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Chapter 1. Introduction

Background

Historically, medicine was practiced as an art, based on the authority of a
master, expert opinion and experience. Nowadays, medicine is considered
both an art and a science, founded on results from clinical trials and research.
The shift towards evidence based medicine (EBM) has for a great degree been
facilitated by the rise of statistics. While the origins of statistical theory lie in
the 18th century, medicine before the 20th century was still mostly based on
empirical evidence and case studies. This changed drastically in the 20th cen-
tury and can be linked to several key publications. In 1925 Sir Ronald Fisher
published the book Statistical Methods for Research Workers, which is consid-
ered by some as one of the 20th century’s most influential works on statistical
methods [1]. Fisher introduced the well known (but poorly understood) con-
cept of significance testing based on the P-value. In 1937 Sir Austin Bradford
Hill published a series of papers in The Lancet on medical statistics, these
were compiled in a book, Principles of medical statistics, in the same year
[2]. Aided by Philip D’Arcy Hart and Marc Daniels, they conducted the first
randomized controlled trial (RCT) on streptomycin (an antibiotic) treatment
of pulmonary tuberculosis in 1948 [3]. Finally, in 1972 Archie Cochrane pub-
lished his influential monograph, Effectiveness and efficiency: Random reflec-
tions on health services, in which he sets out the vital importance of RCTs in
assessing the effectiveness of treatments and discusses the basis for ’evidence
based medicine (EBM)’ [4]. In response to this publication, the Cochrane
Collaboration (now: Cochrane) was founded in 1993, which includes review
groups from research intuitions worldwide to conduct systematic reviews to
produce credible and accessible health information.

The rise of EBM has gone hand in hand with the development and use of
clinical prediction models (CPMs). CPMs can be used either in public health
(e.g. prediction of disease prevalence), clinical practice (e.g. for diagnosis
or therapeutic decision-making) or research (e.g. selecting high risk patients
for inclusion in a RCT or adjusting for covariates and confounding) [5]. In
this thesis we focus on the application of CPMs in clinical practice. CPMs
combine a set of predictors to predict an outcome, the outcome can either be
diagnostic (e.g. does the patient have the disease) or prognostic (e.g. what
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is the expected time until mortality). In 1976 the first CPM, based on the
Framingham Heart Study, was published. The Framingham risk score can be
used to estimate the 10-year cardiovascular risk of an individual, based on
several characteristics such as cholesterol levels, systolic blood pressure and
cigarette use [6].

Before the advent of electronic health records (EHRs) and large registries,
CPMs were mostly based on data collected as a result of a study, including
RCTs. With the rapid growth in data acquisition, storage, algorithms and
computing power, using real-world data (RWD) to develop CPMs has become
more popular. This also contributed to an exponential growth in the number
of publications on the topic of CPMs. However, actual implementation of
CPMs in clinical practice is lagging behind in terms of publications, resulting
an unrealized potential (Fig. 1.1).
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Figure 1.1: Number of PubMed results over time for search terms ”Clinical prediction model
OR Risk score” versus terms ”Clinical prediction model OR Risk score AND Implementation”,
starting from 1970 until 2021.
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Chapter 1. Introduction

This thesis, to which this chapter is the introduction, focuses on the potential
and pitfalls in the development, validation and implementation of CPMs based
on real-world longitudinal data. In all chapters time plays an essential role,
either because populations change over time, the disease changes over time,
the data is in the form of repeated measures or the outcome is a time to an
event in the future. Many RWD are longitudinal in nature, since patients are
followed over time as disease progresses or a treatment is initiated. Exploiting
repeated measures data for use in CPMs can make predictions dynamic, more
patient-specific and accurate. This chapter is organized as follows: First, we
define RWD and describe their potential as a source for CPMs. Secondly, we
explain the development, validation and implementation of CPMs. Thirdly,
we describe the different forms of repeated measures data and cover the sta-
tistical modeling of longitudinal data. Finally, we formulate the aims of this
thesis and provide an outline of the chapters.

1.1 Real-world data

Clinical prediction models (CPMs) rely on a dataset from a representative
sample of the target population. Historically, CPMs were developed on data
from a prospective study, including (randomized controlled) clinical trials or
large cohort studies such as the Framingham Heart Study [6]. The benefits
of these data is that included patients have a regular follow-up and outcomes
and study variables are clearly defined and registered, i.e. the data can be
expected to be of high quality with low missingness. However, these data
are not without their limitations for CPM development. Aside from costs and
duration, clinical studies define inclusion criteria for eligible patients. These
criteria can range from strict (e.g. for randomized controlled trials (RCTs))
to more liberal (e.g. for cohort studies). As a consequence, if the data from
a study with strict exclusion criteria is used to develop a CPM, the CPM can
only be applied to the population that would otherwise be eligible to partici-
pate in the study. Even studies with more liberal inclusion criteria cannot be
guaranteed to represent all eligible patients, as not all patients can be expected
to sign informed consent. With the rapid growth in data acquisition, storage,
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algorithms and computing power, the use of real-world data (RWD) to de-
velop CPMs is becoming more popular [7]. Although there is no consensus
on the definition of RWD [8], it is considered to be observational data relating
to patient health status and/or the delivery of health care, generated as part
of a healthcare process. This is opposite to data gathered as part of a clini-
cal trial or study. Sources include electronic health records (EHRs), labora-
tory information systems, claims and billing information, registries, mortality
databases, wearables etc. In a recent large-scale review of external validations
of cardiovascular CPMs, the EHR was in 54% of the reviewed models the
data source for the CPM, rather than a clinical trial (10%), a registry (26%) or
any other source (10%) [9]. While EHR data (and RWD) is becoming more
and more popular for clinical research due to its accessibility, these data come
with many challenges which have been reported in several studies and will be
addressed in this thesis [7, 10, 11].

1.2 Clinical prediction models

Clinical prediction models (CPMs) combine a set of predictors (or: indepen-
dent variables, covariates, etc.) to predict an outcome (or: dependent variable,
response, etc.). This outcome can either be diagnostic (e.g. does the patient
have the disease) or prognostic (e.g. what is the expected time until mortality).
How to choose a model that combines the information from the predictors to
obtain a prediction for the outcome is not trivial. The choice depends on the
nature of the data, goal and preference of the researcher. In the field of data
science, models can be placed on a spectrum ranging from traditional sta-
tistical models to more recent machine learning models, see Table 1.1 for a
summary. In this thesis we focus on the statistical modeling approach. The
main reason for doing so is that statistical models serve multiple goals; study
design, hypothesis testing, estimation and prediction. Often, questions such
as ”What is the likelihood of outcome y given x?”, or ”What is the added value
of measuring x, in predicting y?” or ”Is variable x associated with the outcome
y?” arise in daily clinical practice. Statistical models are versatile in the sense
that they can be used to answer clinically relevant questions, as well as be
used as CPMs. Prediction can be considered a superset of hypothesis testing
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Chapter 1. Introduction

Data science
Statistical modeling Machine Learning
White-box modeling Black-box modeling

probabilistic data generating model,
emphasis on inference and

causal effects,
finding a ’correct’ model

algorithmic approach,
emphasis on speed and
accuracy of prediction,

finding a ’performing’ model

Table 1.1: Key differences between a traditional statistical modeling approach and a machine
learning approach. Note that any dichotomization is arbitrary since there are intersections be-
tween both approaches and grey areas, e.g. non-parametric statistical models and interpretable
machine learning models.

and estimation [12]. Also, when interpretability is required, statistical models
are a suitable choice.

1.2.1 Development

Before developing the model itself, it is essential to first carefully formulate
the research question. To quote the American mathematician and statistician
John Tukey: “An approximate answer to the right problem is worth a good
deal more than an exact answer to an approximate problem.” Next, one should
get familiar with the available data. This includes an exploratory analysis
of the predictor variables which involves checking of the distributions and
missingness. In the case of missing values one should uncover the cause for
this missingness to estimate the potential for bias. After one is familiar with
the data, the model fitting itself can start. This is the most tricky part of
model development, as many choices have to be made with respect to variable
selection, interactions and non-linear terms. Two books that provide guidance
with a focus on clinical data are Regression modeling strategies by Frank E.
Harrell [12] and Clinical prediction models by Ewout W. Steyerberg [5]. After
specifying the model, parameters have to be estimated. Again, many choices
are available, ranging from a traditional frequentist or Bayesian approach to
more recent penalized estimation approaches [13, 14].
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1.2.2 Validation

After model fitting is complete, validation is required to asses the quality of
the fitted model. The quality of a model is expressed in several performance
measures, these can either be of statistical nature such as the akaike informa-
tion criterion (AIC) [15] or more directly related to clinical practice such as
positive predictive value. Ideally, these performance measures are calculated
on a dataset that was not used during model development. This can be done
by e.g. creating a training and test split of the dataset, or better, by cross
validation or bootstrapping [13]. If validation is performed on the original
dataset, this is referred to as internal validation. Internal validation is essen-
tial to quantify a model’s tendency for overfitting [16]. A more rigorous test
of model performance however, is done by external validation. In external
validation a dataset from a different center is used to asses the performance
of the model. Preferably this center should differ from the development cen-
ter in patient population and/or treatment guidelines. External validation is
the most rigorous test, since this tests ability of the model to produce accurate
predictions on patients drawn from a different but plausibly related population
[17–19]. Also, after an external validation, model performance has to be eval-
uated over time as patient populations, diseases and clinical practice change.
Reporting guidelines have been established for studies developing, validating,
or updating a prediction model, both for diagnostic or prognostic purposes.
These are outlined in the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis (TRIPOD) statement [20].

1.2.3 Implementation

Judging from the vast number of publications of CPMs, one would expect
that models are part of daily clinical practice, this is not the case however. Al-
though some models have found acceptance in the clinic, e.g. the EuroSCORE
II for assessing the risk of heart surgery in adults [21] and the CHA2DS2-
VASc score for atrial fibrillation stroke risk [22], most models have not. This
is for a large part a result of a lack of implementation studies, see Fig. 1.1. Im-
plementation studies are even more uncommon than external validation stud-
ies. In an implementation study, a model is implemented in routine clinical
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practice and the benefits are quantified [23, 24]. These studies are also referred
to as ’impact studies’ and are performed prospectively, ideally, in a cluster-
randomized trial [25]. The implementation study also addresses the aspect of
model presentation, i.e. how are predictions presented to clinicians? This can
either be a directive or assistive approach. In an assistive approach, predicted
probabilities are reported without further recommendations, in a directive ap-
proach the predicted probabilities are presented as decision recommendations
[25]. There is no ”one size fits all” approach to an implementation study, each
study has to be tailored to each specific setting.

1.3 Repeated measures data

Many real-world data (RWD) are in the form of repeated measures where
patients are followed over time, e.g. by electronic health record (EHR) reg-
istrations, laboratory test results or wearables. Using repeated measures data
for development of clinical prediction models (CPMs) is relatively rare com-
pared to cross-sectional data [26]. Yet, exploiting repeated measures data can
result in better prognostic performance of CPMs since one can distinguish
within-subject variability from between-subject variability and, under certain
assumptions, allow for missing data. Although formal definitions do not exist,
we can distinguish two types of repeated measures data: time series data and
longitudinal data.

1.3.1 Time series data

Generally, time series are referred to when a single study unit is observed over
a long period of time, usually at regular time intervals. In time series analysis
one is usually interested in forecasting future time points and assessing prop-
erties such as stationarity, trend and seasonality. Often the interest of time
series analysis is in the observed unit itself. An example of time series data
are the daily number of patients presenting at the emergency department (see
Fig. 1.2A). In this case a single unit (the number of patients presenting at the
emergency department) is observed over a long period of time (one year) at
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Figure 1.2: A: Example of time series data, daily presentations at the emergency department
(ED) of the Catharina Hospital in Eindhoven.
B: Example of longitudinal data, 25 patients who underwent surgery had repeated measures of
cardiac troponin-T (cTnT).

regular intervals (daily) and the interest may lie in forecasting the daily rates
of patients presenting at the emergency department.

1.3.2 Longitudinal data

Longitudinal data is also referred to as panel data. In general, longitudinal
data are referred to when multiple study units (e.g. patients) are observed
with fewer measurements per unit (although it is also possible to have many,
high frequency measurements per unit). In longitudinal data, one often takes a
representative sample from a population of interest and performs several mea-
surements on each subject in the sample. The interest is often in the variability
of the different profiles and how this is related to an outcome or the popula-
tion itself. A study collecting longitudinal data is usually designed with a
fixed number of measurements. An example is the measurement of a cardiac
biomarker at several time points for patients who undergo cardiac surgery (see
Fig. 1.2B).
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Time series data Longitudinal data

low n high n
high m low m
forecasting future time points association between profile and outcome
stationarity, trend, seasonality within-subject, between-subject variability

Table 1.2: Summary of differences between time series and longitudinal data, n = number of
subjects, m = number of measurements.

1.3.3 Modeling of longitudinal data

In this thesis we mainly focus on modeling longitudinal data. Longitudinal
data can be incorporated in CPMs in various ways, either through statistical
modeling or machine learning. As stated previously we follow the statisti-
cal modeling path. The linear mixed effects (LME) model is arguably the
most widely used method for the analysis of longitudinal data [27]. The LME
model was proposed in 1982 by Laird and Ware and can handle irregularly
timed and missing measurements in a natural way. If we model a continuous
response yi j with a single predictor xi j, for a patient i at occasion j and ignore
the grouping structure we obtain a simple linear regression model:

E(yi j|xi j) = β0 +β1xi j + εi j,

εi j ∼ N (0,σ2),
(1.1)

where E(yi j|xi j) is the expected value, β0 an intercept term, β1 the regression
coefficient and εi j the residual error having a Gaussian distribution with mean
zero and standard deviation σ , N (0,σ2). This can also be written in matrix
notation:

E(Yi|Xi) = βXi + ε i,

ε i ∼ N (0,σ2I),
(1.2)

Note that the grouping structure of the data are ignored and the index i does
not have any implications, this is referred to as a fixed effects (or population
average) model. If we now introduce random (or subject specific) effects, we
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obtain a general formulation of a LME model:

E(Yi|Xi) = βXi +biZi + ε i,

bi ∼ N (0,Ψ),ε i ∼ N (0,σ2I),
(1.3)

where Zi is the random effects design matrix and Ψ is a positive-definite sym-
metric covariance matrix. Normally ε i ∼ N (0,σ2I) but other structures for
ε i can be used to model the residual correlation, this is also referred to as
an extended linear mixed effects model. A visual demonstration of the dif-
ference between linear regression and mixed effects regression is given in
Fig. 1.3. LME models allow for dynamic subject specific predictions which
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Figure 1.3: Visualization of predictions obtained from a linear regression and LME model
based on synthetic data from 5 patients.
A: Shows a linear regression fitted to data from 5 patients. While every patient shows a de-
clining trend, not taking the grouping into account will result in a positive slope for the linear
regression fit. B: Shows the fit of a mixed effects model with random intercept and random
slope, fit to the data from 5 patients. The fixed effects (i.e. population average) show a declin-
ing trend and the random effects allow for a subject-specific deviation from the fixed effects
based on the measurements from each patient.

lead to substantial improvements in predictive accuracy [28]. Moreover, LME
models can be combined with other outcomes such as a time-to-event in a
joint model, which allows for individualized predictions of outcomes such as
mortality or readmission [29].
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1.4 Aims and outline of this thesis

The goal of this thesis is to uncover the potential and pitfalls in the devel-
opment, validation and implementation of clinical prediction models (CPMs)
based on real-world longitudinal data. All aspects from assessing the quality
of real-world data (RWD), to the development, validation and implementation
of CPMs and the statistical modeling of longitudinal data, are applied to real-
world clinical applications. From these applications, the potential and pitfalls
of using RWD to develop CPMs are uncovered. This thesis is organized as
follows:

Chapter 2 shows how RWD from patients undergoing coronary artery by-
pass grafting surgery can be used to detect clinically relevant subgroups.
This study is a demonstration of unsupervised learning from RWD to
improve diagnosis of a complication following surgery when the a gold
standard diagnosis is lacking.

Chapter 3 builds upon the previous chapter. The goal of this chapter is to
compare several non-parametric statistical modeling approaches to dy-
namic binary classification. Data is simulated to compare the perfor-
mance of the different approaches and the data from Chapter 2 is used to
show how dynamic longitudinal classification approaches can be used
in clinical practice.

Chapter 4 shows the development, validation and implementation of a CPM
based on RWD in the context of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). A CPM was developed to screen pa-
tients for a possible SARS-CoV-2 infection, based on routine laboratory
data from patients presenting at the emergency department. This CPM
was externally validated and implemented in multiple hospitals in the
Netherlands.

Chapter 5 assesses the validity of the CPM developed in the previous chap-
ter, in a new setting. The validity of the model is assessed for screening
symptomatic healthcare workers.

12



1

Chapter 6 is an external validation study of a CPM developed to classify
the risk for 6-month readmission or mortality for patients admitted for
acute decompensated heart failure. The performance of the risk score
is assessed for the patient population of the Catharina Hospital, and an
association with self-care behavior is examined.

Chapter 7 is a validation study of a wearable device to measure heart rate
(HR). The goal of this study is to assess the agreement between the HR
extracted from the wearable and the gold standard 5-lead electrocardio-
gram connected to a patient monitor, during surgery and recovery.

Chapter 8 concludes this thesis with a discussion of the potential and pitfalls
of using real-world longitudinal data in developing CPMs, based on the
experiences from the previous chapters.
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Abstract
Background Diagnosis of perioperative myocardial infarction (PMI) after

coronary artery bypass grafting (CABG) is fraught with complexity
since it is primarily based on a single cut-off value for cardiac troponin
(cTn) that is exceeded in over 90% of CABG patients, including non-
PMI patients. In this study we applied an unsupervised statistical mod-
eling approach to uncover clinically relevant cTn release profiles post-
CABG, including PMI, and used this to improve diagnostic accuracy of
PMI.

Methods In 624 patients that underwent CABG, cTnT concentration was
serially measured up to 24 h post aortic cross clamping (XC). 2857
cTnT measurements were available to fit latent class mixed models
(LCMMs).

Results Four classes were found, described by: normal, high, low and ris-
ing cTnT release profiles. With the clinical diagnosis of PMI as golden
standard, the rising profile had a diagnostic accuracy of 97%, compared
to 83% for an optimally chosen cut-off and 21% for the guideline rec-
ommended cut-off value.

Conclusion Clinically relevant subgroups, including patients with PMI, can
be uncovered using serially measured cTnT and a LCMM. The LCMM
showed superior diagnostic accuracy of PMI. A rising cTnT profile is
potentially a better criterion than a single cut-off value in diagnosing
PMI post-CABG.
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2.1 Introduction

Coronary artery bypass grafting (CABG) surgery is an effective procedure to
treat ischemic heart disease. Although the safety of CABG surgery is well-
established, the procedure is nevertheless associated with a risk of periopera-
tive and postoperative mortality and morbidity. Elevation of cardiac biomark-
ers such as creatine kinase and cardiac troponin (cTn) is common following
CABG surgery and reflects perioperative myocardial damage [1, 2]. Even
small enzyme elevations post-CABG are predictive of long-term prognosis
and there is a graded association of elevation with outcome [1]. Periopera-
tive myocardial damage can be ascribed to multiple causes, including direct
trauma from surgical handling, inadequate myocardial protection during car-
diopulmonary bypass or perioperative myocardial infarction (PMI) [3]. In
CABG surgery, PMI is a complication that adversely affects the prognosis of
the patient [3]. Incidence of PMI varies depending on the diagnostic crite-
ria and patient population [3, 4]. Some studies report incidence rates up to
30%, though an average incidence of 3.9% established in a large systematic
review seems more realistic [4]. The fourth universal definition of myocar-
dial infarction (MI) arbitrarily defines a CABG-related PMI (Type 5) as el-
evation of cTn values > 10 times the 99th percentile upper reference limit
(URL) in patients with normal baseline values during the first 48 h following
CABG surgery, combined with other clinical or echocardiographic evidence
[5]. However, the current definition has its limitations. The diagnostic cut-
off value of cTn > 10 x URL is arbitrarily defined and occurs in over 90%
of all patients undergoing CABG surgery [1, 6–8]. As a result, even small
degrees of myocardial damage may lead to additional diagnostic procedures
and subsequent clinical care pathways [9]. Alternatively, isolated elevations
of cardiac biomarkers, which could be prognostically significant, are ignored
in the absence of other evidence. Several studies have focused on the release
profile (or kinetics) of cTn post-CABG, arguing that insight in the normal
postoperative release profile can aid clinicians in recognizing patients with
PMI and that timing of the peak is relevant when applying cut-off values [10–
12]. Aside from the normal post-operative CABG cTn release profile, stud-
ies describe profiles for off-pump coronary artery bypass grafting (OPCAB)
surgery [10, 11, 13] and surgeries complicated by PMI [10–12, 14–17]. While
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these studies demonstrate the variability in cTn release profiles and their value
in recognizing PMI, they a priori define subgroups based on clinical charac-
teristics or outcomes and subsequently evaluate cTn profiles. An alternative,
assumption-free, approach is to group patients according to cTn release pro-
files and a posteriori evaluate the clinical characteristics and outcomes of each
subgroup. In this study we used an unsupervised statistical learning approach
to identify subgroups of patients without using any information other than
cTnT release profiles post-CABG. To achieve this we used a statistical mod-
eling technique called latent class mixed models (LCMMs) [18]. Our first aim
was to fit a LCMM to data from a cohort of CABG patients where cTn was
serially sampled post-operatively. From this model, we investigated the mean
cTn release profiles of the uncovered classes and analyzed the subgroups of
patients assigned to the classes based on clinical characteristics and outcomes,
including PMI. Finally, the added value of the LCMM and serial cTn sampling
in diagnosing PMI was determined.

2.2 Materials and Methods

2.2.1 Patient population

This study was a prospective observational cohort study and all patients who
underwent coronary artery bypass grafting (CABG) surgery at the Catharina
Hospital in Eindhoven between February 2013 and February 2014 were in-
cluded in this study (N = 1028). Exclusion criteria were patients who under-
went CABG with concomitant surgery. If patients underwent a reoperation
during the inclusion period, only the first operation was included in the analy-
sis. Blood samples for this study were residual samples obtained during rou-
tine withdrawal. Primary endpoints were cardiac troponin (cTn)T profile after
uncomplicated cardiac surgery, cTnT profile after cardiac surgery complicated
by perioperative myocardial infarction (PMI) and short/long-term mortality.
Patients with missing data that had either i) none or only one cTn measure-
ment (N = 123), or ii) where the aortic cross clamping (XC) time was not
registered (N = 4), were excluded. Patients were also excluded if there was
reasonable doubt whether the labeling of tubes was performed correctly (e.g.
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a > 28 ng/L (> 2 x URL) decrease followed by > 28 ng/L increase during the
first 5 hours post-CABG (N = 27)).

2.2.2 cTnT measurements

Arterial blood samples were obtained preoperatively (≤ 2 h before surgery)
and at 1.5 h, 2 h, 6 h and 12 - 24 h post XC. If the procedure was performed as
an off-pump coronary artery bypass grafting (OPCAB), the positioning of the
mechanical stabilization device was taken as reference point of time. Sam-
ples were collected in BD Vacutainer® heparin tubes and immediately after
withdrawal assayed for cTnT concentration using a high-sensitive cTnT Im-
munoassay from Roche Diagnostics Corporation on a Roche Elecsys® plat-
form. The Roche hs-cTnT assay has a 10% imprecision at 13 ng/L with a 99th

percentile URL of 14 ng/L.

2.2.3 PMI diagnosis

At the time this study was performed, diagnosis of PMI in our institution was
based on elevation of aspartate aminotransferase (ASAT) activity. PMI was
registered as a complication if ASAT activity was > 100 U/L combined with i)
new Q waves on an electrocardiogram (ECG) or new left bundle branch block;
or ii) angiographic evidence of graft or native coronary artery occlusion; or iii)
echocardiographic imaging evidence of new regional wall motion abnormality
or new loss of viable myocardium.

2.2.4 Data collection and storage

Patient data was collected prospectively in the database of the department of
cardiac surgery of our institution. These data included demographic informa-
tion, risk factors, and complications. cTnT results were extracted from the
laboratory information system. Mortality data was obtained from the munici-
pal personal records database. All study data was merged and stored in a study
database, see Section 2.A for the structure of the data.
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2.2.5 Model fitting

Linear mixed models [19, 20] provide a flexible method to analyze longitudi-
nal data since they incorporate between-patient variability, can handle irreg-
ularly sampled and missing data (under the missing at random assumption).
However, linear mixed models assume that the underlying population is ho-
mogenous and can be described at the population level by a unique profile.
If different subpopulations exist within the total population, these have to be
explicitly specified. Latent class mixed models (LCMMs) assume that the
population is heterogeneous and composed of latent classes of subjects, char-
acterized by mean profiles of trajectories [18, 21]. LCMMs are also referred
to as growth mixture models. After the LCMM is fitted, a posterior classifica-
tion can be made which calculates the probability that each subject belongs to
each of the latent classes. The LCMM consisted of a linear mixed model rep-
resenting log10 transformed cTnT profiles over time and a multinomial logis-
tic regression model representing (latent) class membership. CTnT was log10
transformed due to the highly skewed distribution. In the linear mixed model
the fixed and random effects were modeled with natural cubic splines since
cTnT profiles were expected to be highly nonlinear. Splines are preferred to
polynomials due to their local nature and better numerical properties [22]. No
predictors were included in the multinomial logistic regression model so class
membership was not based on any patient characteristics or outcomes. The
LCMM was fitted using R version 3.6.1 [23] and the lcmm package version
1.8.1 [18]. A series of LCMMs were fitted, consisting of an increasing number
of latent classes. Since it is known that LCMMs can converge to local maxima
[18], each LCMM was fitted 100 times with randomly chosen starting values
to ensure that each model converged to a global maximum. The number of
latent classes was increased until the Bayesian information criteria (BIC) [18,
24] started increasing with the addition of an extra latent class. The selection
of the best model was based on i) the BIC and ∆BIC, ii) the posterior classi-
fication table and iii) clinical relevance [18, 25]. Mathematical formulation,
model selection procedures and R code used to fit the model can be found in
Section 2.A.
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2.2.6 Post-hoc analysis

After selecting a LCMM, classes were given names based on the evolution
of the mean cTnT. Class membership probabilities were calculated and each
patient was a posteriori assigned to the class that corresponded to the highest
probability. The differences between classes were analyzed with respect to
patient characteristics, procedural characteristics and outcomes. If there were
statistically significant (p < 0.05) differences between classes for a particu-
lar variable, post-hoc tests were used to compare which particular pair(s) of
classes differed. Tukey’s test was used for continuous variables, Dunn’s test
for non-normal continuous variables and pairwise Fisher tests for categorical
variables. The Holm-Bonferroni method was used to adjust p-values for mul-
tiple comparisons [26]. Patients that were assigned to a rising profile class
(i.e. cTnT still rising at 24 h post XC) were considered positive for PMI by
the LCMM. The classification of the LCMM was compared to the clinical
diagnosis of PMI in terms of sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV) and accuracy. This was also done for
the guideline definition [5] and for an optimally chosen cutoff. The optimally
chosen cutoff was based on the Youden index [27] of the receiver operating
characteristic (ROC) curve of the maximum cTnT value within 24 h post XC
and the clinical diagnosis of PMI. Since a LCMM cannot be directly imple-
mented in the clinic, we also assessed the added value of the LCMM in the
clinical practice by defining a simple criterion based on visual inspection of
the mean profiles.

2.3 Results

2.3.1 Study population

In total, 1028 patients were included in the study, see Fig. 2.1. Patients with
concomitant procedures were excluded, leaving 778 patient that underwent
coronary artery bypass grafting (CABG) without combined surgery. Of these
778 patients, some patients had missing or incorrect data with respect to the
cardiac troponin (cTn) measurements, the aortic cross clamping (XC) time or
the labelling of pre- and post-operative samples. After excluding patients with
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missing or erroneous data, a total of 624 patients remained in the analysis.
Patient characteristics and outcomes are summarized in Table 2.1.

1028 patients in inclusion period

778 patients eligible

250 patients excluded:

• CABG + valve surgery (N = 159)

• CABG + other surgery (N = 35)

• CABG + valve + other surgery (N = 56)

624 patients in study

154 patients excluded:

• Patients for whom none or only one cTnT

measurement was available (N = 123)

• Patients for whom XC time was not 

registered (N = 4)

• Patients for whom samples were switched 

(N = 27)

Figure 2.1: Inclusion flowchart. Flowchart describing inclusion of patients.

2.3.2 Latent class mixed model

Latent class mixed models (LCMMs) were fitted with up to 6 latent classes.
The Bayesian information criteria (BIC) of the LCMMs decreased from
762.80 for a model without latent classes to a minimum of 514.86 for a
model with 5 latent classes. The model with 4 latent classes (BIC = 518.86)
was chosen as the final model, given the small decrease in BIC (-4.00) when
going from 4 to 5 latent classes (reflecting modest evidence for a fifth class
[28]) and higher discriminative ability. For more details regarding model
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selection, see Section 2.A. In Fig. 2.2A the estimated mean profile of each of
the four latent classes in the final model is plotted. Patients were assigned
to the class with the highest posterior probability. The individual profiles of
patients assigned to each of the four classes are shown in Fig. 2.2B. Classes
were labelled according to the shape of the profile. The “normal profile”
class (N = 523, 83.8 %) contains the majority of patients and shows a typical
cTnT profile post-CABG: a sharp increase in cTnT with a peak around 4 –
5 h post-XC, representing periprocedural myocardial damage, followed by
a slow steady decline. The “rising profile” class (N = 29, 4.6 %) shows an
initial sharp increase similar to the “normal profile” but where the cTnT
concentration continues to rise until the end of the measurement period (24
h). The “low profile” class (N = 40, 6.4 %) shows a slower increase and a
lower peak cTnT than the “normal profile”. The “high profile” class (N = 32,
5.1 %) contains patients with an elevated baseline cTnT that peaks around 10
h post XC and then starts to decline.
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Figure 2.2: A: Mean cTnT profiles of latent classes. Estimated mean profiles of log10 cTnT in
ng/L for each latent class from the final four class LCMM.
B: Individual cTnT profiles. Individual log˙10 cTnT profiles of patients that were a posteriori
assigned to one of the four latent classes. N is the number of patients a posteriori assigned to
that class.
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2.3.3 Latent class characteristics and outcomes

Patients were assigned to the class with the highest posterior probability and
classes were compared based on patient characteristics, procedural charac-
teristics and outcomes in Table 2.2. Patients in the low profile class almost
exclusively underwent off-pump coronary artery bypass grafting (OPCAB)
surgery and were on average younger than patients in the high profile class.
Patients in the high or rising profile class had higher surgical risk (i.e. higher
EuroSCORE) than patients in the normal or low profile class. This was also
reflected by the fact that these patients more often underwent emergency pro-
cedures than patients in the normal profile class. Patients in the high or rising
profile class had a longer length of stay (LoS) in the intensive care unit (ICU)
and hospital, than patients in the low or normal profile class. Finally, patients
that were assigned to the rising profile class were more often diagnosed with
perioperative myocardial infarction (PMI) and showed signs of ischemia on an
electrocardiogram (ECG). There were no statistically significant differences
between classes in terms of early or late mortality.

