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Abstract
An efficient iterative, free-plasma-boundary solver for the Grad–Shafranov–Bernoulli system
of equations, that describes the ideal MHD equilibrium of a toroidally axisymmetric plasma
with flow, is presented. The code implements a numerical scheme recently developed in the
context of free-plasma-boundary solvers for ideal static MHD equilibria with magnetic islands
and stochastic regions for stellarators. The shape of the plasma edge is permitted to change as
needed until the total net force eventually vanishes en route to the equilibrium. Complex coil
configurations can be treated in the toroidally axisymmetric approximation. The code opens
the possibility of quantifying the changes that plasma flows may induce on important features
of a tokamak equilibrium such as the shape of the plasma edge, the plasma confining volume,
the position of the magnetic axis or the position of the X-point, among others. Some examples,
selected for illustrative purposes, are shown for the ITER baseline magnetic configuration.

Keywords: ideal MHD, equilibrium with flow, Grad–Shafranov equation, free-boundary,
iterative solvers

(Some figures may appear in colour only in the online journal)

1. Introduction

The calculation of MHD equilibria is routinely required in
many contexts in magnetically confined fusion plasmas, start-
ing at the initial phases of the design of a confining mag-
netic configuration and continuing during the interpretation of
multiple diagnostic systems during their operation. Many key
evaluations for plasma scenarios depend on having a reliable
knowledge of the confining magnetic field and the geometry
of the confined plasma at equilibrium is required, for instance,
when assessing the consequences of adding or removing ele-
ments to/from an existing tokamak (such as control coils), or
when making changes in its configuration (varying currents in
the external coil set, modifying the location and strength of
particle and heat sources, etc).

∗ Author to whom any correspondence should be addressed.

Another situation when a precise knowledge of the
plasma equilibrium may be important is when significant
poloidal and/or toroidal flows are established within the toka-
mak plasma due to either external (biasing, neutral beam
heating, . . . ) or internal causes (development of transport bar-
riers. . . ). However, ideal 2D MHD equilibria are traditionally
calculated in tokamaks under the assumption of axisymmetry
and negligible plasma flows, since the problem is then reduced
to solving one elliptic equation for the magnetic poloidal flux
function, ψ(R, Z), with R and Z being the usual cylindrical
coordinates. This equation, the well-known Grad–Shafranov
equation [1], depends on two external functions of ψ that
essentially prescribe first, the plasma pressure, p(ψ), and sec-
ondly, F(ψ) = RBφ(ψ), where Bφ is the toroidal magnetic
field and that can be shown to be related to the net poloidal
current [2]. Toroidal axisymmetry usually remains a good
approximation in most experimental situations. The absence
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of macroscopic plasma flows, however, is often not satisfied.
The consideration of plasma flows in the 2D MHD equilibrium
calculation, however, significantly complicates the problem.
The number of equations to be solved is now two, since the
(modified) Grad–Shafranov equation must be supplemented
with another one, known as the Bernoulli equation [3–6]. The
number of free functions to prescribe is also increased from
two to five that, regretfully, are not easy to assign since exper-
imentally available quantities, such as the plasma pressure or
the density, are no longer flux functions.

Several numerical codes exist, such as FINESSE [7] or
FLOW [8], that manage to deal with all this complexity and
routinely carry out calculations of ideal 2D MHD tokamak
equilibria with poloidal and toroidal plasma flows. A common
element to all these codes, however, is that they often assume a
fixed plasma boundary at which the value of magnetic poloidal
flux ψ is known and assigned from input. This approach is
usually referred to as a ‘fixed-boundary’ equilibrium solution.
Calculations are then restricted to the plasma region. In many
cases, this is a reasonable approach since the approximate
shape of the plasma edge might be experimentally available,
and the value of ψ at the edge could be inferred from the
coils and measured plasma currents. There are situations, how-
ever, in which the shape of the plasma may not be known
in advance. Or, more interestingly, one could perhaps like to
quantify how the shape of the plasma edge changes under
controlled variations of discharge parameters in the presence
of plasma flows. These could be the case, for instance, while
investigating the consequences of adding new elements to, or
changing the nominal current density values of an existing
coil configuration. A different type of code is then needed that
could solve the Grad–Shafranov–Bernoulli (GSB) equations
using a free-plasma-boundary approach in which the shape of
the plasma edge is not prescribed a priori, being instead free
to adapt to what the force-balance equations dictate.

