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Abstract: We present a general emulation-based framework to address the distributed control
of multi-agent systems over packet-based networks. We consider the setup where information
is only transmitted at (non-uniform) sampling times and where packets are received with
unknown delays. We design local dynamic periodic event-triggering mechanisms to generate the
transmissions. The triggering mechanisms can run on non-synchronized digital platforms, i.e.,
we ensure that the conditions must only be verified at asynchronous sampling times, which may
differ for each platform. Different stability and performance characteristics can be considered as
we follow a general dissipativity-based approach. Moreover, Zeno-free properties are guaranteed
by design. The results are illustrated on a consensus problem.
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1. INTRODUCTION

Distributed and multi-agent control systems, including the
consensus problem, have attracted a lot of attention in re-
cent years. When these systems communicate via a packet-
based network, information is sparsely available. In these
cases, event-triggered control can be used. Event-triggered
control consists of generating the input signal and updat-
ing it over the packet-based network at some time instants,
which are based on the available plant/agent information,
to guarantee relevant stability and performance properties,
see, e.g., Heemels et al. (2012). A triggering condition
is thus synthesized and monitored to decide whether a
new transmission is needed. Due to the fact that these
conditions are often processed on a digital platform, it is
essential to take the sampling behavior of the platform
into account, especially when fast sampling is not possible,
e.g. in case of low-power electronics, in which case we
talk of periodic event-triggered control, see, e.g., Heemels
et al. (2013). Moreover, in practice, the communication
network suffers from imperfections such as time-varying
and unknown delays, which may destroy stability of the
closed-loop system. While there is abundant literature on
the event-triggered control of multi-agent systems, see,
e.g., Nowzari et al. (2019) and references therein, to the
best of our knowledge, none of the proposed approaches in
the literature consider all of the following aspects:

(1) nonlinear multi-system setup,
(2) fully distributed and asynchronous configuration,
(3) implementability on digital platforms,
(4) unknown and time-varying sampling and transmis-

sion delays,
(5) general stability and performance properties for (pos-

sibly unbounded) attractors (as in consensus).

Many works treat a subset of these aspects. A prominent
example is, e.g., the recent work by Yu and Chen (2021),
which provides important advancements on the nonlinear
case with (large) unknown transmission delays while tak-

⋆ This work is supported by the ANR grant HANDY 18-CE40-0010.

ing sampling into account. The main focus of our paper
is providing a unifying framework addressing all of these
aspects.

The main contribution in this paper is the development
of a unified framework for the design of Zeno-free, decen-
tralized and asynchronous periodic event-triggering mech-
anisms that can be implemented on local digital platforms.
The setup proposed in this paper captures a wide range
of relevant multi-agent (but also centralized) control prob-
lems by adopting a general dissipativity-based framework.
Using this framework, we can consider distributed stabi-
lization of nonlinear systems, output-regulation problems
(of which the consensus-seeking problem is a particu-
lar case) and vehicle-platooning problems (in which Lp-
contractivity, p ∈ [1,∞), is of interest as a string stability
guarantee). A notable advantage of our setup is that clock
synchronization is not required. Hence each local platform
can sample and transmit independently of all other plat-
forms, making the algorithm fully distributed.

2. PRELIMINARIES

For space reasons, some preliminaries are omitted. An
extended version of this paper including all notations that
are used can be found on arXiv, see Scheres et al. (2022).

We consider hybrid systems of the form H(C, F,D, G)

given by ξ̇ = F (ξ, v), when ξ ∈ C ⊆ X, and ξ+ ∈ G(ξ),
when ξ ∈ D ⊆ X, where v ∈ Lnv

∞ is an exogenous input
(disturbance) and X ⊆ Rnξ with nξ ∈ N>0, see Goebel
et al. (2012) and Heemels et al. (2021). For these hybrid
systems, we are interested in the following dissipativity
property, which is close in nature to the one used in Teel
(2010).

Definition 1. Let s : X × Rnv → R be a supply rate and
S ⊆ X be a closed non-empty set. System H is said to
be s-flow-dissipative with respect to S, or in short, (s,S)-
flow-dissipative, if there exists a locally Lipschitz function
U : X → R⩾0, called a storage function, such that
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to guarantee relevant stability and performance properties,
see, e.g., Heemels et al. (2012). A triggering condition
is thus synthesized and monitored to decide whether a
new transmission is needed. Due to the fact that these
conditions are often processed on a digital platform, it is
essential to take the sampling behavior of the platform
into account, especially when fast sampling is not possible,
e.g. in case of low-power electronics, in which case we
talk of periodic event-triggered control, see, e.g., Heemels
et al. (2013). Moreover, in practice, the communication
network suffers from imperfections such as time-varying
and unknown delays, which may destroy stability of the
closed-loop system. While there is abundant literature on
the event-triggered control of multi-agent systems, see,
e.g., Nowzari et al. (2019) and references therein, to the
best of our knowledge, none of the proposed approaches in
the literature consider all of the following aspects:

(1) nonlinear multi-system setup,
(2) fully distributed and asynchronous configuration,
(3) implementability on digital platforms,
(4) unknown and time-varying sampling and transmis-

sion delays,
(5) general stability and performance properties for (pos-

sibly unbounded) attractors (as in consensus).

Many works treat a subset of these aspects. A prominent
example is, e.g., the recent work by Yu and Chen (2021),
which provides important advancements on the nonlinear
case with (large) unknown transmission delays while tak-
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ing sampling into account. The main focus of our paper
is providing a unifying framework addressing all of these
aspects.

The main contribution in this paper is the development
of a unified framework for the design of Zeno-free, decen-
tralized and asynchronous periodic event-triggering mech-
anisms that can be implemented on local digital platforms.
The setup proposed in this paper captures a wide range
of relevant multi-agent (but also centralized) control prob-
lems by adopting a general dissipativity-based framework.
Using this framework, we can consider distributed stabi-
lization of nonlinear systems, output-regulation problems
(of which the consensus-seeking problem is a particu-
lar case) and vehicle-platooning problems (in which Lp-
contractivity, p ∈ [1,∞), is of interest as a string stability
guarantee). A notable advantage of our setup is that clock
synchronization is not required. Hence each local platform
can sample and transmit independently of all other plat-
forms, making the algorithm fully distributed.

2. PRELIMINARIES

For space reasons, some preliminaries are omitted. An
extended version of this paper including all notations that
are used can be found on arXiv, see Scheres et al. (2022).

We consider hybrid systems of the form H(C, F,D, G)

given by ξ̇ = F (ξ, v), when ξ ∈ C ⊆ X, and ξ+ ∈ G(ξ),
when ξ ∈ D ⊆ X, where v ∈ Lnv

∞ is an exogenous input
(disturbance) and X ⊆ Rnξ with nξ ∈ N>0, see Goebel
et al. (2012) and Heemels et al. (2021). For these hybrid
systems, we are interested in the following dissipativity
property, which is close in nature to the one used in Teel
(2010).

