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ABSTRACT Radio telescopes produce large volumes of data that need to be processed to obtain
high-resolution sky images. This is a complex task that requires computing systems that provide both high
performance and high energy efficiency. Hardware accelerators such as GPUs (Graphics Processing Units)
and FPGAs (Field Programmable Gate Arrays) can provide these two features and are thus an appealing
option for this application. Most HPC (High-Performance Computing) systems operate in double precision
(64-bit) or in single precision (32-bit), and radio-astronomical imaging is no exception. With reduced
precision computing, smaller data types (e.g., 16-bit) are used to improve energy efficiency and throughput
performance in noise-tolerant applications. We demonstrate that reduced precision can also be used to
produce high-quality sky images. To this end, we analyze the gridding component (Image-Domain Gridding)
of the widely-used WSClean imaging application. Gridding is typically one of the most time-consuming
steps in the imaging process and, therefore, an excellent candidate for acceleration.We identify the minimum
required exponent and mantissa bits for a custom floating-point data type. Then, we propose the first custom
floating-point accelerator on a Xilinx Alveo U50 FPGA using High-Level Synthesis. Our reduced-precision
implementation improves the throughput and energy efficiency of respectively 1.84x and 2.03x compared to
the single-precision floating-point baseline on the same FPGA. Our solution is also 2.12x faster and 3.46x
more energy-efficient than an Intel i9 9900k CPU (Central Processing Unit) and manages to keep up in
throughput with an AMD RX 550 GPU.

INDEX TERMS Accelerator architectures, approximationmethods, astronomy, central processing unit, field
programmable gate arrays, graphics processing units, high level synthesis, high performance computing,
reconfigurable architectures, scientific computing.

I. INTRODUCTION
The future generation of radio telescopes, such as the Square
Kilometre Array (SKA) [1], will have to process a mas-
sive quantity of data (in the order of TeraBytes per second)
using high-performance computing systems (in the order of

The associate editor coordinating the review of this manuscript and

approving it for publication was Vincenzo Conti .

Exaflops per second) [2] with high energy efficiency [3]. The
demanding data and computation requirements are mainly
caused by the high-resolution images that must be processed
to discover new objects in the sky such as stars, supernovas,
galaxies, etc. [4].

The most dominant compute kernels of the radio-
astronomical imaging pipeline are the gridding, and degrid-
ding algorithms [5]. These kernels can be executed highly
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efficiently in single-precision floating-point accuracy using
GPUs. A GPU accelerated imaging solution is shown to meet
the computing power and energy efficiency requirements
of SKA [6]. FPGAs (Field Programmable Gate Arrays) are
well known to be energy-efficient platforms for fixed-point
computation [7], [8]. However, recent FPGA platforms can
also be efficiently used for floating-point computations, e.g.,
Intel Arria 10 and Stratix 10 [9]. Furthermore, High-Level
Synthesis (HLS) toolchains enable FPGAs to be programmed
much more easily compared to using a Hardware Description
Language (HDL). This makes FPGAs an attractive accelera-
tor platform [10]. However, the prior art shows that FPGAs
are less energy-efficient than GPUs for the radio astronomy
application domain [11].

Reduced precision computing is a technique where smaller
data types are used to reduce area usage, execution time,
and power consumption within noise-tolerant applications
without losing information [12]. It has been widely applied
in different application domains, especially, in deep learning
applications [13], [14]. Existing studies propose the use of
reduced precision also for the deconvolution kernel [15],
applymixed precision to other steps of the radio-astronomical
imaging acquisition pipeline, e.g., correlator [16], or other
radio-astronomy domains, e.g., computation of tomographic
reconstructors [17]. However, the works mentioned above
employ standard data types supported by CPUs and GPUs,
such as double-, single- and half-precision floating-point,
and do not evaluate custom data types. While Intel FPGAs
such as Arria 10 and Stratix have native support for single-
precision floating-point operations (2 flops per DSP, Digital
Signal Processing, per cycle), Xilinx FPGAs do not. Xilinx
Ultrascale FPGAs, and the Alveo U50 in particular, have
many DSPs though [18], and it is tempting to employ these
to implement reduced-precision arithmetic.

This paper evaluates the noise tolerance in a state-of-the-
art radio-astronomical imaging algorithm to reduce precision
data types, highlighting possible optimization opportuni-
ties. We evaluate the performance of the radio-astronomical
imaging algorithm on a Xilinx Alveo U50 FPGA employ-
ing High-Level Synthesis and traditional floating-point data
types. Then, we demonstrate how custom floating-point can
be efficiently employed to improve performance while main-
taining high output quality. To the best of our knowledge, this
is the first work that focuses on assessing the applicability of
reduced precision for radio-astronomical imaging.

The main contributions of this work are:
• An in-depth analysis (Section V) to determine the preci-
sion requirements of radio-astronomical Image-Domain
Gridding [19], included in the state-of-the-art imager
WSClean [20]. It highlights that standard data types such
as half-precision and brain floating-point do not meet
them. Furthermore, we show how the analysis can be
carried out faster (4x in our case).

• A custom floating-point gridding accelerator for
radio-astronomical imaging on reconfigurable hard-
ware. To the best of our knowledge, this is the first

FPGA implementation applying reduced precision for
radio astronomical imaging with negligible quality loss
(Section VI). Furthermore, we determine several guide-
lines for accelerator design on Xilinx FPGAs by using
Xilinx Vitis with regard to the state of the art.

• An in-depth performance evaluation (Section VII) of our
accelerator prototypes and of state-of-the-art architec-
tures with similar features such as peak performance,
thermal design power and lithography technology. The
Xilinx Alveo U50 outperforms an Intel i9 9900k CPU in
terms of energy efficiency. Moreover, our best acceler-
ator prototype outperforms its single-precision baseline
and keeps up in throughput with an AMD RX 550 GPU.

The paper is structured as follows: Section II explains the
background information regarding radio-astronomical inter-
ferometry and imaging. Then, in Section III we discuss back-
ground information about reduced precision and data types.
Section IV shows our methodology. In Section V we discuss
the analysis results of theWSClean imager. Section VI reports
details on how we design the accelerator architecture. It is
evaluated in Section VII, where we also present the lessons
learned in this work. Finally, we describe the related work in
Section VIII and we conclude the paper in Section IX.

II. RADIO-ASTRONOMICAL IMAGING
A radio telescope detects electromagnetic waves that origi-
nate from radio sources in the universe. The signals are used,
among other things, to construct a map of the sky containing
the positions, intensity, and polarization of the sources. Radio
telescopes such as LOFAR [21] and SKA1-Low [22] are
comprised of many (small) dipole antennas that measure two
orthogonal polarizations of the radio sources, while other
radio telescopes (such as the VLA [23], MeerKAT [24] and
SKA1-Mid [25]) are based on an array of dishes. As shown
in Figure 1, a station consists of multiple antennas, for which
the signals for every distinct frequency channel are combined.
The signals of a pair of stations (a baseline) are multiplied
and integrated (correlation ) for a short period of time
(in the order of seconds), thus producing a single visibility
(a 2 × 2 matrix). The data that the telescope produces (the
visibilities) is, therefore, a three-dimensional matrix
(with indices number of baselines, frequency channels and
correlations). The relation between visibilities and sky bright-
ness is given by a measurement equation; see [26] for com-
plete details.

The visibilities are first calibrated (®) and next used to
reconstruct the sky brightness in the observation direction
using an imaging step (¯) [27].

This work focuses on ¯. The imaging step (see Figure 2)
starts with an empty sky model and it consists of an iterative
process: 1) the inversion step is used to produce a dirty
image; 2) one or more bright sources are detected in this
image by a deconvolution algorithm such as CLEAN (see
also Section II-B); 3) a model image is created, which
contains all of the sources in the sky model; 4) visibilities
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FIGURE 1. Radio astronomy image acquisition: the incoming radio signals are digitized and then correlated and
calibrated before the imaging step is executed. We focus on the imaging step, which is highlighted in red.

FIGURE 2. High-level schematic of the radio-astronomical imaging step. The three main phases, inversion, prediction, and deconvolution (or
CLEAN) are highlighted in red. The critical kernel, the gridding, is included in the inversion step (it is highlighted in bold). We included the
point-spread-function (PSF) computation, an inversion step with an all-ones matrix of visibilities used during the CLEAN.

corresponding to this model image are predicted; 5) sub-
tracting the predicted visibilities from the measured (and
calibrated) visibilities yieldsresidual visibilities.
This process subtracts strong sources from themeasurements,
which mask the more interesting weak sources. This step is
repeated until the skymodel converges. Finally, the skymodel
is used to create the sky image.