There are various free-plasma-boundary solvers available
for ideal static MHD equilibria, both for tokamaks and stel-
larators. In this paper, we rely on this expertise to build a code
that can produce free-plasma-boundary solutions of the GSB
system of equations for an arbitrarily complex set of external
coils. This is done by the implementation, taking into account
the particular features of the GSB equations, of a numerical
scheme recently used to enable the SIESTA code [9], a 3D
ideal MHD equilibrium code without plasma flows but with
capabilities to support magnetic islands and stochastic regions,
to perform free-plasma-boundary simulations. The process
entails the coupling of a GSB solver with two well established
numerical tools. First, the VMEC code [10], an ideal MHD
solver for general 3D static equilibria that can be easily adapted
to 2D problems as well. Secondly, the MAKEGRID code, a
tool from the STELLOPT stellarator optimization suite [11]
that calculates the vacuum magnetic field created by an arbi-
trarily complex external coil set at any arbitrary position. Both
codes where developed in the context of free-boundary, static
stellarator MHD equilibria in the 1980s and 90s.

The particular issues encountered and addressed to imple-
ment this free-plasma-boundary scheme in the GSB con-
text are detailed in section 4, after quickly reviewing the

Grad–Shafravnov–Bernoulli system of equations in section 2
and describing in section 3 the more relevant features of the
GBS numerical solver used. Examples of the analysis capa-
bilities enabled by this new free-plasma-boundary code will
be illustrated in section 5 on the ITER baseline magnetic
configuration. Finally, some conclusions will be drawn in
section 6.

2. Review of axissymmetric ideal MHD equilibrium
with flows

2.1. Ideal MHD equations

The equations of ideal MHD in the presence of plasma flows
are well known [2]:

Continuity → ∂ρ

∂t
+∇ · (ρv) (1)

Momentum → ρ
dv
dt

= J × B −∇p (2)

Entropy equation → ∂S
∂t

+ v · ∇S = 0 (3)

Ohm’s law → E + v × B = 0 (4)

Ampere: → ∇× B = μ0J (5)

B − divergence: → ∇ · B = 0 (6)

using as variables the electric field E, the magnetic field B,
the current density J, the (assumed isotropic) plasma pressure
p, the plasma density ρ and the plasma fluid velocity v. The
function S ≡ p/ργ is the entropy, with γ = cp/cv being the
ratio of specific heats. Equation (3) provides the closure for
the system of equations.

2.2. Grad–Shafranov equation

In equilibrium, and in the absence of plasma flows, the ideal
MHD equations reduce to:

J × B = ∇p (7)

∇× B = μ0J (8)

∇ · B = 0. (9)

These equations can be easily recast into a more manageable
form by introducing cylindrical coordinates (R,φ, Z), assum-
ing toroidal axissymetry and expressing the magnetic field as:

B = ∇ψ × uφ + Bφuφ, (10)

that trivially satisfies the divergence-free condition for the
magnetic field. The function ψ(R, Z) represents the poloidal
magnetic flux (divided by 2π). The isosurfaces ψ(R, Z) =
constant define the magnetic surfaces. Introducing this rep-
resentation in the Ampere equation, to get the current
density vector J, and then in the momentum equation,
leads to the famous elliptic Grad–Shafranov equation [1]:
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R2∇ ·
(
∇ψ

R2

)
= −μ0R2 p′(ψ) − 1

2
(F2(ψ))′, (11)

where two surface functions appear. First, p = p(ψ) that gives
the plasma pressure as a function of ψ, and F(ψ) = RBφ that
is related with the total poloidal current flowing through a
disk-shaped surface lying in the Z = 0 plane that extends from
R = 0 to the contour ψ due to both coils and plasma [2]
(indeed, Ip(ψ) = −2πF(ψ)). The prime (′) is used to denote
derivative with respect to ψ, as usual. Various codes exist
that can solve this equation rather efficiently (for instance, the
CHEASE [12]or EFIT [13] codes). Two additional ingredients
are needed to have a unique solution of equation (11): (i)
expressions for the profiles of p and F as a function of ψ, that
can often be inferred from experimental measurements, and
(ii) the value of ψ on some prescribed curve, usually taken at
the plasma edge. This relation, expressed as ψ(R, Z) = ψedge,
is known as a fixed-boundary condition.

