pure equilibrium conditions after long iteration
periods; however, this is not the case for trial and error learning algorithm.

Before closing this section, a remark must be made again at this point that
the algorithms are not direct alternatives to each other, but they rather represent
different search conditions for users depending on the network information avail-
able to them. As seen in the results, coupled learning with external information
and replicator dynamics leads to a more stable network behavior. However, and
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service providers may refuse InPs to share the average utility information with the
users as part of their contracts. Blind search algorithms such as trial and error
learning can still be applied as a distributed learning method to reach near equi-
librium conditions in such cases, as the algorithm is not dependent on any external
information.

5.4 Summary

The converged optical and dense mmWave radio network structure envisioned
for 5G and beyond-5G networks is expected to increase the dynamicity in the
environment, with the increasing number of nodes both at the user and the service
side. In order to respond to this evolution, this chapter studies the following
research question:

Can a balanced profit—social welfare trade-off be achieved in converged opti-
cal and mmWave radio networks infrastructure sharing scenario with distributed
decision-making?

To provide an answer to this question, an iterative descending Vickrey-Dutch
auction is designed for resource allocation among different service providers de-
manding optical resources for their network slices. The auction is used to lease
identical fronthaul paths that reach the same RRH, with the aim of obtaining VCG
outcomes for a social-welfare maximizing outcome among self-interested agents.
The VCG mechanism is used to maximize the total sum of all service providers’
valuations for the fronthaul paths. The results show that a balanced profit—social
welfare trade-off can be achieved with distributed decision-making. These results
can be exploited during a pre-deployment phase in which different fronthaul topol-
ogy options can be simulated to reach a desired market solution by choosing the
optimal profit-making topology.

During this auction, service providers bid in a rational and strategic way with
reinforcement learning, while trying to optimize their utility. The learning al-
gorithm relies on marginal utilities that can be calculated with locally available
information. Service providers and network users play a Stackelberg game, in
which service providers compete with each other to maximize their revenue. In
addition, adjusting user price can be used as a service provider strategy to maxi-
mize revenue. The price strategy also impacts the bidding strategy of the service
provider as the expected marginal utility of the service provider increases with
increasing user prices.

In the auction with VCG outcomes, InP aims to provide a social-welfare max-
imizing outcome by sharing average user utility values with all the users in the
RRH coverage area, helping the users to make decisions as the followers of the
Stackelberg game. Based on this average utility value, users change their service
provider association with a simple utility comparison algorithm, and maximize
their utility by dynamically switching between the service providers. The results
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of this replicator dynamics based guided search decision making algorithm is com-
pared to a completely decoupled trial and error learning algorithm. It is shown
that blind search with trial and error learning algorithm leads to many oscillations
in the results even after long iterations, and there is a clear superiority in terms
of reaching equilibrium conditions with the average utility comparison algorithm.
In addition, a pure equilibrium condition cannot be reached in an overwhelming
proportion of the cases with trial and error learning algorithm. However, relaxing
the pure equilibrium condition with staying near equilibrium with a minimized
distance shows that near equilibrium conditions can also be reached with simple
trial and error learning algorithm, and comparable results can be obtained between
the two algorithms in short-term learning periods with less number of iterations,
after the destabilized period in the first iterations is surpassed.

The framework provided in this study can be extended to other stakeholders
of the network for distributed decision-making. For example, the infrastructure
provider might be regarded as an intelligent agent that implements global policies
for the network. The global policy of the network operator can be maximizing
the number of satisfied users, achieving fairness by distributing the resources as
equal as possible, reserving some physical resources to be resilient against network
failures, or a mix of strategies, depending on the use case. As adjusting each QoS
parameter for each network user creates a scalability issue, the network operator
can learn over the key factors such as the utility values of the services in aggre-
gate forms and determine its policy accordingly with meta-learning. Furthermore,
within the interlinked game explained in this paper, a feedback loop between the
service provider and the user can change the reputation value of a service provider
in real-time.
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CHAPTER 6