Definition 1. Let s : X × Rnv → R be a supply rate and
S ⊆ X be a closed non-empty set. System H is said to
be s-flow-dissipative with respect to S, or in short, (s,S)-
flow-dissipative, if there exists a locally Lipschitz function
U : X → R⩾0, called a storage function, such that
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1. INTRODUCTION

Distributed and multi-agent control systems, including the
consensus problem, have attracted a lot of attention in re-
cent years. When these systems communicate via a packet-
based network, information is sparsely available. In these
cases, event-triggered control can be used. Event-triggered
control consists of generating the input signal and updat-
ing it over the packet-based network at some time instants,
which are based on the available plant/agent information,
to guarantee relevant stability and performance properties,
see, e.g., Heemels et al. (2012). A triggering condition
is thus synthesized and monitored to decide whether a
new transmission is needed. Due to the fact that these
conditions are often processed on a digital platform, it is
essential to take the sampling behavior of the platform
into account, especially when fast sampling is not possible,
e.g. in case of low-power electronics, in which case we
talk of periodic event-triggered control, see, e.g., Heemels
et al. (2013). Moreover, in practice, the communication
network suffers from imperfections such as time-varying
and unknown delays, which may destroy stability of the
closed-loop system. While there is abundant literature on
the event-triggered control of multi-agent systems, see,
e.g., Nowzari et al. (2019) and references therein, to the
best of our knowledge, none of the proposed approaches in
the literature consider all of the following aspects:

(1) nonlinear multi-system setup,
(2) fully distributed and asynchronous configuration,
(3) implementability on digital platforms,
(4) unknown and time-varying sampling and transmis-

sion delays,
(5) general stability and performance properties for (pos-

sibly unbounded) attractors (as in consensus).

Many works treat a subset of these aspects. A prominent
example is, e.g., the recent work by Yu and Chen (2021),
which provides important advancements on the nonlinear
case with (large) unknown transmission delays while tak-

⋆ This work is supported by the ANR grant HANDY 18-CE40-0010.

ing sampling into account. The main focus of our paper
is providing a unifying framework addressing all of these
aspects.

The main contribution in this paper is the development
of a unified framework for the design of Zeno-free, decen-
tralized and asynchronous periodic event-triggering mech-
anisms that can be implemented on local digital platforms.
The setup proposed in this paper captures a wide range
of relevant multi-agent (but also centralized) control prob-
lems by adopting a general dissipativity-based framework.
Using this framework, we can consider distributed stabi-
lization of nonlinear systems, output-regulation problems
(of which the consensus-seeking problem is a particu-
lar case) and vehicle-platooning problems (in which Lp-
contractivity, p ∈ [1,∞), is of interest as a string stability
guarantee). A notable advantage of our setup is that clock
synchronization is not required. Hence each local platform
can sample and transmit independently of all other plat-
forms, making the algorithm fully distributed.

2. PRELIMINARIES

For space reasons, some preliminaries are omitted. An
extended version of this paper including all notations that
are used can be found on arXiv, see Scheres et al. (2022).

We consider hybrid systems of the form H(C, F,D, G)

given by ξ̇ = F (ξ, v), when ξ ∈ C ⊆ X, and ξ+ ∈ G(ξ),
when ξ ∈ D ⊆ X, where v ∈ Lnv

∞ is an exogenous input
(disturbance) and X ⊆ Rnξ with nξ ∈ N>0, see Goebel
et al. (2012) and Heemels et al. (2021). For these hybrid
systems, we are interested in the following dissipativity
property, which is close in nature to the one used in Teel
(2010).

Definition 1. Let s : X × Rnv → R be a supply rate and
S ⊆ X be a closed non-empty set. System H is said to
be s-flow-dissipative with respect to S, or in short, (s,S)-
flow-dissipative, if there exists a locally Lipschitz function
U : X → R⩾0, called a storage function, such that

(1) there exist K∞-functions α, α such that for all ξ ∈ X,
α(|ξ|S) ⩽ U(ξ) ⩽ α(|ξ|S), where |ξ|S denotes the
distance of ξ to the set S,

(2) for all ξ ∈ C, v ∈ Rnv and f ∈ F (ξ, v), U◦(ξ; f) ⩽
s(ξ, v), where U◦ denotes the generalized directional
derivative of Clarke,

(3) for all ξ ∈ D and all g ∈ G(ξ), U(g)− U(ξ) ⩽ 0. �

3. SYSTEM SETUP

3.1 Multi-agent systems

We consider the setting where multiple agents, each with
a local digital platform, communicate with each other
via a packet-based network to achieve a common goal
such as stabilization, consensus, Lp-performance, etc.,
which will be captured by a dissipativity property as in
Definition 1, as explained further below. To be precise,
we consider a collection of N ∈ N>0 heterogeneous agents
A1,A2, . . . ,AN , which are interconnected according to a
digraph G(V, E) where V := {1, 2, . . . , N}. The digital
platform of each agent is used for the implementation of
algorithms and control computations. Due to the digital
nature, measurements are not continuously available, but
only on specific sampling times, as explained in more detail
in Section 3.3. The dynamics of the ith agent, i ∈ N :=
{1, 2, . . . , N}, are given by

Ai :

{
ẋi = fi(x, ŷ

in
i , vi),

yi = hi(xi),
(1)

where xi ∈ Rnx,i is the local state vector, x :=
(x1, x2, . . . , xN ) ∈ Rnx with nx :=

∑
i∈N nx,i is the global

state vector, vi ∈ Rnv,i is a local exogenous disturbance or
input, yi ∈ Rny,i is the local output, y := (y1, y2, . . . , yN ) ∈
Rny with ny :=

∑
i∈N ny,i is the global output and ŷ in

i ∈
Rny is agent Ai’s estimate of the outputs of agents Am,
m ∈ V in

i , where V in
i denotes the collection of all agents that

transmit information to agent Ai, as will be explained in
more detail in Section 3.2. We assume that the functions fi
are continuous and that the functions hi are continuously
differentiable. The maps fi may depend on the entire
vector x, implying that we can allow physical couplings
between agents, for example in an interconnected physical
plant, see Fig. 1 for an illustration.
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Fig. 1. Example of a networked control setup with several agents
connected to a packet-based network and a physical connection
between A1 and A2.

Typical systems that can be captured by a multi-agent
system are, e.g., (physically uncoupled) agents, a fleet of
vehicles seeking consensus, or a distributed plant (with
physical couplings) with distributed controllers. To design
the controllers, we proceed with an emulation-based ap-
proach in which a (local) controller is designed such that,
in the absence of a network, i.e., when ŷ in

i = y for all
i ∈ V in

i , the system satisfies the desired stability and
performance criteria. Since the controller is implemented

on a digital platform, we assume that either the controller
is static and updated during the sampling times of the
output (see Section 3.3), or, when the (local) controllers
are dynamic, that they run on a separate platform, whose
sampling times are much faster and hence they operate in
(near) continuous-time.

3.2 Transmitted outputs

Due to the usage of a packet-based network, agent Ai,
i ∈ N , does not have continuous access to the output
ym of agent Am, m ∈ V in

i . Instead, agent Ai only has an
estimate ŷ i

m of ym, m ∈ V in
i , collected in the estimation

vector ŷ in
i := (ŷ i

1, ŷ
i
2, . . . , ŷ

i
N ) ∈ Rny . For all m ∈ N \ V in

i ,
ŷ i
m is not relevant and simply set to zero.

