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a b s t r a c t 

This work presents a fluid transient model capable of handling the viscoelastic behavior 

of the pipe. A previously developed quasi-2D flow model is employed as a base, and the 

viscoelastic behavior of the pipe is incorporated by considering constitutive equations for- 

mulated in a thermodynamically consistent framework of an internal variable theory. Such 

an approach straightforwardly provides expressions for computing the rates of energy dis- 

sipation in the fluid and pipe accurately and separately. This novel feature discerns the 

local and overall impacts of the energy dissipation on the pressure oscillations caused by 

each medium. The governing equations of the model form a hyperbolic system of partial 

differential equations whose approximated solutions are obtained by the method of char- 

acteristics. Taking as reference pressure signals obtained by a classic reservoir-pipe-valve 

experiment found in the literature, it is shown that the model predictions are fully con- 

sistent. A comparison between the pressure responses of viscoelastic and elastic pipes re- 

veals that in addition to delaying the pressure oscillations, the viscoelastic behavior causes 

a faster attenuation of them. The rates of energy dissipation in the viscoelastic pipe at- 

tain significant magnitudes during the first moments of the fluid transient and alters the 

hydrodynamical behavior of the flow. Such interference is exposed by comparing the re- 

sponses of the same experimental setup when two different viscoelastic pipe materials are 

considered. It is also shown that the knowledge of the parcels of energy dissipated in the 

fluid and pipe individually can improve the comprehension of the phenomenon and be 

utilized for theoretical and applied research in the field. 

© 2022 Elsevier Inc. All rights reserved. 

 

1. Introduction 

Transient flows in pipeline systems are intrinsic phenomena in any operational piping system. Both abnormal and nor- 

mal circumstances can lead to flow unsteadiness, such as mandatory valve maneuvers or unpredicted pump failures. The 

dynamics of such flows are governed by a cyclic passage of waves in the fluid which are responsible for local pressure

surges. These pressure traces subject the compliant pipe to higher stresses than those found under a steady-state regime. 
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As those fluctuations depend not only on the fluid and the nature of the flow but also on the mechanical response of the

material of which the tubes are made, a proper analysis of this phenomenon requires the description of all these aspects. 

In the industrial context, depending on the type of application, tubes of different materials are used, giving rise to differ-

ent mechanical responses. Typical industrial pipe systems are made with steels of different carbon contents, which exhibit 

linear elastic behavior in the scope of applications. On the other hand, sanitary sewer and water supply pipes are usually 

made of polymeric materials like polyvinyl chloride (PVC), polybutylene (PB), low-density polyethylene (LDPE), and high- 

density polyethylene (HDPE), which respond to hydraulic loading with a viscoelastic mechanical response [1–3] . In the last 

decades, the application of these materials in a diverse range of industrial applications has increased due to their attractive 

mechanical and chemical properties aside from their lower costs [4] . However, although their properties are well-suited to 

many in-practice usages, the traditional quasi-one-dimensional fluid transient theory [5] , which assumes elastic behavior of 

the pipeline, is not suited to accurately describe the behavior of the fluid-pipe system [6] . The pipe material’s viscoelasticity

significantly alters the system’s responses by adding dispersive and dissipative effects to pressure waves propagating in the 

liquid [1] . 

Due to the uprising use of this kind of materials, research has been undertaken to model properly the fluid transients

in viscoelastic pipes thereby following two different approaches. In one of them, researchers incorporated the viscoelastic 

behavior of the pipe into the classic fluid transient theory by assuming that the viscoelasticity turns the wavefront into a

frequency-dependent phenomenon [7] . On the other, the wavefront propagation is treated as constant, as a result of assum- 

ing that the volumetric deformation of the pipe material is purely elastic, whereas the deformation associated with shear 

presents both elastic and viscoelastic responses [8] . The latter was achieved by considering that the strains and their evo-

lution are described with generalized Kelvin-Voigt elements and hereditary integrals (convolutions). After this first essential 

step, other effects that notably impact the transient responses, ignored by these pioneering works, were included in more 

recent modeling works. 

Güney [9] made a great contribution to the field when he conceived a model which incorporated the quasi-one- 

dimensional (quasi-1D) unsteady-friction model for laminar flows developed by Zielke [10] into the context of Gally’s vis- 

coelastic model. Covas et al. [11] expanded his work by employing quasi-1D unsteady friction models for both laminar and 

turbulent flows into the same (Gally’s) framework. Even though the quasi-1D modeling is useful to predict pressure surges, 

it cannot conceive velocity profiles of the flow, which are essential to the thermomechanical description of the transient 

flow [12–13] . Pezzinga et al. [14] and Wahba [15] developed quasi-2D models in viscoelastic pipes to better comprehend

the phenomenon. The former claims that the decay of the pressure oscillations is closely related to the phase shift between

the pressure signals and the anelastic circumferential strains. Numerical simulations also show that velocity profiles in vis- 

coelastic pipes are flatter than those found in elastic pipes. On the other hand, the latter focused on a parametric study

of unsteady laminar flows in viscoelastic pipes to demonstrate the impact of two dimensionless parameters on transient 

responses. Several other features have been explored in the past decade, such as the presence of in-line valves or sudden

cross-section changes [16–17] and pipe networks [18–19] . Soares et al. [20] , Urbanowicz et al. [21] , and Mousavifard [22] also

studied the effects of cavitating flows in viscoelastic pipes. Meanwhile, other works were concerned with identifying pipe 

faults/anomalies in viscoelastic pipelines, as broadly presented by Che et al. [23] . 

The energy transfer and dissipation evolution in fluid transients are crucial to the proper design of piping systems as 

it provides sound tools for the analysis of the local and overall behavior of the fluid-pipe system [24] . In the case of the

applications involving viscoelastic pipes, the dissipative nature of these materials influences the energy transfer and redistri- 

bution throughout these piping systems. Indeed, researchers have focused on the application of viscoelastic pipes as energy 

dissipators to reduce overpressure in piping systems [25–32] . Despite the foremost role of energy analysis, to the best of

the authors’ knowledge, few works have been dedicated to these energy-related issues of fluid transients in viscoelastic 

pipes. Duan et al. [12] studied the bidirectional energy transfer between the pipe and fluid by applying the energy relations

derived by Karney [33] . Pan et al. [34] extended this analysis by presenting the energy transmission diagrams that expose

the importance of dissipative phenomena such as steady friction, unsteady friction, and pipe viscoelasticity for an extensive 

range of transient intensities and frequencies of excitations. 

Aiming to advance a step forward, the present work proposes a new perspective to energy analysis by presenting a 

mechanical formulation of fluid transients that accurately and straightforwardly determine the energy dissipation in both 

viscoelastic pipe and fluid. The present model takes advantage of a quasi-2D fluid-transient model that has been validated 

recently, along with a consolidated viscoelastic model developed in the framework of the thermodynamics of irreversible 

processes with internal variables [35–36] . As a result, expressions for the computation of the rates of energy dissipation

in the fluid and pipe are straightforwardly derived. As both fluid and pipe models are thermodynamically consistent, the 

proposed approach can account for isolated and accurate estimates of energy dissipation rates in the fluid and the tube. 

This novel feature can not only be fruitful to enhance the theoretical knowledge about this phenomenon as demonstrated 

herein, but also provide a promising tool for energy-based design techniques of pipeline systems. 

The proposed model and approach are validated by comparing their numerical predictions against experimental data 

found in the literature. By appealing to a comparison between the proposed model predictions with and without pipe vis- 

coelasticity, the present work shows that faster attenuation and delayed responses of the pressure oscillations are found in 

the viscoelastic case. Access to the rates of energy dissipation in the fluid and pipe sheds light on the central thermome-

chanical effect behind those different results: the significant levels of energy dissipated in the pipe due to the viscoelasticity. 

In the course of this analysis, the pipe and fluid mechanical coupling is constantly investigated. Such coupling is ultimately 
847 
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exposed when the model responses for the same fluid flow installations with two different viscoelastic pipe materials are 

inspected. 

2. Basic equations 

The basic equations that describe an unsteady flow inside a deformable circular pipe can be achieved by using the 

quasi-2D model developed by Andrade and Freitas Rachid [37] . This model has used the framework of the theory of mix-

tures [38] to describe the fluid as a pseudo-mixture formed by a set of n shell-shaped constituents. They are assumed

to hold the same fluid properties and be concentrically distributed in the radial direction, r , of the pipe. In this con-

text, these constituents act like fluid layers having their own motion along the direction of the pipe center-line with 

speeds v j { j = 1, …, n }. Each one of these j -indexed constituents is characterized by its thickness �R j , central radius

R j = R j −1 + �R j −1 /2 + �R j /2, with R 0 ≡ 0 ≡ �R 0 , and fixed area fraction αj = 2 R j �R j / R 
2 , such that 

∑ n 
j=1 α j = 1 and∑ n 

j=1 �R j = R , where R is the undisturbed internal radius of the pipe. In addition, the mass density and pressure of the

pseudo-mixture as a whole are defined as ρ = 

∑ n 
j=1 ρ j and p = 

∑ n 
j=1 p j , respectively, in which ρ j = αj ρ and p j = αj p stand

for these variables in the j − th constituent. Meanwhile, the mean velocity of the pseudo-mixture is conceived to obey the

requirement that the total mass flow rate per unit volume is the sum of the individual mass flow rates of the constituents,

so that v = 

∑ n 
j=1 ρ j v j / 

∑ n 
j=1 ρ j = 

∑ n 
j=1 α j v j , in which v j is the mean velocity in each j − th constituent. Fig. 1 is a sketch

of the pseudo-mixture structure proposed for the fluid flow. 

