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A bottom-up framework for analysing city-scale energy data using high 
dimension reduction techniques 

Waqas Khan *, Shalika Walker, Wim Zeiler 
Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands   
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A B S T R A C T   

Worldwide cities are becoming more sustainable and are being monitored using data collection techniques at 
various geographical levels. Given the growing volume of data, there is a need to identify challenges associated 
with the processing, visualization, and analysis of the generated data from an urban scale. This study proposes a 
framework to investigate the capabilities of dimensionality reduction techniques (t-SNE, and UMAP) applied to 
city-scale data to identify key features of high consumption and generation areas based on building character-
istics. The analysis is performed on measured data from 2735 postcodes consisting of 72000 households/ 
buildings from a city in the Netherlands. The evaluation results showed that the UMAP’s algorithm mean sigma 
quickly approaches a threshold of 0.6 at n_neighbor values of 50 and the low dimensional shape does not change 
with increasing values. Whereas the t-SNE’s mean sigma value increases continuously with the increasing per-
plexity value, implying that t-SNE is significantly more sensitive to the perplexity parameter. The UMAP algo-
rithm was used to extract information about the high photovoltaic generation and consumption regions. The 
proposed framework will assist grid operators and energy planners in extracting information from energy con-
sumption data at the neighbourhood level by utilizing high dimensional reduction techniques.   

1. Introduction 

Countries are increasingly adopting long-term energy planning at the 
city level to reduce urban energy consumption and its associated emis-
sions (Cajot et al., 2017). As the built environment is responsible for 
most of the primary energy use and carbon emissions. Therefore, un-
derstanding building energy use is a crucial component for advancing 
urban sustainability. Measures are needed to be implemented on mul-
tiple levels including energy-efficient appliances, efficient cooling and 
heating systems at the building level, and combined heat and power 
plants on the district-scale (Madlener & Sunak, 2011, Zhang et al., 
2021). While the benefits are numerous, the goals are not easy to ach-
ieve as the distribution of energy demand and resources is rarely uni-
form at neighbourhoods and city levels (Damsgaard et al., 2015). There 
is a lack of understanding of the relationship between the distribution of 
energy systems and different demand characteristics from the building 
scale up to a city scale. 

The built environment now has promising opportunities thanks to 
the development of smart metering infrastructure which measures and 

stores data on a building’s electricity use at an hourly or sub-hourly 
resolution (Park et al., 2020). These electricity consumption datasets 
have the potential to support grid operators and policymakers to make 
informed decisions (Van Aubel & Poll, 2019). Therefore, countries are 
making an effort to collect energy consumption data and make it pub-
licly available through open data platforms. In the Netherlands, more 
than 5.2 million smart meters were installed as of 2018 covering almost 
54% of Dutch households (The Netherlands 2020). Big data from these 
households provide the potential for researchers, and utilities to better 
understand the energy profiles of buildings and utilize this information 
in cutting-edge applications (e.g., intelligent energy management sys-
tems, customer classification, portfolio analysis, and load profiling). 

Big data analytics can be applied to the neighbourhood-scale energy 
consumption data to determine the optimal locations for windmills, 
biomass, and solar power plants as well as energy storage systems to 
negate the demand. It can also assist in understanding the impact of the 
adopted policies such as the promotion of solar panels on building 
rooftops. This data offers many opportunities to aid in the electrical 
transition between the built environment and the grid. 
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Even though big data provide opportunities, these large datasets are 
complicated to analyse. Generally, studying the interactions of variables 
on a larger scale might become more time-consuming and ineffective in 
the smart building’s energy field due to the increasing dimensions of 
data. The datasets can be highly disaggregated and can span multiple 
spatial levels from a single block to an entire neighbourhood or district. 
This significantly decreases the ability to extract information from the 
available energy data. Traditional tools and methods make it difficult to 
derive valuable insights from these continuously growing energy data-
bases (Madlener & Sunak, 2011). High dimensional energy data sets are 
also often unstructured and noisy which makes it more difficult to apply 
appropriate data mining techniques. There is no general analytical 
approach that can provide insight into such problems. As algorithm 
tends to be problem and data specific. Therefore, there is a need to 
develop techniques to monitor and quantify changes in urban energy use 
patterns specifically from the perspective of high-dimensional data. 

Understanding the energy use dynamics on neighbourhood scale is 
important for energy policy makers and city planners. It enables them to 
understand the energy use across the morphological contour of a city 
and provide contextual awareness for better allocating the resources and 
targeting policy measure to reduce overall consumption. 

1.1. Review of the current literature 

Previous studies have shown that data-driven machine learning and 
artificial intelligence techniques can make information extraction more 
efficient (Wang et al., 2014; Chen et al., 2018). They have adopted data 
mining techniques successfully for energy prediction (Sun et al., 2020; 
Khan et al., 2022), optimization and control (Barber & Krarti, 2022; 
Wang & Hong, 2020; Lee & Heo, 2022), classification (The Netherlands, 
2020), occupancy detection (Rueda et al., 2020), thermal comfort 
(Ngarambe et al., 2020), fault detection and diagnosis (Zhao et al., 
2020), and monitoring (Chen et al., 2018). These studies have focused 
on the evaluation and development of these models in an individual 
approach mainly on the building level and with a minor focus on the 
neighbourhood or city scale. 

The available literature on neighbourhood scale analysis is 
comprised of two categories, namely, bottom-up and top-down ap-
proaches (Wei et al., 2018). The Bottom-up approach considers and 
aggregates individual building parameters at different modelling scales 
to extract relevant information. Whereas the top-down approach em-
ploys statistical data on the macro-level to determine energy behaviour. 
The top-down approaches represent the entire building block as a single 
unit for analysis purposes. While top-down approaches are easily 
implementable for a broad-scale analysis, bottom-up approaches can 
help identify valuable parameters for identifying focused neighbour-
hoods or regions in different spatial levels. The bottom-up approach has 
shown to be excellent for in-depth analysis based on current studies 
(Hong et al., 2020; Torabi Moghadam et al., 2017). Some studies have 
used data-driven models on a city scale to predict the energy use in 
buildings (Kontokosta & Tull, 2017), the impact on energy consumption 
due to residential density (Damsgaard et al., 2015), and discovering 
regions of different functions (e.g., educational areas, entertainment 
areas, and regions of historical interests) in a city (Wang & Hong, 2020) 

From these neighbourhood-level bottom-up studies, only a few 
studies evaluated in detail the impact of other parameters on the energy 
demand of cities with real datasets. Most studies use linear approaches 
using simulated data to understand neighbourhood level data. The au-
thors in (Brownsword et al., 2005) adopted a linear programming 
approach and utilized a wide typology to categorize urban energy 
"consumers," dividing the city into residential, commercial, and indus-
trial applications in small, medium, and large size bins. While the au-
thors’ stated that the goal is for the model to be replicable, this method 
ignores the impact of these features on energy use. The authors in 
(Heiple & Sailor, 2008) attempted to simulate and scale-up building 
level estimation of the entire city of Houston, Texas using prototype 

buildings. The inclusion of prototypical buildings creates a significant 
error in the prediction, as the estimation adds up uncertainty in the 
prototype buildings and it is not comparable to real buildings. The 
simulated and actual energy consumption of building usually differ due 
to the characteristic and consumption pattern of buildings (Aranda 
et al., 2018). Building energy consumption is also dependent on user 
behaviour that can add more uncertainty to the real data and simula-
tions are not able to take that into account. The predictive power of the 
citywide model is also limited due to a lack of data on actual energy use 
at the building level and building features. 