The inversion and prediction steps comprise of 2D FFT
and a gridding or degridding step. The gridding and
degridding steps are typically the most compute-intensive
image processing steps. To attain high-quality sky images,
they need to correct for Direction-Independent Effects
(the curvature of the earth, W-Term correction) and
Direction-Dependent Effects (such as ionospheric effects,
A-Term correction). TheW-Term can be corrected by apply-
ing a convolution kernel to every visibility. The required
convolution kernel could be huge depending on parameters
such as the field-of-view and distance between receivers.
A-Term correction requires these convolution kernels to be
different for every receiver and change over time according to

changes in the Direction-Independent effects. These proper-
ties make imaging with correction for W-Terms and A-Terms
particularly challenging.

The processing facilities that the SKA consortium is plan-
ning to build for the low and mid frequencies consist of
large Science Data Processors. Each of them has a peak
performance in the order of 6.50 PFLOP/s and a thermal
design power in the order of 125 MW [6].

A. IMAGE-DOMAIN GRIDDING
Image-Domaing Gridding (IDG) is a state-of-the-art algo-
rithm for both gridding and degridding [19]. IDG performs
both W-correction and A-correction in the image domain,
avoiding large convolutions functions. The algorithm per-
forms gridding and degridding using subgrids, which rep-
resent low-resolution sky images for a subset of visibilities.
This approach exposes a lot of parallelism (subgrids can be
processed in parallel), which makes it highly efficient on
parallel hardware such as GPUs [6]. In IDG, gridding com-
prises three steps: 1) visibilities are gridded onto subgrids;
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FIGURE 3. Gridding high-level representation. It consists of multiple gridder computations (subgrid computation and tapering) and FFTs that
process the input visibilities into subgrids. Then the subgrids are processed by the adder to obtain a grid. The gridder and FFT, red boxes, are the
focus of this and the related work [11].

FIGURE 4. Comparison between dirty image (left) and CLEAN
image (right) applying Cotton-Schwab algorithm. The CLEAN image has
reduced noise, e.g. rotation lines around the image(visible especially at
the corners).

2) subgrids are Fourier transformed; 3) subgrids are added to
the larger final grid. IDG degridding comprises these steps
in reverse order. Refer to [6], [19] for all the details on this
algorithm and a formal derivation.

Image-Domain Gridding performs much better [28]
than classical gridding/degridding algorithms, such as
W-projection [29] or AW-projection [30]. It also employs
W-terms to solve artifacts around sources away from
the phase center in wide-field imaging. Moreover, IDG
image quality is higher than W-projection because IDG,
like AW-projection, corrects for DDEs (direction-dependent
effects, also called the A-terms), but the computational costs
for such DDE corrections are much lower for IDG than for
AW-projection [6]. IDG also has higher per-visibility accu-
racy compared to the other algorithms [19].

B. DECONVOLUTION
The objective of a CLEAN (or deconvolution) algorithm is to
detect sky sources by iteratively finding the brightest peaks
in a dirty image and fitting a sky model. In Figure 4 we
show an example of a dirty image and the corresponding
image after a deconvolution algorithm has been applied. The
CLEAN image shows lower noise compared to the dirty
image.

Many deconvolution (CLEAN) algorithms have been pro-
posed in the literature. The simplest one is the so-called
Högbom [31]. After the dirty image is generated from the
imaging step (gridding and IFFT), the Högbom CLEAN tries
to remove the noise in the image. This is done iteratively,
looking for the maximum value in the image. Then, the
algorithm subtracts the Point Spread Function (PSF), which
is a function dependent on the telescope used. It is computed
like the dirty image using as input a Visibility array with
values equal to 1, multiplied by a gain factor. After a certain
number of iterations or when a certain threshold (e.g., 3σ of
the standard deviation) is reached the algorithm stops. This
algorithm does not include the prediction step.

The Clark CLEAN [32], which is an improvement of
the previously described algorithm, adds a feedback loop
and tries to remove alias errors. It is possible to distinguish
between major and minor iterations in this case.
The minor iterations are represented by the peak search,
similar to Högbom (the CLEAN box in Figure 2). Then, the
model image is Fourier transformed and subtracted from the
dirty image. This is the so-called major iteration.

The Cotton-Schwab [33] and Multiscale [34], [35]
are the most employed and modern ones, they have in com-
mon the prediction phase, thus including the degridding algo-
rithm. Here the subtraction is done at the visibilities level
reducing the pixelation error. More precisely, for these algo-
rithms, a major iteration consists of an entire iteration to
transform the data from the visibility domain to the image
domain (inversion). The major iterations are executed until
a threshold is reached, e.g., until 80% of the flux (which is
a power density measure) is removed from the dirty image
during the minor iterations.

The Multiscale algorithm operates on a set of residual
images obtained by convolving the dirty image with different
scale sizes. The peak subtraction step is performed on all
the scaled imaged, and only the subtracted components are
stored in the CLEAN component table. After being scaled,
positioned, and convolved, the final image is obtained by
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adding the components. It decreases the effects of the pedestal
of uncleaned flux and strong sidelobes present in the dirty
beam (or Point-Spread Function), which are referred to as
‘‘clean bow,’’ around bright resolved structures and has better
convergence properties [36].

III. REDUCED PRECISION
Reduced precision is a software and hardware technique
employing smaller data types to improve performance. It can
be applied at the software level if the architecture supports
reduced data types, e.g. half precision inmodern GPUs. How-
ever, a custom architecture should be designed on FPGA (or
ASIC) hardware when a non-supported data type is needed.
The main benefits of this technique are the reduced process-
ing elements (PEs) size, which leads to higher throughput,
and reduced memory requirements, which increase the effec-
tive memory bandwidth. Key factors for reduced precision
are data types that are described in III-A. In III-B we briefly
introduce reduced precision and the advent of appealing tools
for exploring custom data types in software and hardware.

A. DATA TYPES
Standard architectures, such as CPUs and GPUs, typically
support single-precision and double-precision floating-point
applications that perform scientific computations. Com-
monly, single precision is themost widespread data type since
the major part of systems supports it. Indeed, even if double
precision is supported on most GPUs, they often do not have
dedicated units for double-precision computations except for
high-end GPUs like Tesla V100 or Ampere A100 [37], thus
reducing performance [38]. Radio-astronomical imaging runs
precisely enough using single-precision floating-point. For
this reason, we focus on data types up to 32 bits.We present in
Figure 5 the most commonly used data types today. In partic-
ular, we recognize two main categories: standard data types
where the bit length is fixed and custom data types where
the data length is defined at design time, compile time,
or runtime.

Except for posit and fixed points, the other data types are
floating-point representations that can be expressed by Equa-
tion 1. More precisely, the exponent and the mantissa
bits are responsible for respectively the dynamic range and
the precision of the data type. The dynamic range limits
the smallest and largest number representable, while the
precision is the represented number’s resolution (number of
digits).

(−1)sign ∗ mantissa ∗ 2exponent (1)

In Table 1 we present the mantissa and exponent sizes
of the main standard data types. Single-Precision [39] (or
binary32 [40]) and Double-Precision (or binary64)
Floating Point are commonly supported on GPUs and have
been added to the IEEE 754 standard. With the advent of
deep learning applications and their noise tolerance and need
for reduced length data types, half precision usually offers
2x the performance of single precision in applications that

TABLE 1. Standard floating-point formats.

can tolerate the noise introduced by the lower dynamic range
and less precision. For the same reason, NVIDIA presents the
new Tensor Float-32 with the release of the NVIDIA
A100, the newAI andHPCflagship GPU. This format has the
same dynamic range of the binary32 but reduced precision,
which is claimed to be sufficient for most of today’s AI appli-
cations. Brain Floating Point [41] offers a further precision
reduction while keeping the same dynamic range offered by
single precision. This is especially employed by Intel [42] and
Google [43].

Apart from the standard data types mentioned above, other
data types are not available in mainstream architecture or do
not have a pre-defined number of bits. These data types are
described below:

Fixed Point [44]: this format is represented by Eq. 2.
A real number is represented by two numbers, one for
the integer part and one for the fractional part. Compared
to floating point, it has a smaller dynamic range since
there is no exponent. Still, the hardware implementation
is easier since it considers two numbers (integer and frac-
tional), and it is usually employed on custom accelerators,
and FPGA [45], [46].

(−1)sign ∗ integer .fractional (2)

Custom Floating Point [47]: a custom floating-point is
super-set of the floating-point above mentioned. It consists
of all the possible floating-point format combinations. They
are typically used in embedded systems, where the numeric
representation is customized for the specific application by
selecting specific bit lengths for the mantissa and exponent
fields.