2.3. Grad–Shafranov–Bernoulli system of equations

In the case in which plasma flow is retained, the manipula-
tion of the equilibrium equations become more involved, as
shown by various authors [3–5]. The more popular version of
the derivation is probably the one published by Hameiri [6].
Thanks to axisymmetry the plasma flow can be expressed in
similar form to the magnetic field,

v =
1
ρR

∇χ× uφ + vφuφ, (12)

where χ(R, Z) is the velocity streamfunction. Inserting this
representation, together with equation (10) for the magnetic
field, in the momentum balance equation leads to a pair of
equations that must be satisfied at equilibrium. The first one,
the Bernoulli equation, is obtained by projecting the momen-
tum equation along the magnetic field, leading to:

(χ′(ψ))2

2ρ2

(
|∇ψ|2

R2
+ B2

φ

)
− 1

2
R2Φ′2(ψ)

+
γ

γ − 1
ργ−1S(ψ) = H(ψ). (13)

It is useful to view this equation as a constraint to be satis-
fied by the combination of quantities on the left-hand side,
that must become a flux function at equilibrium. This func-
tion, H(ψ), is known as the Bernoulli function. The Bernoulli
equation contains several other functions that also turn out to
be flux functions at equilibrium. In addition to the velocity
streamfunction, χ(ψ), one has the entropy function, S(ψ) =
p/ργ , and the electric potential Φ(ψ), whose derivative,

Φ′(ψ) =
1
R

(
vφ − χ′(ψ)Bφ/ρ

)
, (14)

provides the radial electric field E = −Φ′(ψ)∇ψ needed to
satisfy Ohm’s law.

The second equation that must be satisfied at equilibrium
is a modified version of the Grad–Shafranov equation. It is

obtained, as in the case without plasma flow, from the pro-
jection of the momentum equation along ∇ψ. The result is:

1
μ0

∇ ·
(

(1 − (MAlf
p )2)

R2
∇ψ

)

= − Bφ

μ0R
K′(ψ) −

(
χ′(ψ)
ρR2

+ vφBφ

)
χ′′(ψ)

− ρH′(ψ) − RρvφΦ
′′(ψ) +

ργ

γ − 1
S′(ψ). (15)

The equation is clearly more complicated than the static
one, equation (11), although the latter is recovered if one sets
χ(ψ) = 0. Equation (15) contains one additional flux function,

K(ψ) ≡ RBφ − μ0Rχ′(ψ)vφ, (16)

that reduces to F(ψ) = RBφ in the absence of plasma flow.
In addition, an extra factor (1 − (MAlf

p )2), with MAlf
p being the

poloidal Alfven Mach number,

MAlf
p (R, Z) =

|vp|
|Bp|/

√
μ0ρ

=

(
μ0

ρ

)1/2

χ′(ψ), (17)

has appeared inside the differential operator in the left-hand
side. This factor may drastically change the nature of the
Grad–Shafranov equation for poloidal plasma flows if the
condition MAlf

p < 1 is violated anywhere inside of the domain
of interest [14–16].

The solution of the GSB pair of equations in the R − Z
plane requires the prescription of five functions of ψ. Namely,
the electrostatic potential φ(ψ), the velocity streamfunction
χ(ψ), the Bernoulli function, H(ψ), the entropy function S(ψ)
and K(ψ), defined by equation (16). There are several codes
available that can solve this pair of equations such as, for
instance, FINESSE [7] or FLOW [8]. Most of them, how-
ever, work in the same ‘fixed-boundary’ mode we previously
described for the Grad–Shafranov equation. That is, by forcing
the shape of the plasma boundary to coincide with an isosur-
face of the poloidal magnetic flux function, ψ(R, Z) = ψedge,
thus restricting the solution to the plasma volume. In the next
section we will describe the steps taken to be able to consider
a free-plasma-boundary instead.

3. Fixed-boundary solver for
Grad–Shafranov–Bernoulli system of equations

The free-plasma-boundary scheme to be described in the next
section requires a fixed-boundary solver of the GSB equations.
This solver, however, should be able to use a fixed bound-
ary different from the shape of the plasma boundary. In this
section, we describe some features particular to the iterative
solver we have built for this task. Our code uses toroidal
coordinates (r, θ, ζ), related to the more usual cylindrical ones

3
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Figure 1. 2D computational domain used to solve the GSB system.
Boundary conditions are enforced on an arbitrary interior circle
(illustrated in red) with radius set by the user. Although this circle
usually encloses the full plasma, it may also be smaller if desired.
Isocurves for r and θ are shown in black.