Conclusions and Future Outlook

6.1 Summary and Conclusions

This dissertation aims to present a framework that enables efficient and fair re-
source management decisions with multiple stakeholders for converged optical and
mmWave radio network architectures; therefore it is centered around the main
topics of game theory-based distributed learning, autonomic network management,
and enabling concepts of softwarized beyond-5G and 6G networks. The main re-
search objective is to create a multi-stakeholder environment, in which players
dynamically adjust their strategies in response to changing information and the
game model to maximize their utilities. Players of this environment extend from
network operators or infrastructure providers (InPs) with the objective of overcom-
ing their business challenges to make profit and ensure that the overall network
serves efficiently to the maximum number of users at the same time, network com-
ponents that aim to adapt to changing demand from users, service providers (SPs)
that target keeping their service quality within the defined thresholds to obtain the
maximum revenue from their clients, and end-users that utilize network resources
to make use of the ever-increasing range of network applications.

The first part of the dissertation covers the state-of-the-art analysis to under-
stand autonomic network management principles for beyond 5G networks, and
discusses how game theoretic machine learning techniques can be utilized in order
to organize converged optical and mmWave radio network architectures. Fur-
thermore, a literature review is presented to provide an overview on the existing
resource optimization algorithms for converged optical and mmWave radio net-
works, categorized under the main optimization targets of throughput maximiza-
tion, delay minimization, energy-efficiency, and virtual resource allocation. The
second part involves the mathematical evaluation of the joint radio access net-
work (RAN) optimization for limited resources with a bankruptcy game and a

121
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dynamic fronthaul path allocation auctioning game that defines the interactions
between the network stakeholders that have different targets with cooperative and
non-cooperative games.

As communication networks expand towards connecting everything with ev-
erything, the growth trend predictions show the expected increase in connected
devices, number of mobile subscribers, and overall mobile data traffic. Higher
throughput requirements of novel services drive toward crowded wireless bands, as
resource expansion with mmWave spectrum bands and dense deployments provide
a feasible solution to reach the throughout targets of the next generation mobile
networks despite the challenging propagation characteristics. As a result of these
advancements, it can be foreseen that beyond-5G and 6G use cases, and key per-
formance indicators (KPIs) set to realize these use cases require a remarkable
increase in the demand for network resources from multiple network stakeholders.
The cooperation of these stakeholders and their involvement in decision-making
are required to overcome the challenges of these use cases.

End-to-end management of these networks needs to deal with operations and
maintenance (O&M) goals, service targets, user demands, application KPIs, and
dynamic topology changes in the network simultaneously, bringing autonomous
network management (ANM) concept into the equation. ANM paradigm is re-
quired for translating high level objectives into low-level technical parameters
without any human involvement, and then monitoring the network status to re-
configure the available resources. The massive expansion of network also leads to
an autonomous resource management composition that should enable distributed
decision-making to extract knowledge from locally available information over net-
work stakeholder interaction. All these expected changes and the use cases require
a management infrastructure that is able to collect different types of data, store
and aggregate this data for processing and analysis with cloud integration, and
extract knowledge from the collected data with machine learning applications at
every possible network segment.

The evolution of autonomic network management towards beyond-5G/6G net-
works is explained as a basis for highlighting the paradigm changes from hardware-
centric to software-centric management with novel technologies such as self-organizing
networks (SON), software-defined networking (SDN), network function virtualiza-
tion (NFV), and network slicing. The influence of these technologies on the ANM
concept is also discussed, as an ANM framework should be able to handle the
flexibility offered by virtualization technologies. The beyond-5G/6G challenge in
network management is to design an ANM mechanism that learns the behavior of
different network domains and enables coordination between those domains.