Posit [48]: is a numeric representation that has been pro-
posed as a substitute for floating-point data types. Usually,
posit has a higher dynamic range than the floating-point with
the same bit length (see Figure 6). Moreover, posits have a
tapered decimal accuracy (see Equation 3, where x and y are
two numbers with same sign) which means that the decimal
accuracy reported in Figure 6 is roughly symmetrical, and the
highest precision is achieved for numbers near 1 (the horizon-
tal axis is reporting the base-2 logarithm of the numbers).

decimal_accuracy = −log10(|log10(x/y)|) (3)

This feature differs from floating points that have the con-
stant accuracy across the dynamic range, except for small
numbers (left side), and the accuracy suddenly falls off a
cliff (right side) to accommodate all the NaN (not a number
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FIGURE 5. Data-types overview. Standard arithmetic number formats such as single-precision and half-precision floating-point are data types usually
supported by modern CPUs and GPUs. Custom arithmetic number formats comprise some of the main data types employed in research and are often
deployed on FPGAs. The custom formats reported are examples, and the number of bits may differ.

values). However, we are not considering posits as a pos-
sible datatype candidate since it is usually more expensive
compared to floating-point for multiplication and addition
operations [49]. For more details refer to [48].

We employ custom floating point for both analysis and
hardware design, which comprises single precision, half pre-
cision, NVIDIATensor, and brain floating point. Based on the
analysis in Section V we evaluate the precision requirements
of the target application and discuss the excluded data types.

B. REDUCED PRECISION TOOLS
Reduced precision is a branch of approximate computing,
which usually consists of either reducing the bit size of stan-
dard data types or employing more efficient data types [12].
Recently, there has been the rise of automated/assisted preci-
sion tuning tools and emulation libraries to help and improve
the selection of custom data types inside applications. How-
ever, the major part of the above-mentioned works support
only standard data types [52]–[54] or fixed point [55].

Flegar et al. [47] designed FloatX, a C++ template
library capable of emulating custom floating point, which
we employ in our analysis. FloatX also has a reduced
execution time overhead compared to the previous library
since it employs hardware-supported floating-point types as
back-end.

Recently, High-Level Synthesis libraries for supporting
custom floating-point precision have been researched. These
libraries are easy to use and portable compared to RTL
approaches [56]–[58].

FIGURE 6. The figure is inspired from [48]. Decimal accuracy for 1) 8-bit
signed integers; 2) a custom floating points with 4-bit exponent and 3-bit
mantissa; 3) 8-bit posits with 1-bit exponent [50], [51]. Posits have a
larger dynamic range compared to floating points and integers (very
small). Integers have higher decimal accuracy for larger numbers. While
posits have a tapered decimal accuracy, floating points have
approximately a constant accuracy across the dynamic range.

DiCecco et al. [56] propose a custom-precision floating-
point library (CPFP [59]) for High-Level Synthesis, and they
evaluate it on a small convolution neural network. While
the custom floating-point IP employs fewer resources than
single precision, the FPGA design has a lower throughput
than the CPU. Thomas [57], [58] proposed a more efficient
(see Appendix A) templatized floating-point library for high-
level-synthesis (THLS [60]). This library, which we employ
in this work, is also templatized and eventually supports
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FIGURE 7. High-level overview of the employed methodology. The application’s bottleneck is detected by applying application profiling. Then a
precision auto-tuning technique defines the precision requirements for the accelerator, which is designed and deployed. Finally, the accelerator
performance is assessed with state-of-the-art (SOTA) architectures.

heterogenous customfloating-point operations. The proposed
solution has similar resource consumption when comparing
standard data types and notable resource reduction when
employing reduced-precision data types. The two approaches
mentioned above are easier and portable for FPGA devel-
opment than employing custom floating-point IPs similar to
FloPoCo [61], which need to be used as black-boxes.

IV. METHODOLOGY
We present the methodology employed in Figure 7. We first
¶ profile the radio-astronomical imager to determine the
most time consuming and thus critical kernels. We perform
this analysis on different datasets employing the applica-
tion’s parameter described in IV-A. Then, · we evaluate the
required minimum precision requirements for the selected
kernel using an auto-tuning script based on binary search
(see IV-B). Through emulation, it identifies the minimum
bit sizes for both the exponent and mantissa for custom
floating-point data types. Afterwards,¸we perform an accel-
erator design phase to individuate the best design optimiza-
tion for the selected kernel and the precision requirements(see
IV-C). Finally, ¹ we assess the accelerator performance with
state-of-the-art systems (see IV-D).

A. APPLICATION PROFILING
We profile the most widely used and state-of-the-art radio-
astronomical imager, WSClean [65], which also includes the
state-of-the-art gridding and degridding algorithm (Image-
Domain Gridding) [64], by evaluating the execution time
breakdown. We report the software version used in this work
in Table 2.

We employ the LOFARSCHOOL dataset, which is usually
employed as a test case for practical examples and contains
real sky observations [66]. This dataset contains 16 obser-
vations and around 30 subbands per observation, available
in the LOFAR Long Term Archive (LTA) [67]. We select
14 observations with similar observation parameters such as

TABLE 2. Software versions employed. We report the checksum of the
commit of the master branch we used for WSClean and IDG. The other
packages are WSClean’s dependencies.

TABLE 3. Datasets observation parameters.

integration time, observation duration, frequencies, etc. (see
Table 3), and we select the 10th subbands from every dataset;
therefore, all the datasets have the same central frequency.

The WSClean parameters that we use are listed in Table 4.
The sky images are plotted using Kstars FITS Viewer [68]
setting the following parameters: shadows 0.0080, midtones
0.0625, and highlights 0.6009.

B. PRECISION AUTO-TUNING
To determine the application precision requirements,
we employ binary search over the number of mantissa bits
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like [54], and over the number of exponent bits for custom
precision floating-point data, as the execution time overhead
(about 5-10x with respect to the optimized single-precision
code) of emulation of custom data types in software makes
evaluating the entire search space unpractical. As shown
in Figure 8 we manually instrument the application code
to support the software emulation of custom data types.
To emulate custom floating-point we employ a template
header C++ libraries: FloatX [69] for floating-point [47].
We do not include fixed-point numbers since they would
result in very long fixed-point representations based on the
analysis results, which shows that a large dynamic range
is required. This binary search algorithm first evaluates the
mantissa size and then the exponent size. Since the appli-
cation usually runs in single precision, the starting mantissa
size of 23 bits is divided by two and evaluated. The process
consists of first determining the size to evaluate and then
updating the headers containing the mantissa and exponent
sizes. Then, the application is compiled and run. Finally,
the algorithm evaluates the output precision employing the
Structural Similarity Index Measure (SSIM) [70] metric.

We select SSIM [70] as the assessment metric since, dif-
ferently from Peak Signal to Noise Ration (PSNR), we can
measure the perceived image quality and thus evaluate how
two images are similar. SSIM computation is more complex
than PSNR and it is shown in Equation 4.

SSIM (x, y) =
(2µxµy + C1)(2σxy + C2)
(µ2

xµ
2
y + C1)(σ 2

x σ
2
y + C2)

(4)

SSIM evaluates different windows images (x and y) using
the window average (µx and µy), the window variance (σx
and σy), the windows covariance (σxy). The remaining two
variables (C1 and C2) are employed to avoid instability when
µ2
x + µ

2
y is close to zero. More precisely, these variables

are obtained with the following formula C1/2 = (k12L1/2)
2,

where L is the pixel-values dynamic range k is a constant
(usually k1 = 0.01 and k2 = 0.03).
For completeness, we describe the PSNR formula since we

report it alongside SSIM. Like Mean Squared Error (MSE),
PSNR is straightforward to compute and has specific physical
meaning. PSNR computation is shown in Equation 5, where
MAX_I is the maximum value of the original image and the
MSE is calculated with Equation 6, where I is the original
image and K is its approximate version.

PSNR = 20 · log10(
MAXI
√
MSE

) (5)

MSE =
1
mn

m−1∑
i=0

n−1∑
j=0

[I (i, j)− K (i, j)]2 (6)

The auto-tuning algorithm gives as output the mantissa
and exponent sizes that should be used to avoid noticeable
precision loss. As threshold, we use 0.99 in order to have an
approximate image as much similar to the original one [71].
We employ the precision tuning method with the overhead
of running the application multiple times to detect the target

precision. However, we use binary search because it has
lower time complexity (O(log2N )) compared to brute force
algorithms such as linear search, which has time complexity
in the order of O(N ), where N is the search space, which in
this case is the sum of the number of mantissa and exponent
bits.

C. ACCELERATOR DESIGN
Modern Intel FPGAs such as Intel Arria 10 and
Stratix 10 have support for single-precision floating-point
operations [9]. Their DSPs can perform Fused-Multiply-
Accumulate (FMA), which counts as two floating-point oper-
ations. However, when employing fixed-point representation,
they usually do not reduce the DSP usage [72]. Differently,
Xilinx FPGAs have smaller DSPs [73], thus causing a larger
use of DSPs for floating-point operations, e.g., 3 DSPs for a
single multiplication. This property makes Xilinx FPGAs a
worse candidate for single-precision application compared to
Intel FPGAs, but, at the same time, an interesting candidate
for exploring smaller data types that can be mapped on a
smaller number of DSPs. Indeed, we target a Xilinx Alveo
U50 [74] for deploying our accelerators. The FPGA men-
tioned above is a small form factor board with a large number
of resources, PCIE3 connection, HBM2 memory, and a TDP
(Thermal Design Power, commonly used to report peak
power consumption) of 75W. The Alveo U50 is connected
to a host system through a PCIE3 X16 connection as shown
in Figure 9. Modern large FPGAs such as the Alveo U50 are
built with multiple Super Logic Regions (SLRs). An SLR is
a single FPGA die slice contained in an SSI (Stacked Silicon
Interconnect) device [73].