2.3.4 Latent classes and the diagnosis of PMI

55 % of patients in the rising profile class were clinically diagnosed with PMI
whereas 98.8 % of patients in any of the other classes were not clinically
diagnosed with PMI. Patients that were assigned to the rising profile class
were considered positive for PMI. Fig. 2.3 shows the agreement between the
LCMM rising class PMI classification and the clinical diagnosis of PMI in our
clinic. For 16 of the 23 patients that had PMI there is agreement between the
LCMM and the clinical diagnosis (true/concordant positives). 5 patients were
classified in the normal profile class and 2 patients were classified in the high
profile class, in spite of being clinically diagnosed with PMI (false/discordant
negatives). 13 patients that were not clinically diagnosed with a PMI were
classified in the rising profile class (false/discordant positives), the remaining
599 patients were all not diagnosed with a PMI and did not appear in the rising
profile class (true/concordant negatives). From the mean profiles in Fig. 2.2A
it can be seen that only the PMI class is still rising between 6 and 24 h post
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XC. To assess the added value for the clinic, five different methods to clas-
sify patients with PMI are compared based on sensitivity, sensitivity, positive
predictive value (PPV), negative predictive value (NPV) and accuracy. The
results are shown in Table 2.3. The LCMM approach had the highest accu-
racy and PPV without sacrificing NPV. The additional criterion that cTnT is
rising between 6 and 24 h post XC improved accuracy compared to the current
guideline criterion and an optimally chosen cut-off.
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Figure 2.3: Confusion matrix plot. Individual log˙10 cTnT profiles of patients split by clinical
diagnosis of PMI (upper row with clinical diagnosis of PMI, bottom row without PMI and
posterior class assignment by the LCMM (normal, high, low and rising profile in each column
respectively). True positives (TP); false negatives (FN); false positives (FP); true negatives
(TN).
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N = 624

Pre-operative
Age in years (mean (SD)) 65.65 (9.68)
Female gender (%) 121 (19.4)
BMI in kg/m2 (mean (SD)) 27.63 (4.01)
Diabetes (%) 134 (21.5)
Hypertension (%) 367 (58.8)
Peripheral vascular disease (%) 65 (10.4)
Previous stroke (%) 34 (5.4)
Left-ventricular function (%)

Good 511 (81.9)
Moderate 90 (14.4)

Poor 14 (2.2)
Very poor 1 (0.2)
Unknown 8 (1.3)

Additive EuroSCORE (median [IQR]) 3.00 [2.00, 5.00]
Prior cardiac surgery (%) 16 (2.6)
Emergency (%) 16 (2.6)
Intra-operative
Intra-aortic balloon pump (%)

No 616 (98.7)
Pre-op 2 (0.3)
Per-op 3 (0.5)

Post-op 3 (0.5)
Pre-op hemoglobin (mmol/L) (mean (SD)) 9.00 (0.88)
Pre-op creatinine (umol/L) (median [IQR]) 88.00 [76.00, 100.00]
Off-pump CABG (%) 133 (21.3)
Aortic cross-clamp time (min) (median [IQR]) 45.00 [35.00, 59.00]
Cardiopulmonary bypass time (min) (median [IQR]) 73.00 [57.00, 90.00]
Post-operative
Length of stay on ICU (days) (median [IQR]) 1.00 [0.00, 1.00]
Length of stay in hospital (days) (median [IQR]) 5.00 [4.00, 6.00]
PMI (%) 23 (3.7)
Required reoperation (%) 38 (6.1)
Early mortality (30 days) (%) 4 (0.6)
Late mortality (5 years) (%) 49 (7.9)
Number of cTnT measurements (%)

2 29 (4.6)
3 45 (7.2)
4 121 (19.4)
5 396 (63.5)
6 31 (5.0)
7 2 (0.3)

Table 2.1: Characteristics of the study population and outcomes. Body mass index (BMI);
coronary artery bypass grafting (CABG); intensive care unit (ICU); cardiac troponin (cTn);
perioperative myocardial infarction (PMI); standard deviation (SD); interquartile range (IQR)
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Normal profile High profile Low profile Rising profile p-value*

N 523 32 40 29
Age in years
(mean (SD)) 65.8 (9.4) 68.2 (10.6) 61.8 (12.1) 64.6 (8.9) 0.026

Female gender (%) 97 (18.5) 7 (21.9) 9 (22.5) 8 (27.6) 0.602
EuroSCORE
(median [IQR]) 3.0 [2.0, 5.0] 6.0 [3.0, 7.0] 3.0 [1.0, 4.0] 3.0 [3.0, 5.0] <0.001

Emergency (%) 5 (1.0) 6 (18.8) 2 (5.0) 3 (10.3) <0.001
OPCAB (%) 81 (15.5) 5 (15.6) 38 (95.0) 9 (31.0) <0.001
XC tim in min.
(median [IQR]) 45.0 [35.0, 58.5] 49.0 [37.5, 58.5] 61.0 [60.5, 61.5] 59.0 [43.0, 64.2] 0.071

CPB time in min.
(median [IQR]) 72.0 [55.0, 88.5] 77.5 [64.8, 88.0] 106.0 [102.5, 109.5] 94.0 [70.0, 99.0] 0.028

Days in ICU
(median [IQR]) 1.0 [0.0, 1.0] 1.0 [0.0, 2.0] 0.0 [0.0, 1.0] 2.0 [0.0, 3.0] <0.001

Days in hospital
(median [IQR]) 5.0 [4.0, 6.0] 6.0 [4.0, 9.0] 4.0 [4.0, 6.0] 6.0 [5.0, 7.0] 0.001

PMI (%) 5 (1.0) 2 (6.2) 0 (0.0) 16 (55.2) <0.001
ECG conclusion (%) <0.001

No ischemia 440 (84.1) 25 (78.1) 33 (82.5) 12 (41.4)
Possible 61 (11.7) 6 (18.8) 6 (15.0) 7 (24.1)
Definite 10 (1.9) 0 (0.0) 0 (0.0) 10 (34.5)

Inconclusive 12 (2.3) 1 (3.1) 1 (2.5) 0 (0.0)
30 day mortality (%) 4 (0.8) 0 (0.0) 0 (0.0) 0 (0.0) 0.855
5 year mortality (%) 41 (7.8) 4 (12.5) 3 (7.5) 1 (3.4) 0.628
Pre-op cTnT in ng/L
(median [IQR]) 12.0 [7.0, 21.0] 165.5 [109.8, 355.2] 10.0 [5.2, 14.0] 9.0 [6.0, 17.0] <0.001

Peak cTnT in ng/L
(median [IQR]) 278.0 [180.0, 425.0] 508.0 [368.5, 914.0] 43.5 [32.8, 82.2] 1111.0 [735.0, 1755.0] <0.001

Table 2.2: Patient characteristics of latent classes. *p-values determine if there are significant
differences between classes. χ2 test for categorical variables, one-way ANOVA for normally
distributed variables, Kruskal-Wallis rank sum test for non-normally distributed variables. aor-
tic cross clamping (XC); cardiopulmonary bypass (CPB); intensive care unit (ICU); electrocar-
diogram (ECG); off-pump coronary artery bypass grafting (OPCAB); perioperative myocardial
infarction (PMI); cardiac troponin (cTn); standard deviation (SD); interquartile range (IQR).

cTnT PMI classification method Sensitivity Specificity PPV NPV Accuracy

Guideline definition 0.96 0.18 0.05 0.99 0.21
Guideline definition & rising after 6 h 0.91 0.40 0.06 0.99 0.42
Optimal cutoff* 0.91 0.83 0.18 1.00 0.83
Optimal cutoff* & rising after 6 h 0.87 0.87 0.22 0.99 0.87
LCMM rising class 0.70 0.98 0.55 0.99 0.97

Table 2.3: Sensitivity, specificity, positive predictive value (PPV) and negative predictive value
(NPV) for different approaches to detecting patients with a perioperative myocardial infarction
(PMI). * the optimal cutoff for cTnT based on the Youden index was 528.5 ng/L. Latent class
mixed model (LCMM); cardiac troponin (cTn); perioperative myocardial infarction (PMI).
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2.4 Discussion

In this study we investigated whether subgroups of patients could be iden-
tified based on cardiac troponin (cTn)T release profiles post-coronary artery
bypass grafting (CABG), in particular patients with perioperative myocardial
infarction (PMI). Our results illustrate that by using a latent class mixed model
(LCMM), subgroups of patients could be identified that show distinctive cTnT
profiles without using any prior information other than serial cTnT measure-
ments taken up to 24h post aortic cross clamping (XC). Using the model’s pos-
terior classification of patients to a rising cTnT profile showed substantially
greater accuracy and positive predictive value (PPV) (without affecting neg-
ative predictive value (NPV)) in diagnosing PMI compared to the guideline
criteria. First, a model with latent classes had a substantially lower Bayesian
information criteria (BIC) than a model without latent classes (518.86 versus
762.80), indicating that a model with latent classes is a better fit to the data
[18, 25, 28]. In addition to the BIC, the diagonal terms in the posterior classi-
fication table were close to 1 (0.86, 0.89, 0.96, 0.94) reflecting good discrimi-
native ability [18]. While the five class model had slightly lower BIC, the four
class model was chosen due to the better discriminative ability. Also, there is
substantive theory from literature which validates the choice for a four class
model. The low profile class, which contains almost exclusively off-pump
coronary artery bypass grafting (OPCAB) surgeries, is in agreement with lit-
erature describing a delayed and lower peak for OPCAB surgery [10, 11, 13].
The rising profile class is also in agreement literature, describing a PMI profile
as having a delayed peak or rise following an earlier peak [10, 12, 14–17]. To
explain the cTnT release profile of patients with PMI, most studies refer to the
work from Katus et. al who suggest that early release represents cytosolic tro-
ponin from myocytes that are reversible damaged, whereas late release (after
one day) represents structural troponin from irreversibly damaged myocytes
[29]. The high profile class is not described in literature. This is explained
by the fact that most studies exclude patients with emergency procedures or
procedures within seven days of a myocardial infarction (MI), which are most
likely patients with elevated baseline cTnT in the high profile class. The post
hoc analysis revealed that the rising profile class consisted of more than half of
patients clinically diagnosed with PMI. There were thirteen discordant posi-
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tive patients (of 624 in total), i.e. patients that were assigned to the rising
profile class but were not clinically diagnosed with PMI. Nine patients had
peak aspartate aminotransferase (ASAT) ≤ 100 U/l and did therefore not meet
the ASAT-criterion to be diagnosed with PMI. The electronic health records
(EHRs) of the remaining four patients were re-examined by a thoracic sur-
geon. Three patients had no secondary evidence (electrocardiogram (ECG)
or echocardiographic) of PMI and were therefore not diagnosed with PMI,
one patient started to develop PMI but re-intervention took place before the
final diagnosis was made. There were seven discordant negative patients, i.e.
patients that were clinically diagnosed with PMI but not assigned to the ris-
ing profile class. The EHRs of these seven patients were also re-examined by
a thoracic surgeon. Five patients did not have elevated cardiac enzymes but
were diagnosed with PMI on the basis of a combination of other diagnostic
criteria i.e. ECG abnormalities, echocardiographic evidence or hemodynamic
instability. Two patients were incorrectly clinically diagnosed with PMI, one
patient had pre-operative MI and one patient was mislabeled as positive. Al-
though only mismatched cases were re-examined, the causes of misclassifi-
cation were mainly due to the ASAT criterion or (lack of) evidence of other
clinical or echocardiographic abnormalities. If the two patients that were in-
correctly labelled with PMI were re-classified as negative, the sensitivity of
the LCMM increased to 0.76 and the specificity to 0.99. That the LCMM
is not in perfect agreement with the clinical diagnosis of PMI, is not merely
a shortcoming of the model but also of the variation in the diagnosis of PMI.
Confirming or denying a diagnosis of PMI may be of secondary importance to
the clinical consequences. Although clinical consequences such as major ad-
verse cardiac and cerebrovascular events were not registered in our study, post
hoc tests revealed that patients with a rising cTnT profile had a longer length
of stay (LoS) in the hospital (Dunn’s test p-value: 0.045), a longer LoS on
the ICU (Dunn’s test p-value: 0.0036) and more often had signs of ischemia
on an ECG (Fisher’s exact test p-value: < 0.001) than patients with a normal
cTnT profile. This is in agreement with previous studies who reported associ-
ations between elevated post-operative cTnT and prolonged stay on the ICU
[30, 31]. A limitation of our study is that we did not have samples > 24 h post
XC, therefore we could not determine the timing of the cTnT peak for patients
with PMI. Previous studies observed a rising pattern even after 48 hours [11,
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14]. However, non-PMI patients reach their peak between 4 – 12 h post XC,
therefore 24 h is sufficient to distinguish early versus late peak occurrence.
This finding also confirms the potential for early (< 12 h post-CABG) cTnT
to detect patients at risk for PMI or other adverse events as reported by other
studies [31, 32]. Another limitation is that the model in its current form is
difficult to implement in a prospective manner in the clinic. However, we
have demonstrated that information gathered from the estimated mean cTnT
profile (that cTnT in patients in the rising class is still rising between 6 and
24 h post XC) can already improve diagnostic accuracy, both with respect
to the guideline and an optimally chosen cutoff. Our approach of visually
interpreting estimated mean cTnT profiles does not take any variability into
account and is only a proof of concept. Also, given the multifactorial causes
for post-operative cTnT elevation, one can expect differences between centers.
Consequently the results obtained from this single center analysis may not be
generalizable to other centers. Finally, although LCMMs do not prove that the
found subpopulations actually exist [33] and skepticism of complex statistical
models is appropriate, the fit indices combined with substantive theory and
high diagnostic accuracy of PMI patients provide strong evidence to assume
that the heterogeneity in cTnT release profiles is the result of actual subpop-
ulations instead of other causes of non-normality. We have demonstrated that
a statistical model is capable of recognizing clinically relevant subgroups of
patients based on cTnT release profiles post-CABG and that information from
this model can be used to improve the guideline for Type 5 MI. Future stud-
ies should be done to determine the optimal sampling time-points of cTnT to
detect a rising pattern and the associated improvement compared to a single
cut-off value in diagnosing PMI.

2.5 Conclusions

This study has shown that characteristic cardiac troponin (cTn)T release pro-
files exist post-coronary artery bypass grafting (CABG) surgery. These pro-
files could be uncovered by a latent class mixed model (LCMM) without any
prior information other than serial cTnT measurements up to 24 hours post
aortic cross clamping (XC). Four classes were discovered that showed a low,
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high, rising and normal cTnT release profile. Patients were a posteriori as-
signed to each of one of these classes. The rising profile proved to be predic-
tive for perioperative myocardial infarction (PMI), with higher positive pre-
dictive value (PPV) and accuracy than the guideline recommended cutoff or
an optimally chosen cutoff. We argue that a rising cTnT release profile is po-
tentially of greater predictive value for PMI than a single value above or below
a cutoff.
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32. Göber, V. et al. Early Troponin T and Prediction of Potentially Correctable In-Hospital
Complications after Coronary Artery Bypass Grafting Surgery. PLOS ONE 8, e74241
(Sept. 2013).

33. Bauer, D. J. & Curran, P. J. Distributional Assumptions of Growth Mixture Models:
Implications for Overextraction of Latent Trajectory Classes. Psychological Methods 8,
338–363 (2003).

36



2

Appendix

2.A Latent class mixed model fitting
In this appendix we describe the development of the latent class mixed model
(LCMM). We provide the mathematical formulation of the LCMM, the R code
that was used to fit the model, summary statistics, mean trajectories of all the
LCMMs that were fitted, estimates and posterior classification table of the
final selected model.

2.A.1 Mathematical formulation of the LCMM

The LCMM consisted of a linear mixed model describing cardiac troponin
(cTn)T profiles over time and a multinomial logistic regression model repre-
senting (latent) class membership.

Linear mixed model

The standard linear mixed model is given by: Y = βX+bZ+ ε . Y is the de-
pendent variable, β are the fixed effects, b are the random effects, X and Z are
the fixed and random effects design matrices, and ε the residuals. In this study
we had one group of patients i, where i = 1, . . . ,n, measured at j occasions,
where j = 1, . . . ,m. For each patient i at each occasion j the log˙10 trans-
formed value of troponin-T, log cT nT , was modeled as a function of time t
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(in hours post aortic cross-clamping). The nonparametric linear mixed model,
which relates the time ti j of patient i at occasion j to the log cT nTi j, is given
by

log cT nTi j =
q

∑
k=1

βkXk(ti j)+bi,kZk(ti j)+ εi j, (2.A.1)

where Xk and Zk are bases for spline functions with q fixed knots, ti j is the
time in hours post aortic cross-clamping, β the fixed effects coefficients, bik
are the random effects coefficients and εi j the residual errors. For Xk and Zk
natural cubic splines were used with q = 4 knots. Four knots were chosen
for identifiability purposes, i.e. the number of observations is greater than the
number of random effects in the linear mixed model. The two boundary knots
were fixed at the time of the first and last cTnT measurement that appeared in
the data (= 0, 23.6 h). The internal knots were chosen based on the 33.3 %
and 66.7 % quantiles of the distribution of all the measurement times (= 1.5,
6.6 h). Knots at the quantiles guarantee that each interval, while of varying
length, contains an equal amount of measurements.

Multinomial logistic regression model

The linear mixed model assumes that the population of patients is homoge-
nous and can be described at the population level by the unique profile of the
fixed effects: ∑

q
k=1 βkXk(ti j). The LCMM assumes that the population is het-

erogeneous and consists of G latent class, characterized by G mean profiles of
trajectories. Latent class membership is defined by a discrete random variable
ci that equals g if subject i belongs to latent class g. We fitted models con-
taining up to 6 latent classes, i.e. g = 1, . . . ,6. The probability that a subject i
belongs to a certain class g is calculated from a multinomial logistic regression
model without any covariates:

πig =
eγ0g

eγ01 + eγ02 + eγ03 + eγ04 + eγ05 + eγ06
, (2.A.2)

where for identifiability purposes the last class is chosen as reference class
and is set to 0, i.e. in the case of 6 latent classes: γ06 = 0.
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Latent class linear mixed model

The linear mixed model is extended with latent classes by allowing the fixed
effects and the distribution of the random effects to be class-specific. The lin-
ear mixed model described above, extended with latent classes can be written
as:

log cT nTi j|ci =
q

∑
k=1

βkXk1 (ti j)+ γciXk2 (ti j)+bi,kci
Zk (ti j)+ εi j, (2.A.3)

where the fixed effects are now split into common fixed effects βkXk1 (ti j) and
class-specific fixed effects γciXk2 (ti j). The random effects are not split but the
distributions of the random effects bi,kci

are now class-specific.

2.A.2 R-code to fit model

The dataset that contained the cTnT measurements for each patient was stored
in the so called long format, see Listing 2.A.1.

ID t logtropT gender age ...

13 0.0 1.278754 M 63 ...

13 1.8 2.049218 M 63 ...

13 7.1 2.666518 M 63 ...

13 21.8 3.045714 M 63 ...

18 2.2 2.617000 M 68 ...

18 4.5 2.598791 M 68 ...

18 11.5 2.568202 M 68 ...

18 16.0 2.499687 M 68 ...

17 0.0 1.278754 F 55 ...

17 1.4 1.806180 F 55 ...

17 2.1 1.934498 F 55 ...

17 6.8 2.403121 F 55 ...

17 21.6 2.049218 F 55 ...

26 0.0 0.698970 F 56 ...

26 2.2 2.082785 F 56 ...

27 0.0 0.602060 M 46 ...

27 1.7 2.181844 M 46 ...

27 2.4 2.267172 M 46 ...
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27 7.2 2.914343 M 46 ...

27 21.7 2.564666 M 46 ...

Listing 2.A.1: Long format, ID refers to the patient ID, time to the time after aortic cross-
claming and logtropT to log10 cTnT. There are more variables (e.g. gender and age) but these
are not used in the LCMM.

To fit the model, R version 3.6.1 was used with packages lcmm (version 1.8.1)
and splines. The set.seed(123) command was used for reproducibility.
The code to fit the (two class) latent class linear mixed model is given in
Listing 2.A.2.

gridsearch(rep = 100, maxiter = 20, minit = m1lin ,

hlme(fixed = logtropT ~ ns(t, knots = c(1.5, 6.6),

Boundary.knots = c(0, 23.6)), random = ~ ns(t,

knots = c(1.5, 6.6), Boundary.knots = c(0, 23.6)),

mixture = ~ ns(t, knots = c(1.5, 6.6), Boundary.

knots = c(0, 23.6)), data = df.cabg , subject = "ID

", ng = 2))

Listing 2.A.2: Two class LCMM.

With arguments:

• gridsearch(rep = 100, maxiter = 20, minit =

m1lin

Convergence to a global maximum is not guaranteed for mixture mod-
els, because of the existence of local maxima. To ensure convergence
to a global maximum, the gridsearch function is used. We used a max-
imum of 20 iterations from 100 random vectors of initial values which
are generated from the linear mixed model (m1lin).

• fixed = logtropT ~ ns(t, knots = c(1.5, 6.6),

Boundary.knots = c(0, 23.6))

The formula for the fixed effects, the log cTnT value is modelled by
a natural cubic spline function of t, with interior knots at 1.5 and 6.6
hours and boundary knots at 0 and 23.6 hours.
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• random = ~ ns(t, knots = c(1.5, 6.6),

Boundary.knots = c(0, 23.6))

This is the model formula for the random effects, in this case similar to
the fixed effects, i.e. the same natural cubic spline function of t.

• mixture = ~ ns(t, knots = c(1.5, 6.6),

Boundary.knots = c(0, 23.6))

The formula for the class specific fixed effects, similar to the random
effects.

• data = df.cabg

Name of the dataframe that contains the measurements.

• subject = "ID"

Name of the covariate in the dataframe representing the patient identi-
fier.

• ng = 2

Number of latent classes, in this case 2, but this was varied from 2 to 6.

All other arguments are set to the default values, this implies the use of an
unstructured variance-covariance matrix for the random effects which is com-
mon over latent classes.

2.A.3 Summary and selection of models

All models converged successfully and were compared using the
summarytable command in the lcmm package. Using natural cubic splines
with 4 knots and up to 6 latent classes the results are shown in Table 2.A.1.
Models without random effects (this corresponds to latent class growth
analysis which assumes that within a specific latent class the repeated
measures of the patient are independent) were also tried. However, models
without random effects had higher Bayesian information criteria (BIC)

41



Chapter 2. Detecting PMI after CABG based on cTnT profiles

G loglik npm BIC Class 1 Class 2 Class 3 Class 4 Class 5 Class 6

1 -333.13 15 762.80 100.00 NA NA NA NA NA
2 -265.96 20 660.65 93.43 6.57 NA NA NA NA
3 -197.79 25 556.49 89.10 4.49 6.41 NA NA NA
4 -162.89 30 518.86 83.81 5.13 6.41 4.65 NA NA
5 -144.80 35 514.86 6.57 8.33 77.40 3.21 4.49 NA
6 -131.19 40 519.82 9.46 0.32 75.32 4.33 4.01 6.57

Table 2.A.1: Summarytable using natural cubic splines with 4 knots and up to 6 latent classes.
G is number of latent classes, loglik the log likelihood, npm the number of parameters, BIC
the Bayesian information criteria and posterior probability of the latent classes. The number
represent the percentage of patients assigned to each class.

values (2381.83, 1899.63, 1400.22, 1209.81, 1085.85, 984.14) and were
therefore not preferred. To select the number of latent classes from the
LCMM we also calculated the ∆BIC when increasing the number of latent
classes, see Table 2.A.2. According to the BIC, the 5 class model is preferred

Latent classes increased
from . . . to . . . ∆BIC

1 to 2 -102.15
2 to 3 -104.16
3 to 4 -37.63
4 to 5 -4.00
5 to 6 4.96

Table 2.A.2: ∆BIC when increasing the number of latent classes.

since the BIC is lowest. However, the strength of evidence for the 5-class-
versus the 4-class-model is positive but not strong, given that the ∆BIC = -4
when going from 4 to 5 latent classes. We plotted the 2, 3, 4 and 5 class
models to determine clinical relevance in Fig. 2.A.1. The 5-class-model has
an additional class that accommodates patients with a moderately elevated
baseline cTnT, as compared to the 4-class-model which only has a single
class for highly elevated baseline cTnT. Given that an intermediate class with
moderately elevated cTnT has no direct clinical application/relevance and the
∆BIC value is modest, the 4-class-model is preferred. Note that the rising
class is always present starting from the 3-class-model, and is unaffected by
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Figure 2.A.1: The 2, 3, 4 and 5 class LCMMs, G is the number of latent classes.

the number of latent classes.

2.A.4 Posterior classification

To compare the 4- and 5-class LCMMs, we assigned names to each of the
profiles based on the trajectories: normal, high, intermediate, low and rising.
A posteriori classification is made for each patient based on the calculation
of the posterior class-membership probabilities. These probabilities are ex-
tracted from the model by using the pprob command of the lcmm package,
see Listing 2.A.3.

ID class prob1 prob2 prob3 prob4

50 3 0.492 0.000 0.508 0.000
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54 1 1.000 0.000 0.000 0.000

55 1 0.999 0.000 0.000 0.001

56 1 0.558 0.440 0.000 0.002

58 4 0.017 0.000 0.000 0.982

63 3 0.134 0.000 0.866 0.000

67 1 1.000 0.000 0.000 0.000

68 1 0.969 0.000 0.031 0.000

69 4 0.000 0.000 0.000 1.000

70 1 0.516 0.003 0.000 0.481

Listing 2.A.3: Posterior probabilities for individual patients (ID). For example patient 50: the
patient was assigned to class 3 (low profile) but only with a probability of 0.508, there is a
probability of 0.492 that the patient belongs to class 1 (normal profile).

The mean of all the probabilities can be calculated for the assigned classes
and summarized in the posterior classification table as provided by the lcmm

command postprob. These are given in Table 2.A.3 for the 4 class solution
and in Table 2.A.4 for the 5 class solution.

Mean posterior probability in each class

N (%) Normal class High class Low class Rising class

Normal class 523 (83.81) 0.9625 0.0104 0.0150 0.0121
High class 32 (5.13) 0.0590 0.9405 0.0000 0.0004
Low class 40 (6.41) 0.1282 0.0000 0.8709 0.0009
Rising class 29 (4.65) 0.1176 0.0079 0.0001 0.8744

Table 2.A.3: Posterior classification table for 4 class solution.

Mean posterior probability in each class

N (%) Normal class High class Low class Rising class Intermediate class

Normal class 483 (77.40) 0.9297 0.0010 0.0149 0.0106 0.0436
High class 20 (3.21) 0.0004 0.9071 0.0000 0.0000 0.0924
Low class 41 (6.57) 0.1097 0.0000 0.8831 0.0008 0.0064
Rising class 28 (4.49) 0.1191 0.0122 0.0001 0.8647 0.0039
Intermediate class 52 (8.33) 0.1295 0.0331 0.0110 0.0111 0.8154

Table 2.A.4: Posterior classification table for 5 class solution.

A LCMM has perfect discriminative ability if all the terms on the diagonal
of the posterior classification table are 1. From the posterior classification
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Tables 2.A.3 and 2.A.4 it can be concluded that both models show good dis-
criminative ability, given that all the diagonal terms are > 0.8. The 4 class
model however, shows slightly better discriminative ability, the minimum of
the diagonal terms is 0.87 for the 4 class model versus 0.82 for the 5 class
model, the mean is 0.91 versus 0.88 respectively. This, combined with the
modest ∆BIC value and a lack of clinical relevance, has led to the choice for
the 4 class LCMM.
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Abstract
This paper describes and compares the performance of several popular non-
parametric statistical modeling approaches to dynamically classify subjects
into two groups, based on an irregularly and sparsely sampled curve. We
simulated data and compared the discriminative ability over time for growth
charts, conditional growth charts, a tensor product smooth, longitudinal dis-
criminant analysis and a generalized functional linear model. The approaches
were subsequently applied to a real world clinical example. Our results show
that functional regression approaches that implicitly incorporate historic in-
formation through random effects, provide better discriminative ability than
approaches that do not take historic information into account or explicitly
model historic information through auto-regression terms. The functional re-
gression and tensor product smooth approaches were subsequently applied to
a real-world clinical dataset to demonstrate the performance.
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3.1 Introduction

Longitudinal data occurs frequently in clinical settings where patients are
monitored over time. Combining longitudinal data with a time to event out-
come has gained popularity in recent years due to an ongoing increase in
the research of joint modeling techniques[1, 2]. Remarkably, modeling ap-
proaches that combine longitudinal data with a binary outcome are less popu-
lar, despite the fact that binary outcomes are frequently encountered in clinical
settings when the exact timing of an event cannot be determined or is not clin-
ically relevant. Examples include, diagnosing prostate cancer based on serial
prostate-specific antigen measurements, achievement of successful pregnancy
based on longitudinal measurements of adhesiveness of certain blood lympho-
cytes, and predicting the presence of gestational trophoblastic disease based
on repeated measurements of human chorionic gonadotropin [3–5]. In liter-
ature, prediction and classification based on longitudinal data is also referred
to as longitudinal discriminant analysis or longitudinal classification. Com-
pared to various studies that examine the performance of dynamic prediction
of joint models with a time to event outcome, research on the performance
of different approaches to dynamic classification of longitudinal data is lack-
ing [6–9]. The aim of this study is to compare several recent non-parametric
approaches to longitudinal classification. Non-parametric approaches allow
for flexible modeling of non-linear profiles and can easily be fit through the
use of available software. We assess the potential gain in dynamic classifi-
cation performance between approaches that incorporate historic information
implicitly and explicitly, and more simple approaches do not take the history
into account. With this study we provide guidance to researchers developing
longitudinal classification models for sparse and irregular data. Results are
based on simulated data and illustrated by real-world example.

This study is motivated by a real-world clinical example where a cardiac
biomarker is measured sparsely (2 to 5 times) and irregularly in the first 24
hours after coronary artery bypass grafting (CABG) surgery to determine the
presence of a complication in the form of a perioperative myocardial infarc-
tion (PMI). Early detection of a PMI enables clinicians to intervene and limit
injury [10]. Developing a model that can dynamically classify patients as PMI
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or non-PMI, based on accruing information from biomarker measurements,
can assist clinicians in early detection of a PMI.

Longitudinal data introduces an extra challenge compared to cross-sectional
data, in the sense that a suitable model for the longitudinal profile has to be
selected. The approaches most commonly described in literature, fit a linear
mixed effects (LME) model to the longitudinal profile and use the output of
the LME model in a discriminant function [3, 11–14]. Extensions to mul-
tiple longitudinal profiles which utilize multivariate LME models have also
been been developed [15–17], as well as non-parametric approaches in the
form of functional discriminant analysis [18, 19]. As an alternative to using a
discriminant function to classify individuals into groups, summary measures
obtained from a LME model (e.g. subject-specific slopes or intercepts) are
also utilized as covariates in a logistic regression model, either by a two-stage
approach [20, 21] or a joint modeling approach where parameters of the mixed
model and logistic regression model are estimated simultaneously [4, 5, 22,
23]. Some authors have also used non-parametric or non-linear mixed effects
models to model the longitudinal trajectory in a two-stage approach [24–27].
Alternatively, one can apply a more simplified approach and ignore the his-
toric information, i.e. the multilevel structure and serial correlation of the
longitudinal data. One way to achieve this, is by using a varying-coefficient
model. This implies the use of a (logistic) regression model where the inter-
action of the biomarker with time is used as covariate [28, 29]. Finally, refer-
ence growth charts obtained from quantile regression models, are widely used
in the clinic as an easy-to-follow tool for differentiating abnormal growth of
infants from the population norm[30]. While standard reference growth charts
are not developed with screening purposes in mind (due to their inability to
account for covariates or past history), conditional growth charts can account
for growth history, and are thus recommended as a diagnostic tool to screen
for unusual growth [31, 32].

This study is organized as follows. First, we describe the different modeling
approaches that are compared. Secondly, we describe the method to simulate
data from a mechanistic model and we present the results of the different mod-
eling approaches applied to the simulations. Finally, we apply the approaches
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to the motivating example as an illustration and show the potential clinical
benefit. The study is concluded with a discussion.

3.2 Methods
We consider the situation where, for each patient, a single biomarker is mea-
sured sparsely (for some patients down to one or two measurements) and irreg-
ularly. The outcome is binary, indicating whether the patient was diagnosed
with a complication. The predicted probability of a patient experiencing the
outcome should be updated each time a new measurement becomes available,
this probability is then used to classify patients as positive or negative. Let
Yi be the binary outcome of experiencing a perioperative myocardial infarc-
tion (PMI) for the i-th patient, ti j be the time of the j-th occasion the i-th
patient was measured, and u(ti j) be the measured biomarker value at ti j where
ti j ∈ T , a bounded interval in R. We model the longitudinal profile of u(ti j)
as follows:

u(ti j) = f (ti j)+ εi j, (3.2.1)

where f (ti j) is a smooth function of the time ti j and εi j is random noise. As
stated previously, we assume u(ti j) is measured on an irregular and sparse grid.
In all approaches we use the generalized additive model (GAM) framework
to fit the longitudinal profile u(ti j) [29, 33]. To estimate the smooth function
f (ti j) we choose P-splines with a sufficiently large basis dimension [34]. We
can therefore express u(ti j) as a set of basis functions:

u(ti j) = β0 +
K

∑
k=1

βkbk(ti j)+ εi j, (3.2.2)

where bk are a set of K basis functions, β0 is a parametric intercept term and βk
the associated spline coefficients. The coefficients are estimated by maximiz-
ing the penalized log likelihood: lp(β ) = l(β )−λJβ , where Jβ is a penalty
function based on the second-order difference of the coefficients of adjacent
splines and λ a smoothing parameter that has to be chosen (for more details
see Eilers and Marx) [34]. The solution to maximizing the penalized log-
likelihood is obtained by penalized iteratively reweighted least squares and
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λ is chosen by minimizing the generalized cross validation score, see Wood
[29]. Note that we have not yet taken dependence among observations from
the same patient into account, this is deferred to the different approaches.
We use the representation in Eq. (3.2.2) for the longitudinal profile and com-
pare the following approaches to classify a new patient with at least one or
more measurements: a fixed cut-off, a static growth chart (SGC), a conditional
growth chart (CGC), a tensor product smooth (TPS), longitudinal discriminant
analysis (LDA) and a generalized functional linear model (GFLM). The fixed
cuf-off, SGC and TPS do not take the history into account, while the CGC,
LDA and GFLM can be considered historic approaches that incorporate past
measurements.

3.2.1 Raw value

Arguably the most straightforward approach is to use the raw value u(ti j) itself
as an early stopping rule. If a patient rises above a certain threshold then the
patient is considered positive for the outcome Yi. This is the current clinical
practice and serves as a reference to compare to the modeling approaches in
this study. This approach does not take the time dependent nature of u(ti j)
into account.

3.2.2 Static growth charts

Static growth charts (SGCs) can be estimated through quantile regression
(QR). QR aims at fitting the τ-th conditional quantile (τ ∈ [0,1]) of u for a
given ti j:

Qu|τ(ti j) = ti jβτ + εi j,τ , (3.2.3)

where βτ is the coefficient belonging to the τ-th quantile and εi j,τ random
noise belonging to the τ-th quantile. In Eq. (3.2.3) the assumption is made
that the τ-th quantile depends linearly on the covariate ti j. Fasiolo et al.
have developed a novel framework that combines QR with GAMs, resulting
in a smooth additive quantile regression model (QGAM) [35]. The advan-
tage of this framework is that, aside from incorporating smooth functions,
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all smoothing and hyperparameters are estimated automatically. Using the
QGAM framework, the conditional quantile τ of u is given by:

Qu|τ(ti j) = fτ(ti j)+ εi j,τ , (3.2.4)

where fτ(ti j) is smoothing function represented by a P-spline and εi j,τ the
residual error term. Parameter estimates are obtained by minimizing:

Qu|τ(ti j) =
n

∑
i=1

m

∑
j=1

ρτ(u(ti j)− fτ(ti j)),

ρτ(z) = (τ −1)
z
σ
+λ log(1+ e

z
λσ ),

(3.2.5)

ρτ(z) is the so called extended log-f loss, σ a scale parameter and λ a penalty
factor that determines the smoothness of the loss. By using the fast calibrated
Bayesian methods proposed by Fasiolo et al., QGAMs can be fitted with this
loss function. Since Qu|τ(ti j) represents the value of the τ-th quantile of u(ti j),
we fit Eq. (3.2.5) for a vector of quantiles τ = (0.01,0.02, ...,0.99) to each
training set containing only patients hat did not experience the outcome (i.e.
controls). This way we obtain a reference growth chart for a suitable grid of
quantiles for control patients. Subsequently we transform all measurements in
the test sets to their estimated quantile, i.e. all measurement pairs (u(ti j), ti j)
are transformed to τi j by using the grid of quantiles. We then use the τi j to
classify a patient as positive or negative for a PMI, if τi j is above a chosen
cutoff the patient is classified as positive.

3.2.3 Conditional growth charts

In this study we implement the conditional growth chart (CGC) as described
by Wei et al. in the QGAM framework [32]. We expand Eq. (3.2.4) as fol-
lows:

Qcond,u|τ(ti j) = fτ(ti j)+
p

∑
k=1

(αk,τ +θk,τDi, j,k)ti, j−k + εi j,τ , (3.2.6)
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where Di, j,k = ti, j − ti, j−k, the time between the j-th and ( j− k)-th measure-
ment, and αk,τ and θk,τ are parametric auto-regressive (AR) coefficients. We
choose p = 1, i.e. an AR(1) model. Analogous to the SGC approach, all
measurements in the test dataset are assigned to their respective conditional
quantiles, τcond,i j, and used to classify patients as positive or negative.

3.2.4 Tensor product smooth

An alternative to the growth chart approach that directly models the probabil-
ity of the outcome Yi, rather than estimating quantiles of a healthy population,
is the tensor product smooth (TPS) approach. In the case of a TPS model
we directly predict the probability of having a PMI, P(Yi = 1|u(ti j), ti j), for
a measurement pair (u(ti j), ti j). Essentially, this a logistic regression with an
interaction between time and the measured value as covariate, also called a
varying-coefficient model. For this we use a GAM with a logistic link func-
tion and a tensor product smooth interaction (as u(ti j) and ti j are on different
scales):

logit{Yi = 1|u(ti j), ti j}= f (u(ti j), ti j)

=
K

∑
k=1

L

∑
l=1

βklbl(u(ti j))ak(ti j),
(3.2.7)

where ak and bl are sets of P-spline basis functions for ti j and u(ti j), respec-
tively. The predicted probability P(Yi = 1|u(ti j), ti j) is used to classify pa-
tients as positive or negative for a PMI. This is analogous to the growth chart
approach, except the TPS approach produces a probability instead of a quan-
tile.