By assuming that the fluid is Newtonian and slightly compressible and that the pipe has negligible inertia and is sub-

jected to small deformation and axisymmetric plane-stress distribution, the mechanical balance laws of the proposed model 

can be expressed as: 

1 

K 

∂ p 

∂t 
+ ρ0 

∂v 
∂x 

+ 2 

∂ ε θ | r= R 
∂t 

= 0 , (1) 

ρ0 
∂v 
∂t 

+ 

∂ p 

∂x 
+ 

2 

R 

n ∑ 

j=1 

a j = 0 , (2) 

α j ρ0 

∂ v j 
∂t 

+ α j 

∂ p 

∂x 
+ m j + 

2 

R 

a j = 0 , j = 2 , . . . , n, (3) 

where εθ , K and ρ0 are the principal circumferential strain of the pipe, fluid bulk modulus and the undisturbed fluid density,

respectively. Further, a j represents the skin friction force per unit of cylindrical area that acts on the fluid-pipe interface, 

and m j represents the axial internal interaction force per unit of volume exerted by the other constituents on the j −th

constituent [37] . These equations represent the mass and momentum balances for the mixture as a whole, and the balance

of momentum for each j −th constituent except for the first, respectively. Only n −1 balances of momentum for constituents

are required since the present modeling includes the mixture velocity v , which is a linear combination of the independent

velocities of each constituent v j , as a dependent variable. 

To complete the modeling, constitutive equations that describe the interaction forces acting on the pseudo-mixture and 

proper pipe stress-strain relations for a viscoelastic pipe are needed. 
Fig. 1. Virtual structure of the pseudo-mixture for n = 3. 
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3. CONSTITUTIVE EQUATIONS 

3.1. Fluid constitutive equations 

The constitutive equations of the “forces” m j and a j are addressed by appealing to the material frame indifference prin- 

ciple and the aforementioned kinematic aspects of the structured mixture. The proposed forms for m j and a j are given by:

m j = C j, j−1 

(
v j − v j−1 

)
+ C j, j+1 

(
v j − v j+1 

)
for j = 1 , . . . , n, with C 1 , 0 ≡ 0 and C n,n +1 ≡ 0 (4) 

a j = 

{
0 , j = 1 , . . . ., n − 1 

C v n , j = n 

, (5) 

in which C j,j −1 , C , and C j , j + 1 are material constants of the model. By appealing to the action-reaction principle, we observe

that C j,j + 1 = C j + 1, j such that C , C j , j + 1 are sufficient to completely describe the constitutive equations of the pseudo-mixture

given by Eqs. (4 - 5 ). These material constants can be found through the assumption that during the transient regime the

viscosity structure remains the same as in the permanent regime (i.e., frozen viscosity, see Vardy et al. [39] ). Thus, the

steady-state momentum balances for the j − th constituents Eq. 3 ), along with Eqs. (4 - (5) and a given fully-developed

velocity profile in a flow of an incompressible fluid can be employed to generate a linear system of equations given by 

α j 

∂ p 

∂x 
+ m j + 

2 

R 

a j = 0 , j = 1 , . . . , n, (6) 

whose solution gives the material constants C and C j , j + 1 of the model. This approach is general and therefore holds for both

laminar and turbulent flows; it is exposed in detail in Appendix A. Applying the classic parabolic-shape laminar velocity 

profile in Eq. (6) , the following material constants of the model result: 

C j, j+1 = 

4 ρ0 ν

R 

2 
j+1 

− R 

2 
j 

( 

j ∑ 

i =1 

αi 

) 

, with R n +1 ≡ 0 (7) 

C = 

2 ρ0 νR 

R 

2 − R 

2 
n 

, (8) 

in which ν is the fluid’s kinematic viscosity. 

For turbulent flows, the algebraic turbulence model described by Vardy and Brown [40] is applied to obtain an expression

for the velocity profile. This approach adopts an idealized turbulence viscosity distribution with two distinct regions: an 

outer annulus and an inner core. The core region ranges from r = 0 to r = R M 

= 0.8 R and has a fixed turbulence kinematic

viscosity νc while in the annulus, with a thickness equal to b = 0.2 R , the turbulent kinematic viscosity varies linearly from

the value νw 

at the wall r = R , to the value νc at the interface of these regions. As the turbulence model has a piecewise

distribution, in addition to the classical non-slip condition at the wall and axial symmetry of the flow, interface boundary 

conditions must be stated. Within this framework, the velocity profile found is given by [37] 

v ( r ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

(
− dp 

dx 

)
ρ0 νw 

{ (
R 

2 
M 

− r 2 
)

4 ( σcw 

) 
− b 2 

2 

[
−1 

( 1 − σcw 

) 
+ 

( −4 + 5 σcw 

) 

( 1 − σcw 

) 
2 

ln 

(
1 

σcw 

)]} 

, 0 ≤ r ≤ R M 

(
− dp 

dx 

)
b 2 

2 νw 

ρ0 

{
( R − r ) 

( 1 − σcw 

) b 
+ 

( 4 − 5 σcw 

) 

( 1 − σcw 

) 
2 

ln 

[
1 

( 1 −σcw ) 
b 

r − 4 + 5 σcw 

]}
, R M 

< r ≤ R 

, (9) 

where σ cw 

= νc / νw 

is the ratio of the kinematic eddy viscosities. From this velocity profile, the material constants associated 

with the interaction forces in the core and annulus regions are: 

C j, j+1 = 

4 ρ0 νc 

R 

2 
j+1 

− R 

2 
j 

( 

j ∑ 

i =1 

αi 

) 

, (10) 

C j, j+1 = 

2 νw 

ρ0 ( 1 − σcw 

) / b 2 { 
R j+1 −R j 

b 
+ 

( −4+5 σcw ) 
( 1 −σcw ) 

ln 

[ 
( 1 −σcw 

b ) R j −4+5 σcw 

( 1 −σcw 
b ) R j+1 −4+5 σcw 

] } 
( 

j ∑ 

i =1 

αi 

) 

, with R n +1 ≡ 0 , (11) 

respectively whereas that related to the skin friction material constant can be expressed as: 

C = 

νw 

ρ0 R ( 1 − σcw 

) / b 2 {
R −R n 

b 
+ 

( −4+5 σcw ) 
( 1 −σcw ) 

ln 

[(
1 −σcw 

b 

)
R n − 4 + 5 σcw 

]} . (12) 
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The material constants given by Eqs. (7 - 8 ) and Eqs. (10 - 12 ) play a crucial role in the radial momentum diffusion through

the discrete fluid layers. This becomes clear when the shear stress acting on each of these constituents is invoked: 

τ j = 

{ 

R j 

2 

[
C j, j+1 

(
v j − v j+1 

)]
, f or j = 1 , n − 1 , 

a n , f or j = n. 

(13) 

By looking at Eq. (13) , and summing up all equations in Eq. (6) , it results in a n ≡ C v n = − R 
2 

∂ p 
∂x 

. Thus, the skin friction

force a n acts just like the wall shear stress τw 

in the present model, as expected and validating the method. 

3.2. Pipe constitutive equations 

This work adopts the consolidated thermodynamics of irreversible processes with internal variables [35–36] to describe 

the viscoelastic mechanical behavior of the pipe. Essentially, this theory relies on the assumption that the thermodynamic 

state of a material medium, at any point and instant, is characterized by a set of observable and internal state variables. In

the present application, internal variables are introduced to describe the material’s anelasticity and its associated dissipative 

phenomena. Within this framework, two thermodynamic potentials are employed to derive the constitutive equations: the 

Helmholtz free energy potential and a pseudo-potential of dissipation. The first potential describes the reversible relationship 

between state variables and associated thermodynamic forces, from which state laws are obtained. The second portrays the 

irreversible character of the material associated with dissipative phenomena, from which evolution laws are postulated. 

These state and evolution laws form the set of constitutive equations of the material. 

The selection of the internal variables is a constitutive choice and depends on the desired degree of detail of the ma-

terial’s internal structure therefore it can vary from problem to problem. The role of these variables will become clearer 

ahead when a particular family of constitutive equations for a specific viscoelastic material is presented. In the meantime, 

the constitutive theory is displayed in an abstract way to allow a straightforward presentation from a 3D perspective. Such 

an approach is essential to the development of the final governing equations of the model (in Section 4 ) and accurate ex-

pressions for the rate of energy dissipation (in Section 5 ). 