Kontokosta (Kontokosta, 2015) investigated the causes of commer-
cial building energy consumption across buildings, systems, geographic, 
and occupancy factors on actual building energy usage data for over 20, 
000 structures in New York City. The author uses a multivariate 
regression model to discover that a building’s annual total energy con-
sumption and intensity are influenced by its size, age, usage, occupancy 
characteristics, construction type, and proximity to other buildings. The 
study indicates that relationships between parameters exhibit different 
patterns within different building classifications, and the assumption of 
linear correlations between variables often fails. 

In (Zarco-Periñán et al., 2021) the authors segmented cities based on 
density into five groups. They investigated the thermal and electrical 
consumption for each group based on the density of inhabitants. The 
findings obtained on consumption per household showed that the higher 
consumption is in the densely populated cities, except for four cities, in 
which consumption decreases slightly compared to the other groups. 
Furthermore, in the case of thermal consumption, they got varied results 
for different groups of cities. Their approach only provides the base 
information and is unable to link additional parameters to discover any 
connections between the underlying reasons for the variations. 

1.2. Problem identification 

The majority of previous work relies on techniques that uses simu-
lated data for neighbourhood level energy data analysis approaches 
(Hong et al., 2000; Ferrando et al., 2020). There is also a lack of focus on 
evaluating the consistency of algorithms and generalizing their results 
for extracting information from high dimensional data. Moreover, many 
of these data-driven models used for analysing neighbourhood and city 
scale data evaluated linear regression models or individual visual in-
spection of the parameters (Aranda et al., 2018). With the increasing 
number of variables, the uncertainty and complexity of the data are 
increasing. It is difficult to understand and interpret the fundamental 
behaviour of the condition being observed through user exploration of 
big-time series data. There is a need to minimize the dimensionality of 
the data by reducing the number of variables or features and focusing on 
a lower-dimensional subspace that captures the essence of the data to 
provide adequate information and insights at different spatial levels. 

Non-linear dimensionality reduction techniques are used in other 
fields to avoid the problem of overcrowding and to extract valuable 
information from high-dimensional data (ABC, 2022). Specifically, the 
t-Distributed Stochastic Neighbour Embedding (t-SNE) (van der Maaten 
& Hinton, 2008) and Uniform manifold approximation and projection 
(UMAP) (McInnes et al., 2020) algorithms are the most commonly used 
techniques in the literature for different applications (ABC, 2022). Both 
these techniques have certain limitations and advantages. The relative 
behaviour of the techniques is different in other fields and needs to be 
evaluated in detail for the building energy data (van der Maaten & 
Hinton, 2008). 

To the best of the authors knowledge, high dimensional data on 
building energy data is not analysed on a neighbourhood scale due to its 
size and its nonlinear nature. There is also lack of focus on a complete 
framework development from the data pre-processing to post mining of 
the data. Moreover, dimensionality reduction techniques are barely used 
in the literature for the visual inspection of neighbourhood scale energy 
data mining specifically linking building use characteristics with the 
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energy data. This work aims to fill the identified research gaps with the 
following objectives: 

■ Explore the emerging need for high dimensional reduction tech-
niques for visual analysis of building characteristics and energy data  

■ Evaluate the key high-dimensional reduction methods to analyse 
building energy data at a neighbourhood or city scale and the in-
sights that this unsupervised workflow can provide  

■ Cross-compare the applications, strengths, and limitations of the 
selected methods and find the best way to characterise low- 
dimensional behaviour  

■ Provide confirmatory procedure for the obtained results 

These objectives are achieved by developing a framework to evaluate 
high-dimensional analysis techniques. The used framework can indicate 
the relationship between variables (for example building energy con-
sumption and building characteristics). This work will provide a meth-
odological contribution to the existing literature on urban energy 
analysis and planning from three perspectives. First, this work aims to 
present a framework that can establish the relationship between the 
urban energy consumption profile with the building characteristics to 
investigate possible trade-offs and interactions that have not yet been 
sufficiently explored. Second, it explores non-linear dimensionality 
reduction techniques from the perspective of local and global preser-
vation that is seldomly used in the literature. Third the framework will 
provide logic behind the mapping of dimensionality reduction to 
confirm the validity of the obtained results. 

The framework will have the potential for energy system to analyse 
data in a neighbourhood-based approach in a spatial context. The 
research will provide the basis for exploring urban energy data on a 
neighbourhood level to support informed interventions, suggest strate-
gies, and identify priorities and the most suitable location for zero- 
energy neighbourhoods and district developments. 

The rest of the paper is organized as follows. Section 2 introduces the 
proposed framework and the sub-steps required which includes the 
introduction of the case study, the proposed methods, and evaluation 
techniques. Sections 3 and 4 provide the evaluation results of the 
framework and discuss the outcomes in detail. Section 5 focuses on 
summarizing the overall outcome of this research. 

2. Description of the proposed framework 

The flow diagram of the proposed framework is shown in Fig. 1. The 

flow diagram is divided into four steps based on different outcomes of 
this work and a more detailed description of each step is provided.  

■ Step 1 provides the details about the data collection and pre- 
processing phase. Here, the data is cleaned and manipulated for 
the functioning of the next steps.  

■ Step 2 focuses on the visual analysis of the original data and the 
evaluation of input features using feature correlation and normality 
test 

■ Step 3 evaluates and compares high-dimensional reduction tech-
niques based on the ability of global shape preservation and 
reusability.  

■ Step 4 extracts high consumption and generation regions of interest 
and uses feature association to underline the relevance of the 
extracted features. 

2.1. Data acquisition and pre-processing 

This section describes the data collection and pre-processing steps 
used in this study. Fig. 2 presents the flow diagram of this phase. The 
neighbourhood scale energy data collection process for a whole city is 
time intrinsic and difficult due to privacy issues. However, it was made 
possible due to different open-source public datasets and the project 
partner. A city in the Netherlands is used as the case study in this 
research with the year 2020 as the reference period. The city wants to be 
energy neutral by 2044 and explore new ways to reduce its energy 
consumption and implement sustainable energy sources. As a result, the 
city has started taking initiatives, such as giving incentives for the 
installation of solar panels and installing large-scale photovoltaics and 
wind turbines in business parks. The city officials have also joined forces 
with individuals, businesses, and research institutes to highlight focused 
areas to encourage new efforts to further reduce carbon emissions. In 
this context, it was of high interest for them to explore new ways of 
extracting information from the neighbourhood scale energy data. 

2.1.1. Data collection 
This paper uses a bottom-up approach and combines datasets from 

several sources as neighbourhood scale energy datasets are not publicly 
available. Smart meters and services data for households are obtained 
from two different sources. The smart meter data is obtained from the 
energy provider in the city. The spatial dimension is based on the ag-
gregation of household data per postcode. The data is aggregated for a 

Fig. 1. A flow diagram of the proposed framework.  
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minimum of 10 connections based on the postcode. If a postcode has a 
smaller number of connections, they are aggregated with another 
postcode’s data. 

