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Summary

Message Passing-based Inference in Hierarchical Au-
toregressive Models

This dissertation describes a research effort toward automating personalized design
of hearing aid algorithms through in-the-field communication between a user and a
portable intelligent agent. The traditional design cycle of hearing aid is inefficient
as it requires many human professionals in the design loop who have to elicit and
design for a hearing impaired person’s unique and context-dependent preferences.
In contrast, a wearable synthetic intelligent agent could possibly improve the quality
of a hearing aid by on-the-spot suggestions for new hearing aid settings, rather
than waiting for offline human expert intervention. To create such an agent, we
take inspiration from a theoretical neuroscience framework called the Free Energy
Principle, which explains how living brains effectively control their environment by
online Bayesian learning of a model of their environment.

According to this hypothesis, an agent (such as a brain) holds a generative prob-
abilistic model for its sensory input signals. Translated to the context of a synthetic
agent and an acoustic environment with a hearing aid (HA) and a HA patient, the
agent’s generative model should comprise a model for both environmental acous-
tic signals and user appraisals for hearing aid behavior. These models ought to be
learned under in-situ conditions through Bayesian inference, which offers a rigor-
ous procedure for parameter estimation in probabilistic models.

Following the premise of the Free Energy Principle, the essence of our ap-
proach to automated HA design is that all engineering tasks can be formulated as a
Bayesian inference on the generative probabilistic model. In particular, this disser-
tation focuses on a specific family of models for environmental acoustical signals,
namely Hierarchical Autoregressive Models. In principle, the flexibility of these
models supports describing complex non-stationary acoustic environments. Unfor-
tunately, Bayesian parameter estimation in these models is not trivial, and inference
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solutions do not exist in closed-form. Therefore, this work develops methods to au-
tomate Bayesian inference for both state and parameter updating in hierarchical
autoregressive models.

The contributions of this thesis are the following. First, we explore different
hierarchical autoregressive models such as continuous time-varying, switching, and
coupled autoregressive models. We cast these models into a factor graph framework
that provides a convenient visualization of the models. We show that hierarchical
models build on a network of special building blocks that can be re-used to increase
the expressiveness of other dynamical models. Second, we realize Bayesian infer-
ence by an efficient message passing-based algorithm on these probabilistic factor
graphs. We obtain closed-form message passing update rules for hierarchical au-
toregressive models. Third, closing in on the final application, we make use of the
developed tools for efficient inference in hierarchical autoregressive models to build
a synthetic agent that tunes hearing aid parameters under situated conditions. The
developed agent solves the classification of acoustic context, infers optimal trial de-
sign, and executes the HA signal processing algorithm all by automated Bayesian
inference.

In summary, this thesis provides a generic framework for hybrid, efficient and
automatable Bayesian inference on probabilistic graphical models representing hi-
erarchical autoregressive models. All derivations for the inference procedures have
been added to the open-source Julia package ReactiveMP.jl that focuses on effi-
cient and scalable Bayesian inference.
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Chapter 1
General Introduction

"If you are trying to look carefully at all equations which define conditional
probability, you can understand something about reality; more than from
your fantasy."

–Vladimir Vapnik

1.1 Motivation

Over the last few decades, research and development of machine learning (ML)
techniques have led to scientific discoveries in diverse areas such as material science
[1], astronomy [2], biology [3], chemistry [4], and mathematics [5]. ML also
facilitated various engineering innovations, such as intelligent virtual assistants [6],
dynamic robots [7], and autonomous vehicles [8]. ML helps in the medical and
healthcare industries [9, 10]. Moreover, ML tools have immensely improved drug
discovery [11] as well as the diagnosis of various rare diseases [12].

Generally speaking, in order for healthcare and other industries to benefit from
ML-based algorithms, large amounts of training data must be available [13, 14].
Unfortunately, for many problems, these large amounts of data are not available or
too costly to acquire, especially for situations that require personalized solutions.
To cope with these issues, for several years, the members of the BIASlab research
group1 have been developing ML methods and tools to support automated, situated
design of signal processing algorithms [15, 16, 17, 18]. The term "situated" here
means that the training of these models takes place in real-time under in-situ con-
ditions, and consequently, the reliance on a large training database is drastically
reduced. In particular, much attention has been paid to situated design of hearing

1This thesis work was executed as a member of BIASlab research team, see http://biaslab.org.

http://biaslab.org
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aid (HA) algorithms. The ultimate goal of that research thread is to create person-
alized HA’s automatically and solely (i.e., without pre-training on a large database)
through in-the-field communication between a HA user and a portable ML agent.
This dissertation describes a research effort to bring us closer to this goal.

In short, chapter 5 describes our design of said Bayesian agent that supports sit-
uated design of a HA algorithm. Chapters 2, 3 and 4 develop the needed Bayesian
methods and tools in order to make the design of the Bayesian agent possible. In
practice, this means that most of the work in this thesis will be focused on approx-
imating Bayesian inference in hierarchical autoregressive models that we use for
modeling acoustic signals.

We now return to motivate our problem. It is hard to overlook how hearing
enriches our lives. Loss of auditory perception at different levels is believed to
provoke both psychological [19] and neurological disorders [20]. Hearing loss (HL)
can occur to almost anyone due to genetics, perinatal problems, environmental
factors such as loud music, or simply aging processes [21, 22]. HA’s are a great
option that help mitigate HL. Unfortunately, the current design cycle of personalized
commercially available HA’s leaves much to be desired.

To illustrate this, imagine the following scenario. Suppose a HA patient becomes
dissatisfied with her current HA while going about her business, e.g., walking in a
busy traffic environment. In this case, she would typically go to an audiologist who
will try to adjust the HA parameters to satisfy the patient. Tuning a HA is com-
plicated though as patients experience HL with very individualized characteristics
and degrees of severity. There is no fixed HA setting that satisfies a person in every
environmental setting [23]. Modern digital HA algorithms are very complex and
feature many signal processing modules, including voice activity detection (VAD),
speech enhancement, noise reduction, feedback cancellation, and acoustic scene
classification [24]. Therefore, an audiologist cannot perform an exhaustive search
over all the tuning parameters of a HA for a single client. It would take years to tra-
verse the whole space of HA parameters for a single client [25]. Not to mention that
this approach would require a lot of effort from the user as she would likely have
to submit an appraisal for each algorithm setting, which is an undesirable cognitive
burden on the patient.

Users change their acoustic environment multiple times throughout the day. For
example, they may move from and to their home, car, office, grocery store, train,
bar, etc. These environments have different acoustic properties, such as echoes and
reverberations. Therefore, it is not surprising that HA users favor different settings
in different acoustic environments [26].

If the audiologist cannot resolve the problem manually by adjusting the param-
eters of the HA, the patient would have to wait for new algorithm releases from
the HA manufacturer. These updates usually occur very infrequently and the newly
proposed solution will likely be too late to satisfy the HA patient. The design of
a new commercial HA algorithm must be accompanied by randomized controlled
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Figure 1.1: Comparison of the traditional and situated design cycle of HA algorithms. xt

and yt are the input and output signals of a HA, respectively. r corresponds to
appraisals by a human client. u denotes new settings for the HA. {x,y} corre-
sponds to the collection of input and output signals. (Left) In the traditional HA
design cycle, the client refers to the audiologist for help, who, if necessary, turns
to the engineers who develop new solutions for the HA client. This process often
takes a very long time due to the number of human professionals in the design
loop. (Right) The proposed situated design cycle of HA algorithms. In this case,
professionals such as audiologists and engineers have been substituted by an AI
agent that proposes sensible settings for the HA in real-time. The HA client be-
comes the center of the design loop by providing appraisals to the agent under
in-situ conditions.

trials, which severely slows down the release cycle of HA solutions.
In short, the need for many many human professionals in the loop, as well as

the large parameter space, leads to a rate of about 20% of HA patients that remain
not fully satisfied with their HA’s [27].

To improve these slow, inefficient (especially from the patient’s point of view)
design loops, HA’s should ideally be tuned online, under situated conditions. In
that case, the audiologist or engineer will not be present at the scene where the
problems occur. Hence, we strive to substitute the "professional" HA practitioner
by a synthetic real-time agent that interacts in real-time, under situated conditions,
with a HA user (see Figure 1.1).

The central question then is how to design an agent that can intelligently tweak
the tuning parameters of a hearing aid in real-time. Let us first discuss the task
of such an agent. In general, a HA design agent may propose new HA settings
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under two circumstances: Firstly (the reactive case), whenever the HA user is un-
happy with the current performance of her HA, she is allowed to submit a negative
appraisal to the agent, who in turn should respond instantly by changing the HA
parameters to alternative settings. Secondly (the proactive case), the agent should
update the HA settings without a user prompt if it anticipates that the user will be
unhappy if no changes were made.

This type of HA design agent is challenged by a very difficult task. Assume that
the HA has 10 tuning parameters and that we have 5 interesting settings for each
parameter. The total number of parameter settings is then 510, which is equivalent
to about 10 million different settings. Clearly, we do not want the agent to traverse
randomly through such a large parameter space. In other words, the agent must
first learn online the desired preferences for each acoustic environment of the HA
patient and then take advantage of this knowledge by proposing the most interest-
ing HA settings.

Apparently, the task of the agent exhibits a typical "exploration-exploitation"
trade-off that is characteristic of reinforcement learning problems: the agent’s pro-
posals for a new HA setting should balance an information-seeking goal (to learn
the preferences of the user) versus a utility-driven goal (to take advantage of this
knowledge and propose the more preferred HA settings). Unfortunately, known
implementations of reinforcement learning are famous for using many training ex-
amples.

In this thesis, we seek to further develop a new idea for these types of online
learning problems. Our approach is motivated by the Free Energy Principle (FEP)
[28]. The FEP and its realization by Active Inference (AIF), is a neuro-scientific
theory that describes how living brains control their environment effectively by
online learning of a model of their environment. At the BIASlab team, we work
on transferring ideas from FEP-based learning to engineering systems. Synthetic
FEP-based agents been successfully applied to multiple engineering domains such
as robotics [29], reinforcement learning [30], neuroscience simulations [31], and
audio signal processing [32].

Crucially, under the FEP protocol, agents learn a generative probabilistic model
of their environment and plan future actions to maintain the states in that model to
preferred settings. For instance, a fish will take actions to keep itself in the water,
and a human will similarly take actions that are supportive of being alive, e.g., seek
to drink something when thirsty. FEP is consistent with the good regulator theorem
[33], which states that "every good regulator of a system must be a model of that
system." In other words, a good, intelligent agent must embrace a model of its
environment [33]. If an agent cannot make sense of its world, we cannot expect it
to act upon it effectively. In the case of creating an effective FEP-based HA agent,
the FEP claims that the agent needs to maintain a generative probabilistic model
of its environment, which in this case are acoustic signals from the HA and user
appraisals from the HA patient, see Figure 1.1.
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A generative model for user responses is further discussed in chapter 5, but it is
not the primary focus of this dissertation. In this dissertation, we focus on modeling
the acoustic environment.

For a FEP-based HA agent, the acoustic environment may consist of speech and
noise signals. In general, acoustic signals are hierarchically organized. Speech
signals break down into sentences composed of phonemes, glottal pulses, and for-
mants [34]. Noises depend on the acoustic context that usually evolves slowly over
time, as the user can always move from one place to another. Each layer of these
hierarchically structured signals operates at different time scales, e.g., acoustic con-
text changes slower than speech. To account for all these features of the signals,
this dissertation focuses on a specific class of models, namely hierarchical autore-
gressive (HAR) models.

In summary, the work in this thesis is ultimately motivated by a desire to lu-
bricate the HA design cycle by introducing a machine learning-based agent that
supports the real-time, situated design of HA algorithms. The task for the agent is
very challenging, and our research interest is focused on transferring a theory about
how brains control the world (the FEP) to engineering systems. In practice, this
means we need to focus on developing generative probabilistic models for acoustic
signals and user appraisals for HA behavior. We focus on the first task, namely, the
development of generative probabilistic models for acoustic signals. The essence of
the approach is that all engineering tasks (state estimation, parameter estimation,
inferring the most interesting next HA setting, etc.) can all be framed as a Bayesian
inference task on the generative model. We will focus on developing methods to
automate these inference processes.

Next, we shortly discuss the focus on HAR models in this thesis.

1.2 Hierarchical autoregressive models

Autoregressive (AR) models have been known for decades in the statistical [35]
and signal processing and control literature [36]. These models have been success-
fully used to model a wide variety of time series such as observations from texture
representations [37], communication [38], EEG [39], and speech signals [40]. In
a nutshell, an AR model is a model that predicts future observations of a system
based on previous observations, plus a stochastic component (often referred to as
noise) to account for modeling errors. Technically, the AR model is specified by

xt =

K∑
k=1

θkxt−k + nt

where xt, θk, nt ∈ R are the states, AR coefficients, and the noise signal, respectively.
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A hierarchical AR (HAR) model is an extension of an AR model, where the co-
efficients and/or noise signal are modeled by some "superior" hierarchical process.
For example, one can think of letting AR coefficients slowly vary in time, yielding
a continuously time-varying autoregressive (TVAR) process. We discuss the TVAR
model in detail in Chapter 2. The flexibility of HAR models makes it possible to
extend the class of time series that AR models can predict. Unlike AR models with
fixed coefficients, HAR models support modeling of non-stationary signals such as
speech [41] or cardiovascular responses [42].

In order to use a HAR model for modeling an environmental process inside a syn-
thetic FEP agent, we need to represent the HAR model as a generative probabilistic
model. In this dissertation, we favor a state-space model (SSM) representation of
HAR models. We will introduce an SSM description for the HAR model in Chapter
2.

Principally, estimation and tracking of hidden states and parameters in genera-
tive probabilistic models can be realized through Bayesian inference (BI). As will be
shown in Chapter 2, implementing BI in a HAR model is not straightforward. This
dissertation will, for a large part, focus on the realization of efficient automatable
Bayesian inference in HAR models.

Next, we shortly review the essence of Bayesian inference.

1.3 Bayesian Inference

BI rests on Bayes’ rule, which provides a recipe for updating one’s beliefs about
quantities of interest when relevant new data becomes available. For example, in
the context of HA design, the relevant information may comprise a sum of acoustic
signals, including speech and babble noise. Let us assume a generative probabilistic
model p(y, x) = p(y|x)p(x), where y and x refer to the received sum-of-acoustic-
signals and an unobserved (i.e., latent) constituent speech signal, respectively. Now,
after receiving a specific signal y = ŷ, we should use Bayes’ rule to infer the con-
stituent speech signal x by

p(x|ŷ)︸ ︷︷ ︸
posterior

·
∫
p(ŷ|x)p(x)dx︸ ︷︷ ︸
evidence p(ŷ)

= p(ŷ|x)︸ ︷︷ ︸
likelihood

· p(x)︸︷︷︸
prior

(1.1)

Note that the inference process makes use of both the model assumption and the
observations y = ŷ. The right-hand side of equation 1.1 states the model assump-
tion and substitutes the observations ŷ into that model. According to the product
rule of Probability Theory, the right-hand side is mathematically equivalent to the
left-hand side. The left-hand side comprises two factors. The factor p(x|ŷ) is called
the posterior distribution for signal x, and it describes our state-of-knowledge, ex-
pressed by a probability distribution, about the speech signal x after having ob-
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served ŷ. The second factor p(ŷ) is called model evidence, which can be interpreted
as a model performance criterion. The evidence is theoretically computed by in-
tegrating all latent variables (x) from the generative model. The computational
challenge of BI is to compute the model representation as posterior times evidence from
the likelihood times prior representation.

Unfortunately, the employment of Bayes’ rule within models that exhibit time-
varying hierarchical structures often results in an analytically intractable posterior
distribution [43, 44]. The intractability of the posterior distribution may occur as
a result of (1) the need to integrate over a very large state space in the evidence
term or (2) non-conjugate prior-posterior pairing2. To cope with these issues, the
BI community has developed various tractable approximate inference techniques,
such as variational inference (VI) [45] and Monte Carlo sampling-based methods
[46].

Inference based on Monte Carlo sampling is a computationally demanding pro-
cedure. Consequently, its deployment as a real-time inference method in HAR mod-
els on small, low-power devices such as HA’s is infeasible. Wearable devices with
limited computational resources such as HA’s cannot perform inference-by-sampling
in real-time for any other than the simplest models. In contrast, Variational Infer-
ence (VI) casts Bayesian inference to an optimization problem (Chapter 2) that
generally can be (partially) solved by a much lower computational load. If com-
putational resources were not an issue, VI is less accurate than sampling-based
inference. However, given our long-term goal to realize these methods in a wear-
able device, VI is still the more attractive option since it is faster and scales easier
to inference in large models.

1.4 Research questions

This dissertation aims to establish a principled approach to building HAR models
and running Bayesian inference within these models. The general question consid-
ered in this dissertation can be formulated as follows:

How can Bayesian inference be realized for hierarchical autoregressive models
for signal processing applications?

To answer this question, we will decompose each HAR model into sub-modules and
represent the model by a factor graph. A factor graph represents a factorized prob-
ability distribution in the form of interconnected modules (nodes). Factor graphs
provide a convenient visualization of the model. More importantly, factor graphs
come together with a formal framework for efficient (variational) Bayesian infer-
ence, which is commonly named message-passing-based inference [47, Chapter 8].

2A conjugate prior and likelihood pairing leads to a closed-form solution for the posterior distribution,
which is from the same distribution family as the prior distribution.
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A second very important property of factor graphs is that the sub-modules and as-
sociated message passing rules can be stored in a table and re-used to create novel
models, along with the inference processes for these models.

In this thesis, we choose a particular factor graph style, namely the Forney-style
Factor Graph (FFG) framework, where the factors and variables of the factorized
model are represented by nodes and edges, respectively. A more detailed descrip-
tion of factor graphs and message passing-based inference will be provided in chap-
ter 2.