An ANM Framework [J1] based on cognitive control loops is presented as a
platform that translates high layer policies to the network domains. Through this
framework, a hierarchy is formed over the mobile network domains, hence ob-
jective functions are distributed from global to local domain within the network.
Each network domain is controlled by a separate control loop that makes use
of the observations from the monitoring stage in the analysis & decision-making
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stage. These two stages are supported by a learning stage that performs artifi-
cial intelligence and machine learning (AI/ML) techniques as an additional stage
for knowledge generation and anticipatory decision-making in the control loop
structure of beyond-5G/6G networks. Given the complex relationships between
the stakeholders and the dynamics of applications, network services, and network
operators, conflicts in stakeholders’ objectives are likely to exist in distributed net-
work management. In consequence, a game theory-based approach that defines
multi-party decision making with both common and conflicting interests is also a
part of this ANM concept. Network vs. network, external stakeholder vs. net-
work games in the literature are presented to describe how network policy making
mechanisms can be created in a distributed way, including the examples of novel
network management games with network slicing and virtualization concepts.

After discussing the evolution of autonomic network management towards
beyond-5G and 6G networks, the functional components of autonomic manage-
ment, and stakeholder involvement in decision-making, resource management opti-
mization algorithms for converged dense radio and optical mmWave architectures
are presented. Converged optical and mmWave radio networks seek to deliver
the appropriate Quality of Experience (QoE) to the population of network users
by increasing the available bandwidth resources with the utilization of mmWave
spectrum. Firstly, the architectural changes resulting from mmWave technical
requirements to make best use of mmWave radio and transport capacity boost
such as dense radio deployments, multiple-input and multiple-output (MIMO),
and spectrum sharing are presented. In light of these technological developments,
the use of mmWaves introduces new challenges and new learning techniques to be
integrated into the resource allocation problem. The complexity increases as the
multi-dimensional resources of dense networks not only include frequency, time,
power, space, and multi-user diversity, but also involve energy, computation and
storage resources, making knowledge extraction with AI/ML solutions a key topic
in the next-generation communication systems.

To identify the benefits and the barriers of the existing resource management
algorithms for converged optical and mmWave wireless networks, a survey is con-
ducted of works published in the literature that cover the identified optimization
requirements. The key concepts and the key network state parameters used to eval-
uate the performance of AI-based network optimization algorithms are identified.
The solution methods are categorized under the main objectives of throughput
maximization, delay minimization, energy-efficiency and virtual resource alloca-
tion.

A discussion from an ANM perspective, specific to each of these optimization
topics, is also provided as part of the survey. The discussion shows that the existing
resource allocation solutions are not decomposed into clear functional components,
but instead designed as solutions to specifically modelled problems. To bring the
novel network stakeholders into resource allocation decision-making, creating com-
mon abstractions and information exchange interfaces between the stakeholders is
required. The discussion also reveals that the collected measurements are con-
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sidered only in the operations and management phases; however measurements
also play an important role during the cost-effective planning and pre-deployment
phases, especially for deploying energy-efficient solutions.

Higher throughput requirements of beyond-5G and 6G applications are one of
the main drivers of dense deployments, and these deployments create resource al-
location problems that can be solved with game theoretic models. The throughput
scales with the available bandwidth in mmWave fronthaul for dense deployments;
however, the problem of dynamic bandwidth allocation remains in situations where
the user demand exceeds the provided fronthaul capacity. As the transport net-
work always aims to allocate the entire fronthaul resource capacity, a bankruptcy
game is created and the outcomes of the division rules are observed under differ-
ent network conditions. The results show that the grand coalition formed with
the cooperative solution called recursive completion provides the highest Jain's
fairness index values and user satisfaction by managing to keep all user data rates
above the defined service thresholds. Contrary to the pre-defined division rules,
this method also opens the way for distributed decision-making solutions as it
gives each RRH the option to join the coalition or refuse it based on the payoff it
obtains.

As the focus shifts towards service creation in networks with networks slicing
and virtualization technologies, network infrastructure ownership has to consider
the trade-off between profit generation and social-welfare in resource allocation
decisions in order to provide the outcomes that meet the demands of users. By
taking these developments into consideration, interlinked games are designed to
distribute resource allocation decisions among the the InP, service providers, and
network users in a network infrastructure sharing scenario. An InP auctioning
game is modelled as an iterative descending auction, in which virtualized fronthaul
paths are leased by the service providers for their network slices. The auction
is designed for a space division multiplexing-enabled mmWave centralized radio
access network (C-RAN) network architecture, where many RRHs are connected
with a centralized baseband unit (BBU) pool. The auction aims to provide welfare
by ensuring Vickrey-Clarke-Groves (VCG) outcomes that maximize the total sum
of all service providers valuations for a set of identical fronthaul paths.