Building service data are based on the Centraal Bureau voor de 
Statistiek (CBS) Netherlands (voor de Statistiek, 2022). This is a publicly 
available resource that provides detailed service-based data per house-
hold’s functionality. The individual smart meter data and neighbour-
hood level are protected by privacy laws; therefore, the scale of the data 
is described using a categorical threshold using low, medium, high, and 
very high based on the capacity of the variable in the visualisation 
phase. 

2.1.2. Data pre-processing 
The main data pre-processing step in this phase is cleaning, which 

includes removing missing data and duplicating neighbourhood and 
household data depending on the postcode for both datasets. Following 
data cleaning, both datasets are made compatible to be easily merged. 
However, before making the individual household’s service and aggre-
gated smart meter data compatible the following pre-processing is per-
formed on the individual datasets: 

■ For each postcode, the self-production is collected in delivery per-
centages, where 100% means that no energy was given back to the 
grid. Actual self-production is calculated from delivery percentage 
and annual consumption.  

■ The building characteristic dataset registered the households into 9 
main classes based on their functional purpose. However, some 
households or buildings are registered as mixed entities. For 
instance, a single building can accommodate multiple functional 
entities e.g., a single office building can be used by multiple com-
panies, that are all registered at the same address. For analysis pur-
poses, the buildings are classified into three main subclasses: 
“Residential”, “Non-residential”, and “Mixed” building types. 

The aggregated smart meter data is then combined with building 
characteristic data based on postcode to make the datasets compatible 
for use in subsequent phases of the research. The result is a combination 
of two mutually compatible datasets that describe the aggregated spatial 

energy smart meter data of 72000 households and services in 2736 
neighbourhoods. The neighbourhoods refer to each of the postcodes. 
The combined spatial dimension dataset consists of 8 variables 
describing different energy and demographic attributes of a neigh-
bourhood namely “Number of connections (Number of houses/buildings 
connected to the grid)”, “Consumption”, “Self-production (PV genera-
tion given back to the grid)”, “Smart meter percentage”, “Annual 
consume low tariff (Consumption during non-peak hours)”, “Residen-
tial”, “Non-residential”, and “Mixed”. Each of the parameters is impor-
tant in studying different applications of the energy transition. For 
instance, the “Number of connections” parameter is important in spec-
ifying the number of households/buildings connected to the grid in a 
neighbourhood. The “Annual consume low tariff” can assist in investi-
gating whether people are using more energy during the off-peak hours 
to reduce their energy bills. 

2.2. Exploratory analysis 

2.2.1. Data mapping 
Following the data collection and pre-processing, data mapping is 

used to visualise the different high-dimensional parameters of the city 
individually. The data visualisation is based on the longitude and lati-
tude data that is linked with the postcode data. The amount of data 
points is very large based on the neighbourhoods which can result in an 
overlapping cluttered representation that does not effectively inform 
about the density and the structure of points. Hexagonal binning is used 
for visualizing data with a more implied structured gesture (Lewin-Koh, 
2021). Instead of rendering a scatterplot of thousands of points, hex-
binning the points into a few hundred hexagons can imply general dis-
tribution. The city map visualised based on a hexagon tessellation 
constructed over a specific region for the overlapping neighbourhoods 
can result in a clear visualisation. The number of neighbourhood data 
points falling in each hexagon is counted and stored in a data structure. 
The hexagons are represented by the average colour from all the data 
points using a colour gradient. As colours are represented numerically in 
computers. The intensity of the variables falling in a specific hexagon 
can be represented by the average numerical value. The use of a hexagon 
tessellation at such a spatial resolution has a long history in spatial 

Fig. 2. Flow diagram of the data gathering and pre-processing phase. The gathered data contain two datasets: (1) smart meter aggregated data of households based 
on postcodes(neighbourhoods) (2) individual household registration data of the number of households and services in 2736 neighbourhoods. Two data processing 
steps are described. First, for the smart meter data, self-production is calculated for each of the neighbourhoods from delivery percentage and annual consumption. 
Second, the service-based household data is classified into three main classes based on functionality. A single dataset of mutual neighbourhood level is created. 
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analysis and is supported by similar urban analyses (Burdziej, 2019). An 
example of the overlapping hexagon scatter plot by hexbinning can be 
observed in Fig. 3. 

To link the neighbourhood data with the geographical distribution of 
the city, a base map is added to the hexagonal representation (ABC, 
2022). The term "base map" refers to a collection of geographic data that 
serves as the mapping background. A base map serves as a background 
for other layers that are superimposed on top of it. Base maps are used to 
locate city characteristics that do not change frequently, such as roads, 
highways, rivers, and boundaries. This information is usually contained 
in a base map, and then extra layers with specific data from a specific 
discipline are overlaid on top of the base map layers for analysis pur-
poses. The base map is added to the visual inspection of the aggregated 
energy and building characteristics data for comparison purposes. 

2.2.2. Data validation test 
The data validation test plays an important role in the selection of 

high-dimensional data reduction techniques. Several models are built on 
the assumption that the data variables have a normal distribution and 
are linearly related. For this reason, the linearity between variables is 
evaluated using the Pearson correlation method (Berman, 2018) which 
measures the strength of linear association between variables. 

Following the correlation analysis, the Anderson-Darling Test is 
employed to evaluate whether a data sample comes from a normal 
distribution due to its capability of returning a list of critical values 
rather than a single p-value (Nelson, 1998). This test is used to assess the 
distribution of a dataset acknowledged by many researchers (Jäntschi & 
Bolboacă, 2018). This test provides a basis for a more thorough inter-
pretation of the obtained results. 

The critical values in the test are at a range of pre-defined signifi-
cance boundaries at which the formulated hypothesis can be rejected. 
The critical values depend on the distribution the data is tested against. 
This test works for normal, logistic, exponential or Gumbel distributions. 
The critical values for a normal distribution are based on the significance 
level of 1, 2, 5, 10 and 15 per cent (ABC, 2022). 

The two hypotheses formulated for the normal distribution test are:  

■ H0: The data follows the normal distribution  
■ H1: The data do not follow the normal distribution 

The hypothesis that the distribution is of a specific form is rejected if 
the test statistic value is greater than the critical value. 

Based on the results of the Pearson correlation and Anderson Darling 
test, the selection of linear or nonlinear high dimensional reduction 
techniques can be made. If data variables have a linear relationship and 
follow a normal distribution, linear dimensionality reduction techniques 

can be used, and vice versa. 

2.3. Dimensionality reduction 

Dimensionality reduction (DR) is one of the main techniques for 
reducing redundant features, and analysing high-dimensional data 
(Vachharajani & Pandya, 2022) to improve the model’s feature learning 
accuracy. This is achieved by adjusting an objective function by 
exploiting redundancy between variables and producing a reduced new 
set of variables. It can be defined as a set of techniques that map 
high-dimensional datasets to a low-dimensional subspace while retain-
ing as much original information as possible from the original data. They 
can also help in identifying the most relevant feature for further research 
or data representation. Dimension reduction techniques are mainly 
divided into two major categories: linear dimension reduction and 
nonlinear dimension reduction (manifold learning).  