As a first milestone, we will focus on time-varying autoregressive (TVAR) mod-
els. The TVAR model is an AR model that allows coefficients to vary slowly over
time. This (seemingly simple) extension allows TVAR models to process consider-
ably more complex signals than the conventional AR model. A TVAR model can
also be viewed as a subclass of HAR models that forms a hierarchy through higher-
layer models for the time-varying coefficients. In principle, we do not want to limit
ourselves to a fixed number of hierarchies in TVAR. Instead, we want to obtain a
flexible solution for TVAR models such that they can be extended to an arbitrary
number of hierarchical levels. However, this flexibility opens "Pandora’s box" - the
evidence term and consequently posterior distribution for states and parameters in
TVAR model becomes analytically intractable (Chapter 2, Section 2.2).

As a result, we have to resort to an approximate inference method that delivers
proxies for both model performance (the evidence term) and posterior distributions
for the states and parameters of TVAR models. These considerations lead to the first
concrete research question of this dissertation:

Q1. How can approximate Bayesian inference be implemented for time-varying
autoregressive models?

We will answer this question in Chapter 2 by representing the TVAR model by an
FFG [48].

We will localize the inference problem by examining a graph structure corre-
sponding to the TVAR model. We will show that essentially the TVAR model builds
on a network of special building blocks that we will label "AR nodes".

We will demonstrate how different TVAR models can be built by stacking multi-
ple AR nodes. Most importantly, we will develop a formal procedure that allows us
to make hierarchical models in the following chapters (Chapter 2, Section 2.4).

The next class of hierarchical autoregressive models we will explore is the Switch-
ing AutoRegressive (SwAR) model. SwAR models are well suited to model non-
stationary regime-switching signals.

We will develop a variational message passing-based inference method on the
FFG representation of the TVAR model. In variational inference, the evidence term
is replaced by an approximation that in the machine learning literature is known as
"Evidence Lower Bound" (ELBO), or equivalently in the physics literature as (nega-
tive) "variational Free Energy."
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A simple example of a regime switch in a signal could be a transition between
two acoustic environments, e.g., when moving from a train station to a crowded
street. A conventional AR can track the signals induced by these acoustic envi-
ronments separately. The SwAR model extends the functionality of AR models by
introducing regime-switching dynamics. In other words, SwAR imposes a transi-
tion distribution on the parameters of the AR model. Usually, the parameters of
the SwAR model are not known a priori, which implies that we need to assign a
prior distribution to them. In the case of the TVAR model, we use the Normal and
Gamma distributions as priors for the AR coefficients and parameters of the noise
source model, respectively. It is natural to assume that the parameters of a SwAR
model are generated from a mixture of a finite number of these distributions with
unknown parameters. For example, the Gaussian mixture model (GMM) can spec-
ify a prior distribution for the AR coefficients. As for the noise parameters prior, we
would need a Gamma mixture model (ΓMM).

Since our inference procedure is based on message passing in an FFG, we need
to have access to FFG nodes for both the GMM and ΓMM. An FFG node for the
GMM and its message passing-based inference procedure was developed in [25].
Unfortunately, similar work is not available for the ΓMM. Therefore, in this thesis,
we focus on FFG-based inference for the Gamma mixture model (ΓMM) to ensure
that we can use it to build an FFG representation of SwAR model. This leads to the
second concrete research question:

Q2. How can Bayesian inference be implemented for tracking hidden states and
parameters in a Gamma mixture model?

As in the case of TVAR models, we will develop the inference equations of the
ΓMM model in the context of factor graphs. We will propose two inference al-
gorithms for this model, each with advantages and shortcomings. As a result of
answering Q2, we will obtain another module (similar to the AR node), namely a
ΓM node, which we will use to build a SwAR model in an FFG representation. We
will need to correctly integrate this node, along with the GMM node, into the SwAR
model and make sure that BI in SwAR works as intended. This will lead to the third
concrete research question of this dissertation:

Q3. How can approximate Bayesian inference be implemented in switching au-
toregressive models?

Armed with ΓM and AR nodes, we can proceed with modeling complicated
acoustic environments that exhibit both continuously time-varying and regime-
switching behaviors. In the motivation Section 1.1, we discussed the problem of
automating the situated design of HA algorithms by FEP agents. To conclude this
thesis, making use of the developed tools for efficient inference in HAR models, we
will attempt in Chapter 5 to build an FEP-based agent that tunes HA parameters
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under situated conditions. To achieve this goal, we need to construct an agent that
comprises a model of its environment, i.e., a model for both user preferences and
acoustic signals such as speech and noise signals. We also must design a proto-
col for interactions between the HA agent, its client, and the environment. These
challenges lead to the final concrete research question:

Q4. How can hierarchical autoregressive models support the development of novel
personalized hearing aid algorithms?

In the next chapters of this thesis, we attempt to develop solutions to the re-
search questions Q1-Q4. Overall, our proposed methods will constitute a modular
Bayesian approach to the situated design of signal processing algorithms, particu-
larly when the environmental signals can be effectively modeled by HAR models.

1.5 Summary of Contributions

The following list presents a high-level overview of the novel contributions de-
scribed by this dissertation:

• Development of a low-complexity message passing-based inference procedure
for the tracking of states, parameters and free energy in latent time-varying
autoregressive models (TVAR). (Chapter 2)

• Development of message passing-based inference in Gamma Mixture models
(ΓMM). (Chapter 3)

• Realization of message passing-based inference for switching autoregressive
models (SwAR). (Chapter 4)

• A probabilistic generative modeling approach to design of novel hearing aid
algorithms. (Chapter 5)

1.6 Outline of the Dissertation

Chapter 2 addresses Q1 by presenting a TVAR model using a Forney-style factor
graph. An automated message passing algorithm handles the inference problem
for states and parameters. We introduce a composite “AR node” with probabilistic
observations that can be used as a plug-in module in complex hierarchical models.
Our proposed solution for online model scoring includes tracking variational free
energy (FE) as a Bayesian measure of TVAR model performance.

Chapters 3 and 4 explore the extension of hierarchical autoregressive models to
context-switching regimes. Chapter 3 serves as a prerequisite for building SwAR
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models. By addressing Q2, this chapter develops a "Gamma Mixture node" that
can operate as a prior for the precision parameter of a Gaussian distribution. Two
variants of variational message passing-based inference in a Gamma mixture model
are proposed. Finally, this chapter shows how the Gamma Mixture node can be
used as a building block for modeling both univariate and multivariate observations.
Chapter 4 approaches Q3 by introducing a fully Bayesian SwAR model that includes
Gaussian mixture and Gamma mixture models. The SwAR model is well-suited to
model regime switches in environmental acoustic signals.

Chapter 5 addresses Q4 by fusing the results of previous chapters, yielding a
model that encompasses both continuously time-varying and switching behavior of
acoustic environments. Additionally, we develop an FEP-based agent that iteratively
designs a personalized audio processing algorithm through situated interactions
with a human client. The generative model of the FEP agent will be represented by
a factor graph. All engineering tasks (parameter learning, acoustic context classi-
fication, trial design, etc.) are phrased as inference tasks on the generative model
and can be automatically realized by a hybrid message passing on the factor graph.

Chapter 6 reflects on the results obtained in the dissertation and offers a per-
spective for future research on the topic.
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Chapter 2
Message Passing-based Inference
in Time-Varying Autoregressive
Models

This chapter is based on the original work referenced below. Notations have been
adjusted to reflect conventions throughout the dissertation.

Albert Podusenko, Wouter M. Kouw, Bert de Vries, Message Passing-based
Inference for Time-Varying Autoregressive Models, Special issue on Bayesian
Inference in Probabilistic Graphical Models, Entropy, 2021

Abstract

Time-varying autoregressive (TVAR) models are widely used for modeling non-
stationary signals. Unfortunately, the online joint adaptation of both states and
parameters in these models remains challenging. In this paper, we represent the
TVAR model by a factor graph and solve the inference problem by automated mes-
sage passing-based inference for states and parameters. We derive structured vari-
ational update rules for a composite “AR node” with probabilistic observations that
can be used as a plug-in module in hierarchical models, for example, to model the
time-varying behavior of the hyper-parameters of a time-varying AR model. Our
method includes tracking variational free energy (FE) as a Bayesian measure of
TVAR model performance. The proposed methods are verified on a synthetic data
set and validated on real-world data from temperature modeling and speech en-
hancement tasks.
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2.1 Introduction

Autoregressive (AR) models are capable of describing a wide range of time se-
ries patterns [49, 50]. The extension to Time-Varying AR (TVAR) models, where
the AR coefficients are allowed to vary over time, supports the tracking of non-
stationary signals. TVAR models have been successfully applied to a wide range
of applications, including speech signal processing [51, 41, 52], signature verifica-
tion [53], cardiovascular response modeling [42], acoustic signature recognition of
vehicles [54], radar signal processing [55], and EEG analysis [56, 57].

The realization of TVAR models in practice often poses some computational
issues. For many applications, such as speech processing in a hearing aid, both
a low computational load and high modeling accuracy are essential.

The problem of parameter tracking in TVAR models has been extensively ex-
plored in a non-Bayesian setting. For example, ref. [58] employs over-determined
modified Yule-Walker equations and [59] applies the covariance method to track
the parameters in a TVAR model. In [60], expressions for the mean vector and
covariance matrix of TVAR model coefficients are derived, and [61] uses wavelets
for TVAR model identification. Essentially, all these approaches provide maximum
likelihood estimates of coefficients for TVAR models without measurement noise.
In [62], autoregressive parameters were estimated from noisy observations by us-
ing a recursive least-squares adaptive filter.

We take a Bayesian approach since we are also interested in tracking Bayesian
evidence (or an approximation thereof) as a model performance measure. Bayesian
evidence can be used to track the optimal AR model order or, more generally,
to compare the performance of a TVAR model to an alternative model. To date,
Bayesian parameter tracking in AR models has mostly been achieved by Monte
Carlo sampling methods [63, 64, 65, 66, 67]. The sampling-based inference is
highly accurate, but it is often computationally too expensive for real-time process-
ing on wearable devices such as hearing aids, smart watches, etc.

In this paper, we develop a low-complexity variational message passing-based
(VMP) realization for tracking states, parameters, and free energy (an upper bound
on Bayesian evidence) in TVAR models. All update formulas are closed-form, and
the complete inference process can easily be realized.

VMP is a low-complexity distributed message passing-based realization of vari-
ational Bayesian inference on a factor graph representation of the model [68, 45].
Previous work on message passing-based inference for AR models include [69], but
their work describes maximum likelihood estimation and therefore does not track
proper posteriors and free energy. In [70], the variational inference is employed to
estimate the parameters of a multivariate AR model, but their work does not take
advantage of the factor graph representation.

The factor graph representation we employ in this paper provides some distinct
advantages from other works on inference in TVAR models. First, a factor graph
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formulation is by definition completely modular and supports re-using the derived
TVAR inference equations as a plug-in module in other factor graph-based models.
In particular, since we allow for measurement noise in the TVAR model specifica-
tion, the proposed TVAR factor can easily be used as a latent module at any level in
hierarchical dynamical models. Moreover, due to the modularity, VMP update rules
can easily be mixed with different update schemes such as belief propagation and
expectation [48, 71] in other modules, leading to hybrid message passing schemes
for efficient inference in complex models. We have implemented the TVAR model
in the open source and freely available factor graph toolbox ForneyLab [72] and
ReactiveMP [73].

The rest of this paper is organized as follows. In Section 2.2, we specify the
TVAR model as a probabilistic state space model and define the inference tasks
that relate to tracking of states, parameters, and Bayesian evidence. After a short
discussion on the merits of using Bayesian evidence as a model performance crite-
rion (Section 2.3.1), we formulate Bayesian inference in the TVAR model as a set
of sequential prediction-correction processes (Section 2.3.2). We will realize these
processes as VMP update rules and proceed with a short review of Forney-style
factor graphs and message passing in Section 2.4. Then, in Section 2.5, the VMP
equations are worked out for the TVAR model and summarized in Table 2.1. Sec-
tion 2.6 discusses a verification experiment on a synthetic data set and applications
of the proposed TVAR model to temperature prediction and speech enhancement
problems. Full derivations of the closed-form VMP update rules are presented in
Appendix A.1.

2.2 Model Specification and Problem definition

In this section, we first specify TVAR model as a state-space model. This is followed
by an inference problem formulation.

2.2.1 Model Specification

A TVAR model is specified as

θkt ∼ N (θkt−1, ω) (2.1a)

xt ∼ N
( K∑

k=1

θktxt−k, γ
−1
)

(2.1b)

yt ∼ N (xt, τ) , (2.1c)

where yt ∈ R, xt ∈ R and θk,t ∈ R represent the the observation, state and param-
eters at time t, respectively. K denotes the order of the AR model. As a notational
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convention, we use N (m,V ) to denote a Gaussian distribution with mean m and
co-variance matrix V . We can re-write (2.1) in state-space form as

θt ∼ N (θt−1, ωIK) (2.2a)

xt ∼ N
(
A(θt)xt−1, V (γ)

)
(2.2b)

yt ∼ N (e⊺1xt, τ) , (2.2c)

where θt = [θ1t, θ2t, ..., θKt]
⊺, xt = (xt, xt−1, . . ., xt−K+1)

⊺, e1 = (1, 0, . . . , 0)⊺ is an
K-dimensional unit vector, V (γ) = (1/γ)e1e

⊺
1 , and

A(θ) =

[
θ⊺

IK−1 0 .

]
(2.3)

Technically, a TVAR model usually assumes τ = 0, indicating no measurement
noise. Note that the presence of measurement noise in (2.2c) “hides” the states xt

in the generative model (2.2) from the observation sequence yt, yielding a latent
TVAR. We add measurement noise explicitly so the model can accept information
from likelihood functions that are not constrained to be delta functions with hard
observations. As a result, the AR model we define here can be used at any level in
deep hierarchical structures such as [74] as a plug-in module.

In a time-invariant AR model, θ are part of the system’s parameters. In a time-
varying AR model, we consider θt and xt together the set of time-varying states.
The parameters of the TVAR model are {θ0,x0, ω, γ, τ}.

At the heart of the TVAR model is the transition model (2.2b), where A(θt) is a
companion matrix with AR coefficients. The multiplication A(θ)xt−1 performs two
operations: a dot product θ⊺

t xt−1 and a vector shift of xt−1 by one time step. The
latter operation can be interpreted as bookkeeping, as it shifts each entry of xt−1
one position down and discards xt−K .

2.2.2 Problem Definition

For a given time series y = (y1, y2, . . . , yT ), we are firstly interested in recursively
updating posteriors for the states p(xt|y1:l) and p(θt|y1:i). In this context, predic-
tion, filtering and smoothing are recovered for i < t, i = t and i > t, respectively.
Furthermore, we are interested in computing posteriors for the parameters p(θ0|y),
p(x0|y), p(ω|y), p(γ|y) and p(τ |y).

Finally, we are interested in scoring the performance of a proposed TVAR model
m with specified priors for the parameters. In this paper, we take a fully Bayesian
approach and select Bayesian evidence p(y|m) as the performance criterion. Sec-
tion 2.3.1 discusses the merits of Bayesian evidence as a model performance crite-
rion.
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2.3 Inference in TVAR Models

In this section, we first discuss some of the merits of using Bayesian evidence as
a model performance criterion. This is followed by an exposition of computing
Bayesian evidence and the desired posteriors in the TVAR model.

2.3.1 Bayesian Evidence as a Model Performance Criterion

Consider a model m with parameters θ and observations y. Bayesian evidence
p(y|m) is considered an excellent model performance criterion. Note the following
decomposition [75]:

log p(y|m) = log
p(y|θ,m)p(θ|m)

p(θ|y,m)
(use Bayes rule)

=

∫
p(θ|y,m) · log

p(y|θ,m)p(θ|m)

p(θ|y,m)︸ ︷︷ ︸
log p(y|m) is not a function of θ

dθ

=

∫
p(θ|y,m) log p(y|θ,m)dθ︸ ︷︷ ︸

data fit

−
∫
p(θ|y,m) log

p(θ|y,m)

p(θ|m)
dθ︸ ︷︷ ︸

complexity

(2.4)

The first term (data fit or sometimes called accuracy) measures how well the
model predicts the data y, after learning from the data. We want this term to be
large (although only focusing on this term could lead to over-fitting). The second
term (complexity) quantifies the amount of information that the model absorbed
through learning by moving parameter beliefs from p(θ|m) to p(θ|y,m). To see
this, note that the mutual information between two variables θ and y, which is
defined as

I[θ;y] =
x

p(θ,y) log
p(θ|y)
p(θ)

dθdy ,

can be interpreted as expected complexity. The complexity term regularizes the
Bayesian learning process automatically. Preference for models with high Bayesian
evidence implies a preference for models that get a good data fit without the need
to learn much from the data set. These types of models are said to generalize well
since they can be applied to different data sets without specific adaptations for each
data set. Therefore, Bayesian learning automatically leads to models that tend to
generalize well.

Note that Bayesian evidence for a model m, given a full times series y =
(y1, y2, . . . , yT ), can be computed by multiplication of the sample-based evidences:

p(y|m) =

T∏
t=1

p(yt|y1:t−1,m) . (2.5)
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2.3.2 Inference as a Prediction-Correction Process

To illustrate the type of calculations needed for computing Bayesian model evidence
and the posteriors for states and parameters, we now proceed to write out the
required calculations for the TVAR model in a filtering context.

Assume that at the beginning of time step t, we are given the state posteriors
q(xt−1|y1:t−1), q(θt−1|y1:t−1). We will denote the inferred probabilities by q(·), in
contrast to factors from the generative model that are written as p(·). We start
the procedure by setting the state priors for the generative model at step t to the
posteriors of the previous time step

p(xt−1|y1:t−1) := q(xt−1|y1:t−1) (2.6)

p(θt−1|y1:t−1) := q(θt−1|y1:t−1) (2.7)

Given a new observation yt, we are now interested inferring the evidence q(yt|yt−1),
and in inferring posteriors q(xt|y1:t) and q(θt|y1:t).