The thermodynamic state of an anelastic solid is supposed to be identified by the total and anelastic strains tensors ε ,
and ε a , in addition to a set of internal variables, denoted abstractedly as β . Without loss of generality from now on, β
is assumed to be a scalar variable. The Helmholtz free energy potential � is assumed to be an additive decomposition of

elastic and anelastic strain energy densities W e and W a , respectively 

ρp �( ε , ε 

a , β) = W e + W a , (14) 

where ρp is the mass density of the material, which is supposed to be constant, with W e being a classical function of the

elastic deformation ( ε − ε a ) of the material. As usual, the elastic strain energy density is conceived as [41] : 

W e = 

1 

2 

C [ ( ε − ε 

a ) : ( ε − ε 

a ) ] . (15) 

Here “ : ” represents the inner product of tensors, i.e., A : B = tr( A 

T B ). In Eq. (15) , C stands for the classic symmetric,

positive-definite fourth-order tensor of the elasticity theory and W a = W a ( β) is supposed to be a differentiable function of

the internal variable β . The thermodynamic forces σ and B 

β are obtained by taking the partial derivatives of the Helmholtz

potential with respect to the state variables ( ε , ε a , β) [42] : 

σ = ρp 
∂�

∂ε 

= ρp 
∂W e 

∂ε 

= ρp 
∂W e 

∂ ( ε − ε 

a ) 
, (16) 

B 

β = −ρp 
∂�

∂β
= −ρp 

∂ W a 

∂β
. (17) 

Equation (16) is the usual relationship that describes the purely elastic response, whereas Eq. (17) describes the reversible 

parcel associated with the anelastic behavior of the material. Such state laws are still insufficient to fully describe the anelas-

tic behavior since the relationships between the internal variable, β , and the tensors ε a and σ are still unknown. This task

is completed by introducing a scalar-differentiable pseudo-potential of dissipation  ( σ , B 

β ), from which the evolution laws 

are derived by taking their partial derivatives as such [42] 

˙ ε 

a = 

∂

∂σ
, (18) 

˙ β = 

∂

∂ B 

β
, (19) 

where superimposed dot means partial derivative with respect to time. If the pseudo-potential of dissipation  is convex, 

positive, and null at the origin, then it can be proved that the rate of energy dissipation in the material is always positive,

as will be exposed in Section 5.2 . In other words, the model obeys unconditionally the second law of thermodynamics (SLT).

Therefore, the choice of pseudo-potential based on the restrictions imposed in the prior statement and the proper anelastic 
850 
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Fig. 2. Sketch of the generalized Kelvin-Voigt model. The variable εdev stands for the deviatoric parcel of the total strain ε. 

 

 

 

 

 

 

 

strain energy provide the final form of the set of consistent thermodynamic equations that formulates the constitutive 

behavior of an anelastic material. 

The mechanical behavior of the pipe material is assumed to be described by linear viscoelasticity. As usual, linear vis- 

coelasticity can be described from mechanistic models. As experimental findings in solid-like viscoelastic materials, such as 

the ones used in pipes, are better tracked when the mechanistic model describes an elastic and instantaneous response fol- 

lowed by an asymptotic viscoelastic response, the so-called generalized Kelvin-Voigt model turns out to be a suitable choice. 

In addition to properly characterizing polymeric materials used in pipes, under the present constitutive theory the gener- 

alized Kelvin-Voigt model renders a simple pseudo-potential of dissipation that ensures a thermodynamically consistent 

model, as presented in Section 5.2 . Thence, the rates of energy dissipation in the pipe material, a feature largely explored in

the present work, can be easily assessed and computed. 

By assuming that the pipe mechanical response is merely deviatoric, the generalized Kelvin-Voigt model is formed by 

m units of Kelvin-Voigt elements, with shear elastic constants G i and coefficients of viscosity ηi ( i = 1, ..., m ), coupled in

series with a spring with an instantaneous shear modulus of elasticity G 0 is considered. Each of these Kelvin-Voigt units

is associated with a second-order strain tensor ε i { i = 1, …, m } so that the anelastic strain tensor ε a is equal to the

summation over i of ε i . A sketch of this mechanical model is shown in Fig. 2 . 

Based on the sketch shown in Fig. 2 , the set of state variables for this viscoelastic material can be identified as: 

( ε , ε 

a , β) with β = ε 

i , such that ε 

i = ε 

i 
dev and ε 

a = 

m ∑ 

i =1 

ε 

i . (20) 

Assuming that the pipe material is isotropic, the particular forms of the anelastic strain energy density and the pseudo- 

potential of dissipation become [43] 

W a = 

m ∑ 

i =1 

1 

2 

[ 
2 

3 

E i ε 

i : ε 

i 
] 
, (21) 

 = 

m ∑ 

i =1 

1 

2 

[ 
3 

2 

1 

E i τi 

(
B 

ε i + σdev 

)
: 

(
B 

ε i + σdev 

)] 
, (22) 

where τ i = ηi / G i and E i = 3 G i are the relaxation time and Young’s modulus of the i −th Kelvin-Voigt unit, and σdev 

represents the deviatoric part of the tensor σ . Taking into account Eq. (16 - 17 ), the preceding anelastic energy density gives

rise to the following state laws: 

σ = ρp 
∂W e 

∂ ( ε − ε 

a ) 
= 

ν0 

( 1 + ν0 ) 
tr σ + 

E 0 

( 1 + ν0 ) 
( ε − ε 

a ) , (23) 

B 

ε i = −ρp 
∂W a 

∂ε 

i 
= −2 

3 

E i ε 

i for i = 1 , . . . , m, (24) 

where E 0 and ν0 are the instantaneous Young’s modulus and Poisson’s ratio. The pseudo-potential of dissipation given in 

Eq. (22) gives rise to the following evolution laws: 

˙ ε 

i = 

∂

∂B 

ε i 
= 

3 

2 

1 

E i τi 

(
σdev + B 

ε i 
)

= 

3 

2 

σdev 

E i τi 

− ε 

i 

τi 

, for i = 1 , . . . , m, (25) 

˙ ε 

a = 

∂

∂σ
= 

m ∑ 

i =1 

[ 
3 

2 

1 

E i τi 

(
σdev + B 

ε i 
)] 

= 

m ∑ 

i =1 

˙ ε 

i . (26) 

This formulation comprises the description of creep and relaxation phenomena that are present in standard viscoelas- 

tic materials: the instantaneous purely elastic response of the material Eq. (23) ) is followed by a time-dependent anelastic

response ( Eqs. (25 - (26) ). It is worth noting that the Poisson’s ratio in the present model presents an elastic and instanta-

neous response followed by a time-dependent one, which can be computed by the ratio of the transverse and longitudinal 
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strain responses of the model obtained from a creep compliance test, ε22 and ε11 , with the use of Eqs. (23 - 26 ), so that

ν ( t ) = −ε 22 ( t ) / ε 11 ( t ). Thus, even though not addressed explicitly as in Keramat et al. [44–45] , the time-dependent nature

of Poisson’s ratio is captured in the model. 

By appealing to the constitutive equations given in Eqs. (23 - 26 ), the proposed viscoelastic model is fully character-

ized when the values of the material parameters ν0 , E 0 , and ( τ i , E i ), for i = 1, …m , are addressed. As pointed out by

Weinerowska-Bords [46–47] , the set of parameters ( τ i , E i , m ) does not hold physical meaning as such, except when the

resulting creep compliance curve of the material is considered. Two distinct approaches may be used to achieve these ma- 

terial constants: i) via mechanical tests (creep, relaxation, or dynamical loading essays) in a specimen from a sample of the

pipe material; or ii) through calibration strategies, based on collected transient data using a fluid-transient solver which 

takes into account both the pipe-wall viscoelasticity and the unsteady friction (UF) - the main phenomena responsible for 

attenuation and dispersion of the pressure responses [ 12 , 4 8-4 9 ]. In the present work, the model adopted the Kelvin-Voigt

parameters achieved by the first approach for all experimental installations from which pressure measurements were ex- 

tracted to further compare with the model’s responses. Such a strategy avoids some of the uncertainties associated with the 

determination of the Kelvin-Voigt parameters [ 12 , 44 , 46-47 ]. 

4. Governing equations 

The model’s governing equations are obtained by combining the balance equations Eqs. (1 - (3) ) with the respective con-

stitutive equations for fluid Eqs. (4 - (5) ) and pipe Eqs. (23 - (26) ). The fluid constitutive equations are ready to be incorporated,

but the constitutive pipe relations are still quite general. 

In the present work, the pipe is subjected to internal pressure loads only. As a result, the circumferential stress σ θ turns

out to be the only independent one among the principal stresses of the tensor σ . Furthermore, the deviatoric part of the

stress, which is present in the evolution laws of the material Eqs. (25 - (26) ), is assumed to be approximated by a quasi-static

stress distribution. In contrast to the majority of metallic pipes, polymeric pipes which exhibit viscoelastic behaviors are 

generally manufactured as thick-walled pipes, with radius-to-thickness ratios in the range R / e < 10. Thus, the radial stress

component σ r may become significant and therefore cannot be carelessly disregarded, as in the classic thin-walled tube 

theory. To cope with thick-walled pipes, averaged values of axial, circumferential and radial stresses based on the quasi- 

static stress distribution of a ring (or hoop) subjected to internal pressure loads as derived by Tijsseling [50] are employed.

