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Abstract

Road tunnels play an important role in the traffic infrastructure in the Netherlands,
either to bypass geological obstacles such as rivers, or to improve traffic flow and
quality of life in urban areas. Rijkswaterstaat (RWS), the executive branch of
the Dutch Ministry of Infrastructure and Water Management, responsible for
the construction and maintenance of these road tunnels, is planning to renovate
several existing ones. Part of such a renovation pertains to the supervisory
controller of the tunnel. The functions of this supervisory controller are to
monitor the situation to detect an emergency and to correctly handle it. Road
tunnels are large and intricate systems that consist of many components, such as
smart lighting, ventilation, evacuation systems, fire extinguishing tools, and flood
prevention systems, which makes the design of their supervisory controllers a
difficult and error-prone task. Furthermore, a road tunnel is at all times monitored
by a human operator through a command interface. As commands given through
this interface must be correctly carried out by the supervisory controller, this
interface should be correctly integrated in the supervisory controller design.

The aim of the research described in this thesis is to investigate the applicabil-
ity of supervisory control theory (SCT) for the design of supervisory controllers
for road tunnels. SCT enables the design engineer to automatically derive a
supervisory controller, which reduces the realization time and eliminates human
errors. This procedure, called supervisor synthesis, uses as input a model of the
system’s behavior, called the plant model, and a model of the desired behavior,
called the requirements model, and produces a supervisory controller that is
correct-by-construction with respect to the models. Furthermore, a formal (syn-
thesized) model of the supervisory controller supports the automatic generation of
implementation code. Using SCT may decrease the time-to-market and increase
the evolvability of the supervisory controller, while preserving a high quality.

This project focuses on the complete process of supervisory controller design,
including the steps for modeling, supervisor synthesis, simulation, and imple-
mentation. Furthermore, it investigates the characteristics of road tunnels and
how those characteristics could be exploited in the supervisory controller design
process. In this context, the following five main contributions are made.

First, modeling using SCT is a cumbersome task for systems with large
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numbers of components, and requires extensive knowledge on SCT, e.g. regarding
modeling formalisms and synthesis algorithms. To facilitate this modeling task,
a parameter-based modeling approach is proposed that enables a designer to
automatically generate the required models for synthesis and simulation by
defining the parameters of a road tunnel. The gained benefits include more
efficient modeling while requiring less knowledge on SCT. The parameter-based
modeling platform is implemented as a prototype configuration tool and validated
by means of simulation. Its applicability is shown in a case study for a family of
22 tunnels in the Netherlands.

Second, the complexity of the supervisor synthesis problem grows exponentially
with the number of system components and the number of requirement models
of this system. For large-scale systems, such as road tunnels, this may result in a
lengthy or even unsolvable synthesis procedure. In this thesis, a new method is
proposed for reducing the model of the system before synthesis to decrease the
required computational time and effort. The method consists of five steps for
model reduction, that are mainly based on symmetry in dependency graphs of
the system. Dependency graphs visualize the components in the system and the
relations between these components. In a case study for the Eerste Heinenoord
tunnel, the model can be reduced to an 80% smaller model before synthesis,
which made the initially unsolvable synthesis problem solvable in two minutes.

Third, in practice, supervisory controllers are often not implemented on a single
programmable logic controller (PLC), but on a set of PLCs. Such a distributed
implementation can improve PLC performance, can reduce maintenance and
renovation effort, and can decrease the required amount of cables, but introduces
communication between PLCs that may be delayed in time. In this thesis, a novel
method is proposed to distribute a synthesized supervisor for implementation
on multiple physical controllers. Dependency structure matrices are used to
determine an optimal distribution of a discrete-event system, and the supervisor
is distributed accordingly using an existing localization method. Communication
delays between the distributed components of a supervisor may affect its behavior,
due to changes in the order of events. Therefore, a delay-robustness check needs to
be performed and where needed mutex locks are employed to make the distributed
supervisor delay robust. The controller performance is analyzed and a general
performance optimization is achieved through a parameter study and a mutex
implementation evaluation.

Fourth, a synthesized supervisor is not directly implementable on a hardware
platform, often a PLC. To do this, the properties for an implementable controller
need to be verified, the supervisory controller model needs to be translated to
PLC code, and interface models need to be created to allow validation through
hardware-in-the-loop (HIL) simulation. In this thesis, several contributions are
made relating to the implementation process of supervisory controllers, including
the design and implementation of resource controllers, a relaxation in the property
check for implementable controllers, and an algorithm for automatic PLC code
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generation that is adaptable for any desired target implementation platform.
Furthermore, it is shown how the integration of a digital twin, which is a digital
copy of the physical system, in HIL simulation allows for more intuitive and
extensive validation procedures.

Fifth, several real-life case studies are performed for road tunnels in the
Netherlands, including the Koning Willem-Alexander tunnel, the Eerste Heine-
noord tunnel, and the Swalmen tunnel. These case studies have shown the
applicability of SCT for the design of road tunnel supervisory controllers, and
demonstrated the effectiveness of the aforementioned contributions.
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Samenvatting

Tunnels spelen een belangrijke rol in het wegennetwerk van Nederland. Zo worden
ze gebruikt om geologische obstakels als rivieren te passeren, of om verkeers-
stromen en levenskwaliteit te verhogen in stedelijke gebieden. Rijkswaterstaat
(RWS), de uitvoerende tak van het Nederlandse Ministerie van Infrastructuur en
Waterstaat, is verantwoordelijk voor het bouwen en onderhouden van deze tunnels,
en is van plan om veel van de bestaande tunnels in Nederland te renoveren. Een
deel van zo’n renovatieproject beslaat het vernieuwen van het besturingssysteem
van de tunnel. De functies van dit besturingssysteem zijn het monitoren van
de situatie in de tunnel om een calamiteit te detecteren, en om gedetecteerde
calamiteiten correct af te handelen. Tunnels zijn grote en ingewikkelde systemen
die bestaan uit vele componenten, zoals slimme verlichting, ventilatie, evacua-
tiesystemen, brandblusapparaten, en overstromingspreventiesystemen, die het
ontwerp van het besturingssysteem moeilijk en foutgevoelig maken. Daarnaast
wordt een tunnel te allen tijde gecontroleerd door een menselijke bedienaar die
gebruik maakt van een bedienscherm. Het koppelvlak met dit bedienscherm moet
correct meegenomen worden in het ontwerp van het besturingssysteem.

Het doel van dit onderzoek is om de toepasbaarheid van supervisory control
theory (SCT) voor het ontwerp van tunnel-besturingssystemen te bekijken. Met
SCT kunnen ontwerpers automatisch een besturingssysteem genereren, waardoor
de realisatietijd en de door de mens gemaakte fouten verminderd worden. Dit
generatieproces, dat supervisor synthese wordt genoemd, gebruikt als input een
model van het mogelijke gedrag, genaamd het plant-model, en een model van het
gewenste gedrag, genaamd het eisen-model. Synthese levert een besturingssysteem
op dat per constructie correct is ten opzichte van de geleverde modellen. Daarnaast
zorgt het formele (gesynthetiseerde) model van het besturingssysteem ervoor
dat automatische generatie van implementatiecode mogelijk is. Door gebruik te
maken van SCT kan de ontwikkeltijd van het besturingssysteem verlaagd worden,
kan de herbruikbaarheid verhoogd worden, terwijl een hoge kwaliteit behouden
wordt.

Dit onderzoek focust zich op het gehele ontwerpproces van een besturingssys-
teem, inclusief het modelleren, supervisor-synthese, simulatie en implementatie.
Daarnaast wordt onderzocht wat de specifieke kenmerken van tunnels zijn en hoe
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die mogelijk benut kunnen worden in het ontwerpproces van het besturingssysteem.
In dit onderzoek zijn de volgende vijf hoofdbijdragen geleverd.

Ten eerste is het modelleren voor SCT een moeizame taak voor systemen
die bestaan uit veel componenten, en is er veel kennis nodig van SCT, met
name met betrekking tot modelleerformalismen en synthese-algoritmen. Om dit
modelleerproces te vereenvoudigen is er een parameter-gebaseerde aanpak voor-
gesteld. Deze aanpak zorgt ervoor dat de ontwerper automatisch de benodigde
modellen voor synthese en simulatie kan generen door de parameters van een
bepaalde tunnel in te voeren. De voordelen die hiermee behaald worden zijn
een efficiënter modelleerproces terwijl er minder kennis van SCT nodig is. Het
parameter-gebaseerde raamwerk is geïmplementeerd als een prototype configura-
tieprogramma. Het programma is gevalideerd aan de hand van simulatie, en de
toepasbaarheid van het programma is aangetoond door een industriële toepassing
te laten zien voor een familie van 22 tunnels in Nederland.

Ten tweede neemt de complexiteit van supervisor-synthese exponentieel toe
wanneer het aantal componenten in het systeem toeneemt. Voor grootschalige
systemen, zoals tunnels, kan dit resulteren in een langdurige en soms zelfs
onoplosbare synthese-procedure. In dit onderzoek is een nieuwe methode opgesteld
om het model van het systeem te reduceren voordat synthese wordt toegepast om
de rekentijd en -moeite terug te brengen. Deze methode bestaat uit vijf stappen
voor modelreductie, die met name gebaseerd zijn op afhankelijkheidsgrafen.
Een afhankelijkheidsgraaf visualiseert de componenten van het systeem en de
relaties tussen deze componenten. In een industriële toepassing voor de Eerste
Heinenoordtunnel mochten meer dan 80% van de modellen weggehaald worden
voordat synthese werd uitgevoerd, waardoor het oorspronkelijk onoplosbare
syntheseprobleem in 2 minuten oplosbaar is gemaakt.

Ten derde worden besturingssystemen in veel gevallen niet geïmplementeerd
op één programmeerbare logische besturing (Eng. programmable logic controller,
PLC), maar op een set van PLC’s. Zo’n gedistribueerde implementatie kan de
prestaties van de besturing verbeteren, kan de benodigde moeite voor onderhoud
en renovatie verminderen en kan de vereiste hoeveelheid kabels reduceren. Een
gedistribueerde implementatie zorgt er echter voor dat communicatie tussen de
PLC’s nodig is waarin tijdsvertragingen kunnen voorkomen. In dit onderzoek
is een nieuwe methode opgesteld om een besturingssysteem te distribueren met
het doel om het te implementeren op een set van PLC’s. De methode maakt
gebruik van ‘Dependency Structure Matrices’ (DSM’s) om een verdeling van
het systeem vast te stellen. Het besturingssysteem wordt daarna aan de hand
van deze verdeling gelokaliseerd. Vertragingen in de communicatie tussen de
PLC’s kunnen het gedrag van het besturingssysteem beïnvloeden, aangezien de
volgorde waarin signalen verstuurd worden kan veranderen. Om dit tegen te gaan
wordt een vertragings-robuustheid controle uitgevoerd om uit te vinden welke
delen van het besturingssysteem niet robuust tegen vertraging zijn. Bij die delen
worden wederzijdse uitsluiting-sloten (Eng. mutex locks) toegevoegd om het
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gedistribueerde besturingssysteem toch robuust tegen vertraging te maken. De
prestaties van de geïmplementeerde besturing zijn geanalyseerd en geoptimaliseerd
door een parameteronderzoek en een evaluatie van de mutexlock-implementatie.

Ten vierde is een gesynthetiseerd besturingssysteem niet direct implementeer-
baar op een PLC. Om dit wel te bewerkstelligen moeten de eigenschappen van
een implementeerbaar besturingssysteem vastgesteld worden, het model van het
besturingssysteem moet vertaald worden naar PLC code en koppelvlakmodellen
moeten gemaakt worden om validatie aan de hand van hardware-in-de-loop (HIL)
simulatie beschikbaar te maken. In dit onderzoek zijn verschillende bijdragen
geleverd met betrekking tot het implementatieproces van een besturingssysteem.
Dit betreft het ontwerp en de implementatie van de besturings- en/of regelsys-
temen van de fysieke componenten (Eng. resource controllers), een afname in
striktheid in het vaststellen van één van de eigenschappen van een implementeer-
baar besturingssysteem en een algoritme om automatisch PLC code te generen
dat aanpasbaar is voor elk gewenst implementatieplatform. Daarnaast wordt de
integratie van een Digital Twin in het ontwerpproces van het besturingssysteem
beschreven. Zo’n Digital Twin zorgt ervoor dat het validatieproces met de HIL
simulaties intuïtiever en uitgebreider wordt.

Ten vijfde zijn er meerdere industriële toepassingen gedemonstreerd voor ver-
schillende tunnels in Nederland. Deze tunnels zijn de Koning Willem-Alexander-
tunnel, de Eerste Heinenoordtunnel, en de Swalmentunnel. Deze industriële
toepassingen laten zien dat SCT toepasbaar is voor het ontwerp van een tun-
nelbesturingssysteem, en demonstreren de effectiviteit van de eerdergenoemde
onderzoeksbijdragen.
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Chapter 1

Introduction

Road tunnels play an important role in traffic infrastructure around the world.
They are used to bypass geological obstacles such as rivers or mountains, to
improve traffic flow in dense traffic networks, or to increase quality of life in urban
areas. In the Netherlands, which is the country with the highest population
density in Europe and the country with the densest waterway network, tunnels
are commonly used in the traffic infrastructure.

A distinction is made between tunnels and underpasses: any underpass that
is longer than 500 meters is identified as a tunnel, on which specific European
safety guidelines are imposed regarding the safety and monitoring systems, see
European Commission (2021). In the Netherlands, a length of 250 meters is used
for this distinction, and each tunnel is at all times monitored by an individual
human operator.

There are 27 tunnels in total throughout the Netherlands, of which 20 are
state-owned, maintained, and operated by Rijkswaterstaat (RWS). An overview
of these tunnels can be found at Rijkswaterstaat (2022). RWS is the executive
branch of the Dutch Ministry of Infrastructure and Waterway management. The
remaining 7 tunnels are smaller tunnels maintained by provinces or municipalities.

Besides the maintenance of existing tunnels, RWS is also responsible for
the construction of the new ones. Currently, 4 new tunnels are planned for
construction, see Rijkswaterstaat (2022). Figure 1.1 shows the Eerste Heinenoord
tunnel, which is a tunnel near Rotterdam that bypasses the river the Oude Maas
that is currently under renovation. An example of a tunnel that was recently
constructed in the Netherlands is the Koning Willem-Alexander tunnel, shown
in Figure 1.2. This tunnel passes underneath the city of Maastricht to increase
traffic flow through the city, and improve the quality of life for the residents.

The function of a road tunnel is to allow road users to get from one end of
the tunnel to the other in a safe environment. To this end, a tunnel consists
of a civil structure, often underground, and a road surface. For the purpose of

1
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Figure 1.1: The Eerste Heinenoord tunnel passing underneath the river the Oude Maas.
Image from https://beeldbank.rws.nl.

Figure 1.2: The Koning Willem-Alexander tunnel in Maastricht, the Nether-
lands. Image from https://www.rijkswaterstaat.nl/wegen/wegenoverzicht/a2/
koning-willem-alexandertunnel-a2-n2.

maintaining a safe environment, the tunnel contains technical installations, e.g.
smart lighting, ventilation, evacuation systems, fire extinguishing tools, and flood
prevention systems. These technical installations are coordinated by a controller.

As reported in Rijkswaterstaat (2021b), many of the tunnels in the Netherlands
that were built in the 50s and 60s of the previous century are due for renovation. A
renovation of a tunnel often consists of replacement of part of the civil structure,
the technical installations, and the software. In the past, road tunnels were
designed as standalone “works of art”, in which unique characteristics were
embraced. However, recent renovation projects showed that the uniqueness

https://beeldbank.rws.nl.
https://www.rijkswaterstaat.nl/wegen/wegenoverzicht/a2/koning-willem-alexandertunnel-a2-n2
https://www.rijkswaterstaat.nl/wegen/wegenoverzicht/a2/koning-willem-alexandertunnel-a2-n2
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of a road tunnel increases the required renovation effort and costs, as specific
solutions are required at each unique tunnel. In an attempt to tackle this
problem, RWS released the national tunnel standard (Landelijke Tunnel Standaard
(LTS) in Dutch) in 2012, which can be found in Rijkswaterstaat (2021a). This
documentation provides standardized processes and functional requirements for
the construction and maintenance of tunnels, as well as requirements for the
design of the control system. In 2016, this LTS was updated to Version 1.2 by
applying practical experiences. This version is the current standard for tunnels.
The creation of this standard has resulted in a more structured construction
process and applying this standard will result in more standardized tunnels
throughout the Netherlands.

However, the implementation of the LTS has not entirely solved the problem
regarding the tunnel control system design. Even though the LTS has brought
standardization in the design of tunnels, many differences still exist between
these tunnels. These differences are mainly the result of decisions made by the
third parties that built the tunnel or adjustments that needed to be made due
to local circumstances. These deviations from the standard tunnel often have
impact on the control system of that tunnel. The control system thus needs to
be redesigned every time a new tunnel is designed, as well as every time a tunnel
is slightly adjusted or renovated. The design process of such a control system
takes a lot of time, including not only the design phase, but also the validation
phase, the verification phase, and the implementation phase. Furthermore, unique
control systems impede the operation and monitoring of multiple tunnels from a
central location, as each tunnel requires specific knowledge of its control system
functionality. RWS is therefore looking for control system design methods that
allow for higher standardization and evolvability.

To this end, RWS initiated the MultiWaterWerk (MWW) project. The MWW
project is a collaboration project with the Eindhoven University of Technology, in
which, among other things, control system design methods are investigated while
evaluating their applicability for RWS. Initially, the MWW project focused on
the design process of waterway locks, and was later extended to movable bridges,
tunnels, and roadside units. The focus of the project lies in establishing a shift
from an Engineer-to-Order production method to a Configure-to-Order one, as
reported in Wilschut (2018). In an Engineer-to-Order production method, each
new system is designed from scratch after an order has been received. This method
can tailor to exact specifications of the customer, but has low standardization
and evolvability capabilities. In a Configure-to-Order production method, a
basic product design is required. Once an order is received, this basic design is
configured to fit the specific needs of the customer. Since all products are derived
from the same basic design, standardization and evolvability of the Configure-to-
Order method is much higher compared to the Engineer-to-Order method. In
Rijkswaterstaat (2020), RWS argues that a Configure-to-Order design method
is likely to have a higher reliability for correctness, and problems can be solved
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more quickly.
In the case of the design of control systems for road tunnels, Configure-

to-Order seems a suitable method, as the tunnels throughout the Netherlands
largely resemble each other and the control system requirements are standardized
as defined in the LTS. In Goorden (2019), formal model-based methods are
investigated that can be used for the development of control systems of large-
scale infrastructural systems. Specifically, the focus lies on synthesis-based
methods that allow for automatic generation of control systems, which reduce the
time-to-market and immediately provide guarantees for correctness. In Reijnen
(2020), the implementation process of synthesized controllers is investigated and
applied, among others, in a case study for the Oisterwijksebaan bridge, where the
synthesized controller is tested on the real system. Goorden et al. (2020) reports
on recent developments in synthesis-based design methods in the context of the
MWW project, and showcases various industrial applications.

1.1 Control systems of road tunnels

The road tunnel and its control system form a so-called cyber-physical system,
described in Lee (2008), which is an integration of computational and physical
processes. A cyber-physical system consists of (networked) computers that
monitor and control a physical system, and where the state of the physical system
is reported back to the controller through feedback loops. However, the tunnel
system is not only automatically controlled through the controller algorithms,
but also by human road traffic operators. There is at all times an operator
monitoring the tunnel, who can intervene when deemed necessary through an
operator interface. This graphical user interface contains an overview of the
tunnel system in its current state. The road traffic controller can send commands
to the tunnel through the operator interface, such as to close off the tunnel or to
change a specific traffic light. The control structure of a road tunnel system is
schematically visualized in Figure 1.3.

Layer 1 consists of the mechanical components of the tunnel that need to be
controlled. These are often driven by actuators and monitored through sensors,
as is shown in Layer 2. In Layer 3, the resource controller is shown. This is a local
controller that is responsible for the low-level control of a specific component,
such as signal processing or motion control. The combination of Layers 1 through
3 is referred to as the plant. Layer 4 contains the supervisory controller, which
receives sensor information and sends signals to the actuators, both directly or
via the resource controllers. The supervisory controller is typically implemented
on a programmable logic controller (PLC). The supervisory controller is able to
make control decisions based on the current state of the plant, but also receives
commands from the operator interface in Layer 5. This is the interface that is
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Figure 1.3: Control structure of a road tunnel system.

used by a human operator, both to monitor the system and to send commands
to it.

As the main purpose of the control system of a road tunnel is to maintain a safe
environment for road users, demands in terms of safety, quality, and functionality
are high. Nonetheless, designing a control system for a road tunnel is challenging
due to the large number of components in the system and the large number of
control dependencies between them. As an example, the supervisory controller
of the Eerste Heinenoord tunnel drives 152 actuators based on inputs from 332
sensors and 285 operator buttons. Traditionally, PLC code of such a supervisory
controller is developed by hand and is tested manually. The PLC coding process
leaves much room for error, and typically has a high time-to-market as errors
found once the software has been implemented require a large step backwards in
the design process. In A2Maastricht (2018), the control system design team of
the Koning Willem-Alexander tunnel reports how one of the largest controller
design challenges was a result of errors found after the software was implemented.

Within the MWW project, RWS aims to develop methods for the specification,
design, realization, implementation, and maintenance of supervisory control
systems that give higher guarantees for safety, a lower time-to-market, and
increased standardization and evolvability.

1.2 Problem description
Supervisory control theory (SCT), also known as the Ramadge-Wonham frame-
work, introduced in Ramadge and Wonham (1987) is a model-based method for
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automatically synthesizing supervisors. This method is applicable for systems
for which the uncontrolled behavior of the components is given, and the desired
behavior can be specified in a set of formal requirements. From this model of
the uncontrolled behavior, called the plant, and the model of the requirements, a
supervisory controller can be derived. This derivation step is called supervisor
synthesis. In SCT, the control engineer specifies what the control system should
do, not how it should do that. How the control system implements the given
requirements is automatically determined during supervisor synthesis. In Baeten
et al. (2016), the synthesis-based engineering (SBE) method is introduced, in
which SCT is integrated in the engineering process for supervisory controllers.

There are several advantages of adopting a formal method such as SCT. First
and foremost, using supervisor synthesis gives the guarantee that the specified
requirements are adhered to. This removes the need to verify whether the
requirements are implemented correctly. As safety is often of great concern, this
guaranteed correctness is essential in the design of supervisory controllers. The
second advantage is that the plant model and the requirements model give a
consistent and unambiguous specification of the uncontrolled behavior and the
desired behavior, respectively, in comparison to textual documents. Third, as
the models of the plant and the requirements are executable models, they can
be used for the purpose of simulation. This can give the control engineer insight
into the controlled system, and allows for early validation. Finally, a formal
(synthesized) model of the supervisory controller supports automatic generation
of implementation code.

Even though research on the topic of supervisory control synthesis has been
carried out for several decades now, the number of industrial-size case studies
is still relatively low. There are multiple reasons for this. First of all, as stated
in Wonham et al. (2018), few control engineers have the knowledge required to
design component models and requirement models for the purpose of supervisor
synthesis, as they are often trained to be programmers instead of supervisory
control engineers. Furthermore, there exist relatively few clear guidelines for
developing proper component models and requirement models, as mentioned
in Grigorov et al. (2011) and Zaytoon and Riera (2017). The lack of adequate
commercially available tooling for modeling and synthesis is another reason for
the low number of industrial applications. Finally, synthesizing a supervisor for a
large-scale cyber-physical system with many components, such as a road tunnel,
can be a computationally intensive, sometimes even intractable, task.

The aim of this thesis is to show that SCT is suitable for the design and
implementation of supervisory controllers for large-scale road tunnel systems.
Furthermore, this thesis aims to provide extensions to SCT, e.g. to improve the
scalability of supervisory synthesis, to develop methods for distributed supervisor
implementation, and to increase testing possibilities. Doing so can contribute to
a decreased cost and a decreased time-to-market of the construction or renovation
process of infrastructural systems, while preserving a high quality.
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1.3 Research questions
The following research questions are posed to investigate the applicability of SCT
for the design of supervisory controller for road tunnels.

Research question 1

What is a suitable way to model road tunnels and their requirements
for the purpose of supervisor synthesis?

Supervisor synthesis relies on a model of the plant and a model of the control
requirements. The behavior that should be captured in these models is usually
established in documents, but the way it is realized in the models is often up
to the control engineer. These modeling decisions can affect different aspects
of the synthesis-based engineering process, e.g. the readability of the models,
the reusability of the models, the complexity of the synthesis problem, and the
difficulty of adapting the model for the purpose of implementation. Therefore,
a suitable way of modeling the components and requirements of road tunnels is
essential.

Research question 2

How can the characteristics of road tunnels be exploited in the
synthesis-based engineering process?

Road tunnels are infrastructural systems that have certain distinctive characteris-
tics compared to other types of infrastructural systems. Specifically, they have a
high degree of symmetry, both lengthwise, as many components are repeated over
the length of the tunnel, and broadwise, as the traffic tubes of the tunnel resemble
each other. It is, therefore, interesting to investigate how these characteristics
affect the synthesis-based engineering process, and whether they can be exploited.

Research question 3

Is it possible to synthesize a supervisor for large-scale systems like
road tunnels?

Road tunnels are systems that have a large number of components with many,
possibly complicated, dependencies between them. Case studies have shown
that a complete tunnel is modeled using over 500 components, and can have an
uncontrolled state space of over 10200 states. The question is, therefore, whether
existing synthesis algorithms can solve the synthesis problem for road tunnels in
a tractable time using commonly available computing power, and whether they
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can be improved to simplify the synthesis problem.

Research question 4

How can a supervisory controller correctly be synthesized for the
purpose of implementation on multiple PLCs?

For road tunnels, supervisory controllers are often implemented on multiple hard-
ware platforms, often PLCs. Supervisor synthesis, however, results in a single
supervisory controller. Therefore, it has to be investigated how a supervisory
controller can be distributed for the purpose of implementation on multiple PLCs,
without losing the properties that are guaranteed by supervisor synthesis. More-
over, a distributed supervisory controller often requires communication between
the PLCs, which can have time delays. These delays should be coped with, and
should not affect the controlled behavior of the system.

Research question 5

Are the methods for synthesizing, implementing, and testing a su-
pervisory controller applicable to an existing, real-life, road tunnel?

To assess whether synthesis-based engineering is suitable for the design of supervi-
sory controllers for road tunnels, case studies should be performed that cover the
complete process including synthesis, implementation, and testing. Moreover, the
aspects of scalability, adaptability, and reusability can only be evaluated when
multiple case studies are carried out.

1.4 Main contributions
This thesis has the following five main contributions. While it mainly focuses on
the design of road tunnel supervisory controllers, many of the contributions are
also applicable to similar application domains that can be modeled as discrete-
event systems. Examples of such other application domains include: theme park
vehicles (Forschelen et al. (2012)), manufacturing lines (Reijnen et al. (2018)),
waterway locks (Goorden et al. (2019a)), movable bridges (Reijnen et al. (2020b)),
roadside units (Verbakel et al. (2021)), and automotive systems (Korssen et al.
(2017)).

Contribution 1

During the various case studies for road tunnels in the Netherlands it has been
observed that there are many similarities between these tunnels in terms of layout,
components, and control requirements. Inspired by previous works shown in
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Grigorov et al. (2011) and Reijnen et al. (2020b), a parameter-based modeling
method is proposed that allows design engineers to configure a tunnel by only
specifying its parameters. From this configuration, all models that are required
for synthesis and model simulation can then be generated automatically. Using
this method, a road tunnel can be modeled more efficiently while requiring almost
no knowledge on SCT. A prototype tool that implements this parameter-based
modeling method has been developed, and its applicability is shown in a case
study pertaining 22 road tunnels in the Netherlands. This contribution relates to
Research questions 1 and 2.

Contribution 2

Road tunnels are large-scale systems due to the many actuators, sensors, and
operator buttons they contain. As the complexity of supervisor synthesis prob-
lems increases exponentially with the number of components in the system, the
synthesis problem for a road tunnel can be computationally intensive or even
unsolvable. To facilitate this synthesis problem, a new method is proposed for
reducing the model of the system before synthesis is performed. The model
reduction steps in this method are mainly based on symmetry in the system.
The system structure is analyzed using dependency graphs, and symmetrical
components are identified and removed from the model. The method is applied
for the synthesis of a supervisory controller for the Eerste Heinenoord tunnel,
where the model can be reduced to an 80% smaller model, which made an initially
unsolvable synthesis problem solvable in some minutes. This contribution relates
to Research questions 2 and 3.

Contribution 3

Large-scale systems such as road tunnels are typically not controlled by a single
PLC, but by a set of PLCs. This can improve the performance of the individ-
ual PLCs, increase the clarity and readability of the PLC code, and increase
availability of the control system. However, distributing a supervisory controller
over multiple PLCs requires communication between the PLCs, which have time
delays. This thesis proposes a method for distributing a supervisory controller.
The method consists of two main steps: obtaining a distribution of the system
components, and distributing the supervisory controller accordingly. Depen-
dency structure matrices are used to obtain a distribution that is suitable for
a distributed implementation, and existing localization techniques are applied
to distribute the supervisory controller. Furthermore, a delay-robustness check
is proposed that analyzes the communication between the PLCs and, in case of
delay-critical communication, mutual exclusion algorithms are applied to make
the communication delay robust. This contribution relates to Research questions
4 and 5.
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Contribution 4

A synthesized supervisory controller is not directly implementable on a PLC. To
do this, the properties for an implementable controller need to be verified and the
supervisory controller model needs to be translated to PLC code. Furthermore,
to validate implemented PLC code in a simulation environment, hardware-in-the-
loop (HIL) simulation is performed. For HIL simulation, interface models need
to be created so that the operator interface and the virtual system can be simu-
lated. This thesis provides several contributions to the supervisor implementation
process, including the design and implementation of resource controllers, and a
relaxation in the property check for implementable controllers. Furthermore, a
contribution is made towards an algorithm for automatic PLC code generation.
Moreover, it is shown how digital twins can be integrated in the HIL simulation,
which allows for a more intuitive validation process with more extensive pos-
sibilities for simulation scenarios. This contribution relates to Research question 5.

Contribution 5

Several real-life case studies have been performed to show the applicability of SBE
for the design of supervisory controllers for road tunnels. Specifically, supervisory
controllers have been designed for the Koning Willem-Alexander tunnel, the
Eerste Heinenoord tunnel, and the Swalmen tunnel. Furthermore, a case study
has been performed for 22 tunnels in the Netherlands to show the effectiveness
of the parameter-based modeling tool. Through the various case studies, the
process of modeling, synthesis, implementation, and validation are investigated
extensively, underscoring the scalability, adaptability, evolvability of the SBE
method. This contribution relates to Research questions 1 and 5.

1.5 Thesis outline
This thesis is structured as follows. In Chapter 2, the preliminaries regarding
SCT and SBE are described. Specifically, the subjects of SBE, modeling of
discrete-event systems, modeling of requirements, supervisor synthesis, and imple-
mentation of supervisors are covered. Chapter 3 introduces road tunnels systems,
their function of their control system, and the operator interface. In Chapter 4,
the plant model and the requirements model for road tunnels are described, and
the parameter-based modeling method is proposed. Chapter 5 continues with
the synthesis process for road tunnels. Specifically, the model reduction steps
that are used to synthesize a supervisory controller for a road tunnel are detailed.
Subsequently, the implementation process of the synthesized supervisor and the
validation process using HIL simulation are described in Chapter 6. In Chapter
7, the new method for distributing a supervisory controller for the purpose of
implementation on multiple PLCs is described, including the steps of obtaining
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a distribution and localizing the supervisory controller accordingly. Chapter 8
covers the incorporation of digital twins in the SBE process, both in the model
simulation step and the HIL simulation step. Finally, in Chapter 9, conclusions
are drawn, answers to the research questions are given, and recommendations for
future work are provided.





Chapter 2

Supervisory control

This chapter gives an introduction to supervisory control. First, the synthesis-
based engineering method for supervisory controllers is introduced. Subsequently,
it is shown how discrete-event systems and requirements are modeled, and the
supervisor synthesis process is explained. Finally, the steps toward supervisor
implementation are described.

2.1 Synthesis-based engineering
Traditionally, supervisory controllers are designed in a document-based manner.
Here, the desired system specifications, both for the physical system and the
control system, are described in documents. For large-scale systems with many
specifications this can result in documents with thousands of pages, which are
often unclear and inconsistent, as stated e.g. in Weber and Weisbrod (2002).

In the last decades, it has become more common to use executable models
when designing systems. Such design methods, called model-based engineering
methods, can increase the quality of a system, decrease development costs, and
lower the time-to-market, as advocated in Ramos et al. (2011). A survey of
model-based engineering methods is provided in Estefan (2007). Furthermore,
executable models enable testing of realized components together with yet to
realize, virtual, components, in HIL simulation, as detailed in Bullock et al.
(2004).

Model-based engineering methods enable early validation through simulation
and controller testing, but the correctness of the controller still very much depends
on the test engineer, as is also mentioned in Taipale et al. (2011). In the 1980s,
research was started on the control of discrete-event systems. The results of this
research are found in Ramadge and Wonham (1987) and Ramadge and Wonham
(1989). The idea is to define the possible system behavior and the controller

13
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specifications using formal models. This enables the use of synthesis algorithms
to automatically generate the supervisory controller. It is mathematically proven
that the generated controller adheres to the specified controller requirements.
This means that verification is no longer necessary.

The synthesis-based engineering process is schematically visualized in Figure
2.1. The process starts on the left-hand side, where the high-level system require-
ments HR are defined in documents. Now, a division is made in the controller
requirements CR and the plant requirements PR. The documented controller
requirements are directly formalized by means of a controller requirements model
CR. In parallel, from the documented plant requirements, a plant design PD
is created. Subsequently, from this plant design, a plant model P is created.
From the requirements model CR and the plant model P , a supervisor C is
synthesized. For the purpose of simulation, a hybrid plant model PH is derived
from P by enriching it with continuous time behavior. In the final steps, an im-
plementable controller C is generated from the supervisor, which is implemented
on an implementation platform, and the plant P is realized by building the actual
system.

HR

CR CR C C

PR PD P PH P

extract

extract

define

formalize

design

synthesize
generate and
implement

model enrich realize

= model simulation, = hardware-in-the-loop simulation, = integration and system testing.

= documents, = models, = realizations.

H = high-level, P = plant, C = controller, R = requirement, D = design,
H = hybrid.

Figure 2.1: Schematic overview of the synthesis-based engineering process, adapted
from Baeten et al. (2016).

Advantages of synthesizing the supervisor include the guarantee that the
controller always adheres to the defined requirements. An important step, however,
remains the validation of the controller. While the synthesized controller is
guaranteed to adhere to the requirements, it is still possible to define incorrect
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or incomplete requirements. There are several validation stages in the synthesis-
based design process, as can be seen in Figure 2.1. At these stages, the controlled
behavior of the system is validated. The first validation stage is model simulation,
which uses the hybrid model of the plant and the synthesized controller. If any
error is found during the validation process, it is traced back in the controller
requirements model or the plant model, and a new supervisor is synthesized. The
second validation stage is HIL simulation, where the controller is implemented
on the hardware platform, and combined with the hybrid plant model to perform
simulations with interfaces that visualize the operator interface and the virtual
system. The final validation stage is integration and system testing, which is
performed when the plant is realized as well.

2.2 Modeling of discrete-event systems
In the context of supervisory control theory, the plant behavior is often modeled
using either (extended) finite state automata or Petri nets, as described in
Cheng and Krishnakumar (1993) and Murata (1989), respectively. In this thesis,
extended finite state automata are used to model the uncontrolled plant behavior
as previous work in Goorden et al. (2019b) and Reijnen et al. (2020a) has shown
that they are suitable for the modeling of infrastructural systems. This section
first introduces the definition of finite state automata, and then proceeds with
the definition of extended finite state automata.