3.2.5 Longitudinal discriminant analysis

The longitudinal discriminant analysis (LDA) approach consists of two steps.
In the first step the inherently infinite-dimensional curves are projected onto a
low dimensional space and in the second step the low dimensional represen-
tation is used to perform discriminant analysis. In this study we implement

54



3

both a covariance pattern longitudinal discriminant analysis (COV-LDA) as
described by Roy et al. [36] and a functional longitudinal discriminant analy-
sis (F-LDA) as described by James and Hastie [18].

Covariance pattern LDA

The COV-LDA model consists of a linear additive model with a parametric
intercept term, a factor smooth interaction term and a covariance pattern (i.e.
correlation structure) to model dependence among observations within a sin-
gle patient. The factor smooth interaction term allows for separate smooths
for both PMI and non-PMI patients:

u(ti j) = β0 + ziβ1 + fzi(ti j)+ εi j

= β0 + ziβ1 +
K

∑
k=2

βzi,kbzi,k(ti j)+ εi j,

ε i =


εi1
εi2
...

εim

∼ N (0,σ2
Λi)

zi =

{
0, if patient i was not diagnosed with a PMI,
1, if patient i was diagnosed with a PMI,

(3.2.8)

where β0 and β1 are class-specific parametric intercepts for non-PMI and
PMI patients respectively, bzi,k are sets of P-spline basis functions with di-
mension K for non-PMI and PMI patients respectively and Λi is a covariance
matrix. Λi can be decomposed, Λi = ViCiVi, where Vi is diagonal and Ci a
correlation matrix. Since observations are irregularly sampled, we choose a
continuous-time AR(1) correlation structure for Ci to model the dependence
between measurements from the same subject [37].
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Functional LDA

The alternative F-LDA approach does not assume a correlation structure for
the residual error but utilizes random effects to capture the variability between
patients. In the F-LDA approach we model the profile u(ti j) as follows:

u(ti j) = β0 + ziβ1 + fzi(ti j)+Ui(ti j)+ εi j

= β0 + ziβ1 +
K

∑
k=2

βzi,kbzi,k(ti j)+Ui(ti j)+ εi j,

Ui(ti j)∼ N (0,Σ(ti j, t ′i j)),εi j ∼ N (0,σ2),

zi =

{
0, if patient i was not diagnosed with a PMI,
1, if patient i was diagnosed with a PMI,

(3.2.9)

where β0, β1 and bzi,k are analogous to Eq. (3.2.8) and Ui(ti j) are
(functional) random effects representing the subject specific deviation
from the overall mean function, modeled as a zero-mean Gaussian
process with variance-covariance function Σ(ti j, t ′i j). More specifically,
Σ(ti j, t ′i j) = cov(Ui(ti j),Ui(t ′i j)). Since we are dealing with irregular and
sparse data, the estimation of the covariance function is not as straightforward
as with a suitably dense grid. Therefore we use the fast covariance estimation
for sparse functional data (FACEs) approach by Xiao et al. [38] In this
approach the covariance function Σ(ti j, t ′i j) is modeled by penalized tensor
product splines Σ(ti j, t ′i j) = b(ti j)

⊺Θb(t ′i j), where b is a spline basis and Θ

a symmetric coefficient matrix. The covariance function and error variance
are jointly estimated in a two-step procedure and smoothing parameters are
selected using leave-one-subject out. For more details see Xiao et al. [38]

After fitting Eq. (3.2.8) and Eq. (3.2.9) to the training set, we can obtain es-
timates for a new subject given a set measurement times ti j. By plugging ti j

in either Eq. (3.2.8) or Eq. (3.2.9) we obtain estimates for the mean if the
patient would belong to the PMI group, û(ti j,zi = 1), or the non-PMI group
û(ti j,zi = 0) and a covariance matrix (either by imposing a correlation struc-
ture in Eq. (3.2.8) or by modeling the covariance matrix with a spline basis
in Eq. (3.2.9)). Given the observed set of measurements u(ti j) for the new
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subject, we can then calculate the value of the probability density function in
the case the patient belongs to the PMI or to the non-PMI group. These values
can then be utilized in a Bayes discriminant rule to obtain the probability of a
PMI:

P(Yi = 1|u(ti j), ti j) =
πPMI fPMI(u(ti j))

πno-PMI fno-PMI(u(ti j))+πPMI fPMI(u(ti j))
(3.2.10)

where πPMI is the prior probability of having a PMI and πno-PMI = 1−πPMI,
fPMI is the conditional density function if the patient had a PMI and fno-PMI is
the conditional density function if the patient did not have a PMI. The prior
probabilities πPMI and πno-PMI are equal to the fraction of non-PMI and PMI
patients in the training dataset, respectively. The probability P(Yi = 1|u(ti j)) is
then used to classify patients as positive or negative, analogous to the previous
approaches.

3.2.6 Generalized functional linear model

The generalized functional linear model (GFLM) is described by Müller et
al. for observations observed on dense grids of points [24]. The main idea is
to reduce the dimension of the longitudinal data by an orthogonal expansion
of the random effects and use the first few components of the expansion as
covariates in a generalized linear model. This procedure can also be applied to
our study, with some modification as observations are irregularly and sparsely
observed. We model u(ti j) as follows:

u(ti j) = f (ti j)+Ui(ti j)+ εi j

= β0 +
K

∑
k=1

βkbk(ti j)+Ui(ti j)+ εi j

Ui(ti j)∼ N (0,Σ(ti j, t ′i j)),εi j ∼ N (0,σ2),

(3.2.11)

analogous to Eq. (3.2.9), except there is no factor smooth interaction for PMI
and non-PMI patients and only an overall mean. All variability is captured
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by the random effects. Analogous to Eq. (3.2.9) we estimate the smoothed
covariance matrix Σ(ti j, t ′i j) with the FACEs procedure by Xiao et al. [38]
The covariance function Σ(ti j, t ′i j) can be decomposed into functional princi-
pal components: Σ(ti j, t ′i j) = ∑

∞
l=1 λlφl(ti j)φl(t ′i j), where λl and φl(ti j) are the

respective eigenvalues and eigenfunctions. We choose a number of eigen-
functions L that explain 95% of total variance. By the Karhunen-Loève the-
orem we can project Ui(ti j) onto the L-dimensional basis, and Eq. (3.2.11)
becomes:

u(ti j) = β0 +
K

∑
k=1

βkbk(ti j)+
L

∑
l=1

ξi,lφl(ti j)+ εi j,

ξi,l ∼ N (0,λl),εi j ∼ N (0,σ2).

(3.2.12)

Since data are sparse and irregular, the scores ξi,l are estimated by the principal
components analysis through conditional expectation approach described by
Yao et al. [39] After estimating all scores for the subjects in the training
dataset, a logistic regression model is fitted with the scores ξi,l as covariates
and Yi as outcome. If we want to make a prediction for a new subject, we first
estimate the scores ξi,l by using the conditional expectation and subsequently
plug the scores in the logistic regression model to obtain the probability that
the patient has a PMI:

logit{Yi = 1|ξi,1,ξi,2, . . . ,ξi,L}=
L

∑
l=1

γlξi,l, (3.2.13)

where γl are the coefficients belonging to the L scores. The predicted probabil-
ities are ten used to classify patients as positive or negative for PMI, analogous
to the previous approaches.

3.2.7 Performance evaluation

Since the goal of this study is to perform dynamic longitudinal classifica-
tion, we focus on the performance of the approaches when they are used in
a dynamic fashion. To compare the area under the ROC-curve (AUC) over
time, we first calculate the cumulative maximum value/quantile/probability
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over time, within each patient for each approach. Our motivation for doing
so, is that in clinical practice, if the probability exceeds a certain threshold,
the patient is classified as positive and an intervention will take place. Hence,
the cumulative maximum in the time interval T determines if a patient is
classified as positive or negative. The cumulative maxima are either the raw
values of u(ti j), the predicted quantiles τi j in case of the growth charts and the
predicted probabilities of a PMI P(Yi = 1|u(ti j), ti j) for the other approaches.
Next we take the maximum value for each patient and for each approach on
the time interval T and calculate the AUC of this maximum value. Subse-
quently, the ROC-curves of the maxima are used to determine a threshold for
each approach based on the Youden index. This threshold is then used as an
early stopping rule, we classify a patient as positive if a value/quantile/prob-
ability rises above the threshold and mark the time that this occurs. We then
calculate the sensitivity, specificity and average run length (ARL) of each ap-
proach using the stopping rule. The average run length represents the mean
time until a patient is classified as positive.

3.3 Implementation

All approaches are implemented using R version 4.2.1.[40] The P-spline
smooths are modeled using the s function from mgcv package version 1.8.40.
The static growth chart (SGC) and conditional growth chart (CGC) are
fitted using the qgam package version 1.3.4. The tensor product smooth
(TPS) model is fitted using the using gam and te functions from mgcv. To
fit the covariance pattern longitudinal discriminant analysis (COV-LDA)
model, the gamm function is used together with the corCAR1 function as a
constructor for the correlation matrix, parameters in the COV-LDA model are
estimated using restricted maximum likelihood. To estimate the covariance
function in the functional longitudinal discriminant analysis (F-LDA) and
generalized functional linear model (GFLM) model we use the face.sparse
function from the face package version 0.1.7. The densities of the normal
distributions, required by the Bayes rule, are calculated using the dmvnorm

function in the mvtnorm package version 1.1.3.
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3.4 Simulations

We simulate 100 datasets, each containing N = 500 patients that are measured
on an irregular and sparse grid of measurement times t j. For each dataset we
generate N sequences of measurement times: t j = {0,2,4,6,8,12,16,20,24}
where j is an index and t j the measurement time in hours. We introduce irreg-
ularity by adding random variation to each t j>1 by sampling from a uniform
distribution between -0.25 and 0.25 and randomly removing elements t j>1
with a probability 0.1, sampled from a binomial distribution. The irregular
and sparse sequence t j is then plugged in a bi-exponential model to obtain
simulated biomarker values for a patient i:

ci(t j) = φ1ie−φ3it j +φ2ie−φ4it j + εi j,

φi =


φ1i

φ2i

φ3i

φ4i

=


β1
β2
β3
β4

+


γ1zi

γ2zi

γ3zi

γ4zi

+


b1i

b2i

b3i

b4i

= β + γzi +bi,

zi =

{
0, if patient i was not diagnosed with a PMI,
1, if patient i was diagnosed with a PMI,

bi ∼ N (0,Ψ), εi j ∼ N (0,σ2),

(3.4.1)

φi =


−1.59−0.233zi

2.73+0.19zi

0.457−0.0903zi

0.00928−0.0118zi

 ,

Ψ =


0.1770 −0.0786 −0.0218 0
−0.0786 0.1450 −0.0233 0
−0.0218 −0.0233 0.0357 0

0 0 0 2.36×10−6

 ,

σ
2 = 0.0159

(3.4.2)

where β and γ are the fixed effects, bi the random effects with a covariance
matrix Ψ. Parameter values for β , γ , Ψ and σ2 are given in Eq. (3.4.2) and
were obtained by fitting the model to clinical trial data from patients that un-
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derwent coronary artery bypass grafting (CABG) surgery. The values sim-
ulated by the model, taking only the fixed effects into account, are show in
Fig. 3.4.1. The bi-exponential model represents a pharmacokinetic model re-
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Figure 3.4.1: Simulated values without random effects and residual error (i.e. only fixed ef-
fects) from the bi-exponential model using parameter values given in Eq. (3.4.2).

flecting release of the biomarker after surgery and clearance from the circu-
lation by the kidneys. To simulate data for a new patient i, we draw zi from
a binomial distribution with P = 0.1, we plug in the sparse and irregular se-
quence t j in Eq. (3.4.1), add between subject variability by sampling from a
multivariate normal distribution with covariance matrix Ψ and add Gaussian
noise with variance σ2. If, as a result of random sampling, any cit < 0, these
values are set to 0.

3.5 Results

The area under the ROC-curve (AUC) of the cumulative maximum over time
is shown for each approach in Table 3.5.1, with t representing the time. The
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discriminative ability increases for all approaches as time progresses. Except
for the conditional growth chart (CGC) approach, the performance is compa-
rable up to t = 6, thereafter the functional longitudinal discriminant analysis
(F-LDA) and generalized functional linear model (GFLM) approaches show
a clear benefit in terms of AUC. All modeling approaches eventually outper-
form the raw value. The AUC for each approach, when taking the maximum

t Raw value SGC CGC TPS COV-LDA F-LDA GFLM

2 0.514 (0.007) 0.514 (0.007) 0.534 (0.007) 0.529 (0.006) 0.528 (0.007) 0.513 (0.008) 0.529 (0.006)
4 0.593 (0.007) 0.567 (0.007) 0.582 (0.007) 0.592 (0.007) 0.586 (0.006) 0.586 (0.009) 0.583 (0.007)
6 0.650 (0.006) 0.616 (0.007) 0.645 (0.006) 0.656 (0.007) 0.635 (0.008) 0.659 (0.008) 0.669 (0.007)
8 0.694 (0.006) 0.664 (0.007) 0.695 (0.006) 0.698 (0.006) 0.676 (0.007) 0.721 (0.008) 0.742 (0.007)

12 0.754 (0.006) 0.735 (0.007) 0.763 (0.006) 0.764 (0.006) 0.736 (0.008) 0.800 (0.008) 0.833 (0.006)
16 0.792 (0.005) 0.794 (0.006) 0.801 (0.005) 0.811 (0.005) 0.783 (0.007) 0.854 (0.006) 0.881 (0.005)
20 0.817 (0.005) 0.839 (0.004) 0.830 (0.004) 0.846 (0.005) 0.818 (0.007) 0.897 (0.005) 0.910 (0.005)
24 0.835 (0.005) 0.874 (0.004) 0.859 (0.004) 0.875 (0.005) 0.847 (0.006) 0.926 (0.004) 0.927 (0.005)

Table 3.5.1: Dynamic classification performance as expressed in area under the ROC-curve
(AUC) for each approach at each time t with the standard error in round brackets. Each ap-
proach can use all available information up until t to make a prediction for the binary outcome.
Static growth chart (SGC); conditional growth chart (CGC); tensor product smooth (TPS);
covariance pattern longitudinal discriminant analysis (COV-LDA); functional longitudinal dis-
criminant analysis (F-LDA); generalized functional linear model (GFLM).

value for each patient over the time interval T , is given in Table 3.5.2. Again,
all classification approaches perform better than using the raw value. The F-
LDA and GFLM are clearly superior in terms of discriminative ability. In

AUC

Raw valuemax 0.834 (0.005)
SGCmax 0.871 (0.004)
CGCmax 0.856 (0.004)
TPSmax 0.872 (0.005)

COV-LDAmax 0.844 (0.006)
F-LDAmax 0.923 (0.004)
GFLMmax 0.925 (0.004)

Table 3.5.2: The AUC of the maximum value in the time interval T for each approach. Static
growth chart (SGC); conditional growth chart (CGC); tensor product smooth (TPS); covariance
pattern longitudinal discriminant analysis (COV-LDA); functional longitudinal discriminant
analysis (F-LDA); generalized functional linear model (GFLM).

Table 3.5.3 the sensitivity, specificity and average run length (ARL) of each
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approach are given when using a threshold based on the Youden index. The
F-LDA and GFLM approaches show the best results in therms of combining a
high sensitivity, specificity, but at the expense of a somewhat longer ARL.

Sensitivity Specificity ARL

Raw value 0.834 (0.010) 0.749 (0.012) 10.768 (0.156)
SGC 0.865 (0.008) 0.794 (0.010) 13.320 (0.244)
CGC 0.832 (0.009) 0.778 (0.009) 12.710 (0.208)
TPS 0.900 (0.008) 0.779 (0.010) 13.954 (0.278)
COV-LDA 0.914 (0.007) 0.720 (0.011) 13.522 (0.276)
F-LDA 0.935 (0.004) 0.844 (0.008) 14.737 (0.210)
GFLM 0.923 (0.007) 0.859 (0.009) 14.466 (0.213)

Table 3.5.3: Sensitivity, specificity and average run length (ARL) for each approach. A thresh-
old based on the Youden index was used as a stopping rule. I.e. if for a patient the predicted
value of an approach rises above this threshold, the patient is classified as positive. The mean
time until a positive classification is represented by the ARL. Static growth chart (SGC); condi-
tional growth chart (CGC); tensor product smooth (TPS); covariance pattern longitudinal dis-
criminant analysis (COV-LDA); functional longitudinal discriminant analysis (F-LDA); gener-
alized functional linear model (GFLM).

3.6 Illustrative analysis on PMI after CABG surgery

As outlined in the introduction, this study is motivated by the need to detect
patients experiencing a perioperative myocardial infarction (PMI) after having
undergone coronary artery bypass grafting (CABG) surgery, based on serial
measurements of a cardiac biomarker. After surgery, cardiac biomarkers are
repeatedly sampled in patients to detect a possible PMI. A PMI is defined as a
procedural myocardial infarction whose pathogenesis is multifactorial and can
be either graft related or non-graft related [41, 42]. Examples of graft-related
PMI include graft failure due to occlusion, kinking or overstretching. Non-
graft related PMI can result from procedural difficulties like trauma from sur-
gical manipulation or inadequate myocardial protection. The post-operative
rise of cardiac biomarkers, in particular cardiac troponin (cTn), can reflect
myocardial damage originating from either (early) graft failure or non-graft
related causes. In the former case, minimizing the time to a re-intervention
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is crucial to save viable myocardium. Yet, all patients experience some un-
avoidable rise in cardiac biomarkers, simply as a result of the procedure itself.
For this study, a dataset of 639 patients who underwent CABG surgery in the
Catharina Hospital in Eindhoven, the Netherlands, is available. For more de-
tails regarding the study see [43]. For each patient, cTnT was sampled up to
24 hours after surgery and the outcome (PMI yes/no) was recorded. Sampling
of cTnT was irregular and more frequent in the first 6 hours after surgery, see
Fig. 3.6.1B. Patients with a PMI generally show a sustained release of cTnT
from damaged myocardium, instead of a rising-and-falling trend in the first
24 hours after surgery [43–45], see Fig. 3.6.1A. The tensor product smooth

0

1

2

3

4

0 5 10 15 20
Hours after unclamping

lo
g 1

0 
cT

nT
 (

ng
/L

)

PMI

No

Yes

A

0

50

100

150

0 5 10 15 20
Number of samples

co
un

t

B

Figure 3.6.1: Overview of studydata.
A: Spaghetti plot of time after aortic unclamping against the log10 transformed value of the
measured cardiac troponin (cTn)T concentration in ng/L. A total of 2892 cTnT values were
measured for 639 patients undergoing CABG surgery. Profiles of patients diagnosed with a
PMI (N = 22) are shown in dark gray, patients without PMI in light gray.
B: Histogram of sampling times (excluding t = 0). cTnT was measured at t = 0 (before surgery)
and at irregular times after surgery, centering around 1.5, 2, 6, 12 and 24 h after aortic unclamp-
ing.

(TPS) and generalized functional linear model (GFLM) approaches were fit-
ted to the study dataset, since these approaches showed the best performance
for non-historic and historic approaches, respectively. The fitted approaches
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are visualized in Fig. 3.6.2. As the data is too irregularly sampled to calcu-
late the area under the ROC-curve (AUC) as frequent as in the simulated data,
the AUC was calculated at t = 6,12 and 24 h after surgery, again using the
cumulative maximum as described previously. Table 3.6.1 shows the AUC
of the different approaches, using all measurements up to t = 6,12 and 24
h respectively. The AUC of the maximum value of each approach is given
in Table 3.6.2. The TPS approach performs best overall. To determine if
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Figure 3.6.2: Predictions from the tensor product smooth (TPS) and generalized functional
linear model (GFLM) approaches.
A: Contour plot with contour lines in red, reflecting the predicted probability of a PMI by
the TPS approach. Note that the predictions are on the linear predictor scale which can be
converted to a probability by applying the logit function. E.g. the ”0” contour line, represents
the line with a probability of a PMI of 0.5.
B: This plot shows the three eigenfunctions that explain 95 % of the variance, extracted by the
FACEs approach of the GFLM. The first eigenfunction φ1 is negatively associated with the
outcome of a PMI, whereas the second eigenfunction φ2 is positively associated with a PMI.
By obtaining conditional expectations for a new subject, based on these eigenfunctions, the
probability of a PMI can be obtained.

there is a clinical benefit to using a model based approach instead of the raw
biomarker value as a cutoff to initiate further diagnosis for a PMI, we com-
pared the model based approaches to the current clinical guideline in terms of
sensitivity, specificity, and average run length (ARL). Since the clinical guide-
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cTnT TPS GFLM

t ≤ 6 0.584 (0.463 - 0.584) 0.517 (0.382 - 0.517) 0.539 (0.416 - 0.539)
t ≤ 12 0.731 (0.604 - 0.731) 0.743 (0.614 - 0.743) 0.735 (0.599 - 0.735)
t ≤ 24 0.907 (0.83 - 0.907) 0.931 (0.872 - 0.931) 0.893 (0.793 - 0.893)

Table 3.6.1: The area under the ROC-curve (AUC) and the 95% confidence interval for each
approach applied to the study dataset using informtion up to time t. Cardiac troponin (cTn);
tensor product smooth (TPS); generalized functional linear model (GFLM).

AUC

cTnTmax 0.907 (0.83 - 0.907)
TPSmax 0.931 (0.87 - 0.931)

GFLMmax 0.893 (0.793 - 0.893)

Table 3.6.2: The area under the ROC-curve (AUC) for each approach applied to the study
dataset using information up to time t. Cardiac troponin (cTn); tensor product smooth (TPS);
generalized functional linear model (GFLM).

line recommends a threshold of 140 ng/L for cTnT [42], in the study dataset
this results in a sensitivity of 0.955 and a specificity of 0.188. By using ROC
curve analysis we calculated a threshold for each approach that corresponded
to a 0.955 sensitivity. Subsequently the performance in terms of specificity,
true positives, false positives, true negative, false negatives and average run
length (ARL) were compared, see Table 3.6.3. We conclude that the model-
ing based approaches can provide a similar sensitivity as the guideline, whilst
offering a higher specificity, at the expense of a longer time until detection.

Sensitivity Specificity TP FP TN FN ARL

cTnT Guideline 0.955 0.188 21 501 116 1 5.40
TPS 0.955 0.786 21 132 485 1 11.19
GFLM 0.955 0.438 21 347 270 1 8.10

Table 3.6.3: Performance of different modeling approaches when defining a threshold with a
sensitivity of 0.955, this sensitivity is similar to the clinical guideline of 140 ng/L for cTnT.
True positives (TP); false positives (FP); true negatives (TN); average run length (ARL);
cardiac troponin (cTn); tensor product smooth (TPS); generalized functional linear model
(GFLM).
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3.7 Discussion

In this study we described and compared several popular non-parametric
modeling approaches that combine irregularly and sparsely sampled
measurements with a binary outcome. Our results show that functional
regression models that implicitly incorporate historic information through
estimation of a covariance function, outperform models that do not
incorporate historic information. The generalized functional linear model
(GFLM) performed best of the approaches that incorporate historic
information, while the tensor product smooth (TPS) approach performed best
of the approaches that do not incorporate historic information.

It would appear that growth charts seem to be less suitable to (dynamic) clas-
sification of irregularly and sparsely sampled curves. In part, this is due to the
fact that growth charts are not developed with classification in mind [32]. The
conditional growth chart (CGC) approach, which explicitly incorporates his-
torical information, seems to offer a benefit in early detection of cases but not
for later time points (see Table 3.5.1). In this study, the CGC model as defined
in Eq. (3.2.6) is referred to as a ”global model” by Wei et al. [32]. This model
is restrictive, in the sense that it assumes that auto-regressive (AR) coefficients
are linear functions of measurement time distances. Wei et al. describe several
generalizations of the global model, for example allowing the AR coefficients
to be functions of measurement time distances. These generalizations could
improve CGC model performance. However, both methods are out-preformed
by the TPS approach, which can theoretically also be expanded with AR co-
efficients.

The functional regression approaches (functional longitudinal discriminant
analysis (F-LDA) and GFLM) performed best on the simulated data. Al-
though the F-LDA and GFLM approaches perform quite similar in this study,
this may not always be the case. In a study by Hughes et al. that compared
three different approaches to calculating a patient’s posterior group member-
ship based on random effects [46]. They conclude that the marginal approach
(comparable to our F-LDA approach) works best when the mean profile is
noticeably different between groups. In the case that the difference between
groups is characterized by the variability about the mean profile the GFLM
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approach may be a better choice. The GFLM approach uses the principal
component (PC) scores as covariates in a logistic regression model. However,
using PC scores as predictors is not without its downsides. With PC scores
there is no guarantee that groups are separated best in the direction of the PC
scores with the highest variance [47]. In this study we choose the PC scores
based on the percentage variance explained, but an alternative approach could
be to apply a variable selection technique to choose PC scores based on their
ability to separate groups.

The GFLM approach did not outperform the TPS approach in the illustrative
example. This, however, does not invalidate the conclusions from the sim-
ulations for two main reasons. First, the data from the illustrative example
was more sparse than the simulated data. Therefore, approaches that rely on
historic information are affected more in terms of predictive performance. We
expect that with more frequent sampling, the GFLM approach is capable of
outperforming the TPS approach. In case the data are very sparse or it is evi-
dent from theory that past values do not provide any prognostic information,
the recommended alternative is a TPS approach. Second, as this is only an
illustrative example and there are only a small number of cases (22), the data
was not split in a train and test set to objectively evaluate performance.

Future research could be to examine the effect of the degree of sparsity on the
performance of functional approaches that incorporate historic information,
versus non-functional approaches that do not incorporate historic information.
This, to determine the robustness against increasing levels of sparsity that are
common in a clinical setting.
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Abstract

Objectives Identifying patients with a possible severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) infection in the emergency depart-
ment (ED) is challenging. Symptoms differ, incidence rates vary and
test capacity may be limited. As polymerase chain reaction (PCR) test-
ing all ED patients is neither feasible nor effective in most centers, a
rapid, objective, low-cost early warning score to triage ED patients for
a possible infection is developed.

Design Case-control study

Setting Secondary and tertiary hospitals in the Netherlands.

Participants Patients presenting at the ED with venous blood sampling from
July 2019 to July 2020 (N = 10.417, 279 SARS-CoV-2 positive). The
temporal validation cohort covered the period from July 2020 to Oc-
tober 2021 (N = 14.080, 1093 SARS-CoV-2 positive). The external
validation cohort consisted of patients presenting at the ED of three
hospitals in the Netherlands (N = 12.061, 652 SARS-CoV-2 positive).

Primary outcome measures The primary outcome was one or more posi-
tive SARS-CoV-2 PCR-test results, within one day prior to, or one week
after, ED presentation.

Results The resulting “CoLab-score” consists of 10 routine laboratory mea-
surements, and age. The score showed good discriminative ability (area
under the ROC-curve (AUC): 0.930, 95% CI: 0.909 to 0.945). The
lowest CoLab-score had a high sensitivity for coronavirus disease 2019
(COVID-19) (0.984, 95% CI: 0.970 to 0.991, specificity: 0.411, 95%
CI: 0.285 to 0.520). Conversely, the highest score had high specificity
(0.978, 95% CI: 0.973 to 0.983, sensitivity: 0.608, 95% CI: 0.522 to
0.685). Results were confirmed in temporal and external validation.

Conclusions The CoLab-score is based on routine laboratory measurements
and is available within one hour after presentation. Depending on the
prevalence, COVID-19 may be safely ruled-out in over one third of
ED presentations. Highly suspect cases can be identified regardless of
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presenting symptoms. The CoLab-score is continuous, in contrast to
the binary outcome of lateral flow testing, and can guide PCR testing
and triage ED patients.
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4.1 Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), has evolved into a global pandemic
in 2020 [1]. For emergency department (ED) physicians, identifying present-
ing patients with a possible COVID-19 infection remains challenging since
symptoms like fever, shortness of breath or coughing overlap with other ill-
nesses [2, 3] . It is crucial however, to identify a possible COVID-19 in-
fection as early as possible. Early identification prevents further spreading
and protects hospital staff by isolating a suspected patient, pending the results
of a SARS-CoV-2 RNA polymerase chain reaction (PCR) test and/or chest
CT. Conversely, when PCR testing or isolation treatment capacity is limited,
ruling-out COVID-19 as soon as possible can save valuable resources. In the
era of electronic health records and clinical prediction models, developing an
early warning score that can assist ED physicians in identifying patients pre-
senting at the ED with COVID-19 is of great value. Moreover, if only routine
ED test results are required as input, the score can be easily adopted by EDs
worldwide, potentially reduce diagnostic costs and accelerate patient triage.
Many COVID-19 prediction models have already been developed, the living
systematic review by Wynants et. al [4] provides an extensive overview and
critical appraisal. Unfortunately, only few models have found their way into
routine care at the ED [5, 6]. Early models were based on relatively small
sample sizes, hampered by selection bias or were over-fitted by selecting too
many features [4–6]. Aside from methodological shortcomings of early mod-
els, most models are not developed as an early warning score for all ED pa-
tients. Firstly, they require features from tests that are not routinely performed
or logged for all ED patients (e.g. the COVID-19 Reporting and Data Sys-
tem (CO-RADS) score from a CT-scan [7] or non-lab based clinical variables
in the Pandemic Respiratory Infection Emergency System Triage (PRIEST)
early warning score [8], and are therefore not straightforward to implement
or scale to a large ED patient population. Secondly, the population on which
models are commonly based, are PCR-tested patients, i.e. a pre-selection of a
possible COVID-19 infection has already been done by physicians. Only two
studies were identified that focus on patients presenting at the ED, include un-
suspected (and pre-pandemic) patients as controls, and rely solely on routine
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(laboratory) tests [9, 10]. In this study we report the development and vali-
dation of an early warning score that, based on routine ED laboratory tests,
estimates the risk of a possible COVID-19 infection in patients who undergo
routine laboratory testing at presentation. The score can assist ED physicians
in triaging patients and prevent further transmission of COVID-19 by quickly
identifying possibly infected patients or ruling out a possible infection when
resources are scarce.

4.2 Methods

4.2.1 Study design

This is a retrospective case-control study where routine laboratory test results,
combined with age and gender, from all patient presenting at the emergency
department (ED) of the Catharina Hospital Eindhoven from July 2019 to July
2020 were combined with severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) polymerase chain reaction (PCR) test results in a development
dataset. A model that could predict the presence of a coronavirus disease
2019 (COVID-19) infection was fit to this dataset. Performance of the model
was assessed by i) internal validation, ii) temporal validation and iii) external
validation by using data from the ED of three other centers. The study was
reviewed by the Medical research Ethics Committees United (MEC-U) under
study number W20.071, which confirmed that the Medical Research Involving
Human Subjects Act (In Dutch: WMO) does not apply to this study. The study
was thereafter reviewed and approved by the internal hospital review board.

4.2.2 Patient and Public Involvement

Patients were not involved in the design, conduct or reporting of this study.

4.2.3 Development dataset

All ED presentations at the Catharina Hospital Eindhoven from July 2019 to
July 2020 were included in the development dataset, provided that routine
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laboratory testing had been requested by the attending ED physician. The ra-
tionale for this inclusion period is to limit the effect of seasonal variation in
the ED patient population by including the summer, fall and winter season
of 2019 (control patients) and the winter, spring and summer season of 2020
(case and control patients). The routine laboratory panel at the ED consists
of 28 laboratory tests. In some cases not all tests in the routine panel were
requested or one or more quantitative results were not available due to analyt-
ical interference (hemolysis, lipemia or icterus). The routine ED laboratory
panel is requested for (adult) patients presenting with abdominal pain, chest
pain, shortness of breath, syncope, sepsis or other non-specific complaints, or
for patients (including non-adult patients) presenting with specific complaints
where a suspected diagnosis has to be ruled-in or ruled-out. Presentations
with one or more missing values in any of the 28 laboratory test in the rou-
tine ED panel, were excluded. Presentations with one or more extreme lab
results, >10 times standard deviation from the median, were also excluded to
minimize the effect on the estimation of regression coefficients. The median
was chosen as a measure of central tendency due to its resistance for outliers.
After the first case of COVID-19 in the Netherlands, all patients with symp-
toms of COVID-19 (either fever and/or respiratory symptoms) were subjected
to nasopharyngeal PCR testing for SARS-CoV-2 RNA. PCR testing was per-
formed by commercial tests that were approved by the Dutch national institute
of public health (RIVM). If a patient had a positive PCR result in the past, sub-
sequent presentations were excluded as re-presentations might be clinically
different from de novo presentations. The ED lab panel results were matched
to SARS-CoV-2 PCR results if the underlying nasopharyngeal swab had been
taken ≤ 1 day prior, or ≤ 1 week after initial blood withdrawal at the ED.
If multiple PCR tests were performed in this window, and at least one PCR
test was positive, the presentation was labelled “PCR-positive”. If all PCR
test results in the time window were negative, the presentation was labelled
as “PCR-negative”. If no PCR tests were performed in the time window and
the presentation occurred after the first case of COVID-19 in the Netherlands,
the presentation was labelled as “Untested”. All presentations before the first
case were labelled as “Pre-COVID-19”.

78



4

4.2.4 Laboratory tests

The routine laboratory panel consisted of hemocytometric and chemical
analyses. The hemocytometric tests were performed on Sysmex XN-10
instruments (Sysmex Corp., Kobe, Japan) and consisted of hemoglobin,
hematocrit, erythrocytes, mean corpuscular volume (MCV), mean cellular
hemoglobin (MCH), mean cellular hemoglobin concentration (MCHC),
thrombocytes, leukocytes, neutrophils, eosinophils, basophils, lymphocytes
and monocytes. The chemical analyses were performed on a Cobas 8000
Pro (Roche Dx, Basel, Switzerland) instrument and consisted of glucose,
total bilirubin, aspartate aminotransferase (ASAT), alanine aminotransferase
(ALAT), lactate dehydrogenase (LD), creatine kinase (CK), alkaline
phosphatase (ALP), gamma-glutamyltransferase (gGT), blood urea nitrogen
(BUN), creatinine, CKD-EPI estimated glomerular filtration rate (CKD-EPI),
potassium, sodium, chloride, albumin (bromocresol green) and C-reactive
protein (CRP). These results were combined with age and gender.