At discrete times tik, k ∈ N, i ∈ N , that satisfy 0 =
ti0 < ti1 < . . ., the output yi of agent Ai is broadcasted
over the network to all (connected) agents Am, where
m ∈ Vout

i with Vout
i the collection of all agents that receive

information from agentAi. Due to possible network delays,
the estimate ŷm

i , m ∈ Vout
i , is updated after a delay of

∆i,m
k ⩾ 0. Note that the delays are different for each

(receiving) agent. The update of the estimate ŷm
i , i ∈ N ,

m ∈ Vout
i , can be expressed as

ŷm
i ((tik +∆i,m

k )+) = yi(t
i
k). (2)

In between transmissions, the estimate ŷm
i is generated by

a zero-order-hold (ZOH) device, i.e.,

˙̂ym
i (t) = 0, (3)

for all t ∈ (tik +∆i,m
k , tik+1+∆i,m

k+1), with i ∈ N , m ∈ Vout
i ,

k ∈ N.
The transmission times tik are determined by an event
generator or triggering mechanism. Inspired by Girard
(2015) and Dolk et al. (2017), we consider dynamic event
triggering rules, where an auxiliary variable ηi ∈ R⩾0,
i ∈ N , whose dynamics are designed in the sequel, is used
to determine the transmission times tik, k ∈ N, see Section
3.4.

3.3 Digital platform

The triggering mechanism of each agent is implemented
on the local digital platform, which has its own sampling
times. The sequence of sampling times of agent Ai is
denoted {sin}n∈N, where s

i
n denotes the nth local sampling

instant of agent Ai. Transmissions generated by Ai occur
on a subset of the sampling instants, i.e.,

{tik}k∈N ⊆ {sin}n∈N. (4)

Inspired by Wang et al. (2020), we consider the general
setting where the inter-sampling times satisfy

0 < di ⩽ sin+1 − sin ⩽ τ iMASP, (5)

where di is an arbitrarily small but positive constant and
τ iMASP denotes the maximum allowable sampling period
(MASP) for agent Ai, i ∈ N . The sampling times {sin}n∈N
and {sjn}n∈N of agents Ai and Aj , respectively, are a priori
not related for i ̸= j. In other words, all agents operate
independently and asynchronously.

Due to the agents operating asynchronously, the arrival
times tik + ∆i,m

k , k ∈ N, of new information at agent Am

from agent Ai may not coincide with the sampling times
{smn }n∈N of agent Am, hence information may be received
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in between consecutive sampling times of agent Am. How-
ever, the sampling-induced delay (the time between the
arrival of information from agent Ai and the next sampling
instant of agent Am) can be included in the total delay

denoted ∆
i,m

k . Therefore, the total delay ∆
i,m

k is equal to

the combined communication delay ∆i,m
k and sampling-

induced delay. Through this setup, we obtain

{tik +∆
i,m

k }k∈N ⊆ {smn }n∈N (6)

for all m ∈ N and i ∈ Vout
m .

We adopt the following assumption on the total delays

∆
i,m

k , k ∈ N.
Assumption 1. For each i ∈ N , there is a time-constant
τ iMAD such that the delays are bounded according to

0 ⩽ ∆
i,m

k ⩽ τ iMAD ⩽ tik+1 − tik for all m ∈ Vout
i and all

k ∈ N, where τ iMAD denotes the maximum allowable delay
(MAD) for agent Ai. �

Assumption 1 is a “small delay” condition, which also
implies that packets sent from Ai to Am, m ∈ Vout

i , are
received in the same order that they are transmitted.

Since the sampling-induced delays are never larger than
the local MASP τmMASP at agent m, we have that

τ iMAD ⩾ τmMASP+∆i,m
k for all i ∈ N ,m ∈ Vout

i , k ∈ N. (7)

3.4 Triggering rule

Our goal is to employ dynamic event triggering, which
relies on locally available information, namely output mea-
surements. Due to this information only being available at
the sampling instants {sin}n∈N, the design of, e.g., Dolk
et al. (2017) cannot be directly used. Instead, we consider
an event-triggering mechanism (ETM) in the form

tik+1 := inf{t ⩾ tik + τ iMIET |
ηi(t) + νi(yi(t), yout

i (t), τi(t)) ⩽ 0, t ∈ {sin}n∈N},
(8)

for i ∈ N , k ∈ N, with ti0 = 0 and where τ iMIET > 0
denotes the (enforced lower bound on the)minimum inter-
event time (MIET) of agent Ai, ηi ∈ R⩾0 is the auxiliary
variable mentioned earlier, yout

i := (y1
i , y2

i , . . . , yN
i ) is the

vector of estimates of the output yi at the agents Am,
m ∈ Vout

i . Variable τi ∈ R⩾0 is a local timer that is
set to zero after each transmission of the output yi over
the network, and whose dynamics are given by τ̇i = 1
in between two successive transmissions of agent Ai. The
function νi : Rny,i×RNny,i×R⩾0 → R⩽0 is to be designed.

At first glance it might seem unnatural that agent Ai
has to know the estimates yout

i due to the presence
of the unknown and time-varying delays. However, this
information is only needed when τi ⩾ τ iMIET, and since
τ iMIET ⩾ τ iMAD as we will see in Section 5, all agents Am,
m ∈ Vout

i , will have received the latest transmission of
agent Ai for τi ⩾ τ iMIET. Due to the fact that a ZOH is
used to generate the estimated output, see (3), yout

i is thus
the vector consisting of the last value of the output yi sent
by agent Ai, which is available at agent Ai for τi ⩾ τ iMIET.

The ETM (8) satisfies the constraints that arise from the
usage of a digital platform, as the trigger condition in (8)
only has to be evaluated at the local sampling times sin,
n ∈ N. The triggering variable ηi generated locally by
agent Ai, i ∈ N , evolves according to

η̇i = Ψi(y in
i )− φi(ηi), (9a)

ηi(t
+) ∈




{ηi + ϱi(yi, yout
i )}, for all t ∈ {tik}k∈N,

{ηi + νi(yi, yout
i , τi)},

for all t ∈ {sin}n∈N \ {tik}k∈N,
(9b)

where the functions Ψi : Rny → R, ϱi : Rny,i × RNny,i →
R⩾0, φi ∈ K∞ and the constant τ iMIET ∈ R>0 are designed
in Section 5.3.

Remark 1. In (9a), a continuous-time differential equa-
tion is used. However, since the ‘external’ variable y in

i
is constant in between consecutive sampling times, exact
discretization or numerical integration can be used to
compute ηi a posteriori based on the elapsed time since
the previous sampling time. For instance, if φi(ηi) =
αiηi with a constant αi ̸= 0, we obtain the exact dis-

cretization ηi(s
i
n+1) = e−αi(s

i
n+1−sin)ηi((s

i
n)

+) + α−1
i [1 −

e−αi(s
i
n+1−sin)]Ψi(y in

i ((sin)
+)). Hence, exact solutions to

the differential equation can be obtained on a digital plat-
form. However, we consider the dynamics of ηi as presented
in (9) to facilitate the modeling and stability analysis later
on. �

3.5 Objective

Given the descriptions above, the problem considered
in this paper can now be stated informally as follows.
Consider a collection of maximum allowable delays τ iMAD,
i ∈ N , satisfying Assumption 1. Our objective is to
propose design conditions for the time constants τ iMIET(⩾
τ iMAD), the functions Ψi, φi, ϱi and νi, i ∈ N , as in (8)
and (9), such that the resulting system has the desired
(and to be specified) closed-loop stability, performance
and robustness properties formalized in terms of suitable
dissipativity properties.