All modeling, synthesis, simulation, and code generation procedures in this
project are performed using CIF. CIF is a hybrid automata-based language and
the associated toolset is part of the Eclipse Supervisory Control Engineering
Toolkit (Eclipse ESCET™) project1.

2.2.1 Finite state automata
Finite state automata (FAs) are used to model discrete-event systems in a formal
way. In discrete-event systems, as described in Cassandras and Lafortune (2008),
the dynamic behavior of a system is modeled by a discrete set of states and the
transitions between these states, which are driven by occurrences of events. An
FA P can be denoted as a five-tuple:

P = (Q, E, f, q0, Qm). (2.1)

Here, Q is the finite set of states in the automaton, and E is the finite set of
events. Every transition in the automaton is labeled by an event, and the partial
transition function f ⊆ Q × E × Q describes for each transition its starting state,
the event that labels it, and its end state. An FA is called deterministic if for

1See https://eclipse.org/escet. ‘Eclipse’, ‘Eclipse ESCET’ and ‘ESCET’ are trademarks
of Eclipse Foundation, Inc.

https://eclipse.org/escet
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each state and each event there exists at most one end state. In this thesis,
only deterministic FAs are considered as infrastructural systems are naturally
deterministic. Furthermore, every FA has exactly one initial state, denoted by q0.
Finally, every FA contains at least one marked state, and the set of marked states
is denoted by Qm. The marked states in the automaton indicate the accepting
or safe states of that automaton, such as the idle state of a machine or the end
state of a process.

The event set E can be partitioned into the set Ec of controllable events
and the set Eu of uncontrollable events. Controllable events are events that can
be enabled by the supervisor, such as turning an actuator on or off, whereas
uncontrollable events cannot be influenced but only observed, such as a sensor
turning on or off. The observable events in E are denoted by Eo. The set of all
finite strings of events from E, including the empty string ϵ, is denoted by E∗.

A.Off A.On
c_on

c_off

Figure 2.2: Example of an automaton for
actuator A.

S.Off S.On
u_on

u_off

Figure 2.3: Example of an automaton for
sensor S.

Automata are often displayed graphically to represent them more intuitively.
Two examples of visualized automata are shown in Figures 2.2 and 2.3, showing
the model of an actuator and the model of a sensor, respectively. In the graphical
representation, states are indicated by circles, and transitions are indicated by
arrows that are labeled by an event. A distinction is made between controllable
events and uncontrollable events, where controllable events are represented by solid
arrows, such as in Figure 2.2, and uncontrollable events by dashed arrows, such as
in Figure 2.3. The initial state of an automaton is indicated by an unconnected
incoming arrow, and marked states are indicated by double concentric circles.
For the actuator and the sensor shown in the figures, the initial and only marked
state is the A.Off state and the S.Off state, respectively.

For systems that consist of numerous individual components, it is often difficult
to model their full behavior using a single automaton due to the many differ-
ent states and even more transitions between them. Instead, each component is
modeled individually by an automaton. The combined behavior can then be deter-
mined by calculating the synchronous product, denoted by P = P1 || P2 || ... || Pn.
The synchronous product, as e.g. in Cassandras and Lafortune (2008), is a com-
position operation that determines the joint behavior of a set of automata that
operate concurrently. When there are shared events in the set of automata,
the automata synchronize over these events in the synchronous product. The
synchronous product of the actuator and the sensor is shown in Figure 2.4.
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(A.Off,S.Off) (A.On,S.Off)

(A.Off,S.On) (A.On,S.On)

c_on

c_off

c_on

c_off

u_onu_off u_onu_off

Figure 2.4: Synchronous product of actuator A and sensor S.

When a system is modeled using a set of automata, this representation is
called the Composed System Representation (CSR). Furthermore, automata are
said to be asynchronous if they do not have common events, i.e., automata P1 and
P2 are asynchronous if E1 ∩ E2 = ∅. Otherwise, they are said to be synchronous.
In Ramadge and Wonham (1989), the Product System Representation (PSR) is
introduced as the CSR where all component models are pairwise asynchronous.
It is shown that there always exists a PSR for a CSR, which can be obtained by
taking the composition of pairs of component models in the CSR that are either
directly or transitively synchronous, i.e., P1 is transitively synchronous with P3
when P1 and P2 are synchronous and P2 and P3 are synchronous. In this case,
the composition of {P1, P2, P3} is taken. The representation that contains the
largest number of automata and only contains pairwise asynchronous component
models is defined in de Queiroz and Cury (2000) as the Most Refined Product
System Representation (MRPSR).

2.2.2 Extended finite state automata
Extended finite state automata (EFAs) are FAs where variables are included. The
variables are associated with the transitions in the automaton, either to be used
to evaluate conditions under which a transition is enabled, or in an update when
a transition takes place. Previous works that use EFAs for modeling systems
can be found in Grigorov et al. (2011), Chen and Lin (2001), Sköldstam et al.
(2007), and Malik et al. (2011). A model consists of multiple interacting EFAs
E = {E1, ..., Em} together with a set of variables XE = {x1, ..., xn}.

With each variable x, a finite discrete domain dom(x) of values is associated.
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A valuation v ∈ V is a mapping v : XE → ∪x∈XE dom(x) with v(x) ∈ dom(x)
for each x ∈ XE . Here, V is the set of all valuations, with v0 ∈ V as the initial
valuation and Vm ⊆ V as the marked valuation.

An EFA is defined as the seven-tuple

P = (Q, X, E, →, q0, x0, Qm), (2.2)

where X ⊆ XE denotes the set of local variables in the automaton, with x0 as
initial evaluation of those variables, and → is the extended transition function.
The other notations are the same as defined in the five-tuple for FAs.

The state space of an EFA is represented by Q × V , which contains all
combinations of locations and variable values. The initial state is therefore (q0, v0)
and the marked states are Qm×Vm. The extended transition function → is similar
to the partial transition function f of FAs, but extended with guard expressions
(conditions) and variable assignments (updates). The formal definition of the
extended transition function is therefore → ⊆ Q × E × C × U × Q with a natural
extension to E∗, where C is the set of all conditions, and U is the set of all
updates. With → (q, e, g, u)! we denote that there exists a transition enabled in
q, that is labeled by event e, guard g, and update u.

A transition in an EFA can have a condition that defines when it is enabled.
This condition is called a guard, which is a function g : V → {True, False}. For
clarity, v |= g is used instead of g(v). The transition corresponding to a guard
can only be taken when the guard evaluates to true. Each EFA in the system
contains a variable that represents its current location, resulting that locations of
other EFAs can be used in the guard. A guard can, for example, be x < 3 ∧ A.On,
meaning that the corresponding transition is enabled when v(x) < 3 and EFA A
is in the location On.

Besides a guard, a transition in an EFA can also have one or more updates.
An update is a function u : V → V , in which a variable is assigned a value
when that transition is taken. Only local variables of an EFA can be updated by
transitions in that EFA. Updates are defined as X := c, where ‘:=’ denotes the
assignment of value c to variable x. An update can, for example, be x := x − 1,
meaning that the value of x is decreased by 1.

We define the explicit state transition relation 7→, taken from Sköldstam et al.
(2007). The explicit state transition relation is written as (q, v) e7−→g/u (q′, v′),
which indicates the transition that starts from location q and valuation v, labeled
by event e, guard g, and update u, and that ends in location q′ and valuation v′.
It is extended to strings in E∗ in the usual recursive way. The language L(G)
of an EFA G is L(G) = {s ∈ E∗|(q0, v0) s7−→}. The marked language Lm(G) is
Lm(G) = {s ∈ E∗|(q0, v0) s7−→ (q, v), q ∈ Qm, v ∈ Vm}.

Furthermore, the synchronous product operation for EFAs G1 and G2, G1 =
(Q1, X1, E1, →1, q0,1, x0,1, Qm,1) and G2 = (Q2, X2, E2, →2, q0,1, x0,2, Qm,2), is
G1||G2 = (Q1 × Q2, X1 × X2, E1 ∪ E2, →, (q0,1, q0,2), (x0,1, x0,2), Qm,1 × Qm,2),
where the transition relation → is defined as:
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→ ((q1, q2), e, (g1 ∧ g2), (u1 ⊕ u2)) :=
(→1 (q1, e, g1, u1), →2 (q2, e, g2, u2)) if →1 (q1, e, g1, u1)! ∧ →2 (q2, e, g2, u2)!
(→1 (q1, e), q2) if →1 (q1, e, g1, u1)! ∧ e /∈ E2
(q1, →2 (q2, e)) if e /∈ E1 ∧ →2 (q2, e, g2, u2)!
undefined otherwise

The update u1 ⊕ u2 denotes that the valuations of the variables from X1 and
X2 are updated according to u1 and u2, respectively.

Another operation used in SCT is projection P : E∗ → E′∗ for E′ ⊆ E. It
takes a string formed from events of E and erases the ones that do not belong to
E′. Projection is in a natural way extended to sets of strings.

(A.Off,S.Off) (A.On,S.Off)

(A.Off,S.On) (A.On,S.On)

c_on

c_off

c_on

c_off

u_off u_on

S.u_on
when A.on

S.u_off
when A.off

Figure 2.5: The physical relation between actuator A and sensor S (left), and the
synchronous product A || S (right).

An example of an EFA that contains guards, related to the actuator and
sensor from the previous section, is shown on the left-hand side of Figure 2.5. This
EFA shows the physical relation between the actuator and the sensor. The sensor
is in this case a feedback to the controller to indicate whether the actuator is on
or off. The physical relation, therefore, expresses that the sensor can only turn
on when the actuator is in the location A.On, and vice versa. In this EFA, these
conditions are represented by the guards. Guards are denoted by the keyword
when in the visualized EFA.

To incorporate the physical relation between the actuator and the sensor in
the combined behavior, the synchronous product of the actuator, the sensor, and
their physical relation is calculated. This synchronous product is shown on the
right-hand side of Figure 2.5. Here we see, compared to Figure 2.4, that the
events u_on and u_off are no longer enabled in the locations where their guards
evaluate to false.
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An example of an EFA that contains updates is shown on the left-hand side
of Figure 2.6, where the actuator automaton of Figure 2.2 is extended with the
variable Q. In this example, variable Q represents the output variable for the
actuator that indicates whether the actuator is in the location A.On or A.Off. Q
is initially set to False, as is indicated at the initial arrow at the A.Off location
in Figure 2.6. Furthermore, Q is set to True and False when the events c_on
and c_off occur, respectively, as is indicated by the update expressions of these
events.

Q=False

A.Off A.On

c_on
do Q:=True

c_off
do Q:=False

Q=False

(A.Off,S.Off) (A.On,S.Off)

(A.Off,S.On) (A.On,S.On)

c_on
do Q:=True

c_off
do Q:=False

c_on
do Q:=True

c_off
do Q:=False

u_off u_on

Figure 2.6: The automaton of actuator A extended with variable Q, and the new
synchronous product of actuator A, sensor S, and their physical relation (right).

2.3 Modeling of requirements
The second set of models that is required for supervisor synthesis consists of the
requirements. Typically, requirements are modeled in order to prevent unsafe
behavior, or to ensure functionality or progress in the system. Requirements can
be modeled in several ways. First of all, requirements can be modeled as FAs or
EFAs. Secondly, requirements can be modeled as state-based requirements, as
described in Markovski et al. (2010), either as event-condition requirements or as
state-exclusion requirements. These methods are usually used to prevent unsafe
or undesired behavior in the system.

A requirement that is modeled as an FA or EFA is typically used to define
the order of a set of events to ensure progress in the system. An example of an
FA requirement is shown in Figure 2.7, which defines that actuator A and sensor
S must turn on alternately.

Event-condition requirements define under which conditions a certain event is
enabled. This can be done in two variants, being e needs Y and Y disables e.
The first describes that event e is enabled when Y evaluates to true, whereas the
second indicates that e is enabled when Y evaluates to false.
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A.c_on

S.u_on

Figure 2.7: The requirement automaton that defines that actuator A and sensor S must
turn on alternately.

c_on
when S.Off

c_off
when S.On

requirement c_on needs S.Off

requirement c_off needs S.On

Figure 2.8: Two requirements in event-condition representation (left) and in EFA
representation (right).

On the left-hand side of Figure 2.8, two event-condition requirements related
to the actuator-sensor example are shown. They define that the actuator is only
allowed to switch on when the sensor is off, and may only switch off when the
sensor is on. Event-condition requirements can also be represented as EFAs.
The EFA representation of the two example requirements are shown on the
right-hand side of Figure 2.8. Here, each EFA consists of a single location and
a transition that loops back to this same location. Such a transition is called a
selfloop. This selfloop is labeled by the event of the event-condition requirement,
and the condition is included in the guard of the transition. Note that every
event-conditions requirement can be represented as an EFA, but not every EFA
can be represented as an event-condition requirement.

c_on
when ¬ S.Onrequirement S.On disables c_on

Figure 2.9: Two requirements in event-condition representation (left) and in EFA
representation (right).

Event-condition requirements can also be defined using the keyword disables.
In this variant, the requirement defines under which condition the event is not
enabled. An example of such a requirement is shown on the left-hand side of
Figure 2.9. In that requirement it is defined that when sensor S is turned on,
event c_on is not enabled. Again, this requirement can also be represented as an
EFA, as shown on the right-hand side of the figure. Note that the requirement
shown in Figure 2.9 is functionally the same as the first requirement shown in
Figure 2.8.
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The controlled behavior of the plant combined with the requirement models
of Figure 2.8 is presented in Figure 2.10. The difference compared to Figure 2.6
is that due to the addition of the requirements mentioned above, the controllable
events c_off in location (A.On, S.Off) and c_on in location (A.Off, S.On) are
disabled, since the requirements do not allow them based on the sensor locations.

Q=False

(A.Off,S.Off) (A.On,S.Off)

(A.Off,S.On) (A.On,S.On)

c_on
do Q:=True

c_off
do Q:=False

u_off u_on

Figure 2.10: Controlled behavior of actuator A, sensor S, their physical relation, and
two requirements.

2.4 Supervisor synthesis
Supervisory control theory, as introduced in Ramadge and Wonham (1987),
provides a method to synthesize a supervisory controller from the model of the
plant and the model of the requirements. Synthesis guarantees that the supervisor
by construction satisfies the following properties:

Safety The supervisor prevents all behavior that conflicts with the specified
requirements.

Nonblockingness From every reachable state, there exists a path to reach
a marked state.

Controllability The supervisor never disables uncontrollable events.

Maximal permissiveness The supervisor disables as few events as possible,
while guaranteeing the three previously mentioned properties.

An example of supervisor synthesis is given regarding a product line system
in Figure 2.11, consisting of a machine M and a buffer B. Figure 2.11 shows the
automata models of these components on the left-hand side, as well as control
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requirement R. Furthermore, the corresponding synchronous product M || B || R is
shown on the right-hand side. The machine M can start working on a product by
event c_start, and this product is finished after some time, indicated by event
u_done. The product then goes to the buffer B, which accepts the product by
the same event u_done, and can remove the product by event c_remove.

M.Off M.On

B.Empty B.Full

c_start

u_done

u_done

c_remove

(M.Off,B.Empty) (M.On,B.Empty)

(M.Off,B.Full) (M.On,B.Full)

c_start

u_
do

ne

c_start

c_
re

mo
ve

R: requirement c_remove needs M.Off

Figure 2.11: Automata models for a machine M, a buffer B, and requirement R (left) and
their synchronous product M || B || R (right).

The synchronous product shows that the system reaches a deadlock, i.e. a
location that can never be left, when the machine starts on a new product while the
buffer is still full. This can be recognized by the location (M.On,B.Full), which
has no outgoing transitions and is not a marked location. Performing supervisor
synthesis for this system provides a supervisor that prevents this deadlock, as
synthesis guarantees nonblockingness. Furthermore, this supervisor will only
restrict controllable events, in accordance with the controllability property.

When synthesis is used, a supervisor is generated to control the plant. The
supervisor that is synthesized for the machine-buffer system of Figure 2.11 is
shown on the left-hand side of Figure 2.12. Here, event c_start is removed in
the location (M.Off,B.Full) to guarantee a nonblocking system.

For systems with large numbers of components, it is often infeasible and
undesirable to represent the supervisor in a single FA like the left-hand side
of Figure 2.12. Synthesized supervisors are therefore often represented as an
additional EFA to the plant model and the requirements model, as is described
in Miremadi et al. (2011) and Yang and Gohari (2005). This EFA contains
each controllable event of the plant as a selfloop, and contains guards for all
controllable events. This guard is either the True predicate, or an additional
restriction provided during synthesis in order to ensure nonblockingness and
controllability. The guard representation of the supervisor shown on the left-hand
side of Figure 2.12 is shown on the right-hand side of Figure 2.12. Here, the
guard when B.Empty is added to event c_start. As there are no additional
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(Off,Empty) (On,Empty)

(Off,Full)

c_start

u_
do

ne

c_
re

mo
ve

c_start
when B.Empty

c_remove
when True

Figure 2.12: Synthesized supervisor for system M || B || R (left) and its guard representa-
tion following Miremadi et al. (2011) (right).

restrictions from synthesis for event c_remove, this event simply has the guard
when True. Note that, following the representation of Miremadi et al. (2011),
the plant model and the requirements model are not included in these guards,
since the set of automata models and the set of requirements is included in the
supervisor separately from the supervisor EFA.

One of the benefits of this representation, as is also noted in Fabian et al.
(2018), is that these guard expressions are more transparent than the traditional
FA representation of the supervisor, and can thus give meaningful insight to
the design engineer. Furthermore, often supervisor synthesis adds no guards to
many of the controllable events, as described in Goorden and Fabian (2019),
implying that no additional restrictions are needed to ensure nonblockingness
and controllability. Additionally, supervisor synthesis can add guards that always
evaluate to false, e.g. in the case of conflicting requirements. Both these cases
can be a source of valuable information for the design engineer.

2.4.1 Synthesis approaches
There exist different approaches to synthesizing a supervisor. In Wonham et al.
(2018), a brief history on supervisory control of discrete-event systems is given. In
this section, a short overview of available synthesis techniques is provided to show
which options a control engineer can choose from. The standard form of supervisor
synthesis is called monolithic synthesis. An example of an algorithm that provides
a monolithic supervisor is described in Ouedraogo et al. (2011). This algorithm
provides a monolithic supervisor, which is a single centralized supervisor that
adheres to all control specifications. There exist multiple extensions to monolithic
synthesis in which a set of supervisors is synthesized, such as decentralized
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synthesis, distributed synthesis, modular synthesis, hierarchical synthesis, and
multilevel synthesis. The main benefits of synthesis approaches that provide a
set of supervisors are a lower computational effort and a more understandable
design.

In decentralized and distributed synthesis, a set of supervisors is synthesized
where each of the supervisors is responsible for a part of the plant. Lafortune
(2007) provides a survey on decentralized and distributed synthesis, and denotes
the difference between these approaches as follows. In decentralized control (see
Lin and Wonham (1990) and Rudie and Wonham (1991)) each supervisor knows
the entire system and the entire control specification, but each supervisor sees and
controls a different aspect of the behavior of the system. In distributed control
(see Su et al. (2010) and Zhang et al. (2016)) each supervisor only knows part
of the system and part of the control specification, and communication between
supervisors is required to achieve a global specification.

In modular synthesis, each supervisor is responsible for part of the control
specifications, i.e. part of the requirements, (see Wonham and Ramadge (1988)
and de Queiroz and Cury (2000)). An extension to modular synthesis is using a
hierarchical control architecture. Here, separate supervisors are created for parts
of the control specifications as well, but control specifications can be defined
for specific low-level controllers as well as global specifications for the high-level
controllers. Hierarchical control is described and applied in Zhong and Wonham
(1990) and da Cunha and Cury (2007). An extension of hierarchical control
is multilevel control, as explained and applied in Komenda et al. (2016) and
Goorden et al. (2019a), in which an arbitrary number of control layers is possible.

2.5 Implementation of supervisors
The last step in the supervisor design process is the implementation of the
supervisor. In Ramadge and Wonham (1987) it is described how a supervisor can
be implemented together with a separate controller. Conversely, a synthesized
supervisor can be interpreted as a controller, as is described in Balemi et al. (1993)
and Vieira et al. (2016), and be implemented on its own. This interpretation is
needed due to the functional differences between a supervisor and a controller,
which are as follows.

First, a supervisor monitors the plant behavior and decides which events are
enabled and which are disabled. A supervisor does not actually decide which event
to execute. A controller chooses which events to execute based on which events
are enabled. Although a synthesized supervisor is guaranteed to be nonblocking,
a controller that is interpreted from this supervisor might not be, due to this
functional difference.

Second, for supervisor synthesis it is assumed that there is no time delay
between the supervisor and the plant. Contrarily, in a real-time implementation
of a controller there exists a small time delay between the controller and the
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plant. This delay can affect the controlled system behavior, and even nullify the
guarantees provided by supervisor synthesis, as described in Fabian and Hellgren
(1998) and Zaytoon and Riera (2017).

2.5.1 Programmable logic controllers
PLCs are widely used in industry as the implementation platform for controllers.
The PLC consists of a central processing unit that runs the controller code and
input and output modules that connect the PLC to the sensors and the actuators
in the plant, respectively. An input image and an output image are used to
represent the sensor signals and the actuator signals from the modules as variables,
such that the signals are usable for the PLC. The operating semantics of a PLC
is visualized in Figure 2.13. A PLC operates in cycles, where first the input
variables are read, subsequently the controller code is executed, and finally the
output variables are written.

Input Execute Output Input Execute Output

time
Figure 2.13: Operating semantics of a PLC.

The supervisor can be executed on a PLC, as described in Prenzel and Provost
(2018) and Reijnen et al. (2019b). The code execution consists of the following
steps:

1. Get the input values (represented by Booleans), determine whether they have
changed, and translate these changes to the corresponding uncontrollable
events (e.g. sensor inputs).

2. Update the state of the system by executing the uncontrollable events.

3. Determine whether controllable events are enabled in the new state. If
so, execute the enabled controllable events and update the system state.
Repeat until there are no more controllable events enabled.

4. Update the output values (represented by Booleans) and write these to the
output image (e.g. actuator states).

To connect the values of the input and output variables of the PLC to the
supervisory controller, a hardware mapping is supplied. This hardware mapping
is an extension of the plant model, where an input variable is added for each
sensor or button component, and an output variable is defined for each actuator
component. The events of the sensor and button automata are connected to the
input variables by means of guards, as is shown in the example in Figure 2.14
for input I. The output variables are connected to the events of the actuator
automata by means of updates, such as the update on the left-hand side of Figure
2.6 for output Q.
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S.Off S.On

u_on
when I

u_off
when ¬ I

Figure 2.14: Hardware mapping for sensor S.

2.5.2 Implementable supervisor properties
As mentioned, there are several functional differences between a supervisor and
a controller that can affect the controlled system behavior. To guarantee that
a controller expresses the same, desired, behavior as the supervisor, several
properties need to be determined, introduced in Malik (2003). When a supervisor
adheres to these properties, it is denoted as an implementable supervisor. The
properties for an implementable supervisor are described here, and examples
taken from Reijnen (2020) are provided.

Finite response The controller always reaches a state where it waits for new
inputs from the plant, i.e. it never gets stuck in a loop of controllable
event executions.

The controller executes all enabled controllable events one after another until
no controllable events are enabled anymore. To prevent a PLC from getting stuck
in a loop of controllable events, no forcible controllable event loop may exist in
the supervisor. The supervisor on the left-hand side of Figure 2.15 contains such
a forcible controllable event loop, consisting of events b and c, meaning that this
supervisor does not have finite response. The supervisor shown on the right-hand
side does have finite response as there does not exist such a loop.

a b

c

d

a b

d

Figure 2.15: A supervisor that does not have finite response (left) and a supervisor that
has finite response (right).

Confluence Whenever a choice between multiple controllable events exists,
any sequence of controllable events after this choice eventually leads
to the same end-state, i.e. the choice of which controllable event to
execute does not influence the stable state that is eventually reached.
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As a supervisor only enables controllable events and does not decide which
event to execute, a controller can decide between multiple enabled controllable
events. To ensure that a supervisor has confluence, this decision may not affect
the end-state that is reached after all controllable events have been executed. The
supervisor on the left-hand side of Figure 2.16 does not have confluence, as the
decision between events b and d results in two different end-states. Contrarily,
the supervisor on the right-hand side has confluence, since after event b event e
can be executed, after which the same end state is reached as with event d.

a b

cd

a b

cd

e

Figure 2.16: A supervisor that does not have confluence (left) and a supervisor that has
confluence (right).

Nonblocking under control From any reachable state, a marked state
is always reachable by an event sequence that prioritizes controllable
events over uncontrollable events.

As a controller executes all controllable events until no more controllable events
are enabled, controllable event sequences will be prioritized over uncontrollable
events. This can mean that a nonblocking supervisor becomes blocking when it
is implemented as a controller. The supervisor on the left-hand side of Figure
2.17 is nonblocking, but requires uncontrollable event c to reach the marked
state, which will never be taken as the controllable event sequence b · d will have
priority. The blocking behavior when executed is shown on the right-hand side of
Figure 2.17, which reveals that the marked state is never reached.

a b c

d

a

b · d

Figure 2.17: A supervisor that does not have nonblocking under control (left) and its
blocking behavior when executed (right).

The nonblocking under control property can be verified by enforcing the
priority of controllable events over uncontrollable events. When the synthesis
procedure adds no additional restrictions, it means that the supervisor is non-
blocking under this priority, and thus that the supervisor is nonblocking under
control. The automaton that enforces the priority of controllable events is shown
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in Figure 2.18. Let

Σc =
m⋃

i=1
Ec,i and Σu =

m⋃
i=1

Eu,i (2.3)

be the set of controllable events and the set of uncontrollable events in the system,
respectively. Furthermore, let

gc =
∨

e∈Σc

ge (2.4)

be the guard that evaluates to true when any controllable event is enabled. Using
the automaton in Figure 2.18, controllable events are executed (Σc) until there
are none enabled (when ¬gc). It then transitions to the second location where
an uncontrollable event is taken (Σu). By only marking the second location, it
is ensured that a marked location is always reached at the end of a controllable
event sequence.

when ¬gc

Σu

Σc

Figure 2.18: The additional automaton used during synthesis that enforces the priority
of controllable events.

The finite response property and the confluence property can only be checked
if the complete state space of the model is checked, which is infeasible due to
state-space explosion. Instead, in Reijnen et al. (2019a), sufficient conditions are
defined to determine finite response and confluence that can be checked without
calculating the complete state space. Furthermore, algorithms are implemented
that check for these sufficient conditions.

2.5.3 Implementation code generation
For the implementation of the supervisory controller on a PLC, controller code has
to be derived from the supervisor. One method of code generation is described in
Fabian and Hellgren (1998). Here, first the state space of the model is calculated,
followed by the generation of the PLC code. In many real-life case studies,
calculating the complete state space is infeasible.

In Swartjes et al. (2014), a method is proposed to normalize the EFAs and
remove the synchronous behavior. In this procedure, each EFA is transformed
such that only one location remains, and the original location information is
included by means of a location pointer variable. This location pointer variable is
local to its EFA. Subsequently, all the EFAs with synchronous events are merged



30 Chapter 2. Supervisory control

into one normalized locationless EFA. Note that the original (local) variables
are preserved. In Figure 2.19, the result of this procedure is shown for the
machine-buffer example from Figure 2.11. As is seen, both automata have a
single location, and location pointer variables LP are introduced to include the
location information of the original automata. These variables are included in the
guards and updates of the events. In the synchronization step of the procedure,
the synchronized event u_done has been removed from the buffer automaton. In
this way, for each event, exactly one edge is defined. Thus, the need to calculate
the whole state space is omitted.

LP = 0

M̂:

c_start
when LP=0

do LP:=1

u_done
when LP=1 ∧ B.LP=0

do LP:=0, B.LP:=1

LP = 0

B̂:

c_remove
when LP=1 ∧ M.LP=0

do LP:=0

Figure 2.19: The normalized locationless EFAs of machine M, buffer B, and requirement
R following the method of Swartjes et al. (2014).

Using the method of Swartjes et al. (2014), a block of PLC code is generated
for each event in the system. The drawback of this method is that the model
structure is lost, and the code becomes hard to interpret. In Reijnen (2020),
an adapted method is proposed, which preserves the structure of the original
model. In that method, a block of code and a set of variables is generated for
each EFA. Within that block of code, for each transition in the EFA a block of
code is generated. This approach allows the control engineer to trace each part
of the generated code back to the original controller model.



Chapter 3

Road tunnel systems

The goal of this thesis is to investigate whether synthesis-based engineering is
applicable for the design of road tunnel supervisory controllers. To give an
extensive overview of a road tunnel system and its desired supervisory controller
functionality, in this chapter the road tunnel system is introduced and its interfaces
and boundaries are established. Section 3.1 gives a description of the road tunnel
system, and shows an overview of the subsystems covered by it. Subsequently,
the operator interface of the road tunnel is explained in Section 3.2.

3.1 System description
In the Dutch national tunnel standard (Landelijke Tunnel Standaard, LTS),
RWS defines a road tunnel as “an enclosed part of the road, separated from
the surrounding environment, with the aim of crossing beneath other infrastruc-
ture, often waterways, and/or increasing the quality of life of the surrounding
area”. RWS discerns three different road tunnel terms depending on the system
boundaries. Figure 3.1 visualizes the distinction between these three terms. The
description in the LTS concerns the tunnel, whereas the tunnel system includes
both the tunnel and technical installations inside that tunnel. Finally, the RWS
tunnel system covers the entire set of services, including the tunnel system, service
buildings, operating rooms, and surrounding terrain.

For the purpose of supervisory controller design, the system boundaries of
the tunnel system in Figure 3.1 are used. The control system of, for instance, the
service buildings is left outside this scope.

Under normal circumstances, a tunnel and its controller are mostly idle, as
traffic can simply drive through the tunnel. In case of an emergency, however,
the controller must coordinate the components in the tunnel to safely handle
the emergency and the evacuation. For this reason, the two main functions of
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RWS Tunnel System
Other services:
- Service buildings
- Operating rooms
- Surrounding terrain Tunnel System

Technical installations:
- Lighting
- Ventilation
- Traffic lights
- Etc.

Tunnel
Physical tunnel:
- Civil construction
- Road surface

Figure 3.1: Distinctions within the RWS tunnel system definitions.

the controller are to detect when an emergency is happening and to correctly
handle it. Emergency detection is done using sensors in the tunnel that monitor,
for example, traffic flow, smoke formation, and water flooding. The function of
emergency handling can be divided further into sub-functions, being closing the
traffic tube, regulating environmental conditions, preparing the escape route, and
readying the water cellars. The following subsections describe these functions in
more detail.

3.1.1 Detecting emergencies
One of the main functions of the tunnel controller is detecting when an emergency
occurs. This is done using three different types of sensors, as well as by using
closed-circuit television (CCTV). These components are visualized in Figure 3.2
and indicated by numbers. The first type of sensors is used to detect when traffic
is driving too slow or is even standing still in the traffic tube (1). These sensors
are induction loops embedded in the road surface that can detect when traffic
is moving below a certain threshold. Secondly, emergencies are detected using
smoke detection (2). These sensors are used to keep track of visibility in the
tunnel. A low visibility indicates smoke formation, and therefore indicates fire in
the traffic tube. The third type of sensors is connected to the emergency cabinets
in the traffic tube (3). Each cabinet contains a hand-held fire extinguisher, a
fire hose, and an emergency phone. There exists a sensor for each component
that detects if that component is being used. Furthermore, there is a sensor that
detects if the cabinet itself is open or closed. Note that Figure 3.2 only gives an
overview of the types of emergency detection systems, and does not represent
the actual numbers of components in a tunnel. Emergency cabinets, for example,
have a maximum distance of 60 meters between them, meaning that a real-life
tunnel contains more than two emergency cabinets.

The controller is designed to detect an emergency when the following conditions
hold. First of all, both a standstill detection and a smoke detection are required.



3.1. System description 33

Driving lane 1

Driving lane 2

Emergency lane

Tunnel

1 1 1

2 2

3 3

4 4 4

Figure 3.2: Overview of the emergency detection components: Standstill detection (1),
smoke detection (2), emergency cabinets (3), and CCTV (4).

Furthermore, at least two of the following conditions must hold:

• Detection of a fire extinguishing tool being used (either a hand-held fire
extinguisher or a fire hose).

• Detection of an emergency cabinet being open.
• Detection of an emergency phone being used.

Once an emergency is detected based on these conditions, the tunnel operator is
notified of this emergency. The operator can then use the CCTV (4) to assess
the situation and either confirm or reject the emergency notification. When the
operator does not respond within 30 seconds after the notification, the emergency
is confirmed automatically. Through this automatic confirmation process, the
control system can function fully autonomously. It is, however, generally undesired
that an emergency is declared without human confirmation. Furthermore, the
operator is always able to declare an emergency using the operator interface, even
when none of the conditions above hold.

When an emergency is declared in a traffic tube, either through automatic
detection or manual action, the other traffic tube is designated as the supporting
traffic tube. This supporting tube is used for evacuation purposes and to reach
the emergency tube by emergency services such as the fire brigade.

Moreover, the operator can control the CCTV whenever desired through
the operator interface and by using hardware such as a joystick. This includes
viewing a specific camera in the tunnel, controlling the pan-tilt-zoom of a specific
camera, and watching all cameras in a tube in sequence. The operator interface
is described in more detail in Section 3.2.

3.1.2 Closing the traffic tube
One of the responses of the tunnel controller to an emergency is to close both the
emergency traffic tube and the supporting traffic tube. This is done using the
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four components shown in Figure 3.3. First, the traffic lights (1) are turned to a
flashing yellow state, and the triangular J32 sign (2) is turned on to notify drivers
that the traffic lights are on. Furthermore, the matrix signs (3) are turned on to
impose a reduced speed limit. The traffic lights go through the states of flashing
yellow, continuous yellow state, and finally red, each with a specified duration.
Once the traffic lights show a red light, the boom barriers (4) will be lowered to
physically close the traffic tube.

When opening the traffic tube, the inverse process is followed: the boom
barriers are opened, the traffic lights go through the states flashing yellow and
off, and the J32 sign and matrix signs are turned off.

Driving lane 1

Driving lane 2

Emergency lane

1

1

2

4

4

3

3 3
3

3

70
3

90

90 70

50

50

Figure 3.3: Overview of the traffic tube closing components: Traffic lights (1), J32 sign
(2), matrix signs (3), and boom barriers (4).

Besides the autonomous closing of the traffic tube, the human operator can
also manually send commands to the components shown in Figure 3.3. He can, for
instance, open the boom barriers during an emergency to let emergency services
enter the tunnel.

3.1.3 Preparing the escape route
The second response of the tunnel controller to a detected emergency is preparing
the escape route for evacuation. The LTS describes four possible escape routes
that can be implemented in a tunnel, which are visualized in Figure 3.4. The
most common route uses a hallway between the two traffic tubes, called the
middle-tunnel channel. This hallway can be accessed from either traffic tube
through escape doors. The middle-tunnel channel can be left through a head
door (a) or through the last door of the supporting traffic tube (b). In the second
case, people must wait in the middle-tunnel channel until the supporting traffic
tube is closed and free of traffic. A third escape route uses cross connections (c),
which are small rooms between the traffic tubes. Similar to route (b), people can
wait in these rooms, and evacuate to the supporting traffic tube. Finally, some
older tunnels have a dividing wall as escape route (d). This is the most dangerous
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route, as people directly evacuate to the supporting traffic tube without a place
to wait for it to be free of traffic.

(a) (b) (c) (d)

Figure 3.4: Overview of the escape routes: middle-tunnel channel with head door (a),
middle-tunnel channel (b), cross connections (c), and dividing wall (d).

Newly constructed or renovated tunnels typically have a middle-tunnel channel
as escape route, so this type is explained here in more detail. The other escape
route types are less common and, at the same time, are simpler in terms of
controller design.