This involves a prediction (forward) pass through the system that leads to the
evidence update, followed by a correction (backward) pass that updates the states.
We work this out in detail below. For clarity of exposition, in this section we call
xt states and θt parameters. Starting with the forward pass (from latent variables
toward observation), we first compute a parameter prior predictive:

q(θt|y1:t−1)︸ ︷︷ ︸
parameter

prior predictive

=

∫
p(θt|θt−1)︸ ︷︷ ︸

parameter
transition

p(θt−1|y1:t−1)︸ ︷︷ ︸
parameter

prior

dθt−1 . (2.8)

Then the prior predictive for the state transition becomes:

q(xt|xt−1,y1:t−1)︸ ︷︷ ︸
state transition
prior predictive

=

∫
p(xt|xt−1,θt)︸ ︷︷ ︸

state transition

q(θt|y1:t−1)︸ ︷︷ ︸
parameter

prior predictive

dθt . (2.9)

Note that the state transition prior predictive, due to its dependency on time-
varying θt, is a function of the observed data sequence. The state transition prior
predictive can be used together with the state prior to inferring the state prior
predictive:

q(xt|y1:t−1)︸ ︷︷ ︸
state

prior predictive

=

∫
q(xt|xt−1,y1:t−1)︸ ︷︷ ︸

state transition
prior predictive

p(xt−1|y1:t−1)︸ ︷︷ ︸
state prior

dxt−1 . (2.10)

The evidence for model m that is provided by observation yt is then given by

q(yt|y1:t−1)︸ ︷︷ ︸
evidence

=

∫
p(yt|xt)︸ ︷︷ ︸

state
likelihood

q(xt|y1:t−1)︸ ︷︷ ︸
state prior
predictive

dxt . (2.11)



2

2.3 Inference in TVAR Models 21

When yt has not yet been observed, q(yt|y1:t−1) is a prediction for yt. After
plugging in the observed value for yt, the evidence is a scalar that scores how well
the model performed in predicting yt. As discussed in (2.5), the results q(yt|y1:t−1)
for t = 1, 2, . . . , T in (2.11) can be used to score the model performance for a
given time series y = (y1, y2, . . . , yT ). Note that to update the evidence, we need
to integrate over all latent variables θt−1, θt, xt−1 and xt (by (2.8)–(2.11)). In
principle, this scheme needs to be extended with integration over the parameters
ω, γ, and τ .

Once we have inferred the evidence, we proceed by a backward corrective pass
through the model to update the posterior over the latent variables given the new
observation yt. The state posterior can be updated by the Bayes rule:

q(xt|y1:t)︸ ︷︷ ︸
state posterior

=

state
likelihood︷ ︸︸ ︷
p(yt|xt)

state prior
predictive︷ ︸︸ ︷

q(xt|y1:t−1)

q(yt|y1:t−1)︸ ︷︷ ︸
evidence

(2.12)

Next, we need to compute a likelihood function for the parameters. Fortunately,
we can re-use some intermediate results from the forward pass. The likelihood for
the parameters is given by

q(yt|θt,y1:t−1)︸ ︷︷ ︸
parameter
likelihood

=

∫
p(yt|xt)︸ ︷︷ ︸

state
likelihood

q(xt|θt,y1:t−1)︸ ︷︷ ︸
state prior
predictive

dxt (2.13)

The parameter posterior then follows from Bayes rule:

q(θt|y1:t)︸ ︷︷ ︸
parameter posterior

=

parameter
likelihood︷ ︸︸ ︷

q(yt|θt,y1:t−1)

parameter
prior predictive︷ ︸︸ ︷
q(θt|y1:t−1)

q(yt|y1:t−1)︸ ︷︷ ︸
evidence

(2.14)

Equations (2.11), (2.12) and (2.14) contain the solutions to our inference task.
Note that the evidence q(yt|y1:t−1) is needed to normalize the latent variable pos-
teriors in (2.12) and (2.14). Moreover, while we integrate over the states by (2.11)
to compute the evidence, (2.14) reveals that the evidence can alternatively be com-
puted by integrating over the parameters through

q(yt|y1:t−1)︸ ︷︷ ︸
evidence

=

∫
q(yt|θt,y1:t−1)︸ ︷︷ ︸

parameter
likelihood

q(θt|y1:t−1)︸ ︷︷ ︸
parameter

prior predictive

dθt . (2.15)
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This latter method of evidence computation may be useful if re-using (2.11) in
(2.14) leads to numerical rounding issues.

Unfortunately, many of Equations (2.8) through (2.14) are not analytically tractable
for the TVAR model. This happens due to (1) integration over large state spaces, (2)
non-conjugate prior-posterior pairing, and (3) the absence of a closed-form solution
for the evidence factor.

To overcome this challenge, we will perform inference by a hybrid message
passing scheme in a factor graph. In the next section, we give a short review of
Forney-Style Factor Graphs (FFG), and Message-Passing (MP) based inference tech-
niques.

2.4 Factor Graphs and Message Passing-Based Infer-
ence

In this section, we make a brief introduction of Forney-Style Factor graph (FFG) and
sum-product (SP) algorithm. After that we review the minimization of variational
free energy and Variational Message Passing (VMP) algorithm.

2.4.1 Forney-Style Factor Graphs

A Forney-style Factor graph is a representation of a factorized function where the
factors and variables are represented by nodes and edges, respectively. An edge is
connected to a node if and only if the (edge) variable is an argument of the node
function. In our work, we use FFGs to represent factorized probability distributions.
FFGs provide both an attractive visualization of the model and a highly efficient and
modular inference method based on message passing. An important component of
the FFG representation is the equality node. If a variable x is shared between more
than two nodes, then we introduce two auxiliary variables x′ and x′′ and use an
equality node

f=(x, x
′, x′′) = δ(x− x′)δ(x− x′′) (2.16)

to constrain the marginal beliefs over x, x′, x′′ to be equal. With this mechanism,
any factorized function can be represented as an FFG.

An FFG visualization of the TVAR model is depicted in Figure 2.3, but for illus-
trative purposes, we first consider an example factorized distribution

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3) (2.17)

This distribution can be visualized by an FFG shown in Figure 2.1. An FFG is,
in principle, an undirected graph, but we often draw arrows on the edges in the
“generative” direction, which is the direction that describes how the observed data
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is generated. Assume that we are interested in computing the marginal for x2, given
by

p(x2) =
y

p(x1, x2, x3, x4)dx1dx3dx4 (2.18)

We can reduce the complexity of computing this integral by rearranging the
factors over the integration signs as

p(x2) =

∫
p(x1)︸ ︷︷ ︸
µ⃗1(x1)

p(x2|x1)dx1

︸ ︷︷ ︸
µ⃗2(x2)

·
(∫

p(x3|x2)
( ∫

p(x4|x3)dx3)
)

︸ ︷︷ ︸
⃗µ3(x3)

dx3

)
︸ ︷︷ ︸

⃗µ2(x2)

(2.19a)

= µ⃗2(x2) · ⃗µ2(x2) . (2.19b)

These re-arranged integrals can be interpreted as messages passed over the
edges, see Figure 2.1. It is a notational convention to call a message µ⃗(·) that aligns
with the direction of the edge arrow a forward message and similarly, a message
⃗µ(·) that opposes the direction of the edge is called a backward message.

fbfa fc fdx1

µ⃗1(x1)

x2

µ⃗2(x2) ⃗µ2(x2)

x3

⃗µ3(x3)

x4

Figure 2.1: An FFG corresponding to model (2.17), including messages as per (2.19). For
graphical clarity, we defined fa(x1) = p(x1), fb(x1, x2) = p(x2|x1), fc(x2, x3) =
p(x3|x2) and fd(x3, x4) = p(x4|x3).

This message passed-based algorithm of computing the marginal is called belief
propagation (BP) or the sum-product algorithm. As can be verified in (2.19), for a
node with factor f(y, x1, . . . , xn), the outgoing BP message µ⃗(y) to variable y can
be expressed as

µ⃗y(y) =

∫
· · ·
∫
f(y, x1, . . . , xn)

n∏
i=1

µ⃗i(xi)dxi . (2.20)

where µ⃗i(xi) is an incoming message over edge xi. If the factor graph is a tree,
meaning that the graph contains no cycles, then BP leads to exact Bayesian infer-
ence. A more detailed explanation of belief propagation message passing in FFGs
can be found in [48].

2.4.2 Free Energy and Variational Message Passing

Technically, BP is a message passing algorithm that belongs to a family of mes-
sage passing algorithms that minimize a constrained variational free energy func-
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tional [76]. Unfortunately, the sum-product rule (2.20) only has a closed-form
solution for Gaussian incoming messages µ⃗i(xi) and linear variable relations in
f(y, x1, . . . , xn). Another important member of the free energy minimizing algo-
rithms is the Variational Message Passing (VMP) algorithm [68]. VMP enjoys a
wider range of analytically computable message update rules.

We will shortly review variational Bayesian inference and VMP next. Consider
a model p(y,x) with observations y and unobserved (latent) variables x. We are
interested in inferring the posterior distribution p(x|y). In variational inference
we introduce an approximate posterior q(x) and define a variational free energy
functional as

F [q] ≜
∫
q(x) log

q(x)

p(y,x)
dx =

∫
q(x) log

q(x)

p(x|y)
dx︸ ︷︷ ︸

KL divergence DKL(q,p)

− log p(y)︸ ︷︷ ︸
log-evidence

. (2.21)

The second term in (2.21) (log-evidence) is not a function of the argument of
F . The first term is a KL-divergence, which is by definition non-negative and only
equals zero for q(x) = p(x|y). As a result, variational inference by minimization of
F [q] provides

q∗(x) = argmin
q
F [q] (2.22)

which is an approximation to the Bayesian posterior p(x|y). Moreover, the mini-
mized free energy F [q∗] is an upper bound for minus log-evidence and, in practice,
is used as a model performance criterion. Similarly to (2.4), the free energy can be
decomposed as

F [q] =

∫
q(x) log p(y|x,m)dx︸ ︷︷ ︸

accuracy

−
∫
q(x) log

q(x)

p(x|m)︸ ︷︷ ︸
prior

dx

︸ ︷︷ ︸
complexity

(2.23)

which underwrites its usage as a performance criterion for model m, given obser-
vations y.

In an FFG context, the model p(y,x) is represented by a set of connected nodes.
Consider a generic node of the FFG, given by f(y, x1, . . ., xn) where in the case
of VMP, the incoming messages are approximations to the marginals qi(xi), i =
1, . . . , n, see Figure 2.2.

It can be shown that the outgoing VMP message of f towards edge y is given by
[77]

ν⃗(y) ∝ exp

(∫
· · ·
∫

log f(y, x1, . . . , xn)
∏
i=1

q (xi) dxi

)
. (2.24)
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f
...

→
q
1 (x

1 )

x
1

→

qn
(x

n
) xn

ν⃗(y)

y

Figure 2.2: A generic node f(y, x1, . . ., xn) with incoming variational messages qi(xi) and
outgoing variational message ν⃗(y) , see Equation (2.24). Note that the marginals
q(·) propagate in the graph as messages.

In this paper, we adopt the notational convention to denote belief propagation
messages (computed by (2.20)) by µ and VMP messages (computed by (2.24)) by
ν. The approximate marginal q(y) can be obtained by multiplying incoming and
outgoing messages on the edge for y

q(y) ∝ ν⃗(y) ⃗ν(y) . (2.25)

This process (compute forward and backward messages for an edge and update
the marginal) is executed sequentially and repeatedly for all edges in the graph until
convergence. In contrast to BP-based inference, the VMP and marginal update rules
(2.24) and (2.25) lead to closed-form expressions for a large set of conjugate node
pairs from the exponential family of distributions. For instance, updating the vari-
ance parameter of a Gaussian node with a connected inverse-gamma distribution
node results in closed-form VMP updates.

In short, both BP- and VMP-based message passing can be interpreted as mini-
mizing variational free energy, albeit under a different set of local constraints [76].
Typical constraints include factorization and form constraints on the posterior such
as q(x) =

∏
i qi(xi) and q(x) = N (x|µ,Σ), respectively. Since the constraints are

local, BP and VMP can be combined in a factor graph to create hybrid message
passing-based variational inference algorithms. For a more detailed explanation of
VMP in FFGs, we refer to [77]. Note that hybrid message passing does in general not
guarantee to minimize variational free energy [76]. However, in our experiments in
Section 2.6 we will show that iterating our stationary solutions by message passing
does lead to free energy minimization.
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×

A

xt−1 N

V

= xt

=N

ωI

θtθt−1

=γ γ′

e⊤
1

N

=τ τ ′

ŷt

p(θt−1|y1:t−1)

→
1
→

2 ↓

p(xt−1|y1:t−1)

→

3 ↓

4
→

5 ↓

6 ↓

7 ↑
δ(yt−ŷt)↑

8↓

9↑

10↑

11
→
←

12

←
13
←

14↑

15↑

16
→
←

17

←
18

←

Figure 2.3: One time segment of an FFG corresponding to the TVAR model. We use small
black nodes to denote observations and fixed given parameter values. The ob-
servation node for yt sends a message δ(yt − ŷt) into the graph to indicate that
yt = ŷt has been observed. Dashed undirected edges denote time-invariant vari-
ables. Circled numbers indicate a selected computation schedule. Backward
messages are marked by black circles. The intractable messages are labeled with
red. The dashed box represents a composite AR node as specified by (2.30). Here
I = IK

2.5 Variational Message Passing for TVAR Models

2.5.1 Message Passing-based Inference in the TVAR model

The TVAR model at time step t can be represented by an FFG as shown in Fig. 2.3.
We are interested in providing a message passing solution to the inference tasks as
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specified by equations (2.8) - (2.14). At the left-hand side of Fig. 2.3, the incoming
messages are the priors p(θt−1|y1:t−1) and p(xt−1|y1:t−1). At the bottom of the
graph, there is a new observation yt. The goal is to pass messages in the graph to
compute posteriors q(θt|y1:t) (message 16) and q(xt|y1:t) (message 11). In order
to support smoothing algorithms, we also want to be able to pass incoming prior
messages from the right-hand side to outgoing messages 13 and 18 at the left-
hand side. Forward and backward messages are drawn as open and closed circles
respectively.

Technically, the generative model (2.2) at time step t for the TVAR model can
shortly be written as p(yt|zt)p(zt|zt−1), where zt = {xt,θt, ω, γ, τ} are the latent
variables. On this view, we can write the free energy functional for the TVAR model
at time step t as

F [q(zt−1, zt|y1:t)] =
x

q(zt−1, zt|y1:t) log

posterior︷ ︸︸ ︷
q(zt−1, zt|y1:t)

p(yt|zt)p(zt|zt−1)︸ ︷︷ ︸
generative model

p(zt−1|y1:t−1)︸ ︷︷ ︸
prior from past

dzt−1dzt .

(2.26)

and minimize F [q] by message passing. In a smoothing context, we would include
a prior from the future p(zt|yt+1:t+T ) := q(zt|yt+1:t+T ), yielding a FE functional

F [q(zt−1, zt|y1:T )] = (2.27)

x
q(zt−1, zt|y1:T ) log

posterior︷ ︸︸ ︷
q(zt−1, zt|y1:T )

p(yt|zt)p(zt|zt−1)︸ ︷︷ ︸
generative model

p(zt−1|y1:t−1)︸ ︷︷ ︸
prior

from past

p(zt|yt+1:t+T )︸ ︷︷ ︸
prior

from future

dzt−1dzt.

In a filtering context, q(zt|yt+1:t+T ) ∝ 1 and the functional (2.27) simplifies to
(2.26).

2.5.2 Intractible Messages and the Composite AR node

The modularity of message passing in FFGs allows us to focus on only the intractable
message and marginal updates. For instance, while there is no problem with the
analytical computation of the backward message 12, the corresponding forward
message 4 ,

µ⃗(xt) =

∫
N
(
xt|A(θt)xt−1, V (γ)

)
µ⃗(xt−1)µ⃗(θt)µ⃗(γ)︸ ︷︷ ︸

Gaussian messages

dγdθtxt−1 (2.28)
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cannot be solved analytically [78]. Similarly, some other messages 13, 14 and
15 do not have a closed-form solution in the constrained free energy minimization
framework. For the purpose of identification, in Fig. 2.3 intractable messages are
marked in red color.

In an FFG framework, we can isolate the problematic part of the TVAR model
(Figure 2.3) by introducing a “composite” AR node. Composite nodes conceal their
internal operations from the rest of the graph. As a result, inference can proceed as
long as each composite node follows proper message-passing communication rules
at its interfaces to the rest of the graph. The composite AR node

fAR(xt,xt−1,θt, γ) = N (xt|A(θt)xt−1, V (γ)) (2.29)

is indicated in Fig. 2.3 by a dashed box. Note that the internal shuffling of the
parameters θt and γ, respectively by means of A(θt) and V (γ), is hidden from the
network outside the composite AR node.

2.5.3 VMP Update Rules for the Composite AR Node

In this section we isolate the composite AR node by the specification

fAR(y,x,θ, γ) = N (y|A(θ)x, V (γ)) , (2.30)

where, relative to (2.29), we used substitutions y = xt,x = xt−1,θ = θt.
Under the structural factorization constraint1

q(y,x,θ, γ) = q(y,x)q(θ)q(γ) , (2.31)

and consistency constraints

q(y) =

∫
q(y,x)dx , q(x) =

∫
q(y,x)dy (2.32)

the marginals q(θ), q(x), q(y) and q(γ) can be obtained from the minimisation of
the composite-AR free energy functional

FAR[q] =

∫
q(y,x)q(θ)q(γ) log

posterior︷ ︸︸ ︷
q(y,x)q(θ)q(γ)

fAR(y,x,θ, γ)︸ ︷︷ ︸
AR node

dydxdθdγ . (2.33)

Recalling (2.25), we can write the minimizer of FE functional (2.33) with respect
to θ as

q(θ) ∝ ν⃗(θ) ⃗ν(θ) (2.34)

1See Appendix A.2 for more on structural VMP.
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where q(θ) is associated with the incoming message to AR node and ν⃗(θ) is a vari-
ational outgoing message. Hence, the outgoing message from the AR node toward
θ can be written as

ν⃗(θ) ∝ exp
(
Eq(y,x)q(θt)q(γ) log

[
N
(
y|A(θ)x, V (γ)

)])
(2.35)

In Appendix A.1 we work out a closed-form solution for this and all other update
rules, plus an evaluation of free energy for the composite AR node. The results
are reported in Table 2.1. With these rules in hand, the composite AR node can be
plugged into any factor graph and take part in a message passing-based free energy
minimization process.