• The linear reduction techniques use linear transformation to project 
the data from high-dimensional to lower-dimensional space. Prin-
cipal component analysis (PCA) is one of the most popular linear 
dimensional reduction algorithms used in the literature (El Bouche-
fry & de Souza, 2020). PCA reduce the dimensionality of data that is 
highly correlated by transforming the original data to a new set 
which is known as the principal components (eigenvectors). PCA 
extracts the low dimensional axes by reorienting the high dimen-
sional data by maximizing the variance of the variable.  

• The non-linear dimensional reduction techniques use manifold 
learning to project the data from high dimensions to lower- 
dimensional space. The most popular non-linear dimensionality 
reduction techniques are t-SNE and UMAP (Jiale & Ying, 2020). 

In recent years, machine learning algorithms such as the t-SNE al-
gorithm and the UMAP algorithm have become especially popular 
(Demidova & Stepanov, 2020; Pal & Sharma, 2020). The focus of this 
research is mostly on non-linear dimensional reduction techniques for 
building energy data due to its complexity and nonlinear nature 
described in more detail in Section 3.2. 

2.3.1. t-SNE 
t-SNE is a non-linear dimensionality reduction technique proposed 

by van der Maaten and Hinton for high-dimensional scaling in 2008 
(van der Maaten & Hinton, 2008). It is widely used in genome data 
(Kobak & Berens, 2019), hyperspectral imaging analysis (Pouyet et al., 
2018), and word processing (van der Maaten & Hinton, 2008) for the 
reduction and visualisation of high-dimensional datasets. This technique 
is popular due to its exceptional ability to scale high-dimensional data to 

Fig. 3. Illustration of scatter points on top of each other (left) and hexbinning representation (right).  
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lower dimensions. 
The algorithm calculates the Euclidian distances of each point from 

all the other points. Then, take these distances and start determining the 
conditional probability of similarity of points in high-dimensional space. 
Let’s consider a data set that contains n samples x1, . . ., xn. The goal is to 
find a low dimensional mapping points y1, . . ., yn. The conditional 
probability of a point xⱼ given xᵢ can be mathematically calculated in the 
following way (van der Maaten and Hinton, 2008): 

pj|i =
exp(− ‖Xi − Xj‖

2/2σ2
i )

∑
k∕=iexp(− ‖Xi − Xk‖2/2σ2

i )
(1)  

Where xk is the random projection of point xᵢ. The probability of point xⱼ 
to be next to point xᵢ is represented by a Gaussian cantered at xᵢ with a 
standard deviation of σᵢ. The σᵢ is controlled with the predefined 
parameter; perplexity (van der Maaten & Hinton, 2008). The σᵢ is 
important in finding the optimum for the model to converge and vary 
with the perplexity parameter. 

These conditional probabilities are symmetrized to obtain joint 
probabilities defined as (van der Maaten & Hinton, 2008) 

pij =
pi|j + pj|i

2n
(2)  

Where n represents the total size of the dataset. 
In the next step, the t-SNE employs the student t-distribution (van der 

Maaten & Hinton, 2008) with a single degree of freedom to avoid 
overcrowding. A t-distribution curve is like a normal distribution; 
however, it is shorter and has a fatter tail. With this distribution, it 
calculates the probability of similarity of points in the corresponding 
low-dimensional space. The t-SNE calculates the similarity probability 
distribution qij as (van der Maaten & Hinton, 2008) 

qij =

1
1+‖yi − yj‖2

∑
k∕=l

1
1+‖yk − yl‖2

(3) 

It then tries to minimize the difference between these conditional 
probabilities (pij and qij) in higher and lower-dimensional space for a 
perfect representation of data points in lower-dimensional space. The t- 
SNE measure the similarity between two probability distributions using 
the Kullback-Leibler divergence cost function (KL) (Kingman, 1970) and 
is given by (van der Maaten & Hinton, 2008) 

KL (P|Q) =
∑

i,j
pijlog

pij

qij
(4)  

Where P and Q are the distributions for pij and qij in the high and low 
dimensional space respectively. 

After calculating the two probability distributions describing the 
high and low dimensional space. The cost function is optimized using 
gradient descent. The t-SNE method uses the Barnes-hut approximation 
method as a gradient calculation algorithm (ABC, 2022; van der 
Maaten, 2014) and it approximates the gradient at each iteration to 
adapt to the data. The Barnes-hut method is significantly more scalable. 
It can embed thousands of data points before becoming computationally 
intensive. 

The t-SNE also performs a binary search for the values of σᵢ resulting 
in a value of pi with user-specified perplexity value which is defined as 
(van der Maaten & Hinton, 2008) 

Perplexity(pi) = 2H(pi) (5)  

Where H (pi) is Shannon’s entropy of pi measured in bits. 

H(pi) =
∑

j
pj|ilog2pj|i (6) 

In this way, t-SNE maps the high-dimensional data to a lower- 
dimensional space and attempts to extract information from the data 

by extracting observed clusters based on similarity from data with 
multiple features. However, after this process, the data is no longer 
identifiable, and any inference based only on the output of t-SNE cannot 
be made. Therefore, it is mainly a data reduction and exploration 
technique. For the detailed working of the t-SNE algorithm, the readers 
are referred to (van der Maaten & Hinton, 2008). 

2.3.2. UMAP 
UMAP is a nonlinear dimensionality reduction technique (McInnes 

et al., 2020) similar to t-SNE that can be used to reduce high dimensional 
data. UMAP generates a low-dimensional graph of data that preserves 
the cluster representations of the high-dimensional data and their rela-
tionship to each other (McInnes et al., 2020). Unlike t-SNE, UMAP can 
better preserve the global structure of the input data in the 
low-dimensional space. In the t-SNE representations of low dimensional 
data, the within-cluster distances are meaningful for determining the 
similarity of data, but the distances between clusters are not guaranteed 
to be significant. This improvement is critical because real-time data 
clustering relies on the separation of data in the low-dimensional space 
to find meaningful relationships. 

UMAP can be divided into three major steps as illustrated in Fig. 4:  

a) Calculation of distance of high dimensional points  
b) Construction of a high-dimensional graph from the data  
c) Mapping to a low-dimensional representation 

The first step in UMAP is the calculation of distances between each 
pair of high-dimensional points and the second step focus on plotting the 
distances on a graph. The points that are far away from the initial point 
will be plotted further away on the graph. This is done by drawing a 
curve over the data to calculate the similarity scores. The high dimen-
sional data points similarity score (HSS) is calculated using the following 
equation: 

∑k

j=1
exp

(
− max

(
0, d

(
xi,xij

)
− pi

)
)

σi

)

= log2k (7)  