We develop the accelerators into the Xilinx Vitis
2020.2 [75] tool flow, which is shown in Figure 9. Xilinx
Vitis needs a source code with embedded OpenCL API
to run on the host processor to schedule and control the
execution of the accelerators. A similar approach is fol-
lowed for the accelerators code: the source code containing
HLS pragmas or optimization directives is compiled and
linked by the Xilinx Vitis compiler. Unlike Intel, Xilinx
FPGAs expose developers to a deeper level of optimiza-
tion details, e.g., array partitioning and IP implementation
with resource constraints. The kernel compilation step con-
sists mainly of transforming the source code into HDL.
At this stage, programmers can detect possible optimiza-
tion opportunities and or stalls. The linking stage maps the
accelerator on the FPGA by employing user configuration
directives such as computing units and memory channel
connections.

Arbitrary precision libraries generally provide support
for fixed-precision computation, short integers, and cus-
tom floating-point formats. Unfortunately, such libraries are
missing for the Xilinx Vitis OpenCL development environ-
ment [75]. The THLS library [60] implements templatized
custom floating-point and is built on top of C++ and HLS.
Therefore, we also use C++with HLS pragmas to implement
our kernels for Xilinx Vitis.
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TABLE 4. WSClean parameters: the top part of the table shows parameters that exclusively depends on the observation and on the radio-telescope
structure; the bottom part reports the CLEAN parameters employed for Cotton Schwab run. These parameters are the most commonly used. However, the
CLEAN algorithm heavily depends on the user parameters. More complex CLEAN can be used for extracting the sky image, such as the Multiscale CLEAN.

TABLE 5. Hardware employed for comparison.

D. EVALUATION WITH STATE-OF-THE-ART
ARCHITECTURES
Each evaluated architecture needs to be profiled with spe-
cific tools. While applications running on CPU can be pro-
filed with a large number of profiling methods, we choose
perf [76] since it is available in most Linux distributions
and is easy to extract information such as floating-point oper-
ations count, DRAMmemory traffic, and power consumption
(it is usually not needed to have root-access). On the other
hand, GPUs typically have proprietary tools. Indeed, we use
NVIDIA nvprof [77] and AMD CodeXL [78] for profiling
flops and DRAM accesses on the GTX 750 and the RX
550. We count the memory requirements and the number of
floating-point operations placed for evaluating the FPGA per-
formance. For measuring the power consumption on FPGA
and GPUs, we extend libpowersensor [79].

We select CPU and GPU architectures with similar char-
acteristics such as peak performance and TDP, which are
reported in Table 5 and Table 6). The NVIDIA GTX 1050 or

GTX 1050 Ti GPU have a 14 nm lithography (see Table 6)
and would have been the preferred choice for this compari-
son. However, due to incorrectly functioning power measure-
ment hardware counters on these devices [83], we opted to
use an NVIDIA GTX 750 GPU instead.

According to [84], we would expect, for the same chip
size, an improvement of ∼2x in terms of power consump-
tion efficiency. Furthermore, the TDP values reported for the
GPUs are the power-cap limits read in the system out-of-
the-box. Indeed, these values are reduced compared to the
limits advertised: 35W instead of 50W for GTX 750 and
38W instead of 55W for RX 550.While the peak bandwidths
reported in Table 6 are extracted from the device datasheets,
the peak performance is computed by multiplying the device
frequency and the number of operations that can be computed
in parallel in a cycle for each unit. For instance, the Intel i9
9900k has 8 cores that run at 4GHz; each core can compute
32 flops (we are considering FMA as two flops) per cycle.
These values are verified by using synthetic benchmarks such
as clpeak [85].

We apply a similar computation for evaluating the perfor-
mance of the Alveo U50. As shown in [86], we compute
the theoretical performance of the Alveo U50 considering
the maximum number of FMA operations (one addition and
multiplication [87]) that could be theoretically be placed on
this FPGA. More precisely, we count 5 DSPs for each FMA
operation, and we consider the available resources as reported
in Table 7. Then this number is multiplied by the maximum
of the frequency advertised by Xilinx for the single-precision
addition and multiplication IP, which is 724MHz [87].

FIGURE 8. Binary search algorithm.
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TABLE 6. Comparison of the employed architectures in terms of peak performance, bandwidth, TDP, energy efficiency (ratio between peak performance
and TDP), and lithography process.

FIGURE 9. Representation of the Xilinx Vitis toolflow (top box) and how it
relates to the deployment system (bottom box).

A theoretical peak of 1.547 TFLOP/s is obtained by mul-
tiplying this number by 2 since we consider the FMA as
2 flops. Since it is very difficult to achieve such frequencies
as reported in [86], we employ the one Xilinx advertised
for this FPGA: 300MHz. This number (0.641 TFLOP/s) is
considerably lower with respect to the theoretical one. How-
ever, this is still far from what can be realistically achieved
on FPGA. Indeed, [86] shows that usually, a better upper

bound is represented by employing 70% of the LUTs or
80% of the DSPs. For completeness, we also compute the
peak performance using the FER (FPGA Empirical Roofline
model) synthetic benchmark [86], and we obtain a value of
0.535 TFLOP/s, which is really close to what we achieve
in one of our highly optimized single-precision accelerator
prototypes.

V. ANALYSIS
To determine the bottleneck in the WSClean imager, we per-
form a bottleneck analysis (V-A). Then, we carry out a data
types precision analysis (V-B) to understand the precision
requirements for the identified bottleneck to be used for the
accelerator design.

A. BOTTLENECK ANALYSIS
As shown in Figure 10, we first evaluate the execution
time breakdown of the overall imaging pipeline for differ-
ent datasets. The trend in the execution time breakdown
is comparable for all datasets. More precisely, the most
time-consuming step is inversion. Indeed, inversion needs to
be run two times more than the prediction to compute the PSF
and the dirty image. Typically, the deconvolution algorithm is
the less critical phase.

B. DATA TYPES EXPLORATION
We evaluate custom precision floating-point data types
employing software emulation since common architectures
such as CPUs and GPUs usually support single- and
half-precision floating points.

We notice a fundamental application property: since we are
reducing the precision of the gridding kernel, it is sufficient
to compare the dirty images instead of the cleaned image to
evaluate the accuracy. The algorithm’s intrinsic nature easily
explains this: the dirty image is a sky image with added noise,
and the CLEAN algorithm extracts the brightest sources
at each iteration. Thus, each successive iteration needs an
equal or smaller dynamic range. This feature helps evaluate
the application requirements faster since we need just run
the gridding algorithm once to generate the dirty image,
avoiding running the degridding and any CLEAN iterations,
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FIGURE 10. Execution time breakdown of WSClean for different datasets.

thus drastically reducing the analysis time. More precisely,
we need to perform the gridding kernel once to generate
the dirty image, once for the PSF, and two times during
the CLEAN major iterations. Therefore, for this particular
case, the analysis is about 4x faster than running the whole
WSClean application.

We show in Figure 11 how the reduced precision affects
the radio-astronomical images. Noise effects can be noticed
by using a mantissa of only 10 bits. Another important
observation regards the relationship between dirty and clean
images. In Figure 11(a) the images obtained emulating brain
floating point contains a large quantity of noise, the same
image cleaned (see Figure 11(b)) is empty. Therefore we can
conclude that it is sufficient to analyze the dirty image to
understand the precision requirements for the entire imager
paying attention to the error indicators (SSIM).

In Figure 12 we evaluate the accuracy of dirty images for
different data-types for the gridding kernel in terms of SSIM
and PSNR compared to the single-precision floating-point
version. The precision requirements depend on the datasets
employed, but the combination with 11 bits for the mantissa
and 6 bits for the exponent can satisfy almost all the selected
datasets. Furthermore, data types such as half-precision and
fixed precision are not suitable for this field since the dynamic
range is too small. Other data types with very small mantissa,
such as brain floating point and NVIDIATensor Float, are not
accurate enough to correctly represent all the faint features
in the image. It is necessary to specify that the Tensor Float
representation on NVIDIA GPU can only be used to perform
warp matrix-to-matrix multiply and accumulate operations.
In this work, we consider this data type representation for the
whole kernel.

VI. CUSTOM PRECISION ACCELERATOR ARCHITECTURE
Optimizing the gridding algorithm on Xilinx FPGAs requires
different steps. We first describe in VI-A the high-level
structure of the accelerator by explaining the HLS opti-
mization applied. Then, we explain the employed optimiza-
tion for lookup tables and reduced precision respectively in

VI-B and in VI-C. Finally, we discuss in VI-D all the different
methods we explore for placing the accelerator on FPGA
through Xilinx Vitis and the design points of our prototypes.