Meanwhile, as the pipe’s inertia is assumed to be negligible, the axial stress is simply given by σ x = ν0 ( σθ + σ r ). 

Based on these assumptions, the set of evolution laws of the material turns out to be in terms of cross-sectional

averages. Thus, the term related to the anelastic circumferential strain at the internal pipe radius in the mass-balance 

equation of the fluid must be altered to account for averaged values. The development of the final mass-balance equa- 

tion is presented in Appendix B. With this in mind, the governing equations of the mechanical model for the unknowns

p, v , v 2 , . . . , v n , ε a θ , ε 1 
θ
, . . . ε m 

θ
are given by: (

1 

ρ0 c 
2 
f 

)
∂ p 

∂t 
+ 

∂v 
∂x 

+ 2�
∂ε a 

θ

∂t 
= 0 , (27a) 

∂v 
∂t 

+ 

1 

ρ0 

∂ p 

∂x 
+ 

2 

R ρ0 

a n = 0 , (27b) 

∂ v j 
∂t 

+ 

1 

ρ0 

∂ p 

∂x 
+ 

1 

α j ρ0 

(
m j + 

2 

R 

a j 

)
= 0 , j = 2 , . . . , n, (27c) 

∂ε a 
θ

∂t 
+ g θ = 0 , (27d) 

∂ε i 
θ

∂t 
+ g i = 0 , (27e) 

where 

c f = 

{ 

ρ0 

[ 

1 

K 

+ 

2 

E 0 

{ 

R 

e 
+ 

(
1 + 

e 
R 

)(
2 + 

e 
R 

) + ν0 − ν2 
0 �

} ] } −1 / 2 

, (28) 

is the pressure wavefront speed, and 

g θ = −
( 

m ∑ 

i =1 

1 

2 

( � − ν0 �) p 

E i τi 

− ε i 
θ

τi 

) 

, (29a) 

g i = −
(

1 

2 

( � − ν0 � ) p 

E i τi 

− ε i 
θ

τi 

)
, i = 1 , . . . , m, (29b) 
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� = 

2 

(
R + 

1 
2 

e 
)

R 

, (29c) 

� = ( σθ + σr ) /p = 

R 

e 

1 

1 + 

1 
2 

e 
R 

, and (29d) 

� = ( 2 σθ − σr ) /p = 

R 

2 

e ( e + 2 R ) 
+ 

6 R 

2 ( e + R ) 
2 ln 

[
1 + 

e 
R 

]
e 2 ( e + 2 R ) 

2 
. (29e) 

Equations (27a) and ( 27b ) are the balances of mass and linear momentum for the virtually structured mixture as a whole,

respectively, and Eq. (27c) represents the balances of the axial momentum for each constituent. Equations (27d , 27e ) are the

evolution laws of the material. With the introduction of the anelastic strain and its evolution laws, the model can handle

both the elastic and viscoelastic behavior of the pipe. The elastic model, which ignores the pipe’s viscoelasticity, is obtained 

by eliminating the anelastic strain terms in the balance of mass and their respective evolution laws. 

5. Rate of energy dissipation 

5.1. Fluid 

The rate of energy dissipation in the liquid is readily computed with the aid of the theory of mixtures in which the fluid

model has been developed. This theory enforces the second law of thermodynamics to be postulated for each constituent 

as well as for the mixture as a whole [51] . Based on the assumptions made so far, and assuming that the sole mechanism

of energy dissipation is due to the momentum transfer among the constituents, the second law of thermodynamics for each 

constituent is stated as 

d j = a j v j 
P 

A 

≥ 0 , (30) 

while for the mixture as a whole, the SLT is expressed as 

d m 

= 

n ∑ 

j=1 

m j v j ≥ 0 . (31) 

The thermo-mechanics of the pseudo-mixture allows one to conclude that the summation of all parcels presented in Eqs 

(30 - 31 ) is the overall energy dissipation in the fluid flow. With the aid of the mixture constitutive equations Eqs. 4 - (5) , the

rate of energy dissipation d f in the fluid becomes: 

d f = 

n ∑ 

j=1 

d j + d m 

= 

n ∑ 

j=1 

C j, j+1 

(
v j+1 − v j 

)2 + 

2 

R 

C ( v n ) 2 . (32) 

5.2. Pipe 

Assuming that the pipe is subjected to isothermal processes, the local form of the second law of thermodynamics (SLT), 

which states that the rate of energy dissipation in the pipe per unit volume, d p , must be non-negative, can be stated as

[35–36] : 

d p = σ : ˙ ε − ρp 
˙ � ≥ 0 . (33) 

By taking Eqs. (23 - 26 ) into account, Eq. (33) can be expressed as the following 

d p = σ : 
∂

∂σ
+ 

m ∑ 

i =1 

B 

ε i : 
∂

∂B 

ε i 
≥ 0 . (34) 

Finally, when the expressions of the state and the evolution laws established in Eqs. (23 - 26 ) are considered, the local rate

of energy dissipation in the viscoelastic material can be written as 

d p = 

m ∑ 

i =1 

(
σdev + B 

ε i 
)

: ˙ ε 

i ≥ 0 . (35) 

Hence, d p can be readily computed in terms of the dependent variables of the proposed model p and ε 1 
θ
, . . . , ε m 

θ
as (see

Section 4 ): 

d p = 

m ∑ 

j=1 

2 

3 

E i τi 

(
˙ ε i θ
)2 = 

m ∑ 

j=1 

2 

3 

E i τi ( g i ) 
2 ≥ 0 . (36) 
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As E i and τ i are positive constants, Eq. (36) is always non-negative and therefore the proposed model satisfies uncondi- 

tionally the second law of thermodynamics. It is worth noting that the constitutive equations used herein are based on a

mathematical generalization of sufficient conditions imposed on the pseudo-potential of dissipation  so that the model- 

ing is thermodynamically consistent. In effect, as  is convex, positive, and null at the origin, the inequality presented in 

Eq. (34) follows a classical result from the convex analysis [ 35 , 52 ], which can be expressed in a compact form as: 

d p = σ : 
∂

∂σ
+ 

m ∑ 

i =1 

B 

ε i : 
∂

∂B 

ε i 
≥  ≥ 0 . (37) 

Thus, the result of non-negative dissipative processes is ensured a priori in the present constitutive theory. 

6. Numerical procedure 

The mechanical model represented by Eq. (27) forms a quasi-linear hyperbolic system of partial differential equations. 

Applying the method of characteristics for this system produces the following set of compatibility equations (see Appendix 

C): 

1 

ρ0 c f 

dp 

dt 
+ 

dv 
dt 

= − 2 

R ρ0 

a n + 2 c f �g θ along C + ≡ dx 

dt 
= c f , (38a) 

− 1 

ρ0 c f 

dp 

dt 
+ 

dv 
dt 

= − 2 

R ρ0 

a n − 2 c f �g θ along C − ≡ dx 

dt 
= −c f , (38b) 

−dv 
dt 

+ 

d v j 
dt 

= −m j + 

2 
R 

a j 

ρ0 α j 

+ 

2 

R ρ0 

a n for j = 2 , . . . n, along C 0 ≡ dx 

dt 
= 0 , (38c) 

dε a 
θ

dt 
= −g θ along C 0 ≡ dx 

dt 
= 0 , (38d) 

dε i 
θ

dt 
= −g i ; i = 1 , . . . , m, along C 0 ≡ dx 

dt 
= 0 , (38e) 

in which g θ and g i are defined in Eq. (29) and the characteristic equations of the model C + , C −, C 0 are defined by the eigen-

values of the problem + c f , −c f , and 0, respectively. 

The two non-null eigenvalues are related to the characteristic curves through which perturbations propagate in the do- 

main. Meanwhile, the null eigenvalues are associated with the characteristics responsible for dispersive and/or dissipative 

effects. Such physical phenomena take place in both the liquid and pipe and are due to friction and turbulence in the fluid

and anelastic circumferential deformations of the pipe. 

To obtain approximated solutions for the initial-boundary-value problem governed by Eq. (38), an integration process 

must be carried out along those characteristic curves. To achieve this goal, a discrete grid of the independent variables must

be employed by considering a temporal-spatial discretized domain in which x k = ( k − 1) �x and t p = t p −1 + �t , for k = 1,

…, N + 1 and p = 1, 2, …., with t 0 = 0, �x = L / N and �t = �x / c f . Within this choice of the discrete spatial-temporal grid,

the Courant-Friedrichs-Levy (CFL) stability condition, �t ≤ �x / c f , is automatically satisfied and the compatibility equations 

can be integrated in the t − x plane along the characteristic curves, for k = 2, …, N according to the stencil depicted in

Fig. 3 . 