(R, Z,φ) via:

R = R0 + r cos θ

φ= −ζ

Z = r sin θ

. (18)

R0 is the major radius of the geometrical torus, that should
be chosen close to, but need not necessarily coincide with,
the magnetic axis as discussed below. The 2D computational
domain (see figure 1) can be chosen as large as desired. The
boundary condition for ψ is prescribed on a circular surface
selected by the user (in red in the figure) that is centered at
R = R0 and with arbitrary minor radius r = rB. The value of
the magnetic flux function on the circle,ψ(rb, θ) = ψb(θ), must
be provided by the user to match the problem of interest. Note
that, in general, this value is not a single number but a function
of the poloidal angle. Note also that the domain need not
restricted to r < rB as long as the values of ψ on that circle are
kept fixed. Our choice of coordinates allows us, in addition to
an easier interaction with the VMEC code, to treat all angular
dependencies in θ using a spectral method, while the radial
derivatives are dealt with using finite differences of second-
order accuracy. This leads to very good convergence properties
for the residual net force, that decreases quadratically with
the number of radial points, Mr, and exponentially with the
number of poloidal modes, Nθ (see figure 2).

The solver searches iteratively for the equilibrium solution.
The convergence of the iterative scheme is facilitated if R0

can be taken as close as possible to the magnetic axis, since
the Fourier representation then becomes more compact, with
fewer poloidal modes, that leads to smaller matrices and an

Figure 2. Convergence of the normalized residual force (defined as
the average value of the ratio to absolute values
|∇p− J × B − ρ(v · ∇)v|/|J × B| over the computational domain)
as a function of the number of radial points, Mr, and poloidal modes,
Nθ for the Maschke–Perrin analytical equilibrium with toroidal
rotation [17] for Mtor = 0.8.

overall faster convergence of the iterative scheme. To start
the procedure, profiles for the five free flux functions (K(ψ),
Φ(ψ), χ(ψ), H(ψ) and S(ψ)) must be given as well as an
initial guess, ψ0(r, θ), for the poloidal magnetic flux function
throughout the computational box that satisfies the prescribed
boundary condition, ψ0(rb, θ) = ψb(θ). The iteration starts by
first solving Bernouill’s equation (equation (13)) to obtain the
density using a combination of Newton and bisection methods.
This is possible, as previously noted by many authors [8, 16],
because the only undetermined functions in equation (13) are
the density ρ and Bφ, that can in turn be related by combining
equations (14) and (16) to yield,

Bφ =
K(ψ) + μ0R2χ′(ψ)φ′(ψ)

R(1 − μ0χ′2/ρ)
. (19)

The obtained density, together with the guess for the poloidal
magnetic flux functionψ0(r, θ) are then inserted into the right-
hand side of the modified Grad–Shafranov equation, that is
subsequently solved to provide an improved poloidal magnetic

4
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flux, ψ1(r, θ), that still satisfies the prescribed boundary con-
dition at r = rb. The refined ψ1 is then used to recalculate the
density by means of the Bernoulli equation, and then inserted
back into the Grad–Shafranov equation to further refine the
poloidal magnetic flux function. This procedure is iterated for
as many times as needed to reach the required tolerance in ψ,
defined at the k-iteration as the average over the whole domain
of the ratio,

tol(k) = 2 ×
〈
|ψk(r, θ) − ψk−1(r, θ)|
|ψk(r, θ) + ψk−1(r, θ)|

〉
r,θ

. (20)

The code handles K(ψ), Φ(ψ), χ(ψ), H(ψ) and S(ψ) using
the same prescription used by the FLOW code [8]. That is,
defining them via five auxiliary functions, D(ψ), P(ψ), B0(ψ),
Mcs

t (ψ) and Mcs
p (ψ):

K(ψ) ≡ R0B0(ψ) (21)

χ′(ψ) ≡
√
γP(ψ)D(ψ)

(
Mcs

p (ψ)

B0(ψ)

)
(22)

φ′(ψ) ≡

√
γ

P(ψ)
D(ψ)

(
(Mcs

t (ψ) − Mcs
p (ψ))

R0

)
(23)

H(ψ) ≡
(
γ

P(ψ)
D(ψ)

)[
1

(γ − 1)
+ Mcs

t (ψ)

·
(

Mcs
p (ψ) − Mcs

t (ψ)
2

)]
(24)

S(ψ) ≡ P(ψ)
Dγ(ψ)

. (25)

A nice aspect about these choices is that D(ψ), P(ψ) and
B0(ψ) reduce to the usual density, pressure and toroidal field
profiles in the absence of plasma flow, so they can be inter-
preted in this fashion even if no longer flux quantities at finite
plasma flow. The remaining two functions, Mcs

p (ψ) and Mcs
t (ψ)

are (approximate) sonic Mach numbers in the poloidal and
toroidal directions.