Where pi is the distance to the first nearest neighbour from the point xi 
raw data, d(xi,xij ) is the distance between xi and xj and σ specifies the 
shape of the curve drawn, similar to the perplexity in t-SNE. The σ de-
pends on n-neighbour’s parameter that is specified beforehand. UMAP 
scales the curves by changing the sigma value so that regardless of how 
close or far the neighbouring points are, the sum of the similarity scores 
will be equal to the specified log2(number of neighbours). After the 
similarity score calculation, UMAP initializes a low-dimensional graph. 
UMAP uses spectral embedding to initialize the low dimension graph to 
place the points closer to each other in the same low dimensional clus-
ters as the high dimensional visualisation. UMAP randomly select a pair 
of points based on probabilities in a cluster, proportional to their high- 
dimensional score. UMAP again calculates low-dimensional similarity 
scores however instead of using a variety of curves like the high- 
dimensional data, the low-dimensional similarity scores come from a 
fixed bell-shaped curve that is derived from a t-distribution (van der 
Maaten & Hinton, 2008). UMAP uses the following equation to calculate 
the low- dimensional similarity scores (LSS) (McInnes et al., 2020; Jiale 
& Ying, 2020): 

LSS = 1 + ∝d2β (7)  

Where d is the distance between two low dimensional points and α and β 
are by default set to 1.93 and 0.79 respectively (Jiale & Ying, 2020). The 
α and β values can be modified with user-defined parameters for the 
minimum distance between low dimensional points and their spread. It 
gives more control over how tightly low-dimensional points end up. 
UMAP uses Stochastic gradient descent to find the optimal 
low-dimensional graph. Here the basic details of the functioning of 
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UMAP are provided however for a complete description of the UMAP 
algorithm, please see (Jiale and Ying, 2020). 

2.3.3. Comparison between t-SNE And UMAP 
In this study, the non-linear dimensionality reduction methods t-SNE 

and UMAP have been used. Although both these algorithms are useful in 
their way, there are certain advantages and limitations of these algo-
rithms. The t-SNE algorithm has an issue in mapping data that leads to 
potentially misleading results (ABC, 2022). The cost function in Eq. (4). 
used by the t-SNE algorithm only preserves the local structure of the 
data, while not maintaining the global structure which can lead to false 
intuitions (ABC, 2022). On the other hand, UMAP can preserve more of 
the global structure compared to the t-SNE. The main reason why the 
t-SNE does not preserve global structure is also linked with its random 
initialisation. UMAP uses a Laplacian Eigenmap for initialisation 
(McInnes et al., 2020) that leads to the preservation of a more global 
structure. 

It is also possible in t-SNE algorithm to increase the perplexity value 
to an extent that the algorithm considers more neighbouring points that 
could lead to the preservation of the global structure. As a result, t-SNE 
and UMAP may act similarly in this regard. However, at a very large 
perplexity value t-SNE start behaving like a multi-dimensional scaling 
algorithm (ABC, 2022). Therefore, the t-SNE algorithm shows only 
linear global structures that are not well suited for non-linear real-world 
data. 

On the other hand, UMAP uses cross-entropy in the cost function that 
enables large penalties if small distances between data points are map-
ped to large distances in the low dimensional representation or vice 
versa. This guarantees that data points that were similar in the original 
high-dimensional space would stay similar in the low-dimensional 
embedding (see Fig. 4). As a result, in the low-dimensional embed-
ding, the UMAP technique will maintain more of the high-dimensional 
global structure. 

Another disadvantage of the random initialization of the t-SNE al-
gorithm is its lack of reusability. It means that running t-SNE on the same 
dataset twice will result in different low dimensional data initialization. 
This generally decreases the reproducibility of the obtained results. 

Despite all the arguments, the main reason for the different ways of t- 
SNE and UMAP global structure preservation is the approach employed 
to solve the minimization of the cost function. While t-SNE uses gradient 
descent, UMAP employs stochastic gradient descent. The gradient is 
computed only for a subset of the total dataset in the latter. This im-
proves overall processing speed while lowering memory use. However, 
adopting this method has the disadvantage of a lower convergence rate 
than using normal gradient descent. Overall, UMAP outperforms t-SNE 
in terms of speed, mathematical background, global structure preser-
vation, and memory consumption. 

2.4. Identification and validation 

This section aims to evaluate and validate the results of high- 
dimensional visualisation algorithms. The first part focus on identi-
fying the density of regions with high consumption and self-production 
from the perspective of residential, non-residential, and mixed build-
ings. The second part focuses on the validation of the obtained results by 
extracting the feature correlation from the obtained high-dimensional 
representation. 

2.4.1. High variation regions identification 
Extraction of regions with similar patterns is an essential task of high 

dimensional reduction techniques. Similarity identification helps in 
understanding the overall trend in a data. If dimensionality reduction 
can find similar patterns in a dataset, we can identify the underlying 
relationship for that specific area. Clustering is used in the literature on 
the obtained target variable from the high dimensional reduction tech-
niques to group similar points together (Yang et al., 2021). Clustering 
classifies data into groups to discover latent features within each group. 
A good cluster visualization allows the user to visualize groups of data 
points easily. There should be enough space between the groups in 
scatter plots such that points in the same group are closer to each other 
than those in other groups. 

However, the problem with high dimensional reduction techniques is 
that they do not preserve density or distance (Nguyen & Holmes, 2019). 
They only preserve the nearest neighbour’s points structure to some 
extent. The distinction is very subtle, but it has an impact on the result of 
distance- or a density-based algorithm like k-means. While clustering 
can sometimes work, it’s impossible to know whether the discovered 
"clusters" are actual or just dimensionality reduction. To tackle this 
problem, the obtained target variables from the high dimensional 
reduction technique are mapped (coloured) with the original data var-
iables in this research. 

This visualisation will help in understanding the relations of the 
input data with the clustered points in the low dimensional space. 
Mapping the low-dimensional data with the target variables will result 
in an accurate estimation of the high-dimensional features. The regions 
are then extracted based on the intensity of the important parameters 
(high self-production and consumption areas) for further evaluation. 

2.4.2. Feature importance 
Following the identification of the potential regions, the proposed 

workflow proceeds to use feature importance. It is a highly relevant task 
in data-driven information discovery techniques. Feature importance is 
used to describe what each region represents in the context of the input 
data. As high dimensional visualisation techniques cluster similar points 
in a similar location, the association of the input parameters is important 
in placing points closer to each other. Several parametric and non- 
parametric measures are used in the literature for association such as 

Fig. 4. UMAP algorithm working principle graphical representation  
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Pearson correlation, linear regression and mutual information score etc 
(Song et al., 2012). 

In this research, the Maximal information coefficient (MIC) is 
employed due to its ability to measure the linear and non-linear asso-
ciation between the input variables and the obtained low-dimensional 
target variables (Reshef et al., 2011). This method is used due to its 
superiority in capturing a wide range of relationships between variables 
(Reshef et al., 2011). It is based on concepts from mutual information 
theory. It ranges from 0 to 1, with 0 indicating independence and 1 
indicating a noiseless functional association. The purpose of MIC is 
equitability: regardless of the type of relationship, similar scores will be 
seen in relationships with equal noise levels. As a result, finding a 
smaller group of the strongest connections may be particularly valuable 
in high-dimensional contexts. Whereas distance correlation may be 
better at detecting the presence of dependencies, the MIC is more geared 
toward assessing the strength and detecting patterns that might other-
wise be missed by visual inspection (Reshef et al., 2011). 

Feature importance can help in identifying the influencing parame-
ters on the local demand characteristics from a large subset for further 
evaluation from a large number of variables. It will make the high- 
dimensional problem more concise and help other in comprehending 
the problem better. 