As the stencil ties all characteristic curves, the approximations of U = [ p, v , v j { j = 2 , . . . n } , ε a 
θ
, ε i 

θ
{ i = 1 , . . . m } ] at the 

discrete points ( x k , t p ) may readily be computed. This procedure allows calculating U at the time instant t p = t p −1 + �t

by invoking the prior value of U at t p −1 for k = 2, …, N , with t 0 = 0 being the time instant representative of a known

steady-state solution of Eq. (27). 

The integration procedure of the left-hand sides of the compatibility equations is exact. On the other hand, that of the

right-hand sides of Eqs. (38a -d) are evaluated by employing an implicit second-order (Crank-Nicholson) approximation for 

the terms a j , m j , and g θ . In addition, a discretized form of the compatibility equations represented by Eq. (38e) can be

obtained by direct integration of these equations, when weighted by exp ( t / τ i ) followed by an explicit first-order approxi-

mation of the pressure variable p . Besides the time-spatial discretization, the number and thickness of the constituents must 

be specified since it is a constitutive choice in the context of the model. In this work, the thickness of each constituent is

maintained constant in a core region (0 ≤ R j ≤ 0.8 R ), while the thicknesses of the constituents in the annular region (0.8 R

< R j ≤ R n ) decrease following a geometric progression. Details of this constituents’ grid can be found in Andrade and Freitas

Rachid [37] . 

The discretized equations with appropriate initial-and-boundary conditions form a linear system of equations whose 

solution, i.e. the vector of unknowns U = [ p, v , v j { j = 2 , . . . n } , ε a 
θ
, ε i 

θ
{ i = 1 , . . . m } ] at each discretized time-space node 

( x k , t p ), is obtained by employing a Householder reduction followed by back substitution. 

The approximate solution for the case that the pipe wall is linearly elastic, which is analyzed in the next section as well,

can be achieved by the same general procedure as described above. Nevertheless, the final set of equations to be solved is
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Fig. 3. Computational mesh based on characteristic curves for the present model. 

 

 

 

 

 

 

 

 

 

 

limited to only n + 1 dependent variables [ p , v , v 2 … v n ] n + 1 . Then, the model turns out to be equal to the one presented

by Andrade and Freitas Rachid [37] , which is valid for elastic pipe materials. 

7. Results 

Before going a step further aiming to explore the full capabilities of the proposed model, we validate the model by com-

paring its numerical predictions with experimental results available in the literature. The accuracy of the model is assessed 

by comparing the numerical results of the piezometric head, H , fluctuations next to the valve, with the data found in two

experimental installations: of Gally et al. [8] and Covas [53] . Their experimental apparatus is composed of a reservoir from

which water flows at a steady-state velocity v 0 in a horizontal polymeric pipe that reaches a downstream-end valve located 

at x = L . Initially, this valve is fully open, and then the transient is generated by a rapid valve closure maneuver within

closure time T The following boundary conditions mathematically describe this settlement: 

H ( x = 0 , t ) = H R ( t ) , (39) 

v ( L, t ) = 

{ 

v 0 
(

1 − t 

T 

)
if 0 ≤ t < T 

0 if t ≥ T 
, (40) 

in which H R ( t ) is the reservoir pressure. 

Three cases, referred to as Cases (1), (2) and (3), will be considered in this work. The first two are referred to as the

experimental cases of Covas [53] , and the third one is related to the experiment conduced by Gally et al. [8] . In the first,

the flow regime is laminar, while, in the other two, it is turbulent. The main features of the experimental setup for Covas’

cases can be found in Table 1 , and the viscoelastic characteristics of the HDPE tube employed in the experimental facility of

Covas [53] are specified in Table 2 . Tables 3 and 4 display the features of the experimental apparatus and the details of the
Table 1 

Main characteristics of the experiment of Covas [53] . 

Case L [m] D [m] e [m] ρ0 [ 
kg 
m 3 

] ν0 [ − ] c f [ 
m 
s 

] T [ s ] v 0 [ m s 
] Re [ − ] H R ( t ( s ))[m] 

1 271.5 0.0506 0.00625 998.2 0.46 394 0.13 0.028 1398 48.33 + 0.0167 t − 0.0004 t 2 

2 0.25 12581 46.95 + 0.115 t − 0.0035 t 2 

Table 2 

Coefficients of the Kelvin-Voigt units of the HDPE tube of Covas [53] (Covas et al. [49] ). 

Unit i = 1 i = 2 i = 3 i = 4 i = 5 

E i [10 9 Pa] 7.17 161.29 8.71 2.92 10.78 

τ i [s] 0.05 0.5 1.5 5 10 
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Table 3 

Main characteristics of the experiments of Gally et al. [8] (Urbanowicz et al. [54] ). 

Case L [m] D [m] e [m] ρ0 [ 
kg 
m 3 

] ν0 [ − ] c f [ 
m 
s 

] T [ s ] v 0 [ m s 
] Re [ − ] H R ( t ( s ))[m] 

3 43.1 0.0416 0.0042 997.1 0.38 265 0.012 0.55 25650 10.89 

Table 4 

Coefficients of the Kelvin-Voigt units of the Polyethylene (PE) tube of Gally et al. [8] – temperature equal to 25 °C (Urbanowicz et al. [21] ). 

Unit i = 1 i = 2 

E i [10 9 Pa] 0.9560 0.8084 

τ i [s] 0.0222 1.864 

Fig. 4. Piezometric head histories located at 0.5 m upstream of the valve extracted from the experimental data of Covas [53] . Comparison between the 

present model by considering the pipe-wall mechanical behavior as being viscoelasticity and elastic. Figs. (a) and (b) refer to Case (1) and Case (2), 

respectively. 

 

 

 

 

 

 

 

 

 

polyethylene pipe employed by Gally et al. [8] , as reported by Urbanowicz et al. [ 21 , 54 ]. As one can see in the right-most

column of Table 1 , the reservoir head function for Covas’ experiments (Cases (1) and (2)) is approximated by time-dependent

functions for both the laminar and turbulent cases. These functions are extracted from the reservoir pressures registered in 

Covas [53] for the turbulent case, while due to the absence of these pressure traces for the laminar flow case in the work of

Covas [53] , the function for the laminar flow case was extracted from the reservoir pressures exposed by Urbanowicz et al.

[55] . The reservoir pressure as being a function of time t in the experiments carried out by Covas [53] is also remarked by

Abdel-Gawad and Djebdjian [56] . The reservoir pressure in Case (3) is assumed to be constant (see Table 3 ). 

Figs. 4 and 5 show the transient piezometric head histories close to the valve for both laminar and turbulent cases

obtained by the present approach together with experimental data obtained by Covas [53] and Gally et al. [8] . To enrich the

analysis, the present model responses disregarding the effects of the viscoelasticity of the pipe (elastic pipe model) are also 

presented in Figs. (4) and ( 5 ). As one can see, the elastic model is unable to properly represent the experimental data. This

model overestimates the values of the head for the whole time span and is not in phase with the experimental responses.
856 



D.M. Andrade, F.B. de Freitas Rachid and A.S. Tijsseling Applied Mathematical Modelling 114 (2023) 846–869 

Fig 5. Piezometric head histories located next to the downstream valve extracted from the experimental data of Gally et al. [8] for temperature equal to 

25 °C. Comparison between the present model by considering the pipe-wall mechanical behavior as being viscoelastic and elastic. 

Fig. 6. Relative circumferential strain histories computed by the present model when viscoelastic response is taken into account at the mid-length of the 

viscoelastic pipe for the experimental setup of Covas [53] . The elastic and anelastic parcels of the relative circumferential strain are also presented. 

Fig. 7. Piezometric head histories at the mid-length of the viscoelastic pipe computed by the present model when the viscoelasticity is taken into account 

for the experimental setup of Covas [53] . 

 

 

 

 

Conversely, the proposed viscoelastic model responses agree quite well both in phase and magnitude with the experimental 

data. 

The differences between the piezometric heads predicted by the model with the elastic and viscoelastic pipe wall me- 

chanical behaviors can be better comprehended by analyzing some intrinsic aspects of this material’s behavior. Case (2) is 

selected to present such an analysis, even though it could have been done with Cases (1) and (3) as well. 

Fig. 6 shows the relative total strain εθ for the viscoelastic response (the difference between the current and initial state, 

i.e. ε ∗
θ

= ε θ − ε θ | t=0 ) and its anelastic parcel and elastic counterpart at the mid-length of the pipe. 

The behavior of anelastic strains through time due to the cyclic wave passages at a particular position differs from that

of the elastic strains. Meanwhile, the elastic strain has an instantaneous response to the pressure loads, the anelastic strain 

is characterized by a delayed response. For example, after the passage of the first wavefront at the pipe mid-length at

t /( L / c f ) ∼= 

0.5, the elastic strain and piezometric head are roughly held constant until the subsequent wavefront arrival at

t /( L / c f ) ∼= 

1.5 (see Figs. 6 and 7 ). In contrast, the anelastic strains increase significantly in this whole period. In other words,
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Fig. 8. Relative stress-strain hysteresis curves at the mid-length of the pipe during t /( L / c f ) ∈ [0, 29] for the experimental setup of Covas [53] . 