A. GRIDDING ACCELERATOR
We report the HLS optimized pseudocode of the subgrid
computation in Listing 1 and its high-level representation in
Figure 13. We summarize the main optimization applied to
get our highest performance prototypes:

Memory management: We first optimize the data
accesses from the HBM2 memory by using multiple mem-
ory channels and widening the AXI (Advanced eXtensible
Interface) width to 512 bits for the bus that transfers most of
the data. More precisely, we use three channels per compute
unit: the first one for the input of the main computation
block (subgrid computation), the second one for the input of
the post-processing pipeline (Aterms, tapering, reorder, and
FFT), and the third one for the output subgrid (see Figure 13)
The data is moved into local buffers to exploit reuse and
improve the memory access latency.

Initiation interval of the subgrid computation: The
accelerator described in HLS is implemented as a hardware
pipeline where ideally, the pipeline is stall-free, and new
data is fed into the pipeline every cycle. In this case, the
initiation interval (II) is equal to 1. In the case of stalls,
the II could be larger than 1. Depending on the design,
it then takes several cycles for the operations on that data to
complete. To achieve II = 1, we exchange the loop order
(see Algorithm 1). The new loop order reduced the Read
after Write (RaW) dependencies relative to the subgrid pixel
update.

Parallelism: We increase the parallelism with respect
to the code mentioned above at different levels. We first
increase the parallelism of the subgrid computation by
unrolling the channels and the pixels loops. The unrolling is
implemented by employing larger local memories (BRAMs)
and by unrolling the loops (see lines 5 and 7 in Algorithm 1)
to increase the number of parallel floating-point units. More-
over, Figure 14 reports the performance and the resource
usage for different unrolling factors for channels and pixels.
While the performance increases almost linearly, resources
occupancy makes larger unrolling more efficient in terms of
resource savings, e.g. especially for DSPs (see Figure 14).
Indeed, unrolling the loops of a factor 2 do not imply the 2x
more utilization of this resource. However, in order to be able
to place more units and have a better area usage and place-
ment, the parallelism should not be excessive, e.g., the case
4_8 is using more than 50% of resources, leaving no space for
placing multiple units. Another significant observation con-
cerns the relationship between unrolling channels over pix-
els: unrolling over the channels increases the BRAM usage
and reduces the DSPs usage, which is the opposite behavior
obtained by unrolling more over the pixels. This happens
because unrolling over the pixels introduces more cosine and
sine computation, which requires a larger amount of DSPs
than other operations such as additions and multiplications.
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FIGURE 11. Comparison of (a) dirty images and (b) clean images with different data types precision. The numbers enclosed in the angular brackets
represent the exponent and mantissa bits. FP<8,10> and FP<8,7> correspond respectively to NVIDIA Tensor and brain floating point (bfloat). While
the dirty image a) is a noise image when using bfloat, the clean image in b) is completely dark. We can observe that the SSIM (and PSNR) does not
vary significantly between dirty and clean images except for poor quality images. These values are for the whole image, and the blue and red
squares are zoomed image sections. We can notice some visible differences for SSIM lower than 0.99.

FIGURE 12. Precision accuracy for the selected 14 datasets (d0-d13) for different custom floating-point data types expressed in terms of SSIM and PSNR.
The numbers enclosed in the angular brackets represent the exponent and mantissa bits. FP<8,10> and FP<8,7> correspond respectively to NVIDIA
Tensor and brain floating point. High-resolution images closely similar to the original usually have an SSIM equal to 0.99 [71]. Given this threshold,
reduced precision can produce high-quality images. However, it depends on the datasets. Indeed, in most cases, FP<6,11> or FP<6,12> reach the
threshold, while smaller mantissa sizes do not. Such data types are not available on the standard accelerator platform such as GPU, which usually
support half, single, double precision. Therefore a custom accelerator is needed. PSNR is just plotted for completeness, and the selected threshold of
50 dB is the maximum value for lossy images, and it serves only as a reference.

We conclude that the best trade-off is to have similar unrolling
factors for channels and pixels to achieve balanced use of
DSPs and BRAMs.

Then, we instantiate multiple subgrid computations (see
Figure 13) that are run in parallel by using the DATAFLOW
pragma [88]. Finally, we increase the parallelism over the
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FIGURE 13. High-level scheme of one gridding compute unit: the data are read and written in parallel from different memory channels (gmem);
the main part, subgrid computation, is replicated N times; finally, post-processing HW performs the Aterms, the tapering, and an FFT. Vectorized
memory accesses are shown in black, while the scalar accesses are dashed.

number of instanced kernel units depending on the design
time closure difficulty.

Post processing trade-offs: The post-processing compu-
tation consists of applying the A-terms, the tapering, and
after a pixel reordering an FFT. As mentioned above, the
subgrid computation is replicated N times, thus making it
possible to have just a single post-processing unit that is
capable of processing the data from each subgrid computation
in a pipelined fashion. This will add a delay given by the
execution time of the post-processing computation, but with
the advantage of a constant throughput and reduced resource
usage. Since the subgrid computation is much more time
consuming compared to the post-processing computation, the
latter is designed as cheap as possible to have just sufficient
performance to balance the subgrid processing, e.g., initiation
interval greater than 1 and low parallelism, and save as many
resources as possible making the subgrid computation the
only responsible for the resource mapping on the FPGA
board. For completeness, we report that the post-processing
section responsible for applying the Aterms and the tapering
has an initiation interval of 2 cycles (internal computation,
the data is read at II = 1 from the subgrid computation),
which can be tuned up to 8 to facilitate the accelerator
placing in some instances. We employ this trade off for
the single-precision lookup table and custom floating-point
design. The section responsible for the FFT has an initiation
interval of 3 cycles.

B. COSINE/SINE LOOKUP TABLE AND REDUCED
PRECISION
Similarly to [11], we employ a lookup table implementation
to perform cosine and sine operations and save resources.
Indeed, in Xilinx FPGAs, a cosisin operation, which com-
putes the cosine and sine of a given angle, requires 11 DSPs
compared with the 3 DSPs needed by the lookup implemen-
tation. We further reduce the DSPs usage to zero by not

representing the phase in radiants. We move the multiplica-
tion used for the phase conversion in the outer loop and apply
it when reading the lmn input data, which is a common factor
when computing the phase offset and index and consequently
the phase. The lookup table implementation consists in saving
into BRAMs for pre-computed values for sine and cosine in
the range of [0; π4 ]. Then these values are used to compute
the sine and cosine by employing the symmetry properties
of trigonometric functions. Then, we have to tune the perfor-
mance of the post-processing pipeline to let the accelerator
achieve better frequencies (about 10MHz higher).

C. REDUCED PRECISION
The reduced-precision accelerators are obtained by employ-
ing the Templatized Floating-Point HLS library [60] for
replacing the floating-point operations. Even if we select a
global minimum precision for the gridding kernel (homoge-
nous custom floating-point operations), we decide to employ
this library instead of the CPFP [59] since it is the most
resource-efficient (see Appendix A).
In order to have a portable accelerator, we use the same

host-kernel interfaces as for the single-precision floating-
point accelerators. Then, we add some conversion steps to the
input (from single precision to custom precision) and to the
output (from custom precision to single precision) of the sub-
grid computation. This design choice is supported by the fact
that the application is purely compute bound, and the conver-
sion does not affect the performance significantly. Since sine
and cosine are not available in the library mentioned above,
we adapt the lookup implementation used for single-precision
by adding a custom floating-point round to integer method
that is used to determine the index of the lookup table.
As mentioned above, we have to tune the performance of the
post-processing pipeline to achieve the accelerator placement
at a reasonable frequency (greater than 250MHz), which
means getting a significant speedup. Indeed, when using
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Algorithm 1 Subgrid Computation HLS Pseudocode
Input: visibilities, wavenumbers, uvw, uvw_offset, lmn
Result: subgrids

1 subgrids←− 0;
2 for s in subgrids_per_cu do
3 for t in timesteps do
4 for c in channels do
5 #pragma unroll factor = UNROLL_CHANNELS
6 for p in pixels do
7 #pragma unroll factor = UNROLL_PIXELS
8 complex<float> pixel[pol]
9 float lmn [3]←− lmn[p]
10 float phase_offset←− compute_phase_offset(uvw_offsets, lmn)
11 float phase_index←− compute_phase_index(uvw, lmn)
12 float phase←− compute_phase(phase_index, phase_offset, wavenumbers)
13 float phasor [2]←− cosisin(phase)
14 for pol in polarizations do
15 #pragma unroll
16 complex<float> pixel[pol] += visibilities[t][c][pol] * phasor
17 end
18 end
19 end
20 end
21 end

FIGURE 14. Resource usage and speedup of the subgrid computation (not including the post-processing pipeline since it is not a critical
computation) for different channels and pixels unrolling factors. The resources values refer to the kernel only, therefore without considering the
overhead used by Xilinx Vitis, and are normalized by the maximum number of resources available in the device. The execution time is normalized
by the largest values, which is the subgrid computation without unrolling (<1,1>).

more resources, the achieved frequency becomes consider-
ably low, e.g., 200MHz, thus not being beneficial to place
multiple units.