2.6 Experiments

In this section, we first verify the proposed methodology by a simulation of the
proposed TVAR model on synthetic data, followed by validation experiments on
two real-world problems. We implemented all derived message passing rules in
the open source Julia package ForneyLab.jl [72] and ReactiveMP.jl [73]. The
code for the experiments and for the AR node can be found in public Github
repositories. https://github.com/biaslab/TVAR_FFG, accessed on 27 May 2021,
https://github.com/biaslab/LAR, accessed on 27 May 2021) We used the fol-
lowing computer configuration to run the experiments. Operation system: macOS
Big Sur, Processor: 2, 7 GHz Quad-Core Intel Core i7, RAM: 16 GB.

2.6.1 Verification on a Synthetic Data Set

To verify the proposed TVAR inference methods, we synthesized data from two
generative models m1 and m2, as follows:

θt

{
= θt−1 if m = m1

∼ N (θt−1, ωIK) if m = m2

(2.36a)

xt ∼ N
(
A(θt)xt−1, V (γ)

)
(2.36b)

yt ∼ N (eT1 xt, τ) (2.36c)

https://github.com/biaslab/TVAR_FFG
https://github.com/biaslab/LAR
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Table 2.1: Variational message update rules for the autoregressive (AR) node (dashed box)
of Equation (2.30).

Factor graph

A

× N

V
A(θ)

⃗ν(θ) ν⃗(θ)↑ ↓

ν⃗(y)

⃗ν(y)
←
→

⃗ν(x)

ν⃗(x)

←
→

V (γ)

⃗ν(γ) ν⃗(γ)↑ ↓

Marginals Functional form

q(θ) N
(
θ|m̂θ, V̂θ

)
q(γ) Γ

(
γ|α̂, β̂

)
q(y,x) N

([
y
x

] ∣∣∣∣ [m̂y

m̂x

]
,

[
V̂y V̂yx

V̂xy V̂x

])
(App. A.8)

Messages Functional form
ν⃗(y) N (y|z0,Σ)

⃗ν(x) N
(
x|Λ-1

1 z1,Λ
-1
1

)
⃗ν(θ) N

(
θ|Λ-1

2 z2,Λ
-1
2

)
⃗ν(γ) Γ (γ|1.5, b/2)

Auxiliaries Functional form

b e⊺1

[
V̂y + m̂y(m̂y)

⊺ − 2m̂A(V̂xy + m̂x(m̂y)
⊺)
]
e1

+ e⊺1

[
mA(V̂x + m̂x(m̂x)

⊺)m⊺
A

]
e1

+ tr(Vθ

(
V̂x + m̂x(m̂x)

⊺
)
)

Σ mA(V −1x +mγVθ)
−1m⊺

A +mV

z0 mA(V −1x +mγVθ)
−1V −1x mx

Λ1 m⊺
A (Vy +mV )

−1
mA +mγVθ

z1 m⊺
A (Vy +mV )

−1
my

Λ2 m̂γ(V̂x + m̂x(m̂x)
⊺)

z2 (V̂xy + m̂x(m̂y)
⊺)e1mγ

Free energy F [q]
m̂γ

2

(
σ̂2
y + m̂2

y − 2
[
V̂yx⊺ + m̂ym̂

⊺
x

]
m̂θ + tr

[
(V̂θ +mθm

⊺
θ)V̂x

])
+
m̂γ

2

(
m̂⊺

θ(V̂x + m̂x(m̂x)
⊺)m̂θ

)
− 1

2

[
ψ(α̂)− log β̂

]
+

1

2
log 2π

Auxiliary expectations

m̂γ =
α̂

β̂
mA = Eq(θ)[A(θ)]

σ2
y = e⊺1 V̂ye1 my = e⊺1m̂ye1 Vyx = V̂yxe1
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with priors

p(K = i) =

10∏
i=1

0.1[K=i] (2.37a)

θ0 ∼

{
N (0, I) if m = m1

N (0, 1e12I) if m = m2

(2.37b)

x0 ∼ N (0, 1e12I) (2.37c)

γ ∼ Γ(1.0, 1e− 5) (2.37d)

τ = 1.0 (2.37e)

ω = 0.01 (2.37f)

where K is the number of AR coefficients. Although these models differ only with
respect to the properties of the AR coefficients θ, this variation has an important
influence on the data generative process. The first model m1 specifies a stationary
AR process, since δ(θt − θt−1) in (2.36a) indicates that θ is not time-varying in m1.
The second model m2 represents a proper TVAR process as the prior evolution of
the AR coefficients follows a random walk. One-time segment FFGs corresponding
to the Equations (2.36) are depicted in Figure 2.4.

For each model, we generated a data set of 100 different time series, each of
length 100 (so we have 2×100×100 data points). For each time series, as indicated
by (2.37a), the AR order M of the generative process was randomly drawn from
the set {1, 2, . . . , 10}. We used rather non-informative/broad priors for states and
parameters for both models, see (2.37). This was done to ensure that the effect of
the prior distributions is negligible relative to the information in the data set.

These time series were used in the following experiments. We selected two
recognition models m1 and m2 with the same specifications as were used for gen-
erating the data set. The recognition models were trained on time series that were
generated by models with the same AR order.

We proceeded by computing the quantities q(x1:T |y1:T ), q(θ1:T |y1:T ), q(γ|y1:T )
and F [q(zt−1, zt|y1:T )] (where z comprises all latent states and parameters) for
both models, following the proposed rules from Table 2.1.

As a verification check, we first want to ensure that inference recovers the hid-
den states xt for each t ∈ (1, 2, . . .100). Secondly, we want to verify the convergence
of FE. As we have not used any approximations along the derivations of variational
messages, we expect a smoothly decreasing curve for FE until convergence. The
results of the verification stage are highlighted for a typical case in Figure 2.5. The
figure confirms that states xt are accurately tracked and that a sliding average of
the AR coefficients θt is also nicely tracked. Figure 2.5 also indicates that the FE
uniformly decreases towards lower values as we spend more computational power.

We note that the FE score by itself does not explain whether the model is good
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Figure 2.4: Forney-style Factor Graphs corresponding to Equation (2.36). (Left) model m1.
(Right) model m2.

or not, but it serves as a good measure for model comparison. In the following
subsection, we demonstrate how FE scores can be used for model selection.

2.6.2 Temperature Modeling

AR models are well-known for predicting different weather conditions such as
wind, temperature, precipitation, etc. Here, we will revisit the problem of mod-
eling daily temperature. We used a data set of daily minimum temperatures (in
C°) in Melbourne, Australia, 1981–1990 (3287 days) (https://www.kaggle.com/
paulbrabban/daily-minimum-temperatures-in-melbourne, accessed on 27 May
2021). We then corrupted the data set by adding random noise sampled from
N (0, 10.0) to the actual temperatures. A fragment of the time series is depicted in
Figure 2.6.

To estimate the actual temperature based on past noisy observations by com-
puting q(xt|y1:t), we use a TVAR model with measurement noise to simulate un-
certainty about corrupted observations. The model is specified by the following

https://www.kaggle.com/paulbrabban/daily-minimum-temperatures-in-melbourne
https://www.kaggle.com/paulbrabban/daily-minimum-temperatures-in-melbourne
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Figure 2.5: Verification results. The solid line corresponds to the value of the latent (hidden)
states in the generative processes. The dashed line corresponds to the expected
mean value of the posterior estimates of hidden states q(·|y1:100) in the recogni-
tion models. The shadowed regions correspond to one standard deviation of the
posteriors in the recognition models below and above the estimated mean. The
top two plots show inference results for the coefficients θt (top-left) and states xt

(top-right) of TVAR(1) (model m2, AR order K = 1) for time series ♯10. (bottom-
left) State trajectory q(xt|y1:100) model m1, AR order K = 1 on time series ♯99.
(Bottom-right) Evolution of FE for m1 (AR) and m2 (TVAR), averaged over their
corresponding time series. The iteration number at the abscissa steps through a
single marginal update for all edges in the graph.

equation set

θt ∼ N (θt−1, IM ) (2.38a)

xt ∼ N
(
A(θt)xt−1 + e1η, V (γ)

)
(2.38b)

yt ∼ N (e⊺1xt, τ
−1) (2.38c)
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Figure 2.6: Temperature time-series from days 2000 to 2200. Crosses denote the thermome-
ter readings plus added noise. The solid line corresponds to the latent (hidden)
daily temperature.

with priors

θ0 ∼ N (0,I) x0 ∼ N (0, I) η ∼ N (0.0, 10.0) (2.39a)

γ ∼ Γ(1.0, 1.0) τ ∼ Γ(0.1, 1.0) (2.39b)

where I = IK . Note that we use τ as a precision parameter in this experiment.
Since the temperature data is not centered around 0 °C, we added a bias term η to
the state xt. The corresponding FFG is depicted in Figure 2.7.

Note that we put a Gamma prior on the measurement noise precision τ , meaning
that we are uncertain about the size of the error of the thermometer reading. The
inference task for the model is computing q(xt|y1:t), in other words, we track the
states based only on past data. Of course, after training, we could use the model
for temperature prediction by tracking q(xt+k|y1:t) for k ≥ 1. We compare the
performance of four TVAR models with AR orders K = {1, 2, 3, 4}. To choose the
best model, we computed the average FE score for each TVAR(K) model.

Figure 2.8 shows that on average TVAR(3) outperforms its competitors. The
complexity vs accuracy decomposition (2.23) of FE explains why a lower order
model may outperform higher order models. TVAR(4) maybe as accurate or more
accurate than TVAR(3) but the increase in accuracy is more than offset by the
increase in complexity. For the lower order models, it is the other way around:
they are less complex and involve fewer computations than TVAR(3), but the loss
in model complexity leads to too much loss in data modeling accuracy. Overall,
TVAR(3) is the best model for this data set. Practically, we always favor the model
that features the lowest FE score. In the next subsection we will use this technique
(scoring FE) for online model selection.
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Figure 2.7: One time segment of a Forney-style factor graph (FFG) for the TVAR model in
the temperature modeling task (2.38).

2.6.3 Single-Channel Speech Enhancement

Single-channel speech enhancement (SCSE) is a well-known challenging task that
aims to enhance noisy speech signals that were recorded by a single microphone. In
single microphone recordings, we cannot use any spatial information that is com-
monly used in beamforming applications. Much work has been done to solve the
SCSE task, ranging from Wiener filter-inspired signal processing techniques [79, 80]
to deep learning neural networks [81]. In this paper, we use data from the speech
corpus (NOIZEUS) (https://ecs.utdallas.edu/loizou/speech/noizeus/, accessed
on 27 May 2021) [82] and corrupted clean speech signals with white Gaussian
noise, leading to a signal-to-noise ratio (SNR)

SNR(s1:T ,y1:T ) = 10 log10

[ ∑T
t s

2
t∑T

t (st − yt)2

]
≈ 13.36dB (2.40)

where s1:T = (s1, . . ., sT ) and y1:T = (y1, . . ., yT ) are clean and corrupted speech
signals. st is a speech signal at time t and T is the length of the signal.

Historically, AR models have shown to perform well for modeling speech sig-

https://ecs.utdallas.edu/loizou/speech/noizeus/
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Figure 2.8: (Left) Comparison of four TVAR(M) models for the temperature filtering prob-
lem. Bars correspond to the averaged (over 3287 days) FE score for each model.
(Right) Inference example of the best performing model (TVAR(3)). Crosses de-
note the thermometer reading plus added noise. The solid line corresponds to
the latent (hidden) daily temperature. The dashed line corresponds to the mean
of the posterior estimates of hidden temperature and the shadowed region cor-
responds to one standard deviation below and above the estimated temperature.

nals in the time (waveform) domain [83, 84]. Despite the fact that speech is a
highly nonstationary signal, we may assume it to be stationary within short time
intervals (frames) of about 10 [ms] each [85]. Since voiced, unvoiced and silence
frames have very different characteristics, we used 5 different models (a random
walk model (RW), AR(1), AR(2), TVAR(1) and TVAR(2)) for each frame of 10 [ms]
with 2.5 [ms] overlap. Given a sampling frequency of 8 [kHZ], each frame results
into 80 samples with 20 samples overlap. The AR and TVAR models were speci-
fied by Equations (2.36). For each frame, we evaluated the model performance by
minimized FE and selected the model with minimal FE score. We used identical
prior parameters for all models where possible. To recover the speech signal we
computed the mean values of q(xt|y1:T ) of the selected model for each frame. The
SNR gain of this SCSE system was

SNR(s1:T ,x1:T )− SNR(s1:T ,y1:T ) ≈ 3.7dB . (2.41)

Figure 2.9 show the spectrograms of the clean, noisy, and filtered signal respec-
tively.

Next, we analyze the inference results in a bit more detail. Table 2.2 shows
the percentage of winning models for each frame based on the free energy score.
As we can see, for more than 30% of all frames, the random walk model performs
best. This happens mostly because the AR model gets penalized by its complexity
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Figure 2.9: Spectrogram of recovered speech signal in the experiment of Section 2.6.3.

Table 2.2: Percentage of preferred models (based on FE scores) for all frames on the speech
enhancement task.

RW AR(1) AR(2) TVAR(1) TVAR(2)

Ratio 32.2% 54.3% 10.7% 1.2% 0.5%

term for a silent frame. We recognize that the best models in about 90% of the
frames are AR(1) and RW. On the other hand, for the frames where the speech
signal transitions from silent or unvoiced to voiced, these fixed models start to fail,
and the time-varying AR models perform better. This effect can be seen in Figure
2.10.

Figure 2.11 shows the performance of the AR(2) and RW models on a frame
with a voiced speech signal. For this case, the AR(2) model performs better.

Finally, Figure 2.12 shows how the TVAR(2) model compares to the RW model
on one of the unvoiced/silence frames. While TVAR(2) estimates appear to be more
accurate, it pays a higher “price” for the model complexity term in the FE score, and
the RW model wins the frame.
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Figure 2.10: (Top) (Top-left) Inference by TVAR(2) for the segment 293. (Top-right) Infer-
ence by RW for the segment 293. Note how the TVAR model is able to follow
the transitions at the end of the frame, while the RW cannot adapt within one
frame. (Bottom) FE scores from segment 291 to 295. TVAR(2) wins frame 293
as it has the lowest FE score.

2.7 Discussion

We have introduced a TVAR model that includes efficient joint variational Bayesian
tracking of states, parameters, and free energy. The system can be used as a plug-in
module in factor graph-based representations of other models. At several points in
this paper, we have made some design decisions that we shortly review here.

While FE computation for the AR node provides a convenient performance cri-
terion for model selection, we noticed in the speech enhancement simulation that
separate FE tracking for each candidate model leads to a large computational over-
head. There are ways to improve the model selection process that we used in the
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Figure 2.11: Comparison of AR(2) and RW models for a voiced signal frame. (Top-left)
Inference by AR(2) for the segment 208. (Top-right) Inference by RW for the
segment 208. (Bottom) FE scores from segment 206 to 210. The AR(2) model
wins frame 208.

speech enhancement simulation. One way is to consider a mixture model of candi-
date models and track the posterior over the mixture coefficients [86]. Alternatively,
a very cheap method for online Bayesian model selection may be the recently de-
veloped Bayesian Model Reduction (BMR) method [87]. The BMR method is based
on a generalization of the Savage-Dickey Density Ratio and supports the tracking
of free energy of multiple nested models with almost no computational overhead.
Both methods seem to integrate well with a factor graph representation and we
plan to study this issue in future work.

In this paper, the posterior factorization (2.31) supports the modeling of tempo-
ral dependencies between input and output of the AR node in the posterior. Tech-
nically, (2.31) corresponds to a structural VMP assumption, in contrast to the more
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Figure 2.12: Comparison of TVAR(2) and RW models for an unvoiced/silence frame. (Top-
left) Inference by TVAR(2) for the frame 62. (Top-right) Inference by RW for
the frame 62. (Bottom) FE scores from segment 60 to 64. The RW model scores
best on frame 62 due to its low complexity.

constrained mean-field VMP algorithm that would be based on q(z) =
∏

i qi(zi),
where z is the set of all latent variables [88]. We could have also worked out alter-
native update rules for the assumption of a joint factorization of precision γ and AR
coefficients θ. In that case, the prior (incoming message ν⃗(θ, γ) to AR node) would
be in the form of a Normal-Gamma distribution. While any of these assumptions
are technically valid, each choice accepts a different trade-off in the accuracy vs.
complexity space. We review structural VMP in Appendix A.2.

In the temperature modeling task, we added some additional random variables
(bias, measurement noise precision). To avoid identifiability issues, in (2.38a) we
fixed the covariance matrix of the time-varying AR coefficient to the identity matrix.
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In principle, this constraint can be relaxed. For example, an Inverse-Wishart prior
distribution can be added to the covariance matrix.

In our speech enhancement experiments in Section 2.6.3, we assume that the
measurement noise variance is known. In a real-world scenario, this information
is usually not accessible. However, online tracking of measurement noise or other
(hyper-)parameters is usually not a difficult extension when the process is simu-
lated in a factor graph toolbox such as ForneyLab [72]. If so desired, we could
add a prior on the measurement noise variance and track the posterior. The online
free energy criterion (2.23) can be used to determine if the additional computa-
tional load (complexity) of Bayesian tracking of the variance parameter has been
compensated by the increase in modeling accuracy.