4.2.5 Modelling

All data were processed and analyzed in R version 4.1.1 [11]. Laboratory re-
sults, combined with age and gender were used as covariates in a regression
model. Cases were defined as ED presentations labelled as “PCR-positive”,
controls were all other presentations (i.e. “PCR-negative”, “Untested” or
“Pre-COVID-19”). To achieve predictive accuracy, limit overfitting and per-
form feature selection, penalized logistic regression with an adaptive lasso
penalty was chosen [12, 13]. To minimize missing data, all non-numeric re-
sults at the extremes of the measuring range, were converted to numeric results
by removing the “<” and ”>” signs. For CKD-EPI and CRP the raw precursor
value was used instead of >90 ml/min/m2 and <6 mg/L, respectively. Con-
sidering that laboratory results of bilirubin, ASAT, ALAT, LD, CK, ALP and
gGT can have heavy (right) tailed distributions, which in turn impacts model
predictions, these variables were transformed logarithmically. More details
regarding model fitting can be found in Section 4.A. Models were fitted using
the glmnet-package [14].
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4.2.6 CoLab-score

Since this is a retrospective case-control study, the sample prevalence may
not reflect the true/current COVID-19 prevalence. To obtain well-calibrated
probabilities the intercept term in the model should be adjusted according to
the current prevalence (details can be found Section 4.A) [15]. However, ad-
justing the intercept term is not straightforward to implement in clinical prac-
tice, therefore the linear predictor of the model was categorized into a score,
this score is hereafter referred to as the “CoLab-score”. The categorization is
based on a number needed to test of 15 (i.e. one is willing to PCR test 15 pa-
tients to find one positive) and prevalence cut-points of 1%, 2%, 5%, 10% and
40% using the intercept adjustment formula by King [15]. The intervals ob-
tained through these breaks correspond to CoLab-scores 5 to 0, respectively.
Score 0 reflects low-risk for COVID-19 and score 5 reflects high-risk. More
details regarding the rationale of the CoLab-score categorization can be found
in Section 4.A.

4.2.7 Internal validation

To assess model performance while taking overfitting into account, bootstrap-
ping was performed. 1000 bootstrap samples were generated from the original
data. On each bootstrap sample, the full model fitting procedure and CoLab-
score conversion were performed. Optimism adjusted performance measures
of the CoLab-score were obtained by applying the 0.632 bootstrap rule to
the in-sample and out-of-bag-sample performance [16]. Performance mea-
sures included, the area under the ROC-curve (AUC), sensitivity, specificity,
positive predictive value (PPV) and negative predictive value (NPV) of each
CoLab-score. The pROC-package was used to calculate performance mea-
sures [17]. Although the full inclusion period from July 2019 to July 2020
was used for model fitting, the performance was evaluated on the period start-
ing from the first COVID-19 infection (24th of February 2020) to July 2020.
This was done to obtain performance measures that would reflect real world
performance.
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4.2.8 Temporal validation

For temporal validation, results from our center were prospectively analyzed
from July 2020 to October 2021. During this period, the Netherlands was
struck by a second wave of COVID-19 infections, starting in the fall of 2020
and subsiding in the summer of 2021. In this period there was also more
widespread external PCR testing by municipal health services. The results of
external conducted PCR tests were not available to our study. To overcome
this limitation, the outcome in the temporal validation cohort was chosen as
a composite of the hospital registration of a confirmed COVID-19 infection
and/or at least one positive PCR test result. This period also covers both the
emergence of new SARS-CoV-2 variants as well as vaccine rollout. However,
neither vaccination status nor genomic sequencing was available to determine
whether a patient was vaccinated or which variant caused the infection. There-
fore, data from the Dutch national institute of public health (RIVM) was used,
to divide the temporal validation period into three phases: i) from July 2020
until March 2021, no vaccination and no variants of concern identified ii) from
March 2021 until June 2021, partial vaccination and B.1.1.7 (Alpha) variant
identified as dominant iii) from June 2021 until October 2021, widespread
vaccination and B.1.617.2 (Delta) variant identified as dominant. See Sec-
tion 4.B for more details. The temporal validation consisted of assessing the
AUC, sensitivity, specificity, PPV and NPV of each CoLab-score threshold for
the entire period, as well as for each phase separately to determine a possible
effect of vaccination and new variants on performance. Model calibration was
assessed graphically using the rms-package [18].

4.2.9 External validation

For the external validation, several centers in the Netherlands were
approached and assessed if the required panel of laboratory tests and
SARS-CoV-2 PCR test results were available. Seven centers responded
and three centers fulfilled the inclusion criteria: Gelre Hospitals (center 1),
Atalmedial Diagnostic Centers, location Alrijne Hospital Leiderdorp (center
2) and Zuyderland Medical Center (center 3). The hematological parameters
were measured with Sysmex XN10/XN20 (center 1), CELL-DYN-Sapphire
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(Abbott Laboratories) (center 2) and Sysmex XN10 instruments (center
3). The clinical chemistry parameters were measured with Architect
c14100/c160000 (Abbott Laboratories) (center 1), Architect ci4100 (Abbott
Laboratories) (center 2) and Cobas 8000 instruments (Roche Dx) (center
3). The external validation was similar to the temporal validation and
consisted of assessing the AUC, sensitivity, specificity, PPV and NPV of each
CoLab-score threshold. Calibration was assessed graphically analogous to
the temporal validation dataset.

4.3 Results

4.3.1 Development dataset

12.879 emergency department (ED) presentations of 10.327 patients from July
2019 to July 2020 were included. After excluding cases with an incomplete
lab panel, patient presentations that occurred after a positive polymerase chain
reaction (PCR) test in the past (re-presentations) and presentations with ex-
treme values (>10 times standard deviation) in any of the lab results, 10.417
presentations of 8610 patients remained, see Fig. 4.3.1 for the inclusion flow.
Descriptive statistics of ED presentations are shown in Table 4.3.1, dark grey
marked figures indicate a clinically relevant difference from the Pre-COVID-
19 category (based on the total allowable error [19]). For the PCR positives
(N = 279), 91% (95% CI: 88 to 94%) of the cases were tested positive in their
first PCR. The remaining 24 patients were positive in their second (N = 18),
third (N = 5) or fourth (N = 1) PCR.

4.3.2 CoLab-score

The model obtained through adaptive lasso regression contained eleven vari-
ables, which are depicted with their regression coefficients (weights) in Ta-
ble 4.3.2. A larger β -coefficient does not imply that a variable is more impor-
tant in predicting the odds of testing positive for severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), since variables are on different scales.
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12879 ED presentations

(10327 unique pts) 

with venous blood sampling

From July 2019 to July 2020 

COVID PCR +: 320

COVID PCR – : 1144

10613 ED presentations 

COVID PCR + : 285

COVID PCR – : 975

10568 ED presentations 

COVID PCR + : 280

COVID PCR – : 970

10417 ED presentations 

(8610 unique pts)

COVID PCR + : 279 

COVID PCR – : 945

Incomplete lab panel

2266 presentations 

35 COVID PCR +

17.6% missingness

(7.7% analytical errors, 

2.7% pediatrics, 

2.0% surgery,

1.6% obstetrics, 

3.6% other)

A B17489 ED presentations 

(13700 unique pts) 

with venous blood sampling

From July 2020 to Oct 2021

COVID + : 1223

14524 ED presentations 

COVID + : 1061

14211 ED presentations 

COVID + : 1043

14080 ED presentations 

(11453 unique pts)

COVID + : 1039

Incomplete lab panel

2965 presentations 

162 COVID +

17.0% missigness

(8.8% analytical errors, 

2.5% pediatrics, 

1.3% surgery,

1.2% obstetrics, 

3.1% other)

Previous COVID-19+

45 presentations 

5 COVID PCR +

Previous COVID-19+

313 presentations 

18 COVID +

Extreme values (>10 

SD)

151 presentations 

1 COVID PCR +

Extreme values

131 presentations 

4 COVID +

Figure 4.3.1: Inclusion flow of patients in the development (A) and temporal validation (B)
dataset.
All patient admissions with routine venous blood sampling at the ED were included. For the
development dataset, completeness of the lab panel was assessed for all 28 laboratory tests ,
for the temporal validation dataset this was only necessary for 10 laboratory tests. The major
causes of missingness are described in the text. In the development dataset, presentations
with extreme values (>10 SD) were excluded. The same limits were applied to the temporal
validation dataset (see Table 4.3.2 for limits).

The most important variables are basophiles, eosinophils and lactate dehydro-
genase (LD). As shown in Fig. 4.3.2, the linear predictor clearly discriminates
between coronavirus disease 2019 (COVID-19) and non-COVID-19. The lin-
ear predictor is converted to CoLab-scores 0 – 5 with the cut-points depicted
in Fig. 4.3.2.

4.3.3 Internal validation

The model was validated in the period starting from the first COVID-19 in-
fection to July 2020, in this period the mean prevalence was 7.2%. The area
under the ROC-curve (AUC) of the CoLab-score is 0.930 (95% CI: 0.909 to
0.945). Diagnostic performance is shown in Table 4.3.3. A CoLab-score of
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Pre-COVID (N = 5890) Untested (N = 3303) PCR negative (N = 945) PCR positive (N = 279)

Age in years 61.5 (20.8) 60.4 (20.8) 66.0 (17.6) 69.1 (15.1)
Female gender 2909 (49.4) 1659 (50.2) 466 (49.3) 95 (34.1)
Specialism

Internal medicine 1648 (28.0) 896 (27.1) 244 (25.8) 71 (25.4)
Surgery 1007 (17.1) 679 (20.6) 51 (5.4) 5 (1.8)

Neurology 775 (13.2) 468 (14.2) 64 (6.8) 5 (1.8)
Pulmonary medicine 714 (12.1) 220 (6.7) 326 (34.5) 167 (59.9)

Cardiology 560 (9.5) 322 (9.7) 145 (15.3) 6 (2.2)
Urology 309 (5.2) 148 (4.5) 15 (1.6) 7 (2.5)

Gastroenterology 306 (5.2) 224 (6.8) 27 (2.9) 1 (0.4)
Geriatrics 189 (3.2) 95 (2.9) 52 (5.5) 15 (5.4)

Orthopedics 147 (2.5) 109 (3.3) 11 (1.2) 0 (0.0)
Gynaecology 118 (2.0) 82 (2.5) 2 (0.2) 0 (0.0)

Other 117 (2.0) 60 (1.8) 8 (0.8) 2 (0.7)
Hemoglobin in mmol/L 8.2 (1.3) 8.3 (1.3) 8.2 (1.4) 8.6 (1.1)
Hemoglobin in g/L 13.2 (2.1) 13.3 (2.0) 13.3 (2.2) 13.8 (1.8)
Hematocrit in L/L 0.403 (0.059) 0.405 (0.056) 0.405 (0.062) 0.417 (0.047)
Erythrocytes in /pL 4.41 (0.69) 4.43 (0.66) 4.41 (0.72) 4.61 (0.60)
MCV in fl 91.8 (6.4) 91.9 (6.1) 92.4 (6.7) 90.7 (5.5)
MCH in mmol 1.859 (0.157) 1.876 (0.150) 1.874 (0.172) 1.869 (0.141)
MCHC in mmol/L 20.2 (0.9) 20.4 (0.9) 20.3 (1.0) 20.6 (0.8)
Thrombocytes in /nL 262.5 (98.9) 265.8 (99.7) 269.3 (105.0) 216.8 (122.8)
Leukocytes in /nL 9.30 [7.06, 12.16] 8.92 [7.01, 11.89] 9.66 [7.17, 12.94] 6.33 [4.74, 8.48]
Neutrophils in /nL 6.62 [4.51, 9.53] 6.10 [4.42, 8.94] 7.01 [4.79, 10.02] 4.71 [3.30, 6.94]
Eosinophils in /nL 0.09 [0.03, 0.17] 0.09 [0.03, 0.18] 0.08 [0.02, 0.17] 0.00 [0.00, 0.02]
Basophils in /nL 0.04 [0.02, 0.05] 0.04 [0.02, 0.05] 0.04 [0.02, 0.05] 0.01 [0.01, 0.02]
Lymphocytes in /nL 1.47 [0.93, 2.13] 1.56 [1.05, 2.18] 1.31 [0.80, 2.03] 0.86 [0.59, 1.21]
Monocytes in /nL 0.70 [0.52, 0.93] 0.69 [0.52, 0.91] 0.74 [0.54, 1.01] 0.45 [0.32, 0.64]
Glucose in mmol/L 6.76 [5.83, 8.39] 6.68 [5.76, 8.14] 6.98 [5.95, 8.85] 6.77 [5.98, 8.48]
Bilirubin in umol/L 7.5 [5.0, 11.6] 7.4 [5.1, 10.9] 8.3 [5.6, 12.4] 8.2 [6.3, 11.4]
ASAT in U/L 24.0 [19.1, 32.2] 26.5 [21.6, 35.1] 27.7 [21.7, 39.2] 40.7 [30.2, 57.2]
ALAT in U/L 24.3 [17.8, 35.3] 25.3 [18.4, 36.2] 25.7 [18.4, 40.0] 33.7 [23.3, 50.0]
LD in U/L 201 [173, 240] 198 [170, 236] 215 [178, 263] 300 [238, 403]
CK in U/L 82 [51, 134] 83 [52, 137] 76 [51, 125] 124 [62, 222]
ALP in IU/L 83.0 [68.0, 105.0] 81.0 [65.8, 102.5] 86.9 [67.9, 110.0] 71.0 [58.8, 85.0]
gGT in U/L 27.0 [17.0, 53.0] 28.4 [18.4, 50.5] 37.0 [22.4, 68.9] 42.0 [28.0, 83.5]
BUN in mmol/L 5.7 [4.3, 8.0] 5.8 [4.3, 7.8] 6.2 [4.6, 9.4] 6.1 [4.7, 8.9]
CKD-epi in ml/min/m2 80.9 [58.0, 99.1] 85.0 [63.5, 103.3] 79.1 [52.1, 96.6] 76.6 [54.9, 91.2]
Creatinine in umol/L 79.0 [64.0, 100.0] 74.1 [60.7, 94.0] 77.7 [62.0, 105.0] 82.0 [67.6, 104.5]
Potassium in mmol/L 4.06 (0.50) 4.03 (0.49) 4.07 (0.55) 3.91 (0.47)
Sodium in mmol/L 139.2 (4.0) 138.5 (3.9) 138.0 (4.3) 136.4 (4.1)
Chloride in mmol/L 104.4 (4.6) 103.8 (4.5) 102.9 (4.8) 101.6 (4.4)
Albumin in g/L 42.4 (4.9) 42.3 (4.5) 40.8 (4.8) 38.4 (3.8)
CRP in mg/L 8.0 [2.0, 41.0] 5.0 [1.4, 30.4] 17.8 [3.5, 68.8] 77.3 [36.5, 135.8]

Table 4.3.1: Descriptive statistics. Normally distributed results are given by the mean and
standard deviation (SD) (in round brackets), skewed or heavy tailed distribution by the median
and interquartile range (IQR) range [in squared brackets]. Dark grey cells indicate a clinically
relevant difference from the Pre-COVID-19 category based on the total allowable error [19].

0 has a negative predictive value (NPV) of 0.997 (95% CI: 0.993 to 0.999)
and positive predictive value (PPV) of 0.115 (0.0934 - 0.147), one third (38%,
95% CI: 28 to 514%) of all ED presentations were assigned this score and can
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Variable β Exclusion limit Relative importance

Intercept -6.885 -
Erythrocytes /pL 0.9379 Erythrocytes <2.9 /pL 52 %
Leukocytes /nL -0.1298 46 %
Eosinophils /nL -6.834 86 %
Basophils /nL -47.70 Basophils >0.33 /nL 100 %
log10 of Bilirubin in µmol/L -1.142 Bilirubin >169 µmol/L 26 %
log10 of LD in U/L 5.369 LD >1564 U/L 58 %
log10 of ALP in IU/L -3.114 AF >1000 IU/L 45 %
log10 of gGT in U/L 0.3605 gGT >1611 U/L 11 %
Albumin in g/L -0.1156 45 %
CRP in mg/L 0.002560 15 %
Age in years 0.002275 4 %

Table 4.3.2: Calculation of the CoLab-linear predictor (LP).
The CoLab-LP is calculated by summing the intercept and the products of the 11 variables
with their corresponding coefficients (β ’s). CoLab-LP = – 6.885 + [erythrocytes] × 0.9379
– [leukocytes] × 0.1298 – [eosinophils] × 6.834 – [basophils] × 47.7 – log10([bilirubin]) ×
1.142 + log10([LD]) × 5.369 – log10([ALP]) × 3.114 + log10([gGT]) × 0.3605 – [albumin] ×
0.1156 + [CRP] × 0.02560 + [age] × 0.002275. The LP can be converted into a CoLab-score
(see Fig. 4.3.2) or into a probability if the prevalence is known or estimated (see details in
Section 4.A). The CoLab-score is not valid if any of the variables exceed the limits in the third
column. The relative importance ranks the importance of variables in predicting the outcome,
relative to the most important variable (in this case basophils).

therefore be safely excluded. Conversely, 6% (95% CI: 6 to 8%) of the ED
patients had a CoLab-score = 5. Given the PPV of this score (0.683, 95% CI:
0.628 to 0.746, NPV: 0.970, 95% CI: 0.963 - 0.978), subsequent PCR testing
is advised.

4.3.4 Temporal validation

As the CoLab-score was developed in our center after the first COVID-19-
wave in the Netherlands, the performance was evaluated in our center from
July 2020 until October 2021. Lab results from 17.489 ED presentations were
collected. After applying the inclusion flow as shown in Fig. 4.3.1B, 14.080
presentations remained, of which 1039 were associated with a COVID-19
infection. The mean prevalence in this period was 7.4%. The AUC of the
CoLab-score in the temporal validation set is 0.916 (95% CI: 0.906 to 0.927).
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Figure 4.3.2: Probability density plot of the CoLab-linear predictor.
The probability density plots for COVID (dark blue) and non-COVID patients (light blue) are
plotted against the linear predictor (for calculation see Table 4.3.2). The CoLab-score cut-offs
(–5.83, –4.02, –3.29, –2.34 and –1.64) are depicted with vertical dashed lines. The white-
boxed numbers (between the cut-offs) represent the corresponding CoLab-score. Note that
although the area under both curves is identical (since these are probability density functions),
in absolute numbers the “negative or untested”-group is about 36 times larger than the PCR
positive group.

The performance is comparable to the development cohort, although sensitiv-
ity is slightly lower and specificity slightly higher (cf. Table 4.3.3 and Ta-
ble 4.3.4). The temporal validation dataset was also split into three phases
according to dominant SARS-CoV-2 variants and vaccine roll-out (see Sec-
tion 4.B). The discriminative ability was not lower in the second or third
phase, compared to the first phase. Diagnostic performance is preserved in
terms of sensitivity and specificity, except a moderately reduced sensitivity of
scores ≥ 3 in the third phase as compared to the first phase. PPV and NPV are
incomparable due to different prevalence/pre-test probabilities in each phase.
In terms of the predicted probabilities, model calibration shows that overall
predicted probabilities are too low (see Section 4.C for the calibration plot),
which is expected since the prevalence differs and the intercept has to be ad-
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CoLab-
score Sensitivity Specificity PPV NPV TP TN FP FN

% of
population

0
0.984

(0.969 -
0.991)

0.410
(0.302 -
0.543)

0.115
(0.094 -
0.147)

0.997
(0.993 -
0.999)

273.4
(241.2 -
304.4)

1470.9
(1081.1 -
1950.9)

2119.1
(1633.5 -
2507.6)

4.6
(2.6 -
8.6)

38.0
(28.0 -
51.0)

≤ 1
0.912

(0.892 -
0.952)

0.785
(0.741 -
0.827)

0.248
(0.207 -
0.300)

0.991
(0.989 -
0.995)

253.5
(226.5 -
287.0)

2817.1
(2655.4 -
2961.2)

772.9
(623.2 -
934.5)

24.5
(13.4 -
30.2)

73.3
(69.3 -
77.3)

≤ 2
0.856

(0.816 -
0.895)

0.880
(0.864 -
0.900)

0.357
(0.315 -
0.415)

0.988
(0.984 -
0.991)

238.1
(209.6 -
267.9)

3160.8
(3100.7 -
3233.7)

429.1
(357.3 -
487.1)

39.9
(28.5 -
52.4)

82.9
(80.9 -
83.9)

≤ 3
0.757

(0.706 -
0.809)

0.951
(0.944 -
0.959)

0.546
(0.496 -
0.604)

0.981
(0.976 -
0.985)

210.4
(183.4 -
240.2)

3415.1
(3378.0 -
3456.4)

174.9
(147.0 -
199.3)

67.6
(51.9 -
84.9)

90.0
(89.0 -
91.0)

≤ 4
0.612

(0.530 -
0.706)

0.978
(0.972 -
0.983)

0.683
(0.628 -
0.746)

0.970
(0.963 -
0.978)

170.2
(141.6 -
204.9)

3510.6
(3476.8 -
3547.5)

79.4
(60.3 -
100.4)

107.9
(79.1 -
134.0)

93.7
(91.7 -
93.7)

Table 4.3.3: Bootstrapped diagnostic performance of the CoLab-score in the development
dataset.
The development dataset was internally validated for the period March 2020 – July 2020 (N
= 3868). The optimism-adjusted bootstrapped sensitivities, specificities, positive predictive
value (PPV), negative predictive value (NPV), true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN) and fraction of presentations (%) are shown for fixed
cut-offs (CoLab-score 0 till ≤4). The numbers in round brackets represent the 95% optimism-
adjusted bootstrapped confidence interval (CI). The first column defines the threshold above
which CoLab-score a patient is considered positive. Note that “0” lists the sensitivity and NPV
of CoLab-score 0 and “≤4” lists the specificity and PPV of CoLab-score 5. Also note that
TP, TN, FP and FN are not whole numbers, since these are obtained by applying the 0.632
bootstrap rule.

justed to the prevalence. In this period at least 22 COVID-19 positive patients
were identified by the CoLab-score, that initially did not present with COVID-
specific symptoms. Most patients had neurological or orthopedic presenting
symptoms.

4.3.5 External validation

For external validation, data obtained from three other centers were used, cen-
ter 1 (N = 1284, 52 COVID-19 positive), center 2 (N = 2899, 99 COVID-19
positive) and center 3 (N = 3545, 336 COVID-19 positive). The inclusion flow
is summarized in Fig. 4.3.3.
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CoLab-
score Sensitivity Specificity PPV NPV TP TN FP FN

0
0.967

(0.956 - 0.978)
0.420

(0.411 - 0.428)
0.117

(0.115 - 0.119)
0.994

(0.992 - 0.996)
1005

(993 - 1016)
5476

(5366 - 5587)
7565

(7454 - 7675)
34

(23 - 46)

≤ 1
0.888

(0.870 - 0.908)
0.791

(0.783 - 0.798)
0.253

(0.245 - 0.261)
0.989

(0.987 - 0.991)
923

(904 - 943)
10311

(10215 - 10401)
2730

(2640 - 2826)
116

(96 - 135)

≤ 2
0.820

(0.796 - 0.843)
0.894

(0.889 - 0.899)
0.382

(0.367 - 0.396)
0.984

(0.982 - 0.986)
852

(827 - 876)
11661

(11591 - 11729)
1380

(1312 - 1450)
187

(163 - 212)

≤ 3
0.710

(0.682 - 0.738)
0.962

(0.958 - 0.965)
0.596

(0.573 - 0.618)
0.977

(0.974 - 0.979)
738

(709 - 767)
12540

(12496 - 12582)
501

(459 - 545)
301

(272 - 330)

≤ 4
0.585

(0.556 - 0.615)
0.984

(0.982 - 0.987)
0.750

(0.724 - 0.778)
0.968

(0.965 - 0.970)
608

(578 - 639)
12838

(12811 - 12866)
203

(175 - 230)
431

(400 - 461)

Table 4.3.4: Diagnostic performance of the CoLab-score in the temporal validation dataset.
Sensitivities, specificities, positive predictive values (PPV), negative predictive values (NPV),
true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are shown
for fixed cut-offs (CoLab-score 0 till ≤ 4) with bootstrapped 95% confidence intervals in paren-
theses.

COVID-19 prevalence differed between the three centers (4.0%, 3.4% and
9.5% respectively) and was lower in centers 1 and 2, and higher in center 3
than in the development dataset. The AUCs of the CoLab-score are 0.904
(95% CI: 0.866 to 0.942), 0.886 (95% CI: 0.851 - 0.922) and 0.891 (95% CI:
0.872 - 0.909), for centers 1, 2, and 3 respectively. Diagnostic performance
is shown in Table 4.3.5. The sensitivity of CoLab-score 0 in all centers is ≥
0.96. Therefore, the NPV of CoLab-score 0 was more than 99%. Calibration
plots for external centers are shown in Section 4.C, the observed fraction of
COVID-19 positives is slightly lower than expected in centers 1 and 2. For
center 3, low probabilities appear slightly underestimated and high probabili-
ties slightly overestimated.
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2.515 ED presentations

(1.882 unique pts) 

Mar 2020 – Oct 2020 

COVID-19 + : 79

COVID-19 – : 769

1.289 ED presentations 

COVID-19 + : 52

COVID-19 – : 449

1.284 ED presentations 

COVID-19 PR + : 52

COVID-19 – : 449

1.284 ED presentations 

(1.142 unique pts)

COVID-19 + : 52

COVID-19 – : 449

Incomplete lab panel

1.226 presentations 

27 COVID +

Center 2

Previous COVID-19+

5 presentations 

0 COVID +

Lab results above limits

0 presentations 

0 COVID +

6.924 ED presentations

(6.042 unique pts) 

Mar 2020 – Sept 2020 

COVID-19 + : 106

COVID-19 – : 977

2.924 ED presentations 

COVID-19 + : 103

COVID-19 – : 957

2.912 ED presentations 

COVID-19 + : 99

COVID-19 – : 957

2.899 ED presentations 

(2.625 unique pts)

COVID-19 + : 99

COVID-19 – : 952

Incomplete lab panel

4.000 presentations 

3 COVID +

Previous COVID-19+

12 presentations 

4 COVID +

Lab results above limits

13 presentations 

0 COVID +

5.637 ED presentations

(4.729 unique pts) 

Mar 2020 – Jun 2020 

COVID-19 +: 457

COVID-19 – : 721

3.589 ED presentations 

COVID-19 + : 337

COVID-19 – : 506

3.562 ED presentations 

COVID-19 + : 336

COVID-19 – : 504

3.545 ER presentations 

(3.302 unique pts)

COVID-19 + : 336

COVID-19 – : 503

Incomplete lab panel

2048 presentations

120 COVID +

Previous COVID-19+

27 presentations

1 COVID +

Lab results above limits

17 presentations 

0 COVID +

Center 1

Center 3

Figure 4.3.3: Inclusion flow of ED patients in three external centers.
All ED presentations with routine venous blood sampling were included. Missingness of lab
panels was assessed for the 11 variables in the CoLab-score (see Table 4.3.2). Re-presentations
after a positive PCR result or clinical COVID-19 registration were excluded as “previous
COVID-19+”. Presentations with any laboratory result above the limits of the CoLab-score
(see Table 4.3.2) were excluded.
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Validation set
CoLab-
score Sensitivity Specificity PPV NPV TP TN FP FN

Center 1 0
1.000

(1.000 -
1.000)

0.331
(0.307 -
0.358)

0.059
(0.057 -
0.061)

1.000
(1.000 -
1.000)

52
(52 -
52)

410
(380 -
443)

827
(794 -
857)

0
(0 -
0)

Center 2 0
0.961

(0.922 -
0.990)

0.351
(0.333 -
0.369)

0.052
(0.049 -
0.054)

0.996
(0.992 -
0.999)

99
(95 -
102)

985
(935 -
1035)

1823
(1773 -
1873)

4
(1 -
8)

Center 3 0
0.970

(0.950 -
0.988)

0.322
(0.306 -
0.338)

0.130
(0.126 -
0.133)

0.991
(0.984 -
0.996)

327
(320 -
333)

1042
(991 -
1092)

2193
(2143 -
2244)

10
(4 -
17)

Center 1 ≤ 1
0.923

(0.846 -
0.981)

0.694
(0.669 -
0.720)

0.113
(0.101 -
0.124)

0.995
(0.991 -
0.999)

48
(44 -
51)

858
(828 -
891)

379
(346 -
409)

4
(1 -
8)

Center 2 ≤ 1
0.913

(0.854 -
0.961)

0.678
(0.661 -
0.696)

0.094
(0.087 -
0.101)

0.995
(0.992 -
0.998)

94
(88 -
99)

1905
(1857 -
1953)

903
(855 -
951)

9
(4 -
15)

Center 3 ≤ 1
0.914

(0.881 -
0.944)

0.674
(0.657 -
0.691)

0.226
(0.216 -
0.236)

0.987
(0.982 -
0.991)

308
(297 -
318)

2180
(2126 -
2234)

1055
(1001 -
1109)

29
(19 -
40)

Center 1 ≤ 2
0.808

(0.692 -
0.904)

0.811
(0.788 -
0.832)

0.152
(0.129 -
0.176)

0.990
(0.984 -
0.995)

42
(36 -
47)

1003
(975 -
1029)

234
(208 -
262)

10
(5 -
16)

Center 2 ≤ 2
0.845

(0.777 -
0.913)

0.801
(0.785 -
0.815)

0.135
(0.122 -
0.147)

0.993
(0.990 -
0.996)

87
(80 -
94)

2248
(2205 -
2289)

560
(519 -
603)

16
(9 -
23)

Center 3 ≤ 2
0.890

(0.855 -
0.923)

0.794
(0.779 -
0.808)

0.311
(0.294 -
0.328)

0.986
(0.981 -
0.990)

300
(288 -
311)

2569
(2521 -
2615)

666
(620 -
714)

37
(26 -
49)

Center 1 ≤ 3
0.750

(0.635 -
0.865)

0.909
(0.892 -
0.925)

0.257
(0.213 -
0.306)

0.989
(0.983 -
0.994)

39
(33 -
45)

1124
(1104 -
1144)

113
(93 -
133)

13
(7 -
19)

Center 2 ≤ 3
0.660

(0.563 -
0.748)

0.897
(0.885 -
0.908)

0.190
(0.163 -
0.218)

0.986
(0.983 -
0.990)

68
(58 -
77)

2519
(2486 -
2549)

289
(259 -
322)

35
(26 -
45)

Center 3 ≤ 3
0.766

(0.718 -
0.810)

0.887
(0.876 -
0.898)

0.413
(0.386 -
0.442)

0.973
(0.968 -
0.978)

258
(242 -
273)

2869
(2835 -
2905)

366
(330 -
400)

79
(64 -
95)

Center 1 ≤ 4
0.654

(0.519 -
0.788)

0.951
(0.939 -
0.962)

0.359
(0.293 -
0.435)

0.985
(0.979 -
0.991)

34
(27 -
41)

1176
(1161 -
1190)

61
(47 -
76)

18
(11 -
25)

Center 2 ≤ 4
0.534

(0.437 -
0.621)

0.952
(0.943 -
0.959)

0.287
(0.239 -
0.339)

0.982
(0.979 -
0.986)

55
(45 -
64)

2672
(2649 -
2693)

136
(115 -
159)

48
(39 -
58)

Center 3 ≤ 4
0.665

(0.611 -
0.718)

0.930
(0.921 -
0.938)

0.497
(0.462 -
0.534)

0.964
(0.958 -
0.969)

224
(206 -
242)

3008
(2980 -
3036)

227
(199 -
255)

113
(95 -
131)

Table 4.3.5: Diagnostic performance of the CoLab-score in the three external centers.
Sensitivities, specificities, positive predictive values (PPV), negative predictive values (NPV),
true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) are shown
with bootstrapped 95% confidence intervals in parentheses.
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4.4 Discussion

Given the impact of coronavirus disease 2019 (COVID-19) on society and
healthcare, there is a need for simple and fast detection of patients with a pos-
sible COVID-19 infection in the ED. The CoLab-score described in this study,
is a fast and accurate risk score to triage patients presenting at the emergency
department (ED) based on ten routine blood biomarkers and age. The main
strength of this study is that this score can be used as an early-warning or triag-
ing tool for the ED population presenting with abdominal pain, chest pain,
shortness of breath, syncope, sepsis or other non-specific complaints where
a routine blood panel is requested. This is in contrast to the vast majority of
COVID-19 diagnostic models that have been developed on a pre-selected pop-
ulation of polymerase chain reaction (PCR)-tested patients [9, 20–26]. More-
over, the CoLab-score requires only routine blood tests, instead of (features
from) imaging such as CT-scans or laboratory tests that are not routinely col-
lected in the ED, e.g. interleukin-6 or 3-hydroxybuteric acid [4]. Compared
to rapid lateral flow tests (LFTs), which provide a dichotomous result within
30 minutes and are widely adopted in EDs, the CoLab-score is a continu-
ous score. The lowest CoLab-scores (0 - 1) offer higher sensitivity and are
therefore more suitable to rule-out COVID-19 than a LFT, which are only
moderately sensitive (albeit more specific) [27, 28]. Two other studies have
been published which are similar to this study [9, 10]. Interestingly, the study
by Soltan et al., ranked basophils and eosinophils as the two most important
features in predicting the outcome, similar to our results [10]. Eosinophils
were also seen as one of the most important features by Plante et al. [9].
However, both studies focus on an artificial intelligence/machine learning ap-
proach. While their approach likely results in higher predictive performance,
due to the ability of machine learning models to capture non-linear and inter-
action effects, the goal of this study was to develop a simple, fast and robust
model that can easily be implemented in current hospital IT systems. Since
this is a retrospective case-control study, there is some unavoidable missing
data. In our cohort 17.6% of the ED presentations could not be used due to one
or more missing laboratory results. This is lower or equal to similar studies;
22% [23], 17% [21] and 11% [26]. Important to note is that 7.7% of missing-
ness is due to analytical errors which can be assumed to be missing completely
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at random. For the remaining 9.9% of missingness, the full lab panel was
most frequently missing for pediatric, obstetric and surgery patients. These
patients are presenting with specific complaints for which specific labora-
tory tests are requested, and hence do not match the inclusion criteria for a
routine blood panel. Overall the missingness was significantly lower in the
PCR-tested group versus the untested group (χ2-test p-value < 0.001). It is
assumed that all presentations in the untested group are COVID-19 negative.
However, some presentations with asymptomatic COVID-19 could be present
in the untested control group. The impact of these ‘false controls’ is most
likely small as other studies indicate that there is a very low positivity rate
among asymptomatic ED presentations (only a few in over a thousand tested
asymptomatic cases) [29, 30]. The vast majority of controls were not tested for
COVID-19, because they were either pre-pandemic or untested patients (89%
in the development dataset). Clinical data always contains some unavoidable
‘noise’ in the form of misregistrations, misdiagnoses or patients who were
missed. We have tried to mitigate this by including a large pre-pandemic con-
trol group and including all PCR tests within 1 week after discharge. In the
external centers, there is a high level of missingness as a result of an incom-
plete laboratory panel. In the case of centers 1 and 2, only internal medicine
ED presentations were tested with a laboratory panel containing the 10 tests
required for the CoLab-score. The ED lab panel of other disciplines (e.g.
urology, surgery or pediatrics) differed and did not contain the required tests.
Nevertheless, the majority of COVID-19 patients were internal medicine ED
presentations, which is reflected by the few PCR-positive patients excluded.
Due to these high levels of missingness, the results of the external centers
cannot be used to show that the CoLab-score generalizes to the entire ED
population. Rather, the results show that for the majority of COVID-19 posi-
tive patients presenting at the ED, a routine laboratory panel is available from
which the CoLab-score can be calculated, and that the performance of the
CoLab-score in this population is comparable to the development population.
Differences in the distribution of CoLab variables between centers are shown
in Section 4.C. The performance of the CoLab-score is affected by the time
between the onset of symptoms and ED presentations. The score increases
with the duration of symptoms and gradually decreases after day 7 (see Sec-
tion 4.D for a plot of the duration of COVID-19 related symptoms and the
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CoLab-linear predictor). As a consequence, some COVID-19 patients with
early or late presentation after onset of symptoms can be missed. Optimal per-
formance of the CoLab-score is achieved when the onset of symptoms is > 1
and < 10 days prior to ED presentation. Chemotherapy that causes myeloid
suppression, will decrease neutrophilic, basophilic and eosinophilic counts
and thereby “falsely” increasing the CoLab-score. Conversely, COVID-19
patients with severe anemia could have “falsely” lowered CoLab-scores. To
minimize false negatives, we have therefore advised to report CoLab-scores
only when the concentration of erythrocytes is ≥ 2.9 /pL. It was chosen to
exclude re-presentations after a previous presentation with COVID-19. Since
the median time between initial presentation and re-presentation was 12 days,
these patients were most likely not re-infected patients, but patients who de-
teriorated after initial presentation/treatment. Given that the CoLab-score fol-
lows the host-immune response, the score is time sensitive (see Section 4.D).
Including these patients would impact the performance of the CoLab-score
as patients in a later phase of the disease show different biomarker profiles.
The CoLab-score is aimed towards alerting clinicians to patients presenting
with a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection, rather than patients who deteriorate after treatment for COVID-19.
Other re-presentations were not excluded, which results in some patients ap-
pearing multiple times in a dataset. This was not adjusted for in the regres-
sion model since the assumption was made that ED presentations are inde-
pendent observations. The median time between re-presentations is 38 days,
most likely resulting in variations in laboratory results between presentations,
and hence, little to no correlation between presentations. A sensitivity analy-
sis was performed whereby only the first presentation was included for each
patient (Section 4.D), but no difference was found in performance in terms
of sensitivity, specificity and area under the ROC-curve (AUC). The CoLab-
score does not serve as a replacement for PCR-testing or LFTs, and can be
used to guide PCR-testing when routine blood tests are available. Important
to note is that the CoLab-score is only valid for ED presentations where rou-
tine blood testing is requested, and as a consequence does not generalize to
the ED population who is otherwise well and does not undergo routine blood
testing. Using the CoLab-score in a symptomatic/PCR-tested cohort also re-
sults in different diagnostic performance characteristics, as compared to using
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the score on the full ED cohort (see Section 4.D). Finally, the CoLab-score
could lead to false positives by other viral infections. However, in an his-
toric patient cohort, the CoLab-score had only limited discriminative ability in
separating influenza-PCR-negative from influenza-PCR-positive patients (see
Section 4.D) implying specificity for SARS-CoV-2. Since the CoLab-score
reflects the host-response to the virus, it is hypothesized that the CoLab-score
could also be sensitive to future SARS-CoV-2 variants. This is supported
by the fact that the discriminative ability is sustained in periods with different
dominant variants, although the sensitivity of scores ≥ 3 is somewhat lower in
the third phase (see Section 4.B). Although vaccination status is not registered
for all presenting patients, in a small subgroup of 12 patients for whom vac-
cination status was registered, and were COVID-19 positive, 8 of 12 patients
had the highest CoLab-score (= 5) (see Section 4.B). Continuous assessment
of the performance of the CoLab-score is required due to the emergence of
new variants and changes in the host’s immune response. To conclude, the
CoLab-score developed and validated in this study, based on 10 routine lab-
oratory results and age, is available within 1 hour for any patient presenting
at the ED where routine blood testing is requested. The score can be used by
clinicians to guide PCR testing or triage patients and helps to identify COVID-
19 in patients presenting at the ED with abdominal pain, chest pain, shortness
of breath, syncope, sepsis or other non-specific complaints where a routine
blood panel is requested. The lowest CoLab-score can be used to effectively
rule-out a possible SARS-CoV-2 infection, the highest score to alert physi-
cians to a possible infection. The CoLab-score is therefore a valuable tool
to rule out COVID-19, guide PCR testing and is available to any center with
access to routine laboratory tests.
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Appendix

4.A Model fitting

In adaptive lasso, weights are applied to each of the covariates present in the
lasso constraint, the weight vector has to be calculated before the adaptive
lasso regression is performed. Prior to model fitting, covariates were scaled to
zero mean and unit variance, after model fitting coefficients were unscaled to
obtain regression coefficients on the original scale. Due to multicollinearity
between laboratory tests in the routine lab panel, weights in the adaptive lasso
were based on ridge regression estimates (β̂ridge) as recommended by Zou. To
obtain β̂ridge the optimal penalty (λ ) for the ridge regression was chosen using
10 fold cross-validation (CV) with the area under the ROC-curve (AUC) as
the loss function. The λ corresponding to the maximum AUC was selected
to obtain β̂ridge. The weight vector (ŵ) was calculated by ŵ = 1

|β̂ridge|2
. This

weight vector was then used to fit an adaptive lasso regression where λ was
chosen by the criterion ±1 SE of the maximum AUC.