D. DEVICE-SPECIFIC CONSIDERATIONS
After optimizing the high-level synthesis code, one of the
main tasks to get the best performance from an FPGA device
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is the accelerator placement. While it is possible to let the
Xilinx Vitis tool flow map the accelerator automatically on
the device, it is more efficient in terms of achieved frequency
and, consequently performance to fully customize the accel-
erator mapping. We report the most challenging tasks we face
during the FPGA placement:

Super Logic Regions: Figure 15 shows an example of
two accelerators with two compute units each placed on the
Xilinx Alveo U50. The Xilinx Alveo U50 consists of two
Super Logic Regions (SLRs), and it is recommended to map
an accelerator on a single SLR. Crossing two SLRs can
cause a critical path even if the SLRs are connected with
special registers that try to mitigate this problem. During the
placement of our accelerators, we find out that each SLR is
divided into two subregions [73], and in the middle of them,
there is a region consisting of units responsible for managing
the input clock. Traversing the two regions as shown in
Figure 15 can introduce critical paths that will negatively
affect the maximum clock frequency of the accelerator. In our
most resource-demanding design, the single-precision lookup
table and the reduced-precision ones, we have to instantiate
multiple units at different levels to meet timing requirements:
1) one accelerator/compute unit per SLR to avoid SLR cross-
ing, and 2) multiple subgrid computation in each compute
units to avoid clock region crossing.

Static region overhead: When mapping application by
usingHLS a static region (blue area inFigure 15) is flashed on
the FPGA for supporting (accelerated) applications by using
HLS (see Table 7). This static region has the task of managing
interconnections such as AXI. It also makes the programmers
able to only place the accelerator in the dynamic region,
which results, as depicted by Figure 15, in two asymmetric
SLR sub-regions, thus being important to place, for a large
design, more compute units on the left side than on the
right side. This observation leads to placingmultiple compute
elements, whenever possible, in the same accelerator to help
the tool find a better hardware placement.

HBM2 memory channels: HBM2 memory can be
employed efficiently for both memory-bound and compute-
bound applications. In the first case, the large memory band-
width will improve the application runtime by speeding
up the memory transfers. In the second case, which coin-
cides with our case, the multiple channels allow instantiat-
ing multiple accelerators that access independent memory
spaces. Related to the HBM2 channels, there is another key
issue: the Alveo U50 HBM2 memory channels are con-
nected directly to the SLR0 [89], which means that addi-
tional logic is needed to transfer the data to the SLR1.
When placing multiple accelerators and/or large sub-units
that access the memory, connecting the AXI interfaces to
distant memory channels is beneficial to avoid a long critical
path between memory and processing. We carefully select
the placement of HBM2 memory channels to avoid critical
paths caused by area congestion, e.g., between two employed
HBM2 channels, we decide to leave at least three channels
unused.

TABLE 7. Xilinx Alveo U50 resources: total indicates the overall number
of resources of the FPGA, while the dynamic region reports the available
resources for accelerator deployment using Xilinx Vitis HLS, which is also
reported in percentage.

More precisely, the Alveo U50 has 32 HBM2 channels,
of which only 28 are usable due to power budget limitations
(the peak bandwidth of 316GB/s can be achieved by employ-
ing 24 channels) [90]. As shown in Figure 3 we use 3 HBM2
channels per compute unit. Moreover, we employ 6 channels
in the lookup and reduced precision implementation because
we instantiate two compute units. Furthermore, as shown in
Figure 16, the application is not memory bound for any of
the accelerator designs that we considered. Therefore, the
bandwidth of a single HBM2 channel is sufficient to satisfy
the bandwidth requirements for this application. The choice
of using multiple HBM2 channels is determined by the men-
tioned above congestion area issues.

Vivado strategies [91]: Xilinx Vitis [75] is built on top
of Xilinx Vivado, which is responsible for placing and rout-
ing the design on the FPGA board. Differently from the
CPUs and GPUs programming model, the user can fully
customize placement and routing strategies. The choice is
between predefined implementation strategies or fully cus-
tomizable strategies that reduce power consumption, area
usage, improved performance, re-timing, etc. However, the
main strategies are accessible by the user simply changing
the Vitis Compiler optimization flags. We observe that both
approaches lead to similar HW results. Indeed, when the
frequency of the default Vivado strategy (-O0) is not able to
meet the power constraints, we employ the PowerOpt strategy
(-O1), e.g., single-precision lookup table, or when it is not
able to meet the timing constraint, we use the ExtraTimin-
gOpt (-O3), e.g., to achieve higher frequencies in the reduced-
precision accelerators.

Pblock placement: This is a technique that can be applied
after the design is implemented for guiding Xilinx Vivado
towards a better design placement. With this option, the user
can visually select from the GUI where to place certain
units by creating a physical constrained region, the so-called
pblock. This usually helps in cases of a desired higher fre-
quency. However, we did not notice a significant improve-
ment in our accelerators since they were already close to the
highest advertised frequency.

Frequency overclock: Although Xilinx advertises
300MHz as the maximum frequency for the HLS kernels,
in reality, it is possible to achieve higher frequencies. Indeed,
in [92] the authors match the same HBM2 frequency of
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FIGURE 15. Example of an accelerator placement on Xilinx Alveo U50. In blue is reported the static region for deploying accelerators with Xilinx Vitis.
The dynamic regions, which are the areas where the accelerators (yellow, purple, green, light blue) are mapped, are highlighted in orange. The FPGA is
divided into multiple Super Logic Regions, FPGA die slices that compose large FPGA boards. Critical paths can usually occur when crossing multiple
SLRs. However, critical paths can occur in the same SLR when connecting physically distant components and can be due to traversing the clock region
like in the highlighted case.

450MHz for small accelerators. However, this is not achiev-
able for larger accelerators that usually reach frequency in
the range of 200-300MHz [86], [93]. We manage to increase
the frequency of the baseline single-precision floating-point
accelerator since the resource usage is not so close to the
maximum, and it is able to reach the standard frequency
(300MHz) by just employing the Vivado Default implemen-
tation strategy.

E. DESIGN POINTS
Here we report the main design points of our accelerators:

Single-precision: Our baseline accelerator in single-
precision (FP32) is obtained by simply using 2 subgrid
computations with unrolling factor <4,4> and a single post-
processing pipeline. In this case, due to the modest use of
LUTs and FFs, it is not necessary to place the computa-
tion over different SLRs or apply any particular strategy.
We are also able to achieve higher frequencies (FP32_OC in
Table 8). Unfortunately, it is impossible to use more resources
on this FPGA without violating timings (slow clocks that
make the accelerator inefficient) or power constraints (high
power budget).

Single-precision lookup-tables: The cosine/sine lookup
table implementation can significantly reduce the number of
DSPs employed. We notice only a small, but still significant
reduction of DSPs since the main computation consists of
FMA operations. We manage to improve the performance
by placing 50% more computations. This is achieved by
using an unroll factor of <2,4> and three subgrid computation

units. This accelerator is then instantiated in each SLR, thus
having two post-processing pipelines. In this case, to be
able to place the accelerator, we have to reduce the num-
ber of DSPs by employing the config_op option during
the HLS compilation to implement all the floating-point
additions and multiplication with LUTs. To achieve bet-
ter frequency, we employ the ExtraTiming_Opt strategy
and reduced the post-processing computation’s performance.
We notice through analysis, a lookup table of 2048 is suffi-
cient to keep the SSIM close to 1. The reported accelerator
FP32_LT uses a lookup table with 2048 entries.
Reduced-precision: we manage to place 100% more

computation with reduced precision compared to the
single-precision baseline accelerator and 50% more than the
single-precision lookup table implementation. This acceler-
ator consists of 2 subgrid computations with unroll factors
<4,4> placed in each SLR. To achieve better frequency,
we employ the ExtraTiming_Opt strategy. For the reduced-
precision prototypes, we use a lookup table with 2048 entries.
In order to achieve the 300MHz frequency, we employ the
reduced performance post-processing computation. Higher
frequencies do not meet timing constraints and the power
budget (or TDP).

VII. EVALUATION AND DISCUSSION
In VII-A we report the area usage of the proposed acceler-
ators, and we assess our accelerators performance in VII-B
by employing the roofline model [95] and by measuring the
throughput and the energy efficiency. Then, we highlight
significant lessons learned during this work in VII-C.
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TABLE 8. Resource utilization for the highest performance gridding accelerators. FP32_OC is the single-precision floating-point prototype at higher
frequency and FP32_LT is the single-precision floating-point prototypes the lookup implementation.