Several components in the middle-tunnel channel are readied when it is being
prepared for evacuation. These components are shown in Figure 3.5. Note that
Figure 3.5 shows only two sets of escape doors, whereas the actual middle-tunnel
channel contains a set of escape doors every 50 meters. When an emergency is
detected, the escape doors (1) are unlocked and a broadcasting system (2) plays
an audio message to indicate where the escape doors are. Furthermore, signs are
turned on inside the middle-tunnel channel to indicate the direction of evacuation
(3). Finally, a pressure system (4) is used to increase the air pressure inside the
middle-tunnel channel to prevent smoke from entering from the traffic tubes.

Traffic tube 2

Traffic tube 1

Escape route

1

2

4

33

1

2

1

2
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33

1

2

Figure 3.5: Overview of the escape route components: Escape doors (1), broadcasting
(2), route indication (3), and pressure system (4).
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3.1.4 Regulating environmental conditions

Another function of the tunnel controller is regulating the environmental condi-
tions to maintain sufficient visibility in the tunnel.

First, visibility in the tunnel is maintained by ensuring a sufficient air quality.
This is done using ventilation units that regulate the air flow through the traffic
tubes and thus clear it from smoke. The rotation speed of the ventilation units
depends on the sight measurements of the smoke detection, meaning that they
rotate at a higher speed when a higher smoke level is measured. In case of an
emergency, the ventilation speed is always set to the maximum setting. One
important part of the control functionality is that changes in the rotation speed
occur incrementally. This is due to the fact that sudden large changes in rotation
speed in all the ventilation units requires too much energy, which could result in a
power failure. Moreover, the forces generated by a ventilation unit that switches
to its maximum mode ca result in failing fixtures, and thus breaking down of the
ventilation units.

Second, visibility in the tunnel is maintained by regulating the light level in
the tunnel. The lighting in the traffic tubes has several different settings that
vary in light level. The main goal is to have the light level inside the tunnel
resemble the light level outside the tunnel to prevent blinded drivers because of
a too big difference in light level. The tunnel controller is therefore connected
to a light sensor outside of the tunnel. During an emergency, on the contrary,
the lighting is set to the highest setting to maximize visibility. Similar to the
ventilation system, the light level must be increased and decreased incrementally
to prevent power failures and to avoid sudden changes in the light level.

3.1.5 Readying the water cellars

The final function of the tunnel controller in response to an emergency is readying
the water cellars that lie below the tunnel. There are two types of water cellars,
being the pump cellars for drainage and the water cellar for supplying the fire
hoses.

The pump cellars for drainage are shown in Figure 3.6. These cellars are
used to drain rain water from the traffic tubes, as well as fluids that might leak
during an emergency. As can be seen, the tunnel contains three pump cellars
for drainage, consisting of two head pump cellars at each end of the tunnel, and
one middle pump cellar located at the center of the tunnel. Each pump cellar
contains a set of sensors to measure the water level in the cellar, as indicated by
the dashed lines in Figure 3.6. Furthermore, a set of pumps is present at each
pump cellar to pump out the water. For the middle pump cellar, the direction
can be regulated to which head pump cellar the water is pumped. Depending on
the water level in the cellar, one or more pumps are used. Finally, each pump
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cellar can be set to three different regimes: keeping the cellar empty, storing as
much water as possible, or turning the pumps off.

Head pump cellar 1 Head pump cellar 2Middle pump cellar

Figure 3.6: Overview of the pump cellars for the draining of rain and leaked fluids.

The second type of water cellar is shown in Figure 3.7. It is needed to supply
the fire hoses in the traffic tubes with water. It consists of two sensors to measure
the water level, and one pump to fill the cellar. The pump is turned on when the
water cellar is not full, and an emergency is detected or one of the fire hoses is
being used. The pump is turned off once the water cellar is full.

Figure 3.7: Overview of the water cellar connected to the fire hoses.

3.2 Operator interface description
Every tunnel in the Netherlands is at all times monitored and operated by
a human operator through an operator interface. The operator monitors the
situation in the tunnel through CCTV images and information displayed on the
operator interface. This information includes visualization of the tunnel state, e.g.
the current state of a traffic light, and notifications shown in the interface, e.g. a
sensor detection for slowly driving traffic. The second purpose of the operator
interface is operating the tunnel. Operation of the tunnel is done through the
operator interface by sending commands to specific components in the tunnel.
The tunnel control system is able to work fully autonomously, though a human
operator can at any moment intervene when deemed necessary.

In the LTS, RWS defines specifications for the tunnel operator interfaces in
the Netherlands. Furthermore, based on these specifications, the LTS gives a
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standard design for the operator interface. Because of the standard design, each
tunnel is operated through a similar interface, which facilitates operation and
maintenance.

Figure 3.8: Overview of the operator interface of the KWA tunnel.

The operator interface of the Koning Willem-Alexander (KWA) tunnel, which
is based on the standard design of the LTS, is shown in Figure 3.8. This interface
is divided in the following sections, as indicated by the red boxes in the figure:

• Primary control
The primary control section contains important information about the
current tunnel state and buttons that need to be easily accessible. These
buttons are mainly related to closing the tunnel and operating the CCTV.

• Overview tunnel
The overview tunnel section is a schematic view of the tunnel and its direct
surroundings. Icons in this view indicate the state of components like the
boom barriers and ventilation units.

• Overview systems and detections
The overview systems and detections section gives a complete overview
of all systems in the tunnel. It contains all buttons that can be used for
operating a specific component.
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• Notification list
The notification list section shows all notifications received from the super-
visory controller, such as alarm notifications or system failures.

• Detail map
The detail map section gives a more detailed overview of a specific section
of the tunnel, as requested by the road traffic controller.

An operator interface, as designed following the guidelines of RWS, has no
control functionality, meaning that all decision making and information processing
is done by the supervisory controller or resource controllers. The operator interface
merely sends signals to these controllers, and visualizes inputs received from
them. It is, however, important to include the operator interface in the design
process of the supervisory controller. Firstly, the supervisory controller can only
be correctly designed when the appropriate input and output signals with regard
to the operator interface are considered. Secondly, validation of the supervisory
controller by means of simulation holds more value when the same operator
interface is used as in the realized tunnel.





Chapter 4

Parameter-based modeling

One of the main challenges of applying SCT in practice is the knowledge and
effort that is required to create correct models. For industrial systems, which
often consist of a large number of components, modeling can be a cumbersome
task. Furthermore, few control engineers have the required knowledge on SCT,
as they are trained to be software programmers instead of supervisory control
engineers.

In this chapter, the design of supervisors for a product platform is proposed,
with the aim to make modeling in SCT more efficient and more accessible. A
product platform is described in Meyer and Lehnerd (1997) and Harland et al.
(2020) as a collection of modules and components that are common to a number
of products. This commonality is introduced intentionally to gain several benefits,
such as a higher development speed and lower development costs.

The modeling platform that is proposed in this chapter is a parameter-based
platform. It is inspired by the concept of decision support systems, as described in
Minch and Burns (1983) and Overstreet and Nance (1985), in which parameters
are used to define a system within a product platform. Our platform, however,
differs from decision support systems as it focuses on model generation instead of
decision making and model management. Our modeling platform can be used
to generate the models that are required for supervisor synthesis and simulation
from the set of parameters that define the system. A template library is used
in this approach to instantiate modules in the product platform based on the
entered parameters.

This chapter is based on: Moormann, L., van de Mortel-Fronczak, J.M., and Rooda, J.E.
Design of a parameter-based modeling platform for road tunnel supervisory controllers. In 2021
IEEE Conference on Control Technology and Applications (CCTA), pages 1024–1030. IEEE,
2021.
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The use of templates is comparable to modeling approaches described in
Grigorov and Rudie (2010), Grigorov et al. (2011), and Malik et al. (2011). In
Grigorov et al. (2011), extensive research is presented on template-based design,
in which discrete-event systems are modeled using a set of templates for the
components and the requirements. They conclude that template-based design
greatly improves the accessibility of modeling for supervisor synthesis as well
as the speed of modeling itself. In the approach of Grigorov et al. (2011), a
template library is used, which is a repository of discrete-event models that can
be instantiated to model the system. Our platform uses such a template library as
well, though instead of manually instantiating all components in the system, the
templates are instantiated automatically based on the parameters of the system.
In Grigorov and Rudie (2010), the approach of Grigorov et al. (2011) is extended
by introducing techniques for the parametrization of templates. With these
techniques, the behavior of a template can be altered by specifying a parameter,
e.g. the capacity of a buffer. This, however, differs from our parameter-based
modeling platform, as the parameters in Grigorov and Rudie (2010) are used to
construct the behavior of a specific component, while our platform also includes
high-level parameters that construct the complete system. In Malik et al. (2011),
the techniques of Grigorov and Rudie (2010) are extended and implemented
to support parameterized modules, which consist of a set of components with
defined interfaces. Our platform also uses such modules, though in our method
the parameters are not only used to define the modules, but also to automatically
perform the instantiation process. In Grigorov et al. (2011), Grigorov and Rudie
(2010), and Malik et al. (2011), this instantiation process of the templates is a
manual, and thus more time-consuming, task.

Several benefits are obtained by allowing the control engineer to define a system
using a set of parameters and, subsequently, generate the models for supervisor
synthesis. First, modeling systems within the product platform becomes a quick
and almost effortless process as long as the system parameters are known, and
adaptations can be made quickly by changing the corresponding parameters.
Second, no knowledge on SCT is required from the control engineer, as the
models that are needed for supervisor synthesis and simulation are generated
automatically. Third, the quality of the controller increases as the possibility of
human errors is reduced further since the models are not created manually.

The concept of a modeling platform to automatically generate models for
supervisor synthesis and simulation is not new, as this has been shown before in
Reijnen et al. (2020b). The platform, however, differs from that work as the type
of systems that is considered in this thesis requires a different modeling approach,
namely a parameter-based approach. The systems considered in Reijnen et al.
(2020b) contain a relatively low number of components. Furthermore, there exists
more variability between the configuration of the modules and components in
those systems, thus requiring more freedom for the user. The disadvantage of
this freedom is that it becomes more time consuming as the system gets larger,
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and more knowledge on modeling formalisms and synthesis algorithms in SCT is
required as interfaces between modules, i.e. the requirement models, need to be
specified by the user. The systems considered in our modeling platform contain
large numbers of modules and components, and the variation in configurations
and interfaces between these modules and components can be captured in the
parameters. Therefore a platform is chosen where, compared to Reijnen et al.
(2020b), the user has less freedom in configuration design of the system. In
return, the modeling process is more efficient, and much less knowledge on SCT
is required as both the plant components and the requirements are generated
automatically.

The product platform in this chapter considers supervisory controllers for
road tunnel systems. Road tunnels are infrastructural systems consisting of
many components that have to cooperate together correctly to ensure a safe
environment for road users. Creating a parameter-based product platform for
road tunnels is a suitable approach, since all road tunnels resemble each other as
they contain the same modules and components. The road tunnels can, however,
vary in configuration and dimensions, which is captured in the parameter set that
defines the system.

This chapter is organized as follows. In Section 4.1, the component-based
modeling method for the plant model and requirements model is described.
Moreover, a running example is introduced, pertaining a pump-cellar system, to
showcase the component-based modeling method. Subsequently, in Section 4.2,
the parameter-based modeling method is introduced and applied for the running
example. The parameter-based modeling method is implemented in a prototype
tool, described in Section 4.3, and its applicability is shown in a case study for a
family of tunnels, as shown in Section 4.4. Finally, in Section 4.5 some concluding
remarks are made.

4.1 Component-based modeling method
There exist several approaches to modeling the plant behavior, varying in, e.g.,
abstraction level and the interfaces with adjacent systems. In this section, the
approach of component-based modeling is used. Component-based modeling is
described in Gössler and Sifakis (2005) and Majdara and Wakabayashi (2009), and
applied for, respectively, correct-by-construction network design and automated
fault tree generation. In this approach, the chosen abstraction level and interfaces
are based on the input and output connections of the control unit. This holds for
both the connections to the plant and the connections to the operator interface.
One of the benefits of this approach is that this gives a clear interface with the
surrounding systems that, depending on the type of project, might already be
fixed. Furthermore, the abstraction level of inputs and outputs enables the option
to automatically generate implementation code from the synthesized supervisor.
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A third benefit is that using this approach, many of the modeled components
become loosely coupled, i.e. they do not share events and each represent a
specific component in the system, such as individual actuators and sensors. This
makes the modeling of the components and the requirements less error-prone and
more intuitive, and is therefore faster and requires less effort. Component-based
modeling has been used successfully for the purpose of supervisory control theory
in previous works, as can be seen in Huang et al. (2015), Kovács et al. (2012),
and Reijnen et al. (2020a).

As mentioned, the abstraction level at which the components are modeled
is based on the input and output connections of the controller. There are,
however, two exceptions to this rule. First, certain models are included to model
the interactions between components that limit their physical behavior, as is
discussed in Gössler and Sifakis (2005). An example of such a physical relation
between two components is shown in Figure 2.5 in Section 2.2. Second, an
exception to the input–output abstraction level involves information that needs
to be memorized by the controller. For instance, as described in Chapter 3, the
tunnel controller detects an emergency when a certain combination of conditions
is met. The controller must memorize that an emergency was detected, even
when the conditions no longer hold. An automaton is therefore modeled that
represents this memory, which is neither an input nor an output of the controller.

The loosely coupled component models also allow for modeling using templates,
as introduced in Grigorov et al. (2011). Such a template represents the behavior of
a certain frequently occurring component, such as an actuator, and is instantiated
for each of the actuators in the system. Therefore, using templates makes the
modeling of systems with reoccurring components much more efficient.

When defining the requirements for supervisory synthesis, the requirements
should relate to events and locations in the discrete-event plant model. In the
component-based modeling method, this means that the requirements typically
refer to the input and output connections of the controller, and in some cases
to a memory component. While this may seem like a restriction on the require-
ment modeling process, practice shows that such requirements are defined more
intuitively and more clearly when they directly relate an output to one or more
inputs. Furthermore, the component-based modeling of the plant results in a
larger set of smaller requirements that each relate to a specific component. These
smaller requirements are typically more straightforward and transparent than
larger, often convoluted, requirements.

From the discrete-event plant model and the requirements model, a supervisor
is synthesized. Supervisors are often validated by means of simulation, and while
it is possible to simulate the discrete-event model of the plant, it is often worth
the effort to create a more advanced, hybrid, model that more closely resembles
the real system. This hybrid model consists of the discrete-event model of the
plant as well as hybrid automata, as introduced in Henzinger (2000). This hybrid
plant model ensures that output signals of the supervisor are correctly processed
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by the plant and that the correct input signals are provided to the supervisor.
Furthermore, the hybrid plant model enriches the discrete-event plant model with
continuous time behavior. In component-based modeling, the hybrid plant model
is created more easily as each input signal and each output signal is represented
by an individual automaton in the discrete-event plant model. This allows the
design engineer to also create a component-based hybrid plant model, where a
separate hybrid automaton is created for each signal.

As an example, the hybrid plant model of a boom barrier is discussed. The
supervisor sends output signals to the actuators of the boom barrier to either open
or close it, and receives input signals from the boom barrier about the current
position. The hybrid plant model of this boom barrier includes a continuous
variable that represents the current height of the boom barrier. When the
supervisor gives the output signal to open the boom barrier, the value of this
variable is increased to indicate a rising boom barrier, and once the variable
surpasses a specified value, the hybrid plant model gives the input signal to the
supervisor that the boom barrier is fully opened. Subsequently, the supervisor
decides that the boom barrier must be stopped, and gives the corresponding
output signal.

Besides the continuous-time enrichment of the discrete plant, the hybrid
plant often also includes a visualization. To this end, a scalable vector graphics
(SVG) file is created, as described in Quint (2003), in which object properties
are connected to events, locations, and variables in the hybrid model. Such a
visualization gives a clearer and more intuitive representation of the current state
of the system. Moreover, objects in the SVG can be linked to events in the plant
model such that input signals can be given during a simulation. For instance,
when a button exists in the GUI, a clickable object can be created in the SVG
that represents that button. An event then is connected to this clickable object,
such that is it executed when the object is clicked in the SVG during a simulation.
This way, the correct operator interface can be created, which makes validating
the supervisor through simulations easier and more meaningful.

4.1.1 Running example: Pump-cellar system

Throughout this chapter, a running example is used to demonstrate the proposed
methods of component-based and parameter-based modeling, described in Sections
4.1 and 4.2, and the proposed configuration tool, described in Section 4.3. The
running example concerns the pump-cellar system of a road tunnel, as is introduced
in Chapter 3. Such a pump-cellar system consists of several pump cellars, which
each have a set of sensors to determine the water level in the cellar, and a set
of pumps to empty the cellar. An example of a pump-cellar system is shown in
Section 3.1, Figure 3.6, which consists of three pump cellars that each have five
sensors and two pumps.
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The plant model

Following the component-based modeling method, a separate model is created for
each component in the system based on the inputs and outputs of the controller.
In the pump-cellar system, the outputs of the controller are analyzed, which in
the case of the pump-cellar system are the two pumps in each of the pump cellars.
An automaton is therefore created for each individual pump P. The automaton
of pump P1 is shown in the top-left corner of Figure 4.1. Next, the inputs of
the controller are the five sensors in each pump cellar that determine the water
level. Once again, an automaton model is created for each of these sensors. The
automaton for sensor S1 is shown in the middle at the top of Figure 4.1.
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Figure 4.1: Discrete-event plant model of the components of a pump cellar.

One of the two exceptions to the input-output abstraction level in the
component-based modeling method are the additional models created to capture
the physical behavior between components in the system. For the pump-cellar
system, physical relations exist between the sensors in a pump cellar, as well
as between the sensors and the pumps in that cellar. On the right-hand side
of Figure 4.1, an example of this physical relation is shown specifically for the
second sensor in a pump cellar. This physical relation adds guards to the events
of the sensor, as these events are only physically possible under certain conditions.
First, the sensor can only turn on (S2.u_on) when the sensor below is already on
(S1.on), since the water level can never be above S2 and below S1 at the same
time. Similarly, a guard is added to turning the sensor off (S2.u_off) in relation
to the sensor above (S3). Moreover, there exists a physical relation between a
sensor and the pumps in a pump cellar, namely the relation that a sensor can only
turn off when the pump is emptying that cellar (P1.on). Both these relations are
included in the guard of the S2.u_off event in the automaton on the right-hand
side of Figure 4.1. Note that these physical relations are modeled under the
assumption of nominal behavior, i.e. the actuators and sensors in the plant never
fail.
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The second exception to the input-output abstraction level concerns the mem-
orized information of the controller. For the pump-cellar system, the controller
must memorize the current pumping regime R of each pump cellar. There are
three different regime options that indicate if the cellar should be as empty as
possible (Emptying) or as full as possible (Storing), or if the pumps should be
off regardless of the water level (Off). The automaton for this regime R is shown
in the bottom-left corner of Figure 4.1.

The requirements model

The requirements of a water pump cellar define the conditions under which the
pump regime changes, and under which the pumps are turned on and off. Here,
an example is given of the requirements for a pump cellar with 2 pumps and 5
sensors. These requirements are listed below in textual form.

1. The pumping regime may only be set to Storing when
(a) the traffic tube is in emergency mode, or
(b) the corresponding button is pushed.

2. The pumping regime may only be set to Emptying when
(a) the traffic tube is in operational mode, or
(b) the corresponding button is pushed.

3. The pumping regime may only be set to Off when
(a) the corresponding button is pushed.

4. Pump 1 may only be turned on when
(a) the pumping regime is Storing and Sensor 5 is on, or
(b) the pumping regime is Emptying and Sensor 2 is on.

5. Pump 2 may only be turned on when
(a) the pumping regime is Storing and Sensor 5 is on, or
(b) the pumping regime is Emptying and Sensor 3 is on.

6. Pump 1 may only be turned off when
(a) the pumping regime is Storing and Sensor 4 is off, or
(b) the pumping regime is Emptying and Sensor 1 is off, or
(c) the pumping regime is Off.

7. Pump 2 may only be turned off when
(a) the pumping regime is Storing and Sensor 4 is off, or
(b) the pumping regime is Emptying and Sensor 1 is off, or
(c) the pumping regime is Off.

The requirements for the pump cellar are modeled as event-condition require-
ments, as this closely resembles the textual form as seen above, and is therefore
the most intuitive approach. Table 4.1 gives an overview of these requirements
for the pump cellar, and shows the condition for each controllable event. In these
requirements, the pumping regime is denoted as R, the pumps as P1 and P2, and
the sensors as S1 (lowest) through S5 (highest).
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Table 4.1: Event-condition requirements for a water pump cellar with 2 pumps and 5
sensors.

Req. Event Condition (a) Condition (b) Condition (c)

1 R.c_store TrafficTubeMode.Emergency ∨ ButtonStoring.Pushed
2 R.c_empty TrafficTubeMode.Operational ∨ ButtonEmptying.Pushed
3 R.c_off ButtonOff.Pushed
4 P1.c_on (R.Storing ∧ S5.On) ∨ (R.Emptying ∧ S2.On)
5 P2.c_on (R.Storing ∧ S5.On) ∨ (R.Emptying ∧ S3.On)
6 P1.c_off (R.Storing ∧ S4.Off) ∨ (R.Emptying ∧ S1.Off) ∨ R.Off
7 P2.c_off (R.Storing ∧ S4.Off) ∨ (R.Emptying ∧ S1.Off) ∨ R.Off

The hybrid plant model

For the purpose of simulation, a hybrid plant model is created. For a water pump
cellar, the hybrid plant model introduces a continuous variable that represents
the water level in the tank. A relation is modeled between the sensors and this
water-level variable, as shown on the left-hand side in Figure 4.2. This ensures
that the sensor events occur automatically during simulation when the water
level reaches a certain height. Furthermore, the option to let rain water fill the
pump cellars during the simulation is added by modeling the occurrence of rain,
as shown in the middle of Figure 4.2. Finally, a differential equation of the water
level is modeled, as shown on the right-hand side of Figure 4.2, to connect the
water-level variable to the rain and to the mode of pumps.

S.u_on
when water ≥ level

S.u_off
when water < level

Off

On

RainSensors Water-level variable water

e_one_off water′ =



+10 if Rain.On ∧ P1.Off ∧ P2.Off
+5 if Rain.On ∧ P1.On ∧ P2.Off
−5 if Rain.Off ∧ P1.On ∧ P2.Off
−10 if Rain.Off ∧ P1.On ∧ P2.On
0 otherwise

Figure 4.2: Hybrid plant model of a pump cellar.

To create an intuitive simulation model, often a visualization is created and
connected to the discrete-event plant model and the hybrid plant model. It
consists of an SVG, in which, e.g., the color, visibility, position, and rotation of
objects are linked to locations and variables in the discrete and hybrid automata
through SVG declarations. For instance, in the case of the pump-cellar system,
the modes of the pumps and the rising or falling water level are animated this
way. The visualization used during simulation of the pump-cellar system is shown
in Section 3.1, Figure 3.6. The SVG declarations specify how high the water is
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visualized depending on the continuous variable of the water level. Furthermore,
the visibility of the inflow depends on the occurrence of rain, and finally the
visibility of the outflow depends on the activity of the pumps.

4.2 Parameter-based modeling method
In this section, the process of parameter-based modeling is described, the modules
of road tunnel systems are explained, and the way modules are connected in
different tunnel configurations is elaborated.

The modeling method that is proposed in this chapter is a parameter-based
modeling method. The general process is visualized in Figure 4.3. The input
files in this process are shown on the left-hand side, being the template library
and the parameter list. The template library contains model templates, such
as described in Grigorov and Rudie (2010) and Grigorov et al. (2011), for all
common modules and parts in the product platform. These templates can consist
of both discrete-event automata and requirements for the discrete-event plant
model, and hybrid automata for the hybrid plant model. The parameter list
contains a set of parameters that defines a system within the product platform.
In this method, the required effort of the design engineer shifts from creating a
large set of models to creating a library of templates. An additional benefit of
creating such a library is seen when multiple similar systems have to be modeled.
In that case, the effort of creating the template library is only required once, and
it can then be used to model all systems belonging to the same class.

Template library

Configuration

Parameter list

Discrete-event plant

Requirements

Hybrid plant

Visualization

Synthesis

Supervisor

Simulation

Figure 4.3: Overview of the parameter-based modeling process.

The template library and the parameter list are used as the inputs for the
configuration tool. This tool processes the data and generates the models and
visualizations that are required in the synthesis-based engineering process. These
files are shown in the middle of Figure 4.3. They contain the discrete-event
plant model, the requirements model, the hybrid plant model, and the SVG that
visualizes the system.

The configuration tool creates the plant model directly from the template
library. The template library contains a template definition, such as the definition
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for an actuator shown in Figure 4.4. A component in the plant model is created
by the configuration tool by using this definition and supplying the name of
the component and the required parameters. The parameters of the example in
Figure 4.4 define selectable marked locations with OffMarked and OnMarked. If,
for example, a model for a lamp with the On location as the only marked location
is needed, this is expressed as Lamp : Actuator(False,True).

(OffMarked, OnMarked)

Off

Marked if OffMarked=True

On

Marked if OnMarked=True

c_on

c_off

Figure 4.4: Template definition of an actuator with selectable marked locations.

Requirements can be added by the configuration tool in a similar way, by
creating a template definition of one or more requirements, but this is often done
without a template. As most requirements are related to multiple component
models to ensure correct cooperation, and thus depend on many different param-
eters, the contents and the length of the requirements need to be more versatile.
Instead of using a template, the requirement is created in the configuration tool
itself. For this purpose, the requirements are defined in the algorithm of the
configuration tool, and for each requirement it is indicated how they depend
on the components in the system. An example of such a requirement is shown
in Equation (4.1), where Si.on and Sj.on are two different sensor components
created by the configuration tool. However, depending on the parameters of the
system, there might be more sensors that are needed in this requirement, so the
length of the requirement needs to be versatile.

A.c_on needs Si.on ∧ Sj.on · · · (4.1)

As described in Chapter 2, a supervisor can be synthesized from the discrete-
event plant model and the requirements model, which is shown at the right-
hand side of Figure 4.3. To validate if the discrete-event plant model and the
requirements model are correct, simulations are performed using the supervisor,
the hybrid plant model, and the visualization SVGs. Errors can be found during
simulation, either when requirements are too relaxed so undesired behavior is
still possible, or when requirements are too strict so some desired functionality
is prevented. The error is often corrected in the template library, but the error
can also lie in the configuration tool or the parameter list. After the error is
corrected, new files are generated using the configuration tool, a new supervisor
is synthesized, and simulations are performed again, making the validation an
iterative process.
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The product platform of road tunnels consists of a set of common modules.
To generate the models for synthesis and simulation, a template library is created
for these modules that contains templates for the discrete-event plant, the require-
ments, the hybrid plant, and the visualization. Furthermore, for each module, a
set of parameters is included that defines the instantiation of that module.

The modules of a road tunnel are the traffic tubes, the escape routes, the
water pump cellars, and the water tanks. These are the common modules that
make up a road tunnel. There are, however, also connections between the different
modules. Depending on the configuration of a road tunnel, certain modules, such
as the traffic tubes and the escape routes, may or may not be connected. For
instance, an escape route is always connected to two traffic tubes. A road tunnel
with four traffic tubes and two escape routes thus requires additional information
about which escape routes are connected to which traffic tubes. This information
is captured in an additional configuration module that always appears exactly
once in the road tunnel parameter list. In the next section, an example of this
configuration module is provided. Note that the connection between modules
can be directional. For example, in the case of a connection between two pump
cellars, the direction indicates which cellar pumps water to the other cellar.

4.2.1 Running example: Pump-cellar system
Once again, the pump-cellar system shown in Section 3.1, Figure 3.6, is used as an
example, in this case to showcase the parameter-based modeling method. In this
section, the modules of the pump-cellar system, the parameter-based modeling
of the plant model, the requirements model, and the hybrid plant model are
described.

The modules

A pump-cellar system consists of one or more pump-cellar modules. In the
example of the system shown in Figure 3.6, the pump-cellar system consists
of three pump cellars, where the second pump cellar is able to pump its water
to the first and the third pump cellar. To model a pump-cellar system using
parameter-based modeling, pump-cellar modules are added to the parameter list.
For each module, a set of parameters is required that define that module. In the
case of a pump-cellar module, the number of water-level sensors and the number
of pumps in that pump cellar are needed.

An overview of the pump-cellar modules in this example is shown at the top
of Figure 4.5. In total, three of these modules are added and for each module the
required parameters are provided. In this example, each pump cellar contains
five sensors and two pumps.

Moreover, the relation between the pump cellars needs to be defined, as this
affects the controlled behavior of the system. For this purpose, a configuration
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Pump-cellar module 1 Pump-cellar module 2 Pump-cellar module 3

Sensors: 5

Pumps: 2

Sensors: 5

Pumps: 2
Sensors: 5

Pumps: 2

Configuration module

Pump-cellar 1: {}

Pump-cellar 2: {Pump-cellar 1, Pump-cellar 3}

Pump-cellar 3: {}

Figure 4.5: Modules of the pump-cellar system.

module is added, as this concerns the configuration between the other modules.
This configuration module is shown at the bottom of Figure 4.5. It contains
the information of which pump-cellar modules are connected to which other
pump-cellar modules. Note that this connection is directional. In this case, the
second pump cellar can pump water to the other two cellars.

When a complete tunnel is modeled using this method, the configuration
module also contains the information about which escape routes are connected to
which traffic tubes, and which traffic tubes a water tank is connected to.

The plant model

The discrete-event plant model of each pump-cellar module consists of a set of
pumps Pi, a set of water-level sensors Sj , and a model that describes the current
pumping regime R. The model for the pumping regime R is parameter-independent,
as this model always appears exactly once in a pump cellar. Contrarily, the
number of pump automata and sensor automata in the discrete-event plant model
depend on the input parameters. In Figure 4.6, the parameter-based models of
the pump and the sensor, adapted from Figure 4.1, are shown. Note that the
events and guards in the physical relation automata are parameter-dependent to
create the correct physical relations with the other sensors.

OnOff

Sensor Sj

u_on

u_off

Off On

Pump Pi

c_on

c_off

Physical Relation PRj

Sj.u_on
when Sj−1.on

Sj.u_off
when Sj+1.off ∧ Pi.on

Figure 4.6: Parameter-based discrete-event plant model of a pump cellar.
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As the second pump cellar can pump its water to either the first or the third
pump cellar, an additional model is needed to capture this pump direction. The
automaton for the pump direction in shown in Figure 4.7. Initially, the water is
pumped to pump cellar 1, though it can switch to pump cellar 3 when needed.

PC3PC1
c_PC3

c_PC1

Figure 4.7: Automaton model for the pump direction of pump cellar 2.

The requirements model

Requirements are added to the requirements model for each module, depending
on the parameters of that module. Similar to the modeling process of the plant,
there are requirements that are parameter-dependent and requirements that are
parameter-independent. The requirements for a pump cellar with two pumps and
five sensors are shown in Table 4.1. In this case, there always exists one pumping
regime model R, so requirements 1-3 are always included once as well, and are
thus parameter-independent.

Requirements 4-7 are parameter-dependent, as they depend on the number
of pumps and sensors in the system. These requirements are included in the
template library, and are instantiated several times depending on the parameters
that are provided. In some cases, the parameter only specifies the number of
instantiations of a requirement, such as requirements 6 and 7 in Table 4.1. In
such a requirement, the corresponding event changes but the condition stays
the same. In other cases, both the event and the condition change based on the
parameters, such as requirements 4 and 5 in Table 4.1. The way the requirement
depends on the parameters must either be defined in the template library, or be
assignable in the configuration tool.

As defined in the configuration module, pump cellar 2 has a pump direction
to either pump cellar 1 or pump cellar 3. Based on this configuration module,
additional requirements are needed in the second pump cellar to specify under
which conditions the pump direction must be switched. These requirements are
given here both in textual form and in event-condition form.

1. The pump direction may only be set to pump cellar 3 when pump cellar 1
is full, i.e. S5 of pump cellar 1 is on.

2. The pump direction may only be set to pump cellar 1 when pump cellar 1
is sufficiently empty, i.e. S3 of pump cellar 1 is off.
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PumpCellar2.PumpDirection.c_PC3 needs PumpCellar1.S5.on

PumpCellar2.PumpDirection.c_PC1 needs PumpCellar1.S3.off
(4.2)

The hybrid plant model

Besides the plant model and the requirements model, the hybrid plant model and
the visualization file are automatically generated in parameter-based modeling.
The differences in the hybrid plant model in the parameter-based modeling
method compared to the component-based modeling method are described here.

First, a relation between each sensor and the corresponding water level must
be modeled, as shown on the left-hand side of Figure 4.8. Second, the differential
equation of the water-level variable is made parameter-dependent in relation to
the number of pumps in the pump cellar. As seen on the right-hand side of Figure
4.8, the derivative is increased by 10 when the rain is on, and decreased by 5 for
each pump (Pi, i ∈ I) that is on.

Si.u_on
when water ≥ leveli

Si.u_off
when water < leveli

Sensors Water-level variable water

water′ =
{

10 +
∑I

i=1(−5 if Pi.On) if Rain.On∑I
i=1(−5 if Pi.On) if Rain.Off

Figure 4.8: Parameter-based hybrid plant model of a pump cellar.

The final file that is generated from the parameters is the SVG visualization
and the corresponding declarations. The SVG can be created using the same
parameter-based modeling tool as the discrete-event plant model and the hybrid
plant model. They can be created using the same parameter list as is used for the
plant model with some additional parameters to correctly visualize the system.
An example of such a parameter is the driving direction of a traffic tube. The
plant behavior of a traffic tube does not depend on its driving direction, but it is
relevant for visualization.

4.3 Configuration tool
The parameter-based modeling approach is implemented as a prototype tool to
perform the configuration step shown on the left-hand side in Figure 4.3. The



4.3. Configuration tool 55

tool is developed in the Python programming language using Microsoft Visual
Studio, and can be used as a front-end to the CIF toolset that can be used for
the subsequent synthesis and simulation steps.

The user interface of the configuration tool is shown in Figure 4.9. It consists
of three main panels. On the left-hand side, a list of the modules in the tunnel
is shown. In the middle panel, the parameters of the module that is currently
selected are shown, e.g., the parameters of a traffic tube as in Figure 4.9. Finally,
on the right-hand side, a set of buttons is included for the user to create the
tunnel configuration.

Figure 4.9: Overview of the configuration tool main screen.

The user can create the desired tunnel configuration by using the Add, Delete,
and Clear buttons. Through the Edit button, the parameters of the currently
selected module can be changed. Furthermore, the Configure button allows the
user to change global settings, such as the output file names and the language of
the interface. Once the desired tunnel configuration is constructed, the user can
press the Generate button to generate the files as shown in Figure 4.3. These
files can then be used in the CIF toolset to synthesize the supervisor and perform
simulations.

Finally, the configuration tool contains a preview function, using the Preview
buttons, providing the visualization of the tunnel, as shown in Figure 4.10, and
the visualization of the operator interface. Previewing allows the user to quickly
validate whether the desired configuration is constructed.

4.3.1 Running example: Pump-cellar system
For the running example, the pump-cellar system is modeled using the parameter-
based configuration tool. In this process, first the three modules for the three
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Buis 1 Buis 2 Buis 3 Buis 4

Obstakels Rijstroken Vluchtstrook Rijstroken Vluchtstrook Rijstroken Vluchtstrook Rijstroken Vluchtstrook
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Figure 4.10: Preview functionality in the configuration tool.

pump cellars are added, as can be seen on the left-hand side in Figure 4.11. For
each of these modules, the parameters for the number of sensors and the number
of pumps in that pump cellar are entered. Furthermore, a configuration module
is added to set the dependencies between the pump cellars. The middle panel in
Figure 4.11 shows the settings of the configuration module, which indicate that
pump cellar 2 is connected to pump cellars 1 and 3.

Figure 4.11: Configuration tool for the pump-cellar system.