Service providers make their bidding decisions by anticipating the user de-
mands with an exponential reinforcement learning algorithm to maximize their
revenue. In this way, additional resources can dynamically be added to the slices
of service providers based on their users’ demands. Service providers act selfishly
to individually maximize a utility function, hence they do not cooperate and do
not exchange information among each other. The auction is linked with a two-
stage Stackelberg game, in which service providers act as leaders and users act as
followers. The users observe other users’ decisions by receiving the average user
utility value, and they imitate these decisions by probabilistically switching be-
tween the service providers if it is expected to improve their own utility. The user
side equilibrium is reached when the utility of all users are equal. The results show
that Vickrey-Dutch auction and Stackelberg game provide a profit – social welfare
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trade-off for the InP with VCG outcomes and by sharing average user utility value
with the users, and service providers have the option to maximize their revenue
by adapting their bidding strategy and by setting the user prices. It can also be
observed that auction results and user behavior is dependent on the actions of
other SPs in the auction.

Finally, the performance of trial and error learning is compared with the av-
erage utility comparison algorithm to observe the effects of uncoupled and cou-
pled learning mechanisms on the user side. After adjusting the experimentation
probabilities of the trial and error learning algorithm, it can be observed that an
uncoupled learning mechanism can also be used for users by relaxing the pure equi-
librium condition while staying near equilibrium with a minimized distance given
that user learns over the history for a given amount of initial iterations; however,
the number of oscillations in trial and error learning algorithm is higher than the
average user utility comparison case.

6.2 Future Outlook

With the guidance of autonomic network management principles and learning and
resource optimization objectives set for beyond-5G and 6G converged mmWave ra-
dio and optical network architectures, this dissertation presents distributed game-
theory based learning algorithms to optimize resource allocation in these architec-
tures. The interactions among the network stakeholders are defined by cooperative
and competitive models depending on their relation. Infrastructure providers and
network stakeholders can benefit strongly from having this discussion during the
planning phase, as integration of management framework after implementation
would be costly and effort consuming. Nevertheless, challenges still remain to fully
realize an autonomic network management perspective in converged mmWave ra-
dio and optical networks. Before concluding this dissertation, the ongoing work
with visionary and innovative ideas and future research directions are briefly high-
lighted.

6.2.1 Flexible Functional Splits

In this dissertation, the traditional RRH -BBU split concept is used to model the
interactions between radio and optical network segments. However, as mentioned
in Chapter 3, fiber-wireless integration is expected to become more flexible and
radio and optical network interaction is likely to increase in beyond-5G networks
with dynamic functional splits. For this reason, enabling network segment inter-
action and flexible decision making for functional splits should be considered as
part of ANM for next generation networks, either in the pre-deployment phase for
fixed functional splits or on-the-fly if both the distributed unit (DU) and the radio
unit (RU) share the same set of baseband functions, allowing dynamic changes in
functional splits.
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The fifth generation new radio (5G NR) architecture introduces several split
options between the centralized unit(CU), DU, and RU in the RAN [253], with
each split having different data rate and delay requirements from the fronthaul
segment. For the network functionalities that can be framed as VNF, this fact
directly links VNF placement and transport network bandwidth allocation, cre-
ating a joint physical and virtual resource optimization problem. These decisions
directly impact the external network stakeholders in the form of users and service
providers, as each decision changes the topology of the network and the available
resources at different network segments from active antenna ports to fronthaul
paths.

On the network operator scale, flexible functional splits allow for applying
multiple objective functions as a strategy in increasing the overall QoE of users,
resource utilization, or energy-efficiency by considering dynamic splitting based
on user traffic load, central processing unit (CPU) utilization on the cloud infras-
tructures supporting RAN units at different levels, fronthaul bandwidth and delay
adjustment, and the network slicing requests of service providers. Objective func-
tions can be distributed among RAN network components to organize functional
split control decisions.