The realization of the TVAR model in ForneyLab comes with some limitations.
For large smoothing problems (say, >1000 data points), the computational load of
message passing in ForneyLab becomes too heavy for a standard laptop (as was
used in the paper). Consequently, in the current implementation, it is difficult to
employ the AR node for processing large time series on a standard laptop. To cir-
cumvent this issue, when using ForneyLab, one can combine filtering and smoothing
solutions into a batch learning procedure. In future work, we plan to remedy this
issue by some ForneyLab refactoring work. Additionally, the implemented AR node
does not provide a closed-form update rule for the marginal distribution when the
probability distribution types of the incoming messages (priors) are different from
the ones used in our work. Fortunately, ForneyLab supports resorting to (slower)
sampling-based update rules when closed-form update rules are not available.

2.8 Conclusion

We presented a variational message-passing approach to tracking states and param-
eters in latent TVAR models. The required update rules have been summarized and
implemented in the factor graph packages ForneyLab.jl and ReactiveMP.jl, thus
making transparent usage of TVAR factors available in freely definable stochastic
dynamical systems. Aside from VMP update rules, we derived a closed-form ex-
pression for the variational free energy (FE) of an AR factor. Free Energy can be
used as a proxy for Bayesian model evidence and allows for model performance
comparisons between the TVAR models and alternative structures. Owing to the
locality and modularity of the FFG framework, we demonstrated how AR nodes
could be applied as plug-in modules in various dynamic models. We verified the
correctness of the rules on a synthetic data set and used the proposed TVAR model
for a few relatively simple but different real-world problems. In future work, we
plan to extend the current factor graph-based framework to efficient and transpar-
ent tracking of AR model order and online model comparison and selection with
alternative models.
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Chapter 3
Message Passing-based Inference
in Gamma-Mixture Models

This chapter is based on the original work referenced below. Contributions are split
evenly among the first four authors; namely, the original idea, supporting software,
simulations, and text has been established in close collaboration. Notations have
been adjusted to reflect conventions throughout the dissertation.

Albert Podusenko, Bart van Erp, Dmitry Bagaev, Ismail Senoz, Bert de
Vries, Message Passing-Based Inference in the Gamma Mixture Model. In 2021
IEEE 31st International Workshop on Machine Learning for Signal Process-
ing (MLSP) - Proceedings

Abstract

The Gamma mixture model is a flexible probability distribution representing beliefs
about scale variables such as precisions. However, inference in the Gamma mix-
ture model for all latent variables is non-trivial as it leads to intractable equations.
This paper presents two variants of variational message passing-based inference in
a Gamma mixture model. We use moment matching and alternatively expectation-
maximization to approximate the posterior distributions. The proposed method
supports automated inference in factor graphs for large probabilistic models that
contain multiple Gamma mixture models as plug-in factors. The Gamma mixture
model has been implemented in a factor graph package, and we present experimen-
tal results for both synthetic and real-world data sets.
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3.1 Introduction

Mixture models are commonly used in the literature to model probability density
functions that are outside the exponential family. Gaussian mixture models are
often used, especially in the field of natural language processing [89]. However, this
paper will focus on the less common Gamma mixture models (ΓMMs). The ΓMMs
allow us to efficiently model skewed distributions with positive support [90]. For
example, this model can be used as the conjugate prior for the precision parameter
of a Gaussian distribution. In that case, the conjugate relationship supports the
modeling of processes with switching noise levels.

The ΓMM has been used in a variety of applications, such as in the detection
of COVID-19 in medical images [91]. The literature describes a few approaches
for performing inference in the ΓMM, or the generalized ΓMM, most notably a
sampling approach [92] and a variational expectation-maximization method [90].
Unfortunately, these approaches are not modular by nature, which often leads to
tedious and error-prone manual derivations when extending or applying the models
in a different context. In this paper, we propose a modular message passing-based
probabilistic inference method for ΓMMs.

We represent the ΓMM as a composite factor (node) in a Forney-style Factor
Graph (FFG) [93, 94]. A benefit of the FFG representation is that all (message
passing) computations are local and, as a result, the ΓMM factor can be used as
a plug-in module in larger probabilistic models. More details on the FFGs will be
provided in Section 3.2, where we also specify the Gamma mixture (ΓM) model.

This follows the problem that we solve in this paper: how to perform message
passing-based inference in the ΓMM. A solution proposal is presented in Section
3.3. Specifically, in Section 3.3.3 we provide a local expectation-maximization ex-
tension to variational message passing, and in Section 3.3.4 we propose a moment
matching-based non-conjugate variational message passing method. These solu-
tions are verified and validated in Section 3.4. We discuss our findings and conclude
the paper in Section 3.5.

3.2 Model Specification and Problem definition

Let x ≜ [x1, . . . , xT ], where xt ∈ R>0 for every t = 1, . . . , T , denote a vector of
strictly positive independent and identically distributed (IID) observations. The
likelihood for a ΓMM with L mixture components is given by

xt ∼
L∏

t=1

Γ(al, bl)
ct , (3.1)

where Γ(al, bl) specifies the Gamma distribution for xt with shape and rate param-
eters al and bl, respectively. a ≜ [a1, . . . , aL] and b ≜ [b1, . . . , bL] are vectors of the
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parameters of the Gamma distributions such that al, bl ∈ R>0 for every l = 1, . . . , L.
For each observation xt we have a corresponding latent selector variable ct com-
prising a 1-of-L binary vector with elements ctl ∈ {0, 1}, which are constrained by∑

l ctl = 1. We denote the vector of selector variables by c ≜ [c1, . . . , cT ].
To complete the specification of the ΓMM we need to specify priors on a, b and

c. We choose the priors as

al ∼ Γ
(
α
(a)
l , β

(a)
l

)
α
(a)
l , β

(a)
l ∈ R>0 (3.2)

bl ∼ Γ
(
α
(b)
l , β

(b)
l

)
α
(b)
l , β

(b)
l ∈ R>0 (3.3)

c ∼ Cat(π) =

L∏
l=1

πcl
l where

L∑
l=1

πl0 = 1, (3.4)

and we choose a Dirichlet prior for the event probabilities π ≜ [π1, . . . , πL] as

π ∼ Dir(ζ) , (3.5)

where ζ = [ζ1, . . . , ζL] are the concentration parameters with ζl ∈ R>0 for every
l = 1, . . . , L. The full ΓMM is then given by the joint distribution

p(x,a, b, c,π) = p(x|c,a, b)p(a)p(b)p(c|π)p(π) . (3.6)

An FFG is an undirected graph in which nodes represent factors of a global function
and edges represent random variables [93]. In an FFG, each edge can be connected
to a maximum of 2 factors, whereas a node can be connected to an arbitrary number
of edges. Hence, FFGs usually contain multiple equality nodes with factors δ(x −
x′)δ(x−x′′) that constrain the beliefs over two “copy variables” x′ and x′′ to be equal
to the belief over x [69]. As a matter of notational convention, in an FFG, factors
are represented by square (unfilled) nodes and observations or fixed variables in
these graphs are represented by small black squares, whose factors can be regarded
as Dirac delta functions centered on the observed value. For a detailed explanation
of the FFG formalism, we refer to [93, 94, 48]. FFGs corresponding to the ΓMM of
(3.6) are presented in Table 3.1 and Fig. 3.1.

Given the ΓMM and a collection of observations x we are interested in obtaining
the posterior distributions p(a|x), p(b|x), p(c|x) and p(π|x). Computation of the
posteriors requires the integration and summation of the model (3.6) with respect
to all remaining model variables:

p(a|x) =

∑
c

∫
p(x,a, b, c,π) db dπ

∑
c

∫
p(x,a, b, c,π) da db dπ

. (3.7)
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Figure 3.1: An FFG representation of the ΓMM in (3.6). Dir and Cat denote Dirichlet and
Categorical distributions respectively. The ‘=‘ nodes represent equality factors.
Small black nodes denote observations. For brevity, we did not add the nodes
corresponding to the distributions of shape al and rate bl parameters. The inside
of the ΓM node is further worked out in Table 3.1.

Even though (3.7) is the exact solution to one of the inference tasks, it is intractable
because the integrals involving a and b do not yield known analytical solutions. In
this paper, the problem we address is how to compute approximate posteriors for
the ΓMM.

3.3 Approximate message passing-based inference

In this section, we first introduce message passing in an FFG as a probabilistic in-
ference methodology. Next, we will derive messages for the Gamma mixture (ΓM)
node using variational message passing (VMP) [68, 77], which allows us to per-
form probabilistic inference in the ΓMM. However, one of the VMP messages leads
to an approximate posterior distribution, whose closed-form solution is the result of
a non-conjugate multiplication that cannot be normalized analytically. We propose
two approaches to resolve this problem. First, we propose using expectation max-
imization to bypass the need to calculate the normalization constant. Second, we
apply moment matching to approximate the moments of the approximate posterior
distribution through importance sampling [95, Ch.7].
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Table 3.1: Table containing (top) the Forney-style factor graph representation of the Gamma
mixture node. The node indicated by MUX represents a multiplexer node, which
selects the mixture component. (middle) An overview of the chosen approximate
posterior distributions. Here the ·̂ accent refers to the parameters of these distri-
butions. The choice of functional form for q(al) depends on the approximation
method (Section 3.3). (bottom) The derived messages for the Gamma mixture
node. The definitions of ζkm and ρkm are presented in the supplementary mate-
rial at http://github.com/mlsp2021-gmm.
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(a)
l , β̂

(a)
l ∈ R>0

q(bl) Γ
(
bl | α̂(b)

l , β̂
(b)
l

)
α̂
(b)
l , β̂

(b)
l ∈ R>0

q(st)

L∏
l=1

π̂skm

l such that
M∑

m=1

π̂l = 1

q(xt) Γ
(
xt | α̂(x)

t , β̂
(x)
t

)
α̂
(x)
t , β̂

(x)
t ∈ R>0

Messages Functional form

⃗ν(al) exp
(
π̂t (alζkm − log Γ(al))

)
⃗ν(bl) Γ

(
bl

∣∣∣∣1 + π̂lE [al] , π̂l
α̂
(x)
t

β̂
(x)
t

)

⃗ν(st)

L∏
l=1

ρskm

km such that
M∑

m=1

ρkm = 1

ν⃗(xt) Γ

(
xt

∣∣∣∣ M∑
m=1

π̂lE [al] ,
M∑

m=1

π̂l
α̂
(b)
l

β̂
(b)
l

)

http://github.com/mlsp2021-gmm
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3.3.1 Variational message passing

Because of the conditional independencies in the generative model we can perform
execution of (3.7) through a distributed set of smaller local computations called
messages. Unfortunately, the intractability in these computations limits us in per-
forming exact message passing-based inference, also known as the sum-product
algorithm [96] or belief propagation [97]. To resolve this, we will resort to VMP
[68, 77]. Consider the generative model p(x, z) for the ΓMM, where z ≜ [a, b, c,π],
with intractable posterior distribution p(z|x), in which x and z are the observed and
latent variables, respectively. Variational inference approximates the exact posterior
distribution p(z|x) by a tractable approximate posterior distribution q(z) through
minimization of the variational free energy (VFE) functional

F [q] = DKL[q(z)||p(z|x)]− log p(x) . (3.8)

where DKL is the Kullback-Leibler divergence. In VMP the variational free energy
is optimized by iteratively updating the approximate posterior distributions. In
order to facilitate optimization of VFE, q(z) is often constrained by a mean-field
factorization

q(z) =
∏
i

q(zi) . (3.9)

For a generic node f(z1, z2, . . . , zM ) the outgoing variational message ν⃗(zj), under
the mean-field assumption, can be evaluated as [77]

ν⃗(zj) ∝ exp

∫ ∏
i̸=j

q(zi) log f(z1, z2, . . . , zM )dz\j . (3.10)

The approximate posterior can then be updated by the normalized multiplication
of the messages on the corresponding edge as

q(zj) =
ν⃗(zj) ⃗ν(zj)∫
ν⃗(zj) ⃗ν(zj)dzj

. (3.11)

In the VMP algorithm, (3.10) and (3.11) are iteratively repeated for all variables
until convergence [77].

3.3.2 Variational message passing in the Gamma mixture node

The ΓM node of (3.1) has been visualized in Table 3.1. We will assume a mean-field
factorization over the joint approximate posterior distribution as

q(xt, ct,a, b) = q(xt)q(ct)

M∏
m=1

q(am)q(bm), (3.12)
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where the distributions of the individual factors are presented in Table 3.1. To sup-
port modular usage of the ΓM node, the variable xt is not assumed to be observed
for the derivations of the messages. The variational messages of Table 3.1 have been
derived by the substitution of the approximate posterior distributions into (3.10).1

All messages, except for ⃗ν(am), are of the same functional form as the corre-
sponding approximate posterior distribution. Since the Gamma and categorical dis-
tributions are closed under multiplication, the resulting updated approximate poste-
rior distributions remain in the same family of distributions. However, the message
⃗ν(am) has a functional form that makes a closed-form result for the approximate

posterior distribution infeasible. Therefore, to make the calculations tractable we
will approximate q(am) by a parametric distribution, see Table 3.1. In the remain-
der of this section, we will propose two solutions: (1) expectation-maximization
and (2) moment matching.

3.3.3 Solution 1: Expectation-maximization (VMP-EM)

The first proposed solution uses VMP in conjunction with expectation-maximization
(VMP-EM) to approximate the resulting posterior distribution of am using message
passing, inspired by [71]. Here the posterior distribution q(al) is fixed to a Dirac
delta function

q(al) = δ(al − âl) (3.13)

instead of the Gamma distribution from Table 3.1. This distribution is located at âl,
whose value is obtained through expectation-maximization using message passing
according to [71]. The location âl is determined by

âl = argmax
al

(log ν⃗(al) + log ⃗ν(al)) , s.t. al > 0 , (3.14)

where the message ⃗ν(al) represents the variational message from Table 3.1.

Theorem 1. The solution of the constrained maximization problem given by (3.14)
exists and is unique.

Proof. From Table 3.1 we know log ⃗ν(al) = π̂t (alζkl − log Γ(al)). Since the loga-
rithm of the Gamma function is strictly convex when restricted to positive real num-
bers (Bohr-Mollerup theorem) [98], log ⃗ν(am) is strictly concave as it is a summa-
tion of affine and a strictly concave term [99, Ch. 2.3]. Because the prior message
ν⃗(am) is proportional to a Gamma distribution, log ν⃗(al) is either affine or concave
depending on the shape parameter. Hence, log (ν⃗(al) ⃗ν(al)) is always strictly con-
cave. Because it is concave the maximum exists by strong duality [99, Ch. 5.3.2]
and is unique because concavity is strict.

1The derived messages are available in the supplementary material at https://github.com/
mlsp2021-gmm/gmm-experiments.

https://github.com/mlsp2021-gmm/gmm-experiments
https://github.com/mlsp2021-gmm/gmm-experiments
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3.3.4 Solution 2: Moment matching (VMP-MM)

Expectation-maximization provides us with a single estimate of the parameter al. If
instead, we would like to retain uncertainty about this parameter, we could approx-
imate the resulting marginal distribution by a Gamma distribution using VMP with
moment matching (VMP-MM), realized by importance sampling (IS) [95, Ch.7].
The IS procedure approximates the target distribution q(al) by drawing M samples
a
(m)
l from an importance distribution q̃(am) as

a
(m)
l ∼ q̃(al) = ν⃗(al)∫

R>0
ν⃗(al)dal

,m = 1, . . . ,M. (3.15)

We choose the normalized forward message q̃(al) as the importance distribution.
We can make this choice because the support of the importance distribution is R>0,
which coincides with the support of the multiplication ν⃗(al) ⃗ν(al). The mean and
variance of al can then be approximated by

E[al] ≈
M∑

m=1

a
(m)
l ν⃗(a

(m)
l )/Z (3.16a)

Var[al] ≈
M∑

m=1

(a
(m)
l − E[al])2ν⃗(a(m)

l )/Z , (3.16b)

where Z =
∑M

m=1 ν⃗(a
(m)
l ) is the normalization constant. In our implementation,

we employ adaptive resampling [95, Ch.7] to avoid the degeneracy problem for the
estimates obtained by (3.16a) and (3.16b).

Theorem 2. For M →∞ the summations given by (3.16) converge to the true mean
and variance of q(al).
Proof. The numerator of (3.16a)

∑M
m=1 a

(m)
l ν⃗(a

(m)
l ) is the average of alq(a

(m)
l )/q̃(a

(m)
l )

under-sampling from q̃(a
(m)
l ). These numerators for different M are independent

and identically distributed random variables with mean E[al] [100]. The strong law
of large numbers gives

P

{
lim

M→∞

M∑
m=1

a
(m)
l ν⃗(a

(m)
l )/Z = E[al]

}
= 1. (3.17)

The denominator of (3.16a) Z converges to 1.

With the mean and the variance the parameters of the Gamma distribution q(al)
from Table 3.1 can be determined as

α̂
(a)
l =

E[al]2

Var[al]
, β̂

(a)
l =

E[al]
Var[al]

. (3.18)

Note that, unlike VMP-EM which yields a point estimate by determining (3.14),
VMP-MM results in a proper posterior distribution for am.
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3.4 Experiments

All experiments were implemented in the Julia programming language [101].2 We
used the following computer configuration: Operating system: macOS Big Sur, Pro-
cessor: 2,7 GHz Quad-Core Intel Core i7, RAM: 16GB.

3.4.1 Verification

For the verification stage, we followed the setup from [92], where the Markov
chain Monte Carlo was used for inference in a ΓMM. We generated data using
three distinct ΓMMs, each specified by likelihood (3.1) with a different number of
mixture components L = {2, 3, 4}. We fixed the shape and rate parameters al and
bl to the values in Table 3.2.