4. HYBRID MODELING

To facilitate the modeling of the overall networked system,
some helpful notation is introduced in this section.

4.1 Network-induced errors

For all i ∈ N andm ∈ Vout
i , we denote the network-induced

error emi as the difference between the output yi of agent
Ai and the estimate ym

i of the output yi at agent Am.
For all i ∈ N and m ∈ N \ Vout

i , i.e., for all redundant
variables, we set emi = 0. Hence, we have

emi :=

ym
i − yi, if m ∈ Vout

i ,
0, if m ∈ N \ Vout

i .
(10)

We define two separate concatenations of the network-
induced error associated to agent Ai, i ∈ N . The first one,
denoted eouti := (e1i , e

2
i , . . . , e

N
i ) ∈ Ei, where Ei := Ei(1)×

Ei(2)× . . .× Ei(N) and with

Ei(m) :=


Rny,i , if m ∈ Vout

i ,
{0ny,i

}, otherwise,

is the concatenation of the network-induced errors as-
sociated to the output yi. The second, denoted eini :=
(ei1, e

i
2, . . . , e

i
N ) ∈ Ei, with Ei := E1(i)×E2(i)×. . .×EN (i),

is the concatenation of network-induced errors of the esti-
mated outputs available at agent Ai, i ∈ N . Moreover, we
define the concatenation of all network-induced errors eini ,
for i ∈ N , as e := (ein1 , ein2 , . . . , einN ) ∈ E with E := E1×E2×
. . .×EN . Observe that |e|2 =


i∈N |eouti |2 =


i∈N |eini |2.
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in between consecutive sampling times of agent Am. How-
ever, the sampling-induced delay (the time between the
arrival of information from agentAi and the next sampling
instant of agent Am) can be included in the total delay

denoted ∆
i,m

k . Therefore, the total delay ∆
i,m

k is equal to

the combined communication delay ∆i,m
k and sampling-

induced delay. Through this setup, we obtain

{tik +∆
i,m

k }k∈N ⊆ {smn }n∈N (6)

for all m ∈ N and i ∈ Vout
m .

We adopt the following assumption on the total delays

∆
i,m

k , k ∈ N.
Assumption 1. For each i ∈ N , there is a time-constant
τ iMAD such that the delays are bounded according to

0 ⩽ ∆
i,m

k ⩽ τ iMAD ⩽ tik+1 − tik for all m ∈ Vout
i and all

k ∈ N, where τ iMAD denotes the maximum allowable delay
(MAD) for agent Ai. �

Assumption 1 is a “small delay” condition, which also
implies that packets sent from Ai to Am, m ∈ Vout

i , are
received in the same order that they are transmitted.

Since the sampling-induced delays are never larger than
the local MASP τmMASP at agent m, we have that

τ iMAD ⩾ τmMASP+∆i,m
k for all i ∈ N ,m ∈ Vout

i , k ∈ N. (7)

3.4 Triggering rule

Our goal is to employ dynamic event triggering, which
relies on locally available information, namely output mea-
surements. Due to this information only being available at
the sampling instants {sin}n∈N, the design of, e.g., Dolk
et al. (2017) cannot be directly used. Instead, we consider
an event-triggering mechanism (ETM) in the form

tik+1 := inf{t ⩾ tik + τ iMIET |
ηi(t) + νi(yi(t), yout

i (t), τi(t)) ⩽ 0, t ∈ {sin}n∈N},
(8)

for i ∈ N , k ∈ N, with ti0 = 0 and where τ iMIET > 0
denotes the (enforced lower bound on the)minimum inter-
event time (MIET) of agent Ai, ηi ∈ R⩾0 is the auxiliary
variable mentioned earlier, yout

i := (y1
i , y2

i , . . . , yN
i ) is the

vector of estimates of the output yi at the agents Am,
m ∈ Vout

i . Variable τi ∈ R⩾0 is a local timer that is
set to zero after each transmission of the output yi over
the network, and whose dynamics are given by τ̇i = 1
in between two successive transmissions of agent Ai. The
function νi : Rny,i×RNny,i×R⩾0 → R⩽0 is to be designed.

At first glance it might seem unnatural that agent Ai
has to know the estimates yout

i due to the presence
of the unknown and time-varying delays. However, this
information is only needed when τi ⩾ τ iMIET, and since
τ iMIET ⩾ τ iMAD as we will see in Section 5, all agents Am,
m ∈ Vout

i , will have received the latest transmission of
agent Ai for τi ⩾ τ iMIET. Due to the fact that a ZOH is
used to generate the estimated output, see (3), yout

i is thus
the vector consisting of the last value of the output yi sent
by agent Ai, which is available at agent Ai for τi ⩾ τ iMIET.

The ETM (8) satisfies the constraints that arise from the
usage of a digital platform, as the trigger condition in (8)
only has to be evaluated at the local sampling times sin,
n ∈ N. The triggering variable ηi generated locally by
agent Ai, i ∈ N , evolves according to

η̇i = Ψi(y in
i )− φi(ηi), (9a)

ηi(t
+) ∈




{ηi + ϱi(yi, yout
i )}, for all t ∈ {tik}k∈N,

{ηi + νi(yi, yout
i , τi)},

for all t ∈ {sin}n∈N \ {tik}k∈N,
(9b)

where the functions Ψi : Rny → R, ϱi : Rny,i × RNny,i →
R⩾0, φi ∈ K∞ and the constant τ iMIET ∈ R>0 are designed
in Section 5.3.

Remark 1. In (9a), a continuous-time differential equa-
tion is used. However, since the ‘external’ variable y in

i
is constant in between consecutive sampling times, exact
discretization or numerical integration can be used to
compute ηi a posteriori based on the elapsed time since
the previous sampling time. For instance, if φi(ηi) =
αiηi with a constant αi ̸= 0, we obtain the exact dis-

cretization ηi(s
i
n+1) = e−αi(s

i
n+1−sin)ηi((s

i
n)

+) + α−1
i [1 −

e−αi(s
i
n+1−sin)]Ψi(y in

i ((sin)
+)). Hence, exact solutions to

the differential equation can be obtained on a digital plat-
form. However, we consider the dynamics of ηi as presented
in (9) to facilitate the modeling and stability analysis later
on. �

3.5 Objective

Given the descriptions above, the problem considered
in this paper can now be stated informally as follows.
Consider a collection of maximum allowable delays τ iMAD,
i ∈ N , satisfying Assumption 1. Our objective is to
propose design conditions for the time constants τ iMIET(⩾
τ iMAD), the functions Ψi, φi, ϱi and νi, i ∈ N , as in (8)
and (9), such that the resulting system has the desired
(and to be specified) closed-loop stability, performance
and robustness properties formalized in terms of suitable
dissipativity properties.