Once the complete system has been entered in the configuration tool, the
Generate button can be used to create all files that are needed for supervisor
synthesis and simulation. As explained in Section 4.2, these files include the
discrete-event plant model, the requirements model, the hybrid plant model, and
the visualization.
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4.4 Case study on a family of tunnels
To illustrate the effectiveness of the parameter-based modeling tool, a case study
has been performed on a family of tunnels in the Netherlands. This family consists
of 22 road tunnels that are managed by RWS. The tunnels vary in configuration,
as shown in Table 4.2, since they have different numbers of modules, e.g., traffic
tubes and escape routes. Furthermore, the dimensions of the tunnels are different,
resulting in varying parameters such as the number of escape doors, the number
of emergency cabinets, and the existence of a height detection. The required
data of the tunnels was partially retrieved from Juerd (2020), and extended with
additional data from RWS.

In this case study, each tunnel was modeled from scratch using the configura-
tion tool, while the same template library is used for each case. As can be seen
in Table 4.2, almost all tunnels consist of the same modules, though in varying
numbers. Because of the low variation in tunnel configurations, the modeling
process using the parameter-based modeling tool shows to be very efficient and
intuitive. As long as the required data is available, a tunnel can be modeled and
a supervisor can be synthesized in a matter of minutes.

4.5 Concluding remarks
In this chapter, the component-based modeling method is described, and its
applicability for the modeling of road tunnel systems is shown. A running
example is included for a pump-cellar system that consists of three pump cellars
with dependencies between them. Furthermore, an extension of the component-
based modeling method, being a parameter-based modeling platform, is proposed
for road tunnel supervisory controllers. The parameter-based modeling process is
described, where it is shown how a road tunnel system can efficiently be defined
and modeled using a template library and a list of parameters. A prototype of
this platform has been implemented as a configuration tool, which automatically
generates the models and visualizations that are required for supervisor synthesis
and simulation. Simulations are performed to validate the correctness of the
configuration tool and of the models in the template library. Furthermore, this
chapter presents a case study in which the configuration tool is used to model a
family of 22 road tunnels in the Netherlands, from which it can be concluded that
the parameter-based modeling approach is suitable for such a family of systems.

There are several options for future work to extend the functionality of the
parameter-based modeling platform. First, it can be investigated if the files that
are required for supervisory controller implementation, such as the hardware
configuration and the input and output mapping, can be generated automatically
as well. Second, currently all requirements that connect the modules in the
tunnel are standardized, though the platform can be extended so that different
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requirement sets can be selected. Third, as supervisory controllers for road tunnels
are often implemented on a set of PLCs, the distribution of the supervisory
controller can possibly be included in the functionality of the parameter-based
modeling platform as well.





Chapter 5

Model reduction for
supervisor synthesis

After creating the plant model and the requirements model, as described
in Chapter 4, supervisor synthesis can be used to automatically generate the
supervisor. A benefit of using synthesis is that the synthesized supervisor is
guaranteed to adhere to the defined requirements, and has several other beneficial
properties such as nonblockingness and controllability. Furthermore, synthesis can
be performed early in the design process, so validation, e.g. through simulations,
can be performed early as well.

Synthesizing a supervisor can be computationally intensive and time-consuming,
depending on the number of component models and requirement models. In
previous work presented in Goorden et al. (2021), it is shown that component
models and requirement models satisfying certain properties can be omitted
during synthesis or solved in a separate synthesis procedure, or that synthesis
can be skipped entirely. Goorden et al. (2021) uses dependency graphs to analyze
the relations between the component models based on the requirement models.
In these dependency graphs, vertices represent component models and edges
represent requirement models. The vertices that do not exhibit an infinite path
in this graph, do not give rise to blocking behavior, and can therefore be omitted
during the main synthesis procedure, and solved in a separate synthesis procedure.

The contribution of this chapter is showing how the concept of symmetry can
be used to reduce the component models and the requirement models for the
purpose of supervisor synthesis. It is an extension on the work shown in Goorden

This chapter is based on: Moormann, L., van de Mortel-Fronczak, J.M., Fokkink, W.J.,
and Rooda, J.E. Exploiting symmetry in dependency graphs for model reduction in supervisor
synthesis. In 2020 IEEE 16th International Conference on Automation Science and Engineering
(CASE), pages 659–666. IEEE, 2020.
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et al. (2021). In this chapter, symmetry is formally defined for component
models and requirement models, and this definition is used in the proposed model
reduction method. The symmetry in the dependency graph can be observed at
two levels, namely symmetry of component models within a single vertex, and
symmetry between vertices in the graph. In the first case, certain component
models and requirement models in that vertex can be reduced before synthesis. In
the second case, the component models and requirement models of entire vertices
in the dependency graph can be removed or separated before synthesis.

Symmetry has been used in previous works for the purpose of model reduction.
A symmetry-based method to reduce the verification effort in model checking is
explained in Norris et al. (1996). A language-based symmetry is used in Eyzell
and Cury (2001) to obtain abstracted automata that represent the same behavior
as the initial automata, after which synthesis is performed for the abstracted
automata. In Rohloff and Lafortune (2004), symmetry in finite state automata is
determined for the purpose of reducing the cost in computation time for testing
if symmetric systems satisfy propositions in µ-calculus. In Miller et al. (2006),
symmetry in Kripke structures is used to reduce the state space for temporal
model checking. Finally, the symmetry in state tree structures for discrete-event
systems is used in Jiao et al. (2017) to obtain an abstracted supervisor by means
of relabeling states and events.

Our concept of symmetry in discrete-event systems for the purpose of model
reduction differs from these previous works in various ways. First, symmetry is
defined for (extended) finite state automata as well as for requirement models.
Second, no abstraction is needed when applying the model reduction steps. Third,
no global symmetry is needed where one half of the system is symmetrical with
the other half of the system, as symmetry can exist on different levels in the
model.

This chapter is structured as follows. In Section 5.1, symmetry in discrete-event
systems is formally defined and the concept of dependency graphs is introduced.
Section 5.2 describes the proposed model reduction steps, and in Section 5.3
the model restoration process is described. In Section 5.4, the proposed model
reduction method is showcased using a set of case studies. Finally, concluding
remarks are made in Section 5.5.

5.1 Symmetry in discrete-event systems

In this section, symmetry in discrete-event systems is described. First, symmetry
is formally defined for FAs, EFAs, requirements, and control problems. This
definition of symmetry is called isomorphism. Second, dependency graphs are
introduced as a means to visualize control problems and determine symmetry in
such a control problem.
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5.1.1 Isomorphism
There are multiple concepts of equivalence of finite-state automata. One of these
is the concept of isomorphism, described in Glushkov (1961). Here, isomorphism
is formally defined for FAs, and is subsequently extended for EFAs and for sets
of automata. Furthermore, isomorphism is defined for requirement models, and
combinations of automata and requirements, called control problems.

Finite state automata

Two FAs are said to be isomorphic if there exists a bijective mapping from the first
to the second automaton, where the second automaton preserves the transition
function, the output, and the initial state. A bijective mapping between two sets
pairs each element of one set with exactly one element of the other set, and pairs
each element of the other set with exactly one element of the first set.

In Glushkov (1961), isomorphism is formally defined for Mealy machines. A
machine is an automaton of an (abstract) process. The main difference between
Mealy machines, explained in Mealy (1955), and FAs, as defined in Section 2.2,
is how the output is determined. In a Mealy machine, the output is determined
based on the input, i.e. the executed event, and the current state using a certain
output function. In an FA, the only notion of an output is whether a state is a
marked state. In this chapter, the notion of isomorphism for Mealy machines is
transposed to isomorphism for FAs. This involves the omission of the mapping
between the output alphabets of the two Mealy automata. Furthermore, an
additional condition is added for isomorphism of FAs, as is given in Equation
(5.5), that defines that marked states of the first automaton must be mapped to
marked states of the second automaton. The definition of isomorphism for two
FAs is described below.

An isomorphism h between FAs P1 = (Q1 , E1 , f1 , q0,1 , Qm,1) and P2 =
(Q2 , E2 , f2 , q0,2 , Qm,2), with controllable event sets Ec,1 and Ec,2, consists of
bijective mappings

h1 : E1 → E2, h2 : Q1 → Q2 (5.1)

such that, for every q ∈ Q1, e ∈ E1:

h2(f1(q, e)) = f2(h2(q), h1(e)) (5.2)
h2(q0,1) = q0,2 (5.3)
e ∈ Ec,1 ⇔ h1(e) ∈ Ec,2 (5.4)

q ∈ Qm,1 ⇔ h2(q) ∈ Qm,2 (5.5)

First, in Equation (5.2), the preservation of the transition function is defined.
Here, it is checked if for each transition in P1 there exists a transition in P2 while
applying mappings h1 and h2 to the events and states, respectively. Second, the
preservation of the initial state is defined in Equation (5.3). Third, Equation (5.4)
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provides a check that h1 maps controllable events of P1 to controllable events of
P2. Finally, in Equation (5.5), it is checked whether h2 maps marked states of P1
to marked states of P2.

In the case that P1 and P2 share events, meaning E1 ∩ E2 ≠ ∅, an additional
condition must be adhered to. This condition is shown in Equation (5.6) that
must be met for every e ∈ E1 ∩ E2.

h1(e) = e (5.6)

This additional condition defines that shared events must be mapped onto them-
selves.

When two models are isomorphic, say two component models P1 and P2, then
this is denoted by P1 ≃ P2.

Extended finite state automata

EFAs are introduced in Subsection 2.2.2 as FAs where variables are included.
Isomorphism between EFAs therefore also includes preservation of these variables.
The definition of isomorphism for EFAs is given here as an extension of the
isomorphism definition of FAs given in the previous section. All conditions
given in the previous section are maintained, and the additional conditions for
isomorphism for EFAs are given here.

An isomorphism h between EFAs P1 = (Q1, V1, E1, →1, q0,1, v0,1, Qm,1) and
P2 = (Q2, V2, E2, →2, q0,2, v0,2, Qm,2), consists of bijective mappings h1, h2, and

h3 : V1 → V2 (5.7)

such that, for every v ∈ V1:

h3(v0,1) = v0,2 (5.8)

Furthermore, any guard or update in the EFA must be preserved as well.
First guards are considered. A guard consists of a condition c that is applied to
a transition t labeled by an event e. For two EFAs to be isomorphic, for every
condition c1 ∈ C1 applied to transition t1 ∈→1 with start location qs,1 and end
location qe,1 labeled by event e1 ∈ E1 the following statements must hold:

1. There must be a transition t2 in →2 labeled by event h1(e1) with start
location h2(qs,1) and end location h2(qe,1).

2. Transition t2 must have a condition c2 ∈ C2, and condition c1 must be
isomorphic to condition c2. There are four possible cases:

(a) In the case that c1 is of the form when q1, with q1 a different location
in the control problem, this means that c2 must also be of the form
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when q2, with q2 a different location in the control problem, where
either q1 and q2 are the same location:

q1 = q2, (5.9)

or location q1 is isomorphic to location q2:

q1 = h2(q2). (5.10)

(b) In the case that c1 is of the form when v1 = x1, with x1 a value of
the same type as v1 (e.g. when v1 = 5), this means that c2 must also
be of the form when v2 = x2 where

v1 = v2, or (5.11)
v1 = h3(v2) (5.12)

and

x1 = x2. (5.13)

(c) In the case that c1 is of the form when v1 = y1, with y1 a different
variable in the control problem, this means that c2 must also be of the
form when v2 = y2 where

y1 = y2, or (5.14)
y1 = h3(y2). (5.15)

(d) In the case that c1 is a combination of multiple conditions (e.g.
when q1 and v1 = 5), for each of these conditions the corresponding
requisites must hold. Furthermore, all logical operators (e.g. and, or,
not) between the conditions must be the same.

Second, preservation of updates is considered. An update u is applied to a
transition t and consists of a variable v and a value x to which the variable is
updated. The value x can either be another variable in the control problem, or a
value of the same type as v. For two EFAs to be isomorphic, for every update
u1 ∈ U1 applied to transition t1 ∈→1 with start location qs,1 and end location
qe,1 labeled by event e1 ∈ E1 the following requisites must hold:

1. There must be a transition t2 in →2 labeled by event h1(e1) with start
location h2(qs,1) and end location h2(qe,1).

2. Transition t2 must have an update u2.
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3. The variables v1 and v2 that are updated in u1 and u2, respectively, must
be isomorphic, meaning that

v1 = v2, or (5.16)
v1 = h3(v2). (5.17)

4. The value x1 in update u1 must be isomorphic to the value x2 in update
u2, meaning that

x1 = x2, or (5.18)
x1 = h3(x2). (5.19)

Sets of automata

In many practical cases, specifically when component-based or parameter-based
modeling is used, sets of models are created that each represent a specific com-
ponent in the system. In these cases, symmetry can exist between individual
components, but also between sets of components. To identify such symmetry
between sets of components, isomorphism is defined for sets of automata.

The definition of isomorphism between automata P1 and P2 can be extended
to isomorphism between sets of automata as follows.

1. Let P1 = {P1,1 , P1,2 , .. , P1,n} and P2 = {P2,1 , P2,2 , .. , P2,n} be two sets
of (extended) finite automata.

2. Let ΣP1 =
n⋃

i=1
E1,i and ΣP2 =

n⋃
i=1

E2,i be the event sets of P1 and P2.

3. P1 and P2 are isomorphic if

(a) There exists a one-to-one correspondence between P1 and P2, such that
for each automaton in P1 there exists an isomorphism h = (h1, h2, h3),
as defined in Equations (5.1) and (5.7), with an automaton in P2. Let
H denote the set of these isomorphisms.

(b) For every (h1, h2, h3) ∈ H, e ∈ ΣP1 ∩ ΣP2 : h1(e) = e.

Requirements

Isomorphism can also be defined for requirement models. In the case of automaton
requirements, the same formulations can be used as above.

For state-based requirements, a similar reasoning can be applied. Isomorphism
between requirements R1 : e1 needs q1 and R2 : e2 needs q2 can be determined
using the following steps:
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1. Determine P1, being the automaton containing location q1, and P2, being
the automaton containing location q2.

2. Determine P1, being the set of automata containing a transition labeled by
event e1, and P2, being the set of automata containing a transition labeled
by event e2.

3. Determine if P1 and P2 are isomorphic, with H being the set of isomor-
phisms between P1 and P2.

4. If P1 ∈ P1 ∪ P2 or P2 ∈ P1 ∪ P2, the additional requirement is that in the
one-to-one correspondence between P1 and P2, P1 must be mapped to P2.

5. Requirements R1 and R2 are isomorphic, if for every (h1, h2, h3) ∈ H it
holds that h1(e1) = e2 and h2(q1) = q2.

The statements above are based on requirements where q1 and q2 consist of one
location. They can, however, easily be extended for requirements that refer to
multiple locations, such as e needs q1 and q2. The additional condition is that
the logical operators (e.g., and, or, not) are the same for both requirements.

Isomorphism of requirements of the form q1 disables e1 can be defined
following the same lines.

Control problems

Let us define a control problem as a two-tuple, S = (P, R), where P =
{P1, P2, .., Pm} is a set of automata, and R = {R1, R2, .., Rn} is a set of re-
quirements. Furthermore, let us define the event set, also called the alphabet, of
control problem S as

ΣS =
m⋃

i=1
Ei (5.20)

and the location set of control problem S as

ΦS =
m⋃

i=1
Qi. (5.21)

Two control problems S1 and S2 are isomorphic if

1. the set of automata P1 is isomorphic to the set of automata P2 with
isomorphism set H, and

2. there exists a one-to-one correspondence between R1 and R2, whereby
every requirement in R1 corresponds to an isomorphic requirement in R2

using H.
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S3

P1
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R7
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Figure 5.1: Schematic overview of two isomorphic control problems S1 and S2 and a
third control problem S3.

Figure 5.1 shows a schematic overview of the general case, where two isomor-
phic control problems S1 and S2 are identified that are connected by requirement
set R4. A third control problem S3 is connected to S1 and S2 via requirement sets
R5, R6, and R7. The arrows indicate to which plant sets a certain requirement
set refers. Five possible isomorphisms between automata and requirements in
these control problems are identified:

1. The automata in P1 are isomorphic to the automata in P2.

2. The requirements in R1 are isomorphic to the requirements in R2.

3. If R4 contains the requirements

e1 needs q2, e2 needs q1 (5.22)

with e1 ∈ ΣS1 , e2 ∈ ΣS2 , q1 ∈ ΦS1 , q2 ∈ ΦS2 , the automata containing e1
and e2 are isomorphic, with h1(e1) = e2, and the automata containing
q1 and q2 are isomorphic, with h2(q1) = q2, then these requirements are
isomorphic.

4. If R5 and R6 contain the requirements

e1 needs q3, e2 needs q3 (5.23)
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respectively, with e1 ∈ ΣS1 , e2 ∈ ΣS2 , q3 ∈ ΦS3 , and the automata contain-
ing e1 and e2 are isomorphic, with h1(e1) = e2, then these requirements are
isomorphic.

5. If R7 contains the requirements

e1 needs q2 and q3, e2 needs q1 and q3 (5.24)

with e1 ∈ ΣS1 , e2 ∈ ΣS2 , q1 ∈ ΦS1 , q2 ∈ ΦS2 , q3 ∈ ΦS3 , and the automata
containing e1 and e2 are isomorphic, and the automata containing q1 and
q2 are isomorphic, then these requirements are isomorphic.

The statements above are based on requirements where q1, q2 and q3 consist
of one location. They can, however, easily be extended for requirements that refer
to multiple locations. The additional condition is that the logical operators (e.g.,
and, or, not) are the same for both requirements. Furthermore, isomorphism of
requirements of the form q1 disables e1 can be defined following the same lines.

Isomorphic systems are equivalent in behavior, since their uncontrolled behav-
ior is the same (isomorphism between the automata) and their desired controlled
behavior is the same (isomorphism between the requirements). If, according
to the systems engineer, these systems are required to have the same behavior,
model reduction steps can be applied. Isomorphic systems that, according to the
systems engineer, should have different behavior may indicate modeling errors in
the plant or requirements.

5.1.2 Dependency graphs
Determining if a system contains isomorphic subsystems can both be an intuitive
and a difficult task, depending on the state size and complexity of the component
models and requirement models in these subsystems. To visualize the structure of
a system, based on the automata and the requirements in that system, dependency
graphs are used. These graphs allow a design engineer to more easily analyze
the model structure, and identify symmetry in (parts of) the system. Below,
a short introduction is given to directed graphs, based on Diestel (2017), since
dependency graphs are a subset of directed graphs.

A directed graph is a two-tuple G = (V, E) with two maps init : E → V
and ter : E → V . V is the set of vertices (or nodes) and E is the set of edges
between these vertices. init(e) assigns to every edge e an initial vertex, while
ter(e) assigns to every edge e a terminal vertex. An edge e is said to be directed
from vertex init(e) to vertex ter(e). If init(e) = ter(e), the edge e is called a
loop. A directed graph is called cyclic if it contains cycles, otherwise it is called
acyclic. Note that loops do not count as cycles in directed graphs.

Dependency graphs are directed graphs where the vertices in the graph repre-
sent component models and edges between the vertices represent the requirement
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models. The introduction to dependency graphs given here is based on Goorden
et al. (2021). A dependency graph is created from the MRPSR of the modeled
system. Each vertex in the dependency graph represents a component model
or a set of synchronous component models and the set of requirement models
that only refer to component models in that vertex. Synchronous component
models are component models that share at least one event. Each vertex can
therefore be defined as a two-tuple V = (P, R), where P is the set of synchronous
component models and R the set of requirements that only refer to events and
states in P. There is an edge from a vertex V1 to a vertex V2 if a requirement
expresses a condition on a controllable event that occurs in plant V1, while the
requirement requires plant V2 to be in a certain state. An example is shown
in Figure 5.2. It shows a control problem containing three component models
(P1, P2, and P3) and two requirement models (R1 and R2). Component models
P1 and P2 are synchronous as they share event a. The dependency graph for
this control problem is shown on the right-hand side of Figure 5.2. As P1 and
P2 are synchronous, they are part of the same vertex, while P3 is placed in a
separate vertex. Requirement R1 expresses a condition on an event in P1, and
only refers to a state in P2. Requirement R1 is therefore a represented by a
loop at the vertex of automata P1 and P2. Requirement R2, however, expresses
a condition on an event in P2 and refers to a state in P3. This requirement is
therefore represented as an edge between the two vertices that is labeled by R2.
Note that if two vertices are connected by multiple requirement models, only one
edge is created that is labeled by multiple requirement models.

To simplify the notation, a vertex that only contains the component model
P1 is referred to as P1, and an edge is called R1 when that edge only contains
requirement model R1.

P1

q1 q2

a

b

P2

q3 q4

a

c

P3

q5 q6

d

e

P1,P2

P3

R2

R1

R1 : b needs P2.q3

R2 : c needs P3.q5

Figure 5.2: Example of a set of component models (left), a set of requirement models
(middle), and the corresponding dependency graph (right).

Dependency graphs are visualized in a layered form, where each layers consists
of a set of vertices. Furthermore, the layers are automatically chosen in such a
way that the directed edges between the vertices are in the downward direction
as often as possible. In the case of a cycle in the dependency graph, the vertices
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that are part of this cycle are placed in the same layer, if possible. The general
idea behind this layered structure is that each layer can be considered separately
when determining nonblockingness, i.e. bringing all components to a marked
state. The components in the lowest layer do not depend on any other layer, so
they can be brought to a marked state by only considering this layer. Next, the
layer above is considered. For this layer it is determined if all component models
can be brought to a marked state without forcing the components in the lower
layer out of their marked state. Subsequently, all other layers are considered
separately in a similar way. In the case of a cyclic dependency between layers,
this approach does not work and traditional synthesis techniques are needed to
determine nonblockingness.

5.2 Model reduction
The method described in Goorden et al. (2021) uses dependency graphs to
determine if synthesis is required to obtain a supervisory controller for a certain
control problem. To this end, concepts of strongly connected components and
extended strongly connected components are introduced. A strongly connected
component is a set of vertices in the graph that are part of a cycle. Extended
strongly connected components consist of the same vertices as the strongly
connected components, as well as all vertices from which there exists a path
to the strongly connected components. An example of a dependency graph is
shown in Figure 5.3. In this example, vertices P2 and P3 are part of a cycle,
and therefore form a strongly connected component. This strongly connected
component is indicated in red in Figure 5.3. As there exists a path from vertex P1
to the strongly connect component, P1 is part of the extended strongly connected
component. In the figure, the extended strongly connected component is indicated
by the combination of the red and orange vertices. Vertices P4 and P5 are not
part of the extended strongly connected component, as there exists no path from
these vertices to the strongly connected component.

It is shown that synthesis is only needed for the entire system when the
dependency graph contains extended strongly connected components. When this
is not the case, the synthesis procedure can be skipped as the system is inherently
controllable, nonblocking, and maximally permissive. When the dependency
graph does contain extended strongly connected components, synthesis is needed
to determine these properties and whether additional restrictions on the plant
are required. It that case, the dependency graph can be used to determine
whether the model is eligible for model reduction. In this process, part of the
model is removed before the synthesis procedure, while maintaining all synthesis
guarantees. Reducing the model reduces the computing effort of the synthesis
procedure. Moreover, model reduction can make synthesis procedures solvable
that were initially unsolvable. In the following sections, several model reduction
steps are discussed and examples are provided.
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Figure 5.3: Example of a dependency graph with strongly connected component (red),
extended strongly connected component (red+orange) and independent vertices (blue).

5.2.1 Independent vertices
The first model reduction step is based on theory described in Goorden et al.
(2021), where it is shown that vertices in the dependency graph that have no path
to a strongly connected component can be separated from the main synthesis
problem and solved as a separate synthesis problem. The dependency graph
shown in Figure 5.3 contains such vertices, as indicated in blue. These vertices
are called independent vertices, as they do not depend on the extended strongly
connected component. Following Goorden et al. (2021), they can be separated
from the main synthesis problem.

In practice, removing independent vertices is a procedure of splitting off
vertices that have no outgoing edges. This is an iterative procedure, as splitting
of vertices might remove the outgoing edges of other vertices, thus making those
vertices eligible for removal.

5.2.2 Marked requirements
The second model reduction step is based on requirements that refer to marked
states in automata. It specifies that when a requirement refers solely to a marked
state or set of marked states, it can be removed before synthesis, and added back
after synthesis. Two extra conditions must, however, be met to perform this step.
First, the requirement in question may not be part of a cycle in the dependency
graph. Second, each marked state that is referred to in the requirement must be
the only marked state in that automaton, since it is not guaranteed that a marked
state is always reached when there are multiple marked states in an automaton.
The reasoning behind the reduction step is that when synthesis is performed
for a certain control problem, the nonblocking property guarantees that there
always exists a path to reach the marked state. A requirement that solely refers
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to this marked state will therefore not add any extra restrictions, and can thus
be omitted during synthesis. In the sequel, such a requirement is called a marked
requirement.

Take the example of a control problem shown in Figure 5.4. Requirement
R1 in this example refers to state q3 of automaton P2, which is the only marked
state in P2. Performing synthesis for vertex P2 (and any other vertices connected
to this vertex) results in a controller that is nonblocking, and that is thus always
able to reach state P2.q3. Since requirement R1 only refers to the marked state
P2.q3, and since this is the only marked state in P2, requirement R1 does not
add any extra restrictions compared to synthesis for vertex P1. Requirement R1
can therefore be removed from the control problem, which separates vertices P1
and P2. This means that a separate synthesis procedure can be applied to each
vertex, which is computationally less intensive than the combined problem.

P1

q1 q2

a

b

P2

q3 q4

c

d

P1

P2

R1R1 : b needs P2.q3

Figure 5.4: Example of a control problem that contains a marked requirement.

There exist two types of marked requirements, as shown in Equations (5.25)
and (5.26). The first type of marked requirements are requirements that refer
to the marked state of an automaton with an or operator between this marked
state and the rest of the condition. A requirement of the form

e needs P1.q1 or ... (5.25)

is a marked requirement when q1 is the only marked state of automaton P1, i.e.,
Qm,1 = {q1}.

The non-blocking property of synthesis guarantees that there always exists a
path to P1.q1 when q1 is the only marked state of P1. Therefore, there always
exists a path to a state where this requirement evaluates to true. It can thus be
removed before performing synthesis, as it will never result in extra restrictions.

The second type of marked requirements are requirements that refer to a set
of marked states, with and operators between them. A requirement of the form

e needs P1.q1 and P2.q2 and ... and Pk.qk (5.26)

is a marked requirement when for all i ∈ [1, k], qi is the only marked state of
automaton Pi.
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Following a similar reasoning as the first type of marked requirements, there
always exists a path to the set of marked states as long as each of those marked
states is the only marked state in its automaton. This type of requirements can
therefore also be removed before performing synthesis.

Note that combinations of these types of marked requirements are possible as
well.

5.2.3 Internal symmetry
The remaining model reduction steps are based on various forms of symmetry
that are identified in the dependency graph of the system. The general idea
behind these reduction steps is that when two control problems are symmetrical,
i.e. isomorphic, synthesis for these control problems results in the same additional
restrictions. It is therefore sufficient to perform synthesis on a reduced form of
the control problem, as long as it is correctly restored afterwards. This model
restoration process is described in Section 5.3.

The third model reduction step that is proposed is called internal symmetry,
and is based on symmetry between component models and requirement models
within a single vertex. If two synchronous component models are isomorphic and
all requirement models that refer to those component models are isomorphic, only
one of the component models is needed during synthesis. When synthesis adds
no restrictions to the events of this component model, there are no restrictions
for the omitted component model either. Conversely, when synthesis does add
restrictions to events in the reduced model, the removed part of the model gets
the same restrictions in the model restoration process.

An example of internal symmetry is elaborated for the control problem in
Figure 5.5. One can see that all component models are synchronous as they share
event a. Furthermore, P1 ≃ P2, and therefore R1 ≃ R2.

P1

q1 q2

a

b

P2

q3 q4

a

c

P3

q5 q6

d

e
a

R1 : b needs P3.q5

R2 : c needs P3.q5

Figure 5.5: Example of a control problem for internal symmetry.

At the left-hand side in Figure 5.6, the vertex is given that corresponds to
the control problem of Figure 5.5, as well as the internal relations between the
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component models based on the requirement models. The black dots represent
the component models and the solid arrows indicate the requirement models that
connect the component models. Furthermore, component models P1, P2, and P3
are connected with a solid line to indicate their synchronous connection over a
controllable event.

P1 P2

P3

R1 R2

P1

P3

R1
⇒

Figure 5.6: Vertex that contains internal symmetry and the corresponding vertex after
model reduction.

In this example, from the established isomorphisms it can be determined
that the model can be reduced by removing P2 and R2. The resulting vertex is
shown at the right-hand side of Figure 5.6. The external graph representation
of this example is shown in Figure 5.7. Note that when the control problem
consists of multiple vertices, requirement models outside the vertex may refer to
the isomorphic component models inside the vertex. In this case, these external
requirements must be isomorphic as well.

Note the difference in visualization of requirements R1 and R2 between
Figures 5.5 and 5.6. Both graphs represent the same control problem, though the
visualization of Figure 5.5 provides more information on the internal connections.
Depending on whether the structure within a vertex or the structure between
different vertices is considered, either of the visualization types may be preferred.

P1, P2, P3 R1, R2 ⇒ P1, P3 R1

Figure 5.7: Dependency graph that contains V-symmetry and the corresponding graph
after model reduction.

An important distinction is made between synchronization over controllable
events and synchronization over uncontrollable events. Synchronous connections
between components over uncontrollable events are indicated by a dashed line, like
in the graphs shown in Figure 5.8. Since a synchronous relation between automata
over an uncontrollable event can result in additional restrictions on controllable
events in those automata, it is not possible to apply internal symmetry reduction
in these cases.
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P1 P2

P3

P1 P2

P3

R1 R1

Figure 5.8: Cases with synchronization of uncontrollable events where internal symmetry
reduction cannot be applied.

5.2.4 External symmetry
Similar to the internal symmetry within a vertex, symmetry can also exist between
vertices and edges, called external symmetry. Two or more vertices are symmetric
if their sets of component models are isomorphic as well as their requirement
models. First, all isomorphisms in the control problem are determined. Second,
the dependency graph is used to determine symmetry in the system that can be
exploited for model reduction. Three types of external symmetry are described
in the following sections. For the sake of simplifying the explanations, all vertices
in the examples consist of one automaton, and all edges contain one requirement.
The steps are also applicable for sets of automata and sets of requirements.

V-symmetry

The first step of external symmetry is V-symmetry. Here, two isomorphic vertices
are both connected to a third vertex, and the requirements of those connections
are isomorphic as well. This situation is visualized on the left-hand side of Figure
5.9, where P1 ≃ P2 and R1 ≃ R2. In this situation, vertex P2 and edge R2 can
be removed before synthesis as they are equivalent in behavior to the vertex P1
and edge R1. The right side of Figure 5.9 shows the reduced dependency graph
for this scenario. When synthesis does not add extra restrictions for component
model P1, there would be no restrictions for P2 either. Conversely, any additional
restrictions added to component model P1 during synthesis also need to be applied
to component model P2, which is done in the model restoration process.

The dependency graph shown in Figure 5.9 is the simplest form of V-symmetry.
It can also be applied when vertices P1 and P2 are replaced by multiple vertices
and edges, as long as they are disjoint and isomorphic.

U-symmetry

The second type of external symmetry in dependency graphs is U-symmetry. It
is similar to V-symmetry, though here it involves a cyclic subgraph. The left side
of Figure 5.10 shows the simplest form of U-symmetry.
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P1 P2

P3

R1 R2 ⇒
P1

P3

R1

Figure 5.9: Dependency graph that contains V-symmetry and the corresponding graph
after model reduction.

P1 P2

P3 P4

R1 R2
R3

R4

⇒
P1

P3 P4

R1
R3

R4

Figure 5.10: Dependency graph that contains U-symmetry and the corresponding graph
after model reduction.

In this case, two vertices P3 and P4 are connected to each other by requirement
R3 and R4. Furthermore, there exist two vertices, P1 and P2, that are connected
to P3 and P4, respectively. If

P1 ≃ P2, P3 ≃ P4, R1 ≃ R2, R3 ≃ R4, (5.27)

then component model P2 and requirement model R2 can be removed before
synthesis. The reduced version of the dependency graph in this scenario is shown
at the right-hand side of Figure 5.10. Again, in this explanation the simplest
form of U-symmetry is considered. It can be extended for the case where vertices
P1 and P2 are replaced by sets of vertices and edges, as long as those sets are
disjoint and isomorphic.

T-symmetry

The third model reduction step based on external symmetry in dependency graphs
is T-symmetry, which stands for triangular symmetry. This involves a subgraph
with a cycle between two vertices and a third vertex that is connected to both
other vertices, as is visualized on the left-hand side of Figure 5.11. As can be
seen, vertex P1 is connected to both vertices P2 and P3 by requirement R1. This
can be the case if R1 has, for example, the form P1.a needs P2.q1 or P3.q2.

Under certain conditions for R1, P2, and P3, the model can be reduced
by removing part of R1 and therefore also removing one of the edges in the
dependency graph. Take the dependency graph example shown on the left-hand
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side in Figure 5.11. The first condition is that P2 ≃ P3. Secondly, the part of
R1 that refers to P2 is isomorphic to the part of R1 that refers to P3, and there
is an or operator between them. Under these conditions, it is sufficient to only
use one part in the requirement during synthesis. Requirement R1 is then partly
removed, resulting in R′

1. The right-hand side of Figure 5.11 shows the reduced
form of the dependency graph.

P1

P2 P3

R1 R1
R2

R3

⇒
P1

P2 P3

R′
1

R2

R3

Figure 5.11: Dependency graph that contains T-symmetry and the corresponding graph
after model reduction.

The reasoning is that if the part of R1 that refers to P2 can become true at
some point, then the part referring to P3 can become true with equal strictness,
i.e. they can become true under the same conditions (as long as isomorphisms
are applied). Using only one of the parts is therefore exactly as strict as using
both, as long as there is an or between them. Similarly, if the part that refers to
P2 does never become true, then neither will the isomorphic other part, so using
only one of the two will result in the same (empty) supervisor.

Note that T-symmetry can also be used when the requirements are marked
requirements with and operators, though these requirements have already been
removed in the reduction step that concerns marked requirements as described in
Subsection 5.2.2.

5.2.5 Full symmetry
In certain cases, a dependency graph consists of several disconnected subgraphs.
This can occur when a system consists of disconnected subsystems, or when part
of the dependency graph is removed in the previous reduction steps and thus
splits the graph. The final model reduction step, called full symmetry, can be
applied when disconnected subgraphs are fully symmetrical. This is the case
when the control problem of one subgraph is isomorphic to the control problem
of the second subgraph.

Take the example shown in Figure 5.12. On the left-hand side, a fully
connected dependency graph is shown with 2 cyclic subgraph. It contains a
vertex P3 that can be removed using the independent vertices model reduction
step. The resulting dependency graph after applying this reduction step is shown
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in the middle of Figure 5.12. Here, two disconnected subgraphs are acquired
that are fully symmetrical. Using the full symmetry reduction step, one of these
subgraphs can be omitted during synthesis, as shown in the dependency graph
on the right-hand side of Figure 5.12.

P1 P2

P3

P4 P5

R1

R2

R3 R4

R5

R6 ⇒
P1 P2 P4 P5

R1

R2

R5

R6 ⇒
P1 P2

R1

R2

Figure 5.12: Dependency graph (left) that contains full symmetry after removing the
independent vertex (middle) and the corresponding graph after model reduction (right).

The reasoning is that synthesis for one of the subgraphs results in the same
additional restrictions as in the other subgraph. Performing synthesis for one of
subgraphs, and correctly restoring the model afterwards, thus yields a correct
supervisor. The model restoration process is described in the next section.

5.3 Model restoration
After each model reduction step has been applied, supervisor synthesis can be
used to generate a supervisor. As the number of automata and requirements in
the model is lower than before the reduction steps, this synthesis procedure is
faster and requires less computational power. The synthesis result must, however,
be restored to the original model in order to use it for model simulation and
implementation code generation. This model restoration procedure depends on
whether any additional restrictions are added to the plant during the synthesis
procedure. Both cases are elaborated here.