Table 3.2: Shape and rate parameters of the ΓMMs used for data generation.

a b
L = 2 [9, 90] [27, 270]
L = 3 [40, 6, 200] [20, 1, 20]
L = 4 [200, 400, 600, 800] [100, 100, 100, 100]

Each of these models exhibits different behavior, as illustrated in Fig. 3.2. For
L = 2, the mixture components have equal means, but different variances. For
L = 3, two mixture components are well separated and have low variances. The
third mixture has a large variance and overlaps with the other two mixtures. Finally,
for L = 4 we have four well-separated mixtures. For each model, we generated 10
distinct data sets with different mixing coefficients. These mixing coefficients were
sampled from a standard uniform distribution and normalized by dividing by the
sum of the coefficients. Each data set contains T = 2500 observations (in total
3 × 10 × 2500 data points). To verify the proposed inference method, we selected
three generative models for which we assumed the number of components to be
known. We then performed probabilistic inference through message passing for
two situations. The first situation (known shape-rate) uses informative priors for
a and b and a vague prior for π. The second setup (known mixing) employs an
informative prior for the mixing coefficient π, but uninformative priors for a and b.
With informative priors, we imply that the distributions are centered at an ϵ-area
(ϵ > 0, ϵ2 ≈ 0) of the values that were used for data generation. Priors were chosen
so as not to violate the properties of the corresponding distributions. We motivate
the usage of informative priors for either mixing coefficients or parameters of the
gamma distribution for two reasons. First, based on a Bayesian analysis of the
Gamma distribution [102], the choice of non-informative priors for small data sets

2Experiments are available at https://github.com/mlsp2021-gmm/gmm-experiments.

https://github.com/mlsp2021-gmm/gmm-experiments
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generally leads to low accuracy. We should choose the priors of the ΓMM carefully,
as its parameter space is significantly larger than that of a single Gamma distribu-
tion. Secondly, due to the non-convexity of the mean-field assumption, we have
multiple solutions for our inference problem [103, Ch.5]. Thus, the initialization
of vague priors for all parameters of ΓMM can lead to undesirable local minima.
The inference task, as specified in Section 3.2, computes the quantities q(a|x1:T ),
q(b|x1:T ), q(s|x1:T ) and q(π|x1:T ). The notation q(·|x1:T ) refers to the marginals af-
ter observing the data. In this experiment, we first want to ensure that the proposed
algorithm recovers the unknown parameters of the mixture components. Addition-
ally, we want to verify the convergence of the proposed methodology by monitoring
the VFE F [q(·)]. We now highlight the results of the verification stage in Fig. 3.2. For
the VMP-MM approach we used M = 5000. Both algorithms recover the parameters
of the ΓMM in the aforementioned situations. Both algorithms converge, which is
reflected by the evolution of the VFE in Fig. 3.3. The VMP-EM approach converges
more slowly than the VMP-MM approach as a function of iteration count, but for
this experimental setup, VMP-MM is on average, approximately 30 times slower in
evaluation time than VMP-EM due to the relatively expensive sampling procedure.

3.4.2 Validation

For the validation of our model, we used the country data set from Kaggle.3 This
data set contains socio-economic and health data for all countries worldwide. The
task is to categorize the countries based on data features. Most of the individual
features represent positive real values. Therefore the ΓMM appears as a possible
approach to modeling. For the brevity of the experiment, we transformed the "in-
flation" feature (4.8% entries are negative) to a positive real range. Unlike the
experiments on the generated data sets, we now have to deal with multivariate ob-
servations. Each observation xt is now represented by a vector of N = 7 features as
xt = [x

(1)
t , ..., x

(N)
t ], where the superscript denotes the feature, indexed by n, and

where x(n)t ∈ R>0 for all n = 1, . . . , N . For modeling the multivariate observations,
we model each feature independently using a separate ΓMM, where the features
are modeled by the same selector variable st. The likelihood of each component of
xt then becomes

xt ∼
L∏

l=1

N∏
n=1

Γ
(
a
(n)
l , b

(n)
l

)ct

(3.19)

and we change (3.2) and (3.3) to contain M×N independent mixture components,
such that each feature is modelled by its own set of mixture components.

In this setup, we do not have any prior information about the mixing coeffi-
cients. To obtain informative priors for the shape and rate parameters of the mix-

3https://www.kaggle.com/rohan0301/unsupervised-learning-on-country-data

https://www.kaggle.com/rohan0301/unsupervised-learning-on-country-data
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Figure 3.2: Verification results. The shaded light-blue bar plots in the background denote
the normalized histograms of the generated data. (Top) The dashed and solid
lines denote the actual and estimated density functions, respectively. (Top-Left)
Inference results for the VMP-EM approach for two components with informative
shape and rate parameters. The estimated and actual densities match, meaning
that the mixing coefficient is inferred properly. (Top-Right) Inference results of
the VMP-MM approach for three components with known mixing coefficients.
The estimated mixture components 1 and 2 were swapped. The variance of the
estimated component 1 is lower than the corresponding actual component 2. In
contrast, the estimated component 2 has a larger variance than the actual com-
ponent 1. The estimated component 3 features shape and rate parameters that
are close to the parameters of the corresponding generated mixture. (Bottom)
The dashed and solid lines denote the density functions estimated by VMP-EM
and VMP-MM, respectively. (Bottom-Left) Comparison of both algorithms for
three components with informative mixing coefficients. Both algorithms pro-
vide reasonable estimates of the shape and rate parameters for each mixture.
(Bottom-Right) Comparison of two algorithms for a mixture of four components
with informative shape and rate parameters. Both algorithms lead to correct mix-
ing posteriors.



3

54 Message Passing-based Inference in Gamma-Mixture Models

0 500 1,000 1,500 2,000 2,500

2,000

3,000

4,000

iteration

Fr
ee

en
er

gy
[n

at
s]

FE for generated dataset

VMP-EM
VMP-MM

0 50 100 150 200

0.2

0.4

0.6

0.8

1

1.2

·104

iteration

FE for generated dataset

VMP-EM
VMP-MM

Figure 3.3: Verification results. Evolution of the variational free energy for the VMP-EM and
VMP-MM algorithms averaged over their corresponding data sets. (Left) Situa-
tion with informative mixing coefficients. (Right) The situation with informative
shape and rate parameters

ture components, we extracted the empirical means and variances of each feature
and converted those to the shape and rate parameters of a Gamma distribution
using (3.18). To disentangle the priors of shape and rate parameters, we added
a positive random jitter term to each shape and rate parameter of the prior dis-
tributions. To determine the optimal number of mixture components, we tracked
the values of mixing coefficients π for different numbers of mixture components
L = {2, . . . , 10}. Mixing coefficients that converge to 0 indicates the absence of
the corresponding cluster [47, Ch. 10]. We highlight the inference results of the
proposed algorithms in Figure 3.4. Based on this approach, both VMP-MM and
VMP-EM experiments show that L = 3 is the optimal number of components. To
visualize the inferred components, we used the t-distributed stochastic neighbor
embedding (tSNE) [104]. tSNE provides an intuition of how the high-dimensional
data is arranged by mapping the data onto a lower-dimensional space. Figure 3.5
shows the result of the tSNE projection for the country data set. We colored the data
points according to argmax

ct

(q(ct)), i.e., the most likely mixture component of the

corresponding marginal. In this way, the labels provided by VMP-EM and VMP-MM
are identical.

3.5 Discussion and conclusions

The proposed inference methods, VMP-EM and VMP-MM, converge and correctly
identify the parameters of ΓMM. However, although VMP-MM yields a "full" poste-
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Figure 3.4: Validation results for separated features. The dashed line denotes estimated ΓM.
Solid lines correspond to individual mixture components. (Top-left) Inference
result of VMP-EM algorithm for "exports" feature when L = 3. (Top-right) Infer-
ence result of VMP-MM algorithm for health feature when L = 3. (Bottom-left)
Inference result of VMP-EM algorithm for "life expectation" feature when L = 4.
(Bottom-right) Inference result of VMP-MM algorithm for "child mortality" fea-
ture when L = 5.

rior distribution, it suffers from a slower evaluation time. In contrast, while VMP-
EM enjoys a relatively fast evaluation time, it provides only point estimates for the
shape parameters of the mixture components. It makes VMP-EM challenging to
employ in an online learning scenario when new observations become available in
sequential order.

For the validation experiments, we transformed the "inflation" feature to a real
positive range, although this approach is undesirable as it breaks the natural sup-
port of the corresponding random variable. Alternatively, we could have substituted
the ΓM node that models "inflation" with a Gaussian Mixture (GM) node [72], lead-
ing to a hybrid model that connects ΓM and GM nodes through selector variables.

We presented a variational message-passing approach for inferring the parame-
ters in Gamma mixture models. The required variational messages are summarized
in Table 3.1. We proposed two approaches for computing the marginal distribution
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Figure 3.5: tSNE visualization of validation experiments. The data points are colored accord-
ing to the most likely mixture component of the corresponding marginal.

of the shape parameters of the Gamma mixture model. Furthermore, we demon-
strated the convergence of the inference procedure through the minimization of
variational free energy. The correctness of the message-passing scheme was veri-
fied on a synthetic data set. The Gamma mixture node can now be used as a plug-in
node in any graphical model that supports message passing-based inference. Owing
to the locality and modularity of the FFG framework, we showed how the Gamma
mixture model can be easily extended to tackle multi-dimensional problems such
as the clustering of countries. In future work, we plan to use the Gamma mixture
node for probabilistic modeling of time series that exhibit switching behavior.







4

Chapter 4
Message Passing-based Inference
in Switching Autoregressive
Models

This chapter is based on the original work referenced below. Notations have been
adjusted to reflect conventions throughout the dissertation.

Albert Podusenko, Bart van Erp, Dmitry Bagaev, Ismail Senoz, Bert de
Vries, Message Passing-Based Inference in Switching Autoregressive Models.
In 30th European Signal Processing Conference (EUSIPCO 2022) - Pro-
ceedings

Abstract

The switching autoregressive model is a flexible model for signals generated by
non-stationary processes. Unfortunately, the evaluation of the exact posterior dis-
tributions of the latent variables for a switching autoregressive model is analytically
intractable. This limits the applicability of switching autoregressive models in prac-
tical signal processing tasks. This paper presents a message passing-based approach
for computing approximate posterior distributions in the switching autoregressive
model. Our solution tracks approximate posterior distributions in a modular way
and easily extends to more complicated model variations. The proposed message
passing algorithm is verified and validated on synthetic and acoustic data sets re-
spectively.
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4.1 Introduction

Autoregressive (AR) models have been widely used to represent acoustic signals,
such as speech signals [105, 83] or background noise [106, 107]. In order to
take into account non-stationary behavior, switching autoregressive (SwAR) mod-
els have been developed as an extension to standard AR models [108], [66, Ch.
24.6]. This extension from the original AR model may lead to increasing model
performance but also leads to a more complicated inference procedure.

Technically, the SwAR model only differs from the regular AR model through its
prior distributions on the parameters, as will be specified in detail in Section 4.2.
Instead of deriving all update equations for state and parameter estimation in this
specific model by hand, as was done for the simplified model in [66, Ch. 24.6],
we automate inference by message passing in (Forney-style) factor graph (FFG)
representation of the model [93, 94]. The local message update equations have
been pre-derived for the constituent factor nodes of the SwAR model in earlier
works [25, Apps. 2 & 9], [109], which allows us to automatically generate an
inference algorithm for the SwAR model.

This paper describes a message passing-based approach for performing prob-
abilistic inference in the switching autoregressive model. We make the following
contributions:

• A switching autoregressive model is specified where both states and parame-
ters are treated as latent variables in Section 4.2.

• The basic SwAR model is extended with temporal dynamics for the active
switching states evolving over a different time scale in Section 4.2.

• We state our problem definition as an inference task on the SwAR model
in Section 4.2, and show how this inference task can be realized through
message passing-based inference in an FFG in Section 4.4.

• We demonstrate our proposed methodology through a set of verification and
validation experiments in Section 4.5.

Finally, we discuss the obtained results and conclude the paper in Section 4.6.

4.2 Model specification

Let yt ≜ [yt, . . . , yt−K+1]
⊤ ∈ RK , denote a vector of the K latest observations at

time t. The likelihood function of a SwAR model is defined as

yt ∼ N
(
θ⊤i yt−1, γ

−1
i

)
, (4.1)
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where we use N (m, γ−1) to denote a Gaussian distribution with mean m and preci-
sion γ. θi = [θ1i, ..., θKi]

⊤ ∈ RN and γi ∈ R>0 denote the autoregressive coefficients
and process noise precision of the N th-order SwAR model, respectively.

The vector of previous observations yt−1 is updated with the next observation
yt according to [110] by

yt = Syt−1 + e1yt (4.2)

where

S ≜

[
0 0

IK−1 0

]
, e1 ≜ [1, 0, . . . , 0]

⊤
. (4.3)

We assume the parameters of SwAR to be stationary over longer segments of
time and therefore index them with the slower-evolving switching state index i =
1, . . . , N , related to t as i = ⌈t/N⌉.

Here, ⌈·⌉ denotes the ceiling function that returns the largest integer smaller
or equal than its argument, while W is the window length. The above equation
makes sure that i is intuitively aligned with segments of length W , i.e. t ∈ [1,W ]
corresponds to i = 1. To denote the start and end indices of the time segment
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Figure 4.1: A Forney-style factor graph of a single switching state time slice of the switching
autoregressive model. Each switching state time segment indexed over k (blue
part) is connected to a total of W repetitions of the part of the model indexed
over t (yellow part). The GMM and ΓMM nodes denote the Gaussian and Gamma
mixture nodes respectively. The Sc node represents (4.2). Propagating messages
backward from future time steps results in an inference smoothing algorithm,
whereas if we only propagate messages forward in time, a filtering algorithm
results.
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corresponding to switching state index i, we define t− = (i− 1)W +1 and t+ = iW
as an implicit function of i, respectively. Implicitly we also constrain (4.1) to only
be valid for matching time indices, i.e. for t = t−, t− + 1, . . . , t+.

The AR likelihood function of (4.1) is extended with the mixture models

θi ∼
L∏

l=1

N
(
ml,W

−1
l

)ci
γi ∼

L∏
l=1

Γ (al, bl)
ci (4.4)

to form a SwAR model with N switching states or contexts. Here Γ(a, b) denotes
the Gamma distribution with shape and rate parameters a and b, respectively. The
variable ci = [c1i, . . . , cNi]

⊤ denotes a 1-of-N binary vector with elements cli ∈
{0, 1}, constrained by

∑
l cli = 1. The switching behavior is achieved by modeling

the temporal dynamics as
ci ∼ Cat(Tci−1), (4.5)

where Cat(π) denotes a categorical distribution with event probabilities π. We
model the individual columns of the transition matrix T by a Dirichlet distribution
Dir(ζ) as

T1:N,j ∼ Dir(ζj), (4.6)

where ζj denotes the vector of concentration parameters corresponding to the jth

column of T. The switching state is initialized by a categorical distribution as

c0 ∼ Cat(π0) =

L∏
l=1

πcl0
l0 such that

L∑
l=1

πl0 = 1, (4.7)

where the individual event probabilities can be chosen as πl0 = 1/L if the initial
switching state is unknown. Additionally, we assign prior probability distributions
to the hyperparameters of the SwAR model in (4.4):

ml ∼ N (µl0,Λ
−1
l0 ) Wl ∼ W(V0, n0)

al ∼ Γ(α
(a)
l0 , β

(a)
l0 ) bl ∼ Γ(α

(b)
l0 , β

(b)
l0 )

(4.8)

withW(·, ·) denoting the Wishart distribution.
The SwAR model described by (4.1)-(4.8) can be represented by a Forney-style

Factor Graph (FFG) as depicted in Figure 4.1. An FFG is an undirected graph where
nodes represent factors of a global function and edges represent variables [93]. In
an FFG, an edge is connected to a node if and only if the factor corresponding to
the node is a function of the variable corresponding to the edge. If the variable is
shared between more than 2 factors, we can make use of equality nodes of type
δ(x − x′)δ(x − x′′) that constrain the beliefs over two “copy variables” x′ and x′′

to be equal to the belief over x [69]. In an FFG, factors are drawn as square open
nodes and observations or fixed variables are represented by small black squares,
whose factors can be regarded as Dirac delta functions centered on the observed
value. For a detailed explanation of the FFG formalism, we refer to [94, 48, 43].
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4.3 Problem statement

Given a SwAR model and a collection of observations y, we are interested in track-
ing the marginal distributions of the model’s latent variables. Computation of these
posterior distributions requires the integration and summation of the model spec-
ified by (4.1)-(4.6) with respect to all nuisance variables. These computations do
not yield any analytical solutions and therefore lead to an intractable probabilistic
inference. This paper addresses the problem of computing approximate marginal
distributions in the SwAR model.

4.4 Inference

This section describes how probabilistic inference can be realized in the SwAR
model.

4.4.1 Variational message passing

The factorized structure of the SwAR model allows for the distributed calculation
of the posterior distributions of its variables through a set of smaller local com-
putations called messages. Intractability in these computations prevents us from
performing exact message passing-based inference, also known as belief propaga-
tion [97] or the sum-product algorithm [96]. Consequently we result to variational
message passing (VMP) [68, 77].

To illustrate this, consider the probabilistic model p(y, z), with observations
y and latent variables z. As the computation of the exact posterior p(z|y) is in-
tractable, we resort to variational inference, where we approximate the true poste-
rior distribution by the tractable approximate posterior distribution q(z) ≈ p(z|y).
The probabilistic inference then concerns the minimization of the variational free
energy (VFE) functional

F [q] = DKL[q(z)∥p(z|y)]− ln p(y), (4.9)

where DKL is the Kullback-Leibler divergence. To enable efficient optimization of
the VFE for the SwAR model we assume an additional factorization on q(z),

q(z) =
∏
a

qa(za) , (4.10)

where za refers to a set of node-bound local variables (one or many) such that
∪aza = z. To enable efficient optimization of the VFE, the approximate posterior
distribution is factorized under a mean-field assumption as

q(z) =
∏
i

qi(zi). (4.11)
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VMP concerns the iterative updating of marginals as qj(zj) ∝ ν⃗(zj) · ⃗ν(zj), where
ν⃗(zj) and ⃗ν(zj) are forward and backward variational messages on edge zj . The
outgoing variational message ν⃗(zj) on edge zj from a factor f(z), with incoming
marginals qi(zi) for i ̸= j, can be derived as [77]

ν⃗(zj) ∝ exp

∫ ∏
i ̸=j

qi(zi)f(z)dz\j . (4.12)

The approximate marginals qi(zi) and variational messages ν⃗(zj) and ⃗ν(zj) are it-
eratively updated until the VFE converges.