2.5. Software environment 

All the models in this study are developed using python version 
3.8.12 in the Spyder development environment. Data mapping is done 
using matplotlib version 3.5.0. Contextily package is used to retrieve the 
tile base maps. The base map is used for data mapping with the mat-
plotlib figures (ABC, 2022). 

The t-SNE algorithm is implemented in Scikit-learn version 1.0.2 
(ABC, 2022). The UMAP algorithm is implemented from the original 
GitHub repository by McInnes (McInnes, 2022). The mean sigma for the 
t-SNE and UMAP algorithm is evaluated from the work of Oskolkov 
(Oskolkov, 2022) on the energy dataset. The maximal information score 
for the feature importance evaluation is implemented from the original 
GitHub repository by Albanese et al (ABC 2022; Albanese et al., 2013). 

3. Results 

The following subsection focus on the implementation of the pro-
posed framework in Section 2. Each of the subsections explains the 

findings of the applied framework in detail. 

3.1. Data visualisation using mapping 

In the first phase of the project, data mapping is used to visualise all 
the variables individually presented in Fig. 5. This visualisation is per-
formed to provide an initial assessment of the high-dimensional data. 
The data intensity is anonymized due to privacy issues and is divided 
into four categories from low to very high. The data points are plotted on 
top of a base map of the city. The x and y-axis represent the longitude 
and latitude information based on the postcodes. The data points are 
aggregated and visualised as hex bins due to the large amounts of 
overlapping data points. Based on a preliminary analysis of the variable 
it is difficult to find any relation between the consumption and self- 
production with the other variables (number of connections, low-tariff 
consumption, smart meters percentage, residential, non-residential 
and mixed). There may be no visible relationship between variables, 
but they may be dependent. Also, as the amount of data point is very 
high visual analysis does not return any meaningful results. 

Some general observations can be made that the consumption is 
higher in the city centre, whereas the self-production is higher more on 
the outskirts of the city. The non-residential building characteristics do 
not show any association with the high consumption or self-production 
areas. The smart meter percentage and annual low tariff consumption 
are almost identical in all the neighbourhoods except the city centre. 
Both these features could also be highly correlated to each other and 
may not be of any additional information for the objective of this study 
which is to evaluate the building characteristic effects on overall con-
sumption and self-production. 

3.2. Data validation test 

After the initial data exploration, the data variables are evaluated to 
select the appropriate class of high dimensional techniques. The high 
dimensional data is evaluated using the correlation analysis and 
Anderson-Darling Test. Table 1 presents the correlation coefficient 
values of all the variables with each other. There is almost no linear 
correlation of the parameters with the consumption and self-production 
except for the non-residential buildings which show a slight correlation 
with the consumption data. Overall, the correlation analysis shows that 
there is no linear relationship between most of the parameters. How-
ever, this simple statistical analysis does not provide any significant 

Fig. 5. Original data variables mapping using Hex Binning and adding base map for initial visual analysis.  
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detail. This coefficient is not a perfect indicator of data distribution; it 
just detects the linear correlation. However, it is an easy way to calculate 
the dependency among variables. 

To investigate the distribution of the data, the Anderson Darling test 
is applied in this research. Table 2 provides the critical values at the pre- 
defined significance boundaries. The critical values are similar for all the 
variables because of the same sample size. To check if the test findings 
are significant, the statistic value is compared to the critical value. If the 
test statistic value is greater than the critical value, the results are sig-
nificant, and the data distribution is not normal. The test results are 
significant for all variables, and the data distribution for the variables is 
not normal regardless of the degree of significance chosen. The H0 hy-
pothesis (normal data distribution) can be rejected. 

The correlation and the data distribution test show that there is 
almost no correlation between the parameters and the data distribution 
is not normal implying that using linear high dimension reduction 
techniques will not generate clear results. Techniques like PCA reduce 
the dimensionality of data that is highly correlated by transforming the 
original data into target variables to retain as much information as 
possible. Due to the non-linearity and non-normal distribution of the 
energy dataset this research mostly focused on evaluating non-linear 
reduction techniques to represent the data in low dimensional space. 

3.3. High dimensional reduction algorithms comparison 

This section compares the results of the t-SNE and UMAP algorithm 
in the context of global structure preservation and reusability. Both al-
gorithms are used to map high-dimensional input data to low- 
dimensional 2D space. The algorithms are evaluated for different 
values of the hyperparameters of t-SNE and UMAP: perplexity and n- 
neighbours respectively. These hyperparameters define the balance 
between local and global aspects of the data. Fig. 6 and Fig. 7 show the 
obtained results for both algorithms. In the reduced representation, the 
coordinate axis of UMAP and t-SNE algorithms have no significant 
relevance, however, they are included in the representation to identify 

high consumption and self-production regions in the next phase. 
From Fig. 6 it can be observed that the low dimensional represen-

tation by the t-SNE algorithm is not consistent, and the point repre-
sentation change with each value of the perplexity parameter. 

On the other hand, the low dimensional representation by UMAP in 
Fig. 7 shows consistent results after the n-neighbours value of 50. After 
that the increase in “n_neighbours” value is making the data point’s 
getting closer to each other without affecting the overall shape of the 
low dimensional space. 

In both techniques, the mean sigma (σ) parameter is mainly 
responsible for deciding how much data points can feel each other. The 
means sigma value is based on the hyperparameters of t-SNE and UMAP: 
the perplexity and neighbours respectively that decide the presence of 
its closest neighbours. It is possible to evaluate how the mean sigma 
value changes with different hyperparameter values for both algorithms. 
Fig. 8 shows the mean sigma dependency on the perplexity and 
n_neighbours. By increasing the n_neighbours hyperparameter, the 
UMAP’s algorithm mean sigma quickly approaches a specific threshold 
and finds an optimum value. After the specific threshold, it is unaffected 
by the increasing n_neighbor values. This results in a similar represen-
tation in the low dimensional space of the original variables in every 
iteration. 

Whereas the t-SNE’s mean sigma value increases slowly and con-
tinues to increase with the increasing perplexity value, implying that t- 
SNE is significantly more sensitive to perplexity. The increasing mean 
sigma value of t-SNE at large perplexities has a profound impact on the 
gradient of the cost function that leads to the different formulations in 
the low dimensional space. 

Another main difference between the two techniques was the 
computational efficiency. The t-SNE algorithm was very slow compared 
to the UMAP with similar hyperparameter values and the same amount 
of data. 

Based on the global optimum reachability and the computational 
time capability, it is evident that the UMAP algorithm has consistent 
results and is more suitable for extracting information from high- 

Table 1 
Correlation analysis of the original feature in the high dimensional space.  

Parameters Number of connections Consumption Self production Mixed Non-residential Residential Smart meter percentage 

Number of connections 1       
Consumption -0.11 1      
Self production -0.087 0.076 1     
Mixed 0.007 -0.040 -0.054 1    
Non-residential 0.047 0.467 0.044 -0.002 1   
Residential 0.658 -0.164 -0.116 0.020 -0.025 1  
Smart meter percentage -0.016 -0.222 0.101 0.033 -0.203 0.004 1 
Low tariff percentage 0.013 -0.283 0.094 0.038 -0.319 0.061 0.738  

Table 2 
Anderson Darling statistics for evaluating the distribution of parameters for the selection of the high dimensional technique.  