4.A.1 Model intercept adjustment

The linear predictor (LP) for a patient i is calculated as follows: LPi = β0 +
β1xi1 + . . .+βnxin, where n is the number of covariates in the final model, xin

are the observed values for the i-th patient of the n covariates and βn the esti-
mated coefficients. The LP can then be converted to a probability for patient i
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(Pi) by the logistic function: Pi =
1

1+e−LPi
. The intercept term β0 is sensitive to

the fraction of cases versus controls in the dataset/population. Since the model
is fitted to a case-control dataset where the number cases is fixed (all patients
tested positive for coronavirus disease 2019 (COVID-19)) and the number
of controls is randomly chosen (a 6-month period pre-COVID), the intercept
term β0 is a result of this choice and will likely not be generalizable to the
real-world setting. In fact, the prevalence of COVID-19 will vary over time.
Prior correction is a method to correct the estimate of the intercept based on
the true fraction of positives in the population, τ (prevalence of COVID-19 in
the emergency department (ED)) and the fraction of cases in the development
dataset, ȳ. The intercept term β0 can then be corrected to obtain β0,corrected
using the following formula:

β0,corrected = β0 +βad j

βad j =− ln
[(

1− τ

τ

)(
ȳ

1− ȳ

)]
(4.A.1)

For the development dataset ŷ = 0.02675 therefore:

βad j =− ln
(

1− τ

τ

)
+3.594 (4.A.2)

Since the true prevalence τ is unknown, we can use an estimate τ̂ and replace
β0 in the LP for β0,corrected to obtained predictions that are calibrated according
to the estimated prevalence:

LPi|τ̂ = β0 − ln
(

1− τ̂

τ̂

)
+3.594+β1xi1 + . . .+βnxin (4.A.3)

4.A.2 CoLab-score

An alternative, which is the basis of the CoLab-score, is to choose a threshold
for the probability Pi above which one considers a patient eligible for further
testing. The probability can be expressed as a number needed to test. If one
is willing to test 10 patients to find one positive, all patients with Pi ≥ 0.1
should be considered positive. In this study a number needed to test of 15 is
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used, therefore all patients with a Pi ≥ 0.067 should be considered positive.
On the LP scale, this translates to a threshold of logit(0.067) = −2.639. To
determine the cutoffs for different prevalence thresholds, one simply solves
the following equation:

β0 +βad j +β1xi1 + . . .+βnxin ≥−2.639

β0 +β1xi1 + . . .+βnxin ≥−2.639−βad j

LPi|τ̂ ≥ ln
(

1− τ̂

τ̂

)
−6.233

(4.A.4)

Choosing threshold values at τ̂ = 0.4,0.1,0.05,0.02,0.01, yields the cutoffs
for the CoLab score:

LPi|τ̂=0.4 ≥−5.83 CoLab-score = 1

LPi|τ̂=0.1 ≥−4.03 CoLab-score = 2

LPi|τ̂=0.05 ≥−3.29 CoLab-score = 3

LPi|τ̂=0.02 ≥−2.34 CoLab-score = 4

LPi|τ̂=0.01 ≥−1.64 CoLab-score = 5

(4.A.5)

These thresholds correspond to CoLab-scores 0 to 5. The interpretation of
these scores is as follows; if the prevalence is < 1%, only CoLab-score 5
should be classified as positive and CoLab-score 0 till 4 as negative. If the
prevalence is 1% – 2%, CoLab-score 4 and 5 should be classified as positive
and 1 – 3 negative. Similarly, with a prevalence of 2 – 5% the split is between
CoLab-score 2 and 3 and with prevalence of 5 – 10% between CoLab-score 1
– 2. If the prevalence is higher than 10% only CoLab-score 0 is classified as
negative. Using the CoLab-score in this fashion, aims to preserve a number
need to test of 15.
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4.B Temporal validation details

4.B.1 Vaccination status and novel strains

The temporal validation dataset consists of emergency department (ED) pre-
sentations from July 2020 until October 2021. As stated in Section 4.2, this
period was split into three phases: i) from July 2020 until March 2021, no
vaccination and no variants of concern identified ii) from March 2021 until
June 2021, partial vaccination and B.1.1.7 (α) variant identified as dominant
iii) from June 2021 until October 2021, widespread vaccination and B.1.617.2
(δ ) variant identified as dominant. The ED fraction vaccinated is estimated by
merging data from the Dutch national institute of public health by the date of
the ED presentation and the year of birth of the patient. See Fig. 4.B.1.
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Figure 4.B.1: Temporal validation period split into three phases characterized by weekly num-
ber of new COVID-19 cases at the ED and estimated fraction of ED patients vaccinated.
The gray bars depict weekly number of new COVID-19 cases at the ED, the blue lines the
estimated fraction of ED patients fully or partially vaccinated. The shading depict the 95%
Wilson confidence intervals.
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4.B.2 CoLab-score performance

In Table 4.B.1 the area under the ROC-curve (AUC) of the CoLab-score is
shown for the three different periods, defined in the previous section. In Ta-
ble 4.B.2 the performance in terms of sensitivity, specificity, positive predic-
tive value (PPV) and negative predictive value (NPV) is shown for the three
different periods. Finally in Fig. 4.B.2 a boxplot shows the CoLab-linear pre-
dictor for the patients with a registered vaccination status.

Phase Cases/controls (prevalence) AUC

Original strain & no vaccinations 694/7999 (8.6%) 0.909 (0.896 - 0.923)
α strain & partial vaccination 287/2845 (10.1%) 0.937 (0.921 - 0.953)
δ strain & full vaccination 58/3236 (1.8%) 0.898 (0.857 - 0.939)

Table 4.B.1: AUC with 95% CI over the different time windows defined in Fig. 4.B.1.
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Figure 4.B.2: Boxplots of CoLab linear predictor versus COVID-19 positive, split by regis-
tered vaccination status.
The CoLab linear predictor is calculated for all ED presentations in the temporal validation
set. Presentations who are registered as vaccinated are labeled TRUE (N = 13). Presentations
before vaccine roll-out are labeled FALSE (N = 5855). Presentations during vaccine roll-out
but where no status is registered are labeled NA (N = 8212). Of the 13 presentations who were
registered as vaccinated, 12 were COVID-19 positive and 1 negative. Note that vaccination
status is only registered if a patient is SARS-CoV-2 PCR positive or considered positive un-
til proven otherwise, therefore there is only one COVID-19 negative patient with a registered
vaccination status.
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CoLab-
score Period Sensitivity Specificity PPV NPV

0
Original strain
no vaccinations

0.960
(0.945 - 0.974)

0.418
(0.407 - 0.429)

0.135
(0.133 - 0.138)

0.991
(0.988 - 0.994)

0
α strain
partial vaccination

0.983
(0.965 - 0.997)

0.431
(0.412 - 0.451)

0.162
(0.157 - 0.168)

0.996
(0.991 - 0.999)

0
δ strain
full vaccination

0.983
(0.948 - 1.000)

0.415
(0.397 - 0.432)

0.030
(0.028 - 0.031)

0.999
(0.998 - 1.000)

≤ 1
Original strain
no vaccinations

0.879
(0.854 - 0.902)

0.789
(0.779 - 0.798)

0.283
(0.272 - 0.294)

0.986
(0.983 - 0.988)

≤ 1
α strain
partial vaccination

0.916
(0.885 - 0.948)

0.808
(0.793 - 0.823)

0.349
(0.330 - 0.370)

0.989
(0.984 - 0.993)

≤ 1
δ strain
full vaccination

0.862
(0.759 - 0.948)

0.780
(0.766 - 0.793)

0.067
(0.059 - 0.074)

0.997
(0.994 - 0.999)

≤ 2
Original strain
no vaccinations

0.813
(0.784 - 0.841)

0.894
(0.887 - 0.901)

0.422
(0.403 - 0.440)

0.981
(0.978 - 0.983)

≤ 2
α strain
partial vaccination

0.864
(0.822 - 0.902)

0.896
(0.885 - 0.908)

0.484
(0.455 - 0.517)

0.983
(0.978 - 0.988)

≤ 2
δ strain
full vaccination

0.690
(0.569 - 0.810)

0.892
(0.881 - 0.903)

0.104
(0.086 - 0.124)

0.994
(0.991 - 0.996)

≤ 3
Original strain
no vaccinations

0.699
(0.664 - 0.732)

0.962
(0.957 - 0.966)

0.634
(0.607 - 0.664)

0.971
(0.968 - 0.974)

≤ 3
α strain
partial vaccination

0.760
(0.711 - 0.808)

0.962
(0.955 - 0.970)

0.695
(0.651 - 0.741)

0.973
(0.967 - 0.978)

≤ 3
δ strain
full vaccination

0.621
(0.500 - 0.741)

0.960
(0.953 - 0.967)

0.223
(0.177 - 0.271)

0.993
(0.991 - 0.995)

≤ 4
Original strain
no vaccinations

0.566
(0.530 - 0.602)

0.984
(0.981 - 0.987)

0.775
(0.739 - 0.808)

0.960
(0.957 - 0.963)

≤ 4
α strain
partial vaccination

0.645
(0.589 - 0.700)

0.983
(0.977 - 0.988)

0.808
(0.759 - 0.855)

0.961
(0.955 - 0.967)

≤ 4
δ strain
full vaccination

0.517
(0.397 - 0.638)

0.986
(0.982 - 0.990)

0.400
(0.312 - 0.493)

0.991
(0.989 - 0.993)

Table 4.B.2: Diagnostic performance of the CoLab-score in the temporal validation dataset,
split by phase.
Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) are
shown for fixed cut-offs (CoLab-score 0 till ≤ 4) with bootstrapped 95% confidence intervals
in parentheses. The temporal validation dataset is split into three phases according to dominant
SARS-CoV-2 strains in the Netherlands and estimated fraction of ED patients vaccinated (see
Fig. 4.B.1). Note that “0” lists the sensitivity and NPV of CoLab-score 0 and “≤ 4” lists the
specificity and PPV of CoLab-score 5.
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4.C Model calibration
In the calibration plots in Fig. 4.C.1, the proportion of observed coronavirus
disease 2019 (COVID-19) positives versus expected probabilities are plotted.
Observations are grouped with an average of 150 observations per group. The
expected probabilities follow from applying the inverse logit function to the
CoLab-linear predictor calculated from Table 4.3.2. If the observed propor-
tion in an external dataset is lower than the expected proportion, this means
risks are over-estimated, if the observed fraction is higher, risks are under-
estimated. Ideally, observed proportions are equal to expected proportions,
this ideal-calibration-line is shown as a straight line through the origin with a
slope of 1. The logistic calibration line is a logistic regression fit of the pre-
dicted probabilities. [Intercept, slope]: Temporal [1.34, 1.08], Center 1 [-0.39,
0.92], Center 2 [-0.76, 0.77], Center 3 [0.08, 0.79]. Although no validation
datasets show perfect calibration, this is the result of differences in COVID-
19 prevalence in the temporal validation dataset (7.4% versus 2.2%) and dif-
ferences in calibration of laboratory equipment in the three external centers.
Probability density plots are shown for all control patients of the development
dataset and the three external centers in Fig. 4.C.2. Ideally all distributions
should overlap since this implies that control patient populations are most
likely similar in the development dataset to the external datasets. When com-
paring the distribution of the CoLab variables for all control-patients across
different external validation datasets, albumin and lactate dehydrogenase (LD)
show the largest deviations.
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Figure 4.C.1: CoLab-score calibration plots of the temporal validation (A), external validation
center 1 (B), external validation center 2 (C) and external validation center 3 (D).
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Figure 4.C.2: Probability density plots of laboratory parameters.
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4.D Further validation
4.D.1 CoLab-score versus duration of symptoms

For all polymerase chain reaction (PCR)-positive emergency department (ED)
presentations in the development and temporal validation dataset, the CoLab-
linear predict is plotted in Fig. 4.D.1 against the duration of COVID-related
symptoms as registered in the electronic patient records. Patients with un-
known duration are not plotted. Patients without symptoms were plotted at 0
days.

4.D.2 CoLab-score versus RS-, Rhino- and Influenza-virus

For 183 ED presentations that were PCR tested for either RS-, Rhino- and
Influenza-virus the CoLab-score was calculated. 91 presentations were PCR
positive, 92 were PCR negative. The CoLab-score is only marginally elevated
for PCR positive patients, the area under the ROC-curve (AUC) in separating
both groups is 0.573 (95% CI: 0.4896-0.6563). See Fig. 4.D.2.

4.D.3 Sensitivity analysis

As a sensitivity analysis, the temporal validation dataset is used to compare
the performance of the CoLab-score with inclusion criteria that differ from
the development dataset. First, we examine the performance of the tempo-
ral validation dataset with the original inclusion criteria as specified in Sec-
tion 4.2. Second, we examine the performance of the CoLab-score when all
re-presentations are excluded (i.e. no repeated presentations). Thirdly, we
examine the performance of the CoLab-score in the subgroup of patients that
underwent PCR-testing. The AUC for the three different scenarios are given in
Table 4.D.1, the performance in terms of sensitivity, specificity, positive pre-
dictive value (PPV) and negative predictive value (NPV), true positives (TP),
false positives (FP), true negatives (TN) and false negatives (FN) are given in
Table 4.D.2.
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Figure 4.D.1: Association between the CoLab-linear predictor and the duration of COVID-19-
related symptoms.
The solid horizontal lines represent the CoLab-score thresholds, the dashed line is a LOESS
regression curve with 95% CI. As the duration of symptoms is an integer, some random jitter
was added to the days, for visualization purposes. Note that only the first 14 days are shown in
this graph.

Inclusion criterion Cases/controls (prevalence) AUC

Temporal validation (reference) 1039/14080 (7.4%) 0.916 (0.906 - 0.927)
Only first presentations,
re-presentations are excluded 937/11166 (8.4%) 0.919 (0.909 - 0.930)

Only PCR-tested presentations 372/4062 (9.2%) 0.840 (0.817 - 0.862)

Table 4.D.1: AUC with 95% CI over using different inclusion criteria for the temporal valida-
tion set.
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Figure 4.D.2: Probability density plot of CoLab-score for RS-, Rhino- and Influenza-virus
PCR tested ED patients.
For 183 ED presentations that were PCR tested for either RS-, Rhino- and Influenza-virus the
CoLab-score was calculated. 91 presentations were PCR positive, 92 were PCR negative.
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CoLab-
score Validation set Sensitivity Specificity PPV NPV TP TN FP FN

0 Reference
0.967

(0.956 -
0.978)

0.420
(0.411 -
0.428)

0.117
(0.115 -
0.119)

0.994
(0.992 -
0.996)

1005
(993 -
1016)

5476
(5366 -
5587)

7565
(7454 -
7675)

34
(23 -
46)

0
Re-presentations

excluded

0.968
(0.956 -
0.979)

0.416
(0.406 -
0.426)

0.132
(0.130 -
0.134)

0.993
(0.990 -
0.995)

907
(896 -
917)

4259
(4156 -
4353)

5970
(5876 -
6073)

30
(20 -
41)

0
Only PCR-tested

presentations

0.946
(0.922 -
0.968)

0.353
(0.338 -
0.368)

0.129
(0.125 -
0.132)

0.985
(0.979 -
0.991)

352
(343 -
360)

1303
(1246 -
1359)

2387
(2331 -
2444)

20
(12 -
29)

≤ 1 Reference
0.888

(0.870 -
0.908)

0.791
(0.783 -
0.798)

0.253
(0.245 -
0.261)

0.989
(0.987 -
0.991)

923
(904 -
943)

10311
(10215 -
10401)

2730
(2640 -
2826)

116
(96 -
135)

≤ 1
Re-presentations

excluded

0.890
(0.870 -
0.908)

0.793
(0.785 -
0.801)

0.282
(0.273 -
0.292)

0.987
(0.985 -
0.990)

834
(815 -
851)

8112
(8030 -
8194)

2117
(2035 -
2199)

103
(86 -
122)

≤ 1
Only PCR-tested

presentations

0.852
(0.817 -
0.887)

0.671
(0.656 -
0.686)

0.207
(0.197 -
0.217)

0.978
(0.973 -
0.983)

317
(304 -
330)

2477
(2421 -
2533)

1213
(1157 -
1269)

55
(42 -
68)

≤ 2 Reference
0.820

(0.796 -
0.843)

0.894
(0.889 -
0.899)

0.382
(0.367 -
0.396)

0.984
(0.982 -
0.986)

852
(827 -
876)

11661
(11591 -
11729)

1380
(1312 -
1450)

187
(163 -
212)

≤ 2
Re-presentations

excluded

0.824
(0.798 -
0.845)

0.898
(0.892 -
0.904)

0.426
(0.410 -
0.441)

0.982
(0.980 -
0.985)

772
(748 -
792)

9187
(9127 -
9249)

1042
(980 -
1102)

165
(145 -
189)

≤ 2
Only PCR-tested

presentations

0.734
(0.688 -
0.777)

0.800
(0.786 -
0.812)

0.270
(0.252 -
0.287)

0.968
(0.962 -
0.973)

273
(256 -
289)

2951
(2902 -
2997)

739
(693 -
788)

99
(83 -
116)

≤ 3 Reference
0.710

(0.682 -
0.738)

0.962
(0.958 -
0.965)

0.596
(0.573 -
0.618)

0.977
(0.974 -
0.979)

738
(709 -
767)

12540
(12496 -
12582)

501
(459 -
545)

301
(272 -
330)

≤ 3
Re-presentations

excluded

0.716
(0.687 -
0.744)

0.966
(0.962 -
0.969)

0.658
(0.633 -
0.682)

0.974
(0.971 -
0.976)

671
(644 -
697)

9880
(9844 -
9915)

349
(314 -
385)

266
(240 -
293)

≤ 3
Only PCR-tested

presentations

0.591
(0.540 -
0.640)

0.911
(0.902 -
0.921)

0.403
(0.370 -
0.433)

0.957
(0.952 -
0.962)

220
(201 -
238)

3363
(3328 -
3397)

327
(293 -
362)

152
(134 -
171)

≤ 4 Reference
0.585

(0.556 -
0.615)

0.984
(0.982 -
0.987)

0.750
(0.724 -
0.778)

0.968
(0.965 -
0.970)

608
(578 -
639)

12838
(12811 -
12866)

203
(175 -
230)

431
(400 -
461)

≤ 4
Re-presentations

excluded

0.590
(0.558 -
0.621)

0.987
(0.985 -
0.989)

0.805
(0.776 -
0.832)

0.963
(0.961 -
0.966)

553
(523 -
582)

10095
(10071 -
10117)

134
(112 -
158)

384
(355 -
414)

≤ 4
Only PCR-tested

presentations

0.452
(0.401 -
0.503)

0.959
(0.953 -
0.965)

0.526
(0.480 -
0.575)

0.945
(0.941 -
0.950)

168
(149 -
187)

3539
(3516 -
3562)

151
(128 -
174)

204
(185 -
223)

Table 4.D.2: Sensitivity analysis of the CoLab-score in the temporal validation dataset us-
ing different inclusion criteria. ”Reference” represents the temporal validation dataset with
the original inclusion criteria. ”Re-presentations excluded” refers to the performance of the
CoLab-score when all re-presentations are excluded (i.e. no repeated presentations). ”Only
PCR-tested presentations” refers to the subgroup of patients that underwent PCR-testing.
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Chapter 5. Screening HCWs for COVID-19 based on laboratory test

Abstract
Background Coronavirus disease 2019 (COVID-19) is an ongoing

pandemic leading to exhaustion of the hospital care system. Our
health care system has to deal with a high level of absenteeism of
healthcare workers (HCWs) with COVID-19 related complaints, in
whom an infection with severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) has to be ruled out before they can return back to
work. The aim of the present study is to investigate if the recently
described CoLab-algorithm can be used to exclude COVID-19 in a
screening setting of HCWs.

Methods In the period from January 2021 till March 2021, HCWs with
COVID-19-related complaints were prospectively enrolled in this study.
Next to the routinely performed SARS-CoV-2 polymerase chain re-
action (PCR), using a set of naso- and oropharyngeal swab samples,
two blood tubes (one EDTA- and one heparin-tube) were drawn for
analysing the 10 laboratory parameters required for the CoLab-score.

Results In total, 726 HCWs with a complete CoLab-laboratory panel were
included in this study. In this group, 684 HCWs were tested SARS-
CoV-2 PCR negative and 42 cases PCR positive. ROC curve analysis
showed an area under the ROC-curve (AUC) of 0.853 (95% CI: 0.801-
0.904). At a safe cut-off value for excluding COVID-19 of -6.525, the
sensitivity was 100% with a specificity of 34% (95% CI: 21 to 49%).
No SARS-CoV-2 PCR cases were missed with this cut-off and COVID-
19 could be safely ruled out in more than one third of HCWs.

Conclusions The CoLab-score is an easy and reliable algorithm that can be
used for screening HCWs with COVID-19 related complaints. A major
advantage of this approach is that the results of the score are available
within 1 hour after collecting the samples. This results in a faster re-
turn to labour process of a large part of the COVID-19 negative HCWs
(34%), next to a reduction in PCR tests (reagents and labour costs) that
can be saved.
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5.1 Introduction

Coronavirus disease 2019 (COVID-19) is an ongoing pandemic with at
present over 150 million of cases and over three million deaths worldwide
[1]. The initial clinical symptoms for COVID-19 are nonspecific and similar
to other seasonal viral diseases, which encompass fever, dyspnoea, dry cough
and fatigue. Many countries, including the Netherlands, are struggling to
control COVID-19 outbreaks, especially in the detection of silent infections
in the pre- or asymptomatic patient that can contribute to transmission
[2]. Empirical studies have indicated that individuals may be highly
infectious during the presymptomatic phase [3]. Healthcare workers (HCWs)
potentially experience greater risks for emerging infectious diseases [4, 5]
due to occupational exposure to sick patients and virus-contaminated surfaces
[6]. Contagious HCWs may infect patients, co-workers and family members.
However, the absenteeism of ill HCWs from duty can threaten essential
healthcare staffing during an epidemic [7]. Therefore, infection prevention
and quick, accurate diagnosis of potential COVID-19 in HCWs are crucial to
maintain hospital operations [8]. Consequently, understanding the prevalence
of, and factors associated with severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) infection among frontline HCWs who care for COVID-19
patients are important to protect both HCWs and their patients. Next to
this, modelling analyses show that rapid case identification of infected
persons is critical to interrupt transmission, especially for infectious cases
without clinical symptoms [2]. At the moment, the health care system has
to deal with a high level of absenteeism of HCWs with COVID-19 related
complaints, and in whom an infection with SARS-CoV-2 has to be ruled
out before they can return back to work. Polymerase chain reaction (PCR)
based methodologies are the gold standard in confirming that the individual
presenting with COVID-19 has active viral shedding of SARS-CoV-2
[9]. However, there are some important limitations to PCR. First, current
techniques take up to 6-8 hours in order to obtain first results. Next to this,
laboratories often cannot handle the overload of tests. A third important
limitation is that PCR on a nasopharyngeal swab, may be false negative in
the initial phase of the disease, in spite of the presence of typical symptoms
[10–12]. In addition, the standard test used has an 80% accuracy (compared
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to chest CT scan results) [12], which may depend on the specific level of
viral shedding by any individual at the time of sample test. Fourth, the PCR
technique carries a certain cost, which could mean a considerable financial
burden [13]. Recently, a scoring algorithm was developed by Boer et al.,
called the ‘CoLab’-score [14]. The score is calculated using 10 numeric
values of routine-laboratory parameters next to the age of the patient. The
linear predictor of the CoLab-score is continuous, therefore a cut-off can be
chosen such that a high sensitivity and high negative predictive value can be
achieved. This algorithm was developed and validated to exclude COVID-19
in patients presenting at the emergency department (ED). The aim of the
present study was to investigate if the CoLab-score could be used to exclude
within one hour COVID-19 in a screening setting of healthcare workers, who
requested a SARS-CoV-2 PCR test because of COVID-19 related complaints,
or because they were in close proximity to a SARS-CoV-2 infected person.

5.2 Materials and Methods

5.2.1 Study design and inclusion of healthcare workers

We conducted a prospective screening study to assess the comparability
between naso-/oropharyngeal swabs and the CoLab-score (based on routine
blood tests). Healthcare workers (HCWs) were included during the period
from January 2021 till March 2021 either:

• because of coronavirus disease 2019 (COVID-19) related complaints or

• because they were in close proximity to a person with COVID-19.

HCWs were required to have complete data on clinical chemistry and hema-
tologic parameters, needed to calculate the CoLab-score. From the validation
study [14] it is known that there are some external factors influencing the pre-
dictive value of the score. For this reason, the following HCWs were excluded
from this study. HCWs with:

• more than 10 days complaints at the time of screening
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• a known positive severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) RT PCR in the past 4 weeks

• invalid polymerase chain reaction (PCR) test results due to contamina-
tion

Next to this, the data of the following HCWs were also excluded because of
known interference with the algorithm (see Table 4.3.2):

• a deep anemia (hemoglobin < 5.5 mmol/L)

• extreme laboratory values (>10 times standard deviation (SD)) in one
or more of the Colab-values, see Table 4.3.2)

Using a standard protocol, paired naso-/oropharyngeal swabs from HCWs
were collected using sterile flocked E-swabs and placed both in one sterile
tube containing viral transport medium. Next to this, blood was collected in
heparin- and EDTA-anticoagulated blood containers. The samples were trans-
ported to the central laboratory and immediately prepared for analysis.

5.2.2 Laboratory measurements

For clinical chemistry and hemocytometric analyses, heparin- and EDTA-
anticoagulated venous blood samples respectively were collected. All analy-
ses were performed at presentation. Clinical chemistry parameters C-reactive
protein (CRP), albumin, total bilirubin, alkaline phosphatase (ALP), gamma-
glutamyltransferase (gGT) and lactate dehydrogenase (LD) were obtained on
routine chemistry analysers from Roche (Cobas; Roche Dx, Basel, Switzer-
land). The hemocytometric parameters (leukocytes, erythrocytes, eosinophilic
and basophilic granulocytes) were derived from a complete blood count mea-
sured on a XN-1000 (Sysmex, Kobe, Japan). The nasopharyngeal and oropha-
ryngeal swab samples were obtained for SARS-CoV-2 detection using multi-
plex Real-Time Polymerase Chain Reaction with QIAsymphony DSP Virus/-
Pathogen Mini Detection Kit (Qiagen Inc). Both the binary outcome of the
PCR (positive or negative), as well as the cycle threshold (Ct) value (in case
of a positive PCR) were registered. In case of a negative PCR result in a HCW
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with persistent high suspicion for COVID-19 (e.g. suggestive symptoms with-
out apparent alternative cause) the PCR test could be repeated after 48 hr of
the initial PCR. The exclusion criterium of no more than 10 days complaints
at the time of screening, nevertheless applies.

5.2.3 CoLab-score calculation

The Colab-score is described in detail in Chapter 4. In short, it is calculated by
plugging the ten obtained laboratory measurands, next to the age of the HCW,
into a formula: – 6.885 + [erythrocytes] × 0.9379 – [leukocytes] × 0.1298
– [eosinophils] × 6.834 – [basophils] × 47.7 – log10([bilirubin]) × 1.142 +
log10([LD]) × 5.369 – log10([ALP]) × 3.114 + log10([gGT]) × 0.3605 – [al-
bumin] × 0.1156 + [CRP] × 0.02560 + [age] × 0.002275. This results in a
numeric value, called the CoLab-linear predictor (LP). This linear predictor
can be converted to a score using the cut-offs depicted in Fig. 4.3.2.

5.2.4 Statistical analysis

Since the CoLab-score was developed to screen patients presenting at the
emergency department (ED) for a possible COVID-19 infection, rather than
exclude a SARS-CoV-2 infection in HCWs, the suitability for screening
HCWs was investigated in this study. First, the discriminative ability of
the CoLab-linear predictor was assessed by calculating the area under the
ROC-curve (AUC). Secondly, model calibration was visually assessed with
a calibration plot where the CoLab-linear predictor was converted to the
predicted probability (through the inverse logit function) and the proportion
of observed outcomes was plotted versus expected probabilities [15]. A
logistic regression model was fitted to the CoLab predicted probabilities
to assess model calibration in terms of intercept and slope [15]. This was
done by plotting the proportion of observed COVID-19 positives versus
expected probabilities. Ideally, observed proportions are equal to expected
proportions, and this ideal-calibration line is shown as a straight line through
the origin with a slope of 1. The logistic calibration line will be a logistic
regression fit of the predicted probabilities. Using the intercept and/or slope
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from the logistic regression model, recalibrated probabilities were obtained
and also plotted in a calibration plot. Thirdly, a cut-off for the CoLab-linear
predictor was calculated to safely rule-out a COVID-19 infection in HCWs
with an estimated 95% sensitivity. This was done by fitting a Gaussian to
the distribution of the CoLab-linear predictor for all HCWs tested positive
for SARS-CoV-2. The cut-off to safely rule out COVID-19 was chosen as
the 5th percentile of the fitted Gaussian distribution. The number needed
to screen (defined as the number of HCWs needed to PCR test to find one
positive) is calculated by dividing the total number of HCWs below the
cut-off by the number of HCWs above the cut-off and tested PCR positive.
The fraction of HCWs falling below the cut-off was calculated to determine
the potential reduction in PCR tests. Confidence intervals for the Gaussian
fit, 5th percentile and potential reduction in PCR tests were obtained by
bootstrapping and calculating the bias-corrected and accelerated bootstrap
(BCa) confidence intervals (CIs). Finally, the relation between the PCR Ct
and CoLab-linear predictor was plotted to determine if higher Ct-values
corresponded to lower CoLab-linear predictor values. All statistical analyses
were performed in R version 4.0.5 [16], calibration plots were made using the
rms-package [17], bootstrapping was done using the boot-package [18].

5.2.5 Ethical considerations

The medical ethics committee of the Zuyderland Medical Center (METC Z)
approved this study (registration nr. METCZ2021002). Data were acquired
after informed consent and obtained in accordance with the Declaration of
Helsinki, version 2013. Participation in this study was voluntary, and each
participating HCW obtained a hard copy of the ”Test subject information
sheet”, in which the study is explained and were the participant has to give
written consent. These signed consent forms were also signed by the study
personnel member responsible for the venipuncture. Each participant was also
aware that they could opt out at any time. Because the study was restricted to
HCWs, no minors (<18 years) were included.
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5.3 Results

In total, 775 healthcare workers (HCWs) were included in this study. Forty-
nine out of the 775 HCWs were excluded Fig. 5.3.1. A total of 42 HCWs
(5.8 %) were severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
polymerase chain reaction (PCR) positive.