4.4.2 Expectation maximization

As a further specification of the VMP procedure, we can constrain the form of ap-
proximate marginals to qj(zj) = δ(zj− ẑj). By selecting ẑj through the optimization
problem

ẑj = argmax
zj

(ν⃗(zj) ⃗ν(zj)) , (4.13)

we perform a local expectation-maximization procedure through message passing
[71, 43]. This constraint is enforced for the variables αl in the Gamma mixture
node [111].

4.4.3 Inference in the switching autoregressive model

Inference in the SwAR model of (4.1)-(4.8) is performed through a hybrid message
passing scheme that includes both sum-product and variational messages. By en-
forcing different variational constraints on the approximate posterior distributions
of the variables in the model, we can obtain different local inference procedures
[43]. The graph in Figure 4.1 submits to a combination of sum-product message
passing, (structured) VMP, and expectation maximization. Around all determinis-
tic nodes, sum-product message passing is performed. Expectation maximization is
performed on the edges corresponding to the variables αl and all other variables
submit to (structured) VMP. The message passing update rules for all nodes have
already been derived in previous works. Update rules corresponding to the mixture
nodes of (4.4) can be found in [25, Table A2] for the Gaussian mixture node and
[109, Table I] for the Gamma mixture node. [25, Table A5] summarizes the update
rules for the nodes corresponding to the switching state transition of (4.5). The
update rules corresponding to the Gaussian factor in (4.1) are summarized in [25,
Table A1].
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4.5 Experiments

All experiments1 have been implemented in the Julia programming language [101].
We used the following computer configuration: Operating system: macOS Big Sur,
Processor: 2,7 GHz Quad-Core Intel Core i7, RAM: 16GB.

4.5.1 Verification experiments

To verify the proposed inference method, we synthesized data from 100 SwAR
generative models with the likelihood in (4.1) with AR order K = 2 and L = 2
switching states. To ensure the stationarity of the generated processes, we resam-
ple unstable process configurations. An example of a generated SwAR signal is
shown in Figure 4.2. We used uninformative priors for the transition matrix T and
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Figure 4.2: Example of a generated SwAR signal. The constituent AR processes have been
denoted by different colors.

initial switching state c0. As for the rest of the model parameters, we used infor-
mative priors, i.e., the means of the prior distributions are centered at an ϵ-area
(ϵ > 0, ϵ2 ≈ 0) of the means of the corresponding generative distributions. We
motivate the usage of informative priors by the non-convexity of the mean-field
assumption of our approximate posterior distribution around mixture nodes. This
induces multiple solutions for our inference task [103, Ch. 5]. Following the prob-
lem definition task in Section 4.3, we seek to obtain the quantities q(θi|y), q(γi|y),

1All experiments are available at https://github.com/biaslab/swar.

https://github.com/biaslab/swar
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q(ci|y), q(T|y) and q(ml|y), q(Wl|y), q(al|y), q(bl|y) for every l = 1, . . . , L. The
notation q(·|y) refers to the marginal distribution after all observations y.

Additionally, we want to verify the convergence of the proposed methodology
by monitoring the VFE. The inference results are presented in Figures 4.3 and 4.4.
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Figure 4.3: Inference results on the synthetic dataset. The dashed lines correspond to the
expected values of the posterior estimates. The shaded regions correspond to the
inferred standard deviation of the approximate posterior distributions around the
estimated mean. The solid blue lines correspond to the true underlying values of
the latent parameters in the generative processes. (Top) Inference results for the
AR coefficients obtained from the joint marginal distribution q(θi|y). (Bottom)
Inferred approximate posterior distributions of the precision variables q(γi|y).

We evaluate the performance of the inference for the switching states by computing
a categorical accuracy metric, defined as

acc =
tp+ tn

R ·M
, (4.14)

where tp, and tn are the number of true positive and true negative values, respec-
tively. R corresponds to the number of total synthetic data sets, which in this ex-
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Figure 4.4: Inference results on the synthetic dataset. (Left) Evolution of the variational free
energy averaged over all generated data sets. (Right) True and inferred evolution
of the switching state per frame. Each frame consists of W = 100 data points.
Circles denote the active switching states that were used to generate the frame.
Crosses denote the mode of the inferred switching states.

periment is set to R = 100. In this experiment, we achieved a categorical accuracy
of acc = 0.84.

4.5.2 Validation experiments

To validate the proposed inference procedure, we used 8 seconds of an audio signal,
composed of the concatenation of sounds from two different acoustic environments:
a train station and a bar. Specifically, we have ≈ 2.6 sec of train sound, followed
by ≈ 2.6 sec of bar noise, ending with another train station noise of ≈ 2.6 sec. The
sampling frequency was 8 kHz and the audio file is available at https://github.
com/biaslab/swar/data/. The task is to identify the states of each window or to
classify which acoustic environment is present in the window. In our experiment,
we set the maximum window size to 15000 samples (or 1.875 seconds). In this
way, our signal breaks into M = 5 windows, where the 5th window contains 4000
samples. The choice of 15000 reflects our beliefs about the temporal structure of the
signal. In other words, we assume that the switches in the acoustic signal happen
at the seconds-level, not at the milliseconds level. We used informative priors for
the AR coefficients and precision parameters of the SwAR model. These priors were
obtained from performing parameter estimation in the autoregressive model [111].
We have little prior information about the initial state of the audio signal. Thus, we
assigned vague (uninformative) priors for the initial state c0 and transition matrix
T. We present the inference result in Figure 4.5. Although some frames contain
overlapping acoustic signals due to current segmentation, good classification results

https://github.com/biaslab/swar/data/
https://github.com/biaslab/swar/data/
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Figure 4.5: Inference results for the audio signal. The acoustic signal is represented by a
solid black line. Windows of 15000 samples are separated by red solid lines. The
green vertical lines correspond to the locations where the underlying acoustic
signal changes. The first frame was identified as a train sound (blue region). The
two frames in the middle signify a bar sound (red region). The last two frames
were classified as train sound.

were achieved through the automated message passing-based inference procedure.

4.6 Discussion and Conclusion

We have introduced a SwAR model that includes efficient joint variational tracking
of states, parameters, and variational free energy. In this work, we have demon-
strated just one way of approximating the posterior distribution of αl. In particular,
we employed a local expectation-maximization procedure to estimate the αl param-
eter. Although this approach delivers reasonable estimates, it is not suited for online
inference scenarios. For these scenarios, one could resort to the moment matching
procedure as proposed in [109].

This paper introduced the SwAR model composed of a Gaussian and Gamma
mixture model. Owing to the modularity of the factor graph approach, this model
can be easily extended, and its inference algorithm can be automatically generated
based on efforts from previous works. The correctness of the proposed message
passing-based inference has been verified on multiple datasets synthesized from the
SwAR model. Finally, we demonstrated the convergence of the inference procedure
through the minimization of VFE. The proposed model can be easily extended to
a latent SwAR model using the update rules of [111], where instead of directly
observing yt we observe a noisy variable zt ∼ N

(
yt, τ

−1). In future work, we aim
to use the SwAR model as a module in more complex hierarchical systems.
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Chapter 5
AIDA: An Active Inference-based
Design Agent for Audio
Processing Algorithms

This chapter is based on the original work referenced below. Contributions are split
evenly among the first three authors. The first author made the most significant
contribution to creating the generative model for the acoustic environment and
developing the demonstrator. The original idea, simulations, and text have been
established in close collaboration between the first three authors. Notations have
been adjusted to reflect conventions throughout the dissertation.

Albert Podusenko, Bart van Erp, Magnus Koudahl, Bert de Vries, AIDA:
An Active Inference-Based Design Agent for Audio Processing Algorithms, Spe-
cial issue on Advances in Speech Enhancement using Audio Signal Process-
ing Techniques, Frontiers in Signal Processing, 2022

Abstract

In this paper, we present AIDA, an active inference-based agent that iteratively de-
signs a personalized audio processing algorithm through situated interactions with
a human client. The target application of AIDA is to propose on-the-spot the most
interesting alternative values for the tuning parameters of a hearing aid (HA) al-
gorithm whenever a HA client is not satisfied with their HA performance. AIDA
interprets searching for the "most interesting alternative" as an issue of optimal
(acoustic) context-aware Bayesian trial design. In computational terms, AIDA is
realized as an active inference-based agent with an Expected Free Energy criterion
for trial design. This type of architecture is inspired by neuro-economic models on



5

72 AIDA: An Active Inference-based Design Agent for Audio Processing Algorithms

efficient (Bayesian) trial design in brains and implies that AIDA comprises gener-
ative probabilistic models for acoustic signals and user responses. We propose a
novel generative model for acoustic signals as a sum of time-varying autoregres-
sive filters and a user response model based on a Gaussian Process Classifier. The
full AIDA agent has been implemented in a factor graph for the generative model,
and all tasks (parameter learning, acoustic context classification, trial design, etc.)
are realized by a variational message passing on the factor graph. All verification
and validation experiments and demonstrations are freely accessible at our GitHub
repository.

5.1 Introduction

Hearing aids (HA) are often equipped with specialized noise reduction algorithms.
These algorithms are developed by teams of engineers who aim to create a single
optimal algorithm that suits any user in any situation. Taking a one-size-fits-all ap-
proach to HA algorithm design leads to two problems prevalent throughout today’s
hearing aid industry. First, modeling all possible acoustic environments is simply
infeasible. The daily lives of HA users are varied, and the different environments
they traverse even more so. Given differing acoustic environments, a single static
HA algorithm cannot possibly account for all eventualities - even without taking
into account the particular constraints imposed by the HA itself, such as limited
computational power and allowed processing delays [112]. Secondly, hearing loss
is highly personal and can differ significantly between users. Each HA user conse-
quently requires their own, individually tuned HA algorithm that compensates for
their unique hearing loss profile [113, 114, 115] and satisfies their personal prefer-
ences for parameter settings [116]. Considering that HAs nowadays often consist of
multiple interconnected digital signal processing units with many integrated param-
eters, the task of personalizing the algorithm requires exploring a high-dimensional
search space of parameters, which often do not yield a clear physical interpretation.
The current most widespread approach to personalization requires the HA user to
physically travel to an audiologist who manually tunes a subset of all HA param-
eters. This is a burdensome activity that is not guaranteed to yield an improved
listening experience for the HA user.

From these two problems, it becomes clear that we need to move towards a new
approach for hearing aid algorithm design that empowers the user. Ideally, users
should be in control of their own HA algorithms and should be able to change and
update them at will instead of having to rely on teams of engineers that operate
with long design cycles, separated from the users’ living experiences.

The question then becomes, how do we move the HA algorithm design away
from engineers and into the hands of the user? While a naive implementation
that allows for tuning HA parameters with sliders on, for example, a smartphone
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is trivial to develop, even a small number of adjustable parameters gives rise to a
large, high-dimensional search space that the HA user needs to learn to navigate.
This puts a large burden on the user, essentially asking them to be their own trained
audiologist. Clearly, this is not a trivial task, and this approach is only feasible for
a small set of parameters, which carry a clear physical interpretation. Instead, we
wish to support the user with an agent that intelligently proposes new parameter
trials. In this setting, the user is only tasked to cast (positive or negative) appraisals
of the current HA settings. Based on these appraisals, the agent will autonomously
traverse the search space with the goal of proposing satisfying parameter values for
that user under the current environmental conditions in as few trials as possible.

Designing an intelligent agent that learns to efficiently navigate a parameter
space is not trivial. In the solution approach in this paper, we rely on a proba-
bilistic modeling approach inspired by the free energy principle (FEP) [117]. The
FEP is a framework originally designed to explain the kinds of computations that
biological, intelligent agents (such as the human brain) might be performing. Re-
cent years have seen the FEP applied to the design of synthetic agents as well
[118, 119, 120, 121]. A hallmark feature of FEP-based agents is that they exhibit a
dynamic trade-off between exploration and exploitation [122, 123, 124], which is
a highly desirable property when learning to navigate an HA parameter space. Con-
cretely, the FEP proposes that intelligent agents should be modeled as probabilistic
models. These types of models do not only yield point estimates of variables but
also capture uncertainty through modeling full posterior probability distributions.
Furthermore, user appraisals and actions can be naturally incorporated by sim-
ply extending the probabilistic model. Taking a model-based approach also allows
for fewer parameters than alternative data-driven solutions, as we can incorporate
field-specific knowledge, making it more suitable for computationally constrained
hearing aid devices. The novelty of our approach is rooted in the fact that the en-
tire proposed system is framed as a probabilistic generative model in which we can
perform (active) inference through (expected) free energy minimization.

In this paper we present AIDA1, an active inference-based design agent for
the situated development of context-dependent audio processing algorithms, which
provides the user with her own controllable audio processing algorithm. This ap-
proach embodies an FEP-based agent that operates in conjunction with an acoustic
model and actively learns optimal context-dependent tuning parameter settings. Af-
ter formally specifying the problem and solution approach in Section 5.2 we make
the following contributions:

1. We develop a modular probabilistic model that embodies situated, (acoustic)
scene-dependent, and personalized design of its corresponding hearing aid
algorithm in Section 5.3.1.

1Aida is a girl’s name of Arabic origin, meaning “happy”. We use this name as an abbreviation for an
"Active Inference-based Design Agent" that aims to make an end-user “happy”.
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2. We develop an expected free energy-based agent (AIDA) in Section 5.3.2,
whose proposals for tuning parameter settings are well-balanced in terms of
seeking more information about the user’s preferences (explorative agent be-
havior) versus seeking to optimize the user’s satisfaction levels by taking ad-
vantage of previously learned preferences (exploitative agent behavior).

3. Inference in the acoustic model and AIDA is elaborated upon in Section 5.4
and their operations are individually verified through representative experi-
ments in Section 5.5. Furthermore, all elements are jointly validated through
a demonstrator application in Section 5.5.4.

We have intentionally postponed a more thorough review of related work to Sec-
tion 5.7 as we deem it more relevant after the introduction of our solution approach.
Finally, Section 5.6 discusses the novelty and limitations of our approach and Sec-
tion 5.8 concludes this paper.

5.2 Problem statement and proposed solution approach

5.2.1 Automated hearing aid tuning by optimization

In this paper, we consider the problem of choosing values for the tuning parameters
u of a hearing aid algorithm that processes an acoustic input signal x to output
signal y. In Figure 5.1, we sketch an automated optimization-based approach to
this problem. Assume that we have access to a generic “signal quality” model which
rates the quality of a HA output signal y = f(x,u), as a function of the HA input x
and parameters u, by a rating r(x,u) ≜ r(y). If we run this system on a representa-
tive set of input signals x ∈ X , then the tuning problem reduces to the optimization
task

u∗ = argmax
u

(∑
x∈X

r(x,u)

)
. (5.1)

Unfortunately, in commercial practice, this optimization approach does not always
result in satisfactory HA performance, because of two reasons. First, the signal
quality models in the literature have been trained on large databases of preference
ratings from many users and therefore only model the average HA client rather
than any specific client [125, 126, 127, 128, 129, 130]. Secondly, the optimization
approach averages over a large set of different input signals, so it will not deal with
acoustic context-dependent client preferences. By acoustic context, we consider
signal properties that depend on environmental conditions such as being inside,
outside, in a car or at the mall. Generally, client preferences for HA tuning param-
eters are both highly personal and context-dependent. Therefore, there is a need to
develop a personalized, context-sensitive controller for tuning HA parameters u.
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optimizer

data base group model

Figure 5.1: A schematic overview of the conventional approach to hearing aid algorithm
tuning. Here the parameters of the hearing aid u are optimized with respect to
some generic user rating model r(y) for a large data base X of input data x.

5.2.2 Situated hearing aid tuning with the user in-the-loop

In this paper, we will develop a personalized, context-aware design agent, based on
the architecture shown in Figure 5.2. In contrast to Figure 5.1, the outside world
(rather than a database) produces an input signal x under situated conditions that
is processed by a hearing aid algorithm to produce an output signal y. A particular
human hearing aid client listens to the signal y and is invited to cast at any time
binary appraisals r ∈ {0, 1} about the current performance of the hearing aid algo-
rithm, where 1 and 0 correspond to the user being satisfied and unsatisfied, respec-
tively. Context-aware trials for HA tuning parameters are provided by AIDA. Rather
than an offline design procedure, the whole system designs continually under situ-
ated conditions. The HA device itself houses a custom hearing aid algorithm, based
on state inference in a generative acoustic model. The acoustic model contains two
sub-models: 1) a source dynamics model and 2) a context dynamics model.

Inference in the acoustic model is based on the observed signal x and yields the
output y and context c. Based on this context signal c and previous user appraisals
r, AIDA will actively propose new parameters trials u with the goal of making the
user happy. Technically, the objective is that AIDA expects to receive fewer neg-
ative appraisals in the future, relative to not making parameter adaptations, see
Section 5.3.2 for details.

The design of AIDA is non-trivial. For instance, since there is a priori no person-
alized model of HA ratings for any particular user, AIDA will have to build such a
model on-the-fly from the context c and user appraisals r. Since the system operates
under situated conditions, we want to impose as little burden on the end user as
possible. As a result, most users will only once in a while cast an appraisal and this
complicates the learning of a personalized HA rating model.