A typical output of the code is illustrated in figure 3
that shows the isosurfaces for the poloidal magnetic flux as
obtained for the baseline ITER Q = 10 plasma scenario in
a case that assumes only toroidal plasma rotation. The equi-
librium has been calculated using S(ψ) = 1, Mcs

p (ψ) = 0 and
the profiles for pressure and toroidal magnetic field shown in
figure 4. Note that these profile shapes are adopted for testing
purposes and are not necessarily consistent with those from
integrated modeling. The toroidal sonic Mach number profile
used is the one labeled as ‘(qf)’ in figure 5. This normalized
profile has been scaled, in this run, with a global scaling
factor Mtor = 0.6. As can be seen, the toroidal plasma rotation
is maximum at the magnetic axis and smoothly decreases
quadratically towards zero at the plasma edge. The initial guess
for the magnetic poloidal flux function ψ, as well as its value
on the circle where the fixed boundary condition is imposed,
are built from a solution previously calculated with the VMEC
code for the same equilibrium but in the absence of plasma
flow. The initial isocontours for ψ are shown in dashed blue
(labeled as ψ0) in the top frame of figure 3 and the final

Figure 3. Top: initial and final isocontours of ψ for the ITER
equilibrium examined using the ‘(qf)’ profile for the toroidal sonic
Mach number with scaling factor Mtor = 0.6. Bottom: color map of
the plasma density with overlaid ψ-isocontours that illustrate the
outwards displacement of the density due to the centrifugal force.

contours obtained by our code are shown in continuous black.
In the bottom frame, a color map of the final plasma density
ρ is shown together with the isocontours of ψ, illustrating the
expected outward radial displacement of the density resulting
from the centrifugal force.

4. Free-plasma-boundary scheme

Free-plasma-boundary capabilities can be added to the pre-
vious solver by finding a suitable way to treat the boundary
condition that is imposed on the value of poloidal magnetic
flux function at the control circle, ψb(rb). Clearly, ψb(rb) is
determined by two different contributions:

ψb(rb) = ψV
b (rb) + ψP

b (rb). (26)

ψV
b (rb) is the contribution from the currents flowing in the

external coils that define the magnetic configuration. ψP
b (rb),

5
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Figure 4. Toroidal magnetic field (B0(ψ)) profile (top) and pressure
(P(ψ)) profile (bottom) used for the ITER equilibrium calculation.

on the other hand, is the contribution from the plasma current.
The first contribution does not change once the coil currents are
fixed, so it is only evaluated once. The second one, however,
will change as the plasma adapts its shape and profiles on its
way to the final equilibrium.

Before describing how each of these two contributions
are evaluated, it is worth describing the iterative flow of the
free-plasma-boundary solver. Starting from some value of
ψ( j=1)

b (rb), the GSB solver described in the previous section
will iteratively find the poloidal magnetic flux function,
ψ( j=1)(r, θ), that is consistent with that boundary condition
(we will use the index j to label the (outer) iterations of the
boundary condition, that should not be confused with k, that
labeled the (inner) iterations within the fixed-boundary solver).
However, it should be expected that the final plasma current
will be different from the one used previously to determine
the plasma current contribution to the boundary condition
ψ( j=1)

b (rb). Therefore, the code starts a new outer iteration in
which it recalculates the plasma current contribution, updates
the boundary condition to ψ( j=2)

b (rb) and calls the GSB solver
to find an updated poloidal magnetic flux function,ψ( j=2)(r, θ),
consistent with the updated boundary condition. The whole
process is repeated for as many outer iterations as needed to
reach the required tolerance.

Figure 5. Normalized toroidal sonic Mach number profiles, Mcs
t (ψ),

used throughout the paper. These profiles are scaled by means of a
global scaling factor, Mtor, as discussed in text. The plasma density
profile, D(ψ) is also shown for reference.

Let us now describe how the boundary condition, ψb(rb), is
calculated. The poloidal magnetic flux function is essentially
(except by a 2π factor) the flux of the magnetic field through a
toroidal wedge that starts from the Z = 0 plane at R = R0 and
extends radially at fixed angle θ until it intersects the control
circle at r = rb. Were the control circle a magnetic surface,
the result would be independent of θ, but that is not usually
the case. Therefore, we need to compute the magnetic flux for
wedges at multiple values of θ.