775 healthcare workers 

included from January 2021 till 

March 2021 with venous blood 

sampling and PCR testing

742 healthcare workers 

with complete lab panel and 

PCR testing

726 healthcare workers 

with CoLab-score and PCR test 

result. 

42 RT-PCR+, 684 RT-PCR-

Excluded 33 healthcare workers 

with missing laboratory values 

(e.g. due to hemolysis)

Excluded 16 healthcare workers

- 14 with more than ten days of complaints at 

the time of screening or a previous positive 

SARS-CoV-2 PCR in the past 4 weeks.

- 2 where the PCR-test result was not valid 

(e.g. due to contamination)

Figure 5.3.1: Inclusion flow of patients.

Descriptive statistics for the 726 included HCWs, grouped by PCR test result,
are shown in Table 5.3.1. Age, erythrocytes, lactate dehydrogenase (LD), al-
kaline phosphatase (ALP) and gamma-glutamyltransferase (gGT) do not show
significant differences between PCR positive and PCR negative groups. All
other variables included in the CoLab-score differ significantly between the 2
groups.
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PCR negative PCR positive p-value

N 684 42
Age in years (mean (SD)) 43.3 (12.9) 46.7 (12.3) 0.094

Male gender (%) 105 (15.4) 7 (16.7) 0.993
Erythrocytes in /pL (mean (SD)) 4.76 (0.39) 4.76 (0.40) 0.897

Leukocytes in /nL (median [IQR]) 6.92 [5.68, 8.43] 4.69 [3.90, 5.87] <0.001
Eosinophils in /nL (median [IQR]) 0.14 [0.09, 0.21] 0.08 [0.05, 0.12] <0.001

Basophils in /nL (median [IQR]) 0.04 [0.03, 0.06] 0.02 [0.01, 0.03] <0.001
Bilirubin in umol/L (median [IQR]) 7.0 [5.0, 9.2] 5.0 [4.0, 6.0] <0.001

LD in U/L (mean (SD)) 186.7 (34.5) 197.2 (41.8) 0.059
ALP in IU/L (median [IQR]) 74.0 [61.0, 89.0] 75.0 [64.5, 96.8] 0.561
gGT in U/L (median [IQR]) 17.0 [13.0, 25.0] 21.0 [14.0, 26.0] 0.166

Albumin in g/L (mean (SD)) 45.7 (3.0) 44.3 (2.7) 0.005
CRP in mg/L (median [IQR]) 1.7 [0.7, 4.0] 2.8 [1.4, 5.6] 0.012

Table 5.3.1: Descriptive statistics.
Shown are the laboratory tests required for the CoLab-score and their mean/median results
split by PCR test result. For results with normal distributions, the mean value and SD (in round
brackets) are shown. For results that have skewed or heavy tailed distributions, the median
value and the interquartile range (IQR) is shown [in squared brackets]. The p-value corre-
sponds to a t-test in case of a normal distribution (summarized by mean and standard deviation
(SD)), a Mann-Whitney U-test in case of non-normally distributed variables (summarized by
median and IQR) and a Fisher exact test for categorical variables. Lactate dehydrogenase (LD);
alkaline phosphatase (ALP); gamma-glutamyltransferase (gGT); C-reactive protein (CRP).

ROC-curve analysis of the CoLab-linear predictor is shown in Fig. 5.3.2. The
area under the ROC-curve (AUC) of the CoLab-linear predictor in discrimi-
nating between PCR positive and negative HCWs was 0.853 (95% CI: 0.801
– 0.904). The calibration plot corresponding to the predicted probabilities and
observed proportion of PCR positives is plotted in Fig. 5.3.3A. The logistic
regression calibration slope is equal to 1.056 (standard error (SE): 0.1438)
and the intercept 2.322 (SE: 0.6197). This implies that predicted probabili-
ties are systematically too low but re-calibration is straightforward, as there
is no evidence that the slope is ̸= 1, hence only the intercept term needs to
be added to the original CoLab-linear predictor to obtain a re-calibrated linear
predictor suitable for screening HCWs. The re-calibrated calibration plot is
show in Fig. 5.3.3B. This also illustrates that the discriminative ability of the
CoLab-linear predictor is preserved but that thresholds for screening HCWs
should be lower than emergency department (ED) patients. To define a safe
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Figure 5.3.2: ROC curve of the CoLab-linear predictor.
The area under the ROC curve is shown with the 95% DeLong confidence interval in round
brackets. The displayed threshold of -6.241 corresponds to a sensitivity of 100%, i.e. no HCWs
below this linear predictor were PCR positive.

cut-off for excluding COVID-19 in HCWs, a Gaussian is fitted to the dis-
tribution of CoLab-linear predictor of HCWs that were tested PCR positive
(Fig. 5.3.4). The Shapiro-Wilk test showed no evidence of non-normality (P-
value = 0.621). The 5th percentile of the Gaussian fit of the CoLab-linear pre-
dictor is equal to -6.525 (95% CI: -7.147 to -5.999), which is recommended as
the cut-off below which COVID-19 can be safely ruled-out in HCWs. Using
the -6.525 cut-off, the percentage of HCWs that can be safely excluded is 34%
(95% CI: 21 to 49%), with a specificity of 34%, a sensitivity of 100%, a posi-
tive predictive value (PPV) of 9% and a negative predictive value (NPV) value
of 100%. The number need to test is 12 (95% CI: 10 to 14). In Fig. 5.3.5 the
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Figure 5.3.3: Calibration plots.
A: In the calibration plot the proportion of observed COVID-19 positives versus expected pro-
portion of positives are plotted. Observations are grouped with an average of 50 observations
per group. The expected probabilities follow from applying the inverse logit function to the
CoLab-linear predictor. If the observed proportion in an external dataset is lower than the
expected proportion, this means risks are over-estimated, if the observed fraction is higher,
risks are under-estimated. Ideally, observed proportions are equal to expected proportions, this
ideal-calibration-line is shown as a straight line through the origin with a slope of 1. The lo-
gistic calibration line is a logistic regression fit of the predicted probabilities.
B: Using the intercept and/or slope from the logistic regression model, recalibrated probabili-
ties were obtained and plotted in a second calibration plot.

relationship between the CoLab-linear predictor and the PCR cycle thresh-
old (Ct) value is plotted. The fitted smooth in Fig. 5.3.5 shows a rising Ct
value (implying a decreasing amount of template) near the lower end of the
CoLab-linear predictor.
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Figure 5.3.4: Histograms and fitted Gaussian distribution of the CoLab-linear predictor split
by PCR result.
A normal distribution was fitted to the PCR negative group (mean: -6.04, SD: 1.73), the dashed
lines represent the 95% confidence interval (CI). The 5th percentile of the Gaussian distribution
is shown in red and dashed lines represent the 95% CI. Linear predictor values below this 5th
percentile are regarded as non-COVID-19.
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Figure 5.3.5: CoLab-linear predictor versus PCR Ct value.
The CoLab-linear predictor is plotted versus the PCR Ct value. The red line is the CoLab-
linear predictor cut-off below which HCWs are regarded as non-COVID-19, the dashed red
lines represent the 95% confidence interval (CI) of the cut-off. The dashed line is a LOESS
smooth where the 95% CI is shown in gray.
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5.4 Discussion

In this prospective study among healthcare workers (HCWs), it was shown
that the model behind the CoLab-score could be used to safely exclude coro-
navirus disease 2019 (COVID-19) in HCWs. The original cut-off for the
CoLab-linear predictor was adapted for excluding COVID-19 in HCWs. Us-
ing this adapted cut-off, a negative predictive value (NPV) of 100% was found
with a specificity of 34% (95% CI: 21 to 49%). The number needed to screen
by using the CoLab guided severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) polymerase chain reaction (PCR) testing was 12 (95% CI: 10
to 14). The overall prevalence of COVID-19 in this group of HCWs was 5.8%.
In 33 cases (4.3%) the CoLab score could not be calculated. This was due to
haemolysis of the blood sample, caused by an improper venipuncture.

PCR-based methodologies are the gold standard for confirming COVID-19.
There are several factors that can contribute to false-negative results, includ-
ing the adequacy of the specimen collection technique, time from exposure
and specimen source. Furthermore, current and future viral changes could af-
fect viral based diagnostics [19–21]. In addition, several studies have already
shown that COVID-19 is characterized by biochemical as well as haemato-
logical changes in peripheral blood [12, 22–24]. Next to focusing on the viral
response (PCR), investigating the host immune response by analysing bio-
chemical and haematological changes in peripheral blood is an attractive al-
ternative method [25]. As shown in the living systematic review from Wynants
et al. [26], a considerable number of prediction models for COVID-19 have
been published until recently, and biochemical and haematological param-
eters are often an important part of these prediction models. Recently the
CoLab-score was developed and externally validated by Boer et al. [14] to ex-
clude COVID-19 in patients presenting at the Emergency Department, using
an adaptive lasso-regression technique [27]. This score is based on 6 bio-
chemical and 4 haematological parameters, next to the age of the patient. It
appears that the strength of the high NPV derived from this algorithm is driven
by the absence of specific COVID-19 related biochemical and haematological
changes in peripheral blood. As the CoLab-score is based on a categorization
of the underlying continuous linear predictor, the cut-offs define the diagnos-
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tic properties of the individual scores. Our results show that the discriminative
ability of the CoLab-linear predictor is preserved when screening HCWs in-
stead of patients presenting at the emergency department, as indicated by the
area under the ROC-curve (AUC) and calibration slope. The AUC is lower
than the development group of the original CoLab study [14], but similar to
the AUC reported for external datasets in the original CoLab study. Therefore,
the discriminative ability seems to be preserved when classifying HCWs. The
cut-offs defined in the original CoLab publication are however not suitable for
excluding COVID-19 in HCWs. This is confirmed by the calibration intercept
which shows that probabilities predicted by the original CoLab-linear predic-
tor are systematically too low for HCWs. As reliable exclusion of COVID-19
is of utmost importance in screening HCWs, a logical choice would be to
select the highest cut-off with 100% sensitivity. However, one might spec-
ulate that when sampling more HCWs, the sensitivity could drop, and PCR
positive HCWs could occur even below this threshold. Therefore, the Gaus-
sian distribution was fitted to the data and the 5th percentile chosen as safe
cut-off. Doing so, the reliability increases at the expense of the number of
“negative” results. We recommend that the optimal cut-off value is -6.525,
where COVID-19 could be excluded in about 34% of the HCWs. Further-
more, Fig. 5.3.5 suggests that potentially “missed” COVID-19 HCWs might
have relative high cycle threshold (Ct) values, potentially resulting in lower
disease burden and contagiousness. It must be kept in mind that this study was
performed in a time that the prevalence of COVID-19 was high (> 10%) and
avoiding false-negatives had the highest priority. For this reason, the optimal
cut-off is now set a very low threshold. It can be hypothesized that when the
COVID-19 prevalence drops, the cut-off value can be adapted by investigating
which NPV can be allowed in this new setting. It turned out that the cut-off to
be used in the CoLab-algorithm in the HCW screening setting is different from
that of patients presenting at the emergency department (ED). This could be
explained by the fact that in the screening setting, the duration of the infective
period is shorter, the complaints are milder and consequently the host-immune
response is also less pronounced [25]. In addition, in our study group there
were 2 HCWs in which the SARS-CoV-2 PCR was initially negative, while
the CoLab-score was not negative. A week later both HCWs had a re-test
because of persistent COVID-19 related complaints. At that time the CoLab-
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linear predictor had worsened, and at that time the repeated PCR test turned
out to be positive. Because these 2 HCWs had more than 10 days COVID-
19-related complaints, they were excluded from this study. It would appear
that the outcome of the CoLab-score is dynamic and follows the host immune
response. At this time, also so-called rapid lateral flow tests (LFTs) are avail-
able which detects the presence of the SARS-CoV-2 antigen. They are widely
adopted In EDs because of their ease of use and the rapid result (< 30 min-
utes). However, compared to these LFTs which provide a dichotomous results,
the CoLab-score provides a continuous score. Using the above-mentioned cut-
off value, the CoLab-score offers a higher sensitivity and are therefore more
suitable to rule-out COVID-19 than a LFT, which are only moderately sensi-
tive [28, 29]. A limitation of this study is that this study has been performed in
a period where only the original SARS-CoV-2 strain, next the alpha-variant,
were dominant. Since the CoLab-score reflects the host-response to the virus,
it is expected that the accuracy of the score will not be changed by emerging
SARS-CoV-2 variants. This assertion is supported by Boer et al., who found
sustained diagnostic performance of the CoLab-score in periods with different
dominant variants (especially Alpha- and Delta-variant) [14]. A control group
of HCWs who did not have complaints and were not in close proximity of a
COVID-19 patient, was ideally a good control group to test for false-positive
results. Unfortunately, this was practically not feasible because the study was
designed and performed in a period with high absenteeism of HCWs due to
COVID-19. The medical board as well as the ethical committee of our hospi-
tal found it unethically to test HCWs with no complaints, especially with the
knowledge that a positive SARS-CoV-2 PCR test result does not always mean
that the person can spread the virus actively. Because the focus of our study
was directed to develop a screening method with a high NPV, the lack of this
control group can be seen as a limitation of our study. Next to this, we don not
have any information about the kind of work the HCW performs (e.g. nurse,
physician, laboratory personnel, cleaning staff, transport) and for that reason
it is not possible to assess the group of HCWs who work in close proximity of
a COVID-19 patient, separately from the group of HCWs who don’t work in
close proximity.

In conclusion, the CoLab-score is an easy and reliable algorithm that, using
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an adapted cut-off, can be used in screening HCWs with COVID-19 related
complaints. Major advantages of this approach are that the results of the score
are available within 1 hour after collecting the samples, it can be implemented
in almost every hospital, even in a 24/7 setting, and the costs are minimal
compared to PCR testing. This results in a faster return to labour process of a
significant part of the COVID-19 negative HCWs (34%), next to a reduction
in PCR tests (reagents and labour duties).
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Chapter 6. Validation of the ELAN-HF score

Abstract

Aim To validate the predictive value of the European coLlaboration on Acute
decompeNsated Heart Failure (ELAN-HF) score, and to assess the ef-
fect of self-care behaviour on readmission and mortality in patients after
admission with acute decompensated heart failure (ADHF).

Design Quantitative, prospective, single centre, cohort study.

Methods N-Terminal pro–B-type natriuretic peptide (NT-proBNP) levels
were measured on admission and discharge, and were used together
with clinical and laboratory parameters to calculate the ELAN-HF
score. Patients were stratified into four risk groups (low, intermediate,
high, very high) according to their ELAN-HF score. The performance
of the ELAN-HF score was evaluated and compared to the original
study. Self-care behaviour was assessed by the European Heart Failure
Self-care Behaviour Scale (EHFScBS-9). Survival analysis was used
to estimate the association between both scores and re-admission for
heart failure (HF) and/or all-cause mortality within 180 days.

Results 88 patients were included. The median age of the study population
was 75 years (interquartile range (IQR) 69–83), 43% was female. New
York Heart Association (NYHA) III/IV functional class was present at
discharge in 68 patients (85%) and 27 patients (34%) had a left ven-
tricular ejection fraction < 40%. Complete data and 180 day follow up
was available for 80 patients. 55% reached the endpoint of readmission
and/or all-cause mortality. There was a significant association between
the ELAN-HF score and re-admission and/or mortality < 180 days (HR
= 1.25, 95% CI 1.08—1.45, p = 0.003). The median EHFScBS-9 score
was 68.1 (IQR 58.3 – 77.8). There was no significant association be-
tween the EHFScBS-9 score and readmission and/or mortality < 180
days (HR = 1.01, 95% CI 0.99—1.03, p = 0.174).

Conclusion This study confirms the validity and therefore the potential of
the ELAN-HF score to triage patients with ADHF before discharge.
Using this score may optimize the follow-up treatment on the nurse-
led heart failure clinic in order to decrease readmission and mortality.
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Self-care behaviour was non-significantly associated with readmission
and/or mortality in our study population.

Trial Registration This study has been registered with the ethics
committee MEC-U (Nieuwegein, The Netherlands), registration nr:
V.160999/W18.208/HG/mk.
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6.1 Introduction

Heart failure (HF) is defined by the European Society of Cardiology as a clin-
ical syndrome and an inadequacy of the pumping function of the heart, char-
acterized by symptoms such as shortness of breath, persistent coughing or
wheezing, ankle edema and fatigue, that may be accompanied by the follow-
ing signs: elevated jugular venous pressure, pulmonary crackles, increased
heart rate and peripheral edema [1]. HF is a major health problem, with a
prevalence of 238.700 patients and a mortality rate of 7.264 patients in 2019 in
the Netherlands [2]. At present, approximately 26 million people worldwide
are living with HF. The prognosis of patients suffering from HF is poor, with
survival rates worse than those for bowel, breast or prostate cancer [3]. HF
causes severe economic, social and personal costs. Globally, the increasing
burden of HF is taking its toll on society, in particular on patients, caregivers
and healthcare systems [3]. After hospitalization for acute decompensation,
approximately 20% of patients with HF are readmitted within 30 days and
over 50% within 6 months, with a 60-day mortality rate after admission of
15.2% [4]. Nurses on the nurse-led HF clinic play a crucial role in the pre-
vention of readmission and mortality in patients with HF. In order to improve
this care, accurate prediction scores on these events may be of great value.
A common measure in the nurse-led HF outpatient clinic, in order to reduce
readmission and mortality, is patient education in self-care behaviour [5]. The
present study addresses both the prediction of readmission and mortality and
self-care behaviour after an admission for HF.

6.1.1 Background

The concept of HF nurses working in an outpatient clinic was for the first
time described in 1983 [6]. This was followed by the first nurse-led HF clinic
in Sweden in 1990 after which they spread out to many Swedish hospitals.
Nurse-led HF clinics reduce the need for hospital care since titration of drugs
can be rapidly achieved. Furthermore, studies indicate that early follow-up
after hospitalization may prevent readmissions [6]. Similar to these achieve-
ments on HF clinics, several studies on other nurse-led clinics also indicated
positive effects [7]. Rich et al. investigated the effect of a multidisciplinary,
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nurse-directed intervention and found that the intervention improved the pa-
tients’ compliance, quality of life and decreased the rate of readmission and
the healthcare costs [8]. Nurses independently perform anamnesis and phys-
ical examination, and are responsible for the diagnostic processes. Nurse-led
HF clinics provide education on self-care and psychosocial support to patients
and their family. Programs employing multidisciplinary teams and in-person
communication led to fewer HF hospital readmissions [9]. High-risk HF pa-
tients (advanced stage, low self-care skills, elderly, and those with frequent
readmissions) may be expected to benefit the most from improvements in HF
self-care knowledge and home care behaviour skills [9].

6.1.2 Risk of readmission; ELAN-HF score

Prognostication of patients is useful in triaging patients during and after hos-
pitalization [10, 11]]. For this purpose, specific predictors for readmission of
patients with HF have emerged [12]. By combining different clinical and lab-
oratory parameters in a clinical prediction model, patients can be triaged just
before discharge. In patients with HF, plasma biomarkers brain natriuretic
peptide (BNP) and N-Terminal pro–B-type natriuretic peptide (NT-proBNP)
are commonly used. They indicate the severity of congestion and cardiac dys-
function and predict morbidity and mortality [13]]. Various risk models for
readmissions and mortality in HF have already been developed [11, 14–17].
They incorporate the natriuretic peptide levels, measured either at admission
or discharge, while some models also use their change during hospitaliza-
tion. The PRIMA II trial, which investigated the influence of changing of NT-
proBNP with guided therapy and intensified HF care pre-discharge, did not
demonstrate an improvement in prognosis in these patients [18]. The Euro-
pean coLlaboration on Acute decompeNsated Heart Failure (ELAN-HF) score
is a model which is different from other risk models because it incorporates
absolute discharge NT-proBNP levels, but also the percentage change in NT-
proBNP, along with clinical risk markers [14]. Although it has been already
validated retrospectively in a cohort of 325 patients, multiple external vali-
dations are needed to generalize the ELAN-HF score as a prediction model
before it can be implemented in the clinical practice of the nurse-led HF clinic
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[19, 20].

6.1.3 Self-care behaviour

Self-care behaviour is defined as the behaviour that consists of the decisions
and strategies that a person undertakes for the sake of livelihood, healthy func-
tioning and well-being [21, 22]. Previous studies indicated that optimal self-
care behaviour can lead to fewer hospital admissions for HF [23]. Further-
more, is has been prospectively demonstrated that the use of information to
improve self-care in HF led to a 30% decrease in readmission and outpatient
visits within 30 days of discharge [23]. Self-care behaviour can be scored
by using the European Heart Failure Self-care Behaviour Scale (EHFScBS-
9), containing 9 items grouped around consulting behaviours and adherence
with the regimen. Each of the items is graded with a 5-point Likert scale, see
Table 6.1.1. This questionnaire was validated in several countries and was
revised in 2014 [5].

Totally
agree Agree Neutral Disagree

Totally
disagree

1 I weigh myself every day. 1 2 3 4 5

2
If SOB (shortness of breath) increases,
I contact my doctor or nurse. 1 2 3 4 5

3
If my legs/feet are more swollen,
I contact my doctor or nurse. 1 2 3 4 5

4
If I gain weight more than 2 kg in 7 days,
I contact my doctor or nurse. 1 2 3 4 5

5 I limit the amount of fluids. 1 2 3 4 5

6
If I experience fatigue,
I contact my doctor or nurse. 1 2 3 4 5

7 I eat a low-salt diet. 1 2 3 4 5
8 I take my medication as prescribed. 1 2 3 4 5
9 I exercise regularly. 1 2 3 4 5

Table 6.1.1: The European Heart Failure Self-care Behaviour Scale (EHFScBS-9).
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6.2 Materials and methods
6.2.1 Aims

The first aim of this study was to validate the predictive value of the European
coLlaboration on Acute decompeNsated Heart Failure (ELAN-HF) score on
readmission and/or mortality in a prospective study of a hospitalized heart
failure (HF) population. The second aim was to assess the effect of self-care
behaviour on readmission and mortality in these patients.

6.2.2 Design

We conducted a quantitative, prospective, single centre cohort study. The
primary endpoint is a composite endpoint of re-admission and /or all-cause
mortality at 180 days. The secondary endpoint is all-cause mortality at 180
days. Patients hospitalized for acute decompensated heart failure (ADHF)
were included for three months (October - December 2017). A readmission
was defined as an urgent clinical admission with a duration of at least 24
hours after a previous discharge from the hospital. Two sources were used
for data collection. The data for both the outcome variables (readmission
and / or mortality within 180 days), as well as the baseline characteristics
and biomarkers (independent variables), were extracted from the electronic
health record (EHR), whereas missing data on mortality were retrieved from
the general physician. The ELAN-HF score was calculated from these data.

6.2.3 Participants

Patients with ADHF were included at admission. Excluded were patients with
cognitive limitations, inability to speak the Dutch language and patients who
could not be followed-up after discharge.

6.2.4 Ethical considerations

The local ethics committee of the Catharina Hospital, Eindhoven approved
the study. All investigators adhered to the principles of the Declaration of
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Helsinki. The measurements performed during this study were part of routine
care. In addition, all included patients were informed orally and in writing by
the investigator and gave written consent.

6.2.5 ELAN-HF score

The ELAN-HF score, can be calculated using the scoring rule or regression
coefficients as shown in Table 6.2.1. The score can be categorized into four
risk categories as defined by Salah et al., low (≤ 2 points), intermediate (3-
4 points), high (5-7 points) and very high (≥ 8 points) which correspond to
increasing 6-month mortality rates (3.6%, 9.2%, 23.5% and 51.1%) [14].

Predictor Score
Regression
coefficient

NT-proBNP reduction <30% 1 0.511
NT-proBNP discharge value,

1500-5000 pg/ml 1 0.713
5001-15000 pg/ml 3 1.426

>15000 pg/ml 4 1.776
Age at admission ≥75 years 1 0.345
Peripheral edema at admission 1 0.517
SBP at admission ≤115 mmHg 1 0.431
Hyponatremia at admission,
sodium <135 mmol/L 1 0.374

Serum urea at discharge ≥ 15 mmol/L 1 0.486
NYHA class III/IV at discharge 1 0.403

Table 6.2.1: Calculation of ELAN-HF score. The NT-proBNP reduction is the percentage
change between NT-proBNP on admission and NT-proBNP on discharge. Maximum “penalty
points” in the risk score is 11. N-Terminal pro–B-type natriuretic peptide (NT-proBNP); sys-
tolic blood pressure (SBP); New York Heart Association (NYHA).

6.2.6 Self-care behaviour

To assess self-care behaviour, the Dutch version of the European Heart Fail-
ure Self-care Behaviour Scale (EHFScBS-9), was used, see Table 6.1.1 [24].
The questionnaire was handed out by the investigator during admission and
was completed by the patient without the presence of the investigator. The
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EHFScBS-9 score ranges from 9 – 45, but has been standardised to a scale of
0 – 100 with higher scores indicating better self-care [5]. The details to cal-
culate the standardised score are given in the study of Vellone et al.[5]. The
standardised score has an easier interpretation, where a score < 50 means sub-
optimal score of self-care, and a score 50-100 can be seen as an optimal/good
score of self-care [5].

6.2.7 Statistical analysis

The statistical analyses consisted of two parts: i) external validation of the
ELAN-HF score in our study cohort and ii) survival analysis of the ELAN-HF
score, EHFScBS-9 score and other clinically relevant variables.

External validation

External validation is the process of evaluating model performance in a sample
independent of that used to develop the model. The outcome used for external
validation was 6-month all-cause mortality, analogous to Salah et al. [14].
The 6-month mortality rates for the four risk groups as reported by Salah et
al. were compared to those of our study cohort. The external validation steps
performed in this study are described in more detail by Royston et. al [25].
First, the ELAN-HF linear predictor was calculated by using the regression
coefficients in Table 6.2.1. The ELAN-HF linear predictor was then used as a
covariate in a Cox proportional hazards (PH) model. A likelihood ratio (LR)
test was performed to test whether the slope of the ELAN-HF linear predictor
was equal to 1. Secondly, the model misspecification was tested formally by
running a Cox PH model on all the ELAN-HF covariates and constraining the
coefficient of the ELAN-HF linear predictor to 1. Thirdly, the discriminative
ability of the ELAN-HF score was evaluated using Harrell’s c-index. Finally,
calibration was evaluated for predicting all-cause mortality at 6-months. The
baseline-hazard at 6 months was obtained through personal correspondence
with the authors of the ELAN-HF paper [14]. Patients were grouped based on
expected/predicted probabilities and observed probabilities were calculated.
Plotting expected versus observed probabilities yielded a calibration plot.
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Survival analysis

Survival curves were analysed for the ELAN-HF and EHFScBS-9 scores and
compared with log-rank tests. For the ELAN-HF the score categories de-
scribed by Salah et.al were used as reference. In case of the EHFScBS-9
score, patients with an EHFScBS-9 normalized score lower than or equal to
the median EHFScBS-9 normalized score were categorized as “low”, and pa-
tients above the median as “high”. Kaplan-Meier (KM) curves were analysed
using the log rank test to assess if there were significant differences between
groups in cumulative incidence of events. An event was defined as time to first
readmission or time till death from any cause. Secondly, survival was anal-
ysed by Cox PH models by using time to readmission or all-cause mortality
within 6 months as the outcome. Univariate Cox PH models were fit to a sub-
set of clinically relevant variables that were not in the ELAN-HF score. The
variables that were tested significant in univariate analysis were then included
in a multivariate Cox PH model to assess whether the ELAN-HF score could
be improved by the EHFScBS-9 score or other variables. Statistical analyses
were performed in R version 4.0.3 [26] and a p-value < 0.05 was considered
statistically significant.

6.2.8 Validity, reliability and rigour

The ELAN-HF score consists of clinical variables (age, peripheral edema on
admission, systolic blood pressure and New York Heart Association (NYHA)
class) and biomarkers (NT-proBNP, sodium and urea). All variables were col-
lected from the EHR. Biomarkers were measured in the clinical laboratory on
a Cobas 8000 Pro (Roche Dx, Basel, Switzerland) instrument. The reliabil-
ity and validity of the EHFScBS-9 to measure self-care has been extensively
researched in multiple studies [16, 27, 28]. These studies show that the psy-
chometric properties of the EHFScBS-9 are satisfactory.
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6.3 Results
Eighty-eight patients fulfilled inclusion criteria of whom 8 patients were ex-
cluded due to lack of follow-up after discharge. Baseline characteristics are
demonstrated in Table 6.3.1. The median age was 75 years (interquartile range
(IQR) 69-83), 38 patients (47.5%) were diagnosed with atrial fibrillation at
admission and 41 patients (51.2%) had a history of ischemic heart disease.
Twenty-six patients (32.5 %) had been previously hospitalized for acute de-
compensated heart failure (ADHF) in the penultimate year. After 180 days,
more than half (n = 44, 55%) of the patients had an event. Thirty-five pa-
tients were readmitted and twenty-one patients died, within 180 days after
discharge

6.3.1 External validation

Table 6.3.2 presents 6-month all-cause mortality according to subdivisions of
the European coLlaboration on Acute decompeNsated Heart Failure (ELAN-
HF) score risk groups, comparing actual and predicted mortality. Fig. 6.3.1
shows the calibration plot for predicting 6-month all-cause mortality. Al-
though there is a relatively small of number of patients in each group (20),
there are no signs of miscalibration. The slope of the ELAN-HF linear pre-
dictor in the validation cohort was 0.80 (standard error (SE) = 0.22), the slope
is not significantly different from 1 (likelihood ratio (LR) test χ2

d f=1 = 0.81,
p = 0.367), so the discrimination of the ELAN-HF score seems to be pre-
served in our cohort. There was also no evidence of model misspecification, a
joint test of all the predictors was non-significant (χ2

d f=10 = 14.71, p = 0.143),
meaning that the regression coefficients of the ELAN-HF score do not appear
biased. The discriminative ability expressed in Harrell’s c-index was 0.719
(SE = 0.056) in our cohort, this is similar to the reported index by Salah et al.
of 0.71 [14].

6.3.2 Survival analysis

Fig. 6.3.2 show the relationship between the risk groups derived from both Eu-
ropean Heart Failure Self-care Behaviour Scale (EHFScBS-9) (panel A) and
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ELAN-HF scores (panel B) and the composite endpoint of readmission and/or
all-cause mortality. There was no significant difference in composite endpoint
among patients with low EHFScBS-9 score (i.e., below or equal to the median
of the normalized EHFScBS-9 score) in comparison to patients with a high
score (24%, versus 31% respectively Kaplan-Meier (KM)-log rank test p =
0.15). Readmission and/or mortality rate was significantly higher in patients
with higher ELAN-HF scores in comparison to those with low scores (KM
log-rank test p = 0.0071). Due to the smaller sample size, there is an overlap
between survival curves of the low and intermediate, and high and very high-
risk groups. Univariate Cox regression analysis for the composite endpoint
results is shown in Table 6.3.3. Univariate analysis did not show that the nor-
malized EHFScBS-9 score was associated with 6-month readmission and/or
mortality. Other than the ELAN-HF score, two additional variables showed
a significant association; whether the patient was admitted with ADHF in the
previous year, and whether the patient is an outpatient clinic patient. Both
factors increased the risk of 6-month readmission and/or mortality. This as-
sociation remained significant in multivariate analysis. A LR-test revealed
that adding these variables to the ELAN-HF score improved the model fit
(χ2

d f=2 = 10.61, p = 0.005) in predicting risk of 6-month readmission and/or
mortality.
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ELAN-HF score
low or intermediate

ELAN-HF score
high or very high Overall

n 29 51 80
Female gender (%) 10 (34.5) 24 (47.1) 34 (42.5)

Age in years (mean (SD)) 72.2 (10.7) 76.5 (8.5) 74.9 (9.5)
BMI in kg/m2 (mean (SD)) 26.6 (5.5) 27.1 (6.2) 26.9 (5.9)

History of DM (%) 6 (20.7) 13 (25.5) 19 (23.8)
History of COPD (%) 5 (17.2) 8 (15.7) 13 (16.2)

Atrial fibrillation at admission (%) 13 (44.8) 25 (49.0) 38 (47.5)
Admitted with ADHF in past year (%) 7 (24.1) 19 (37.3) 26 (32.5)

History of valvular disease (%) 20 (69.0) 34 (66.7) 54 (67.5)
Ischaemic aetiology (%) 14 (48.3) 27 (52.9) 41 (51.2)

Outpatient clinic patient (%) 1 (3.4) 15 (29.4) 16 (20.0)
NYHA class at discharge (%)

II 5 (17.2) 7 (13.7) 12 (15.0)
III 19 (65.5) 31 (60.8) 50 (62.5)

III-IV 5 (17.2) 13 (25.5) 18 (22.5)
Left Ventricular Ejection Fraction (%)

Preserved 11 (37.9) 20 (39.2) 31 (38.8)
Moderately reduced 11 (37.9) 11 (21.6) 22 (27.5)

Reduced 7 (24.1) 20 (39.2) 27 (33.8)
NT-proBNP at admission

pg/ml (median [IQR]) 3440.0 [2617.0, 5241.0] 6781.0 [3884.5, 14211.5] 5604.0 [3038.5, 10005.2]

NT-proBNP at discharge
pg/ml (median [IQR]) 1892.0 [728.0, 2376.0] 5942.0 [3056.5, 10968.0] 3505.0 [1911.5, 7860.8]

NT-proBNP change % (mean (SD)) -57.9 (24.3) -6.1 (54.2) -24.8 (51.9)
ELAN-HF score (median [IQR]) 3.0 [2.0, 4.0] 6.0 [5.0, 7.0] 5.0 [3.8, 6.0]

ELAN-HF score risk category (%)
Low 10 (34.5) 0 (0.0) 10 (12.5)

Intermediate 19 (65.5) 0 (0.0) 19 (23.8)
High 0 (0.0) 41 (80.4) 41 (51.2)

Very high 0 (0.0) 10 (19.6) 10 (12.5)
Normalized EHFScBS-9 score

(median [IQR]) 61.1 [50.0, 75.0] 69.4 [61.1, 77.8] 68.1 [58.3, 77.8]

Outcome (%)
Event-free 20 (69.0) 16 (31.4) 36 (45.0)

Readmission 6 (20.7) 17 (33.3) 23 (28.7)
Mortality 3 (10.3) 6 (11.8) 9 (11.2)

Readmission and mortality 0 (0.0) 12 (23.5) 12 (15.0)

Table 6.3.1: Baseline characteristics.
BMI (Body Mass Index) based on clinical measurements of weight en length. Standard de-
viation (SD); interquartile range (IQR); Chronical Obstructive Pulmonary Disease (COPD);
Diabetes Mellitus (DM); acute decompensated heart failure (ADHF); New York Heart Associ-
ation (NYHA); N-Terminal pro–B-type natriuretic peptide (NT-proBNP); European coLlabo-
ration on Acute decompeNsated Heart Failure (ELAN-HF); European Heart Failure Self-care
Behaviour Scale (EHFScBS-9).
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ELAN-HF score risk group ELAN-HF cohort Study cohort (95% CI)

Low (≤ 2) 3.6 % 10.0 % (0 – 28.8 %)
Intermediate (3 - 4) 9.2 % 10.8 % (0 – 23.3 %)
High (5-7) 23.5 % 29.3 % (13.8 – 41.9 %)
Very high (≥ 8) 51.1 % 60.0 % (14.5 – 81.3 %)

Table 6.3.2: 6-month mortality rates.
Comparison between 6-month mortality rates in the ELAN-HF development cohort and in this
study cohort. If calibration is good, mortality rates should agree.
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Figure 6.3.1: Calibration plot for predicting 6-month all-cause mortality.
Observations are grouped into groups of 20 patients, the ideal line represents the diagonal
along which there is perfect calibration. The histogram on the bottom shows the distribution
of patients with (= 1) and without (= 0) an event.
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Figure 6.3.2: Kaplan-Meier (KM) curves.
A: KM curve for composite endpoint of readmission and/or mortality within 180 days in re-
lation to the self-care behaviour EHFScBS-9 score. On the X-axis the time in days until the
first HF readmission or all-cause mortality within 180 days. On the Y-axis the event rate in
percentages.
B: KM curve for composite endpoint of readmission and/ or mortality within 180 days in re-
lation to the ELAN-HF risk score categories. On the X-axis the time in days until the first HF
readmission or all-cause mortality within 180 days. On the Y-axis the event rate in percentages.
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Univariate HR
Univariate
p-value

Multivariate HR
Multivariate
p-value

Female gender 1.45 (0.8 to 2.61) 0.223
History of DM 1.05 (0.53 to 2.08) 0.888

History of COPD 1.87 (0.92 to 3.8) 0.084
Atrial fibrillation at admission 1.51 (0.83 to 2.73) 0.175

Admitted with ADHF in past year 2.42 (1.33 to 4.4) 0.004 1.90 (1.02 - 3.54) 0.044
Outpatient clinic patient 2.78 (1.45 to 5.35) 0.002 2.16 (1.10 - 4.24) 0.025

Left Ventricular Ejection Fraction,
Preserved Reference

Moderately reduced 1.02 (0.63 to 1.66) 0.927
Reduced 1.28 (0.73 to 2.23) 0.387

ELAN-HF score 1.27 (1.11 to 1.46) <0.001 1.24 (1.085 - 1.44) 0.003
EHFScBS-9 score normalized 1.01 (0.99 to 1.03) 0.174

Table 6.3.3: Cox regression analysis (univariate and multivariate) for readmission and/or mor-
tality ≤ 180 days.
Diabeters mellitus (DM); chronical obstructive pulmonary disease (COPD); acute decompen-
sated heart failure (ADHF); European coLlaboration on Acute decompeNsated Heart Failure
(ELAN-HF); European Heart Failure Self-care Behaviour Scale (EHFScBS-9).
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6.4 Discussion

6.4.1 Validation of the ELAN-HF score

The European coLlaboration on Acute decompeNsated Heart Failure (ELAN-
HF) study retrospectively defined a risk score model for all-cause mortality
for patients discharged after acute decompensated heart failure (ADHF) [14],
which was validated in an independent cohort [20]. In our study, we validated
the ELAN-HF score with prospectively collected data and demonstrated that
180-day mortality can be robustly predicted. To assess the added value of
the European Heart Failure Self-care Behaviour Scale (EHFScBS-9) score,
we used the composite endpoint of mortality and/or readmission. Note that
the composite endpoint event rate in our study was 55%, compared to 43%
in the ELAN-HF study. This can be explained by the fact that patients in
our study had a relatively higher New York Heart Association (NYHA)-class
compared to the ELAN-HF study. While the ELAN-HF score demonstrated
significant association with the composite endpoint, the EHFScBS-9 self-care
score did not. Therefore we argue that implementing the ELAN-HF risk
score on the nurse-led heart failure (HF) clinic can offer sufficient guidance to
follow-up high risk patients and we strongly suggest to add this score to the
discharge checklist as standard care. The high-risk population could benefit
from more aggressive treatment and also from a closer follow-up by intensive
(tele-)monitoring throughout the entire HF care network.