5.3.1 No additional restrictions
When no additional restrictions are added to the controllable events in the plant
during the synthesis procedure, the plant combined with the requirements is
already controllable, nonblocking, and maximally permissive. Since the model
reduction steps proposed in the previous section are based on the principle that
the reduced model is at least equally strict as the original model, i.e. synthesis for
the reduced model never results in fewer restrictions, this means that synthesis
for the original model would also not add any additional restrictions. Therefore,
the model restoration procedure in this case is simply returning to the original
plant model and requirements model.
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An example case is described where the model reduction steps are applied,
synthesis is performed during which no additional restrictions are added, and the
model is restored. This example concerns a system consisting of two machines
M1 and M2, two lights L1 and L2, and two sensors S1 and S2, as shown in
Figure 5.13. The machines and lamps are standard actuator automata, shown
in Figure 2.2, and the sensors are standard sensors, shown in Figure 2.3. Figure
5.13 indicates the relations between the components, represented by the dashed
arrows that are labeled by the requirements. The requirements define that each
machine can only be on when the corresponding sensor is on, but the machines
may not be turned on at the same time. Furthermore, each lamp is turned on
when the corresponding machine is on.

L1 L2

M1 M2

S1 S2

M1.c_on needs S1.On
M1.c_off needs S1.Off

M2.c_on needs S2.On
M2.c_off needs S2.Off

L1.c_on needs M1.On
L1.c_off needs M1.Off

L2.c_on needs M2.On
L2.c_off needs M2.OffM1.c_on needs M2.Off

M2.c_on needs M1.Off

Figure 5.13: Overview of a system consisting of two machines M1 and M2, two lights
L1 and L2, and two sensors S1 and S2.

The dependency graph of this system is shown on the left-hand side of Figure
5.14. Using this dependency graph, the applicability of each model reduction
step is considered. First, the independent vertices are removed, which are the
vertices of sensors S1 and S2. The resulting dependency graph can be seen in the
middle of Figure 5.14. Second, the requirements in the system are analyzed to
determine whether they are marked requirements. In this case, the requirements

L1.c_off needs M1.Off and (5.28)
L2.c_off needs M2.Off (5.29)

are marked requirements, and can thus be removed from the model. This does,
however, not affect the dependency graph as there still remain dependencies
between the lights and the machines. Third, internal symmetry is considered for
the remaining model. However, since the model contains no synchronous models,
internal symmetry is not applicable. Finally, external symmetry is considered. As
can be determined by looking at the dependency graph (in the middle of Figure
5.14), there is U-symmetry in the model. Applying the U-symmetry reduction
step removes the L2 vertex and the corresponding edge with M2 from the model.
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The resulting dependency graph is shown on the right-hand side of Figure 5.14.
No further reduction steps are applicable for this graph.

L1 L2

M1 M2

S1 S2

⇒

L1 L2

M1 M2 ⇒

L1

M1 M2

Figure 5.14: Dependency graph of the system shown in Figure 5.13 (left), after removal
of independent vertices (middle), and after applying U-symmetry reduction (right).

After all model reduction steps are applied, synthesis is performed on the
remaining plant model and requirements model. In this case, synthesis is per-
formed for machines M1 and M2 and light L1. The resulting supervisor is shown
in Figure 5.15, which adds no additional restrictions to any of the controllable
events in the plant. This means that the model restoration process simply consists
of taking the original plant model and requirements model.

L1.c_off when True
L1.c_on when True
M1.c_off when True
M1.c_on when True
M2.c_off when True
M2.c_on when True

Figure 5.15: Synthesized supervisor of the reduced model.

5.3.2 Additional restrictions
In the case that additional restrictions are added during the synthesis procedure
to one or more controllable events, this means that the plant model combined with
the requirements is not inherently nonblocking and controllable. The additional
restrictions on the reduced model must therefore also be applied to the original
model. Moreover, when additional restrictions are applied to a part of the model
that was originally symmetric to a removed part of the model, these restrictions
must be applied to the removed part in the original model as well.
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The following steps are taken to restore the model after synthesis is performed,
and additional restrictions have been added:

1. Take the original plant model and requirements model.

2. Add the supervisor model from the synthesis procedure applied to the
reduced model.

3. For every controllable event that is not part of an isomorphism, i.e. the
event is not part of any h1 ∈ h for any h ∈ H, that has an additional
restriction in the supervisor model, apply the following steps:

(a) Determine whether the additional restriction refers to locations or
variables that are part of an isomorphism.

(b) For each of these parts, extend the restriction by combining the location
or variable with its isomorphic counterpart. For instance, in control
problem P = {P1, P2, P3} with P1 ≃ P2 and h2(P1.A) = P2.B, an
additional restriction

P3.a when P1.A

is extended to
P3.a when (P1.A ∧ P2.B).

4. Extend the supervisor model with the controllable events that were removed
during the reduction steps. For each added event, denoted by e, apply the
following steps:

(a) Use the isomorphism mapping h1 ∈ h ∈ H, which maps the events
between symmetrical components, to determine the symmetric coun-
terpart to e, denoted by eS .

(b) Look up event e in the synthesized supervisor, and take the guard of
this event. Note that this guard can either be True or a restriction
added during synthesis.

(c) Apply the same guard to event eS .

(d) For each location mentioned in this guard, determine if it is part of an
isomorphism, i.e. if the location is part of any h2 ∈ h for any h ∈ H.
Depending on the outcome, apply one of the following steps:

i. If the location is part of an isomorphism, translate this location
to its symmetrical counterpart using h2 of this isomorphism.

ii. If the location is not part of an isomorphism, do nothing. In this
case, the location mentioned in the guard remains the same.
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To illustrate these model restoration steps, an example case is included where
additional restrictions are added during synthesis on the reduced model. The
system that is considered in this example is visualized in Figure 5.16, and consists
of three machines M1, M2, and M3 and three buffers B1, B2, and B3. The
automata that are used to model machines M1, M2 and buffers B1, B2, and B3
are shown in Figure 2.11, as well as the requirement that connects each buffer to
its corresponding machine.

M1

M2

B1

B2

M3 B3

Figure 5.16: Overview of a system consisting of three machines M1, M2, and M3 and
three buffers B1, B2, and B3.

As seen in Figure 5.16, machine M3 is connected to buffers B1 and B2. The
automaton model for M3 is shown in Figure 5.17.

Off On
B1.c_remove

B2.c_remove

u_done

Figure 5.17: Automaton model for machine M3.

The left-hand side of Figure 5.18 shows the dependency graph corresponding
to the system shown in Figure 5.16. This dependency graph consists of a single
vertex, as all automata are synchronous. The dependency graph therefore shows
the contents of this vertex, in which the synchronous relations between the
automata are indicated by dashed lines.

During the model reduction process, internal symmetry is considered as the
vertex in the dependency graph consists of multiple components. It is determined
that M1 ≃ M2, with

h1 = (M1.c_start → M2.c_start, M1.u_done → M2.u_done) and (5.30)
h2 = (M1.Off → M2.Off, M1.On → M2.On) (5.31)

and that B1 ≃ B2, with

h1 = (B1.u_done → B2.u_done, B1.c_remove → B2.c_remove) and (5.32)
h2 = (B1.Empty → B2.Empty, B1.Full → B2.Full). (5.33)
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B3

M3

B1 B2

M1 M2

⇒

B3

M3

B1

M1

Figure 5.18: Contents of the vertex for the control problem of Figure 5.16 (left) and the
corresponding reduced version (right).

Following the internal symmetry reduction step, it is thus determined that
components M2 and B2 can be removed from the system before performing
synthesis. The resulting contents of the vertex of the dependency graph are
shown on the right-hand side of Figure 5.18.

Next, as there are no more applicable model reduction steps, synthesis is
performed on the remaining model consisting of machines M1 and M3 and
buffers B1 and B3. During this synthesis procedure, additional restrictions are
added to events M1.c_start and B1.c_remove since the system by its own is
not controllable and nonblocking. The left-hand side of Figure 5.19 shows the
synthesized supervisor, including these additional restrictions.

M1.c_start when B1.Empty
B1.c_remove when B3.Empty
B3.c_remove when True

⇒
M1.c_start when B1.Empty
M2.c_start when B2.Empty
B1.c_remove when B3.Empty
B2.c_remove when B3.Empty
B3.c_remove when True

Figure 5.19: Supervisor with additional restrictions of the reduced model (left) and the
supervisor of the restored model (right).

Subsequently, the model is restored using the model restoration steps provided
in this section.

1. The original plant model and requirements model are taken.

2. The synthesized supervisor, shown on the left-hand side of Figure 5.19, is
added.

3. There are no controllable events that are not part of an isomorphism that
have an additional restriction in the supervisor model, so this step can be
skipped.
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4. The supervisor model is extended by the controllable events that were
removed during the model reduction steps. In this example, these events
include M2.c_start and B2.c_remove.

(a) Isomorphism mappings h1 of Equations (5.30) and (5.32) are used to
determine the symmetrical counterparts to these events, which are
M1.c_start and B1.c_remove.

(b) Events M1.c_start and B1.c_remove are looked up in the supervisor
model, and the corresponding guards when B1.Empty and when B3.Empty
are obtained.

(c) The same guards are applied to events M2.c_start and B2.c_remove.
(d) Each location mentioned in the added guards is translated (if possi-

ble) using isomorphism mappings h2 of Equations (5.31) and (5.33).
For event M2.c_start, the guard when B1.Empty is translated to
when B2.Empty. For event B2.c_remove, the guard when B3.Empty
remains the same, as there is no isomorphism mapping for location
B3.Empty.

The supervisor of the restored model is shown on the right-hand side of Figure
5.19. It shows the added events M2.c_start and B2.c_remove, with the guards
when B2.Empty and when B3.Empty, respectively.

5.4 Case studies
In this section, several case studies are described in which the proposed model
reduction is applied to synthesize a supervisor. First, an extensive case study
for the Eerste Heinenoord tunnel is given. Second, an overview of the model
reduction results for a set of case studies is shown, specifically for a road tunnel,
a production line, a waterway lock, and a movable bridge.

5.4.1 The Eerste Heinenoord tunnel
In this section, a case study is described in which the proposed method for model
reduction is applied for the model of the Eerste Heinenoord tunnel. The Eerste
Heinenoord tunnel, shown in Figure 1.1, is a tunnel in the Netherlands to bypass
the river the “Oude Maas”. It is a tunnel with two traffic tubes and an escape
route in between them.

The complete tunnel has been modeled using parameter-based modeling,
resulting in a model that consists of 1163 components and 2015 requirements.
Monolithic synthesis proved incapable of solving the synthesis problem since
the state space of the uncontrolled plant is too large, with the result that the
supervisor cannot be calculated with the available memory. For this reason, the
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method of model reduction has been applied. For this purpose, a dependency
graph has been created for the initial model, which is shown in Figure 5.20.
For the sake of simplicity, loops are omitted in this visualization, and multiple
dependencies between two vertices are represented by one edge. As is indicated
in the figure, the tunnel consists of two traffic tubes, an escape route, and a set
of water cellars. One can clearly see the resemblance between the graphs of the
two traffic tubes, and how the escape route and the water cellars are connected
to both tubes. This level of symmetry is mainly a result of parameter-based
modeling, since each traffic tube is instantiated from the same template, only
using different parameters.

Traffic Tube 1 Traffic Tube 2Escape Route

Water Cellars

Figure 5.20: Initial graph of the Eerste Heinenoord tunnel model.

The first reduction step that is applied removes the independent vertices in
the graph, which are the vertices that have no outgoing edges. In this step, the
vertices indicated in orange in Figure 5.20 are removed. These vertices represent
the sensor models in the tunnel. Removing the vertices and their incoming edges
yields the dependency graph shown in Figure 5.21. In this reduced model, the
automata of the sensor models have been removed and the requirement models
are adjusted accordingly. For example, a requirement

Actuator.c_on needs Sensor.On ∧ Button.Pressed (5.34)

becomes
Actuator.c_on needs True ∧ Button.Pressed. (5.35)

After this reduction step, the number of component models is reduced to 751
and the number of requirements to 1836. The reason for the low reduction in
requirement models is the fact that most requirements are not removed completely,
such as the requirement reduction shown in Equations (5.34) and (5.35). In these
cases, the requirements are simplified, but the number of requirements remains
the same.
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The other model reduction steps include the marked requirements, internal
symmetry, V-symmetry, U-symmetry, and T-symmetry. Figure 5.21 shows which
vertices and edges are removed during each of these steps. The dependency
graph of the final Eerste Heinenoord tunnel model is shown in Figure 5.22. It
contains 25 vertices and 33 edges, representing the final 277 automata and 384
requirements.

Figure 5.21: Graph of the Eerste Heinenoord tunnel model after applying the independent
vertices model reduction step. Vertices and edges that are removed in subsequent steps
due to marked requirements (brown), V-symmetry (pink), U-symmetry (green), and
T-symmetry (red), are indicated.

Figure 5.22: Graph of the Eerste Heinenoord tunnel model after all model reduction
steps.

In total, six model reduction steps have been applied to reduce the number
of component models from 1163 to 277 and reduce the number of requirement
models from 2015 to 384. The bar graph in Figure 5.23 gives an overview of the
number of component models, requirement models, vertices, and edges after each
reduction step.

After applying the model reduction steps to the model of the Eerste Heinenoord
tunnel, a supervisor has been synthesized from the remaining component models
and requirement models. To give an indication of the effectiveness of the model
reduction steps, monolithic synthesis has been attempted after each reduction
step. Table 5.1 shows the number of controlled states, i.e. the number of states
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Figure 5.23: The number of component models, requirement models, vertices, and edges
after each reduction step.

in the synthesized supervisor. Furthermore, it shows the required computation
time of the synthesis procedure, as well as the time reduction factor compared to
the synthesis procedure one reduction step earlier.

Note that when determining the order in which the reduction steps are applied,
it is only important that the internal symmetry step is applied before the other
symmetry steps, as this may affect the final outcome. Interchanging of the other
steps is allowed, if so desired.

Table 5.1: The number of states in the controlled state space, the computation time
after each reduction step, and the reduction factor compared to the previous synthesis
procedure in the Eerste Heinenoord tunnel case study.

Controlled states Synthesis time Reduction factor

Initial n/a n/a n/a
Independent vertices 2.15 · 10220 06h30m −
Marked requirements 1.03 · 10197 01h52m 3.5
Internal symmetry 3.99 · 1092 15m04s 7.4
V-symmetry 1.37 · 1064 03m47s 4.0
U-symmetry 2.39 · 1055 02m01s 1.9
T-symmetry 2.39 · 1055 01m51s 1.1

The initial model of the Eerste Heinenoord tunnel turned out to be too large
for monolithic synthesis, due to insufficient computing power. The number of
states in the uncontrolled system is manually calculated to be 10257 states.

After the first model reduction step, where independent vertices are removed,
a supervisor has been synthesized in around 6.5 hours (23000 seconds) with 10220

states. As this is the first successful synthesis procedure, no time reduction factor
can be calculated.
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Table 5.1 shows that the next model reduction step, where marked require-
ments are removed, reduces the controlled state space to 10197 states, and
decreases the required synthesis time by a factor of 3.5.

The other model reduction steps further reduce the synthesis time by a factor
of 7.4, 4.0, 1.9 and 1.1, respectively. Based on these factors, it can be concluded
that in terms of synthesis time, the internal symmetry model reduction step is the
most effective. It should, however, be noted that the order in which the reduction
steps are applied may influence the effectiveness of each step.

After the other model reduction steps have been applied, a supervisor was
synthesized in 111 seconds with 1055 states. Applying the model reduction steps
thus resulted in a decrease in required computation time of a factor 210. Even
though it is most important that the synthesis problem is solvable at all, it is
nonetheless beneficial for the design engineer to be able to synthesize a controller
quickly, e.g., to iteratively synthesize, validate, and correct the controller.

The synthesized supervisor added no additional restrictions to the controllable
events of the plant. The model restoration process therefore consisted of returning
to the initial plant model and requirements model.

5.4.2 Overview
This section provides an overview of a set of case studies to investigate the
applicability of the proposed model reduction steps. The case studies include the
Eerste Heinenoord tunnel, the FESTO production line (Reijnen et al. (2018)), the
Prinses Marijke lock (Reijnen et al. (2019b)), and the Oisterwijksebaan bridge
(Reijnen et al. (2021)). For each of these systems, the model reduction steps have
been applied, and the number of component models and requirements models is
analyzed. Moreover, the synthesis time of the original model is compared with
the synthesis time of the reduced model.

Table 5.2 shows the results of the case studies. For each system, the number
of component models and requirement models in the initial model is shown. The
left number of each entry indicates the number of component models, while the
right number indicates the number of requirement models. Furthermore, the
table shows the remaining number of component models and requirement models
after each applied reduction step. When a reduction step is not applicable for a
system, this entry is left empty, such as the marked requirements step for the
Prinses Marijke lock. Furthermore, Table 5.2 shows the total model reduction
factor for the reduction in the number of component models and requirement
models, and the time reduction factor when comparing the initial synthesis time
with the reduced synthesis time.

Note that a reduction due to marked requirements also reduces the number of
components in the plant model. This is due to the fact that removal of a marked
requirement may remove an edge in the dependency graph, which may result in a
disconnected vertex. A disconnected vertex can be solved in a separate synthesis
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procedure, and is therefore also included as a reduction due to removal of marked
requirements.

Table 5.2: The model reduction results for a set of case studies pertaining the Eerste
Heinenoord tunnel, the FESTO production line, the Prinses Marijke lock, and the
Oisterwijksebaan bridge.
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Initial model
Independent vertices
Marked requirements
Internal symmetry
External symmetry
Full symmetry

1163 2015
751 1863
686 1465
462 524
277 384

105 202
21 22
20 21

18 19

177 300
167 153

95 81

126 190
105 134

90 119

Model reduction factor 4.2 5.2 6 10.6 1.9 3.7 1.4 1.6
Time reduction factor 210 248 75 2.5

From the results shown in Table 5.2 it can be concluded that the proposed
model reduction steps are applicable to all case studies considered, though the
effectiveness varies per system. The reduction step that considers independent
vertices is applicable in all case studies, and is especially effective in sensor-heavy
system such as the FESTO production line. Marked requirements can only
be considered when there are requirements that are not part of a cycle in the
dependency graph. The Prinses Marijke lock and the Oisterwijksebaan bridge do
not have such requirements, which makes the reduction step not applicable. The
symmetry reduction steps are, naturally, only effective when the system contains
symmetrical subsystems. As can be seen in the results, each system is symmetrical
to some degree, which makes the symmetry reduction steps applicable in all case
studies.

It should be noted that the effectiveness of the model reduction steps also
depends on the number of asynchronous components in the system. In systems
where all components are synchronous, dependency graphs give no insight in the
model structure, as all components are part of the same vertex. In such a case,
only the internal symmetry reduction step might be applicable, thus making the
complete reduction process much less effective. However, systems that are created
using the component-based or parameter-based modeling method are inherently
less synchronous, as the behavior of each component is modeled by a separate
automaton.

Regarding the model restoration process, in all cases no additional restrictions
where added during the synthesis procedure. Following the steps described in
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Subsection 5.3.1, restoring the original model in such a case is simply returning to
the initial plant model and requirements model. As this requires negligible time,
this is not taken into account in the results shown in Table 5.2. In the case that
there are additional restrictions added during synthesis, the model restoration
process takes slightly more time. However, this is typically still negligible relative
to the synthesis time.

5.5 Concluding remarks
In this chapter, a new method is proposed to reduce a plant model and a
requirements model for the purpose of supervisor synthesis. Multiple steps are
described to remove models and simplify requirements before performing synthesis,
without losing the guarantees that synthesis gives. The steps are mainly based on
symmetry that can be detected in dependency graphs of the system. Furthermore,
the model restoration process is described which depends on the addition of
guards during the synthesis procedure.

The new method was applied in several case studies. For the design of a
controller for a road tunnel, it removed 82% of the component models and 89%
of the requirement models. Note that these percentages only including complete
removals of component models and requirement models, not simplifications such
as the requirement in Equations (5.34) and (5.35). By reducing the model, the
synthesis problem that was initially impossible to solve due to memory issues
is solved in two minutes. Furthermore, an overview of a set of case studies is
provided that shows the applicability of the model reduction steps to a range
of industrial systems. In each of these case studies, the model reduction steps
showed to be effective, albeit in varying degrees.

In the case studies considered in this chapter, only event-condition require-
ments are used. While the proposed definition of isomorphism between EFAs
may also be applied to requirements that are modeled as an EFA, it would be
interesting how this affects the applicability of all model reduction steps and their
effectiveness when this type of requirements is also included in the model.

Further research includes defining an algorithm to automatically detect when
model reduction steps are applicable, and to automatically reduce the model
accordingly.





Chapter 6

Implementation of
supervisory controllers

Automatically synthesizing a supervisor removes the need for verification, as
the synthesis algorithms have been proven to deliver correct results with respect
to the given input. Validation, however, remains an important step, as the given
input may still be erroneous. In SBE, three validation stages are recognized.
First, model simulation is performed after supervisory controller synthesis, where
the supervisor is combined with the plant, often including a visualization as
promoted in Rohrer (2000). This allows the design engineer to quickly and
intuitively analyze the controlled behavior. Second, controller code is generated
and implemented on the implementation platform, typically a programmable
logic controller (PLC). The implemented controller is then again connected to
the plant model to perform hardware-in-the-loop (HIL) simulations. In HIL
simulations, the actual implemented controller is tested with the actual operating
semantics of the PLC in which the real-time aspect plays a role. Furthermore,
external subsystems, such as an operator interface, can be connected to the PLC
to simulate an operator commanding and monitoring the system. Applications of
HIL simulation have been shown before in Li et al. (2009) for wind turbines, in
Dai et al. (2016) for a mineral grinding process, and in Reijnen et al. (2019b) for
a waterway lock complex. Third, the final testing stage is the integration test,
where the implemented controller is tested with the realized plant.

This chapter focuses on the derivation of an implementable controller, and its
validation using HIL simulation, specifically for large-scale cyber-physical systems.

This chapter is based on: Moormann, L., Hofkamp, A.T., van de Mortel-Fronczak, J.M.,
Fokkink, W.J., and Rooda, J.E. Derivation and hardware-in-the-loop testing for a road
tunnel controller. In Proceedings of the 16th IFAC Workshop on Discrete Event Systems
(WODES), 2022.
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As an example, controllers for road tunnels are used. A road tunnel is a large
infrastructural system, consisting of many actuators and sensors. Its controller is
responsible for maintaining a safe environment for the road users by monitoring
for emergencies and correctly handling detected ones.

As introduced in Subsection 2.5.1, PLCs operate in real-time cycles of pro-
cessing inputs, executing enabled controllable events, and updating the outputs.
Generating an implementable controller bridges the gap between the asynchronous,
discrete-event, world of synthesized supervisors and the synchronous, real-time,
world of PLC controllers. To ensure that the real-time implementation of the
controller expresses the same controlled behavior as the synthesized supervisor,
certain properties need to be met, being finite response and confluence, and
nonblocking under control. Previous work in Malik (2003) extensively describes
these properties, and defines sufficient conditions to determine if they are met.
In this chapter, especially the confluence property plays an important role, which
states that all sequences of events from a state lead to the same end-state.

Besides the properties of an implementable controller, there can be functional
discrepancies between a discrete-event supervisor and the real-time implemen-
tation of the controller. In certain cases, a discrete-event change in an actuator
is not realizable. An example related to road tunnels is the ventilation system.
A ventilation unit cannot be set to its maximum speed immediately, as such a
sudden change requires too much energy, which could result in a power failure,
and the forces generated could result in failing fixtures, and thus breaking of the
ventilation unit. To cope with these functional discrepancies between discrete-
event supervisors and its real-time implementation, a resource controller is needed
that converts the discrete signal, i.e. the instant change in speed, to a correct
continuous-time signal.

Another aspect of an implemented controller is its performance, determined
by the PLC cycle time. For a given synthesized supervisor, multiple correct
implementable controllers are possible that can vary in performance. To obtain
an implementable controller with a high performance, event functions can be
sequenced to optimize the order in which they are executed. Event functions are
functions in the PLC code that determine if an event of a component must be
executed, such as turning on an actuator. Existing sequencing procedures are
described in Steward (1981), Meier et al. (2007), and Eppinger and Browning
(2012).

In this chapter, several extensions to the controller derivation method from
Reijnen et al. (2019a) are described, being a relaxation in the sufficient conditions
for the confluence property, called end-state equality, the design of resource con-
trollers to translate a discrete-event signal to a continuous-time signal, automatic
event function sequencing, and automatic code generation that is adaptable for
any desired target platform. Furthermore, an industrial-size case study is pre-
sented where an implementable controller is derived, PLC code is automatically
generated for ABB PLCs, and a HIL setup is created for the Swalmen tunnel, a
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road tunnel in the Netherlands near Roermond. A road tunnel contains more
components than a lock-bridge combination as shown in Reijnen et al. (2019a),
which makes supervisor synthesis more challenging, and thus makes the design
decisions made during modeling more relevant. For example, using resource
controllers to fulfill the local control functionality of a component alleviates the
synthesis procedure of the supervisory controller. This makes resource controllers
play a larger role in road tunnel controllers.

The remainder of this chapter is organized as follows. First, the Swalmen
tunnel is introduced in Section 6.1 as the system that is used as case study
throughout this chapter. Second, Section 6.2 describes the controller derivation
process in more detail, including the steps of creating resource controllers, verifying
the implementable supervisor properties, PLC code generation, and PLC code
optimization. In Section 6.3, the validation method of HIL testing is described.
Finally, in Section 6.4, conclusions are drawn.

6.1 Case study: The Swalmen tunnel
Throughout this chapter, the Swalmen tunnel is used as a case study to demon-
strate the implementation and testing process of supervisory controllers. The
Swalmen tunnel is a road tunnel near the town Swalmen in the Netherlands. It
consists of two traffic tubes, each with two driving lanes, and is 400 meters long.
Between the traffic tubes is an escape route that is used in case of evacuation. In
Figure 6.1, the northern entrance of the Swalmen tunnel is shown as well as the
exit door of the escape route (on the left side of the traffic tube).

The first purpose of a road tunnel controller is to monitor the situation in
the traffic tubes to detect an emergency. Second, after an emergency is detected,
the controller handles it by closing the traffic tubes and turning on evacuation
systems. Finally, the controller is responsible for correctly carrying out operator
commands. The main components in a road tunnel are listed:

• Emergency detection: smoke detection, speed measurements, emergency
cabinet sensors, closed circuit television (CCTV);

• Emergency handling: ventilation, lighting, fluid draining, fire extinguishing
water supply;

• Tube closure: boom barriers, traffic lights, height detection;

• Evacuation: escape doors, escape route lighting, escape route ventilation,
broadcasting system.

The Swalmen tunnel has been modeled using 510 automata and 344 require-
ments, from which a monolithic supervisor has been synthesized with 1.84 · 10129

states. The controlled behavior has been validated through model simulation.
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Figure 6.1: Entrance of the Swalmen tunnel (adapted from http://www.jr-consult.
nl/projecten/swalmentunnel-a73-32).

This supervisor is the starting point for the controller derivation process described
in Section 6.2. All models for both synthesis and simulation can be found in a
repository1. Since 2020, a publicly available software toolset is in development
called the Eclipse Supervisory Control Engineering Toolset (ESCET™)2. The
modeling and synthesis steps for the Swalmen tunnel have been performed using
this toolset.

6.2 Controller derivation
In this section, several novel aspects of the controller derivation process are
described in detail that showed to be relevant in the Swalmen tunnel case study,
including the design of resource controllers, a relaxation in the sufficient conditions
for the confluence property, PLC code generation, and PLC code optimization.

6.2.1 Resource controllers
In SBE, requirements are specified that define safe and correct behavior of the
system. These requirements are typically logic expressions that define that
a certain component is allowed or prohibited to do something when another
component is in a certain state. A synthesized supervisor is guaranteed to adhere
to these requirements.

Furthermore, there are requirements related to the behavior of a specific
component. These requirements are typically related to physical or environmental

1https://github.com/LMoormann/Swalmentunnel-WODES22
2https://projects.eclipse.org/projects/technology.escet

http://www.jr-consult.nl/projecten/swalmentunnel-a73-32
http://www.jr-consult.nl/projecten/swalmentunnel-a73-32
https://github.com/LMoormann/Swalmentunnel-WODES22
https://projects.eclipse.org/projects/technology.escet
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aspects of the component. It is undesirable to capture these requirements in
the synthesized supervisor, as they relate to a specific component, and would
therefore make the plant model and requirements model unnecessarily complicated.
Instead, additional local controllers are designed that comply with these physical
requirements, which are called resource controllers. These resource controllers
are implemented between the supervisory controller and the plant, as can be seen
in Section 1.1, Figure 1.3.

Using resource controllers brings several advantages for the supervisory con-
troller design process. First, as mentioned, resource controllers contain the
requirements related to a specific component. By splitting up the components
and requirements related to a specific component and the components and re-
quirements related to supervisory control, both the resource controllers and the
supervisory controller become smaller and thus more clear. Second, a benefit
of smaller controllers is that the synthesis procedure to create such a controller
is less computationally intensive. Note the similarity between the layers in the
control system, i.e. the supervisory controller and the resource controllers, and the
layers in a dependency graph introduced in Subsection 5.1.2. When determining
whether part of the control system can be derived as a separate controller, a
similar reasoning can be applied as is done in the independent vertices model
reduction step explained in Subsection 5.2.1. This depends on the dependencies
between the control layers, as when this is a one-way directed dependency a
separate resource controller can be derived. This is the case when the supervisory
controller only sends output signals to the resource controller and no input signal
is retrieved, or vice versa. Conversely, when there exists a cyclic dependency
between the control layers, synthesis techniques must be applied to the combined
system to determine global nonblockingness.

Two examples of resource controllers are given here that are designed for the
Swalmen tunnel. The first is related to the ventilation units in the tunnel. These
units can ventilate in several modes depending on the current air quality, and
in case of emergency they must be set to their maximum mode. There are two
reasons why this discrete-event change cannot be realized. First, such a sudden
change in the mode of all ventilation units requires too much energy, resulting in
a power failure. Second, the forces generated by a ventilation unit that switches
to its maximum mode result in failing fixtures, and thus in breaking down of the
ventilation units. To deal with this, a resource controller is designed that takes
the output signal of the supervisory controller, and converts it to a gradual signal
for the ventilation unit. This is visualized in Figure 6.2.

A second example of a resource controller for a road tunnel is related to the
sound broadcast system. There are several sound broadcast systems in the tunnel
that can play various messages for the road users, mainly used when people
need to be evacuated. In case of an evacuation, the supervisory controller will
output a signal to all broadcast systems to play the evacuation message. However,
to prevent overlapping messages or echoing in the traffic tubes, the broadcast
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Supervisory controller
Current mode=3, desired mode=8

Resource controller

Ventilation units

mode:=8
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2

time

mode

0

8

4

Figure 6.2: Schematic overview of a resource controller.

systems need to play their messages in sequence. A resource controller is therefore
designed to realize this physical requirement.

For the Swalmen tunnel, resource controllers are designed for the ventilation,
lighting, sound broadcast system, and CCTV.

6.2.2 Implementable supervisor properties
As described in Subsection 2.5.2, it is important to determine that a synthe-
sized controller is implementable by verifying finite response, confluence, and
nonblocking under control. For the synthesized controller of the Swalmen tunnel,
these properties are checked using the sufficient conditions defined in Reijnen
et al. (2019a). The checks work pairwise, meaning a check is performed for each
property and for each pair of events in the supervisor, and if all event pairs pass
the checks, the supervisor is implementable.

The finite response check and the nonblocking under control check, as described
in Subsection 2.5.2, have been applied to the Swalmen tunnel model. These checks
indicated that the Swalmen tunnel model has finite response and is nonblocking
under control.

When performing the confluence check for the Swalmen tunnel model, certain
event pairs failed. In-depth investigation, however, showed that these event pairs
are in fact confluent, thus indicating that the sufficient conditions are in this case
too strict. An example of a pattern where confluence is not recognized is shown
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in Figure 6.3. Here, it can be seen that in state 1 multiple controllable events
are enabled, being a and b. The event pair is confluent, as after executing either
event, the same end-state is reached, being state 5. The pattern of Figure 6.3,
among others, is not recognized as confluent using the implemented algorithms
of Reijnen et al. (2019a), so a relaxation is made to the sufficient conditions.

1

2

3

4

5

a

b

b c

c

Figure 6.3: Pattern in the controlled behavior where confluence is not recognized.

End-state equality is proposed as a relaxation of the sufficient condition for con-
fluence. End-state equality is an effectively verifiable property, as opposed to the
confluence property. This end-state equality condition evaluates for every event
pair (e1,e2) if the corresponding event sequences se1 and se2 eventually result
in the same end-state. I.e., the end-states of two event sequences are compared
while not requiring the events in the event sequences to be the same. It is relevant
for components that have multiple event sequences to the same state, such as a
lamp with two possible brightness modes: it does not matter if the lamp is set
from mode 0 → 2 directly, or through modes 0 → 1 → 2, as long as it happens
in the same PLC cycle. In the case of the Swalmen tunnel, these cases occurred
for the ventilation systems and the lighting systems, as these systems have 9
possible modes which can sometimes be reached through multiple event sequences.

Definition 1: End-state equality
An event pair e1, e2 ∈ Ec, with guards g1 and g2 and updates u1 and u2, respec-
tively, is said to be end-state equal if there exist event sequences s1, s2 ∈ E∗

c such
that δ(q, e1s1) = δ(q, e2s2), where at each event in s1, s2 the corresponding guard
of that event must evaluate to True, and at each event in s1, s2 the corresponding
update of that event must be applied.

An algorithm has been implemented that verifies end-state equality for all
event pairs that are not recognized as confluent by any of the existing sufficient
conditions of Reijnen et al. (2019a). Two notes should be made regarding this
implementation. First, end-state equality can only be checked effectively if finite
response has been determined beforehand. In case of an infinite sequence of events,
the end-state equality algorithm may not terminate. Second, the algorithm still
works in the case where there are multiple event pairs in the pattern, as each
event pair is checked individually.

The proposed algorithm to check end-state equality is defined in Algorithm
1. For this algorithm controllable event pair (e1, e2) is supplied. First, a list of
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enabledEvents is created in line 1 that consists of event e1. Then a while loop
is started in line 2 that runs as long as enabledEvents is not empty. In each
iteration of the while loop, the first event in the list of enabledEvents is chosen
in line 3, and the valuation is updated using the update of that event in line
5. Subsequently, a new list of enabledEvents is created by iterating through all
controllable events in line 6, and if its guard is satisfied (line 8) it is added to
the list of enabledEvents. As long as at least one event is enabled, i.e. the list
enabledEvents is not empty, the while loop in line 2 continues. Once the while
loop is terminated, evalE1 denotes the end-state evaluation of event e1.

Subsequently, in lines 13 through 24, the same process is performed for
controllable event e2 to determine its end-state evaluation. Finally, in line 25,
the end-state evaluations of events e1 and e2 are compared to return whether
they are end-state equal.

The algorithm for the proposed end-state equality check is included in the
existing confluence check described in Reijnen et al. (2019a). The adapted form
of the algorithm of Reijnen et al. (2019a) is shown in Algorithm 2. Here, the
end-state equality check is performed in line 8 after the existing confluence checks
have been performed. The end-state equality check is performed last, as this
check is needed the least and is the most computationally intensive.

6.2.3 PLC code generation
To deploy the synthesized supervisor as a controller for a physical system, the
model has to be converted to a PLC program. Conversion is too costly and
too error-prone to do by hand, so an automatic conversion has been developed
instead. In Reijnen et al. (2019a), an implementation of a PLC code generator is
proposed that used the normalization of EFAs as described in Subsection 2.5.3.
A new PLC code generation algorithm has been developed and implemented,
inspired by Reijnen et al. (2019a), that is more easily adaptable for multiple
target platforms. Several requirements for this conversion are defined.