Variables Critical values at pre-defined significance boundaries Statistic Data distribution 

Consumption 1 2 5 10 15 417.6 data does not follow a normal distribution 
1.09 0.91 0.78 0.65 0.57 

Number of connections 1 2 5 10 15 282.2 data does not follow a normal distribution 
1.09 0.91 0.78 0.65 0.57 

Low tariff percentage 1 2 5 10 15 106.811 data does not follow a normal distribution 
1.09 0.91 0.78 0.65 0.57 

Self-production 1 2 5 10 15 367.8 data does not follow a normal distribution 
1.09 0.91 0.78 0.65 0.57 

Mixed 1 2 5 10 15 566.0 data does not follow a normal distribution 
1.09 0.91 0.78 0.65 0.57 

Non-residential 1 2 5 10 15 600.8 data does not follow a normal distribution 
1.09 0.91 0.78 0.65 0.57 

Residential 1 2 5 10 15 182.1 data does not follow a normal distribution 
1.09 0.91 0.78 0.65 0.57 

Smart meter percentage 1 2 5 10 15 192.2 data does not follow a normal distribution 
1.09 0.91 0.78 0.65 0.57  
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dimensional energy data. It is selected for further evaluation in this 
research to extract information from smart meters and building use 
characteristic data. 

3.4. High variation regions identification 

After selecting the high dimensional reduction method, the original 
data is mapped to low dimensional representation to understand the 
placement of data points by the UMAP algorithm. The n-neighbours and 
minimum distance parameters were set to 50 and 0.5 respectively 
enabling similar points to be close to each other with a clear distinction. 
The cluster representation is not done by an algorithm but with the 
original variable data of the high dimensional space that will lead to a 
more realistic selection. The area of interest is selected based on the 
higher values in a specific region and specified as a cluster. Fig. 9 depicts 
the mapping of the UMAP algorithm. The colour representation shows 

values from low to very high. The target variables are only evaluated for 
the related features of this study that are looking into the high self- 
production and consumption areas concerning building characteristics 
by eliminating the “Smart meter percentage” and the “Low tariff per-
centage” features. The regions with higher self-production and con-
sumption are placed closer to each other by the UMAP algorithm as 
illustrated with cluster 1 and cluster 2. The higher self-production is 
coming from regions with higher consumption and a smaller number of 
active connections. It is understandable as most of the self-production 
comes from neighbourhoods with a low concentration of houses 
instead of city centres or buildings with apartments. 

On the other hand, the higher consumption areas in cluster 2 are 
linked with a higher concentration of non-residential buildings repre-
sented by cluster 5. The neighbourhood with more non-residential 
buildings has a higher consumption even though the highest number 
of houses are in the region of cluster 6. This shows that compared to the 

Fig. 6. Low dimensional representation of the original data by the t-SNE algorithm with different perplexity values  

Fig. 7. Low dimensional representation of the original data by the UMAP algorithm with different n_neighbour’s values  
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number of residential buildings, non-residential buildings are more en-
ergy intensive. Additionally, the region of cluster 6 which represents 
areas with the most households has the lowest consumption and self- 
production. These neighbourhoods are mostly based in the city centre 
with a large number of apartment buildings and small houses. The 
UMAP algorithm also placed the high concentration of mixed buildings 
in the region of cluster 3. They have a higher self-production in some 
areas and an overall low to medium consumption. 

The UMAP algorithm provides a quantitative assessment for the 
building energy data and identifies smaller focus areas from a bigger 
dataset that can help in better understanding the underlying aspects of 
these regions. 

3.5. Feature importance of using the MIC algorithm 

The MIC algorithm is applied here to understand the feature corre-
lation of the reduced data with the input features. The algorithm is 
particularly applied to the high consumption and self-production re-
gions for cluster 1 and cluster 2. The main goal of this was to investigate 

the importance of features for high consumption and self-production 
from the standpoint of building characteristics. Cluster 1 is based on 
the points with very high self-production based on the low dimensional 
space. Fig. 10 displays the MIC values for cluster 1. The Fig. provides the 
relationship between the original data variables with the UMAP gener-
ated target variables for both features. The feature importance is sorted 
based on UMAP feature 1 as it correlates more realistically with the 
high-generation neighbourhoods and confirms the UMAP data points 
placement. The self-production and residential building type parameters 
have the highest relationship which suggests that these two features are 
assigned higher weights in data points placement by the UMAP algo-
rithm. Compared to the residential building concentration, the non- 
residential and mixed housing type showcase lower scores. This vali-
dates the previous section’s initial assumption that the greater intrusion 
of self-production is primarily coming from residential buildings. From 
the MIC score of Cluster 2 in Fig. 11, it can be observed that the net 
consumption is higher in regions with more non-residential buildings. 
Furthermore, the residential building concentration does not affect the 
overall consumption compared to non-residential buildings, which is 

Fig. 8. Mean sigma visualisation with changing perplexity and n_neighbour’s values  

Fig. 9. Low dimensional visualisation using original data colour mapping by each feature to understand the clustered points by UMAP algorithm  
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why the MIC score is low for residential buildings. This also proves that 
the MIC scores accurately identified the most relevant features of this 
cluster that were visible with the visualisation in Section 3.4. 

In conclusion, the MIC method can help in understanding the rele-
vance of a specific parameter for understanding regions of interest 
(clusters). It can provide the logic behind the mapping of dimensionality 
reduction. This process can be repeated for all the other regions, or the 
overall data placement based on the required outcome. 

4. Discussion 

A detailed understanding of smart cities energy data concerning the 
building characteristics using high-dimensional techniques is essential 
to better grasp the overall changes happening in the energy system 
infrastructure. Although the energy system still relies on major pro-
duction sites, energy consumers now have more opportunities to become 
a prosumer. Many bottom-up efforts are being established in which 
people and small business owners attempt to become prosumers or even 
producers themselves, demonstrating this involvement (Hoppe et al., 
2015). Nevertheless, the existing energy policies do not consider these 
bottom-up adaptations. It is necessary to develop new energy transition 
policies that can account for the effects of these developments. As a 
result, the electric utilities can improve their strategies and tailor 

packages to specific regions to decrease consumption. Whereas energy 
administrators can optimize and direct their focus on the identified re-
gions to obtain their CO2 emission reduction goals. However, despite the 
importance of these developments, it is difficult to access the data from 
buildings for a bottom-up approach and extract any meaningful 
information. 

The aim of this research was to provide methodological contribution 
to the existing literature on urban energy analysis and planning from 
three perspectives as described in Section 1.2. First, this work presented 
a framework to evaluate the relationship between the energy con-
sumption profile with the building characteristics. Second, it explored 
two non-linear dimensionality reduction techniques (UMAP and T-SNE) 
from the perspective of local and global preservation that is seldomly 
used in the literature. Third the framework provide logic behind the 
mapping of dimensionality reduction to confirm the validity of the ob-
tained results using MIC algorithm. 