In addition to the traditional mobile network objective functions like link adap-
tation, handover optimization, etc., network virtualization decisions are an integral
part of flexible functional splits with VNF placement decisions on DU/CU, and the
abstraction of data monitoring for higher layers with edge computing. Frequency
of switching between the split options and the cost of splitting are novel parame-
ters to be considered by an autonomic control loop in making split decisions. In
light of all these aspects, it can be concluded that flexible functional splits provide
a network vs. network inter-domain interaction and cooperation case for game
theory-based learning between the radio and transport segments, with functional
split options defined as possible actions of a strategy set.

6.2.2 Extending Network Virtualization to End Users

In Chapter 5, the importance of using a learning algorithm that reflects the char-
acteristics of end users is discussed. A learning algorithm that reflects user group
behavior can be considered as a meaningful alternative for massive IoT scenarios
with many simple and complex end devices that serve inside the same system;
whereas end users of a communication network might be more likely to seek their
own best utility without considering the group benefit. As the definition of end
users extends from humans to IoT devices, robots, drones, vehicles and smart fac-
tory machines, obtaining the contextual knowledge of end users becomes a critical
factor for resource allocation optimization.

There exists a modeling concept called the digital twin [10] that creates the
digital representations of the entities in both physical and virtual domains. This
concept is considered as a promising method to extend network virtualization to-
wards end-users [254]. The use of ontologies in digital twins for describing the crit-
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ical contextual knowledge of end users such as frequently visited location, use case
and the type of operation in which network resources are utilized can all become
important parameters in creating the utility functions of the users. Monitoring
contextual data over digital twins, and training network data analytics functions
with this data links the concept with multi-access edge computing (MEC) solu-
tions that are able to identify the data storage and processing requirements of the
local network and adapt themselves according to the locally collected data.

Extending virtualization to end users involves both simple and complex de-
vices and human actors. Regarding ML components that generate knowledge over
human actors’ data, engineers and researchers cannot overlook the privacy and se-
curity related issues during the acquisition, storage, and transfer of this data when
developing these ML-based solutions. Applying“privacy and security by design”at
each data-related operation in network management designs should therefore be
considered as a critical future research direction. A network management system
should carefully develop secure methods to manage the acquisition of the data,
and consider human privacy toward the ethical usage and storage of data. Human
actors must have the right to decide how and to what extent their collected data
will be used and shared by the ML algorithms and cyber-physical systems.

6.2.3 Towards Fully Automated 6G Network Management

In this dissertation, the characteristics of beyond-5G mmWave networks are identi-
fied to emphasize the need for the proposed ANM framework that defines the type
of data to be collected for monitoring, and the possible actions of the stakeholders
that take part in the decision-making mechanism. The resource allocation solu-
tion methods in converged mmWave radio and optical networks are analyzed to
reveal the key concepts and the key network state parameters. With a user-centric
approach, the effectiveness of the simple strategic algorithm implementations to
optimize resource allocation by modeling user behavior on a simulation environ-
ment are presented. Finally, interlinked games that include an auction designed
by InP and a Stackelberg game show that dynamic revenue gains can be obtained
with network resource virtualization by achieving a social-welfare – profit trade-
off, even in presence of utility maximizing algorithms of self-interested external
network stakeholders.

ANM is a concept that cannot be disregarded from 6G network management,
and converged optical and radio networks can greatly benefit from the integration
of the provided AI-ML solutions to concrete data analytics frameworks provided by
ITU-T, 3GPP and other regulatory bodies. 3GPP Release 16 includes enablers for
network automation architecture for 5G to enable the use of network data analytics
function (NWDAF) with clear functional components and to support network
automation. For each network function, input & output parameters, and network
data analytics procedures to be provided to network functions are defined with an
analytics ID. Using this network control infrastructure for network slicing, VNF



128 CHAPTER 6. CONCLUSIONS

placement and other control decisions defines a new era in network management
and will be the next step towards realizing all the ambitious 6G applications.