The first requirement is that the program must be semantically equivalent to
the supervisor model. This means that the program is complete, i.e. it implements
everything that is possible in the supervisor model, and that the program is
correct, i.e. anything that is disallowed in the supervisor model is also not possible
in the program. The concept of semantic equivalence is extensively discussed in
Forssell et al. (2020).

A second requirement is that the resulting PLC code is readable to a PLC field
engineer diagnosing a problem in the physical system. To get such readable code
at global level, the structure of the model is reflected in the global structure of
the generated code. Location pointer variables are added to represent the current
active state of the model, and events are heuristically ‘assigned’ to an automaton,
as is also suggested in Reijnen et al. (2019a), thus making it more likely that
closely related events are grouped close to each other. For generating event
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Algorithm 1: Code of the end-state equal() function
Input: Event pair (e1, e2), controllable event set Ec, valuation set V ,

update set U , guard set G
Output: True indicates that event pair (e1, e2) is end-state equivalent
// Find event sequence and end-state for event e1

1 enabledEvents := list(e1)
2 while !enabledEvents.isEmpty do
3 enabledEvent := enabledEvents(0)
4 enabledEvents := list()
5 evalE1 := updateValuation(enabledEvent)
6 for eventNext ∈ Ec do
7 guardEventNext := getGuard(eventNext)
8 if guardSatisfied(evalE1, guardEventNext) then
9 enabledEvents.add(eventNext)

10 end
11 end
12 end

// Find event sequence and end-state for event e2
13 enabledEvents := list(e2)
14 while !enabledEvents.isEmpty do
15 enabledEvent := enabledEvents(0)
16 enabledEvents := list()
17 evalE2 := updateValuation(enabledEvent)
18 for eventNext ∈ Ec do
19 guardEventNext := getGuard(eventNext)
20 if guardSatisfied(evalE2, guardEventNext) then
21 enabledEvents.add(eventNext)
22 end
23 end
24 end

// Return whether the end-state valuation of e1 and e2 are
equal

25 return evalE1.equals(evalE2)
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Algorithm 2: Adapted confluence check
Input: EFA system E , variable set XE , valuation set V , and controllable

set Ec

Output: True indicates that E is confluent
1 Transform E into its NLEFA representation, to obtain for each e ∈ Ec its

global guard ge and global update ue.
2 for e1, e2 ∈ Ec : e1 ̸= e2 do
3 for v ∈ V : v |= g1 and v |= g2 do
4 if ¬ update equivalent(e1, e2, v) ∧
5 ¬ independent(e1, e2, v) ∧
6 ¬ (skippable(e1, e2, v) ∨ skippable(e2, e1, v)) ∧
7 ¬ (reversible(e1, e2, v) ∨ reversible(e2, e1, v)) then
8 if ¬ end-state equal(e1, e2, v) then
9 return False

10 end
11 end
12 end
13 end
14 return True

functions in PLC code that implement model transitions, the model specification
structure is followed, and an event function is generated for each event associated
with an automaton in the model. Under the assumption that the model designer
keeps related automata close to each other in the model, this further enhances
grouping of related events.

An event function first tries to find an enabled edge for the event in every
participating automaton (one edge at a time as locations are not merged). If that
succeeds, the edge is taken in the event function. The updates associated with
the enabled edges are performed and location pointer variables are updated, thus
updating the variables of the controller. Finally, the function reports whether or
not an event was performed.

The global control program that represents the executing model is performed
in each Execute step of the PLC, as seen in Subsection 2.5.1, Figure 2.13. It starts
by storing the new sensor information from the preceding Input step in model
variables and updating continuous variables for the passed time since the previous
cycle. It then repeatedly calls all event functions until none of them reports a
performed event. Note that this is semantically sound due to the confluence and
finite response properties previously proven for the model. The final step in the
execution is to write the new program state to the actuator outputs in the Output
step of the PLC cycle that immediately follows the Execute step. The actuator
outputs are then forwarded to the physical system.
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A third requirement is to support multiple PLC types. While IEC 61131-3, see
International Electrotechnical Commission (2013), is an international standard
for PLC programming, commercially available PLC systems do not always follow
it in the same way. As a result, generated code is slightly different for different
PLC platforms.

A fourth requirement is good performance. Semantically, performing an event
means making a new state with a full copy of the current state, selecting an
enabled edge in each participating automaton, performing all updates of all
selected edges, writing the results in the new state, and finally copying the new
state back to the original state. The CIF modeling language ensures there is no
overlap in written data, and since reading and writing happens in disjunct data,
original values are available until all updates are performed. A practically better
performing solution is implemented here, where no full copies are made of the
state, but instead the state is directly updated by writing computed updates back
to it. This trivially works if read data and written data are disjoint. In the case
of overlap, problems are solved either by ordering updates such that the original
value is destroyed after its last read, or by creating a temporary copy to break
the dependency cycle. In practice, the need to create a temporary copy is rare.

Last but not least, the implementation of a PLC code generator of Reijnen
et al. (2019a) uses a template-like approach to generate code. One of the remarks
was that while the resulting code is semantically correct, it is not good enough
for readability. PLC code is not optimal, for example code like BOOLEAN b :=
TRUE; IF b THEN ... END_IF is generated where b never becomes FALSE. The
conclusion was that template-based code generation is too crude to get better
quality, as it cannot easily handle all the subtle different cases that may happen.
Instead, an approach with an intermediate model of the generated code, which is
a metamodel in the code generation algorithm, is used to allow additional analysis
and fine-tuning of the result. Using model transformations, non-optimal code is
caught and fixed, much like how advanced code generation for a compiler works,
as described in Cooper and Torczon (2011). This approach enables splitting the
code generation process in multiple independent stages, where one can perform
model transformations not only for catching and fixing non-optimal code, but
also for transforming code towards a specific PLC target, and fixing clashes in
read and write patterns of variables.

PLC code of the Swalmen tunnel is generated for both the supervisory con-
troller and the resource controllers, consisting of 18853 and 16496 lines of code,
respectively. Both PLC code generation processes take around one second.

6.2.4 PLC code optimization
The performance of a controller that is implemented on a PLC is measured by the
PLC cycle time, which mostly depends on the time it takes to execute the PLC
code (Subsection 2.5.1, Figure 2.13). To improve the performance and readability
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of the PLC code, the order in which events are considered and executed in the
PLC code can be optimized. This optimal order is determined using event order
sequencing. Take for example a lamp that needs to be turned on when a button
is pushed. The PLC determines, based on the input signal of the button, if the
button is pushed, and it determines if the lamp should be turned on or off. The
optimal order is to first evaluate the button and then the lamp, as the state of
the button influences the evaluation of the lamp.

When (part of) the PLC code is repeated in a PLC cycle, this is called rework.
This often occurs when the event order is not optimized, but it is sometimes
unavoidable even in the optimized code.

To optimize the order of events, the component relations are gathered in a
process dependency structure matrix (DSM), which was introduced in Eppinger
and Browning (2012). An example of a process DSM is shown in Figure 6.4. The
axes of the DSM are labeled by the components (A-E in this example). The order
of these components indicates the order in which the components are evaluated
in a PLC cycle. A dependency between two components is indicated in the
DSM by a gray box. The dependencies are based on the requirements in the
model, following the method shown in Goorden et al. (2019a). For instance, the
requirement

Boombarrier.c_close needs TrafficLight.red (6.1)
indicates that the boom barrier component depends on the traffic light component.
In the DSM, this dependency is noted by a gray box in the row of the boom
barrier and the column of the traffic light following the IR/FAD (Input shown in
Rows/Feedback is Above Diagonal) notation convention.

1 2 3 4 5

A: 1

B: 2

C: 3

D: 4

E: 5

Figure 6.4: Directed DSM

1 2 3 4 5

D: 1

C: 2

B: 3

E: 4

A: 5

Figure 6.5: Sequenced DSM

A dependency in the top right triangle is a feedback element, since information
about the state of a component later in the order is required. In Figure 6.4, there
exists a feedback element between components A and E, meaning that in the
worst-case scenario the entire PLC code must be repeated. This repeat loop is
indicated by the blue box.
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Tube1.ContourLighting: 40
Tube1.SoundBeacon: 39
Tube1.EscapeDoor: 38
Tube1.Broadcast: 37
Tube1.Recorder: 36

Tube1.CCTV: 35
Tube1.Lighting: 34

Tube1.LightSensor: 33
Tube1.Ventilation: 32

Tube1.BoomBarrierObstacle: 31

Tube1.BoomBarrierPosition: 28
Tube1.BoomBarrierMovement: 29
Tube1.BoomBarrierCommand: 30

Tube1.TrafficLightTimerRed: 26
Tube1.TrafficLightTimerOff: 27

Tube1.TrafficLightTimerOn: 24
Tube1.TrafficLightTimerYellow: 25

Tube1.TrafficLights: 23
Tube1.J32: 22

Tube1.HeightALamp: 13
Tube1.HeightATimer: 14

Tube1.HeightASensor: 12

Tube1.HeightOLamp: 16
Tube1.HeightOTimer: 17

Tube1.HeightOSensor: 15

Tube1.HeightWLamp: 19
Tube1.HeightWTimer: 20

Tube1.HeightWSensor: 18

Tube1.HeightRSensor: 21

Tube1.ClosingSystems: 11
Tube1.Standstill: 10

Tube1.SmokeDetection:  9
Tube1.HandExtinguisherC:  8

Tube1.PhoneC:  7
Tube1.CabinetCOpen:  6

Tube1.FireHoseA:  5
Tube1.HandExtinguisherA:  4

Tube1.CabinetAOpen:  2
Tube1.PhoneA:  3

1 2 3 4 5 6 7 8 9
1
0
1
1

1
2

1
3
1
4

1
5

1
6
1
7

1
8

1
9

2
0
2
1

2
2

2
3
2
4

2
5

2
6
2
7

2
8

2
9
3
0

3
1

3
2
3
3

3
4

3
5
3
6

3
7

3
8
3
9

4
0

4
1
4
2

4
3

4
4
4
5

4
6

4
7
4
8

4
9

5
0
5
1

5
2

5
3
5
4

5
5

5
6
5
7

5
8

5
9
6
0

6
1

6
2
6
3

6
4

6
5

6
6
6
7

6
8

6
9
7
0

7
1

7
2
7
3

7
4

7
5
7
6

7
7

7
8
7
9

8
0

8
1
8
2

8
3

8
4
8
5

8
6

8
7
8
8

8
9

9
0
9
1

Tube Modes:  1

Tube2.ContourLighting: 72
EscapeRoute.Lighting: 73
EscapeRoute.Pressure: 74

EscapeRoute.RouteIndication: 75

Tube2.SoundBeacon: 71
Tube2.EscapeDoor: 70
Tube2.Broadcast: 69
Tube2.Recorder: 68

Tube2.CCTV: 67
Tube2.Lighting: 66

Tube2.LightSensor: 65
Tube2.Ventilation: 64

Tube2.BoomBarrierObstacle: 63

Tube2.BoomBarrierPosition: 60
Tube2.BoomBarrierMovement: 61
Tube2.BoomBarrierCommand: 62

Tube2.TrafficLightTimerRed: 58
Tube2.TrafficLightTimerOff: 59

Tube2.TrafficLightTimerOn: 56
Tube2.TrafficLightTimerYellow: 57

Tube2.TrafficLights: 55
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EmergencyPassageSouth.Position: 88
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Figure 6.6: Unsequenced DSM of the Swalmen tunnel.

To optimize the order of events, the number of feedback elements is minimized.
This is done by sequencing the DSM, e.g. using the algorithm from Meier et al.
(2007), which is an automatic process where the components on the axes are
reordered to try to put as many dependencies as possible in the lower left triangle.
The sequenced DSM can be seen in Figure 6.5. As can be seen by the smaller blue
box, the worst-case rework loop now only contains the PLC code of 2 components.
Note that only the order of components is sequenced. Ordering of events in the
same component is not considered here.

Event sequencing is currently being applied in the automatic PLC code
generation program. In this program, the optimal event order is automatically
determined using sequencing algorithms, and this order is implemented in the
PLC code manually. In the case of feedback loops, such as the blue box in Figure
6.5, a rework loop is added to ensure all enabled events are executed.

In the case study for the Swalmen tunnel, a DSM has been automatically
generated from the supervisory controller. This DSM is shown in Figure 6.6 and
consists of 91 components that are connected through 412 dependencies. The
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Figure 6.7: Sequenced DSM of the Swalmen tunnel.

component names are shown on the left-hand side. As is indicated by the blue
boxes in the figure, the unsequenced DSM contains two feedback loops of 84 and
5 components, respectively, meaning that in certain cases almost the entire PLC
code needs to be rerun.

This DSM is automatically sequenced using the algorithm described in Meier
et al. (2007) to optimize the order of events in the PLC code. Figure 6.7 shows
the sequenced version of the DSM. In the sequenced DSM, 7 feedback loops exist
of 17 (once), 5 (twice), and 2 (four times) components. The amount of rework is
thus decreased, as the size of the feedback loops in the sequenced DSM is much
smaller than the size of the feedback loops in the original DSM.

Feedback loops are unavoidable in the sequenced DSM, as there are components
with cyclic dependencies. For instance, the two feedback loops that consist of 5
components in Figure 6.7 contain the components of the timers and the lamps of
the traffic lights. There exists a cyclic dependency between these components,
since the timers must turn on when the traffic light shows a certain color, and
the traffic light is allowed to switch to the next color once the timers has run out.
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The feedback loop is thus unavoidable, but capturing it in a dedicated WHILE
loop ensures that only the PLC code related to these traffic lights is rerun.

6.3 Hardware-in-the-loop testing
As described in Section 2.1, the second testing stage in SBE is HIL simulation,
where the controller is implemented on the PLC, and combined with the hybrid
plant model to perform simulations with visualized interfaces. The first benefit
of HIL simulation, compared to model simulation, is that the PLC operating
semantics is used. Second, external subsystems like the operator interface can be
connected to the PLC. Third, the actual input and output signals of the PLC are
connected to the system model and the operator interface. Finally, PLC cycle
times can be measured to determine if the PLC performance is sufficiently high.
These combined benefits allow the design engineer to perform HIL simulations as
if he were operating the real system.

A typical HIL setup consists of three layers, as shown on the right-hand side
of Figure 6.8. The controller, implemented on a PLC, is connected to two PCs.
PC 1 contains the operator interface, which is used to send commands to the
PLC, and read the status of the PLC and the system. PC 2 contains the system
model, which receives actuations from the PLC and returns sensor measurements.
A third PC, the programming PC, is used to implement the code on the PLC, as
is shown on the left-hand side of Figure 6.8.

Operator interface (PC 1)

Supervisory controller (PLC)

System model (PC 2)

Programming (PC 3) Commands

Actuations

Status

Measurements

PLC code

Figure 6.8: Overview of a HIL test setup, adapted from Reijnen et al. (2019a).

The inputs and outputs of the operator interface and the system model need
to be connected to the PLC controller, for which a hardware mapping is created.
A hardware mapping is an enriched version of the plant model where guards
are added to sensor events to connect them to the input signals of the PLC,
and updates are added to actuator events to connect them to the output signals
of the PLC. The actuator shown on the left-hand side in Figure 6.9 includes
the hardware mapping with the output signal of that actuator. As can be seen,
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output variable Q is set to True or False when the actuator is turned on or
off, respectively. The sensor on the right-hand side of Figure 6.9 also includes
a hardware mapping. Here, an input Boolean I is declared, and the hardware
mapping defines that event u_on or u_off is enabled only when I is True or
False.

Q=False

A.Off A.On

c_on
do Q:=True

c_off
do Q:=False

I

S.Off S.On

u_on
when I

u_off
when ¬ I

Figure 6.9: Automata for an actuator A (left) and a sensor S (right) including their
hardware mappings.

Both the operator interface and the system model are implemented on a
supervisory control and data acquisition (SCADA) system, described in Boyer
(2009). Here, Ignition SCADA software is used. In this SCADA system, visual-
izations of the operator interface and of the system model are created, similar to
the SVG visualizations used in model simulation. Furthermore, the input and
output signals of the PLC controller are connected to the object properties in the
SCADA models, e.g. an output signal of the PLC to turn on a lamp is connected
to the visualization in the SCADA model of that lamp to show when it is turned
on by the PLC.

HIL simulation is used to validate the behavior of the implemented controller
of the Swalmen tunnel. To incorporate the resource controllers described in
Subsection 6.2.1 in this setup, the schematic overview shown in Figure 6.8 is
extended by an additional PLC, as depicted in Figure 6.10.

In Figure 6.11, the physical HIL setup is shown containing the same com-
ponents as shown in the schematic overview. The PLCs in the HIL setup are
of type ABB AC800M PM866A, which are the same PLCs as are used in the
Swalmen tunnel.

The visualizations of the operator interface and of the system model can
be seen in Figure 6.11. These are created using the Ignition SCADA software
and can communicate with the I/O of the PLCs through an OPC UA server.
Furthermore, all system behavior that is relevant for the purpose of controller
validation is programmed in the behavior scripts of the system model. Examples
in the Swalmen tunnel case study are the movement of boom barriers, the water
level in the pump cellars, and the smoke and light level in the traffic tubes.

Using the HIL simulations, the controlled behavior of the implemented con-
troller of the Swalmen tunnel has been validated by running through test scenarios
provided by RWS and observing the system model and the operator interface.
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Operator interface (PC 1)

Supervisory controller (PLC 1)

Resource controllers (PLC 2)

System model (PC 2)

Programming (PC 3) Commands

Discrete actuations

Gradual actuations

Status

Measurements

Measurements

PLC code

PLC code

Figure 6.10: Schematic overview of a HIL test setup, extended with resource controllers.

Operator interface

System model

PLC (supervisory controller)

Programming PC

PLC (resource controllers)

Figure 6.11: Overview of the physical HIL setup.

In all cases, the controlled behavior was immediately as expected, i.e. in accor-
dance with the behavior defined in the test scenarios, thus meaning that the
implemented controller works as desired.

6.4 Concluding remarks
In this chapter, the process of deriving and implementing a supervisory controller
is described and applied in a real-life case study for the Swalmen tunnel.

A road tunnel supervisory controller is needed to maintain a safe environment
in the tunnel. While this is mainly a logic controller that specifies which output
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signals must be high or low depending on the input signals, certain controller
requirements are related to the physical or environmental behavior of a specific
component. To comply with these requirements, resource controllers are designed.
In the Swalmen tunnel case, 4 resource controllers are designed.

In the process of deriving an implementable controller, the required properties
of such a controller are verified. In the case of the supervisory controller of the
Swalmen tunnel, although present, confluence could not be determined using
existing confluence checks. Therefore, a relaxation in the sufficient conditions
for confluence is proposed called end-state equality, which is used to determine
confluence of the Swalmen tunnel supervisory controller. An algorithm is de-
fined and implemented that can be used to check end-state equality, and it is
incorporated in the existing confluence check of Reijnen et al. (2019a).

From the supervisory controller, PLC code is automatically generated using
a new PLC code generator. This generator is set up to be easily adaptable for
new hardware platforms by only having to adapt its back-end. For the Swalmen
tunnel, PLC code is generated for PLCs of the ABB brand.

Subsequently, the generated PLC code is improved in terms of performance
and readability by optimizing the event execution order. For this purpose, DSMs
are used and automatically sequenced to obtain the optimal order. In the case
study, the possible amount of rework is reduced from 81 components to 17
components.

The behavior of the implemented supervisory controller is validated using HIL
simulations, which allow for validation while using the actual operating semantics,
external subsystems, and operator interface. The Swalmen tunnel controller is
validated by running through scenarios, and in all cases the controlled behavior
was immediately as expected.

Future work includes the implementation of the sequencing algorithm in
the PLC code generator to automate applying the obtained event order to the
generated PLC code.

Furthermore, steps towards realization can be taken in the HIL setup by
replacing part of the virtual system model by the physical components that will
be put in the realized tunnel. This way, the implemented controller can be tested
with each physical component before realization of the complete tunnel.



Chapter 7

Distributed supervisory
controllers

As described in the previous chapter, synthesized supervisors can be im-
plemented on a physical platform such as a PLC. However, there are multiple
advantages to implementing a supervisory controller on multiple PLCs. A sys-
tem is then not controlled by a single global controller, but by multiple local
controllers that are able to communicate with one another. Such a distributed
implementation can reduce PLC cycle times, as the computing power of the
combined control system is increased and the size of each individual controller
can be reduced. Furthermore, distributing a supervisory controller can increase
the maintainability, reliability, and availability of the control system, and can
decrease the required length of cables to connect to the plant. In a distributed
implementation, however, communication is required, which can introduce de-
lays and increase the required memory and computation power compared to a
centralized implementation. The main challenge in dealing with communication
delays is ensuring correct controlled behavior when the local controllers are not
synchronized, meaning that the state of a local controller can change before a
message arrives.

In this chapter, a method is described to obtain a distributed supervisor
that ensures correct behavior regardless of communication delays. This method
is based on several existing techniques previously presented in literature and
a new technique is proposed to determine whether a controller is robust to
communication delays. Furthermore, extensions are made to existing techniques

This chapter is based on: Moormann, L., Schouten, R.H.J., van de Mortel-Fronczak, J.M.,
Fokkink, W.J., and Rooda, J.E. Synthesis and implementation of distributed supervisory
controllers with communication delays. Transactions on Automation Science and Engineering.
Submitted.
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in several places to make the method applicable in an industrial setting. The
method consists of the following steps. First, the plant is modeled using automata
and the desired controlled behavior is defined in requirements, as described in
Cassandras and Lafortune (2008). Second, a centralized supervisor is synthesized
using any algorithm of choice, e.g. the algorithm of Ouedraogo et al. (2011). Third,
the distribution of the system is performed using DSMs (Eppinger and Browning
(2012)) to create clusters of components that have minimal communication
between them. Fourth, for each cluster a local supervisor is derived, by localizing
the global supervisor using the theory of Cai and Wonham (2010). Fifth, a new
property, called delay robustness, is proposed allowing to estimate the effects of
communication delays, and to determine in which cases these effects negatively
impact the controlled behavior. In a delay robust system, communication delays
do ultimately not affect the system’s behavior. Finally, a mutual exclusion
algorithm is used to counter the negative effects in the case that a system is not
delay robust. A typical tunnel in the Netherlands is controlled by up to 10 PLCs,
which underscores the industrial relevance of a distributed supervisory controller.

Besides describing the complete method, this chapter provides additional
results regarding certain steps in the method. First, in the distribution step of
the method, a parameter study is performed to optimize the clustering of DSMs.
Second, the theorem for delay robustness of a distributed supervisor is formally
introduced and substantiated, and a formal proof of the theorem is included.
Third, elaborate implementation tests are performed to analyze the performance
of the implemented controller, both in a monolithic and in a distributed setting.
Fourth, the implementation of the mutual exclusion algorithm is studied to
improve the performance in the distributed setting. Finally, a large case study is
provided, where a supervisor is synthesized, distributed, and implemented for the
Swalmen tunnel, a road tunnel in the Netherlands.

Over the passed years, distributed supervisory control has been researched
extensively. In Wang et al. (2020), distributed supervisory control is considered
where multiple controllers observe the same plant, but each of them can only
observe a subset of transitions. In this setting, there is no communication between
the controllers. Distributed control is also investigated in Zhang and Cai (2016)
and Cai and Wonham (2010), where supervisor localization is used to obtain local
controllers that communicate. We use the same approach of localization, and add
communication delays between the controllers. In Kalyon et al. (2013), distributed
supervisory control is investigated using an online state estimation approach,
though no communication delays are included and no global nonblockingness
is guaranteed. Su (2013) and Wong et al. (2000) provide research on conflict
handling between local supervisors, using a global coordinator approach in Su
(2013) and a priority-based conflict resolution approach in Wong et al. (2000),
respectively.

The subject of communication delays in supervisory control has mainly been
investigated in the context of networked systems, where delays occur in the
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communication between the controller and the plant. This differs from the
distributed control setting that is investigated in this project, where delays
occur in the communication between different controllers. Similar approaches in
handling communication delay can, however, be applied. In Shu and Lin (2014),
a supervisor is synthesized for a networked system with bounded communication
delays where the language of the supervisor is extended with all possible event
orders due to the delays. Such a supervisor does not always exist, so necessary and
sufficient conditions are provided. Zhu et al. (2019) also considers the control of
networked systems with delays in the communication between the controller and
the plant. This communication is modeled using channels, which are used in our
approach as well. Furthermore, Zhu et al. (2020) is an extension of Zhu et al. (2019)
where non-FIFO (First In First Out) communication channels are considered.
Alves et al. (2020) and Liu et al. (2021) also investigate delayed communication
between the controller and plant, though their approaches differ from ours as
they use assumptions on the maximal communication delay and state estimation,
respectively, to predict the effect of control delays, respectively. To the best of our
knowledge, none of the existing works on distributed supervisory control cover
the system distribution process for the purpose of supervisor implementation.
Furthermore, no existing literature applies their method to industrial systems of
the size considered in this project.

This chapter is structured as follows. Relevant theory from literature on
the topic of distributed supervisors is discussed in Section 7.1. Next, a running
example is introduced in Section 7.2. An overview of the method proposed in
this chapter is given in Section 7.3, and the two main steps are then discussed
in Sections 7.4 and 7.5. Section 7.6 provides the results of a large case study on
synthesizing and implementing a distributed supervisor for a road tunnel. Final
remarks and conclusions are given in Section 7.7.

7.1 Existing theory on distributed supervisors
In this section, relevant theory related to distributed supervisors is discussed.
In Subsection 7.1.1, existing work on obtaining distributed supervisors through
synthesis is described. Subsection 7.1.2 introduces the process of supervisor
localization, which is used to obtain a set of local supervisors from a global
synthesized supervisor. Finally, in Subsection 7.1.3, mutual exclusion algorithms
are described, which are used in the setting of distributed supervisors to prevent
multiple supervisors from writing some critical data at the same time.

7.1.1 Synthesis of distributed supervisors
In literature, several contributions towards acquiring distributed supervisors
through synthesis have been made. Su et al. (2010) introduces an aggregative
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method for synthesizing a distributed supervisor. There is no need for synthesizing
a global supervisor (i.e. a supervisor for the entire plant and all its requirements)
in this method, as local supervisors are synthesized right away. Computation
times can therefore be relatively low. This is a great advantage in the scalability
of the method. In order to achieve global nonblockingness, abstractions of other
local supervisors are used during the synthesis of a local supervisor. Therefore,
the order in which local supervisors are synthesized is important for both the
computational complexity of the supervisor and the existence of a supervisor. Su
et al. (2010) gives some guidelines to choose an efficient ordering, however, it is
unclear how to find an optimal one. Moreover, the computations that are needed
to obtain an efficient ordering are relatively complex.

In Komenda et al. (2016), an alternative algorithm called multilevel synthesis is
introduced that can handle more complex synthesis problems. It uses a MultiLevel
Discrete Event System (MLDES) which consists of a tree-based structure. For
each node in the tree, a local supervisor is synthesized that influences a subset
of the plant models and satisfies a subset of the requirements model. The set
of local supervisors is safe and controllable, however, maximal permissiveness
is only guaranteed under sufficient conditions, as described in Komenda et al.
(2020), and a global nonblocking check is required. An MLDES consists of a
number of supervisors that control a subset of components, which is beneficial
for localization and distribution, as explained later in this chapter.

In contrast to the bottom-up approach of aggregate synthesis, supervisor
localization proposed in Cai and Wonham (2010) is a top-down approach to
acquiring local supervisors. First, a global supervisor for the entire plant is
synthesized. A localized version of this global supervisor is then implemented for
each component or component group. This method is a relatively simple way of
obtaining a distributed supervisor. The behavior of this distributed supervisor
is equal to that of the global supervisor. The concept of localization is further
discussed in Subsection 7.1.2.

None of the aforementioned methods discuss the effects of communication de-
lays between local supervisors, while these delays are unavoidable in a distributed
implementation. Rashidinejad et al. (2018) introduces a synthesis method for
(non-distributed) supervisors with a known delay on its inputs and outputs.
The effects of communication delays can be similar for distributed supervisors,
therefore Rashidinejad et al. (2018) gives some useful insights into this subject.
In Kalyon et al. (2011), a distributed supervisor synthesis method is proposed
which takes into account the effects of communication delays. The framework in
Kalyon et al. (2011), however, assumes a fixed communication architecture, uses
state estimates and abstractions, and requires direct communication between
the local plants. This framework is therefore not suited for this project. Zhang
et al. (2016) gives further insight into the effects of communication delays for
distributed supervisors created by localization. This topic is further discussed in
Subsection 7.5.2.
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7.1.2 Localization
Supervisor localization describes the process of creating a set of local supervisors
from a monolithic global one. Supervisor localization is introduced in Cai and
Wonham (2010) for FA. It takes a global supervisor SUP = (X, E, ξ, x0, Xm),
which is defined for a global plant G = (Y, E, η, y0, Ym). Plant G consists of
component agents Gk defined over disjoint alphabets Ek, k ∈ K with K an index
set, where E =

⋃ {
Ek | k ∈ K

}
. The global supervisor SUP is localized into

local supervisors LOCk for component agents Gk.
Each local supervisor LOCk is a copy of the global supervisor SUP, where

the controllable event set is adjusted to the events that can be controlled by that
local supervisor Ek

c = Ec ∩ Ek. All other events are uncontrollable in that local
supervisor. Each controllable event is controllable in exactly one local supervisor.
This is not a significant restriction, as controllable events are typically related to
output signals of the controller, i.e. actuator signals, and it is undesirable that
multiple local supervisors drive the same actuator. A local supervisor can observe
events that are controlled by another local supervisor, called shared events. The
uncontrollable events are, as usual, observed directly from the plant. In Cai and
Wonham (2010), it is assumed no communication delays occur.

Using a monolithic global supervisor as a starting point for localization is often
undesirable as localization has to be done for a relatively large supervisor. Instead,
a multilevel supervisor can be used. A supervisor obtained by multilevel synthesis
as described in Goorden et al. (2019a), consists of a number of supervisors that
disable events in subsets of components. As an example, let plant G consist
of 4 components Gk (k = 1, 2, 3, 4), with a requirement model consisting of 8
requirements Ri (i = 1, 2, ..., 8), for which multilevel synthesis is performed. The
resulting MLDES tree is given in Figure 7.1. The global multilevel supervisor
is given by S = ||i Supi, for 1 ≤ i ≤ 7. Note that Sup6 does not contain
any requirements, as any requirements that refer to component G2 are already
automatically placed in Sup1 and Sup5.
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Figure 7.1: Multilevel supervisor example

The multilevel supervisor can now be localized for a certain distribution
of component agents. If, for example, a distribution of two groups is chosen,
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where group 1 contains G1 and G3 and group 2 contains G2 and G4, it is not
necessary to localize the entire multilevel supervisor. As group 1 is only controlled
by supervisors 1 through 4, only these supervisors need to be localized. Local
supervisor LOC1 is the set of localized supervisors Sup1, Sup2, Sup3 and Sup4.
Similarly, local supervisor LOC2 is the set of localized supervisors Sup1, Sup5,
Sup6 and Sup7. LOC1 now controls agents G1 and G3 while observing G2,
whereas LOC2 controls agents G2 and G4 while observing G1.

7.1.3 Mutual exclusion algorithms
Mutual exclusion (mutex) algorithms pose a solution to the problem in concurrent
programming where multiple processes try to enter a, so-called, ‘critical section’
simultaneously, while this is not allowed. In most applications, mutual exclusion
algorithms aim for several properties, as discussed in Kanrar et al. (2018):

Safety No two processes can enter their critical section simultaneously.

Liveness A process that requests access to the critical section is eventually
allowed to do so.

Fairness The first process to request access is granted access the first.

Many solutions have been proposed since the presentation of Dijkstra’s algo-
rithm in Dijkstra (1965). Some algorithms are able to prioritize one process over
another, and are thus not fair. Most algorithms aim to reduce the amount of
communication, i.e. the number of messages required to get access to a critical
section.

Distributed mutex algorithms often follow a token-based approach. Token-
based algorithms, as defined in Raynal (2013), use a mobile object, referred to
as the token, which travels from process to process. The process in possession
of the token is allowed to enter its critical section. As there is only one token,
safety is ensured automatically.

Different network structures have been proposed, as discussed in Kanrar et al.
(2018), in efforts to reduce the amount of communication. In permission-based
algorithms, a process requests permission to enter its critical section from all other
processes or from a subgroup of other processes called a quorum or coterie. Kanrar
et al. (2018) states that generally token-based algorithms need less communication
than permission-based algorithms. Permission-based algorithms are generally
more suited for implementation of fairness or prioritization.

A simple implementation for a mutex algorithm that is safe, live, and fair, is a
home-based token algorithm as discussed in Raynal (2013), for which an example
is shown in Figure 7.2. Here, there exist one home process (1) and a number of
other processes (2 and 3). The token normally resides at the home process, and
any process can request the token (blue arrow). The process returns the token
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(red arrow) after it leaves the critical section. If a process requests the token while
it is already in use by some other process, such as during the request of process
2 in the example, the requesting process will be added to a FIFO queue. The
home process will always send the token to the first process in the queue. This
algorithm requires little communication as each process only communicates with
the home process, though it becomes inefficient for large numbers of processes and
when the token is used for short amounts of time. One disadvantage is the single
point of failure of the home process. This disadvantage, however, does not apply
in this chapter, as hardware and communication failures are not considered. If,
in future work, this assumption is dropped, other algorithms should be explored
as well.
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Figure 7.2: Home-based token passing mutual exclusion

7.2 Running example: Pump-cellar system
Throughout the upcoming sections of this chapter, a running example is used
to show an application of the method discussed in Sections 7.4 and 7.5. The
running example concerns a pump-cellar system which is used in road tunnels to
collect rain water and leaked fluids. It is part of a running study on industrial
applications, as described in Goorden et al. (2020). In this case, the system
contains 3 cellars, each equipped with 2 pumps and 5 sensors, as depicted in
Section 3.1, Figure 3.6. The sensors indicate the fluid level and the pumps are
used to drain the cellar. There are 2 head pump cellars, located at the two
entrances of the tunnel, and a middle pump cellar that can pump fluids to either
of the 2 head pump cellars.

Each pump cellar can operate in one of the three modes: Store, Drain and
Off. Based on the mode, the pumps should be on or off at certain fluid levels.
The mode of the pump cellar depends on the mode of the tunnel, which can be
Operational, Emergency, and Recovery. For example, during an emergency the
pump-cellar mode should be Store so no dangerous leaked fluids are pumped
into nearby rivers. The uncontrolled behavior of the mode of the pump cellars
and the mode of the tunnel are modeled using FAs, as shown in Figures 7.3 and
7.4.
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Figure 7.4: Traffic tube automaton

The uncontrolled behavior of the pumps (Figure 7.5), the sensors (Figure 7.6),
the pump direction (Figure 7.7), and the buttons (Figure 7.8) are also modeled
using FAs. The complete plant model is available in a repository1.

Off On

c_on

c_off

Figure 7.5: Pump automaton.

Off On

u_on

u_off

Figure 7.6: Sensor automaton.

HPC1 HPC2

c_HPC2

c_HPC1

Figure 7.7: Direction automaton.

Loose Pushed

u_push

c_done

Figure 7.8: Button automaton.

A set of requirements is created to describe what behavior the controller
should allow. For each pump cellar, a number of requirements is defined to state
when the pumps are allowed to turn on or off based its mode. When the mode is
Drain, the pumps are turned on when sensors S1 and S2 are on, while in mode
Store they are turned on when sensor S5 is on. In the Off mode, the pumps are
off.

The requirements are stated as event conditions. Some examples of such
requirements are shown in Equations (7.1)-(7.3). Note that these requirements

1https://github.com/LMoormann/Distributed_Pumpcellars

https://github.com/LMoormann/Distributed_Pumpcellars
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can also be formulated as EFAs.

requirement Pump1.c_on needs not Mode.Off (7.1)
requirement Mode.c_store needs ButtonStore.Pushed (7.2)
requirement Direction.c_HPC2 needs HPC1_S5.On (7.3)

Requirement (7.1) states that event P1.c_on is only enabled if the Mode automaton
in not in the state Off. The complete collection of the requirements is available
in the repository1.