6.4.2 Self-care behaviour and prognosis

While earlier studies demonstrated a relationship between better self-care and
a reduced readmission rate [23], self-care behaviour was non-significantly as-
sociated with readmission and/or mortality in our study population. This is
most likely caused by an on-average high normalized self-care score (median
of 68) within our cohort. These patients already received self-care education
and were experienced with adjusting their lifestyle, knowledge of their dis-
ease and alarming symptoms. However, an optimal self-care score can always
benefit from improvement [21, 22]. Therefore, it remains important to invest
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in improving self-care behaviour and to optimize patient education in HF and
self-care activities by nurses, during the discharge and outpatient phases.

6.4.3 Limitations

Several limitations of our analyses should be acknowledged. First, is the num-
ber of participants. While the sample size was sufficient to demonstrate the
prognostic value of the ELAN-HF model, this limits the power to detect ad-
ditional prognostic factors. A second limitation is that using self-reports as in
the EHFScBS-9 may be affected by memory and social desirability biases.

6.5 Conclusion
Patients admitted with acute decompensated heart failure (ADHF) have a high
risk of post-discharge readmission and death. In this study, we validated the
European coLlaboration on Acute decompeNsated Heart Failure (ELAN-HF)
model that can be used to triage these patients into different risk groups. Based
on this knowledge, follow-up treatment in the nurse-led heart failure (HF)
clinic can be adjusted in order to improve prognosis. Self-care behaviour was
non-significantly associated with readmission and/or mortality in our study
population, most likely due to the fact that most patients already score optimal
in terms of self-care. However, in our opinion, to achieve optimal outcomes,
combining risk stratification and applying self-care behaviour is of great im-
portance on the nurse-led HF clinic.
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Abstract
Background Measurement of heart rate (HR) through an unobtrusive, wrist-

worn optical heart rate monitor (OHRM) could enable earlier recog-
nition of patient deterioration in low acuity settings and enable timely
intervention.

Objective The goal of this study is to assess the agreement between the HR
extracted from the OHRM and the gold standard 5-lead electrocardio-
gram (ECG) connected to a patient monitor during surgery and in the
recovery period.

Methods In patients undergoing surgery requiring anesthesia, the HR re-
ported by the patient monitor’s ECG module, was recorded and stored
simultaneously with the photopletysmography (PPG) signal from the
OHRM attached to the patient’s wrist. The agreement between the HR
reported by the patient monitor and the HR extracted from the OHRM’s
PPG signal was assessed using Bland-Altman analysis during the sur-
gical and recovery phase.

Results A total of 271.8 hours of data in 99 patients was recorded simul-
taneously by the OHRM and patient monitor. Median coverage was
86% (interquartile range (IQR) range: 65% to 95%) and did not differ
significantly between surgery and recovery (Wilcoxon paired difference
test p-value: 0.17). Agreement analysis showed the limits of agreement
(LoA) of the difference between the OHRM and the ECG HR were
within the range of ± 5 beats per minute (bpm). The mean bias was -
0.14 bpm (LoA between -3.08 and 2.79 bpm) and -0.19% (LoA between
-4.79 and 4.39%) for the PPG measured HR compared to the ECG mea-
sured HR during surgery and -0.11 bpm (LoA between -2.79 and 2.59
bpm) and -0.15% (LoA between -3.92 and 3.64%) during recovery.

Conclusions This study shows that an OHRM equipped with a PPG sensor
can measure HR within the ECG reference standard of ± 5 bpm or ±
10% in the perioperative setting when the PPG signal is of sufficient
quality. This implies that an OHRM can be considered clinically ac-
ceptable for heart rate monitoring in low acuity hospitalized patients.

154



7

7.1 Introduction

Timely recognition of deterioration in hospitalized patients is important be-
cause early intervention improves clinical outcomes such as mortality, un-
planned intensive care unit (ICU) admissions and reduce length of stay [1].
Especially in perioperative care, complications related to surgery limit effec-
tiveness of the surgery and are associated with increased mortality and costs
[2, 3]. From previous studies, it is known that vital signs such as heart rate
(HR) and respiratory rate are important indicators of critical illness and are
often altered long before a deterioration is clinically apparent [4–6]. In gen-
eral, patients’ vital signs are assessed multiple times a day on general wards.
However, patients may deteriorate between the scheduled measurements [1].
Therefore, both remote as well as continuous monitoring of heart rate and
respiratory rate is considered a promising tool for early detection of patient
deterioration in the low acuity or home setting.

The gold standard for measurement of HR in the perioperative setting is the
multiple lead electrocardiogram (ECG). However, there are practical limita-
tions to continuous measurements of vital signs using ECG due to the obtru-
siveness and limited mobility of patients. Novel solutions to monitor vital
signs have been proposed in literature [7]. One of these novel solutions is the
wrist-based optical heart rate monitor (OHRM). The OHRM has the advan-
tage of offering unobtrusive, remote and continuous monitoring. The photo-
pletysmography (PPG) sensor in the OHRM has shown potential to provide
robust peak detection from which heart rate may be calculated [8, 9]. Valida-
tion studies have been presented on the accuracy of these devices in healthy
subjects [10–17]. However, it remains unclear whether these tools are also
reliable for monitoring vital signs in patients during hospital stay. The robust-
ness of an OHRM should be studied in hospitalized patients before it can be
reliably adopted in a clinical setting. Few studies were performed in hospital-
ized patients, and these included mainly stable ward patients [13, 18, 19]. To
check the accuracy of the OHRM in acute phases of disease, the study popula-
tion should ideally experience some deterioration in heart rate during the study
period. Hospitalized patients are a heterogeneous population where HR can
be influenced by all kinds of pathologies. Particularly during surgery, which
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induces hemodynamic, metabolic, endocrine and immunological alterations
[20, 21]. The objective of this study was to assess the agreement between the
HR extracted from a PPG-sensor based OHRM and the gold standard patient
5-lead ECG connected to the patient monitor during surgery and recovery.

7.2 Methods

7.2.1 Study design

The study is a prospective, non-randomized observational single center study
covering the perioperative period. The study was performed in the Catharina
Hospital in Eindhoven, the Netherlands, a tertiary hospital performing an
average of 20000 surgical procedures annually. The study was reviewed
and approved by the medical ethical committee MEC-U (study number
NL65134.100.18).

7.2.2 Study population

All adult patients scheduled for non-cardiac surgery were screened by anes-
thesiologists for inclusion in the study. Patients were selected by the anes-
thesiologist on a weekly basis and informed of the study prior to the surgical
procedure. In total, 203 patients were eligible for inclusion and 100 patients
signed informed consent. Cardiac surgeries were excluded since the required
extracorporeal circulation and scheduled intensive care unit (ICU) admission
would complicate analysis. To obtain a representative case-mix of patients un-
dergoing surgery, patients were categorized and stratified based on the Amer-
ican Society of Anesthesiologists physical status (ASA-PS) score [22] and
risk of the surgery [23]. Patients were divided into two groups: i) low risk
(ASA-PS score I or II and low or intermediate risk surgery) and ii) high risk
(ASA-PS score III or IV and intermediate or high risk surgery). If the ASA-PS
score and risk were discordant (e.g. ASA-PS score IV and low risk surgery)
the ASA-PS score took precedence over the surgical risk.
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7.2.3 Study procedure

The measurements on the optical heart rate monitor (OHRM) started as soon
as the device was placed on the patient’s wrist in the holding area. The vi-
tal sign measurement started upon arrival in the operating room (OR) when
sensor modules were connected to the patient monitor. The choice of wrist
depended on the placement of the blood pressure cuff. Unless not otherwise
possible, the OHRM was placed on the wrist of the arm opposite to the blood
pressure cuff to prevent disturbance in the optical measurements of the car-
diac pulse. Measurements continued during surgery (surgical phase). After
completion of the surgery, the patient was disconnected from the patient mon-
itor located in the OR and transferred to the recovery room. Upon arrival in
the recovery room, the patient monitor was reconnected to the patient monitor
located in the recovery room and measurements continued (recovery phase)
until the patient was transferred to the general ward. Upon transfer, the pa-
tient monitor was disconnected and the OHRM removed from the patient’s
wrist.

7.2.4 Data collection

The wrist-worn OHRM was developed by Philips and equipped with a Philips
Cardio and Motion Monitoring Module, which integrates a photopletysmog-
raphy (PPG) and an accelerometer sensor, see Fig. 7.2.1. Photoplethysmog-
raphy is an optical technique used to detect volumetric changes in blood in
peripheral circulation. It continuously measures the reflectivity of the skin in
the green part of the light spectrum in combination with the 3-axial acceler-
ation of the body part where it is located. Accelerometry is a technique used
to quantify movement patterns through the detection of rotational and transla-
tional acceleration. The sampling frequency of both the PPG and accelerom-
eter sensors was 32 Hz [24]. The patient monitor in both the operating and
recovery room was a GE Carescape B850 connected to a 5-lead electrocardio-
gram (ECG), pulse oximeter, body temperature sensor and oscillometric cuff
for noninvasive blood pressure measurements or an arterial line for invasive
blood pressure measurements. All patient monitors were linked to a patient
data collection system which logged data for every patient. The application

157



Chapter 7. Validation of perioperative HR from wrist-based PPG

used for logging data was AnStat (CarePoint). AnStat logs trends and wave-
forms with a sampling frequency of 100 Hz, and events like administration of
drugs.

Figure 7.2.1: The wrist-worn optical heartrate monitor.

7.2.5 Data processing

The heart rate (HR) from the 5-lead ECG was derived by the GE Carescape
B850 patient monitor’s software. The HR from the OHRM was extracted
from the logged PPG signal using an algorithm that was previously validated
in healthy volunteers in various conditions of rest and physical activity [25].
In brief, the algorithm processed simultaneously the PPG and motion signal to
derive HR and a quality index (QI) for the HR measurements on a 1-sec inter-
val. Both HR and QI are assessed real-time. The algorithm provides an output
every 1-second, the data however, is processed using a sliding window of 5
seconds. HR from ECG and PPG were synchronized using a cross-correlation
function and visual inspection of the resulting overlapped time-series. The
QI characterizes the confidence in the provided metric estimated by the algo-
rithm itself. It is represented on a 5-point scale [0, . . . , 4], where 0 denotes
“lowest confidence/output unavailable” and 4 denotes “highest confidence”.
The QI is determined by proprietary methods and aims to provide a mono-
tonically increasing relation between availability and reliability. The QI of
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the HR would typically be influenced by the signal-to-noise ratio of the PPG
signal, the ability of the algorithm to cope with motion artefacts, and the pe-
riodicity of the detected pulse signal. A PPG-based arrhythmia detection al-
gorithm [26] was also used to identify periods in which the PPG signal was
not in accordance with a normal sinus rhythm. In brief, the arrhythmia detec-
tion algorithm would first identify inter-pulse-intervals (IPIs) in a 30-seconds
interval form the PPG signal and then reject the IPIs in presence of motion
during the IPI period. The final set of IPIs in the 30 sec period are then pro-
cessed by a Markov Model to define the probability of atrial fibrillation (AF).
If >50% of the detected IPIs in the 30-sec interval were rejected by the al-
gorithm the output of the algorithm was an “undefined rhythm” label. For
measurement intervals during which events of arrhythmias were detected by
this algorithm, the QI was set to 0. To summarize the PPG signal coverage,
each HR measurement was assigned to one of three categories: i) good quality
(QI = 4), ii) low quality (QI ≤ 3), iii) arrhythmia. Only HR data associated
with QI = 4 were used in the agreement analysis. Coverage was measured as
the ratio between the measurements with good quality and the entire measure-
ment duration for a patient. If patients had less than 5 minutes of coverage
during surgery or recovery, the session was excluded from analysis. The hos-
pital health records were screened to find potential causes for patients that
were excluded, since this would indicate that the OHRM was not usable for
these patients. Bland-Altman plots were made to visualize the agreement be-
tween ECG and PPG HR [27]. Limits of agreement (LoA) and confidence
intervals of the LoA were calculated by taking into account both within and
between patient variability [28]. The modified method of Bland and Altman
to estimate LoA with repeated measurements where the true value varies, as
described by Zou was used [29]. The confidence intervals of the LoA were
constructed using the method of variance estimates recovery (MOVER). In
short, a one-way random effects model was used to model the difference di j

of the j-th measurement for the i-th patient as:

di j = d +ai + ei j, (7.2.1)

Where d is the unknown true difference between ECG and PPG HR.
The difference d is either the difference between the PPG and ECG HR,
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i.e. d = HRPPG − HRECG, or the percentage difference calculated by
d = d% = HRPPG−HRECG

HRmean
. ai and ei j are zero-mean normally distributed with

variance σ2
b and σ2

dw corresponding to the true between and within subject

variances respectively. The bias is estimated by d̂.. where d̂.. = ∑i d̂i
mi

and

d̂i =
∑di j
mi

and mi is the number of pairs per patient i. The between and within

subject variances are estimated by s2
b =

(∑i d̂i−d̂..)
2

n−1 and s2
dw = ∑i

mi−1
N−n s2

i

where s2
i =

(∑ j(di j−d̂i)
2

mi−1 . s2
b and s2

dw are summed to obtain an estimate of the

total variance s2
tot . The 95% LoA are then calculated by: d̂.. ± 1.96

√
s2

tot .
Confidence intervals around the LoA are estimated by the MOVER [29]. The
Bland-Altman analysis was done for both the absolute difference, as well as
the percentage difference in HR between PPG and ECG. The HR evaluation
was compared to the reference standard ANSI/AAMI EC13:2002, which
requires an accuracy of ±5 beats per minute (bpm) or ±10% (whichever is
largest)[30].

7.3 Results

A total of 100 patients were included. One patient was excluded because the
patient monitor data was missing due to technical difficulties. Recovery data
of one patient was missing because this patient was transferred to the inten-
sive care unit (ICU) immediately after surgery. Three patients had too few
(<5 minutes) good quality photopletysmography (PPG) measurements dur-
ing both the surgery and recovery phase and were therefore omitted from the
agreement analysis. Twelve patients had <5 minutes of good quality measure-
ments during either the surgery or recovery phase, only the respective phase
was omitted from the agreement analysis. Patient demographics are shown in
Table 7.3.1.

An example of the data that was captured for each patient in the study is shown
in Fig. 7.3.1. In total 159.08 hours of data was captured during surgery, of
which 76.5% was of good quality (quality index (QI) = 4) and 112.59 hours
of data was captured during recovery, of which 74.4% was of good quality.
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Coverage varied between patients, see Fig. 7.3.2. Median coverage was 86%
(interquartile range (IQR): 65% to 95%) and did not differ significantly be-
tween surgery and recovery (Wilcoxon paired difference test p = 0.17). Cov-
erage statistics are shown in Table 7.3.2.

Surgery Recovery
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Figure 7.3.1: Example of data captured for a representative patient in the study.
The ECG signal is represented by the gray line and the individual PPG measurements by the
colored points. The QI of the PPG signal is represented by a different color which ranges from
0 (lowest quality) to 4 (highest quality). Beats per minute (bpm); electrocardiogram (ECG):
heart rate (HR); photopletysmography (PPG); quality index (QI).

7.3.1 Blant Altman analysis during surgery

The mean bias was -0.15 (± 0.05) beats per minute (bpm) and -0.20 (± 0.06)
% for the PPG measured heart rate (HR) compared to the ECG measured HR,
where the limits of agreement (LoA) (including the standard errors) fall within
the reference standard of ±5 bpm and ±10%, see Table 7.3.3.
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Figure 7.3.2: Histogram with distribution of coverage fraction (ie, proportion of recorded data
that corresponds to a photopletysmography signal with good quality).

7.3.2 Bland Altman analysis during recovery

The mean bias was -0.10 (± 0.04) bpm and -0.14 (± 0.04) % for the PPG
measured HR compared to the ECG measured HR, where the LoA (including
the standard errors) fall within the reference standard of ±5 bpm and ±10 %,
see Table 7.3.4.
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Overall
N 99
Age in years (median [IQR]) 58.0 [44.5, 68.0]
Male gender 36
BMI kg/m2 (median [IQR]) 28.7 [24.8, 37.1]
ASA-PS score

I 10
II 39

III 45
IV 5

Surgical risk
High 9

Intermediate 63
Low 27

Diabetes 7
Hypertension 37
Hypercholesterolemia 21
Previous stroke or TIA 13
Structural heart disease 8
Atrial fibrillation 8
Blood pressure sensor 88
Wrist device location

Left 45
Right 53

Unknown 1
Surgery type

Bariatric surgery 22
Gastroenterological surgery 8

Neurosurgery 3
Orthopedic surgery 31

Plastic surgery 7
Thyroid surgery 1

Urogenital surgery 17
Vascular surgery 10

Surgery duration (min.) (median [IQR]) 87.0 [48.0, 115.0]
Recovery duration (min.) (median [IQR]) 58.0 [41.2, 78.0]

Table 7.3.1: Patient demographics.
Continuous variables are summarized by median and interquartile range (IQR). Body Mass
Index (BMI), American Society of Anesthesiologists physical status (ASA-PS), transient is-
chemic attack (TIA).
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Surgery Recovery Surgery and Recovery

Total hours 159.6 112.2 271.8
Good quality PPG 124.1 h (78.0 %) 83.8 h (74.4 %) 207.9 h (76.5 %)
Low quality PPG 33.3 h (21.0 %) 28.7 h (25.5 %) 62.0 h (22.8 %)
Arrhythmia 1.7 h (1.1%) 0.2 h (0.2 %) 1.9 h (0.7 %)

Table 7.3.2: Coverage statistics of total hours for analyses including all patients.

Difference in bpm Difference in %

Bias, mean of differences (± SE) -0.15 bpm (± 0.05) -0.20 % (± 0.06)
SD of differences 1.50 bpm 2.34 %

Lower LoA (95% CI) -3.08 bpm (-2.99, -3.19) -4.79 % (-4.92, -4.66)
Upper LoA (95% CI) 2.79 bpm (2.69, 2.89) 4.39 % (4.26, 4.53)

Within-subject variance 2.04 bpm 5.12 %
Between-subject variance 0.20 bpm 0.37 %

Intraclass correlation coefficient 0.09 0.07

Table 7.3.3: Bland-Altman analysis results during surgery. Beats per minute (bpm); standard
error (SE); standard deviation (SD); limits of agreement (LoA); confidence interval (CI).

Difference in bpm Difference in %

Bias, mean of differences (± SE) -0.10 bpm (± 0.04) -0.14 % (± 0.04)
SD of differences 1.38 bpm 1.93 %

Lower LoA (95% CI) -2.80 bpm (-2.72, -2.87) -3.92 % (-3.83, -4.01)
Upper LoA (95% CI) 2.59 bpm (2.52, 2.67) 3.64 % (3.56, 3.74)

Within-subject variance 1.78 bpm 3.56 %
Between-subject variance 0.11 bpm 0.16 %

Intraclass correlation coefficient 0.06 0.04

Table 7.3.4: Bland-Altman analysis results during recovery. Beats per minute (bpm); standard
error (SE); standard deviation (SD); limits of agreement (LoA); confidence interval (CI).
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7.4 Discussion

A wrist-worn optical heart rate monitor (OHRM) may be able to provide con-
tinuous unobtrusive heart rate (HR) monitoring in the low acuity care or home
settings. To determine this, the validity of OHRM-derived HR must first be as-
sessed in a representative target population and compared to the gold standard
5-lead electrocardiogram (ECG). In this study, the agreement between the HR
derived from an OHRM and a 5-lead ECG connected to a patient monitor was
assessed for a representative patient population during the perioperative pe-
riod. The OHRM could provide an accurate HR (–5 beats per minute (bpm)
to 5 bpm and –10% to 10% compared to the ECG-derived HR) during both
the surgical and recovery phase when the photopletysmography (PPG) signal
was of good quality. A vast majority (76.5%) of the PPG signal was good
quality.

Given the hemodynamic changes during the perioperative period and the di-
versity in surgical procedures, a technical validation, as performed in this
study, is essential before the OHRM can be introduced into clinical prac-
tice. Very few studies were found in the literature that validated wrist-worn
OHRMs in hospitalized patients. One study, with a goal of early warning de-
tection using an OHRM, was performed in patients during and after discharge
from the intensive care unit (ICU) [13]. The OHRM was a personal fitness
tracker, and 24 hours of monitoring started in the ICU while patients were
still being monitored by means of a continuous ECG. The authors concluded
that personal fitness tracker–derived HRs were slightly lower than those de-
rived from continuous ECG monitoring and not as accurate as pulse oximetry-
derived HRs. A feasibility study was performed by the same research group
regarding bradycardia and tachycardia detection in the same population [18].
The authors stressed in both studies the importance of subgroup analysis of
patients not in sinus rhythm since this negatively impacted measurement ac-
curacy. This corresponds to the findings in our study where measurements
during arrhythmia were of low quality.

Another study was designed for atrial fibrillation (AF) detection, but also
showed good results in sinus rhythm in patients undergoing elective cardiover-
sion for AF [31]. There were fewer patients (N = 20) included than in our
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study, and the agreement analysis was based on QRS intervals as the refer-
ence, with a mean difference of 1.3 ms being found between ECG and PPG.
Other studies were performed in healthy participants and focused on assess-
ing accuracy during physical activity [11, 12, 14, 16, 17, 32–34]. However,
the results obtained in these studies cannot be translated to our results since
surgery was the underlying cause for changes in HR in our study and not
physical activity. Factors influencing HR during surgery are hemodynamic
changes induced by anesthesia, intraoperative factors such as blood loss and
hypothermia, or involvement of vital organs in the area of surgery. Results
of previous studies did conclude that motion artifacts remain a challenge in
OHRMs. In this study, motion artifacts were less likely to occur since pa-
tients were mostly immobilized. Nevertheless, motion artifacts are relevant
to consider if the OHRM is to be used in the future for remote monitoring of
patients.

The agreement between the ECG- and PPG-derived HR was within the limits
of agreement (LoA) of –5 bpm to 5 bpm and –10% to 10% (whichever was
largest) both during surgery and recovery. However, this only applied when
the quality of the PPG signal was labeled as “good”. Nevertheless, a vast
majority (during surgery 78.0%; during recovery 74.4%) of the PPG signal
was good quality. Ideally, the coverage should be 100%, but this may not
be realistic since a poor signal-to-noise ratio in the PPG measurements can
perturb the detection of a sinus rhythm. Arrhythmias such as ectopic beats,
AF, premature ventricular or atrial complex, and paced beats also contributed
to a reduction of measurement coverage of the OHRM. This is confirmed by
the fact that patients with a medical history of AF had lower overall coverage
compared to patients without previous diagnosis of AF, resulting in 25% ver-
sus 85% overall coverage, respectively. This was also true for those patients
with severe congenital heart disease where median coverage was 47% versus
85% for patients without structural heart disease. Finally, a very small group
of patients had an extremely low coverage, but a consequently large influence
on the mean coverage. Median coverage was higher, with 85% being good
quality data. Furthermore, 3 patients were excluded since <5 minutes of data
were captured in total, which could be explained in one case by serious con-
genital heart disease which involved aberrant anatomy. Another 12 patients
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with <5 minutes of good quality data during surgery or recovery were also
excluded. The gold standard ECG, is considered capable of providing 100%
coverage. However, in clinical practice, this is most likely not the case since
ECG HR detection can also fail in the presence of the aforementioned abnor-
malities.

The limitations of this study are the following. Despite a heterogeneous group
of elective procedures and hospital setting, no general ward patients were in-
cluded. Nevertheless, translation of our findings to patients in the general
ward is reasonable as patients are transitioning from immobile to a more mo-
bile state during stay in the recovery room. By using a 1-way random-effects
model, the between- and within-patient variance was quantified to explore
the effect of heterogeneity of the study group. As indicated by Hamilton
and Lewis [35], not accounting for repeated measures can lead to a falsely
narrow LoA, mainly with a small number of patients and a large number of
measurements per patient. Both the mean bias and between-patient variance
are weighted according to the number of observations, available for each pa-
tient. Hence, patients with more observations will contribute more to the fi-
nal results. As the distribution of observation times was skewed, some pa-
tients contributed substantially more than others. Therefore, results could
have been biased to these patients. It is also worth mentioning the assump-
tions underlying the 1-way random-effects model. Specifically, the model
assumes that repeated differences on a single patient are independent and that
the within-patient variance of these differences is constant and the same for
all patients. First, the independence assumption could have been too strong
since hemodynamic changes occurred during surgery or recovery which could
have led to autocorrelation in the HR and subsequent differences arising be-
tween the PPG- and ECG-derived HR. The effect of autocorrelation on the
within-patient variance is unknown, and further studies are needed to take au-
tocorrelation into account [28]. Second, the assumption of homoscedasticity
was not formally tested, and it could have been the case that the variance of
the differences increased with higher HR. Finally, the possible influence of
surgery-specific factors, such as electrosurgical instruments causing interfer-
ence was not investigated. Furthermore, we observed that the oscillometric
blood pressure cuff can interfere with the measurements of the OHRM by
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compromising the blood flow.

In summary, the current study found that the OHRM is clinically acceptable
when good quality data are captured and in settings when high-intensity mon-
itoring, such as in the ICU or operating room, is not mandatory. The OHRM
seems less suitable for patients with congenital anatomical changes of the
heart or patients with arrhythmias. When the OHRM captures a significant
amount of low-quality data in a patient, the suggestion would be to use an-
other monitoring type to ensure reliable monitoring. Since the OHRM can
report the quality of the PPG signal instantaneously, the decision to switch to
ECG monitoring can be made on the spot. The reliability of an OHRM to
measure HR in patients known to suffer from arrhythmias or structural heart
disease requires further research.
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The goal of this thesis is to examine the potential and pitfalls in the devel-
opment, validation and implementation of clinical prediction models (CPMs)
based on real-world longitudinal data. Below these are discussed for real-
world data (RWD) and CPMs, respectively. The discussion is followed by the
conclusion of this thesis and future perspectives.

8.1 Real-world data
As defined in the introduction, real-world data (RWD) is considered observa-
tional data relating to patient health status and/or the delivery of health care,
generated as part of a healthcare process. RWD can be regarded as all data
that are generated outside of clinical trials (both interventional and observa-
tional). A common source of RWD for clinical research are electronic health
record (EHR)s.

8.1.1 Accessibility, volume and speed

The first and most obvious potential of using RWD is that it comes without
the high costs, resources and often long time-spans that clinical trials require,
there is instant access to a large and historic patient population. EHRs exceed
many existing registries and repositories in volume, range of measurements
and outcomes. Clinical trials can be limited in sample size and follow-up as
they are costly and time-consuming to conduct [1, 2]. An example of this
potential was demonstrated during the outbreak of the coronavirus pandemic,
when a fast response was required. It would have taken time for the first
clinical trials to be approved and finished, whilst RWD obtained from EHRs
and the laboratory information system (LIS) was readily available. In this
scenario RWD enabled a quick response to an immediate problem.

8.1.2 Consent bias versus selection bias

Before patients can take part in a clinical trial, inclusion criteria have to be
fulfilled and informed consent must be signed. Inclusion criteria are gener-
ally more of a limitation in a randomized controlled trial (RCT) than a cohort
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study, the generalizability of RCT patient samples to the full population is a
long standing issue [3, 4]. Even so, in cohort studies, patients have to sign
informed consent and are subjected to extra tests such as blood sampling or
filling out questionnaires. If consent is required, there is a potential for con-
sent bias (also known as authorisation bias or volunteer bias), where those
who consent differ in measured or unmeasured baseline characteristics from
those who do or cannot consent [5–7]. In a large systematic review by Kho
et. al significant differences between participants and non-participants were
found, but no clear direction or magnitude of the effect [5]. However, what
can be gained by using RWD to prevent consent bias, can more easily be lost
by introducing selection bias. Selection bias, is bias as a result of a system-
atic difference in the population selected by the researcher for inclusion in the
analysis, and the target population. Time can introduce selection bias as pa-
tient populations, treatments and diseases change over time. An example of
this phenomenon was observed during the coronavirus pandemic. Different
variants and the roll-out of vaccines caused changes in the patient population
presenting at the emergency department (ED) over time. The CoLab-score
developed in Chapter 4 was developed during the first wave of the pandemic
and subsequently implemented in multiple hospitals in the Netherlands. In the
temporal validation the performance of the score was preserved, even during
the emergence of new variants and the roll-out of vaccines. Nevertheless, it
should be taken into account that the time-frame in which patients are included
can lead to selection bias and performance should be monitored continuously
after implementation.

8.1.3 Informative missingness

Directly related to selection bias, is informative missingness. Missing data
is common in EHRs. Studies have shown that missingness in EHRs is often
informative, this implies that the presence or absence of data carries informa-
tion in itself about the health status of a patient [8–10]. This is not a bug but
a feature, EHRs are observational in nature and data is entered for a different
purpose than research. This is especially true for laboratory tests, since these
are the result of a clinicians judgement. It is known that laboratory tests are
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ordered more frequently for seriously ill patients [11]. In a study by Agniel et
al. it was demonstrated that the hour of the day a laboratory test was ordered,
the day of the week and the amount of time between tests was more predictive
of survival than the actual value of the test result itself [8]. Also, depending
on the expertise of the center, more seriously ill patients can be transferred to
specialized centers, which is also a case of informative missingness. In Chap-
ters 2 and 3 cardiac troponin (cTn)T was sampled repeatedly after cardiac
surgery to detect the presence of a perioperative myocardial infarction (PMI).
In clinical practice however, clinicians will stop sampling cTnT if the patient
is stable and values are falling. In this case, the presence or absence of a cTnT
measurement at a certain time, can be regarded as informative missingess.
For our study (Chapters 2 and 3), it was ensured that cTnT was sampled at
prescribed points in time, even if values were falling, to prevent informative
missingness. The phenomenon of longitudinal data ’thinning’ over time can
result from informative missingness.

8.1.4 Data quality

The quality of RWD, and EHRs in particular, is not guaranteed. As stated
previously, this is a result of the fact that EHR data is collected during clin-
ical practice by clinicians who are otherwise busy, rather than purposefully
collected research data. Several data quality issues can arise.

Inaccurate or incorrect data

While it is difficult to draw specific conclusions with respect to EHR data
quality, in a large review it was shown that mainly medication lists are prone
to significant errors, whereas laboratory test results appear to exhibit greater
accuracy than other types of data [12]. When developing the CoLab-score
(Chapter 4), the hospital registration of a confirmed coronavirus disease 2019
(COVID-19) case was used (together with polymerase chain reaction (PCR)-
testing results) to label patients as severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) positive or negative. However, clinicians sometimes
erroneously registered a confirmed COVID-19 infection in a patient. This
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registration would then quickly be removed when the error was discovered.
Simply using a registration without setting a minimal time between start and
end of a registration would result in including these mis-registrations.