As new deployment spaces spread across the world with private networks of
organizations and the industry, novel use cases ranging from rapidly deployable
edge networks for emergency services to electricity grid control and energy systems
optimization, beyond-5G and 6G networks extend the scope of network manage-
ment with multiple actors and decision makers. Furthermore, the underlying tech-
nologies such as deploying wireless bands in THz frequencies and analog/hybrid
beamforming solutions to realize Tbps transport bring new properties and re-
quirements into the network management picture. ANM creates opportunities to
resolve conflicting goals between various stakeholders such as the private network
and infrastructure owners, network users, application developers, and the regu-
latory bodies in governmental and global scale. It can also provide a concrete
framework to base the future research on overcoming the challenges in improving
the KPIs, maintaining QoE/QoS, and optimization of distributed network man-
agement processes. Thus, future research on ANM frameworks has the potential to
drive novel solutions and enable a higher degree of adaptation and interoperability
among all the above mentioned applications and technologies.
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[181] W. Zheng, A. Ali, N. González-Prelcic, R. W. Heath, A. Klautau, and E. M. Pari,
“5G V2X communication at millimeter wave: Rate maps and use cases,” in 2020
IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 2020, pp. 1–5.
doi: 10.1109/VTC2020-Spring48590.2020.9128612.

[182] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo, “Machine learn-
ing paradigms for next-generation wireless networks,” IEEE Wireless Communi-
cations, vol. 24, no. 2, pp. 98–105, 2017. doi: 10.1109/MWC.2016.1500356WC.

[183] Y. Shi, K. Yang, T. Jiang, J. Zhang, and K. B. Letaief, “Communication-efficient
edge AI: Algorithms and systems,” IEEE Communications Surveys Tutorials,
vol. 22, no. 4, pp. 2167–2191, 2020. doi: 10.1109/COMST.2020.3007787.

[184] G. O. Perez, A. Ebrahimzadeh, M. Maier, J. A. Hernandez, D. L. Lopez, and
M. F. Veiga, “Decentralized coordination of converged tactile internet and MEC
services in H-CRAN fiber wireless networks,” Journal of Lightwave Technology,
vol. 38, no. 18, pp. 4935–4947, 2020. doi: 10.1109/JLT.2020.2998001.

[185] E. Datsika, E. Kartsakli, J. S. Vardakas, et al., “QoS-aware resource management
for converged fiber wireless 5G fronthaul networks,” in 2018 IEEE Global Com-
munications Conference (GLOBECOM), 2018, pp. 1–5. doi: 10.1109/GLOCOM.
2018.8647231.

[186] W. Hao, M. Zeng, G. Sun, and P. Xiao, “Edge cache-assisted secure low-latency
millimeter-wave transmission,” IEEE Internet of Things Journal, vol. 7, no. 3,
pp. 1815–1825, 2020. doi: 10.1109/JIOT.2019.2957351.

[187] C. Zhao, Y. Cai, A. Liu, M. Zhao, and L. Hanzo, “Mobile edge computing meets
mmWave communications: Joint beamforming and resource allocation for system
delay minimization,” IEEE Transactions on Wireless Communications, vol. 19,
no. 4, pp. 2382–2396, 2020. doi: 10.1109/TWC.2020.2964543.

[188] B. P. Rimal, M. Maier, and M. Satyanarayanan, “Experimental testbed for edge
computing in fiber-wireless broadband access networks,” IEEE Communications
Magazine, vol. 56, no. 8, pp. 160–167, 2018. doi: 10.1109/MCOM.2018.1700793.

[189] A. Ebrahimzadeh and M. Maier, “Distributed cooperative computation offloading
in multi-access edge computing fiber–wireless networks,”Optics Communications,
vol. 452, pp. 130–139, 2019. doi: 10.1016/j.optcom.2019.06.060.

[190] A. Dalgkitsis, M. Louta, and G. T. Karetsos, “Traffic forecasting in cellular net-
works using the LSTM RNN,” in Proceedings of the 22nd Pan-Hellenic Conference
on Informatics, ser. PCI ’18, Athens, Greece: Association for Computing Machin-
ery, 2018, pp. 28–33. doi: 10.1145/3291533.3291540.