4. HYBRID MODELING

To facilitate the modeling of the overall networked system,
some helpful notation is introduced in this section.

4.1 Network-induced errors

For all i ∈ N andm ∈ Vout
i , we denote the network-induced

error emi as the difference between the output yi of agent
Ai and the estimate ym

i of the output yi at agent Am.
For all i ∈ N and m ∈ N \ Vout

i , i.e., for all redundant
variables, we set emi = 0. Hence, we have

emi :=

ym
i − yi, if m ∈ Vout

i ,
0, if m ∈ N \ Vout

i .
(10)

We define two separate concatenations of the network-
induced error associated to agent Ai, i ∈ N . The first one,
denoted eouti := (e1i , e

2
i , . . . , e

N
i ) ∈ Ei, where Ei := Ei(1)×

Ei(2)× . . .× Ei(N) and with

Ei(m) :=


Rny,i , if m ∈ Vout

i ,
{0ny,i

}, otherwise,

is the concatenation of the network-induced errors as-
sociated to the output yi. The second, denoted eini :=
(ei1, e

i
2, . . . , e

i
N ) ∈ Ei, with Ei := E1(i)×E2(i)×. . .×EN (i),

is the concatenation of network-induced errors of the esti-
mated outputs available at agent Ai, i ∈ N . Moreover, we
define the concatenation of all network-induced errors eini ,
for i ∈ N , as e := (ein1 , ein2 , . . . , einN ) ∈ E with E := E1×E2×
. . .×EN . Observe that |e|2 =


i∈N |eouti |2 =


i∈N |eini |2.

4.2 Clock variables

To be able to cast the overall system described in Section
3 in the form of H(C, F,D, G), we need to introduce some
auxiliary variables. Each agent Ai, i ∈ N , has two local
timers. We already saw that τi captures the time elapsed
since the last transmission of agentAi, see (8). The second,
denoted σi, keeps track of the time elapsed since the
last sampling instant of agent Ai, i.e., σ̇i(t) = 1 for all
t ∈ R \ {sin}n∈N and is reset to zero at each sampling
instant, i.e., σi(t

+) = 0 for all t ∈ {sin}n∈N. Observe that
τi takes values in R⩾0 and that σi takes values in Ti :=
[0, τ iMASP] due to (5). Their concatenations are defined as
τ := (τ1, τ2, . . . , τN ) ∈ RN

⩾0 and σ := (σ1, σ2, . . . , σN ) ∈ T
with T := T1 × T2 × . . .× TN .

4.3 Indicator variables

We also define two indicator variables, ℓmi ∈ {0, 1} and
bmi ∈ {0, 1}. The variable ℓmi is used to indicate whether
the most recently transmitted output value yi of agent Ai
has been received by agent Am (ℓmi = 0), or that it still has
to be received by agent Am (ℓmi = 1). Since information
received by agent Am is processed at the sampling times,
we assume that information is buffered if it is received
between sampling instances. The variable bmi indicates
whether agent Am will process (i.e., update ŷm

i ) the most
recently transmitted output value by Ai (bmi = 1) or
that ŷm

i will not be updated at its next sampling instance
(bmi = 0). We distinguish between these two “events” to
ensure that updates of ŷm align with the sampling times of
agent Am, as described in (6). A graphical representation
of ℓmi and bmi is drawn in Fig. 2.
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Fig. 2. Graphical representation of the indicator variables ℓmi and
bmi . Blue dots indicate smk , k ∈ N.

Observe in Fig. 2, for all t ∈ [tik, t
i
k + ∆

i,m

k ], ℓmi (t) +
bmi (t) = 1. The sum of bmi and ℓmi indicates whether
the most recently transmitted information of agent Ai
has been received and processed by agent Am (ℓmi +
bmi = 0) or that it still has to be received or processed
by agent Am (ℓmi +bmi = 1). Moreover, due to Assumption
1, both ℓmi and bmi are guaranteed to be zero for all
τ ⩾ τ iMAD. To elucidate, we have that ℓmi + bmi ∈ {0, 1}
for all t ∈ R⩾0. These variables are concatenated as

ℓ := (ℓ11, ℓ
1
2, . . . , ℓ

1
N , ℓ21, ℓ

2
2, . . . , ℓ

N
N ) ∈ {0, 1}N2

and b :=

(b11, b
1
2, . . . , b

1
N , b21, b

2
2, . . . , b

N
N ) ∈ {0, 1}N2

.

Additionally, we define for all i ∈ N , the memory variable
ri ∈ Rny,i that stores the value of the yi at the transmission
times tik, k ∈ N. Hence, ri has dynamics ṙi = 0 and r+i = yi
if Ai transmits its output value. The concatenation is
denoted r := (r1, r2, . . . , rN ) ∈ Rny .

Based on the above, we can write the update of the local
error eini during the sampling times {sin}n∈N of agent Ai

as eini ((sin)
+) = eini (sin) + diag(bini (sin))((r(s

i
n) − y(sin)) −

eini (sin)), where bini := (bi1, b
i
2, . . . , b

i
N ).

4.4 Overall system

Using these definitions, the networked system (1) can
be cast into the form of a hybrid system H(C, F,D, G)
with state ξ := (x, e, τ, σ, r, ℓ, b, η) ∈ X, where η :=
(η1, η2, . . . , ηN ) ∈ RN

⩾0 and X :=
{
(x, e, τ, σ, r, ℓ, b, η) ∈

Rnx×E×RN
⩾0×T×Rny×{0, 1}N2×{0, 1}N2×RN

⩾0 | ∀i,m ∈
N , ((ℓmi + bmi = 0) ∨ (ℓmi + bmi = 1 ∧ τi ∈ [0, τ iMAD]))

}
.

For space reasons, we omit the exact expressions of C, F , D
and G, but we point out that the model can be constructed
such that a jump is enforced when ℓmi = 1 ∨ bmi = 1 and
τi = τ iMAD, or when σi = τ iMASP. As such, the hybrid
model complies with Assumption 1 and with (5). Details
of the exact expressions for C, F , D and G can be found
in the full version of this paper, see Scheres et al. (2022).

4.5 Formal problem statement

We can now state the problem of Section 3.5 formally as
follows.

Problem 1. Given the system H(C, F,D, G), provide de-
sign conditions for the time-constants τ iMAD, τ

i
MIET ∈ R>0

with τ iMIET ⩾ τ iMAD and the functions Ψi, ςi, ϱi and νi as
in (8) and (9), for i ∈ N , such that, under Assumption
1, the system H is persistently flowing 1 and (s̃,S)-flow-
dissipative for a set S ⊂ X, for a given supply rate s̃ : X×
Rnv → R of the form

s̃(ξ, v) := s(x, e, v)− φ(η), (11)

where ξ ∈ X, v ∈ Rnv and φ := (φ1(η1), φ2(η2), . . . ,
φN (ηN )) with φi as in (9). �

As shown in, for example, Van der Schaft (2017); Teel
(2010), the use of dissipativity allows the consideration of
various important system properties such as asymptotic
stability, input-to-state stability, Lp-stability with p ∈
[1,∞) and passivity, from a unified point of view. Thus, the
supply rate s̃ and the set S capture the desired stability,
performance and robustness requirements.