Fig. 9. Normalized local rates of energy dissipation in the (a) pipe and the (b) fluid for the experimental setup of Covas [53] . 

 

 

 

 

 

 

 

 

 

the pressure and anelastic strain are not in phase, as has already been noticed by Pezzinga et al. [14] . This increase of the

anelastic strain at a constant pressure/stress load is known as creep. This strain is a consequence of internal rearrangements 

of the pipe material’s structure that is captured by the internal variables ε i 
θ

. Such a delayed material response causes me-

chanical hysteresis, which is a typical evidence of energy dissipation. Fig. 8 shows the difference between the current and

initial stress ( σ ∗
θ

= σθ − σθ | t=0 ) against the relative total strain during the normalized time interval t /( L / c f ) ∈ [0, 29]. In

contrast to the response of the elastic pipe, hysteresis is observed in the viscoelastic pipe, as the loading and unloading pro-

cesses do not follow the same path in the σ ∗
θ

− ε ∗
θ

plane. Such behavior is directly related to the delayed strain responses

to the pressure loads that are observed in viscoelastic pipes. 

Since hysteresis is intrinsically related to energy dissipation phenomena, to better grasp the influence of the viscoelas- 

ticity on the dynamic response of the pipe-fluid system, it is convenient to keep track of the rate of energy dissipation in

both the pipe and fluid. 

Fig. 9 shows histories of the local rate of energy dissipation per unit volume in the fluid and the pipe normalized by

the local rate of energy dissipation in the fluid in the steady-state d f 0 . In the present case, the liquid’s dissipation and the
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Fig. 10. Normalized overall rate of energy dissipation in both fluid and pipe through the pipe extension. Comparison between the responses of the present 

model: (a) elastic and (b) viscoelastic tube materials. In (b), the summation of the dissipation in both media is also shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solid’s dissipation have the same order of magnitude, being the solid energy dissipation more prominent. Further, Fig. 9 also

reveals that the dissipation in the pipe takes place at the very first moments of the transient and is localized in regions

close to the valve. The rapid and intense pressure surge right after the onset of the transient induces a significant amount

of anelastic strains, which in turn are directly associated with dissipative phenomena (see Eq. 36 ). Such evidence supports

the employment of short viscoelastic pipe sections in elastic pipelines to act as pressure surge suppressors, especially when 

these additional pipes are placed close to the source of the transient [25–32] . 

As pressure surges also enforce flow reversals, the no-slip condition at the pipe wall ends up creating uneven velocity 

gradients. Since the velocity gradients are decisive for liquid dissipation in transients and are more severe at the onset of

these events, the dissipation in the fluid achieves its more pronounced values in the first moments. However, the shape 

of the distribution of the rates of energy dissipation is more complex than the pattern found in pipe dissipation. Such a

result is due to intricate patterns and intensities of the flow reversals at different time instants [57–58] . In the present case,

it is noted that the more significant values of rates of energy dissipation in the fluid are observed in regions close to the

reservoir, especially when the fluid wavefront attains these locations at t /( L / c f ∼= 

1). Right after t /( L / c f ∼= 

1), the flow still

maintains its inertia and starts to reverse completely its direction from the reservoir towards the valve. As a consequence, 

significant reverse flows close to the wall appear, and high levels of rates of energy dissipation in the fluid arise from them.

The preceding paragraphs expose that even though fluid and pipe energy dissipations contribute to the attenuation and 

dispersion of the pressure oscillations, each media has its proper mechanics that act differently during transients. Such 

a result contributes to one of the main challenges of the field, as Covas et al. [49] stated: "The major challenge of the

current and the future work is the distinction between frictional and mechanical dampening." In Covas et al. [49] and other

subsequent works, as in Duan et al. [12] and Seck [59] , the strategy to observe the impact of the fluid transient friction and

viscoelastic in the fluid transient is based on computing the model’s responses by taking into account only one of these

two effects and observe a local pressure response close to the valve. Even though the effect of the viscoelasticity seems

to be more significant as it achieved close results to experimental data, in both cases, the pressure signals are attenuated

and dispersed similarly. Thus, from the pressure results, it is impossible to discern the exact effects of each medium on the

pressure responses when they are combined in the model. 

On the other hand, the present approach, which describes the computation of the local rates of energy dissipation in 

both media separately, clearly contributes to the distinction and mechanical characterization of the contributions of each 

medium, as demonstrated previously herein. In addition, the approaches previously presented in the literature decouple the 
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Fig. 11. Normalized pressure head and velocity head energies of the fluid for the experimental setup of Covas [53] . Comparison between the responses for 

(a) the elastic and (b) the viscoelastic tube. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pipe and fluid responses in the analysis as they do not have other means to view the effect of each medium in an isolated

way. Such an approach rules out the mechanical interaction between the pipe wall and the fluid flow, which exists and

which is put in evidence in what follows. 

The overall rate of energy dissipation in both fluid and pipe through the pipe extension provides a broader view of how

the energy dissipation takes place in the coupled fluid-pipe system. These overall rates can be defined as D k = ∫ L 0 d k ( x, t ) dx ,

where k ∈ { f, p }. Fig. 10 shows a comparison between the histories of the overall rate of energy dissipation through the pipe

extension (normalized by D f 0 = ∫ L 0 d f ( x, 0 ) dx ), when the pipe exhibits elastic and viscoelastic mechanical responses. When 

compared to the elastic case, the viscoelastic case dissipates more energy in the first moments of the event. The reason is

evident, the significant rates of energy dissipation that occur in the viscoelastic pipe. However, if one looks solely at the fluid

dissipation in both cases, one may realize that the fluid dissipation in the elastic pipe case is always superior. In addition,

in the elastic case, meaningful amounts of energy are dissipated until the late stages of the transient event, which does

not occur when the pipe is viscoelastic. As the rate of energy dissipation in the fluid is proportional to the square of the

fluid’s velocity gradient in the radial direction for any pipe’s mechanical response (see Eq. (32) ), this result puts in evidence

a two-way interaction between the fluid dynamics and pipe mechanical behavior. 

The pressure fields for the elastic and viscoelastic pipes that have already been shown at a specific location in Fig. 4 can

be broadly observed in the leftmost graphs of Figs. 11a and 11b , which present the local normalized pressure head energy,

E P / E P 0 = [ p ( x, t )/ ρ0 g ]/[ p ( x ,0)/ ρ0 g ], in the whole time-space span. The amount of energy dissipated by the viscoelastic be-

havior of the pipe makes the pressure attenuation and dispersion more intense in the whole extension of the pipe. Such

energy dissipation also induces the reduction of the levels of the normalized velocity head energy, E K / E K 0 = [ v 2 /2]/[ v 0 
2 /2], at

superior rates than those found in the elastic pipe, as shown in the rightmost plots of Figs. 11a and 11b . Consequently, the

decay of the cross-sectionally average velocity of the fluid v achieved by the viscoelastic pipe is more pronounced. As the

initial averaged fluid velocity is the same for the elastic and viscoelastic cases, the loss of kinetic energy can also be related

to the less pronounced velocity gradients in the fluid flow found in the viscoelastic case as shown in Fig. 12 . As presented

in Fig. (11) , the fluid’s kinetic energy is similar in the first moments of the transient for both pipe’s material behavior. Nev-

ertheless, as the pipe dissipates energy ( Fig. 9 ), the fluid’s kinematic responses attenuate, and the differences between the
860 



D.M. Andrade, F.B. de Freitas Rachid and A.S. Tijsseling Applied Mathematical Modelling 114 (2023) 846–869 

Fig. 12. Normalized shear-stress profiles at the mid-length of the pipe at different normalized times. Comparison between the responses of (a) the elastic 

and (b) the viscoelastic tube. 

Table 5 

Polyethylene (PE) pipe described in Urbanowicz et al. [21] . 

ν0 [ − ] E 0 [10 9 Pa ] E 1 [10 9 Pa ] E 2 [10 9 Pa ] i τ 1 [ s ] τ 2 [ s ] 

0.38 0.45 0.48 0.28 0.0347 3.077 

 

 

 

 

 

 

 

 

 

 

velocity profiles for the case of elastic and viscoelastic materials becomes discernible at later stages of the fluid transient 

(see Fig. 12 ). 

The mechanical coupling between the fluid and the pipe is now explored in one more example. By replacing the HDPE

pipe applied in the experiment of Covas [53] with the polyethylene pipe described in Table 5 , one can note in Fig. 13 that

not only the pipe’s energy dissipation is influenced, but the energy dissipation in the fluid is also affected. In the pipe, more

significant energy dissipation values are observed compared to the original case (see Fig. 9a ). Moreover, the dissipation 

in the pipe is even more concentrated in the first cycle of the transient. The rate of energy dissipation in the fluid flow

maintained a similar overall format, but the levels of dissipated energy are vastly reduced (see Fig. 9b ). 