The contribution from the external coils, ψV
b (rb), is calcu-

lated using the MAKEGRID code, that is part of the STEL-
LOPT stellarator optimization suite [11]. MAKEGRID com-
putes the magnetic field generated by an arbitrary set of exter-
nal coils, defined as a collection of wire segments carrying a
normalized unit current. The code uses the Biot–Savart law to
evaluate the contribution of each coil segment to an arbitrary
selection of points on a R − Z grid. Each contribution is then
multiplied by the actual current carried by each coil to yield the
final value of the magnetic field, which is quite convenient for
optimization tasks. The poloidal magnetic flux ψV

b (rb) is then
obtained numerically, using the vacuum magnetic field pro-
vided by MAKEGRID to calculate the poloidal magnetic flux
through multiple toroidal wedges at fixed θ angles. It is worth
noting that the vacuum poloidal magnetic field calculated by
MAKEGRID is as toroidally axisymmetric as the coil set con-
sidered. However, by inserting the calculated poloidal mag-
netic flux into the representation given by equation (10), any
toroidally non-symmetric contribution is effectively removed.

In regards to the contribution from the plasma current,
ψP(rb), a different approach is followed. From previous expe-
rience with the SIESTA code [18], it turns out that the most
numerically efficient way is to calculate the magnetic vector
potential A (related to the magnetic field as B = ∇× A) cre-
ated by the plasma current density by solving the differential
equation,

∇× (∇× A) = μ0JP, r � rb, (27)

6



Nucl. Fusion 62 (2022) 126044 G.F. Torija Daza et al

supplemented by two boundary conditions, one at r = ε � 1
and another at r = rb, both of which are evaluated by inte-
grating numerically Biot–Savart’s law from the magnetic
potential,

A(r) =
μ0

4π

∫∫∫
plasma

JP(r′)
|r − r′|dr′. (28)

Equation (27) is solved in toroidal coordinates by applying
various singular-value decomposition techniques to tackle the
difficulties caused by the kernel associated to the curl operator,
and using a spectral-finite differences scheme, similar to the
one used in the GSB solver, that takes advantage of the block
structure of the matrices that describe the discretized problem
[19]. The contribution to the poloidal magnetic flux function,
ψP

b (rb), is computed numerically by exploiting,∫∫
S
B · dS=

∮
γS

A · dl, (29)

where γS represents the boundary of the same toroidal wedges
used for the vacuum calculation. As mentioned, it must be
recalculated at the end of each outer iteration of the free-
plasma-boundary solver.

5. Examples of free-plasma-boundary capabilities
of the code

We will show now some examples selected to illustrate the
plasma-free-boundary capabilities of the code. The magnetic
configuration used for this examples is the baseline config-
uration of the ITER tokamak, with Ip 	 15 MA and Bφ 	
5.3 T. It consists of 18 toroidal coils, 6 poloidal coils and 6
central solenoid modules. In MAKEGRID, each ITER coil is
modelled by means of several filaments that take into account
their geometrical features in detail, as described elsewhere
[20]. The pressure and poloidal current profiles considered are
shown in figure 4. These same profiles will be used for all
calculations in the paper. The process starts by carrying out a
free-boundary-run with the VMEC code, using MAKEGRID
to calculate the vacuum magnetic field created by the coil set.
The VMEC run provides an initial shape of the plasma at
equilibrium (see figure 1) to guide the choice of the control
circle (with minor radius rb = 4.2 m, as shown in red), as well
as values for the magnetic field and the plasma current density
in the absence of plasma flow.

The VMEC equilibrium information is used to build the
boundary condition needed by the GSB solver on the control
circle, ψb(rb), as well as an initial guess for the poloidal
magnetic flux function, that we will label as ψ0(R, Z). The
five profiles needed for the GSB run are chosen in the fol-
lowing way. The pressure P(ψ) and density D(ψ) functions
are assigned from the VMEC pressure profile and the relation
p = ργ . That is, entropy is set to S(ψ) = 1. The plasma edge is
defined by the flux iso-surface for which the pressure vanishes
in the VMEC solution. Outside of this surface, the pressure
no longer follows the functional dependence on ψ, but is
set to a constant, albeit very small value (to avoid problems
when evaluating the auxiliary functions outside of the plasma).
Since there is no gradient of pressure in this outer region, the

Figure 6. Variation of plasma density along various magnetic
surfaces for the ITER equilibria calculated for the various scaling
factors with the ‘(gf)’ toroidal sonic Mach number profile.

Figure 7. Total toroidal plasma current (top) and average plasma β
for each of the ITER equilibria calculated for the various scaling
factors used to scale the toroidal sonic Mach number profiles.

equilibrium solution is insensitive to the actual value used (that
we usually set equal to the smallest pressure value in VMEC’s
radial mesh). Finally, B0(ψ) is also imported from the VMEC

7
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Figure 8. Position of the maximum of the plasma density in the ITER equilibria calculated for the various scaling factors used to vary the
toroidal sonic Mach number profiles.

run. All numerical calculations have been done using a mesh
with Mr = 128 radial points and Nθ = 122 poloidal modes.
The convergence in the spectral dimension is, as expected,
much faster than in the radial direction.