[191] P.-Y. Chou, W.-Y. Chen, C.-Y. Wang, R.-H. Hwang, and W.-T. Chen, “Deep re-
inforcement learning for MEC streaming with joint user association and resource
management,” in ICC 2020 - 2020 IEEE International Conference on Communi-
cations (ICC), 2020, pp. 1–7. doi: 10.1109/ICC40277.2020.9149086.

https://doi.org/10.1109/WoWMoM51794.2021.00045
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128612
https://doi.org/10.1109/MWC.2016.1500356WC
https://doi.org/10.1109/COMST.2020.3007787
https://doi.org/10.1109/JLT.2020.2998001
https://doi.org/10.1109/GLOCOM.2018.8647231
https://doi.org/10.1109/GLOCOM.2018.8647231
https://doi.org/10.1109/JIOT.2019.2957351
https://doi.org/10.1109/TWC.2020.2964543
https://doi.org/10.1109/MCOM.2018.1700793
https://doi.org/10.1016/j.optcom.2019.06.060
https://doi.org/10.1145/3291533.3291540
https://doi.org/10.1109/ICC40277.2020.9149086


144 BIBLIOGRAPHY

[192] K. Liang, J. Hao, R. Zimmermann, and D. K. Y. Yau, “Integrated prefetching
and caching for adaptive video streaming over HTTP: An online approach,” in
Proceedings of the 6th ACM Multimedia Systems Conference, ser. MMSys ’15,
Portland, Oregon: Association for Computing Machinery, 2015, pp. 142–152. doi:
10.1145/2713168.2713181.

[193] M. Moltafet, R. Joda, N. Mokari, M. R. Sabagh, and M. Zorzi, “Joint access and
fronthaul radio resource allocation in PD-NOMA-based 5G networks enabling
dual connectivity and CoMP,” IEEE Transactions on Communications, vol. 66,
no. 12, pp. 6463–6477, 2018. doi: 10.1109/TCOMM.2018.2865766.

[194] X. Li, R. Ferdous, C. F. Chiasserini, et al., “Novel resource and energy manage-
ment for 5G integrated backhaul/fronthaul (5G-crosshaul),” in 2017 IEEE In-
ternational Conference on Communications Workshops (ICC Workshops), 2017,
pp. 778–784. doi: 10.1109/ICCW.2017.7962753.

[195] H. T. Nguyen, H. Murakami, K. Nguyen, et al., “Joint user association and power
allocation for millimeter-wave ultra-dense networks,”Mobile Networks and Appli-
cations, vol. 25, pp. 274–284, 2020. doi: 10.1007/s11036-019-01286-8.

[196] M. Saimler and S. C. Ergen, “Uplink/downlink decoupled energy efficient user as-
sociation in heterogeneous cloud radio access networks,”Ad Hoc Networks, vol. 97,
p. 102 016, 2020. doi: 10.1016/j.adhoc.2019.102016.

[197] Z. Jing, Q. Yang, M. Qin, and K. S. Kwak, “Energy-efficient joint millimeter-wave
fronthaul and OFDMA resource allocation for C-RANs,” in 2017 17th Interna-
tional Symposium on Communications and Information Technologies (ISCIT),
2017, pp. 1–6. doi: 10.1109/ISCIT.2017.8261208.

[198] Q. Chen, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “Joint resource alloca-
tion for software-defined networking, caching, and computing,”IEEE/ACM Trans.
Netw., vol. 26, no. 1, pp. 274–287, Feb. 2018. doi: 10.1109/TNET.2017.2782216.

[199] D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng, and G. Y. Li, “A survey of
energy-efficient wireless communications,” IEEE Communications Surveys Tuto-
rials, vol. 15, no. 1, pp. 167–178, 2013. doi: 10.1109/SURV.2012.020212.00049.

[200] A. Salh, L. Audah, N. S. M. Shah, et al., “A survey on deep learning for ultra-
reliable and low-latency communications challenges on 6G wireless systems,”IEEE
Access, vol. 9, pp. 55 098–55 131, 2021. doi: 10.1109/ACCESS.2021.3069707.