Some insights into the reasons behind this behavior can be achieved. The larger period of oscillation ( L / c f ) reduces the

shear stress values in the fluid flow, which in turn causes less energy dissipation [60] . At the same time, the extended

wave period and the less rigid Young ‘s moduli of the Kelvin-Voigt units in the PE pipe allow the pipe to dissipate a more

significant amount of energy in the first cycle of the transient. In addition, the reduction of the transient intensity (measured

by the product ρ0 c f v 0 ) also shrinks the responses of both pipe and fluid media. The amount of energy dissipated by the

pipe, together with the minor fluid transient intensity turn the pressure head and velocity head energies to be less acute 

and more rapidly damped than when compared to the previous HDPE pipe (see Fig. 14 ). 

The preceding paragraph grasps some reasons that lie behind the distinct responses for different viscoelastic pipes. How- 

ever, all these effects mentioned above occur simultaneously, and the pipe and fluid mechanical reactions influence each 

other instantaneously, in such a way that taking into account this fluid-pipe interaction is required for an accurate descrip- 

tion of the fluid transient. Further, the pipe and fluid flow behavior depend not only on geometrical properties but also on a
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Fig. 13. Normalized local rate of energy dissipation in (a) the fluid and (b) the pipe for the setup of Covas [53] when the pipe is made of PE as described 

in Table 3 . 

Fig. 14. Normalized (a) pressure head and (b) velocity head energies of the fluid for the experimental setup of Covas [53] when the pipe is made of PE as 

described in Table 3 . 

 

 

 

 

 

 

 

significant number of constitutive parameters (e.g., different relaxation times for the same viscoelastic pipe). A generalized 

study of the fluid transient responses for different flow conditions and viscoelastic constitutive constants can expose a better 

picture of the phenomenon. However, it is a demanding task that is out of the scope of the present work. 

Nevertheless, the present analysis reveals that by ignoring the viscoelasticity of the pipe, the model overlooks crucial 

thermomechanical mechanisms of the coupled fluid-pipe system which can lead to poor results for the computed transient 

responses (e.g., Fig. 4 ). The results also show that accurate computation of the rate of energy dissipation in the fluid and

pipe separately provides a reliable and powerful tool to discern the local and overall significance of the viscoelasticity and 

the transient fluid friction during the event. Such a result can be constructive to further theoretical and practical analysis in

the field. 

8. Summary and conclusions 

This work presents a fluid transient model capable of handling the viscoelastic behavior of the pipe. A previously devel- 

oped quasi-2D flow model is used as a base, and the viscoelastic characteristic of the pipe is included according to consti-

tutive equations formulated in a thermodynamic consistent framework of an internal variable theory. Besides the model’s 

capability to predict pressure-head histories with great accuracy, the model allows computing the rates of energy dissipa- 

tion in the fluid and pipe distinctly and accurately. After validating the model against experimental results, the crucial role 

of the viscoelasticity of the pipe material in the transient responses is accessed by establishing a comparison with those 

observed in elastic pipe materials. The results show that in addition to delaying the pressure oscillations, the viscoelastic 

behavior brings a faster attenuation of the pressure loadings to which the pipe is subject. Even though such a result is

already known, the present work takes advantage of its capacity to compute the rates of energy dissipation in the pipe

and in the fluid to provide a better understanding of the underlying mechanisms. The energy dissipation in the pipe has

superior magnitudes compared to those found in the fluid. Then, the system as a whole loses a significant part of its energy

content, which is reflected as attenuated responses of the pressure and kinematic energies. The capability of computing the 

energy dissipation separately for fluid and pipe also exposes that each dissipative mechanism - although intensively tied - 
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is intrinsically different. It has also been shown that the alteration of the viscoelastic characteristics of the pipe affects the

fluid hydrodynamics. 

To conclude, this work puts in evidence that an accurate computation of the energy dissipation of the pipe and the

fluid separately can be a direct and promising tool to better comprehend the fluid transient behavior in viscoelastic piping 

systems. Aside from the theoretical importance, the energy dissipation can be relevant to the development of equipment for 

damping the water hammer and life time prediction due to fatigue in plastic pipes [61–62] . 
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Appendix A. Procedure to achieve the expressions of the fluid’s material constants 

Under the assumptions of the model, the steady-state momentum balances for the j − th constituents Eq. (6) ) are suf-

ficient for determining the material constants of the model. By employing the proposed expressions of the reactive force 

a j and internal forces m j , Eqs. (4 - (5) , in addition to the restriction C j,j + 1 = C j + 1, j , this balance generates a linear system of

equations whose solution are the material constants of the model, C and C j,j + 1 , for j = 1, …, n . Such a linear system may

be solved by making use of known expressions of velocity profiles in steady-state. The foregoing approach is general for 

laminar or turbulent flows. By appealing to the velocity profiles found in laminar flows 

v 
(
R j 

)
= 

R 

2 

4 ρ0 ν

[ 

1 −
(

R j 

R 

)2 
] (

−dp 

dx 

)
, (A.1) 

the steady-state momentum balances for the constituents can be resumed to: 

C 1 , 2 
[
( R 2 ) 

2 − ( R 1 ) 
2 
]

= φα1 , 

C 2 , 1 
[
( R 1 ) 

2 − ( R 2 ) 
2 
]

+ C 2 , 3 
[
( R 3 ) 

2 − ( R 2 ) 
2 
]

= φα2 , 

C j, j−1 

[ (
R j−1 

)2 −
(
R j 

)2 
] 

+ C j, j+1 

[ (
R j+1 

)2 −
(
R j 

)2 
] 

= φα j , 

. . . 

C n −1 ,n −2 

[
( R n −2 ) 

2 − ( R n −1 ) 
2 
]

+ C n,n −1 

[
( R n ) 

2 − ( R n −1 ) 
2 
]

= φαn −1 , 

2 

R 

C 
[
R 

2 − ( R n ) 
2 
]

+ C n,n −1 

[
( R n −1 , n ) 

2 − ( R n ) 
2 
]

= φαn , 

(A.2) 

in which, φ = 4 ρ0 ν . As C j,j + 1 = C j + 1, j , a recursive strategy starting from the first expression shown in Eq. (A.2) can be

employed to find the solution to the system given by: 

C j, j+1 = 

4 ρ0 ν

R 

2 
j+1 

− R 

2 
j 

( 

j ∑ 

i =1 

αi 

) 

, with R n +1 ≡ 0 , 

C = 

2 ρ0 νR 

R 

2 − R 

2 
n 

. (A.3) 

In turbulent flows, the steady-state balance for each constituent cannot be simplified as presented above. The dependence 

of the turbulent velocity profile on the logarithm of the radius of the j − th constituent, 

v 
(
R j 

)
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

(
− dp 

dx 

)
ρ0 νw 

{ 

R 

2 
M 

−
(
R j 

)2 

4 ( σcw 

) 
− b 2 

2 

[
−1 

( 1 − σcw 

) 
+ 

( −4 + 5 σcw 

) 

( 1 − σcw 

) 
2 

ln 

(
1 

σcw 

)]} 

, 0 ≤ r ≤ R M (
− dp 

dx 

)
b 2 

2 νw 

ρ0 

{ (
R − R j 

)
( 1 − σcw 

) b 
+ 

( 4 − 5 σcw 

) 

( 1 − σcw 

) 
2 

ln 

[
1 

( 1 −σcw ) 
b 

R j − 4 + 5 σcw 

]} 

, R M 

< r ≤ R 

(A.4) 
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yields the steady-state balances of momentum for each constituent to be given as 

C 1 , 2 �1 = α1 , 

−C 2 , 1 �1 + C 2 , 3 �2 = α2 , 

. . . 
−C j, j−1 � j−1 + C j, j+1 � j = α j , 

. . . 

−C n −1 ,n −2 �n −2 + C n,n −1 �n −1 = αn −1 , 

−C n,n −1 �n −1 + 

2 

R 

C v n = α j , 

(A.5) 

where 

� j = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

(
R j+1 

)2 −
(
R j 

)2 

4 ρ0 νc 
, 0 ≤ R j ≤ R M 

b 2 

2 νw 

ρ0 

[ 

R j+1 − R j 

( 1 − σcw 

) b 
+ 

( −4 + 5 σcw 

) 

( 1 − σcw 

) 
2 

ln 

[ (
1 −σcw 

b 

)
R j − 4 + 5 σcw (

1 −σcw 

b 

)
R j+1 − 4 + 5 σcw 

] ] 

, R M 

< R j ≤ R 

. (A.6) 

The same recursive strategy applied for the laminar flow case can also be used to achieve the core, annular, and skin-

friction material constants of the model: 

C j, j+1 = 

4 ρ0 νc 

R 2 
j+1 

−R 2 
j 

( 
∑ j 

i =1 
αi ) , for 0 ≤ R j ≤ R M 

. 