All the examples shown are restricted on purpose to purely
toroidal flows, although our GSB code can also handle poloidal
flows. The reason is that toroidal runs are faster to run,
allow for a more efficient debugging and illustrate the code
capabilities equally well. The cases included here have all
been obtained in a standard desktop computer and each takes
between 6 to 10 h to run, the longest ones corresponding to the
cases where the departure of the equilibrium from the initial
guess is the largest. The four toroidal sonic Mach profiles con-
sidered, chosen solely for illustrative purposes, are shown in
figure 5. The remaining free functions are kept the same. Each
profile is normalized to its maximum and is identified with a
unique label. Two of them, labelled as ‘(gf)’ and ‘(qf)’ have
their maximum at r = 0, with ‘(qf)’ decreasing quadratically
with radius towards the edge, whilst ‘(gf)’ is flat throughout
most of the plasma and suddenly decreases at the very plasma
edge. The other two correspond to profiles with toroidal rota-
tion being only significant near the plasma edge, with ‘(gp)’
being the most peaked of the two. At run time, the selected
Mach number profile is multiplied by a positive global scaling
factor Mtor < 1, so that flows remain subsonic everywhere
in the domain. For each of the profiles considered, we have
made runs using the scaling factors Mtor = 0, 0.2, 0.4, 0.6
and 0.8. Naturally, Mtor = 0 essentially recovers the VMEC
solution, although some minor differences are found due to
the solution being (re)-computed on a different computational
mesh. Indeed, VMEC uses a non-geometrical angle for θ and
the magnetic toroidal flux as radial coordinate, which leads to
worse[better] radial resolution near the magnetic axis[edge],
and a non-uniform angular mesh spacing. These differences
are barely noticeable to the naked eye, though, being of order
(Δr)2 since both codes are second-order accurate in the radial

direction. At non-zero toroidal Mach numbers, the global
macroscopic quantities of the equilibria naturally change a bit
as illustrated in figure 7, that shows the total toroidal plasma
current and the average plasma beta (with β ≡ 2μ0 p/B2 as
usual) as a function of Mtor. The net toroidal plasma current
is reduced as the plasma flow speed is increased, being the
change smaller for profiles with edge-centered rotation and
larger for profile with central rotation (i.e., (gf) and (qf)).
The plasma beta, on the other hand, tends to increase as
the plasma pressure becomes more peaked and its maximum
shifted out towards regions with weaker field, being the effect
again smaller for the edge-centered rotation profiles.

We illustrate now some of the capabilities of the free-
plasma-boundary solver by monitoring and quantifying vari-
ous changes of the ITER baseline equilibria as a function of
the scaling factor Mtor for the various toroidal rotation profiles
considered. Density is no longer a surface quantity in the
presence of plasma flows, as illustrated in figure 6, that shows
the variation of the density across various magnetic surfaces
for various scaling factors using the ‘(gf)’ toroidal sonic Mach
number profile. Thus, a first interesting figure-of-merit is the
position of the maximum of the plasma density in (R − R0, Z)
space, shown in figure 8. As expected, the density maximum is
pushed radially outwards by the centrifugal force associated to
the toroidal rotation. The effect on the density is important if,
at the location of the maximum for no flow, there is significant
rotation. This is indeed the case for the ‘(gf)’ and ‘(qf)’
profiles. On the other hand, for the profiles with significant
toroidal rotation in the outer part of the plasma, the maximum
plasma density barely moves. It is worth to note that, although
it might be argued that shifts of the maximum density are also
observable and quantifiable in fixed-boundary runs, significant
inaccuracies might occur if the plasma flow happens to deform
the plasma boundary significantly with respect to the fixed
boundary assumed.
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Figure 9. Plasma volume of the ITER equilibria calculated for the
various scaling factors used to scale the toroidal sonic Mach number
profiles.

A second figure-of-merit that does require full free-plasma-
boundary capabilities to be evaluated is the determination of
the confined plasma volume. It is calculated as the volume
inside the pressure isosurface that defined the plasma edge in
the VMEC solution. The change of the plasma volume of the
ITER equilibria with Mtor is shown in figure 9 for the four
rotation profiles considered. As with the maximum density
shift, the change is pretty small for the toroidal rotation profiles
confined to the plasma edge, but begins to become significant
for the ‘(gf)’ and ‘(qf)’ profiles at Mtor � 0.4, reaching reduc-
tions of the confined plasma volume as large as 10% and 7%,
respectively, at Mtor = 0.8.