5. DESIGN CONDITIONS

To ensure that the hybrid system has the desired perfor-
mance and stability properties, the following conditions
have to be satisfied.

5.1 Growth of the network-induced error

We require that the dynamics of the network-induced error
satisfy the following property.

Condition 1. For each i ∈ N , there exist functions Hi :
Rnx × Rny × Rnv → R⩾0 and constants Li ⩾ 0 such that
for all m ∈ Vout

i , x ∈ Rnx , e ∈ RNny and v ∈ Rnv ,

|fy,i(x, e, v)| ⩽ Hi(x, e
in
i , v) + Li|eii|, (12)

where fy,i(x, e, v) =
∂hi(xi)

∂xi
fi(x, h

in
i (x)+eini , v) with δi(m)

given by δi(m) = 1 when m ∈ Vout
i and δi(m) = 0

otherwise, and hin
i (x) := (δ1(i)h1(x1), δ2(i)h2(x2), . . . ,

δN (i)hN (xN )) with hi(xi) in (1). �

1 Persistently flowing in the sense that maximal solutions have an
unbounded domain in t-direction, see Goebel et al. (2012).
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Inequality (12) is related to ẏi, which, due to the use of
ZOH devices, is directly related to ėmi , as ėmi = −δi(m)ẏi.
In essence, Condition 1 is a restriction on the growth
of the network-induced error between transmissions. This
condition is naturally satisfied for linear systems or when
the vector fields fi are globally bounded and hi are globally
Lipschitz.

5.2 Lower-bounds on the Minimum Inter-event Times and
Maximum Allowable Delays

To obtain lower-bounds on the minimum inter-event times
τ iMIET and the maximum allowable delay τ iMAD for each
agent Ai, i ∈ N , we first characterize the influence of
the transmission errors eini on the state x and the desired
stability/performance property by means of the following
condition.

Condition 2. There exist a locally Lipschitz function V :
Rnx → R⩾0 and a non-empty closed set X ⊆ Rnx , K∞-
functions αV ⩽ αV , continuous functions ςi : RNny →
R⩾0, constants µi, γi > 0, i ∈ N , such that for all x ∈ Rnx

αV (|x|X ) ⩽ V (x) ⩽ αV (|x|X ), (13)

and for all y ∈ Rny , e ∈ RNny , v ∈ Rnv , and almost all
x ∈ Rnx

⟨∇V (x), f(x, e, v)⟩ ⩽ s(x, e, v)−


i∈N ςi(y in
i )

+


i∈N
�
− µiNiH

2
i (x, e

in
i , v) + γ2

i |eouti |2


(14)

with Ni the cardinality of Vout
i , and Hi from (12). �

Condition 2 constitutes an L2-gain condition from |eouti |
to Hi. In case of a linear system, this condition can always
be verified if the system is controllable, for instance. In
the absence of a network, i.e., when e = 0, (13)-(14) imply
an (s,X )-dissipativity property. However, this property is
affected by the network-induced error e, and our objective
is to design the triggering mechanisms such that the
dissipativity property still holds for the networked system.

The constants γi as in Condition 2 are used to determine
τ iMIET and τ iMAD, i ∈ N , via the following condition.

Condition 3. Select τ imax > 0 and τ iMAD > 0, i ∈ N , with
τ imax ⩾ τ iMAD + τ iMASP such that

γ̃i(0)ϕ0,i(τ
i
max) ⩾ λ2

i γ̃i(1)ϕ1,i(0), (15)

γ̃i(1)ϕ1,i(τi) ⩾ γ̃i(0)ϕ0,i(τi), for all τi ∈ [0, τ iMAD], (16)

where ϕl,i, l ∈ {0, 1}, evolves according to

d
dτi

ϕl,i = −

2L̃i(l)ϕl,i + γ̃i(l)


1

µiϵi
ϕ2
l,i + 1


, (17)

for some fixed initial conditions ϕl,i(0), l ∈ {0, 1}, that
satisfy γ̃i(1)ϕ1,i(0) ⩾ γ̃i(0)ϕ0,i(0) > λ2

i γ̃i(1)ϕ1,i(0) > 0,
where, for each i ∈ N and l ∈ {0, 1}, the functions

L̃i : {0, 1} → R⩾0 and γ̃i : {0, 1} → R⩾0 are given by

L̃i(l) := λ−l
i


NiLi, γ̃i(l) := λ−l

i γi, (18)

with Ni the cardinality of Vout
i and where µi and γi satisfy

Condition 2. The constants λi ∈ (0, 1) and ϵi ∈ (0, 1],
i ∈ N , are tuning parameters. If the above conditions are
satisfied, τ iMIET is defined as τ iMIET := τ imax − τ iMASP. �

Condition 3 can always be ensured, as long as sufficiently
fast sampling is available. In practice, based on the con-
stants γi, (τ

i
max, τ

i
MAD) curves can be generated to intu-

itively select appropriate values for λi, ϕ0,i(0) and ϕ1,i(0).

These conditions are similar to the conditions in Dolk et al.
(2017), even though PETC or the effect of sampling is not

considered. Indeed, in the continuous-time case, i.e., when
τMASP approaches zero, τ iMIET = τ imax. This statement
underlines that, if faster sampling is used, the continuous-
time ETC behavior is recovered in the proposed setup.

5.3 Event-triggering Mechanism Design

To facilitate the design of the ETM, consider the following
condition.
Condition 4. For i ∈ N , consider the function Hi satis-
fying Condition 2. There exist locally Lipschitz functions
Hi : Rny → R⩾0 that for all e ∈ RNny , v ∈ Rnv and
x ∈ Rnx , satisfy Hi(y in

i ) ⩽ Hi(x, e
in
i , v). �

The function Ψi in (9a) is given by, for any y in
i ,

Ψi(y in
i ) := ςi(y in

i ) + (1− ϵi)µiNiH
2
i (y in

i ), (19)
where ςi and Hi come from Conditions 2 and 4, respec-
tively. The function ϱi is given by, for any yi ∈ Rny,i and
yout
i ∈ RNny,i

ϱi(yi, yout
i ) := εϱ|eouti |2 (20)

with εϱ :=
�
γ̃i(0)ϕ0,i(τ

i
MIET + σi)− γ̃i(1)ϕ1,i(0)λ

2
i


where

ϕl,i, l ∈ {0, 1} as in (17) and γ̃i : {0, 1} → R is as in (18).
Finally, the function νi : Rny × R⩾0 ⇒ R⩽0 is defined as

νi(yi, yout
i , τi) := (1− ωi(τi))γ̃i(0)εν |eouti |2, (21)

where εν := −
�
ϕ0,i(τ

i
MIET)− ϕ0,i(τ

i
MIET + σi)


and

ωi(τi) ∈



{1}, for τi ∈ [0, τ iMIET)
[0, 1], for τi = τ iMIET,
{0}, for τi > τ iMIET.