[201] G. Kakkavas, K. Tsitseklis, V. Karyotis, and S. Papavassiliou, “A software de-
fined radio cross-layer resource allocation approach for cognitive radio networks:
From theory to practice,” IEEE Transactions on Cognitive Communications and
Networking, vol. 6, no. 2, pp. 740–755, 2020. doi: 10.1109/TCCN.2019.2963869.

[202] Q. Ren and G. Yao, “Enhancing harvested energy utilization for energy harvesting
wireless sensor networks by an improved uneven clustering protocol,”IEEE Access,
vol. 9, pp. 119 279–119 288, 2021. doi: 10.1109/ACCESS.2021.3108469.

[203] 5G PPP Technology Board, “AI and ML – Enablers for Beyond 5G Networks,”
5GPPP, Tech. Rep., 2021. doi: 10.5281/zenodo.4299895.

https://doi.org/10.1145/2713168.2713181
https://doi.org/10.1109/TCOMM.2018.2865766
https://doi.org/10.1109/ICCW.2017.7962753
https://doi.org/10.1007/s11036-019-01286-8
https://doi.org/10.1016/j.adhoc.2019.102016
https://doi.org/10.1109/ISCIT.2017.8261208
https://doi.org/10.1109/TNET.2017.2782216
https://doi.org/10.1109/SURV.2012.020212.00049
https://doi.org/10.1109/ACCESS.2021.3069707
https://doi.org/10.1109/TCCN.2019.2963869
https://doi.org/10.1109/ACCESS.2021.3108469
https://doi.org/10.5281/zenodo.4299895


145

[204] M. Di Renzo, A. Zappone, T. T. Lam, and M. Debbah, “System-level modeling
and optimization of the energy efficiency in cellular networks—a stochastic geom-
etry framework,” IEEE Transactions on Wireless Communications, vol. 17, no. 4,
pp. 2539–2556, 2018. doi: 10.1109/TWC.2018.2797264.

[205] M. Fiorani, S. Tombaz, J. Martensson, B. Skubic, L. Wosinska, and P. Monti,
“Modeling energy performance of C-RAN with optical transport in 5G network
scenarios,” Journal of Optical Communications and Networking, vol. 8, no. 11,
B21–B34, 2016. doi: 10.1364/JOCN.8.000B21.

[206] R. S. Alhumaima and H. S. Al-Raweshidy, “Evaluating the energy efficiency
of software defined-based cloud radio access networks,” IET Communications,
vol. 10, no. 8, pp. 987–994, 2016. doi: 10.1049/iet-com.2016.0046.

[207] S. Guo, S. Shao, Y. Wang, and H. Yang, “Cross stratum resources protection
in fog-computing-based radio over fiber networks for 5G services,” Optical Fiber
Technology, vol. 37, pp. 61–68, 2017. doi: 10.1016/j.yofte.2017.07.001.

[208] S. Xu, X. Peng, S. Guo, X. Qiu, andW. He,“QoS-aware cross-domain collaborative
energy-saving mechanism for FiWi virtual networks,” International Journal of
Network Management, vol. 30, no. 2, e2095, 2020, e2095 NEM-19-0140.R1. doi:
10.1002/nem.2095.

[209] Q. Wang, G. Shou, J. Liu, Y. Liu, Y. Hu, and Z. Guo, “Resource allocation
for edge computing over fibre-wireless access networks,” IET Communications,
vol. 13, no. 17, pp. 2848–2856, 2019. doi: 10.1049/iet-com.2019.0101.

[210] H. Lu, R. Proietti, G. Liu, X. Chen, and S. J. B. Yoo, “ERON: An energy-efficient
and elastic RF-optical architecture for mmWave 5G radio access networks,”J. Opt.
Commun. Netw., vol. 12, no. 7, pp. 200–216, Jul. 2020. doi: 10.1364/JOCN.390428.

[211] P. Han, Y. Liu, and L. Guo, “QoS satisfaction aware and network reconfiguration
enabled resource allocation for virtual network embedding in fiber-wireless access
network,”Computer Networks, vol. 143, pp. 30–48, 2018. doi: 10.1016/j.comnet.
2018.06.019.
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