We move now to some figures-of-merit that characterise
instead changes in the magnetic configuration, driven by the
plasma flows, that can only be captured by free-plasma-
boundary simulations. An interesting one is the displacement
(if any) of the X-point at the bottom of the plasma, that sep-
arates the closed flux surfaces to the region where magnetic
lines are open, and permits to uncouple the plasma from the
reactor walls as well as to direct the heat and plasma exhaust
towards the divertor. An illustration of this displacement is
shown in figure 10, that magnifies the region around the X-
point for two runs done using the ‘(gf)’ toroidal sonic Mach
number flow profile for scaling factors Mtor = 0.4 (top frame)
and Mtor = 0.8 (bottom frame). As seen in the figure, the X-
point is displaced about 30 cm upwards and 15 cm to the right
for the Mtor = 0.8 scaling factor with respect to the position
in the absence of flow (show in dashed blue). For the more
moderate rotation, Mtor = 0.4, the displacement of the X-point
is about 8 cm upwards and 5 cm to the right. Values of the
displacements of the X-point have been collected in figure 11
or all the runs considered, showing again that edge rotation has
little effect on the X-point location, whilst the core-centered
torodial rotation profiles lead to significant displacements both
in the vertical (upwards) and radial (outwards) direction, that
always push the X-point away from the divertor, for Mtor � 0.4.

Figure 10. Displacement of the X-point for the ‘(gf)’ toroidal sonic
Mach number flow profile in figure 5 with scaling factors Mtor = 0.4
(top) and Mtor = 0.8 (bottom) relative to the position in the initial
guess (shown in dashed blue).

As a last figure-of-merit, we have also looked at the
change in the position of the magnetic axis, that is shown
for all toroidal rotation profiles in figure 12. Again, this shift
becomesonly significant for core-centered torodial rotation
profiles and Mtor � 0.4. As was the case of the maximum
density shift, it could also be argued here that the magnetic
axis shift could also be captured in fixed-boundary-runs.
But as in that case, significant inaccuracies might occur if
the plasma flow happens to deform the plasma boundary
significantly with respect to the fixed boundary assumed.
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Figure 11. X-point position for the series of ITER equilibria calculated for the various scaling factors used to scale the toroidal sonic Mach
number profiles.

Figure 12. Magnetic axis position for the series of ITER equilibria calculated for the various scaling factors used to scale the toroidal sonic
Mach number profiles.

6. Conclusions

It has been shown that a fixed-boundary solver for the GSB
system of equations can be successfully coupled to a scheme,
initially developed for the calculation of static MHD equilibria
in stellarators, to enable it to efficiently compute free-plasma-
boundary 2D equilibria in the presence of plasma flows. The
key to success is provided by the decoupling of the surface
where the boundary conditions are imposed form the shape
of the plasma edge. Once this is done, tokamak magnetic
configurations with arbitrarily complex coil sets can be easily
treated within the framework by coupling the iterative solver
to the VMEC and MAKEGRID codes.

In its current version, though, the surface where boundary
conditions are imposed must be a circle. This is imposed by
our choice of coordinates. We are fully aware of the fact
that this is inadequate for 2D tokamak configurations with
very elongated plasmas (spherical tokamaks, for instance), for
which it might impossible to trace a circle that leaves all coils

outside and the plasma inside. For that reason, we are already
planning a development of the current code to enable the use
of generalized coordinates instead of the current cylindrical
coordinates. Building on the principles shown to work in this
paper, the idea we will try to pursue is to replace R and θ by
non-standard radial and angular definitions to allow to impose
the boundary conditions on control surfaces of arbitrary shape.
In order to further facilitate the integration with VMEC, we
will explore the use of the same generalized coordinates from
VMEC. Using the toroidal flux (or a function of it) of the
VMEC equilibrium with no plasma flow as a fixed coordinate
system should allow to define control surfaces that closely
follow the shape of the plasma, making possible to draw a
clear separation from the coils, as required by the principles
illustrated in this paper.

Finally, we have shown in this paper that free-plasma-
boundary capabilities opens up some interesting possibilities.
Some have been illustrated in this paper, in which we have
evaluated the effects of various toroidal rotation profiles on the
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plasma and magnetic properties of the ITER baseline Q = 10
plasma scenario, although those are sizeable at Mtor � 0.4,
values which are on the high end of what is expected for ITER.
It is worth noting that the scheme presented is not restricted
to toroidal plasma flows, since the GSB solver deals with
both toroidal and poloidal flows. A similar study to the one
presented here but with poloidal flows is planned for the near
future.
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