(22)

Note that νi is single-valued for all τi ̸= τ iMIET, and
set-valued for τi = τ iMIET. Since the proof holds for all
points in the set-valued map, in essence we can use the
discontinuous version (ωi(τi) = 1 if τi ⩽ τ iMIET and 0
otherwise) to verify the condition in (8). Hence, the fact
that νi is set-valued is not an issue with respect to (8).

In the proposed setup, each agent needs to know (and
compute) constants εϱ and εν on-line due to the depen-
dence on σi. If, from a computational standpoint, this
is infeasible, a conservative upper-bound can be used
by taking εϱ :=

�
γ̃i(0)ϕ0,i(τ

i
max)− γ̃i(1)ϕ1,i(0)λ

2
i


and

εν :=
�
ϕ0,i(τ

i
max)− ϕ0,i(τ

i
MIET)


, which can be computed

a priori.

We emphasize that the local ETMs as described by (8),
(9), (19), (20) and (21), can operate fully asynchronously
in the sense that clock synchronization or acknowledgment
signals are not required.

5.4 Main result

Given the ETM design and the corresponding hybrid
model presented above, we can now state the following
result. Its proof is provided in the full version of this paper
available on arXiv, see Scheres et al. (2022).

Theorem 1. Consider the system H(C, F,D, G) where Ψi,
ϱi and νi are given by (19), (20) and (21), respectively.
Moreover, suppose that Conditions 1-4 hold. Then the
MAS described by H is (s̃,S)-flow-dissipative with the
supply rate s̃ : X × Rnv → R as given in (11) and S =
{ξ ∈ X | x ∈ X , e = 0, η = 0}. In addition, if there are
no finite escape times during the flow 2 , then the system
H is persistently flowing. �

2 The absence of finite escape times during flow is meant here in
the sense that case (b) in Prop. 2.10 in Goebel et al. (2012) cannot
occur.
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Inequality (12) is related to ẏi, which, due to the use of
ZOH devices, is directly related to ėmi , as ėmi = −δi(m)ẏi.
In essence, Condition 1 is a restriction on the growth
of the network-induced error between transmissions. This
condition is naturally satisfied for linear systems or when
the vector fields fi are globally bounded and hi are globally
Lipschitz.

5.2 Lower-bounds on the Minimum Inter-event Times and
Maximum Allowable Delays

To obtain lower-bounds on the minimum inter-event times
τ iMIET and the maximum allowable delay τ iMAD for each
agent Ai, i ∈ N , we first characterize the influence of
the transmission errors eini on the state x and the desired
stability/performance property by means of the following
condition.

Condition 2. There exist a locally Lipschitz function V :
Rnx → R⩾0 and a non-empty closed set X ⊆ Rnx , K∞-
functions αV ⩽ αV , continuous functions ςi : RNny →
R⩾0, constants µi, γi > 0, i ∈ N , such that for all x ∈ Rnx

αV (|x|X ) ⩽ V (x) ⩽ αV (|x|X ), (13)

and for all y ∈ Rny , e ∈ RNny , v ∈ Rnv , and almost all
x ∈ Rnx

⟨∇V (x), f(x, e, v)⟩ ⩽ s(x, e, v)−


i∈N ςi(y in
i )

+


i∈N
�
− µiNiH

2
i (x, e

in
i , v) + γ2

i |eouti |2


(14)

with Ni the cardinality of Vout
i , and Hi from (12). �

Condition 2 constitutes an L2-gain condition from |eouti |
to Hi. In case of a linear system, this condition can always
be verified if the system is controllable, for instance. In
the absence of a network, i.e., when e = 0, (13)-(14) imply
an (s,X )-dissipativity property. However, this property is
affected by the network-induced error e, and our objective
is to design the triggering mechanisms such that the
dissipativity property still holds for the networked system.

The constants γi as in Condition 2 are used to determine
τ iMIET and τ iMAD, i ∈ N , via the following condition.

Condition 3. Select τ imax > 0 and τ iMAD > 0, i ∈ N , with
τ imax ⩾ τ iMAD + τ iMASP such that

γ̃i(0)ϕ0,i(τ
i
max) ⩾ λ2

i γ̃i(1)ϕ1,i(0), (15)

γ̃i(1)ϕ1,i(τi) ⩾ γ̃i(0)ϕ0,i(τi), for all τi ∈ [0, τ iMAD], (16)

where ϕl,i, l ∈ {0, 1}, evolves according to

d
dτi

ϕl,i = −

2L̃i(l)ϕl,i + γ̃i(l)


1

µiϵi
ϕ2
l,i + 1


, (17)

for some fixed initial conditions ϕl,i(0), l ∈ {0, 1}, that
satisfy γ̃i(1)ϕ1,i(0) ⩾ γ̃i(0)ϕ0,i(0) > λ2

i γ̃i(1)ϕ1,i(0) > 0,
where, for each i ∈ N and l ∈ {0, 1}, the functions

L̃i : {0, 1} → R⩾0 and γ̃i : {0, 1} → R⩾0 are given by

L̃i(l) := λ−l
i


NiLi, γ̃i(l) := λ−l

i γi, (18)

with Ni the cardinality of Vout
i and where µi and γi satisfy

Condition 2. The constants λi ∈ (0, 1) and ϵi ∈ (0, 1],
i ∈ N , are tuning parameters. If the above conditions are
satisfied, τ iMIET is defined as τ iMIET := τ imax − τ iMASP. �

Condition 3 can always be ensured, as long as sufficiently
fast sampling is available. In practice, based on the con-
stants γi, (τ

i
max, τ

i
MAD) curves can be generated to intu-

itively select appropriate values for λi, ϕ0,i(0) and ϕ1,i(0).

These conditions are similar to the conditions in Dolk et al.
(2017), even though PETC or the effect of sampling is not

considered. Indeed, in the continuous-time case, i.e., when
τMASP approaches zero, τ iMIET = τ imax. This statement
underlines that, if faster sampling is used, the continuous-
time ETC behavior is recovered in the proposed setup.

5.3 Event-triggering Mechanism Design

To facilitate the design of the ETM, consider the following
condition.
Condition 4. For i ∈ N , consider the function Hi satis-
fying Condition 2. There exist locally Lipschitz functions
Hi : Rny → R⩾0 that for all e ∈ RNny , v ∈ Rnv and
x ∈ Rnx , satisfy Hi(y in

i ) ⩽ Hi(x, e
in
i , v). �

The function Ψi in (9a) is given by, for any y in
i ,

Ψi(y in
i ) := ςi(y in

i ) + (1− ϵi)µiNiH
2
i (y in

i ), (19)
where ςi and Hi come from Conditions 2 and 4, respec-
tively. The function ϱi is given by, for any yi ∈ Rny,i and
yout
i ∈ RNny,i

ϱi(yi, yout
i ) := εϱ|eouti |2 (20)

with εϱ :=
�
γ̃i(0)ϕ0,i(τ

i
MIET + σi)− γ̃i(1)ϕ1,i(0)λ

2
i


where

ϕl,i, l ∈ {0, 1} as in (17) and γ̃i : {0, 1} → R is as in (18).
Finally, the function νi : Rny × R⩾0 ⇒ R⩽0 is defined as

νi(yi, yout
i , τi) := (1− ωi(τi))γ̃i(0)εν |eouti |2, (21)

where εν := −
�
ϕ0,i(τ

i
MIET)− ϕ0,i(τ

i
MIET + σi)


and

ωi(τi) ∈



{1}, for τi ∈ [0, τ iMIET)
[0, 1], for τi = τ iMIET,
{0}, for τi > τ iMIET.