A. AREA USAGE
In Table 8 is presented the area usage of the highest perfor-
mance accelerators here designed. More precisely, we report
as FP32 the baseline single-precision floating-point acceler-
ator, which can reach the advertised frequency of 300MHz.
Moreover, we show the same design with higher frequency
(346MHz) as FP32_OC. Resource usage does not vary sig-
nificantly. Compared to [11] our DSP usage is significantly
lower due to the mentioned above issues regarding the static
region and timing closure.

The reported single-precision lookup-table (FP32_LT)
accelerator has a higher overall resource usage because we
manage to place more units compared to FP32. DSPs usage
is lower since the lookup-table sine and cosine computation
uses fewer DSPs with regards to the baseline design, and
we implement addition and subtraction without DSPs. The
achieved frequency of 295MHz is close to the advertised one,
which is difficult to achieve due to power-budget constraints.

The reduced-precision accelerators (FPX_6_11 and
FPX_6_12) consume more resources than the baseline, but
we can place two timesmore compute units. Furthermore, this
design uses fewer resources than the baseline and consumes
less power than the design with a single-precision lookup
table. As already mentioned FPX_6_11 consumes slightly
fewer resources (LUTs and FFs) than FPX_6_12 because of
the smaller mantissa.

B. PERFORMANCE
We assess the performance of our accelerators against
CPU and GPUs with similar peak performance and man-
ufacturing technology. We first evaluate the performance
achieved by each platform with the roofline model [95], [96]
in Figure 16. The roofline model shows the performance
obtained (TFLOP/s) and the analyzed kernel’s arithmetic
intensity (FLOP/Byte). The roofline defined in this way is not
a measure of throughput but an indicator of how the appli-
cation can be optimized for a certain architecture. Indeed,
we report that only the NVIDIA GTX 750 can reach almost
peak performance. This is because cosine and sine opera-
tions are offloaded to special units and indeed do not create
bottlenecks. Differently, the AMD RX 550 does not have
these special units, and the cosine and sine operations run at
a quarter speed [97] compared to single-precision floating-
point operations. We further notice that each cosine and sine
function introduces three floating-point operations. Indeed,

in Figure 16 the RX 550 performance takes into account
the largest number of instructions. We similarly reported
the performance of the proposed accelerators showing how
they are performing better than CPU. In particular, our best
reduced-precision design is close to the AMD GPU in terms
of TFLOP/s. Compared to [11] our baseline design has lower
performance due to not having single-precision floating-point
DSPs support.

Moreover, Figure 16 shows that the application is
compute-bound on all the architectures, and its high arith-
metic intensity value highlights low memory bandwidth
requirements. For instance, considering the RX 550, the
roofline shows that the bandwidth required is lower than
3.7 GB/s. Similar results applies to the other architectures
in Figure 16. Therefore, a single HBM2 channel (per com-
pute unit) would satisfy the bandwidth requirement of the
application on FPGA. Note, however, that we employed more
channels to facilitate timing closure, as previouslymentioned.
Being compute bound can also be explained at the algorithm
level: the application reads cachable data (e.g., visibilities).
It produces the subgrid pixels by performing many operations
over this cached data. Thus, the application would bememory
bound only in the case of architecture with a lower DRAM
bandwidth. Higher bandwidth requirements would be needed
if next-generation FPGAs would enormously increase the
computing capability, e.g., with more sophisticated DSPs.

In Figure 17 we evaluate the throughput and the energy
efficiency of the accelerators. More precisely, in Figure 17(a)
we report the throughput in terms of Mega Visibilities per
second (Mvis). Figure 17(a) evaluates the performance of our
accelerators. All our designs have higher throughput com-
pared to the i9 9900k up to 2.12x. Our best reduced-precision
design is close to the AMDGPU performance. Moreover, the
reduced-precision prototype is 1.84x faster than the single-
precision baseline. However, the GTX 750 is the faster archi-
tecture due to their special function units mentioned above,
and our baseline architecture is outperformed by the Intel
counterpart proposed in [11] because of the single-precision
DSPs support of Intel FPGAs.

As shown in Figure 17(b) and 17(c) our accelerators
outperform up to 3.46x in terms of energy-efficient the
CPU. The single-precision lookup table implementation
reaches 88.97% of the empirical peak performance. Our
best reduced-precision design is 2.03x more energy effi-
cient than the single-precision baseline design. However, it is
78.77% and 63.29% less energy-efficient than AMD and
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NVIDIA GPUs. We also observe that the AMD RX 550 is
more energy-efficient than the NVIDIA GTX 750. This is
mainly motivated by the different lithography technology.
Scaling the performance of the NVIDIA GTX 750 chip to
a 14 nm [84] the power consumption would be ∼2x reduced,
thus being more efficient than the AMD counterpart.

Summarizing, the key observations are:
1) Our single-precision floating-point accelerators are

more energy-efficient compared to CPUs with similar
technology because of the better hardware utilization.

2) Reduced precision improves the accelerator’s overall
performance being much faster than CPU and achiev-
ing comparable performance compared to AMD GPUs
thanks to the higher density of operations that we
placed on the FPGA.

3) NVIDIA GPUs reach the highest percentage of peak
performance exploited (∼88%) compared to the other
architectures, especially against AMD GPUs (∼73%)
thanks to the special units for sine and cosine. Overall,
GPUs are the more energy-efficient architecture (see
Figure 16 and 17) compared to CPUs and FPGAs with
similar features due to their energy-efficient architec-
ture (see Table 6).

C. LESSONS LEARNED
Radio-astronomical imaging applications usually employ
single-precision or double-precision floating-point data

types. We evaluate the use of reduced-precision data types
for the gridding kernel and make the following observations:

Reduced precision applicability in radio-astronomical
imaging: Different from artificial intelligence applications,
where it is possible to highly reduce the data size, e.g. 1 or
8 bits [7], [101], radio-astronomical imaging needs higher
precision for reconstructing sky images. Indeed, from our
analysis, we observe that reduced precision can be applied
in the state-of-the-art radio-astronomical imager. However,
compared to AI tasks, the required precision is higher to
avoid image artifacts. Tensor-Float floating-point numbers
have a sufficiently high dynamic range for radio-astronomical
imaging kernels, but the number of bits is too low to accu-
rately represent the application values, such as visibilities and
subgrids. Moreover, this format can only be used for specific
warp matrix-to-matrix multiply and accumulate operations.

Benefits of applying reduced-precision in radio-
astronomical imaging: Reduced precision is a well-known
technique for improving performance and energy effi-
ciency [12]. It is a technique that can be applied to
compute-bound applications to reduce the compute unit size
and memory-bound applications to decrease memory band-
width requirements. We observe a significant improvement
in GFLOP/s and energy efficiency, respectively 81.96% and
84.71% compared to the standard single-precision acceler-
ator and 25.75% and 33.02% compared to the lookup-table
implementation.

FIGURE 16. Roofline model of the gridding kernel mapped to different architectures. The pentagon shape represented the TFLOP/s achieved by each
platform measured using performance counters. The diamond shape shows the TFLOP/s achieved without including sine and cosine since specific
architectures such as the AMD RX 550 uses multiple floating-point instructions to compute sine and cosine compared to the NVIDIA GTX 750 that has
special function units for transcendental math operations [94]. We show only one point for the GTX 750 and the lookup table accelerators (including
the custom floating-point prototypes) since the sine and cosine operations are not executed as floating-point operations. Thus the two points have
the same value. We report different horizontal roofs for the Xilinx Alveo U50 based on the discussion regarding peak performance in IV-D.
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FIGURE 17. Performance and energy efficiency evaluation on different architectures.

FPGAs vs CPUs and GPUs: The state of the art confirms
that FPGAs and GPUs are more energy-efficient than CPUs
except in rare cases [102]. Themajor part of past works shows
that FPGAs are more energy-efficient than GPUs. However,
these works compare GPUs with higher performance and
power consumption. In this work, we show, as presented
in [11], that for this particular application domain, GPUs with
similar peak performance, thermal design power and manu-
facturing process are faster and have better energy efficiency.
GPUs are also easier to program compared to FPGAs. More-
over, FPGA design requires hours of compilation to generate
a single bitstream [103]. However, FPGAs have the flexibility
to synthesize custom data types on hardware for assess-
ing performance improvement against standard data types.
In this work, we first evaluate the applicability of reduced
precision for radio-astronomical imaging. Then, we design
a reduced precision accelerator for radio-astronomical imag-
ing on FPGAs reporting similar performance to GPUs with-
out special sine/cosine units and improved performance and
energy efficiency compared to its baseline.

Xilinx Alveo U50: We make the following observations
four about the Xilinx Alveo U50 FPGA:

1) The static region consumes many resources (∼17%
LUTs and ∼13% DSPs) reducing the maximum per-
formance attainable with HLS accelerators.

2) The power budget and timing closure constraints,
which can be improved with Vivado strategies and
overclocking, make it impossible to fit more compute
units (see Table 8) in the designs reaching a maximum
of 69%ofDSPs (77% counting the static-region effect).