According to the results obtained, the UMAP algorithm has compa-
rably consistent visualisation and was able to reach an optimum struc-
ture for a high-dimensional energy dataset very quickly. In the t-SNE 
algorithm, the data points in low dimension representation are moving 
around as the t-SNE algorithm cannot find a global optimum for the 
value of sigma. This is a drawback of the t-SNE that leads to some false 
intuitions. Another cause for this could also be due to the t-SNE 

Fig. 10. MIC for feature importance of high self-production neighbourhoods in cluster 1  

Fig. 11. MIC for feature importance of high consumption neighbourhoods in cluster 2  
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method’s random initialization or its cost function, as described in 
Section 2.3.3. UMAP uses a Laplacian eigenmaps representation for 
initialisation. That is why the UMAP algorithm retains the same struc-
ture and finds the global optimum easily. Another advantage of UMAP 
over t-SNE is the degree of closeness of points that can be controlled by a 
minimum distance hyperparameter. Even with a higher value of 
n_neighbour, it is possible to move the points for a clear representation 
with this parameter. In this research, this n-neighbours and minimum 
distance parameters were set to 50 and 0.5 respectively. The n-neigh-
bours value was selected based on an exhaustive grid search to find the 
optimum value of the algorithm convergence. The minimum distance 
value was selected by visual inspection based on the data points 
separation. 

Another important outcome of this research was the extraction of 
high consumption and self-production regions concerning building 
characteristics to help grid operators and energy planners in identifying 
areas of focus to achieve their CO2 emission goals. The energy self- 
production profile can increase in areas with more residential build-
ings and can be hazardous for the grid side. There are several options for 
dealing with this problem. One possibility is to store the excess self- 
production in storage, either in electrical or thermal storage in the 
neighbourhoods with a higher number of residential buildings. Another 
possibility is to curtail the excess self-production in high solar irradia-
tion periods in specific areas which will lead to some losses in the total 
energy yield (Li et al., 2020). The inclusion of the MIC algorithm also 
provides a technique for the validation of the obtained results in the low 
dimensional space with the original data. 

The proposed framework also provides certain advantages over other 
techniques discussed in the literature review section. For example, the 
framework in this research can be applied on (Zarco-Periñán et al., 
2021) to study the influence of population density on energy con-
sumption. It is not required to aggregate all the city data into groups. 
The framework can cluster the cities based on consumption and popu-
lation density and can also provide more details of the underlying causes 
if more parameters are included. The authors in (Kontokosta, 2015) 
investigated the causes of commercial building energy consumption 
across buildings, systems, geographic, and occupancy factors on actual 
building energy usage data. They visualised the relationship individu-
ally between two parameters using scatter plots. However, they were not 
able to visually explore all the parameters together and evaluate their 
nonlinear relationships. The current framework proposed in this paper 
has the advantage over simple visual analysis that it can combine all the 
information and present it as a global picture. 

The trade-off between local and global structure preservation has 
always been a source of discussion for these strategies because they can 
only address one or the other. Our main objective in this work is to 
comprehend which parts of dimensionality reduction techniques are 
crucial for maintaining both local and global structures. It is difficult to 
extract information from high-dimensional data without a true under-
standing of the selection of the algorithms and their empirical impact on 
the low-dimensional space they produce. The analysis in the research 
reveals that the selection of an algorithm is critical for achieving the 
objective of global structure preservation and a post mining technique is 
necessary to confirm the validity of the obtained results. 

4.1. Limitation of the proposed framework 

The framework presented in this study was applied to the aggregated 
values of the neighbourhood’s level. It can be implemented on indi-
vidual building levels with information about different components and 
levels. However, the representation is limited to only aggregated in-
formation in a single row per class (building or neighbourhood). This 
limits the capability of the framework to only work on a unique temporal 
basis. 

5. Conclusion 

This work proposes a dimensionality reduction framework for the 
application of energy data analysis from neighbourhoods and cities. 
Data from 72000 households are analysed in a bottom-up approach to 
extract information and identify the underlying causes for the high 
consumption and self-production using dimension reduction techniques. 
Efforts are made to compare the performance of current non-linear 
dimensionality reduction methods and evaluate their performance in 
preserving the original data structure in reduced dimensional space. 
Furthermore, instead of clustering, colour mapping is used to identify 
the real underlying structure of the data. Finally, for the feature 
importance verification, the MIC method is proposed to detect linear and 
non-linear relationships between original and target variables. This 
provides a detailed perspective of the most relevant parameters, 
allowing for a more in-depth investigation to better comprehend the 
high dimensional data complexity. 

Two high dimensional reduction techniques (t-SNE and UMAP) were 
explored and evaluated for visual analysis of building characteristics and 
energy. The techniques were cross-compared based on their strengths 
and limitations to best characterize low-dimensional behaviour. The 
results showed the UMAP’s algorithm mean sigma quickly approaches a 
threshold of 0.6 and does not change with the increasing n_neighbor 
values. Whereas the t-SNE’s mean sigma value increases continuously 
with the increasing perplexity value, implying that t-SNE is significantly 
more sensitive to the perplexity parameter. The comparison determined 
that the UMAP algorithm can have more consistent results by extracting 
similar representation in the low dimensional space from the original 
variables. The UMAP algorithm was selected as the main dimensionality 
reduction technique in this framework. 

Based on the obtained results from the UMAP algorithm, the visual 
analysis indicated that self-production and consumption are linked with 
the amount of building use characteristics in a neighbourhood. As a 
growing number of residential buildings will install solar panels to 
reduce their energy expenses, the flow back to the grid will increase. 
Further research along these lines could help determine which alterna-
tive, or a mix of solutions, is the best fit for unlocking much-needed grid 
capacity. Overall, the proposed framework can enable stakeholders to 
identify areas of interest with underlying causes more accurately from 
high-dimensional energy datasets. An application of the proposed 
methodology can promote sustainable development and bring benefits 
to the community since understanding the energy profile at the neigh-
bourhood and city level is essential to reduce the impact of climate 
change. 

In the future perspective, other parameters from the building domain 
can be included in the analysis to explore the overall impact from the 
aspect of technological and demographical change or building charac-
teristics such as the integration of EVs, the electrification of heat pumps, 
built years etc. Efforts are made with the help of the city to obtain data 
for multiple years and do a cross comparison between the changing 
energy profile of the city. 

Another future possibility is to compare the changes in the energy 
profile based on incentives given by the city for the insulation of the 
buildings in a specific region. The framework has the potential to be 
widely used in the applications of urban energy analysis mainly 
depending on the availability of the data. 
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Miscellanea Geographica, 23. https://doi.org/10.2478/mgrsd-2018-0037. Jan. 

ABC, “Introduction guide to contextily — contextily 1.1.0 documentation.” https://conte 
xtily.readthedocs.io/en/latest/intro_guide.html (accessed Apr. 20, 2022). 

Berman, J. J. (2018). 11 - Indispensable tips for fast and simple big data analysis. In 
J. J. Berman (Ed.), Principles and practice of big data (2nd Ed., pp. 231–257). 
Academic Press. https://doi.org/10.1016/B978-0-12-815609-4.00011-X.  

L. S. Nelson, “The anderson-darling test for normality,” 1998, doi: 10.1080/00224065.1 
998.11979858. 
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