C j, j+1 = 

2 νw 

ρ0 ( 1 − σcw 

) / b 2 { 
R j+1 −R j 

b 
+ 

( −4+5 σcw ) 
( 1 −σcw ) 

ln 

[ 
( 1 −σcw 

b ) R j −4+5 σcw 

( 1 −σcw 
b ) R j+1 −4+5 σcw 

] } 
( 

j ∑ 

i =1 

αi 

) 

, for R M 

< R j ≤ R n −1 , 

C = 

νw 

ρ0 R ( 1 − σcw 

) / b 2 {
R −R n 

b 
+ 

( −4+5 σcw ) 
( 1 −σcw ) 

ln 

[(
1 −σcw 

b 

)
R n − 4 + 5 σcw 

]} , for R j = R n (A.7) 

Appendix B. The final form of the balance of mass 

The state law given by Eq. (23) can be used to achieve the following stress-strain relation: 

ε θ | r= R = 

1 

E 0 
[ σθ | r= R − ν0 σr | r= R ] − ν0 

E 0 
σx | r= R + ε a θ | r= R . (B.1) 

Thus, the balance of mass can be expressed as 

1 

K 

∂ p 

∂t 
+ 

∂v 
∂x 

+ 

2 

R 

∂ 

∂t 

[ 
1 

E 0 
( σθ | r= R − ν0 σr | r= R ) − ν0 

E 0 
σx | r= R + ε a θ | r= R 

] 
= 0 . (B.2) 

The values for the circumferential and radial stresses at the internal pipe wall obtained for a solid ring subject to internal

pressure loadings establish that [50] : 

σθ | r= R − ν0 σr | r= R = 

[ 

R 

e 
+ 

(
1 + 

e 
R 

)(
2 + 

e 
R 

) + ν0 

] 

p. (B.3) 

Moreover, one can assume that the variation of the axial stress in the pipe-wall’s cross-section is small such that 

σx | r= R = σx = ν0 ( σr + σθ ) , (B.4) 

in which the superimposed bar symbol �̄ stands for the cross-sectional averaged value of �. Finally, assuming that anelastic 

circumferential strain is supposed to obey the following relation 

1 

R 

ε a θ | r= R = 

(
R + 

1 
2 

e 
)

R 

ε a 
θ
, (B.5) 

the balance of mass can be expressed as [ 

1 

K 

+ 

2 

E 0 

{ 

R 

e 
+ 

(
1 + 

e 
R 

)(
2 + 

e 
R 

) + ν0 − ν2 
0 �

} ] 

∂ p 

∂t 
+ 

2 

(
R + 

1 
2 

e 
)

R 

∂ε a 
θ

∂t 
+ 

∂v 
∂x 

= 0 . (B.6) 

For the sake of simplicity, the bar superscripts were removed to follow the notation contained in the core manuscript. 
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Appendix C. Method of Characteristics 

The governing equations given by Eq. (27) can be transformed into a canonical form: 

A 

∂U 

∂t 
+ B 

∂U 

∂x 
+ C = 0 (C.1) 

in which the column vectors U and C , and the matrices A and B , are given by 

U = 

[
U 

T 
e 

. . . U 

T 
a 

]
; (C.2) 

C = 

[
C 

T 
e 

. . . C 

T 
a 

]
; (C.3) 

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

E 

. . . Q 

· · ·
. . . · · ·

0 

. . . I ζ

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

; (C.4) 

B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

K 

. . . 0 

· · ·
. . . · · ·

Z 

. . . 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (C.5) 

where U e ( x , t ) = U e : [0, L ]x [0, T ] ⊂ R 

2 , U a : [0, L ]x [0, T ] ⊂R 

ζ , with ζ = n − 1 + 1 + m , are vectors that stand for the

classic variables of the transient flow problem and the additional variables added because of the inclusion of the pseudo- 

mixture model and the anelastic nature of the structure, respectively. They are: 

U 

T 
e = [ p v ] , (C.6) 

U 

T 
a = 

[
v 2 . . . v n ε a θ ε 1 θ . . . ε m 

θ

]
. (C.7) 

The vectors of the source term C namely, C e ∈ R 

2 and C a ∈ R 

ζ are given by 

C 

T 
e = 

[ 
0 

2 

R ρ0 

a n 

] 
, (C.8) 

C 

T 
a = 

[
c 2 . . . c n g θ g 1 . . . g m 

]
, (C.9) 

in which 

c j = 

m j + 

2 
R 

a j 

ρ0 α j 

, (C.10) 

I ζ is the identity matrix of size ζ × ζ , and the matrices E & K ∈ R 

2 x R 

2 , Z ∈ R 

2 + ζ x R 

2 , Q ∈ R 

2 x R 

2 + ζ are expressed as:

E = 

[ 1 

ρ0 c 
2 
f 

0 

0 1 

] 

, K = 

⎡ 

⎣ 

0 1 

1 

ρ0 

0 

⎤ 

⎦ , Z = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 

ρ0 

0 

. . . 
. . . 

1 

ρ0 

0 

0 0 

. . . 
. . . 

0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, Q = 

[ 

0 . . . 0 2� 0 . . . 0 

0 . . . 0 0 0 . . . 0 

] 

. (C.11) 
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The left multiplication of Eq. (C.1) by A 

−1 transforms this system of partial differential equation into: 

∂U 

∂t 
+ H 

∂U 

∂x 
+ F = 0 , (C.12) 

where H and F are given by 

H = A 

−1 B = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

E 

−1 K 

. . . 0 

· · ·
. . . · · ·

Z 

. . . 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 ρ0 c 
2 
f 

. . . 0 

1 /ρ0 0 

· · ·
. . . · · ·

Z 

. . . 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (C.13) 

F = A 

−1 C = 

⎡ 

⎢ ⎣ 

E 

−1 ( C e − Q C a ) 

· · ·
C a 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−2�c 2 f ρ0 g θ

2 

R ρ f 

a n 

c 2 v 

. . . 

c n v 

g θ

g 1 

. . . 

g m 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (C.14) 

Equation (C.12) is classified as a quasi-linear system of partial differential equations and their characteristic curves are 

described by 

dx 

dt 
= λk , (C.15) 

in which λk are the eigenvalues associated with the matrix H : 

det 
(
H − λk I 2+ ζ

)
= 0 . (C.16) 

This eigenvalue problem gives rise to the following characteristic polynomial: 

(
λ2 − c 2 f 

)
λζ = 0 . (C.17) 

Thus, the following eigenvalues are found: 

λ1 , 2 = ±c 2 f 

λk = 0 for k = 3 , . . . , ζ . 
(C.18) 

For each eigenvalue, left eigenvectors l k are achieved by the following the relation 

(
· · · l k · · ·

)(
H − λk I 2+ ζ

)
= 0 , (C.19) 
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which produces: 

l 1 = 

[
1 

ρ0 c f 
1 0 1 ,n −1 + 1 + m 

]
, 

l 2 = 

[
− 1 

ρ0 c f 
1 0 1 ,n −1 + 1 + m 

]
, 

l 3 = [ 0 − 1 0 0 1 0 1 ,n −2 + 1 + m 

] , 

l 4 = [ 0 − 1 0 0 0 1 0 1 ,n −3 + 1 + m 

] , 

l 5 = [ 0 − 10 0 0 010 1 ,n −4 + 1 + m 

] , 

. . . 

l 2+ n −1 = [ 0 − 1 0 0 0 0 . . . 0 1 0 1 , 1 + m 

] , 

l 2+ 1+ n −1 = [ 0 − 1 0 0 0 0 . . . 0 0 1 0 1 , m 

] , 

l 2+ 1 + 1 + n −1 = [ 0 − 1 0 0 0 . . . 0 10 0 1 , m −1 ] , 

l 2+ 2 + 1+ n −1 = [ 0 − 1 0 0 0 . . . 0 1 0 0 0 1 , m −2 ] , 

. . . 
l 2 + ζ = [ 0 − 1 0 0 0 . . . 0 1 ] . 

(C.20) 

These eigenvalues are all real and the eigenvectors form a set of linearly independent vectors. As a result, the set of

partial differential equations given by Eq. (C.1) is classified as being merely hyperbolic. The method of characteristics (MOC) 

is an excellent method to solve such partial differential equations. The definition of the characteristic curve can be applied 

to express Eq. (C.12) as 

W 

(
dU 

dt 
+ F 

)
= 0 , (C.21) 

in which W = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

· · · l 1 · · ·

· · ·
. 
. . · · ·

· · · l 2+ ζ · · ·

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

is a square matrix composed by the left eigenvectors of the system. Hence, the system of

partial differential equations can be expressed as 

1 

ρ0 c f 

dp 

dt 
+ 

dv 
dt 

+ 

2 

R ρ0 

a n − 2 c f �g θ = 0 along C + 
f 

≡ dx 

dt 
= c f 

− 1 

ρ0 c f 

dp 

dt 
+ 

dv 
dt 

+ 

2 

R ρ0 

a n + 2 c f �g θ = 0 along C −
f 

≡ dx 

dt 
= −c f , 

−dv 
dt 

+ 

d v j 
dt 

+ 

m j + 

2 
R 

a j 

ρ0 α j 

− 2 

R ρ0 

a n = 0 , j = 2 , . . . n, along C 0 ≡ dx 

dt 
= 0 , 

dε a 
θ

dt 
+ g θ = 0 along C 0 ≡ dx 

dt 
= 0 , 

dε i 
θ

dt 
+ g i = 0 , i = 1 , . . . , m along C 0 ≡ dx 

dt 
= 0 . 

(C.22) 
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