7.3 Method - Obtaining distributed supervisors
In this chapter, a method is described for obtaining a distributed supervisor,
based on several existing techniques, while taking into account communication
delays. This method is an extension on the SBE process, as is shown in Figure
7.9. The additional steps are shown in blue.

HR

CR CR C
CLCLCL

CCC
implement

CLCLCL

PR PD P P

extract

extract

define

model

design

synthesize

model

distribute

realize

cluster

= document, = model, = realization.

H = high-level, C = controller, P = plant, R = requirement, D = design, L = local.

Figure 7.9: Schematic overview of the distributed SBE process.

The first additional step is obtaining a distribution of the system, which is
performed by clustering the plant components P in Figure 7.9. Here, dependencies
between the plant components are analyzed using DSM techniques (Eppinger
and Browning (2012)) to obtain a system distribution where the number of
dependencies between clusters is minimized. This step is explained in more detail
in Section 7.4.
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The second additional step is distributing the synthesized supervisor. This is
done by localizing the global supervisor to obtain a set of local supervisors using
theory from Cai and Wonham (2010). Then, the shared events between the local
supervisors are analyzed to determine whether they are delay robust. For events
that are not delay robust, called delay critical, mutual exclusion algorithms are
implemented to enforce delay robustness. Section 7.5 describes the supervisor
distribution step in more detail.

7.4 Step 1: Distributing the system
The first step in acquiring a distributed supervisor is distributing the system by
mapping the control dependencies between the components, and creating clusters
of these components. For each cluster a local supervisor can then be derived.
We assume full observability, meaning that every local supervisor can obtain all
information from other local supervisors and plant components. Full observability
is guaranteed in the type of systems considered in this chapter. If this assumption
is disregarded, the distribution process is limited by the observability of the
system. In that case, certain components are required to be part of the same
local supervisor, as their events are not observable when they are part of separate
supervisors. The method itself still works in this case.

7.4.1 Dependency mapping and component clustering
Dependency Stucture Matrices (DSM), as introduced by Eppinger and Browning
(2012), provide a means to give insight into the dependencies within a process or
system. In Subsection 6.2.4, DSMs are introduced for the purpose of PLC code
optimization, in which the DSM is sequenced to obtain an optimal ordering of
components. In the method discussed here, DSMs are used for the purpose of
clustering. The initial DSM is the same, where the components of the system are
the elements on both the horizontal and the vertical axis, and each entry in the
matrix denotes a dependency between two components. Figure 7.10 shows an
example of such a DSM.

The type of dependency that is used when creating the DSM varies per
system and decomposition purpose. Some examples of dependencies that are
used in DSMs given in Pimmler and Eppinger (1994) are physical connections,
information flow, material flow, or electrical flow. As mentioned in Eppinger
and Browning (2012), physical connections, material flow, and electrical flow are
typically used when decomposing hardware products, while information flow is
often used in the case of software products. Depending on the type of dependency,
the DSM can be symmetric or asymmetric. Physical dependencies will result
in a symmetric DSM, since when A is connected to B, B is also connected to
A, whereas information flow might result in an asymmetric DSM, since when A
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Figure 7.10: Example of a DSM.

1 2 3 4 5 6 7 8

G3: 1

G7: 2

G1: 3

G8: 4

G5: 5

G2: 6

G4: 7

G6: 8

Figure 7.11: The clustered DSM.

provides information to B, B does not necessarily have to provide information to
A. A physical relationship is therefore called an undirected relationship, while an
information flow relationship would be called a directed relationship. The DSM
shown in Figure 7.10 is a directed, asymmetric, DSM.

For the purpose of analyzing control relations in a DES, a DSM is created using
the control requirements as dependencies, as shown in Goorden et al. (2019a). A
plant model and a requirement model are needed for the creation of such a DSM.
The components of the plant model are listed on the axes of the DSM. Through
requirements, different components depend on each other. These dependencies
are shown in the DSM. As these requirements are directional, the resulting DSM
is a directed DSM.

The applied analysis method that is used here is clustering, which is used to
obtain groups of closely related components. When clustering components in a
DSM, the order in which the components are placed on the axes is changed and
components are grouped. The aim is to identify clusters in such a way that the
number of dependencies between components within a cluster is maximized and
the number of dependencies between components of different clusters is minimized.
This way clusters are obtained of closely connected components, and insight in
the interaction between clusters is gained. In Figure 7.11, the clustered version
of the DSM shown in Figure 7.10 is shown. Here, two clusters of respectively 3
and 5 components are shown.

In Wilschut (2018), Markov clustering is introduced, which is a relatively
complex random walker algorithm that uses four clustering parameters α, β, µ and
γ. α determines the number of jumps the random walker takes. β and µ are both
used to tune the cluster size and the number of hierarchical levels. Parameter γ is
a threshold value for the number of detected bus elements, increasing γ decreases
the number of bus elements in the clustering. Markov clustering can create
multiple hierarchical clusters and can detect bus elements. Bus elements are
elements in the DSM that have a large number of dependencies. Wilschut (2018)
shows that Markov clustering is a scalable and versatile solution for clustering
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DSMs.
In the process of obtaining a distributed supervisory controller, a DSM is

created for the MRPS by following the procedure provided in De Queiroz and Cury
(2000). As the goal of the DSM is to decompose a software system, information
flow is used to determine the dependencies between components, as proposed in
Eppinger and Browning (2012). Following the approach of Goorden et al. (2019a),
a DSM is created based on control relations, as this minimizes the amount of
communication needed between local supervisors. Note that the dependency type
used in the DSM is up to the control engineer, and that the proposed method
works for any type of DSM based on any type of dependency.

To create a DSM based on control relations, first Domain Mapping Matrices
(DMM) P1 and P2 are created, which are rectangular matrices, see Wilschut
(2018). These DMMs show relations between plant components and requirements
in the system. For example, the requirement in Equation (7.1) refers to the event
c_on in component Pump1 with a condition that depends on the Off location of
component Mode. P1i,j = 1 when requirement j refers to an event of component
i and P1i,j = 0 otherwise. P2i,j = 1 when the condition of requirement j refers
to an automaton of component i and P 2i,j = 0 otherwise. The DSM P can then
be computed using P = P1 · P2T .

When clustering the DSM, control over a number of characteristics of the
clustering is desired. Firstly, control over the number of created clusters is needed,
as for each cluster a local supervisor is synthesized. Secondly, the size of the created
clusters needs to be controlled as this determines the number of components that
are controlled by each local supervisor. Lastly, the algorithm must be able to
cluster systems with a large number of components and dependencies. Markov
clustering is chosen, as it has been shown to be scalable. Furthermore, tuning of
the clustering parameters gives control over the clustering characteristics as is
elaborated in the next section.

7.4.2 Clustering parameter study

As explained in the previous section, 4 clustering parameters are used in Markov
clustering to control the clustering characteristics. In this section, a parameter
study is described to give insight in the relation between the clustering parameters
and the desired properties of a distributed supervisor.

In the context of distributed supervisors, three aspects are analyzed when
clustering the DSM. The first aspect is the number of required hardware platforms
(PLCs) on which the controllers are implemented, which is determined by the
number of clusters and the existence of a bus. For instance, a clustering with
a bus and 2 clusters requires 3 PLCs, 1 for the bus components, and 1 for each
cluster. The desired value is typically determined by the number of available
PLCs.
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The second aspect that is analyzed is the maximum cluster size, as this affects
the maximum size of a local supervisor, and thus its performance. This aspect is
therefore preferably minimized.

The third aspect is the number of dependencies outside of the clusters, as this
determines the amount of communication that is needed between the controllers.
Communication, and thus dependencies outside of clusters, should be minimized,
as communication delays can introduce problems, and thus decrease performance.

Note that the clustering is only a suggestion for a good distribution that is
obtained in a methodical way. If, for any reason, the control engineer desires to
deviate from this clustering, this is possible. This includes combining clusters,
splitting clusters, or moving components between clusters.

Coefficients α, β, µ and γ can be tuned to control these aspects. In this
parameter study, the following values are used, as inspired by Wilschut (2018).
The value of α has little influence on the clustering results, as noted in Van Dongen
(2008), and is therefore kept constant.

α = 2 β = {1.1, 2, 2.5, 3, 3.5}
µ = {1.5, 2, 2.5, 3, 3.5} γ = {1.5, 30} (7.4)

For each combination, the aspects described above are analyzed, and the
conclusions drawn are given here.

The combination of β and µ largely determines the number of clusters and
dependencies between them. The best results are observed when µ is kept low
(1.5), and β starts low (1.01). β should then slowly be increased until the desired
number of clusters is obtained.

The γ value determines the existence of a bus. γ should thus be chosen low
(∼ 1.5) if a bus is desired, or high (> 25) when no bus is desired. Whether a bus
is desired depends on the system. In the cases observed in this project, a bus is
undesirable as it results in a large amount of communication.

It is observed that a clustering typically either shows few larger clusters with
a low number of dependencies outside the clusters, or many smaller clusters
with a high number of dependencies outside the clusters. It is application
dependent which case is more desirable. When communication occurs often, the
number of dependencies outside clusters should be minimized. Vice versa, when
communication occurs rarely, cluster size should be minimized to improve the
individual controller performance.

7.4.3 Application to pump-cellar system
A DSM is created for the pump-cellar system introduced in Section 7.2. First,
the MRPS of the pump-cellar system is derived, resulting in a system with 21
components and 34 requirements. The resulting DSM is depicted on the left-hand
side of Figure 7.12. The 21 components are listed at both axes as components Gi.



124 Chapter 7. Distributed supervisory controllers

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

G1: 1

G2: 2

G3: 3

G4: 4

G5: 5

G6: 6

G7: 7

G8: 8

G9: 9

G10: 10

G11: 11

G12: 12

G13: 13

G14: 14

G15: 15

G16: 16

G17: 17

G18: 18

G19: 19

G20: 20

G21: 21

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

G1: 1

G2: 2

G3: 3

G4: 4

G5: 5

G6: 6

G8: 7

G9: 8

G7: 9

G10: 10

G11: 11

G12: 12

G13: 13

G14: 14

G15: 15

G16: 16

G17: 17

G18: 18

G19: 19

G20: 20

G21: 21Sup21

Sup20

Sup19

Sup18

Sup17

Sup16

Sup15

Sup14

Sup13

Sup12

Sup11

Sup10

Sup9

Sup8

Sup7

Sup6

Sup5

Sup4

Sup3

Sup2

Sup1

Sup22

Sup23

Sup24

Sup25

Figure 7.12: Unclustered pump-cellar DSM (left) and the clustered version (right)

Clustering parameters are chosen such that three clusters are obtained, as
three PLCs are available in the test setup, and dependencies outside of clusters
are minimized. The chosen clustering parameters are α = 2, β = 1.2, µ = 1.5,
and γ = 30. The final clustering is depicted on the right-hand side of Figure 7.12.
The maximum cluster size in this clustering is 8, and 4 dependencies are outside
of the clusters.

The first cluster (green) contains the two traffic tube modes and the compo-
nents of the middle pump cellars. The second (blue) and third (yellow) cluster
contain the components of head pump cellar 1 and 2, respectively.

7.5 Step 2: Distributing the supervisor
After distributing the system, the second step is distributing the supervisor. First,
multilevel synthesis procedure is performed, using a plant model, a requirement
model and the acquired distribution of the system. Distributing the multilevel
supervisor consists of three parts: the supervisor is localized, a delay-robustness
check is performed and, if needed, a mutex algorithm is implemented in the
model.

7.5.1 Supervisor localization
The acquired multilevel supervisor consists of a set of supervisors similar to the
example in Figure 7.1. For each main cluster k, the set of relevant supervisors is
taken as local supervisor LOCk. This local supervisor can only disable events in
the controllable alphabet Ek

c of the components in its cluster. LOCk is adjusted
such that all other events are always enabled, which is done as follows using the
theory of Cai and Wonham (2010).
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LOCk generally consists of a number of plant automata, requirements and one
or more supervisor automata. First, all requirements and guards in the supervisor
that disable events outside of its controllable alphabet are removed from the
supervisor. All components outside of cluster k, that LOCk no longer refers to
in its requirements or guards, are removed from LOCk. If, after the adjustments,
the supervisor automata or requirements in LOCk refer to automata that are
not part of components in cluster k, then those automata are not removed, but
are referred to as observers. The events of observers in LOCk are not controlled
by LOCk.

For example, a requirement of LOCk refers to automaton A that is part of
cluster l. As A is not in cluster k, A is an observer in LOCk. The events of
automaton A are observed by LOCk in LOCl, such that every time an event of
A happens in LOCl, it is communicated to LOCk. Events of A are referred to
as shared events.

7.5.2 Delay robustness
The local supervisors, derived from the global supervisor, only impose globally
correct behavior in the absence of communication delays. Communication delays
might change the order in which events are observed in local supervisors. If, for
example, in the local supervisor of Figure 7.13, event b is delayed, the order in
which events a and b are observed might be different (ab or ba), resulting in
a different end-state. Hence, communication delays might cause the localized
supervisors to be globally unsafe, blocking, or uncontrollable.

0

3

1

4

2

a

a
b

b
c

Figure 7.13: Example local supervisor

r

r’

Figure 7.14: Channel CH(1, r, 2)

When the local supervisors are implemented on separate PLCs, communication
delays are unavoidable. It is up to the control engineer to decide whether it is
better to implement multiple local supervisors on the same PLC to remove the
communication delays between these local supervisors. This decision heavily
depends on the application and which aspects of an implemented controller the
control engineer deems relevant. This section provides a process for adjusting the
local supervisors to deal with communication delays.

Zhang et al. (2016) proposes a method to check if the distributed supervisor
is delay robust with respect to events that are shared among local supervisors. A
number of requirements are stated for a distributed supervisor to be delay robust,
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i.e., a supervisor in which the end-state is not altered by communication delays.
Within these requirements, equality of the language and marked language between
a supervisor with zero delay and a supervisor with finite delay is guaranteed. As
guards and requirements often refer to the state of an automaton, the requirements
for delay robustness are defined in that paper such that local supervisors eventually
reach the same state after delayed events. Definitions from Zhang et al. (2016),
stated below in Equations (7.5) through (7.8) and the automaton of Figure 7.14,
are used to define these requirements.

A global supervisor SUP is defined by n local supervisors: SUP = ||i LOCi,
where i = 1, 2, ..., n. To check delay robustness for a shared event, first, this shared
event is renamed. Say event r is shared between local supervisors LOC1 and
LOC2, where r occurs in LOC1 and is observed by LOC2. r is now renamed to
r’ in LOC2 creating LOC′

2. r, in LOC1, is referred to as a channeled event and
r’ is referred to as a delayed event. Ech represents the set of channeled events.
Next, a channel is defined is shown as in Figure 7.14. Since r is “communicated”
from LOC1 to LOC2, the channel is named CH(1, r, 2).

Using the channel and local supervisors, SUP and SUP′ can be defined as
in equations (7.5) and (7.6). SUP can be seen as the distributed supervisor,
whereas SUP′ is the distributed supervisor where communication delays are
modeled.

SUP = || (LOC1, LOC2) (7.5)

SUP′ = || (LOC1, CH(1, r, 2), LOC′
2) (7.6)

Equations (7.5) and (7.6) show the minimal example with 2 local supervisors
and 1 communicated event. For n local supervisors with multiple shared events,
the definitions in Equations (7.5) and (7.6) are adjusted. For each shared event
r, a channel CH(i, r, j) is defined, where i is the index of the local supervisor
that controls this event, and j the index of the local supervisor observing it. If
multiple channels exist for one event, each channel has its own delayed event.
This results in the following definitions.

SUP = || (LOCj |j ∈ N) (7.7)

SUP′ = || (LOC′
j , CH(i, r, j)|r ∈ Ech(i, j), i ∈ Ij , j ∈ N) (7.8)

Above, N = {1, 2, ..., n}, and Ij is the set of indexes of all supervisors from which
LOCj observes events. Ech(i, j) is the set of all events which LOCj observes
from LOCi and LOC′

j is LOCj with all events in Ech(i, j) renamed to E′
ch(i, j).

Note that if Ij = ∅ for LOCj , i.e., if LOCj does not observe any events from
other local supervisors, LOC′

j = LOCj .
Take supervisor SUP with event set E and channeled events Ech. Let Edelay

be the set of new (delayed) events introduced by the communication channels,
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like shown in Figure 7.14, in which each element r′ is the delayed event of an
event r in Ech, i.e.

Edelay = {r′|r ∈ Ech, r′ is the signal event of r}. (7.9)

Then the event set of SUP′ is E′ = E ∪ Edelay. Let P : E′∗ → E∗ be the natural
projection.

Definition 2: Delay robustness
A supervisor SUP with event set E is said to be delay robust with respect to its
channeled events Ech if the following 5 conditions, defined by Zhang et al. (2016),
hold:

P (L
(
SUP′)) ⊆ L(SUP) (7.10)

P (Lm

(
SUP′)) ⊆ Lm(SUP) (7.11)

P (L
(
SUP′)) ⊇ L(SUP) (7.12)

P (Lm

(
SUP′)) ⊇ Lm(SUP) (7.13)

(∀s ∈ E′∗)(∀w ∈ E∗) s ∈ L(SUP′) ∧ P (s)w ∈ Lm(SUP)
⇒ (∃v ∈ E′∗)P (v) = w ∧ sv ∈ Lm(SUP′)

(7.14)

Intuitively, Equations (7.10) through (7.13) define that anything SUP can do
can also be done by SUP′ (SUP′ is ‘complete’), and anything that is disallowed
by SUP is not possible in SUP′ (SUP′ is ‘correct’). Furthermore, Equation
(7.14) provides the observer property, which defines that the nonblocking property
of SUP is preserved in SUP′.

In this section, sufficient conditions are defined to check if a distributed su-
pervisor is delay robust with respect to its shared events. First, the definitions of
independence and mutual exclusiveness from Malik (2003) are given.

Definition 3: Independence
Two different events r1, r2 ∈ E, with guards g1 and g2 and updates u1 and u2,
respectively, that share starting location q, are said to be independent with respect
to a valuation v, if execution of one event does not disable the other event, and if
the order in which the updates are applied does not affect the outcome.

Formally,

independent(r1, g1, u1, r2, g2, u2, v) =
u1(v) |= g2 ∧ u2(v) |= g1 ∧ u1(u2(v)) = u2(u1(v)).

(7.15)

Two simultaneously enabled events are called independent when after the
execution of either event, the other event is still enabled and either order reaches
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the same state. An example is shown in Figure 7.15, where events a and b are
independent.

Definition 4: Mutual exlusiveness
Given an EFA G with event set E, guard set C, and update set U , two different
events r1, r2 ∈ E with guards g1 and g2, respectively, are said to be mutually
exclusive with respect to a valuation v if guards g1 and g2 never evaluate to True
at the same time, or when event r1 and r2 do not share a starting location q.

Formally,

mutually_exclusive(r1, g1, r2, g2, v) =
¬(v |= g1 ∧ v |= g2)

∨((∀r ∈ E)(∀g ∈ C)(∀u ∈ U) → (q, r, g, u)! ⇒ r ̸= r1)
∨((∀r ∈ E)(∀g ∈ C)(∀u ∈ U) → (q, r, g, u)! ⇒ r ̸= r2).

(7.16)

When two events are never enabled simultaneously, they are called mutually
exclusive. This is the case when they share no starting location, or when their
guard conditions never evaluate to True at the same time. An example of two
mutually exclusive events is shown in Figure 7.16, where the guards of events a
and b never evaluate to True at the same time.

a
do x := x+1

a
do x := x+1

b
do x := x-2

b
do x := x-2

Figure 7.15: Independence

a
when x < 3

b
when x ≥ 3

Figure 7.16: Mutual exclusiveness

A number of assumptions are made in this project, before defining the suffi-
cient conditions for delay robustness. First, it is assumed that communication
occurs with a finite delay and that a series of communicated events between two
supervisors can be modeled by a FIFO queue. This is no issue in practice, as
FIFO communication can be guaranteed by the communication protocol, and the
timescale between communication occurrences is much higher than the timescale
of the communication delay. Note that this does not mean that communication
delays have no effect on the controlled behavior, as the timescale of the com-
munication delay and the time-scale of the PLC cycle are the same. Second, it
is assumed that an event r is always followed by its delayed event r′ before a
second occurrence of event r, as is modeled by the channels. This is a reasonable
assumption, as in practice the timescale of the communication delay is much
lower than the time between communication occurrences.
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Theorem 1:
If for every location q ∈ Q′ where a delayed event r′ ∈ Edelay is enabled, r′ is
either independent or mutually exclusive with respect to all other events r ∈ E′

with associated guard g and update u, then SUP is delay robust.
More formally,

((∀q ∈ Q′)(∀r′ ∈ Edelay)(∀r ∈ E′) → (q, r′, true, −)! ∧ (∃g ∈ G)(∃u ∈ U) → (q, r, g, u)! ⇒

independent(r′, True, −, r, g, u, v) ∨ mutually_exclusive(r′, True, r, g, v))
=⇒ SUP is delay robust.

(7.17)

A proof of Theorem 1 is provided in the next section.
In Reijnen et al. (2019b), an algorithm is provided to check if a supervisor is

confluent. Confluence is proven if, among other options, event combinations are
independent or mutually exclusive. These checks for independence and mutual
exclusiveness, that are part of the algorithm presented in Reijnen et al. (2019b),
are used in this project to check the delayed events in SUP′. If all delayed events
are independent or mutually exclusive, the distributed supervisor SUP is delay
robust.

The proposed delay-robustness check works pairwise over all event combina-
tions consisting of a local event and a communicated event. This means that
the worst-case time complexity of the check is O(n2) with n the number of
controllable events in the plant.

It should be noted that event combinations of two delayed events that origi-
nate from the same local supervisor need not be checked. This is because the
communication channels are assumed to be FIFO queues, so the event order of
these two delayed events is preserved.

7.5.3 Proof of Theorem 1
In this section, a proof of Theorem 1 is provided. First, some intermediate results
are provided in Lemmas 1 through 3.

Lemma 1:
By definition of SUP′ and by definition of channels, in a location reached by
channeled event r, the corresponding delayed event r′ is always enabled.

Lemma 2:
An event r is only enabled after a string s ∈ L(SUP′), if for every occurrence of
event r in s, s contains an event r′, due to the definition of the channels.

Definition 5: Delay-free string
A string s is defined as a delay-free string if and only if every channeled



130 Chapter 7. Distributed supervisory controllers

event r in s is directly followed by the corresponding delayed event r′, es-
sentially meaning that no delay has occurred. Note that for every delay-free
string s ∈ L(SUP′), P (s) ∈ L(SUP). Similarly, for every delay-free string
s ∈ Lm(SUP′), P (s) ∈ Lm(SUP).

Lemma 3:
For any string s ∈ L(SUP′), where any channeled event is at some point followed
by its delayed event, there exists a delay-free string s′ such that P (s) = P (s′)
and (q0, v0) s7−→= (q0, v0) s′

7−→. This is true as any delayed event is independent
or mutually exclusive with all other events, following Lemma 1. For example,
consider a string s1rs2r′s3 ∈ L(SUP′) such that s1 ∈ E∗, s2 ∈ E∗, s3 ∈ E∗. Note
that P (s1rs2r′s3) = s1rs2s3 = P (s1rr′s2s3), moreover, as r′ is independent with
its simultaneously enabled events, (q0, v0) s1rs2r′s37−−−−−−→= (q0, v0) s1rr′s2s37−−−−−−→. Here,
s1rr′s2s3 is a delay-free string as every channeled event, in this case r, is directly
followed by its delayed event, in this case r′.

Now a proof is provided for every condition in Equations (7.10) through (7.14).

Condition 1: Equation 7.10
It is proven by induction on the length of s that:

(∀s ∈ L(SUP′))P (s) ∈ L(SUP).
Base step: ϵ ∈ L(SUP′) and ϵ ∈ L(SUP), trivially.
Inductive step: suppose t ∈ L(SUP′), P (t) ∈ L(SUP) and ta ∈ L(SUP′), we
must prove that P (ta) ∈ L(SUP).
Following Lemma 2, two possible cases are identified:

1. t contains a delayed event for every occurrence of a channeled event, (i.e.
no delayed event is enabled in (q0, v0) t7−→).

2. t does not contain a delayed event for every occurrence of a channeled event,
(i.e. at least one delayed event is enabled in (q0, v0) t7−→).

In case 1), following Lemma 3, (∃t′ ∈ L(SUP′)) (q0, v0) t′

7−→= (q0, v0) t7−→,
where t′ is a delay-free string. In this case, a cannot be a delayed event, as every
delayed event is disabled by its channel, i.e. ta /∈ L(SUP′). If a is a channeled
event, t′aa′ ∈ L(SUP′) is again a delay-free string as every channeled event
is directly followed by its delayed event. Now, P (ta) = P (t′a) = P (t′aa′) ∈
L(SUP). If a is not a channeled event, t′a is a delay-free string. Therefore,
P (ta) = P (t′a) ∈ L(SUP).

In case 2), ta can be extended with a string of delayed events d, such that
the string tad ∈ L(SUP′) contains a delayed event for every occurrence of a
channeled event. Therefore, P (tad) = P (ta) and following Lemma 3 there exists
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a delay-free string t′ ∈ L(SUP′) such that (q0, v0) t′

7−→= (q0, v0) tad7−−→). Now,
P (ta) = P (tad) = P (t′) ∈ L(SUP).

In both the cases, (∀a ∈ E′) ta ∈ L(SUP′) it is proven that P (ta) ∈ L(SUP),
therefore condition 1 holds.

Condition 2: Equation 7.11
Condition 2 holds if: (∀s ∈ Lm(SUP′))P (s) ∈ Lm(SUP).

Any string s ∈ Lm(SUP′) contains a delayed event for every occurrence of
a channeled event, otherwise s does not reach a marked state by definition of
channels. Therefore, following Lemma 3, for every string s ∈ Lm(SUP′) there
exists a delay-free string s′ such that (q0, v0) s′

7−→= (q0, v0) s7−→ and P (s) = P (s′).
Hence, P (s) ∈ Lm(SUP) by definition of delay-free strings.

Condition 3: Equation 7.12
Condition 3 holds if: (∀s ∈ L(SUP)) s ∈ P (L(SUP′)).

Following Lemma 3, for any string s, a delay-free string s′ ∈ L(SUP′) can be
created by replacing any channeled event in s by the channeled event directly
followed by its delayed event. For example, if s contains a channeled event r,
create s′ by replacing every occurrence of r by rr′. By definition of the channels,
SUP′ must allow such a delay-free string. As s′ ∈ L(SUP′), it must hold that
s = P (s′) ∈ P (L(SUP′)).

Condition 4: Equation 7.13
Condition 4 holds if: (∀s ∈ Lm(SUP)) s ∈ P (Lm(SUP′)).

Following Lemma 3, for any string s, a delay-free string s′ ∈ Lm(SUP′) can
be created by replacing any channeled event in s by the channeled event directly
followed by its delayed event, as is done for Condition 3. Following Lemma 1,
SUP′ must allow such a delay-free string. As s′ ∈ Lm(SUP′), it must hold that
s = P (s′) ∈ P (Lm(SUP′)).

Condition 5: Equation 7.14
Following Lemma 2, two possible cases are identified:

• s contains a delayed event for every occurrence of a channeled event, (i.e.
no delayed event is enabled in (q0, v0) t7−→.)

• s does not contain a delayed event for every occurrence of a channeled event,
(i.e. at least one delayed event is enabled in (q0, v0) t7−→.)

In case 1), due to the independence of delayed events with their simultaneously
enabled events, following Lemma 3, (∃s′ ∈ L(SUP′)) (q0, v0) s′

7−→= (q0, v0) s7−→,
where s′ is a delay-free string. Next, for any string w a delay-free string w′ can
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be created as is done for Condition 3. Let v = w′, then P (v) = w. Moreover,
as s′v is a delay-free string and P (s′v) = P (s)w ∈ Lm(SUP), it must hold that
s′v ∈ Lm(SUP′) ⇒ sv ∈ Lm(SUP′).

In case 2), s can be extended with a string of delayed events y, such that the
string sy ∈ L(SUP′) contains a delayed event for every occurrence of a channeled
event. For sy it must hold that (∃s′ ∈ L(SUP′)) (q0, v0) s′

7−→= (q0, v0) sy7−→,
due to the independence of delayed events with their simultaneously enabled
events. Next, for any string w a delay-free string w′ can be created following
Lemma 3 as is done for Condition 3. Let v = yw′, then P (v) = w. Due to
the independence of delayed events with their simultaneously enabled events,
following Lemma 1, (∃z′ ∈ L(SUP′)) (q0, v0) f ′

7−→= (q0, v0) s′w′

7−−−→= (q0, v0) syw′

7−−−→.
As z′ is a delay-free string and P (z′) = P (s)w ∈ Lm(SUP), it must hold that
z′ ∈ Lm(SUP′) ⇒ sv ∈ Lm(SUP′).

This completes the proof of Theorem 1.

7.5.4 Mutual exclusion

If a supervisor is not delay robust with respect to a delayed event, this event is
denoted a delay-critical event. Each event combination with such an event is called
a delay-critical event combination. When a distributed supervisor contains such
combinations, nonblockingness, safety, and controllability cannot be guaranteed.
Therefore, the supervisor needs to be adjusted. The first option is to change the
model of the system such that the supervisor no longer contains delay-critical
event combinations. This is only possible in specific situations, and currently no
guidelines exist to identify such situations. The second option is less desirable, but
it is always possible. Using mutex algorithms, it is possible to enforce the mutual
exclusiveness of the delay-critical event combinations in the global supervisor
SUP. The event combinations are, therefore, no longer delay-critical.

The undesirable part of implementing mutex algorithms is the fact that
delay-critical events must always first be enabled by the mutex algorithm before
the event can be executed. In practice, this means that the execution of a
delay-critical event in a distributed settings may take more time compared to
a monolithic setting. As the timescale of these delays is much smaller than the
timescale at which these events are executed, this is not a problem in the type of
systems considered in this thesis.

A mutex implementation process is described here based on theory of Raynal
(2013). An implementation of a mutex algorithm in the model is referred to as a
mutex lock. A delay-critical event combination of events r′ and a, can be made
mutually exclusive by implementing a mutex lock for events r and a that ensures
that events r and a are always disabled by the corresponding local supervisor,
unless it has entered the critical section. Note that this only holds under the



7.5. Step 2: Distributing the supervisor 133

FIFO queue assumption. A home-based token passing algorithm is used, as this
is a simple and efficient algorithm for low numbers of processes.

For each mutex lock, a home process and an away process are defined. The
away process is modeled by an automaton (Figure 7.17) that models the request
procedure, and three requirements (Table 7.1) that contain a request and a return
condition. Depending on the event (crit_event) that is to be made mutually
exclusive, these conditions state when the event is available and when it has
occurred, respectively.

Table 7.1: Requirements for the away process

1 requirement request needs RequestCondition
2 requirement return needs ReturnCondition
3 requirement crit_event needs Requester.Received

Idle Requested Received
request receive

return

Figure 7.17: Request procedure

Home Awaysend

receive

Figure 7.18: Token tracker

The home process consists of an automaton for the token tracker (Figure 7.18)
and two requirements (Table 7.2). An input R, modeled as a sensor similar to
the automaton shown in Figure 7.16, is on if the away process is requesting the
token, i.e., R turns on if the away process Requester automaton is in the state
Requested. Similar to the away process, the home process has a return condition
to ensure the token is not sent before the critical event is taken.

Table 7.2: Requirements for the home process

1 requirement send needs ReturnCondition ∧ R.on
2 requirement crit_event needs Tracker.Home

As a mutex lock is implemented for each delay-critical event combination, it is
possible that an event is the critical event in multiple mutex locks. Deadlock can
occur if there exists an overlap in critical sections, as each process might need the
token of the other, called a cyclic dependency. To prevent this, the mutex locks
are ordered. The order in which tokens are acquired is controlled by adjusting
the RequestCondition, such that a lock can only be acquired if locks earlier in
the order are already acquired, thus breaking the cyclic dependency.
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7.5.5 Mutex implementation decision

Implementing mutex locks increases the state space of the local supervisors, as
they introduce additional automata to the plant. Each mutex that is implemented
increases the state space by a factor 4 for the home process, and a factor 3 for
the away process. One of the goals of obtaining a distributed controller is the
smaller state space sizes of the local supervisors. Therefore, the increase in state
space size due to mutexes should be kept to a minimum.

In order to do this, it is possible to implement mutex locks for two sets of
events instead of for two events. The crit_event in each process of the mutex is
then replaced by a critical event set. All events of the home process set are then
mutually exclusive with all events of the away process set. This means that fewer
mutexes need to be implemented for a certain number of delay-critical events, at
the cost that events can be unnecessarily disabled.

To minimize the negative effect of mutex locks, the mutex event sets are
chosen in a smart way. To do this, first it is determined which delay-critical event
pairs are eligible to be combined in one mutex lock. This is the case when they
are communicated between the same two PLCs, and have the same home process.
To minimize the number of mutex locks, delay-critical event pairs are combined
when they have the same request condition in the away process. This is typically
the case when an event in the away process is delay-critical with multiple events
in the home process.

7.5.6 Application to pump-cellar system

In Subsection 7.4.3, a clustering for the pump-cellar system was determined.
Based on this clustering, the multilevel synthesis procedure is performed. The
multilevel tree is depicted on the left of the clustered DSM in Figure 7.12. The tree
contains a supervisor for each cluster, as well as a supervisor for each individual
component. The resulting multilevel supervisor consists of a set of 25 supervisors.
The advantage of using multilevel synthesis as a basis for localization, is that
only supervisor Sup25 refers to components of the three main clusters, and is
thus the only supervisor that needs to be localized.

The first step in distributing this multilevel supervisor is localization. As the
distributed supervisor is implemented on three PLCs, three local supervisors,
LOC1, LOC2, and LOC3, are created. LOC1 is created using supervisors 1-8,
22, and 25, LOC2 is created using supervisors 9-15, 23, and 25, and LOC3 is
created using supervisors 16-21 and 24-25. In all three cases Sup25 is the only
supervisor that needs to be adjusted. Sup25 adjusted for LOC1, LOC2, and
LOC3 is referred to as Sup25a, Sup25b, and Sup25c, respectively.

When Sup25 is adjusted to Sup25a, the requirements and guards that disable
events in components G7 − G21 are removed, so it does not disable any events
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from those components. The remaining requirements in Sup25a do not refer to
components G7 − G21, so the localization of Sup25a is finished.

To create Sup25b, all requirements and guards in Sup25 that disable events in
components G1 − G8 and G16 − G21 are removed. The remaining requirements
still refer to components G1 and G2, so observer automata are added to Sup25b

for these components.
Finally, Sup25c is created similarly to Sup25b, where observer automata are

added for components G1 and G2.
The next step is to check for delay robustness. As LOC2 and LOC3 contain

observer components G1 and G2, the events of these components are delayed
events in LOC2 and LOC3. The delay-robustness check discussed in Subsection
7.5.2 is used to check if the distributed supervisor is delay robust with respect to
these events. The check indicates a set of 18 event combinations for both LOC2
and LOC3 that are neither independent nor mutually exclusive, resulting in a
total of 36 delay-critical event combinations.

The final step is setting up mutexes for these 36 event combinations. Following
the guidelines set in Subsection 7.5.5, event sets are chosen such that the 36 event
combinations are made mutually exclusive using 4 mutex locks. An example of a
delay-critical event combination is event c_operational′ in the first traffic tube
component (G1) and event c_store in the Mode automaton of head pump cellar 1
(G13). Event c_operational is in the critical event set of the home process of the
mutex lock, and c_store is in the critical event set of the away process. Therefore,
these events are now mutually exclusive. The resulting distributed supervisor
is nonblocking, safe, and controllable, following the theory of Ouedraogo et al.
(2011) and Cai and Wonham (2010), and it is delay robust following the theory
of Zhang et al. (2016) and Proposition 1.