(22)

Note that νi is single-valued for all τi ̸= τ iMIET, and
set-valued for τi = τ iMIET. Since the proof holds for all
points in the set-valued map, in essence we can use the
discontinuous version (ωi(τi) = 1 if τi ⩽ τ iMIET and 0
otherwise) to verify the condition in (8). Hence, the fact
that νi is set-valued is not an issue with respect to (8).

In the proposed setup, each agent needs to know (and
compute) constants εϱ and εν on-line due to the depen-
dence on σi. If, from a computational standpoint, this
is infeasible, a conservative upper-bound can be used
by taking εϱ :=

�
γ̃i(0)ϕ0,i(τ

i
max)− γ̃i(1)ϕ1,i(0)λ

2
i


and

εν :=
�
ϕ0,i(τ

i
max)− ϕ0,i(τ

i
MIET)


, which can be computed

a priori.

We emphasize that the local ETMs as described by (8),
(9), (19), (20) and (21), can operate fully asynchronously
in the sense that clock synchronization or acknowledgment
signals are not required.

5.4 Main result

Given the ETM design and the corresponding hybrid
model presented above, we can now state the following
result. Its proof is provided in the full version of this paper
available on arXiv, see Scheres et al. (2022).

Theorem 1. Consider the system H(C, F,D, G) where Ψi,
ϱi and νi are given by (19), (20) and (21), respectively.
Moreover, suppose that Conditions 1-4 hold. Then the
MAS described by H is (s̃,S)-flow-dissipative with the
supply rate s̃ : X × Rnv → R as given in (11) and S =
{ξ ∈ X | x ∈ X , e = 0, η = 0}. In addition, if there are
no finite escape times during the flow 2 , then the system
H is persistently flowing. �

2 The absence of finite escape times during flow is meant here in
the sense that case (b) in Prop. 2.10 in Goebel et al. (2012) cannot
occur.

Theorem 1 implies that the desired stability and/or per-
formance properties, guaranteed by the local controllers in
absence of the network, are preserved by the original dissi-
pativity property when the network is taken into account.

6. CASE STUDY

We apply the results to the single-integrator consensus
problem, where we have a multi-agent system with N ∈
N>0 agents. All agents have state xi ∈ R, i ∈ N , whose
dynamics evolve according to ẋi = ui with ui ∈ R the
control input. The output of the system is the state xi, i.e.,
yi = xi. We assume that the graph G(V, E) with Laplacian
matrix L is connected and undirected, i.e., L⊤ = L.
The control objective is for the states of all agents to
asymptotically converge, i.e., limt→∞ |xi(t) − xm(t)| = 0
for all i,m ∈ N . To achieve consensus, we implement the
control law

ui = −
∑

m∈Vin
i
(xi + eii − xm − eim). (23)

We consider the Lyapunov candidate V (x) = x⊤Lx where
x := (x1, x2, . . . , xN ). According to Dolk et al. (2019),
the derivative of this Lyapunov function can be upper-
bounded as ⟨∇V (x),−Lx− Le⟩ ⩽

∑
i∈N

(
−diz

2
i − ciu

2
i +

(γ2
i −αi)|eii|2

)
with di := δ(1−aNi), ci := (1−δ)(1−aNi)

and γi =
√
a−1Ni + αi, and where δ ∈ (0, 1), a ∈ (0, 1

Ni
)

and αi > 0 are tuning parameters. The theorem below
shows the exact expressions for all the required conditions.
Its proof is omitted for space reasons.
Theorem 2. The system with local dynamics ẋi = ui
and local controller (23) satisfies Conditions 1, 2 and 4
with Hi = |ui|, Li = 0, s(x, e) =

∑
i∈N

(
−diz

2
i − µie

2
i

)
,

X = {x ∈ RN | x1 = x2 = . . . = xN}, ςi = 0, µi = ci
1
Ni

,

γi =
√
a−1Ni + αi, and Hi = |ui|. �

Constants τ imax and τ iMAD can be generated via an intuitive
procedure, as described in Dolk et al. (2019). Theorem
2 implies that asymptotic consensus is achieved with the
proposed control configurations in this paper.

We simulate the same system as Dolk et al. (2019) with
non-uniform and time-varying transmission delays. How-
ever, in our case we implement our periodic event-triggered
control framework instead of continuous-event triggered
control as in Dolk et al. (2019). The system has N = 8
agents which are connected as described by a graph G with
undirected edges (1, 2), (1, 8), (2, 3), (2, 7), (3, 4), (3, 6),
(4, 5), (5, 6), (5, 8) and (7, 8). We use the parameters δ =
αi = 0.05, a = 0.1 and ϵi = 0.5 for all i ∈ N . Given these
tuning parameters, we obtain γi = 4.478 and ci = 0.76
for agents i ∈ N with two neighbors (i.e., Ni = 2, thus
agents P1, P4, P6 and P7) and γi = 5.482 and ci = 0.665
for agents i ∈ N with three neighbors (i.e., Ni = 3, thus
agents P2, P3, P5 and P8). The function φi(ηi) is designed
as φi(ηi) = −ϵη(ηi) with ϵη = 0.05. We select λi = 0.2 for
all agents, and pick ϕ0,i(0) = 5 and ϕ1,i = 2. For these
values, we obtain (τ imax, τ

i
MAD) = (0.12, 0.016) for agents

i ∈ N for which Ni = 2 and (τ imax, τ
i
MAD) = (0.09, 0.012)

for agents i ∈ N for which Ni = 3. We select τ iMIET = 0.07
(τ iMIET = 0.05) for all agents for which Ni = 2 (Ni = 3),
respectively, τ iMASP = 10−2 and di = 10−3 for all i ∈ N . At
each sampling moment sin, the next sampling moment is
scheduled randomly such that sin+1 ∈ [sin+di, s

i
n+τ iMASP]

for each i ∈ N , hence the sampling of each agent is ape-
riodic, asynchronous and independent of the other agents.
The state evolution and inter-event times are depicted in
Fig. 3, confirming our main theorem.
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Fig. 3. States and inter-event times for the example in Section 6.

7. CONCLUSION

We presented a framework for the design of Zeno-free
dynamic periodic triggering mechanisms for the control
of nonlinear multi-agent systems via a packet-based net-
work. The method can cope with non-uniform and time-
varying delays. By ensuring that the conditions of the
local trigger mechanisms only have to be verified at the
local (asynchronous) sampling times, the proposed frame-
work is suitable for implementation on digital platforms.
With a dissipativity property, the framework can handle
several relevant stability and performance properties such
as asymptotic (set) stability, input-to-state stability, Lp-
stability with p ∈ [1,∞) and consensus, from a unified
point of view. Thereby, capturing a wide range of systems
to which these techniques can be applied.
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