Lack of gold standard

Outcomes registered in RWD or EHRs may differ from the clinical gold stan-
dard. In Chapter 2, at the time the study was performed, clinicians used as-
partate aminotransferase (ASAT) activity instead of cTnT levels to determine
the presence of a PMI. Therefore, the clinical gold standard differed from the
guideline gold standard for diagnosing a PMI [13]. The lack of a gold standard
was addressed in Chapter 2 by using a probabilistic model-based clustering
approach, this approach did not make any a priori assumptions regarding pa-
tient diagnoses. Therefore, the characteristic cTnT release profiles that were
found, were not affected by a subjective center-specific way of diagnosing a
PMI, but rather by the variation in release profiles themselves. This demon-
strates that clustering based approaches are a good alternative when a clinical
gold standard is lacking or absent.

Loss of data

Multiple sources of data feed into EHRs, the source data can however differ
from the data that is stored in the EHR. Again this is intended behaviour as
EHRs should display information relevant to the clinician. The source data
can e.g. be measured with several decimals precision but if these are not rel-
evant for clinical decision making, the values are rounded when reported to
the EHR. This can be illustrated by an example from Chapter 4. The CoLab-
score is developed using laboratory test results obtained from the LIS. The LIS
contains the raw measured values of all laboratory tests, whereas the values
reported to the EHR are truncated above or below certain clinically relevant
boundaries. However, the predictive value in separating two patients groups
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(with/without SARS-CoV-2 infection) is mostly concentrated in the range be-
low the reported (truncated) value, see Fig. 8.1.1. Not taking the source data
into account can lead to a loss of predictive performance.
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Figure 8.1.1: Histogram of absolute basophil count for patients tested for SARS-CoV-2 at the
Catharina Hospital.
A: truncated values as stored in the EHR.
B: raw values as stored in the LIS.
As can be seen from the distributions, the predictive value of basophils lies in the lower range
< 0.03, whereas the EHR stores only values ≥ 0.03. The discriminative ability as expressed in
the AUC is 0.843 for the basophil count from the LIS and 0.741 from the EHR.

Source data can change over time

RWD data can be structured or unstructured. Structured data is organized by
a pre-defined data model and usually stored in a database. Unstructured data
can be considered qualitative data and does not have a pre-defined data model.
Although a great part of data in EHRs is in the form of structured data, there
is no guarantee that the structure is the same over time. Multiple columns or
tables can cover the same variable and they have to be placed in the context
of the current state of the healthcare process. For example in developing the
CoLab-score Chapter 4, shortly after the first positive cases were detected,
the PCR testing machine was replaced. The PCR-test results produced by the
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new machine had a different structure and were stored in a different column.
Not taking changes in structured data over time into account can lead to a
loss of information. Moreover, in the absence of a gold standard, as described
previously, the diagnostic criteria can (and most likely will) change over time.
As a consequence, a negative diagnosis made in the past, can be a positive
diagnosis in the present.

8.1.5 Mobile health

In clinical practice, measurements are commonly performed during admis-
sion and at brief intermittent visits to the clinic. However, in the case of a
chronic condition, the use of mobile health (mHealth) devices can provide
a more comprehensive collection of data to inform clinical decision making.
An example is the wrist-worn optical heart rate monitor (OHRM) validated
in Chapter 7. Although many studies have been performed with wearables,
these are usually performed on healthy subjects or ward patients [14, 15]. In
our study we included a heterogeneous patient population undergoing surgery
and showed that the accuracy of the OHRM fell within the reference stan-
dard of the patient monitor. This shows the potential for wearables to provide
accurate data for monitoring patients over time.

8.2 Clinical prediction models

Clinical prediction models (CPMs) can be used either in public health (e.g.
prediction of disease prevalence), clinical practice (e.g. for diagnosis or ther-
apeutic decision-making) or research (e.g. selecting high risk patients for in-
clusion in a randomized controlled trial (RCT) or adjusting for covariates and
confounding) [16]. We focus on the potential of CPMs in clinical practice.
CPMs combine a set of predictors to predict an outcome, the outcome can
either be diagnostic (e.g. does the patient have the disease) or prognostic (e.g.
what is the expected time until mortality).
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8.2.1 Sample size

Developing a CPM with a relatively small sample size has proven to be dif-
ficult. The sample size (n) should always be considered in relation to the
number of predictors or dimension (p). If n is small in relation to p overfit-
ting can be a serious problem [16, 17]. To prevent this pitfall, a sample size
calculation should be preformed before starting data collection. If the sample
size is fixed, penalization and shrinkage methods can be tried to minimize the
problem of overfitting [17, 18]. Note that penalization and shrinkage methods
are not a free pass to develop CPMs without regard for the sample size [19].
Note also that the sample size does not cover the whole story, but rather the
number of events, otherwise expressed as the number of events per variable
[20]. For example in the case of a binary outcome, this is the minimum of
the number of patients who experienced the outcome and those who did not
experience the outcome. Using repeated measures can be of benefit to stud-
ies with small sample sizes. This can be illustrated by Chapter 3, where only
23 patients experience the outcome of a perioperative myocardial infarction
(PMI). Although there are only 23 patients with the outcome, mixed effects
models can ’borrow strength’ over patients to improve individual patient esti-
mates. Therefore, using the appropriate modeling techniques, time can used
to improve individual estimates when the sample size is small.

8.2.2 Choosing predictors

For a CPM to be successful it must be implementable in other centers with
relative ease. Should the sample size allow it, developing a CPM that requires
e.g. 30 predictors is possible. Nevertheless, this implies that other centers
have to measure all 30 predictors to be able to use the model. Cost effec-
tiveness of a CPM will also have to be taken into account, a CPM should
not lead to increased healthcare costs. Therefore, the costs of measuring the
variables required for the CPM to make a prediction, have to be compared
to the current clinical practice. After development, the costs of false nega-
tives versus false positives also need to be taken into account in determining
a suitable threshold. Limiting the number of predictors can be achieved by
applying feature selection techniques. This also holds for including ”exotic”
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predictors. An example from Chapter 4 is that many CPMs for diagnosing
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were devel-
oped requiring e.g. features from chest CT-scans/X-rays [21]. This will limit
the usability of such models as it requires a chest scan in order for the model
to make a prediction. Finally, the time required to measure a predictor can
also play an important role. If predictions have to be made within a certain
amount of time, then the ”slowest” predictor is the limiting factor. In the case
of the CoLab-score (Chapters 4 and 5) all blood tests required to calculate the
score, are available at the same time (less than 1 hour after presentation). This
also proved the motivation for Chapter 5, since the CoLab-score was quickly
available, healthcare workers with low probability of a SARS-CoV-2 infection
could rapidly return to work.

8.2.3 Dichotomization

For binary classification models such as logistic regression, the outcome is di-
chotomous. Yet, outcomes that are registered as binary in clinical practice, are
sometimes strictly speaking, continuous. An example can be found in Chap-
ters 2 and 3, where the outcome of a PMI is either present or absent. However,
the reality is more complex, it involves an area of heart muscle that is affected
and a sufficiently large area is considered a PMI [22]. In practice, the area of
necrosis is never quantified and only cases fulfilling the diagnostic criteria are
labeled as positive, hence, a clearly defined gold standard is essential.

8.2.4 Calibration

In CPMs, patients are assigned probabilities of having an outcome. Since
CPMs are used as decision support, it is important that these probabilities are
accurate. If a model predicts a 30% probability of an outcome, in the long run
30% of the population should experience the outcome. Models can have good
discriminative ability but if they have poor calibration they are potentially
harmful for clinical decision-making [23].
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Calibration drift

Commonly, CPMs are developed only once when they are fitted to the de-
velopment dataset, after validation they are implemented until they are ei-
ther revised or become obsolete. Before CPMs become revised or obsolete,
there is usually a degradation of performance over time due to changes in the
disease, treatment and/or underlying patient population. This is referred to
as calibration drift [24, 25]. Calibration drift is a major issue for diagnostic
CPMs for coronavirus disease 2019 (COVID-19), given that the prevalence of
COVID-19 can change rapidly, resulting in miscalibrated probabilities during
peaks of high or low incidence. Little to no attention has been given to this
limitation by published CPMs. In developing the CoLab-score (Chapter 4)
this limitation was recognized and addressed by introducing the concept of
a prevalence-dependent threshold above which a score should be considered
positive. Until more refined approaches are developed and implemented, the
approach of a prevalence-dependent threshold preserves the performance of
the CoLab-score over time. In this respect, there is potential for models that
signal when calibration drift occurs or dynamically adjust regression coeffi-
cients [24, 25].

Analytical variation

Next to changes in incidence or prevalence, analytical variation is also a cause
of miscalibration when using laboratory test results as predictors. In the ex-
ternal validation of the CoLab-score (Chapter 4), systematic differences in
the reported albumin values were observed between centers, see Fig. 8.2.1.
Albumin is measured by a dye-binding assay using bromocresol (BC) green
or BC purple. In the development center and centers 2 and 3 the BC green
method is used, whereas center 1 uses the BC purple method. From literature
it is known that BC green results in higher values than BC purple [26]. For
the CoLab-score an albumin conversion factor was calculated for center 1 to
avoid miscalibration as a result of analytical variation. This demonstrates that
analytical variation must be taken into account when assessing calibration of
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Figure 8.2.1: Smoothed density estimates of albumin levels of patients presenting at the emer-
gency department for the development dataset of the CoLab-score, and three external centers.

CPMs. Analytical variation is also be a concern for miscalibration over time,
as laboratory equipment has a finite life-span and is replaced over time.

8.2.5 Validation and implementation

To take overfitting into account, reported performance measures should be cal-
culated using internal validation by e.g. cross-validation or bootstrapping [16,
17]. Next to internal validation, external validation is required. In the absence
of validation, reported performance measures are most likely overly optimistic
[27]. An example of the external validation of a time-to-event model is given
in Chapter 6.

After internal and external validation, a CPM can be implemented in daily
clinical practice. The predictions from the model can either be used assis-
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tive, in which case the probabilities are reported to the clinician without fur-
ther recommendations. An alternative approach is presenting the prediction
as a decision recommendation, which is referred to as an directive approach.
Although evidence is scarce, studies suggest that a directive approach has a
greater impact on decision making [28]. For a directive approach one has to
consider which decisions are recommended for which probability thresholds.
CPMs can be combined with decision theory to weigh the risks, benefits and
cost-effectiveness of interventions (e.g. treatment or surgery) and make a de-
cision if the benefits of the intervention outweigh the risks.

The European coLlaboration on Acute decompeNsated Heart Failure (ELAN-
HF) score, externally validated in Chapter 6, is used in an assistive manner.
The ELAN-HF score is reported in the electronic health record (EHR) of a
patient upon visiting the heart failure clinic. High-risk patients are an indica-
tion for the heart failure nurse that these patients may require more intensive
monitoring and guidance to prevent a readmission or mortality.

The CoLab-score developed in Chapter 4 is presented to clinicians in a di-
rective approach. This was achieved by choosing a number willing to test
to determine a cutoff above which a clinician should be advised to request
a polymerase chain reaction (PCR)-test. If this number was too high then
this would result in increased costs since more PCR-tests would be requested,
a number too low would result in too many positive patients being missed.
Based on data from routine clinical practice, it was inferred that clinicians on
average request 15 PCR-tests to find one positive patient. The threshold for
the CoLab-score was therefore based on routine clinical practice and taking
cost-effectiveness into account. Also in this case, time plays an important role
since associated costs often change over time, shifting the decision threshold
required to maintain cost-effectiveness.

8.2.6 Longitudinal data

Finally, we discuss the incorporation of time into CPMs itself. Longitudi-
nal data has the potential to improve predictive performance and make CPMs
more personalized. However, several studies have shown that incorporation of
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longitudinal data in CPMs is lagging [29, 30]. In a systematic review by Gold-
stein et al. it was shown that in 60% of the cases where EHR data was used
to develop a CPM, longitudinal data was not incorporated [29]. Moreover,
for those studies that did incorporate longitudinal data, most studies resorted
to using summary measures such as the peak value, mean/median or slope,
leading to a loss of information [29, 30]. In Chapter 3 we demonstrate how
non-parametric modeling techniques can incorporate the full historic informa-
tion that is available for a patient without resorting to summary measures and
taking into account irregularity and sparsity that often come with real-world
data (RWD). We conclude that the statistical modeling approaches that have
been developed in literature, allow for far greater flexibility to model longitu-
dinal data than what is currently being utilized by most published CPMs. This
highlights that there is unrealized potential in incorporating longitudinal data
in CPMs and the relevance of clinical data science to uncover this potential.

8.3 Conclusions

Real-world data (RWD), and electronic health records (EHRs) in particular,
are both a goldmine and minefield. Developing clinical prediction models
(CPMs) based on RWD is surrounded by pitfalls. Not taking time into account
may be the biggest pitfall of them all. Time has the ability to make a CPM
obsolete, faster than it might have taken to develop the model. Healthcare
is always evolving, the focus of CPMs should therefore not lie on trying to
achieve the best performance today, but on achieving a consistent performance
in the future and providing a proven benefit to clinicians and patients. Only by
understanding the healthcare process that generated the data, recognizing its
limitations and ever changing nature, can a CPM based on RWD be developed
successfully. Time will tell if the endeavor was successful.

8.4 Future perspectives

People today are living longer than ever before. This achievement, however,
comes at the price of a growing strain on the healthcare system. Keeping
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healthcare affordable and maintaining quality of care, are challenges in the
near future. This is where clinical prediction models (CPMs) can play a role
by assisting clinicians in decision making, resulting in faster and more accu-
rate diagnoses. Currently, the role of CPMs is limited and only a tiny fraction
of all published CPMs are used in daily clinical practice. While it seems in-
evitable that CPMs will play a bigger role in clinical decision making in the
future, the speed of this transition depends on several bottlenecks that have
been uncovered in this thesis. First, the clinical need must be critically as-
sessed, not only at the current moment, but also in the future. Many CPMs
are being developed without there ever being a clinical need. In develop-
ing the CoLab score (Chapter 4), we focused on an accessible screening tool
for the full emergency department (ED) population (instead of a symptomatic
population), therefore the CoLab-score did not become obsolete when rapid
polymerase chain reaction (PCR) testing was available. Second, with the rise
of data-hungry artificial intelligence (AI) and machine learning (ML) tech-
niques, accessibility to unbiased high quality healthcare data will become vital
for the success or failure of these approaches. We have seen that considerable
loss of predictive power can occur when using data that is derived from sec-
ondary sources where some conversion took place. Aside from the availability
of high quality data as input for a CPM, equal attention must be paid to the
outcome. If the clinical standard is not in agreement with the gold standard
of diagnosis (see e.g. Chapter 2), the predictions from the CPM will be af-
fected. Standardized outcome reporting will therefore be equally important as
high quality input data. Third, the current IT infrastructure in hospitals does
not allow for straightforward implementation of CPMs that are more complex
than regression equations. For more advanced modeling techniques such as
those described in Chapter 3 or AI and ML techniques, investment in hospital
IT infrastructure is required to facilitate the use of these techniques. Fourth,
the performance of CPMs will need to be monitored over time to detect cal-
ibration drift or loss of discriminative ability. A first step was made with the
CoLab-score by defining prevalence dependent thresholds, further develop-
ment and implementation of monitoring tools to detect loss of performance
or calibration drift of CPMs over time is an interesting direction for future
studies. Finally, there seems to be great promise for wearable devices, the
challenge will be to present these data in a meaningful way to clinicians and
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integrating these data in the hospital infrastructure. To conclude, the question
is not if CPMs will change healthcare in the future, but when and at what
scale.
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Summary

Historically, medicine was practiced as an art, based on the authority of a
master, expert opinion and experience. Nowadays, medicine is considered
both an art and a science, founded on results from clinical trials and research.
The shift from authority-based medicine towards evidence-based medicine
has been facilitated by the rise of statistics. An essential role of statistics
in medicine is to model the generated data and translate results into clinical
decision-making. One way of achieving this, is by developing clinical pre-
diction models (CPMs) that can predict the likelihood of a certain outcome.
With the rapid growth in data acquisition, storage, algorithms and computing
power, the use of real-world data (RWD) to develop CPMs is becoming more
and more popular. RWD are observational data relating to patient health status
and/or the delivery of health care, generated as part of a healthcare process.
This is opposite to data gathered as part of a clinical trial or study. Given that
RWD is collected from the beginning until the end of the healthcare process,
longitudinal information is a rule rather than an exception. To uncover the
potential and pitfalls of using real-world longitudinal data in the development
and validation of CPMs, several clinical challenges were addressed in this
thesis.

First, we focused on the diagnosis of a perioperative myocardial infarction
(PMI) after coronary artery bypass grafting (CABG), based on serial measure-
ments of the biomarker cardiac troponin (cTn). The current clinical guideline
is based on a single threshold for cTn to screen patients for a possible PMI.
However, the release of cTn after CABG is characterized by a highly non-
linear pattern, which varies between patients. The guideline does not take
this characteristic cTn release profile into account, and moreover, results in
many false positives. Also, the final diagnosis of a PMI requires additional
criteria that vary between centers. Therefore, comparing cTn release profiles
based on a center-specific diagnosis of a PMI, will lead to subjective find-
ings. We have shown that a latent class mixed model, that does not make any
subjective a priori assumptions about patient subgroups, can uncover clini-
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cally relevant subgroups based solely on cTnT release profiles post-CABG.
The class with a rising cTnT profile showed superior diagnostic accuracy over
the clinical guideline. While this study demonstrated that the characteristic
cTnT release profile is a better diagnostic criterion for screening patients for
a PMI than a fixed cutoff, the next step was to develop predictive models that
could be used in the clinic to dynamically classify patients based on accruing
information from cTn measurements. We implemented several state of the
art non-parametric statistical modeling approaches to dynamic classification
of irregularly and sparsely sampled curves, and compared their performance
in a simulation study. Results demonstrated that the generalized functional
linear model (GFLM) was superior to the other approaches when historic in-
formation was taken into account, and the tensor product smooth (TPS) when
historic information was not taken into account. The GFLM and TPS ap-
proaches were also applied to the cTnT data post-CABG, and showed better
performance in diagnosing a PMI than the current clinical guideline.

Secondly, we focused on the screening of patients presenting at the emergency
department (ED) for a possible coronavirus disease 2019 (COVID-19) infec-
tion. Routine laboratory test from a pre-pandemic cohort were combined with
a cohort of patients presenting at the ED during the COVID-19 pandemic.
These data were then combined with polymerase chain reaction (PCR) test re-
sults and used in a penalized regression model to obtain the CoLab-score. The
CoLab-score is available within one hour after presentation and could safely
rule-out COVID-19 in over one third of ED presentations, depending on the
prevalence. Highly suspect cases could be identified regardless of present-
ing symptoms. The score was temporally validated in the development center
and externally validated in three other centers. The novelty of the CoLab-
score, compared to other CPMs developed during the COVID-19 pandemic,
is that it is valid for the entire ED patient population where routine blood with-
drawal is required, requires only ten routine laboratory tests and is adaptable
to both high and low prevalence situations. Given the need for fast screening
during outbreaks, a prospective study was done to assess if the CoLab-score
could also be used to rule-out in infection in symptomatic healthcare work-
ers (HCWs). From this study, it was concluded that the CoLab-score could
also be used to safely rule-out a possible COVID-19 infection in symptomatic
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HCWs. Using a safe threshold for the CoLab-score, COVID-19 could be ruled
out in over one third of symptomatic HCWs.

Thirdly, two validation studies were performed. First, the European coLlab-
oration on Acute decompeNsated Heart Failure (ELAN-HF) risk score, de-
veloped by Salah et al. to predict readmission and/or mortality in patients
admitted with acute decompensated heart failure (ADHF), was externally val-
idated. The Cox proportional hazards model showed no signs of miscal-
ibration, bias or reduced discriminative ability. Two factors that provided
additional prognostic information, were i) if the patient was admitted with
ADHF in the past year and ii) if the patient was managed by the outpatient
heart failure clinic. Additionally, the association between self-care behav-
ior and 6-month readmission and/or mortality was investigated. No evidence
was found that self-care behavior was associated with 6-month readmission
and/or mortality. However, self-care behavior was already adequate in the
study population, making it difficult to quantify the effect of low self-care
on the outcome. Secondly, a validation study was performed to assess the
agreement between the heart rate (HR) extracted from a wrist worn optical
heart rate monitor (OHRM) (integrating a photopletysmography (PPG) and
accelerometer sensor) and the gold standard 5-lead electrocardiogram (ECG)
connected to the patient monitor, in patients undergoing non-cardiac surgery.
While many OHRM validation studies have been published, very few studies
are performed in hospitalized patients and most include only stable ward pa-
tients. This study included a heterogeneous sample of patients, wearing the
OHRM during surgery and recovery. It was concluded that, if the PPG signal
is of sufficient quality, the HR measured by the OHRM falls within the ECG
reference standard during both surgery and recovery. This study demonstrated
the potential of an unobtrusive OHRM, to provide accurate HR measurements
in hospitalized patients.

Finally, from the clinical challenges addressed in this thesis, some general
conclusions were made regarding the potential and pitfalls of using real-world
longitudinal data in the development and validation of CPMs. The biggest po-
tential of RWD lies in its accessibility, volume and speed. While RWD does
not suffer from consent bias, its major pitfalls are selection bias, informative
missingness and data quality issues. Not taking these pitfalls into account can
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lead to propagation of bias and errors in CPMs. CPMs have the potential to
make accurate predictions even if the sample size is small, either by penaliza-
tion or through the use of mixed effects models in case of longitudinal data.
Penalization also enables feature selection, reducing the number of predic-
tors that need to be collected and subsequently simplifying implementation in
other centers. Uncovered pitfalls in CPM development are, choosing ’exotic’
predictors, not taking concurrency of predictors into account, calibration drift
and analytical variation. In conclusion, RWD are both a goldmine and mine-
field in developing CPMs. Healthcare is always evolving, the focus of CPMs
should not lie on trying to achieve the best performance today, but on achiev-
ing a consistent performance in the future and providing a proven benefit to
clinicians and patients.
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Samenvatting

Historisch gezien werd geneeskunde beoefend als een kunst, gebaseerd op
het gezag van een meester, de mening van experts en ervaring. Tegenwo-
ordig wordt geneeskunde beschouwd als zowel een kunst als een wetenschap,
gebaseerd op resultaten van klinische studies en onderzoek. De verschuiving
van op autoriteit gebaseerde geneeskunde naar ”evidence-based” geneeskunde
is mede mogelijk gemaakt door de opkomst van statistiek. Een essentiële
rol van statistiek in de geneeskunde is het modelleren van de gegenereerde
gegevens en het vertalen van resultaten naar klinische besluitvorming. Een
manier om de besluitvorming te ondersteunen, is door het ontwikkelen van
klinische predictie modellen (clinical prediction models (CPMs)). CPMs kun-
nen de waarschijnlijkheid van een bepaalde klinische uitkomst voorspellen, op
basis van een set variabelen. Met de snelle groei van data-acquisitie, opslag,
algoritmen en rekenkracht, wordt het gebruik van data uit de ’echte’ wereld
(real-world data (RWD)) om CPMs te ontwikkelen steeds populairder. RWD
zijn observationele gegevens met betrekking tot de gezondheidsstatus van de
patiënt en/of de verstrekking van gezondheidszorg, gegenereerd als onderdeel
van een zorgproces. Dit in tegenstelling tot gegevens die zijn verzameld als
onderdeel van een klinische trial of studie. Aangezien RWD van begin tot
einde van het zorgproces wordt verzameld, is longitudinale data eerder regel
dan uitzondering. Om de potentie en valkuilen van het gebruik van real-world
longitudinale data bij het ontwikkelen en valideren van CPMs te achterhalen,
werden in dit proefschrift verschillende klinische problemen uitgewerkt.

Ten eerste, hebben we ons gericht op de diagnose van een perioperatief
myocardinfarct (PMI) na een coronaire-bypassoperatie (CABG), gebaseerd
op seriële metingen van de biomarker cardiaal troponine T (cTn). De huidige
klinische richtlijn is gebaseerd op een vaste afkapwaarde voor cTn om
patiënten te screenen op een mogelijke PMI. Het vrijkomen van cTn na een
CABG wordt echter gekenmerkt door een sterk niet-lineair profiel, dat per
patiënt varieert. De richtlijn houdt geen rekening met dit karakteristieke
cardiac troponin (cTn) profiel en levert bovendien veel vals positieven op.
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Ook vereist de definitieve diagnose van een PMI aanvullende criteria die
per centrum verschillen. Daarom zal het vaststellen van een PMI-specifiek
cTn profiel, op basis van een centrum-specifieke diagnose van een PMI,
leiden tot subjectieve bevindingen. We hebben aangetoond dat een “latent
class mixed model”, dat afziet van a priori veronderstellingen over de
diagnose van patiënten, klinisch relevante subgroepen kan ontdekken,
uitsluitend gebaseerd op cTnT profielen post-CABG . De klasse met een
stijgend cTnT-profiel had een superieure diagnostische nauwkeurigheid
ten opzichte van de klinische richtlijn. Hoewel deze studie aantoonde dat
het cTnT-profiel een beter diagnostisch criterium is voor het screenen van
patiënten op een PMI dan een vaste afkapwaarde, was de volgende stap het
ontwikkelen van voorspellende modellen die in de kliniek zouden kunnen
worden gebruikt om patiënten dynamisch te classificeren op basis van
herhaalde cTnT-metingen. Hiertoe hebben we verschillende state-of-the-art
niet-parametrische statistische modelleringsbenaderingen geı̈mplementeerd
voor dynamische classificatie van onregelmatig en schaars gemeten curves,
en hun prestaties vergeleken in een simulatiestudie. De resultaten toonden
aan dat het generalized functional linear model (GFLM) superieur was aan
de andere benaderingen wanneer er rekening werd gehouden met historische
informatie, en het tensor product smooth (TPS) wanneer er geen rekening
werd gehouden met historische informatie. De GFLM- en TPS-benaderingen
werden vervolgens toegepast op de data uit klinische praktijk, en presteerden
beter in het diagnosticeren van een perioperative myocardial infarction (PMI)
dan de huidige klinische richtlijn.

Ten tweede, hebben we ons gericht op het screenen van patiënten die zich
op de spoedeisende hulp (SEH) presenteren met een mogelijke coronavirus
disease 2019 (COVID-19)-infectie. Routine laboratoriumtesten van een
pre-pandemisch cohort werden gecombineerd met een cohort van patiënten
die zich presenteerden op de SEH tijdens de COVID-19-pandemie. Deze
gegevens werden vervolgens gecombineerd met polymerase chain reaction
(PCR)-testresultaten en gebruikt in een ”penalized” regressiemodel om de
CoLab-score te verkrijgen. De CoLab-score is binnen een uur na presentatie
beschikbaar en kan COVID-19 veilig uitsluiten in meer dan een derde van de
SEH-presentaties, afhankelijk van de prevalentie. Hoog verdachte gevallen
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konden worden geı̈dentificeerd, ongeacht de symptomen bij presentatie. De
score werd temporeel gevalideerd in het ontwikkelingscentrum en extern
gevalideerd in drie andere centra in Nederland. Het innovatieve aan de
CoLab-score is dat deze score geschikt is voor het screenen van de gehele
SEH-patiëntenpopulatie waarbij bloedafname plaatsvindt, slechts tien routine
laboratoriumtesten vereist zijn om de score te berekenen en deze kan adaptief
worden gebruikt tijdens zowel hoge als lage prevalentie. Gezien de noodzaak
van snelle screening tijdens uitbraken, werd een prospectieve studie gedaan
om te beoordelen of de CoLab-score ook gebruikt kon worden om infectie
uit te sluiten bij zorgmedewerkers met symptomen van COVID-19. Uit een
prospectieve studie werd geconcludeerd dat de CoLab-score ook gebruikt
kan worden om een mogelijke COVID-19-infectie veilig uit te sluiten bij
symptomatische zorgmedewerkers. Met een veilige afkanwaarde voor de
CoLab-score kon een infectie worden uitgesloten bij meer dan een derde van
de symptomatische zorgmedewerkers.

Ten derde, zijn er twee validatiestudies uitgevoerd. Allereerst werd de
European coLlaboration on Acute decompeNsated Heart Failure (ELAN-HF)
risicoscore extern gevalideerd. De ELAN-HF score is ontwikkeld door Salah
et al. om heropname en/of mortaliteit te voorspellen bij patiënten opgenomen
voor acuut gedecompenseerd hartfalen (ADHF). Het Cox-proportioneel
risicomodel vertoonde geen tekenen van mis-kalibratie, bias of verminderd
onderscheidend vermogen. Twee factoren die aanvullende prognostische
informatie opleverden, waren i) of de patiënt het afgelopen jaar was
opgenomen voor ADHF en ii) of de patiënt werd behandeld door de
polikliniek hartfalen. Daarnaast werd het verband tussen zelfzorggedrag
en heropname en/of mortaliteit na 6 maanden, onderzocht. Er werd geen
bewijs gevonden dat zelfzorggedrag geassocieerd was met heropname
en/of mortaliteit. Het zelfzorggedrag was echter al adequaat in de
onderzoekspopulatie, waardoor het effect van lage zelfzorg op de uitkomst
moeilijk te kwantificeren was. Ten tweede werd een validatiestudie
uitgevoerd om de overeenkomst tussen de hartslag (HR) gemeten door
een om de pols gedragen optische hartslag meter (OHRM) en de gouden
standaard 5-lead electrocardiogram (ECG) aangesloten op de patiëntmonitor,
vast te stellen. Dit gebeurde in een prospectieve studie bij patiënten
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die een niet-cardiale operatie ondergingen. Hoewel er veel OHRM
validatiestudies zijn gepubliceerd, zijn er zeer weinig studies uitgevoerd
bij gehospitaliseerde patiënten en de meeste richten zich op stabiele
patiënten op een verpleegafdeling. Deze studie includeerde echter een
heterogene groep van patiënten die de OHRM droegen tijdens operatie
en herstel. Geconcludeerd kon worden dat, als het gemeten signaal van
de OHRM van voldoende kwaliteit is, de HR van de OHRM binnen de
ECG-referentiestandaard valt, tijdens zowel operatie als herstel. Deze studie
toonde aan dat een OHRM potentie heeft om op een laagdrempelige manier,
nauwkeurig HR te meten in een laag-risico setting.

Tenslotte, zijn er op basis van de klinische toepassingen die in dit proef-
schrift aan bod zijn gekomen, enkele algemene conclusies getrokken met be-
trekking tot de potentie en de valkuilen van het gebruik van real-world longi-
tudinale data bij het ontwikkelen en valideren van CPMs. De grootste poten-
tie van RWD ligt in de toegankelijkheid, het volume en de snelheid. Hoewel
RWD geen last heeft van toestemmingsbias, zijn de grootste valkuilen selec-
tiebias, ontbrekende informatie en problemen met de gegevenskwaliteit. Het
niet in acht nemen van deze valkuilen kan leiden tot propagatie van bias en
fouten in CPMs. CPMs hebben de potentie om nauwkeurige voorspellingen
te doen, zelfs als de steekproefomvang klein is, hetzij door “penalization”,
hetzij door het gebruik van hiërarchische modellen in het geval van longitudi-
nale data. Penalization maakt ook selectie van variabelen mogelijk waardoor
het aantal variabelen dat moet worden verzameld wordt verminderd, hetgeen
de implementatie in andere centra vereenvoudigt. Belangrijke valkuilen bij
CPM ontwikkeling zijn het gebruik van ’exotische’ variabelen, geen rekening
houden met gelijktijdigheid van variabelen, kalibratiedrift en analytische vari-
atie. Concluderend, is RWD zowel een goudmijn als een mijnenveld voor het
ontwikkelen van CPMs. De gezondheidszorg is voortdurend in beweging, de
focus van CPMs zou daarom niet moeten liggen op het bereiken van de beste
prestaties vandaag, maar op het waarborgen van betrouwbare prestaties in de
toekomst en het bieden van een bewezen voordeel voor clinici en patiënten.
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List of abbreviations

ADHF acute decompensated heart failure.

AF atrial fibrillation.

AI artificial intelligence.

ALAT alanine aminotransferase.

ALP alkaline phosphatase.

AR auto-regressive.

ARL average run length.

ASA-PS American Society of Anesthesiologists physical status.

ASAT aspartate aminotransferase.

AUC area under the ROC-curve.

BC bromocresol.

BIC Bayesian information criteria.

BNP brain natriuretic peptide.

bpm beats per minute.

BUN blood urea nitrogen.

CABG coronary artery bypass grafting.

CGC conditional growth chart.

CI confidence interval.
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CK creatine kinase.

CKD-EPI CKD-EPI estimated glomerular filtration rate.

CO-RADS COVID-19 Reporting and Data System.

COV-LDA covariance pattern longitudinal discriminant analysis.

COVID-19 coronavirus disease 2019.

CPM clinical prediction model.

CRP C-reactive protein.

Ct cycle threshold.

cTn cardiac troponin.

EBM evidence based medicine.

ECG electrocardiogram.

ED emergency department.

EHFScBS-9 European Heart Failure Self-care Behaviour Scale.

EHR electronic health record.

ELAN-HF European coLlaboration on Acute decompeNsated Heart Failure.

F-LDA functional longitudinal discriminant analysis.

FACEs fast covariance estimation for sparse functional data.

GAM generalized additive model.

GFLM generalized functional linear model.

gGT gamma-glutamyltransferase.

HCW healthcare worker.
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HF heart failure.

HR heart rate.

ICU intensive care unit.

IPI inter-pulse-interval.

IQR interquartile range.

KM Kaplan-Meier.

LCMM latent class mixed model.

LD lactate dehydrogenase.

LDA longitudinal discriminant analysis.

LFT rapid lateral flow test.

LIS laboratory information system.

LME linear mixed effects.

LoA limits of agreement.

LoS length of stay.

LP linear predictor.

LR likelihood ratio.

MCH mean cellular hemoglobin.

MCHC mean cellular hemoglobin concentration.

MCV mean corpuscular volume.

mHealth mobile health.

MI myocardial infarction.
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ML machine learning.

MOVER method of variance estimates recovery.

NPV negative predictive value.

NT-proBNP N-Terminal pro–B-type natriuretic peptide.

NYHA New York Heart Association.

OHRM optical heart rate monitor.

OPCAB off-pump coronary artery bypass grafting.

OR operating room.

PC principal component.

PCR polymerase chain reaction.

PH proportional hazards.

PMI perioperative myocardial infarction.

PPG photopletysmography.

PPV positive predictive value.

QGAM smooth additive quantile regression model.

QI quality index.

QR quantile regression.

RCT randomized controlled trial.

ROC receiver operating characteristic.

RWD real-world data.
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SARS-CoV-2 severe acute respiratory syndrome coronavirus 2.

SD standard deviation.

SE standard error.

SGC static growth chart.

TPS tensor product smooth.

TU/e Eindhoven University of Technology.

URL upper reference limit.

XC aortic cross clamping.
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dossiers. Luuk, jij bedankt voor je input als cardioloog en intensivist. Je
reageerde altijd met veel enthousiasme op onze ideeën en bleef meedenken
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