3) Large accelerators are difficult to place as discussed
in VI-D due to SLR placement. However, as previously
discussed Xilinx FPGAs are appealing candidates due
to their DSPs structure (see IV-C).

4) A positive feature in HBM-based FPGAs is the possi-
bility to map AXI interfaces to a larger set of memory
channels, alleviating congestion issues arising from
small numbers of memory channels.

VIII. RELATED WORK
Related work on radio-astronomical imaging acceleration
on modern computing systems is described in VIII-A;

moreover, we report related work on accelerating domain-
specific-application by using Xilinx Vitis in VIII-B.

A. RADIO-ASTRONOMY ACCELERATION
Over the past couple of years, hardware technologies have
significantly improved, and a fair amount of research has been
done on optimizing radio-astronomy algorithms to satisfy the
Square Kilometre Array requirements [104].

The current state-of-the-art full imager, WSClean, is pro-
posed by Offringa et al. [20]. It consists of an entire
radio-astronomical imaging pipeline, including W-stacking,
which is an extension of the previous gridding and degridding
algorithm, the so-called W-projection, and different CLEAN
algorithms such as Högbom, Cotton-Schwab and Multiscale
CLEAN [35].

Veenboer and Romein [6], [98] optimize the Image-
Domain Gridding [19], the current state-of-the-art fast algo-
rithm for gridding and degridding for radio-astronomical
imaging. They show how GPUs could reach almost peak
performance and deliver better execution time and energy
efficiency than CPUs. Image-Domain Gridding is now part
of the WSClean imager. In [11] the authors also accelerate
the gridding and degridding kernels on FPGA using a high-
level-synthesis methodology based on OpenCL. Their FPGA
implementation outperforms CPUs, but the GPU one is more
energy efficient. Our single-precision accelerator baseline
is outperformed by the one presented in [11] due to the
single-precision floating-point DSPs support of Intel Arria
FPGA [9]. However, we employ Xilinx FPGAs to assess
the performance of a reduced precision accelerator for radio-
astronomical imaging.

Hou et al. [100] implement an optimized prototype for
the degridding algorithm on FPGA, outperforming both
CPU and GPU by respectively 2.74x and 2.03x in terms
of energy-delay product (EDP). However, they employ an
outdated version of the degridding algorithm called W-
projection, which does not reach the performance of IDG and
does not include DDE corrections [28].

Corda et al. [4] focus on estimating the benefit of
near-memory computing for huge images in IDG. They
show that FFT is a critical bottleneck, which can be allevi-
ated using architectures exploiting High-BandwidthMemory.
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TABLE 9. Radio-astronomy related work.

More precisely, they demonstrate how an FPGA design could
reach a similar performance compared to a GPU with smaller
memory and less memory bandwidth.

Seznec et al. [15] propose a simple deconvolution GPU
implementation using half-precision data type. While half-
precision floating-points speed up the algorithm significantly,
this data type brings output degradation based on the dataset
used. Furthermore, they focus on small images (2048 ×
2048 pixels), while radio astronomical images are typically
bigger, e.g., 5000× 5000, 16000× 16000 and larger [6].
Gürel et al. [99] formulate the Hogbom Clean as an

Iterative Hard Thresholding (IHT), a compressive sensing
technique, to reduce the data dimensions. While this work
provides compelling insights, they optimize the most simple
Clean algorithm and use very low resoluted images (256 ×
256 pixels).

To the best of our knowledge, our work is the first demon-
stration in proposing a custom floating-point analysis and
architecture for radio-astronomical imaging by focusing on
the main bottleneck (gridding kernel).

B. XILINX VITIS
Recent high-level synthesis work on Xilinx FPGAs is
based on Xilinx’s new programming tool-flow: Xilinx Vitis.
Brown [92] show the steps to take when optimizing an appli-
cation for Xilinx FPGAs by employingXilinxVitis. Although
some observations in their work have been helpful, they focus
on very small FPGA designs (using about 2% of the available
resources), while we try to put as many resources to good use
as possible. Indeed, for a small accelerator, it is possible to
reach a frequency of 450MHz, while in a realistic use case,
it turns out to be in a range of 200-300MHz.

Calore and Schifano [86] benchmark the Alveo U250
with the FPGA Empirical Roofline model (FER), showing
that there is a considerable difference between theoretical
and attainable performance on FPGA, which usually is not
so high in different architectures such as CPUs and GPUs.
In our work, we employ the FER benchmark to determine the
single-precision horizontal roof for the Alveo U50.

Nguyen et al. [103] evaluate FPGAs from different ven-
dors with GPUs showing that modern GPUs are easier to
program and have better energy efficient except for rare cases
such as fixed-point precision computations.

Choi et al. [105] benchmark HBM-based FPGAs from dif-
ferent vendors to compare the memory performance. They
present insightful observations regarding how the HBM2
memory channels must be mapped on Xilinx Vitis, e.g. Alveo
FPGAs usually has 30 channels available over a total of 32.
Related to this work, we notice that it is crucial to carefully
select the HBM2 channel when implementing the accelera-
tor to avoid critical paths that can significantly reduce the
achieved frequency.

IX. CONCLUSION
We present the first reduced-precision custom floating-point
analysis and accelerator for radio-astronomical imaging.
More precisely, we evaluate the bottleneck of WSClean,
the state-of-the-art radio-astronomical imager. Then, we ana-
lyze for the first time the impact of reduced preci-
sion on radio-astronomical imaging by employing custom
floating-point for the main kernel, the so-called gridding,
from the state-of-the-art Image-Domain Gridding algorithm.
We demonstrate that reduced precision could be applied to
radio-astronomical imaging, but data types must be selected
carefully based on the dataset to avoid precision loss. Indeed,
our analysis excludes standard low-precision data types sup-
ported in modern GPUs and highlights insightful observa-
tions regarding how the analysis can be evaluated in a shorter
time. We port the gridding algorithm (from Image-Domain
Gridding) on Xilinx FPGAs in single-precision floating-point
to serve as a baseline. Moreover, we map the first reduced
precision prototype of gridding kernel on the same hardware
by employing custom floating-point data types. We find that
the reduced precision accelerator is up to 1.84x faster and
2.03x more energy-efficient than its single-precision version.
Compared to the CPU, our best accelerator prototype is 2.12x
faster and 3.46x more energy-efficient than the CPU. How-
ever, it is 9.16% and 40.44% slower and 78.77% and 63.29%
less energy-efficient than AMD and NVIDIA GPUs.
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FIGURE 18. Custom floating-point adder (0 DSPs) resource usage for the
CPFP and THLS libraries.

Thus we corroborate with the earlier observation that cur-
rently GPUs are the most energy-efficient architecture for
radio-astronomical imaging, and custom precision support
in the next generation of GPUs could further improve the
performance/watt for radio astronomy imaging. Even though

FIGURE 19. Custom floating-point multiplier (1 DSPs) resource usage for
the CPFP and THLS libraries.

FPGA design support improved in the past years, FPGAs
would need improved lithography technology [106], more
DSPs with improved performance, smarter HLS compilers,
and faster placement tools to be competitive against GPU in
this application domain.
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This work paves the way for future research in this spe-
cific application domain. Indeed, it would be interesting to
explore reduced precision at runtime, e.g., by reconfiguring
the accelerators based on dataset requirements and/or user
parameters, to further improve performance. Fine-grained
reduced precision, which consists of differentiating the data
types for different instruction or kernel sections, would be a
viable option for higher performance and energy efficiency
in future works. The presented work also show that FPGA
technology can be improved to make them more competitive
compared to GPU in radio astronomy applications.

.

APPENDIX A HLS CUSTOM FLOATING-POINT LIBRARY
COMPARISON
The main custom floating-point libraries for High-
Level-Synthesis are the custom-precision floating-point
(CPFP) [59], and the templatised soft floating-point for high-
level synthesis (THLS) [60]. Both the libraries are based
on the Xilinx arbitrary precision library [107]. While CPFP
support homogeneous custom floating-point, THLS enables
heterogeneous custom floating-point, which may be helpful
for fine-grained mixed-precision or compute operations at
higher precision and then truncate the result. Since we do
not not need heterogeneous operators for this work the CPFP
library would be sufficient. However,we evaluate the resource
usage of the two libraries for the adder (see Figure 18) and
multiplier operator (see Figure 19) to motivate our choice of
THLS over CPFP.

Both the operators use less resources compared to single-
precision floating-point for the presented precision, including
the one employed in our highest performing accelerator
(6 bits exponent and 11 bits mantissa, with a total of
18 bits). Unlike the adder operator, the multiplier opera-
tor, considering the same precision and number of DSPs
(1), has similar resource usage (less in the case of THLS)
than half-precision. Overall THLS has reduced LUTs, e.g.
Figure 19(b) vs Figure 19(a), and FFs, e.g. Figure 19(d) vs
Figure 19(c), usage compared to CPFP. This analysis thus
motivates the usage of THLS over CPFP.
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