7.6 Case study: The Swalmen tunnel
In this section, a real-life case study is described in which a distributed supervisor
is obtained and implemented for a road tunnel. The Swalmen tunnel is a road
tunnel in the Netherlands that is previously introduced in Section 6.1.

A road tunnel supervisor has two main purposes: monitoring the situation in
the traffic tubes to detect an emergency, and subsequently handling the emergency
by closing the traffic tubes and turning on evacuation systems.

In previous work the Swalmen tunnel was modeled using 180 automata and
414 requirements, from which a supervisor is synthesized with approximately 1071

states. The complete model can be found in a repository2.
Deriving a distributed supervisory controller for a road tunnel is of industrial

importance, since a typical tunnel in the Netherlands is controlled by up to 10
PLCs.

2https://github.com/LMoormann/Swalmentunnel

https://github.com/LMoormann/Swalmentunnel
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7.6.1 Distributing the system
To obtain a distribution of the Swalmen tunnel, a DSM is created using the
MRPS of the Swalmen tunnel and the requirements. This DSM is clustered
using the conclusions of the parameter study in Subsection 7.4.2. The clustering
parameters that are used are α = 2, β = 1.05, µ = 1.5, γ = 30. These parameters
result in a small number of dependencies outside of the clusters, but the generated
number of clusters exceeds the available number of PLCs. Therefore, in the end
we manually combine some generated clusters, whereby smaller clusters that
have dependencies outside the cluster are combined to reduce the number of
dependencies outside the clusters, and more evenly distribute the components
over the clusters. The final clustering is shown in Figure 7.19, which contains
three clusters, as the goal is to distribute the controller over three PLCs, and four
dependencies lie outside of the clusters, meaning that communication is required.
The text in Figure 7.19 indicates which tunnel components are part of which
cluster.
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Figure 7.19: Clustered Swalmen tunnel DSM
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7.6.2 Distributing the supervisor
The global supervisor is localized into three local supervisors following the distri-
bution of the clustered DSM in Figure 7.19. Observer automata are added to
local supervisors 2 and 3, as they require information of each other.

Secondly, delay-critical event pairs are identified by checking for delay robust-
ness, using the algorithm described in Subsection 7.5.2. 28 events are shared,
resulting in 20440 event pairs that are analyzed. Of these pairs, 454 are delay
critical.

For the delay-critical event pairs, mutex locks are implemented to enforce
mutual exclusion. Following the guidelines of Subsection 7.5.5, 28 mutex locks are
implemented for the 454 delay-critical event pairs. Local supervisor 2 is chosen
as the home process of 20 of the mutex locks, and local supervisor 3 is the home
process of the remaining 8, as this results in the lowest number of required locks.

7.6.3 Implemented performance analysis
The local supervisors are implemented on a HIL setup to validate the controlled
behavior using the actual control hardware. The HIL setup consists of three
PLCs of type ABB AC800M PM866A that can communicate over an Ethernet
connection, and two laptops that simulate and visualize the operator interface
and the virtual tunnel, respectively. The implemented PLC code is automatically
generated from the local supervisors. Subsequently, communication is set up
between the PLCs using the ABB control builder software. Time delays based on
Kostenko (2019) are simulated for reading inputs and writing outputs.

To analyze the results of the distributed controller, two tests are performed:
one where the global supervisor is implemented on a single PLC and one where
the local supervisors are implemented on three PLCs. The results are shown in
Table 7.3.

Table 7.3: Results of the HIL tests

Single PLC Local 1 Local 2 Local 3
File size 673kb 65kb 463kb 595kb
Cycle time 17ms 10ms 10ms 12ms
Lines of code 17620 1727 7485 13507
Inputs 260 35 61 188
Outputs 46 11 13 46

As can be seen in Table 7.3, the file size of each of the local controllers is
smaller than that of the global controller, meaning that distributing the controller
has decreased the needed PLC memory. When looking at the cycle times, it is
seen that the single PLC is slower than the individual local PLCs. Local PLC
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1 and 2 achieve the optimal cycle time, which cannot be lower than 10ms. To
give a further indication of the improvement in performance of the distributed
controllers, the number of lines of code that is run each cycle is compared. Here,
it is seen that each of the local controllers runs more quickly than the global
controller. Furthermore, comparing the inputs and outputs of the global controller
and the local controllers also indicates that the read/write process is faster in the
distributed setting.

7.7 Concluding remarks
In this chapter, a method for developing distributed supervisors is presented,
based on supervisor synthesis, localization theory, DSMs, and delay-robustness
theory to take into account communication delays. The resulting distributed
supervisor is delay robust, nonblocking, controllable and safe. The method is
demonstrated by developing a distributed supervisor for a pump-cellar system.

The method consists of two main steps, being the distribution of the system
and the distribution of the supervisor. The system is distributed using DSMs,
and a parameter study is performed to gain insight in the relation between the
clustering parameters and the desired properties of a distributed supervisor.

In the second step the supervisor is distributed, which introduces commu-
nication between the local supervisors. As communication can have delays, a
delay-robustness check is proposed and implemented to determine whether a
combination of events is delay robust by checking for independence and mutual
exclusiveness. In the case of delay-critical event combinations, mutual exclusive-
ness is enforced by implementing mutex locks. To counteract the increase in
state space due to the introduction of mutex locks, guidelines are proposed to
determine sets of events that are covered by the same mutex lock.

Finally, two HIL tests are performed to compare the global controller imple-
mentation to the distributed controller implementation. These tests show that
the distributed controller requires less memory and achieves higher performance
results than the global controller.

The method has been applied in a real-life case study, where a supervisor is
synthesized, distributed, and implemented for the Swalmen tunnel, a road tunnel
in the Netherlands.

The proposed method uses the top-down approach of localization, for which
synthesis of a global supervisor is required. For large-scale systems this might
prove to be impossible, so more research is needed to investigate bottom-up
methods, as for example have been proposed by Su et al. (2010).



Chapter 8

Digital twins for road
tunnels

Over the recent years, a digitization trend can be seen in the design process
of road tunnel systems. Where traditionally the design process was mostly
document-based, nowadays many types of digital models are used. Existing
studies, such as Lidström (1998), Min et al. (2008), and Borg et al. (2014), have
shown the applicability of digital models in the design of road tunnels. The
concept of creating such digital models, explained in Kensek (2014) and Hardin
and McCool (2015), is called building information modeling (BIM) in which
multiple facets of infrastructural design are integrated in a single model, called
a digital twin. In Pires et al. (2019), a digital twin is most generally described
as the digital copy of a physical object or system, that is connected and shares
functional and/or operational data. Digital twins are seen as an important part
of the Industry 4.0 initiative, as is reported in Pires et al. (2019), which represents
an industrial shift towards digitization. Digital twins are expected to play a
major role in this shift, by enabling performance boosts with the use of high-end
simulations in development and maintenance of systems.

The application field of digital twins is very broad. Some examples include
connected and automated mobility of smart vehicles Schranz et al. (2020), road
traffic control to improve traffic flows Kumar et al. (2018), development of
algorithms for autonomous driving Atorf and Roßmann (2018), and digital twin
simulation for train operation and control Meng et al. (2020).

This chapter is based on: Moormann, L., van Hegelsom, J., van de Mortel-Fronczak, J.M.,
Maessen, P., Fokkink, W.J., and Rooda, J.E. Digital twins for the validation of road tunnel
controllers. In ITA-AITES World Tunnel Congress, WTC2022 and 47th General Assembly,
2022.
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In the field of road tunnels, digital twins are mostly used for designing
underground constructions. Lidström (1998), Min et al. (2008), and Borg et al.
(2014) showcase the use of digital models in the design and construction of road
tunnels, though controller design is often omitted. The Center for Underground
Construction in the Netherlands is a network organization that gathers, creates
and spreads knowledge about usage of underground spaces such as tunnels.
This organization has written a document in which possible advantages and
disadvantages of using digital twins in the field of underground construction are
discussed Centrum Ondergronds Bouwen (2021). The document mentions several
exploratory studies, though no conclusions are drawn.

In Nooijens (2020), a study is performed on the use of digital twins in
the exploitation phase of infrastructural systems, focused on management and
maintenance of information for a tunnel and a waterway lock. They conclude
that a digital twin can increase the maintenance performance through overall
improved information provision. Another study related to using digital twins in
the maintenance and operation of tunnels is found in Tijs (2020), where interviews
with end users are held that identify that possible advantages lie in the domain
of monitoring, predicting, and controlling.

Road tunnels are controlled by a supervisory controller to ensure safe operation
of the tunnel by guaranteeing proper cooperation between its components. In the
previous chapters, it is shown how a supervisory controller for a road tunnel is
automatically synthesized from a model of the plant and a model of the controller
requirements. Advantages of synthesizing the supervisory controller include a
much shorter time-to-market and the guarantee that the controller always adheres
to the defined requirements. An important step, however, remains the validation
of the controller. While the synthesized controller is guaranteed to adhere to the
requirements, it is still possible to define incorrect or incomplete requirements.

Validation is traditionally performed using tests on the realized systems, but
with the digitization trend in the design process, as well as advances in model-
based engineering, the use of simulation for the purpose of controller validation
is becoming more popular. In simulations, the designed controller is connected
to a model of the system to run through possible scenarios while observing the
response of the controller.

In this chapter, the advantages of combining digital twin simulation and
synthesis-based design are discussed. This combination provides advantages for
several purposes. First, a digital twin is more easily created when an unambiguous
description of the plant is available, as is the case when the system is modeled
using automata. Second, a controller can more intuitively and extensively be
validated when it is connected to a digital twin. Third, when a supervisory
controller is connected to a digital twin, it can be used for the purpose of operator
training, which is an important aspect in the case of road tunnel systems.

This chapter is structured as follows. Section 8.1 describes the design process
of a digital twin for a road tunnel. Next, Section 8.2 discusses the benefits of
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using digital twins in the validation process of supervisory controllers. In Section
8.3, the use of digital twins in combination with supervisory controllers for the
purpose of operator training is discussed. Finally, in Section 8.4, concluding
remarks are given.

8.1 Development of a digital twin

In this section, the development of a digital twin for a road tunnel is described.
Specifically, examples related to the digital twin for the Swalmen tunnel are given.
First, the process of designing the digital twin is described in Subsection 8.1.1.
Next, Subsection 8.1.2 covers the process of connecting the digital twin to the
HIL setup.

8.1.1 Designing the digital twin

In the design process of the supervisory controller and the digital twin, various
software tools are used. Figure 8.1 gives an overview of these tools. The
tools shown in the top row are used for the purpose of controller design and
implementation, as described in Chapters 4 and 6, and the tools shown in the
bottom row are used for the design of the digital twin.

Most work on designing a digital twin is done in Unity, which is a 3D game
engine that is described in Nicoll and Keogh (2019). In this engine, 3D models can
be created of all the system components. In many cases, existing 3D models can
be imported from SketchUp, introduced in Chopra (2012). Besides visualization of
the 3D models, behavior of the components is also modeled in Unity using behavior
scrips. This behavior includes how components can move, how components act
when they collide with other components, and how they can transform, e.g. by
changing color. As the goal of this chapter is to investigate the possibilities of
combining digital twins with supervisory controller design, the digital twin is
connected to a PLC on which the supervisory controller is implemented. The
Prespective software, a plug-in for Unity that is described in Prespective (2021),
is used to allow the digital twin to be connected to the I/O of the PLC. By
incorporating the I/O signals of the PLC in the behavior scripts of the digital
twin, the actuator components can move according to the PLC outputs, and
the sensor components can send input signals to the PLC. Listing 8.1 shows an
example of the behavior script of a boom barrier in which actuator and sensor
signals are connected to the I/O of the PLC. The connection between the digital
twin and the PLC is described in more detail in Subsection 8.1.2. Some digital
twin design examples are elaborated here for components in the Swalmen tunnel.
A complete overview of the digital twin can be found in van Hegelsom (2021).
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Figure 8.1: Overview of the tools used in the controller design process and the digital
twin design process.

Static environment and vehicles

The first part in designing a digital twin for a road tunnel is designing the static
environment of the tunnel. This includes the tunnel structure, the highway
lanes, and the surrounding environment, which are the largest 3D models in the
digital twin and act as a basis for the other components. The model of the static
environment is made in a modular way, as can be seen on the left in Figure 8.2.
The tunnel parts shown here are a generic road section, a road section with room
for an emergency passage, a tunnel entrance section, and a tunnel middle section.
These parts are then used to build the environment in Unity. The main advantage
of this way of assembling the tunnel is that the road before and after the tunnel
and the tunnel itself can be made as long as desired, without having to change
the 3D models. Also, the number of models that need to be designed is smaller,
since the entrance is used twice for example.

Figure 8.2: Modeled tunnel parts in SketchUp (left) and the tunnel environment built
from these parts in Unity (right).

Since the Swalmen tunnel is a tunnel for road traffic, the traffic stream is
the most important non-controllable entity that has a lot of interaction with
the controlled components in the tunnel. The traffic stream in the 3D model is
composed of a collection of cars and trucks shown in Figure 8.3. The vehicles are
described in detail below the figure, from left to right.
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Figure 8.3: The four vehicles modeled in the digital twin.

High large truck This vehicle should not enter the tunnel, as it is too high
(> 4.1 [m]) and can damage equipment mounted on the ceiling of the
tunnel or the ceiling itself. The model is 16.6 [m] long and 4.65 [m]
high.

Low large truck This long vehicle can safely enter the tunnel. Its dimen-
sions are 16.6 [m] long and 3.65 [m] high.

Small truck This vehicle is also allowed to enter the tunnel and is mainly
there to get more variety in the traffic stream. The small truck is 6.6
[m] long and 3.25 [m] high.

Car Most of the vehicles on the highway are standard cars. The cars in the
digital twin can have different colors. They are 4.2 [m] long and 1.4 [m]
high.

Boom barriers

The boom barriers in the tunnel are an example of a controllable entity that must
be able to respond to an output signal of the controller, and send back input
signals to the controller depending on the current position.

First, a 3D model of a boom barrier is obtained in SketchUp and imported
to Unity. This 3D model is shown in Figure 8.4. It consists of the base on the
left-hand side and the actual barrier indicated by the blue box.

Figure 8.4: The boom barrier entity in SketchUp. The whole group is represented with
the dotted box and the barrier itself is its own group, shown by the blue box.
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To create a moving boom barrier in the digital twin, a behavior script for
a rotational joint is added in the model, shown in Listing 8.1, which has two
functions. First, it assigns a variable to the rotational position and direction of
the boom barrier, Motor.Position and Motor.Direction, respectively. Second,
it links variables to the actuators and sensors of the boom barrier. The variable
Motor.Direction is linked to ActuatorUp and ActuatorDown to rotate the boom
barrier when the actuators are on. Furthermore, the sensor values are linked
to the variable Motor.Position to turn the sensors on and off at the correct
position.

// Enable events based on the actuator states
if ( IO_dict [" ActuatorUp "]. Boolean ) { Motor . Direction = 1; }
else if ( IO_dict [" ActuatorDown "]. Boolean ) { Motor . Direction = -1; }
else if ( IO_dict [" ActuatorStop "]. Boolean ) { Motor . Direction = 0; }
else { Motor . Direction = 0; }

// Set the sensor values based on position
IO_dict [" SensorOpen "]. Boolean =
Mathf .Abs( Motor .Open - Motor . Position ) < SensorOffset ;
IO_dict [" SensorOpening "]. Boolean =
Mathf .Abs( Motor . Closed - Motor . Position ) < SensorOffset ;
IO_dict [" SensorStopped "]. Boolean = Motor . Direction == 0;
IO_dict [" SensorClosing "]. Boolean = Motor . Direction == 1;
IO_dict [" SensorClosed "]. Boolean = Motor . Direction == -1;

Listing 8.1: Behavior script of the rotational joint.

The final step is to connect the variables that are declared in the behavior
script to the I/O of the PLC, which is done using the Prespective plug-in.

Aid cabinets

Aid cabinets in the traffic tubes are a type of component that provides input
signals for the controller. An aid cabinet can be opened and one of the tools in
the aid cabinet can be taken out and used. Each of these actions is registered
by a sensor and communicated to the controller. Modeling an aid cabinet in the
digital twin, as shown in Figure 8.5, provides an interactive model where the user
can click on a component to open or use it.

CCTV system

The CCTV system adds an element to the digital twin that can be modeled much
more realistically in Unity compared to a 2D visualization. This is because Unity
supports cameras that can render to a texture, which can be projected onto a
plane. This means that camera GameObjects can be positioned in the scene and
the views can be displayed on TV screens in a control room in the digital twin.

This implementation is shown in Figure 8.6 below, where four camera views
are shown as can be seen from the control room. On the right-hand side of the
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Figure 8.5: Digital twin model of an aid cabinets C (left) and an aid cabinet A (right).

figure, a camera is shown that renders the view on the top right screen. The white
thin lines coming from the camera object on the right represent the viewpoint of
the CCTV camera.

Figure 8.6: Four TV screen views rendered from CCTV cameras in the digital twin
(left), and one of the corresponding camera positions in the digital twin (right).

Swalmen tunnel

To give an indication of the fidelity of the digital twin, a comparison between a
photo of the real Swalmen tunnel and the same view in the digital twin is shown
in Figure 8.7.

8.1.2 Connection to the HIL setup
To use a digital twin in combination with a supervisory controller, the signals of
the digital twin must be connected to signals of the controller. In this section,
the process of connecting a digital twin to a PLC in a HIL setup is described.
Note that, when talking about signals between the digital twin and the PLC,
inputs and outputs are defined from the perspective of the PLC.

Figure 8.8 gives an overview of the variable communication in a HIL setup
where a digital twin is incorporated. The digital twin is shown in the lowest layer,
Layer 1, and contains a set of variables that represent the actuator and sensor
signals in the virtual plant. As mentioned before, the Prespective plug-in of Unity
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Figure 8.7: Comparison of the entrance of the real Swalmen tunnel (adapted from
http://www.jr-consult.nl/projecten/swalmentunnel-a73-32) and the entrance in
the digital twin.

is used to set up the variable connection. Listing 8.1 contains some examples of
these variables related to the actuators and sensors of the boom barrier. In order
to set up communication with the PLC, an Ignition OPC tag is created for each
variable that is stored on an OPC-UA server, as indicated in Layer 2 in Figure
8.8. The Ignition OPC tags are, in turn, connected to the variables in the PLC,
shown in Layer 3. In the case of an ABB PLC, these variables are stored on
an OPC-DA server. Layer 4 is similar to Layer 2 as it again uses Ignition OPC
tags stored on an OPC-UA server, though in this layer the variables represent
data that is important for the GUI. This data includes commands that are sent
from the GUI, or information that must be visualized in the GUI. The GUI itself,
consisting of buttons and visualizations, is shown in Layer 5, and is created in
the Ignition software as explained before in Section 6.3.

8.2 Digital twins for controller validation
One of the goals of combining the possibilities of digital twin simulation with the
design process of supervisory controllers is using the digital twin for the purpose
of controller validation. For this purpose, the synthesis-based design process
shown in Figure 2.1 is adapted to include the digital twin, as can be seen in
Figure 8.9. The advantages of this incorporation work both ways: a digital twin
is more easily created when an unambiguous description of the plant is available,
and a controller can more intuitively and more extensively be validated when a
digital twin is available. Both types of advantages are elaborated here.

The first advantage in digital twin creation is that all possible plant behavior
is unambiguously defined in models P and PH. Furthermore, this information on
the plant behavior can intuitively be obtained by observing 2D model simulations,
e.g. how components should move or interact.

The second advantage in digital twin creation is that the I/O connection
between the controller and the digital twin can be automated. As the controller

http://www.jr-consult.nl/projecten/swalmentunnel-a73-32
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Figure 8.8: Structure of the communication in a HIL setup including a digital twin.

model C is a formal model, event and location names can be imported in the
digital twin, thus making the connection process faster and less error-prone.

The first advantage in controller validation is the more intuitive interface
for the test engineer. During the controller validation, many different scenarios
are inspected in which road user interactions are simulated by the test engineer.
Examples of these interactions are cars that trigger speed detection and height
detection systems, and people that use emergency cabinets and escape doors. For
the test engineer, opening an emergency cabinet by clicking on the door in the
3D visualization is more intuitive than pressing a button in a 2D simulation.

The second advantage in controller validation is the high-fidelity tunnel
environment. A test engineer can recognize aspects such as smoke formation and
light levels more easily and quickly as they can be simulated more realistically
in the digital twin. Furthermore, as moving cars can respond to a closed traffic
tube, the closing procedure is more realistic and shows at what point cars stop
entering the traffic tube.

The third advantage in controller validation is the possibility to test compo-
nents in the tunnel that cannot easily be visualized in a 2D simulation. Examples
include the sound systems and the cameras in the tunnel. Sound systems need
to be tuned correctly to avoid overlapping messages and echoes. In the digital
twin, sounds can be played and the sound tuning can therefore be validated more
extensively compared to 2D simulations. Cameras are used by the operator to
monitor the tunnel. In the 3D digital twin, cameras can be simulated and their
recordings can be streamed to a video wall at the operator interface. This way,
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Figure 8.9: Synthesis-based design process extended with a digital twin.

the test engineer sees the same images that would be visible in the real-world
tunnel.

There are also two disadvantages to incorporating digital twins in the synthesis-
based design method. The first disadvantage is the data required to create a
digital twin. To create an intuitive tunnel environment with high fidelity, the
digital twin should closely resemble the (to be) realized tunnel. This means that
data of the plant design of the tunnel is required at an early stage in the design
process. This is, however, often not a problem, as only a basic design of the plant
is needed to create an adequate digital twin, and the digital twin can be updated
when a more detailed plant design is available.

A second disadvantage is the additional design effort that is needed to create
the digital twin. As the digital twin is more realistic than a 2D simulation model,
more effort is involved with creating 3D models and writing behavior scripts for
the components. In the category of large systems with complex controllers, to
which tunnels belong, the gained advantages outweigh the additional effort that
is needed.

8.3 Digital twins for operator training
A second goal of combining digital twin simulation and the design process of
supervisory controllers is involving the road tunnel operators. As mentioned
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in Chapter 3, road tunnel systems are at all times monitored by road tunnel
operators that can intervene when deemed necessary. Monitoring happens using
the GUI of the road tunnel and through CCTV images. When a road tunnel
operator deems it necessary to intervene, the GUI is used to send commands to
systems in the tunnel, e.g. to turn up the ventilation or the lighting. Note that
the supervisory controller is always active, and will not execute a given command
if it contradicts the controller requirements.

As road tunnel operators are the only users of the road tunnel systems, traffic
users excluded, it is beneficial to involve them in the supervisory controller design
process at an early stage. Practice shows that the road tunnel operators are the
most knowledgeable people in terms of supervisory controllers for road tunnels,
so incorporating their professional views during the validation process of the
supervisory controller increases the quality of the controller. For this purpose, the
availability of a digital twin is important, as it provides a high-fidelity simulation
model in which the GUI, control room, and CCTV images are as realistic as
possible.

Conversely, having a digital twin of a road tunnel also provides benefits in
the training process of road tunnel operators. Operators have to be well-trained
to understand the functionality of a road tunnel controller, and to be able to
execute safety procedures in the case of an emergency. Operator training is thus
of high importance, and the availability of a road tunnel digital twin that is
connected to an executable supervisory controller facilitates this training process.
A first benefit of training using a digital twin is the increased safety, as errors
made in the digital twin do not affect the real world tunnel or its traffic users.
Second, training in a digital twin provides more and cheaper possibilities for test
scenarios. For example, performing a test where fire arises from a car crash and
smoke forms in the tunnel is difficult and costly to execute in a real-life tunnel.
A similar test in a digital twin is, however, much simpler, safer, and cheaper. A
third benefit of training operators using a digital twin is the fact that the real
tunnel does not need to be shut down, which increases the availability of the road
tunnel system.

8.4 Concluding remarks
This chapter combines synthesis-based design and digital twin development. More
specifically, it describes the advantages of creating a digital twin when a plant
model is available, and the advantages of using a digital twin in the validation
process of the synthesized controller and in the process of operator training.

In the context of validating the synthesized controller, the advantages include
the unambiguously defined plant behavior, the automated I/O connection, the
intuitive simulation interface, the high-fidelity tunnel environment, and the
possibility to test components that cannot easily be visualized in a 2D simulation.
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On the other hand, disadvantages are discussed that are mainly related to the
additional work that is required to create the digital twin.

This chapter also describes the possibilities of combining a digital twin with
an executable supervisory controller for the purpose of operator training. First,
these possibilities include the involvement of road tunnel operators in an early
design stage of the supervisory controller, which increases the controller quality
as their professional views can be applied to the controller design. Second, the
availability of a digital twin that is connected to a supervisory controller allows
road tunnel operators in training to practice on a digital version of the system.
This is safer, as errors made do not affect the realized tunnel, provides more
possibilities for testing scenarios, and increases the availability, as the realized
tunnel does not need to be shut down for training purposes.

The contributions of this chapter are illustrated in the Swalmen tunnel case
study. Future work related to this study includes the steps towards realization,
in which components in the digital twin are one by one replaced by physical
components to perform the final system tests.
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Concluding remarks

This chapter concludes this thesis. First, the research questions that are posed
in Section 1.3 are answered in Section 9.1. Subsequently, several possibilities for
future work are discussed in Section 9.2.

9.1 Answers to research questions
In Section 1.3, five research questions are posed related to supervisory controller
design for road tunnel systems. These questions are answered in this section.

Research question 1

What is a suitable way to model road tunnels and their requirements
for the purpose of supervisor synthesis?

Practice has shown that the input and output interfaces of the supervisory
controller, both at the side of the plant and the side of the operator interface, give
a good indication of the abstraction level that should be used in the modeling
of the components and the requirements. In this abstraction level, a separate
automaton model is created for each input signal, i.e. sensor, and each output
signal, i.e. actuator. This modeling approach is called component-based modeling,
and is described in Section 4.1. One of the benefits of component-based modeling
is that many of the modeled component become loosely coupled, since each
automaton represents an individual signal. This makes the modeling of the
components and the requirements more intuitive, and is therefore faster and
requires less effort. The loosely coupled components also allow for multiple other
advantages in the supervisory controller design process, such as parameter-based
modeling described in Section 4.2, model reduction described in Chapter 5, and
implementation of distributed supervisory controllers described in Chapter 7.

151
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Each of these advantages is covered in more detail in the answers to the subsequent
research questions.

Several case studies have been performed and described throughout this thesis
to show the modeling process for the purpose of synthesizing a road tunnel supervi-
sor. These tunnels include the Koning Willem-Alexander tunnel in Maastricht, the
Eerste Heinenoord tunnel near Rotterdam, and the Swalmen tunnel near Swalmen.

Research question 2

How can the characteristics of road tunnels be exploited in the
synthesis-based engineering process?

The road tunnel systems that are the considered type of system in this thesis
have certain characteristics compared to other types of infrastructural systems.
First, they are large infrastructural system with numerous sensors and actuators.
Second, they have a high degree of symmetry, both in the repeating components
throughout a traffic tube and in the resemblance between traffic tubes. These
characteristics are exploited in two steps in the synthesis-based design process.

The first step where the characteristics of road tunnels are exploited is in
the modeling step of the components and the requirements. In Section 4.2,
the parameter-based modeling method is introduced. This method allows the
design engineer to specify the tunnel characteristics in terms of parameters, and
subsequently automatically generate the files that are required for synthesis
and model simulation. These parameters describe the number of modules and
components in the tunnel, such as the number of traffic tubes and the number of
escape doors. A case study pertaining a family of 22 tunnels in the Netherlands
shows the applicability of the parameter-based modeling method.

The second step where the characteristics are exploited is in the synthesis
step. Chapter 5 introduces the model reduction process for supervisor synthesis,
where symmetry in the plant model and the requirements model is used to remove
part of the control problem before performing synthesis. Dependency graphs are
described as a means to visualize the components in a control problem and the
dependencies between them. These dependency graphs are subsequently used to
identify symmetric components that are eligible for model reduction. The model
reduction process is showcased in a set of case studies described in Section 5.4.

Research question 3

Is it possible to synthesize a supervisor for large-scale systems like
road tunnels?

As mentioned before, road tunnels are systems with a large number of components.
Moreover, there are many, possibly complicated, dependencies between these
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components. Case studies, such as the Eerste Heinenoord tunnel described in
Subsection 5.4.1, show that it can take hours to solve the synthesis problem
for a road tunnel, and that sometimes it is even impossible to solve due to
computational memory constraints. The model reduction process introduced
in Chapter 5 solves this problem by removing part of the plant model and
the requirements model, which alleviates the synthesis problem. Five different
model reduction steps are described in Section 5.2 that exploit a (symmetrical)
characteristic in the dependency graph. In the case of the Eerste Heinenoord
tunnel, the synthesis problem is simplified from being unsolvable to being solvable
within 2 minutes.

While the model reduction steps are inspired by the symmetric characteristics
of road tunnel systems, several other case studies are performed for a range of
industrial systems to investigate the applicability of the model reduction steps.
Specifically, the model reduction process has been applied to a production line, a
waterway lock, and a movable bridge. In each of these case studies, the symmetry
reduction steps are applicable to a certain degree, thus simplifying the synthesis
problem.

Research question 4

How can a supervisory controller correctly be synthesized for the
purpose of implementation on multiple PLCs?

As road tunnels are typically controlled by multiple PLCs, a method is needed to
synthesize a set of distributed supervisory controllers without losing the properties
that are guaranteed by supervisor synthesis. The main challenge in this method
follows from the communication delays that occur when information is shared
between PLCs. In the case that PLCs are not synchronized, i.e. the read-calculate-
write cycles of the different PLCs are not synchronized, one local controller can
calculate what actions its should perform while important information in a
communicated message from a different PLC is still underway. In Chapter 7, a
method is described for obtaining and implementing a distributed supervisory
controller.

The first step in this method is distributing the system to determine which
components in the system are controlled by which PLC. This is determined using
DSMs, in which dependencies are mapped between components. By clustering
the DSM, groups of components are identified in such a way that the number of
dependencies between components within a group is maximized and the number
of dependencies between components of different groups is minimized. This
approach minimizes the required communication between the PLCs.

After the system distribution has been determined, local supervisors are
created for each group in the distribution. This is done by synthesizing a global
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supervisor and subsequently localizing it for each local supervisor. This way the
safety, controllability, and nonblockingness properties are upheld.

In the third step, the effects of communication delays are analyzed. A delay-
robustness property and check are defined that can be used to determine if a pair
of events is unaffected by communication delays. An algorithm for this check
has been implemented, and is used to determine which event pairs are not delay
robust. For these event pairs, mutual exclusion algorithms are implemented to
enforce delay robustness.

The final step in the method is generating PLC code for each of the local
supervisors, and implementing the code of each local supervisor on the intended
PLC.

In a case study for the Swalmen tunnel, a distributed supervisory controller
has been obtained using the proposed method. The supervisory controllers are
implemented on a HIL setup consisting of three PLCs to validate the controlled
behavior of each controller and the communication between them.

Research question 5

How can a supervisory controller for a road tunnel be synthesized,
implemented, and tested?

The complete process of designing a supervisory controller for a road tunnel
consists of the steps of synthesis, implementation, and testing. The synthesis
step is extensively covered in Research question 2. In Chapter 6, the process of
deriving an implementable controller and testing it in a HIL setup is described.

Several aspects of deriving an implementable controller for a road tunnel are
highlighted in Section 6.2. First, the concept of resource controllers is introduced
to deploy part of the local control for a specific component on a separate PLC.
This results in smaller and clearer controllers, thus making the synthesis procedure
to create these controllers less computationally intensive. Second, the existing
checks for the properties of an implementable controller are too strict for a road
tunnel controller. Therefore, a relaxation has been proposed for the confluence
property called end-state equality. Third, a new automatic PLC code generation
algorithm has been developed and implemented that is more easily adaptable for
new target platforms. Fourth, DSM sequencing is used for the purpose of PLC
code optimization, where the order in which events are handled during a PLC
cycle is optimized to minimize rework.

To test whether the controlled behavior of an implemented controller is as
intended, a HIL setup is used. This setup consists of one or more PLCs on which
the generated PLC code is implemented. The PLCs are connected to two PCs
that contain the operator interface and virtual plant, respectively. This way,
simulations can be performed where the PLC operating semantics is used, where
external subsystems like the operator interface are connected, and where the PLC
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performance can be measured. Moreover, as explained in Chapter 8, a digital
twin can be used as the virtual plant to provide a more intuitive and realistic
simulation environment.

The applicability of the controller derivation, implementation, and testing
process is shown in a case study for the Swalmen tunnel.

9.2 Future work
In this thesis, the process of supervisory controller design with an application to
road tunnels is described, including the steps of modeling, synthesis, simulation,
implementation, and HIL testing. While the applicability of synthesis-based engi-
neering for road tunnels supervisory controllers has been demonstrated throughout
the various case studies in this thesis, there are several ways to extend this research.
Some possible extensions are described shortly below.

Extension of parameter-based modeling

In Chapter 4, the process of parameter-based modeling is introduced and a
prototype is implemented as a configuration tool to automatically generate the
files required for synthesis and simulation. A possible extension to parameter-
based modeling is to include generation of files for HIL testing, digital twins, and
supervisor distribution.

Algorithms for automatic model reduction

Model reduction steps for supervisor synthesis and the process of subsequently
restoring the model are extensively described in Chapter 5. To increase the
applicability of the model reduction and restoration processes, algorithms can be
defined and implemented to automatically detect when model reduction steps
are applicable, and reduce and restore the model accordingly.

Implementation of automatic PLC code optimization

Subsection 6.2.4 describes how PLC code is optimized through DSM sequencing.
An algorithm is implemented to automatically sequence a DSM, though the
resulting event order is applied to the generated PLC code manually. By incor-
porating the DSM sequencing algorithm in the PLC code generation algorithm,
this process can be fully automated.

Bottom-up methods for distributed supervisory controllers

The main disadvantage of the localization approach used in the process of syn-
thesizing a distributed supervisor, as explained in Chapter 7, is the need to first
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synthesize a global supervisor. For large-scale systems, this can be computation-
ally intensive or even unfeasible. Future research can look into using bottom-up
methods for synthesizing local supervisors. In such an approach, the system is
distributed before the synthesis procedure, and local supervisors are synthesized
according to this distribution. A drawback of such an approach is the difficulty
to give global guarantees such as global nonblockingness.

Integration and system testing

The final step in the supervisory controller design process is to integrate the
implemented controller in the realized system. While all errors related to the
supervisory controller and its interfaces should have been found during the
simulation and HIL testing phases, a final system test can be performed to
validate whether the integrated controller works as intended. This final testing
stage has not been performed for a road tunnel system due to the unavailability
of a vacant tunnel.

Fault-tolerant control

In the supervisory controller design process described in this thesis, the nominal
behavior of the plant is modeled, i.e. the assumption is made that the plant
components never fail or break down. While the supervisory controller cannot
prevent a component from failing, it is able to change its controlled behavior
when a fault has been detected by adapting the controller requirements based
on detected faults. Such a controller, called a fault-tolerant controller, adapts
to a detected fault in a specified way. For instance, when one ventilation unit
in a traffic tube breaks down, another unit might be set to a higher mode
to compensate for it. Synthesis of fault-tolerant controllers for infrastructural
systems has been investigated in previous works such as Reijnen et al. (2021),
and future research can investigate its applicability to road tunnel systems.

Industrial PC-based control

The implementation process described in Chapter 6 focuses on implementing a
synthesized supervisor on a PLC. As described in Subsection 2.5.1, PLCs work
in cycles of reading inputs, executing enabled events, and writing output. Based
on this cycle-based semantics, properties for an implementable controller have
been defined, described in Subsection 2.5.2. Besides implementation on a PLC, a
supervisory controller can also be implemented on an industrial personal computer
(IPC). The semantics of an IPC differs from the semantics of a PLC, in the sense
that IPCs work interrupt-based. In future work, implementation of synthesized
supervisors on IPCs can be investigated, such as described in Brandin (1996), and
a different set of properties for an implementable supervisor can be proposed.
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