To make this desire for very lightweight interactions concrete, we now sketch
how we envision a typical interaction between AIDA and a HA client. Assume
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acoustic model

source dynamics

context

dynamics
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Figure 5.2: A schematic overview of the proposed situated HA design loop containing AIDA.
An incoming signal x enters the hearing aid and is used to infer the context of the
user c. Based on this context and previous user appraisals, AIDA proposes a new
set of parameters u for the hearing aid algorithm. Based on the input signal, the
proposed parameters, and the current context, the output y of the hearing aid is
determined, which is used together with the context in the hearing aid algorithm.
The parameters u are actively optimized by AIDA, based on the inferred context
c from the input signal x and appraisals r from the user in the loop. All individ-
ual subsystems represent parts of a probabilistic generative model as described in
Section 5.3, where the corresponding algorithms follows from performing prob-
abilistic inference in these models as described in Section 5.4.

that the HA client is in a conversation with a friend at a restaurant. The signal
of interest, in this case, is the friend’s speech signal, while the interfering signal
is an environmental babble noise signal. The HA algorithm tries to separate the
input signal x into its constituent speech and noise source components, then ap-
plies gains u to each source component and sums these weighted source signals to
produce output y. If the HA client is happy with the performance of her HA, she
will not cast any appraisals. After all, she is in the middle of a conversation and
has no imperative to change the HA behavior. However, if she cannot understand
her conversation partner, the client may covertly tap her watch or make another
gesture to indicate that she is not happy with her current HA settings. In response,
AIDA, which may be implemented as a smartwatch application, will reply instan-
taneously by sending a tuning parameter update u to the hearing aid algorithm in
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an effort to fix the client’s current hearing problem. Since the client’s preferences
are context-dependent, AIDA needs to incorporate information about the acoustic
context from HA input x. As an example, the HA user might leave the restaurant
for a walk outside. Walking outside presents a different type of background noise
and consequently requires different parameter settings.

Crucially, we would like HA clients to be able to tune their hearing aids without
interruption of any ongoing activities. Therefore, we will not demand that the
client has to focus visual attention on interacting with a smartphone app. At most,
we want the client to apply a tap or make a simple gesture that does not draw any
attention away from the ongoing conversation. A second criterion is that we do
not want the conversation partner to notice that the client interacts with the agent.
The client may actually be in a situation (e.g., a business meeting) where it is not
appropriate to demonstrate that her priorities have shifted to tuning her hearing
aids. In other words, the interactions must be very lightweight and covert. A third
criterion is that we want the agent to learn from as few appraisals as possible.
Note that, if the HA has 10 tuning parameters and 5 interesting values (very low,
low, middle, high, very high) per parameter, then there are 510 (about 10 million)
parameter settings. We do not want the client to get engaged in an endless loop
of disapproving new HA proposals, as this will lead to frustration and distraction
from the ongoing conversation. Clearly, this means that each update of the HA
parameters cannot be selected randomly: we want the agent to propose the most
interesting values for the tuning parameters based on all observed past information
and certain goal criteria for future HA behavior. In Section 5.4.2, we will quantify
what most interesting means in this context.

In short, the goal of this paper is to design an intelligent agent that supports the
user-driven situated design of a personalized audio processing algorithm through a
very lightweight interaction protocol.

In order to accomplish this task, we will draw inspiration from the way how
human brains to design algorithms (e.g., for speech and object recognition, riding
a bike, etc.) solely through environmental interactions. Specifically, we base the
design of AIDA on the Active Inference (AIF) framework. Originating from the field
of computational neuroscience, AIF proposes to view the brain as a prediction en-
gine that models sensory inputs. Formally, AIF accomplishes this by specifying a
probabilistic generative model of incoming data. Performing approximate Bayesian
inference in this model by minimizing free energy then constitutes a unified pro-
cedure for both data processing and learning. To select tuning parameter trials,
an AIF agent predicts the expected free energy in the near future, given a particular
choice of parameter settings. AIF provides a single, unified method for designing all
components of AIDA. The design of a HA system that is controlled by an AIF-based
design agent involves solving the following tasks:
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1. Classification of acoustic context

2. Selecting acoustic context-dependent trials for the HA tuning parameters.

3. Execution of the HA signal processing algorithm (that is controlled by the trial
parameters).

Task 1 (context classification) involves determining the most probable current
acoustic environment. Based on a dynamic context model (described in Section 5.3.1),
we infer the most probable acoustic environment as described in Section 5.4.1.

Task 2 (trial design) encompasses proposing alternative settings for the HA tun-
ing parameters. Sections 5.3.2 and 5.4.2 describe the user response model and
execution of AIDA’s trial selection procedure based on expected free energy mini-
mization, respectively.

Finally, task 3 (hearing aid algorithm execution) concerns performing varia-
tional free energy minimization with respect to the state variables in a generative
probabilistic model for the acoustic signal. In Section 5.3.1 we describe the gener-
ative acoustic model underlying the HA algorithm and Section 5.4.3 describes the
inferred HA algorithm itself.

Crucially, in the AIF framework, all three tasks can be accomplished by varia-
tional free energy minimization in a generative probabilistic model for observations.
Since we can automate variational free energy minimization by a probabilistic pro-
gramming language, the only remaining task for the human designer is to specify
the generative models. The following section describes the model specification.

5.3 Model specification

In this section, we present the generative model of the AIDA-controlled HA system,
as illustrated in Figure 5.2. In Section 5.3.1, we describe a generative model for the
HA input and output signals x and y respectively. In this model, the hearing aid
algorithm follows through performing probabilistic inference, as will be discussed
in Section 5.4. Part of the hearing aid algorithm is a mechanism for inferring the
current acoustic context. In Section 5.3.2 we introduce a model for agent AIDA that
is used to infer new parameter trials.

Throughout this section, we will make use of factor graphs for the visualization
of probabilistic models. In this paper we focus on Forney-style factor graphs (FFG),
as introduced in [93] with notational conventions adopted from [94]. FFGs repre-
sent factorized functions by undirected graphs, whose nodes represent the individ-
ual factors of the global function. The nodes are connected by edges representing
the mutual arguments of the factors.
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5.3.1 Acoustic model

Our acoustic model of the observed signal and hearing aid output consists of a
model of the source dynamics of the underlying signals and a model for the context
dynamics.

Model of source dynamics

We assume that the observed acoustic signal x consists of a speech signal (or more
generally, a target signal that the HA client wants to focus on) and an additive noise
signal (that the HA client is not interested in), as

xt = st + nt (5.2)

where xt ∈ R represents the observed signal at time t, i.e. the input to the HA. The
speech and noise signals are represented by st ∈ R and nt ∈ R, respectively. At
this point, the source dynamics of sn and nt need to be further specified. Here we
choose to model the speech signal by a time-varying autoregressive model and the
noise signal by a context-dependent autoregressive model. The remainder of this
subsection will elaborate on both these source models and will further specify how
the hearing aid output is generated. An FFG visualization of the described acoustic
model is depicted in Figure 5.3.

Historically, autoregressive (AR) models have been widely used to represent
speech signals [105, 83]. As the dynamics of the vocal tract exhibit non-stationary
behavior, speech is usually segmented into individual frames that are assumed to
be quasi-stationary. Unfortunately, the signal is often segmented without any prior
information about the phonetic structure of the speech signal. Therefore the quasi-
stationarity assumption is likely to be violated and time-varying dynamics are more
likely to occur in the segmented frames [131]. To address this issue, we can use
a time-varying prior for the coefficients of the AR model, leading to a time-varying
AR (TVAR) model [41]

θt ∼ N (θt−1, ωIK) (5.3a)

st ∼ N (A(θt)st−1, V (γ)) (5.3b)

where θt = [θ1t, θ2t, ..., θKt]
⊺ ∈ RK , st = [st, st−1, ..., st−K+1]

⊺ ∈ RK are the co-
efficients and states of an K th order TVAR model for speech signal st = e⊺1st. We
use N (m,V ) to denote a Gaussian distribution with mean m and covariance ma-
trix V . In this model, the AR coefficients θt are represented by a Gaussian random
walk with process noise covariance ωIM , with IK denoting the identity matrix of
size (K ×K), scaled by ω ∈ R>0. γ ∈ R>0 represents the process noise precision
matrix of the AR process. Here, we have adopted the state-space formulation of
TVAR models as in [88], where V (γ) = (1/γ)e1e

⊺
1 creates a covariance matrix with
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a single non-zero entry. We use ei to denote an appropriately sized Cartesian stan-
dard unit vector that represents a column vector of zeros where only the ith entry is
1. A(θ) denotes the companion matrix of size (K ×K), defined as

A(θ) =

[
θ⊺

IK−1 0

]
. (5.4)

Multiplication of a state vector by this companion matrix, such as A(θt)st−1, basi-
cally performs two operations: an inner product θ⊺

t st−1 and a shift of st−1 by one
time step to the past.

The acoustic model also encompasses a model for background noise, such as
the sounds at a bar or train station. Many of these background sounds can be well
represented by colored noise [132], which in turn can be modeled by a low-order
AR model [107, 106]

nt ∼ N (A(ϱi)nt−1, V (τi)) , for t = t−, t− + 1, . . . , t+ (5.5)

where ϱi = [ϱ1k, ϱ2k, ..., ϱNk]
⊺ ∈ RN , nt = [nt, nt−1, ..., nt−N+1]

⊺ ∈ RN are the
coefficients and states of an AR model of order N ∈ N+ for noise signal nt = e⊺1nt.
τi ∈ R>0 denotes the process noise precision of the AR process. In contrast to the
speech model, we assume the processes ϱi and τi to be stationary when the user is
in a specific acoustic environment or context. To make clear that contextual states
change much slower than raw acoustic data signals, we index the slower parameters
at time index k, which is related to index t by

k =

⌈
t

W

⌉
. (5.6)

Here, ⌈·⌉ denotes the ceiling function that returns the largest integer smaller or
equal than its argument, while W is the window length. The above equation makes
sure that k is intuitively aligned with segments of length W , i.e. t ∈ [1,W ] cor-
responds to k = 1. To denote the start and end indices of the time segment cor-
responding to context index i, we define t− = (i − 1)W + 1 and t+ = iW as an
implicit function of i, respectively. The context can be assumed to be stationary
within a longer period of time compared to the speech signal. However, abrupt
changes in the dynamics of background noise may occasionally occur. For example,
if the user moves from a train station to a bar, the parameters of the AR model that
are attributed to the train station will now inadequately describe the background
noise of the new environment. To deal with these changing acoustic environments,
we introduce context-dependent priors for the background noise, using a Gaussian
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and Gamma mixture model:

ϱi ∼
L∏

l=1

N (ml,Vl)
ci (5.7a)

τi ∼
L∏

l=1

Γ (al, bl)
ci (5.7b)

The context at time index i, denoted by ci, comprises a 1-of-L binary vector with
elements cli ∈ {0, 1}, which are constrained by

∑
i cli = 1. Γ(a, b) represents a

Gamma distribution with shape and rate parameters a and b, respectively. The
hyperparameters ml, Vl, al and bl define the characteristics of the different back-
ground noise environments.

Now that an acoustic model of the environment has been formally specified, we
will extend this model with the goal of obtaining a HA algorithm. The principal goal
of a HA algorithm is to improve the audibility and intelligibility of acoustic signals.
Audibility can be improved by amplifying the received input signal. Intelligibility
can be improved by increasing the Signal-to-Noise Ratio (SNR) of the received sig-
nal. Assuming that we can infer the constituent source signals st and nt from the
received signal xt, the desired HA output signal can be modeled by

yt = uskst + unknt, for t = t−, t− + 1, . . . , t+ (5.8)

where ui = [usk, unk]
⊺ ∈ [0, 1]2 represents a vector of 2 tuning parameters or

source-specific gains for the speech and background noise signal, respectively. In
this expression, the output of the hearing aid is modeled by a weighted sum of
the constituent source signals. The gains control the amplification of the extracted
speech and noise signals individually and thus allow the user to perform source-
specific filtering, also known as soundscaping [133]. Because of imperfections dur-
ing inference of the source signals (see Section 5.4), the gains simultaneously reflect
a trade-off between residual noise and speech distortion.

Finding good values for the gains u can be a difficult task because the preferred
parameter settings may depend on the specific listener and on the acoustic context.

Next, we describe the acoustic context model that will allow AIDA to make
context-dependent parameter proposals.

Model of context dynamics

As HA clients move through different acoustic background settings, such as being in
a car, doing groceries, watching TV at home, etc.) the preferred parameter settings
for HA algorithms tend to vary. The context signal allows distinguishing between
these different acoustic environments.
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Figure 5.3: A Forney-style factor graph representation of the acoustic source signals model
as specified by (5.3)-(5.11) at time index t. The observation xt is specified as the
sum of a latent speech signal st and a latent noise signal nt. The speech signal
is modeled by a time-varying autoregressive process, where its coefficients θt are
modeled by a Gaussian random walk. The noise signal is a context-dependent au-
toregressive process, modeled by Gaussian (GMM) and Gamma mixture models
(ΓMM) for the parameters ϱi and τi, respectively. The selection variable of these
mixture models represents the context ci. The model for the context dynamics
is enclosed by the dashed box. The composite AR factor node represents the au-
toregressive transition dynamics specified by (5.3b). The output of the hearing
aid yt is modeled as the weighted sum of the extracted speech and noise signals.

The hidden context state variable ci at time index k is a 1-of-L encoded binary
vector with elements cli ∈ {0, 1}, which are constrained by

∑
l cli = 1. This context

is responsible for the operations of the noise model in (5.7). Context transitions are
supported by a dynamic model

ci ∼ Cat(Tci−1), (5.9)
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where the elements of transition matrix T, are defined as Tij = p(cik = 1 | cj,i−1 =

1), which are constrained by Tij ∈ [0, 1] and
∑L

j=1 Tij = 1. We model the individual
columns of T by a Dirichlet distribution as

T1:L,j ∼ Dir(ζj), (5.10)

where ζj denotes the vector of concentration parameters corresponding to the jth

column of T. The context state is initialized by a categorical distribution as

c0 ∼ Cat(π) =

L∏
l=1

πcl0
l such that

L∑
l=1

πl = 1, (5.11)

where the vector π = [π1, π2, . . . , πL]
⊺ contains the event probabilities, whose ele-

ments can be chosen as πl = 1/L if the initial context is unknown. An FFG repre-
sentation of the context dynamics model is shown in the dashed box in Figure 5.3.

5.3.2 AIDA’s user response model

The goal of AIDA is to continually provide the most “interesting” settings for the
HA tuning parameters ui, where interesting has been quantitatively interpreted by
minimization of Expected Free Energy. But how does AIDA know what the client
wants? In order to learn the client’s preferences, she is invited to cast at any time her
appraisal ri ∈ {∅, 0, 1} of current HA performance. To keep the user interface very
light, we will assume that appraisals are binary, encoded by ri = 0 for disapproval
and ri = 1 indicating a positive experience. If a user does not cast an appraisal, we
will just record a missing value, i.e., ri = ∅. The subscript k for ri indicates that we
record appraisals at the same rate as the context dynamics.

If a client submits a negative appraisal ri = 0, AIDA interprets this as an ex-
pression that the client is not happy with the current HA settings ui in the current
acoustic context ci (and vice versa for positive appraisals). To learn client prefer-
ences from these appraisals, AIDA holds a context-dependent generative model to
predict user appraisals and updates this model after observing actual appraisals. In
this paper, we opt for a Gaussian Process Classifier (GPC) model as the generative
model for binary user appraisals. A Gaussian Process (GP) is a very flexible prob-
abilistic model and GPCs have successfully been applied to preference learning in
a variety of tasks before [134, 135, 136]. For an in-depth discussion on GPs, we
refer the reader to [137]. Specifically, the context-dependent user response model
is defined as

υi(·) ∼
L∏

l=1

GP(Ml(·),Kl(·, ·))ci (5.12a)

ri ∼ Ber(Φ(υi(ui))) . if ri ∈ {0, 1} (5.12b)
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In (5.12a), υi(·) is a latent function drawn from a mixture of GPs with mean
functions Ml(·) and kernels Kl(·, ·). Evaluating vi(·) at the point ui provides an
estimate of user preferences. Without loss of generality, we can set Ml(·) = 0.
Since ci is one-hot encoded, raising to the power ci serves to select the GP that
corresponds to the active context. Φ(·) denotes the Gaussian cumulative distribu-
tion function, defined as Φ(x) = 1√

2π

∫ x

−∞ exp
(
−t2/2

)
dt. This map in (5.12b) casts

υi(ui) to a Bernoulli-distributed variable ri.

5.4 Solving tasks by probabilistic inference

This section elaborates on solving the three tasks of Section 5.2.2: 1) context clas-
sification, 2) trial design and 3) hearing aid algorithm execution. All tasks can be
solved through probabilistic inference in the generative model specified by (5.2)-
(5.12b) in Section 5.3. In this section, the inference goals are formally specified
based on the previously proposed generative model.

For the realization of the inference tasks, we will use variational message pass-
ing in a factor graph representation of the generative model. Message passing-
based inference is highly efficient, modular, and scales well to large inference tasks
[48, 72]. With message passing, inference tasks in the generative model reduce to
automatable procedures revolving around local computations on the factor graphs.

5.4.1 Inference for context classification

The acoustic context ci describes the dynamics of the background noise model
through (5.5) and (5.7). For determining the current environment of the user,
the goal is to infer the current context based on the preceding observations. Techni-
cally we are interested in determining the marginal distribution p(ci | x1:t+), where
the index range over t of x takes into account the relation between t and k as de-
fined in (5.6). In our online setting, we wish to calculate this marginal distribution
iteratively by solving

p(ci | x1:t+)︸ ︷︷ ︸
posterior

∝
∫
p(zt−:t+ ,Ψi,xt−:t+ | zt−−1, ci)︸ ︷︷ ︸

observation model

p(ci,T | ci−1)︸ ︷︷ ︸
context dynamics

· p(ci−1, zt−−1 | x1:t−−1)︸ ︷︷ ︸
prior

dzt−−1:t+ dΨi dci−1 dT.

(5.13)

The observation model is fully specified by the model specification in Section 5.3,
similarly as the context dynamics. The prior distribution is a joint result of the itera-
tive execution of both (5.13) and (5.18), where the latter refers to the HA algorithm
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execution from Section 5.4.3. The calculation of this marginal distribution renders
intractable and therefore exact inference of the context is not possible. This is a
result of 1) the intractability resulting from the autoregressive model as described
in the previous subsection and of 2) the intractability that is a result of performing
message passing with mixture models. In (5.7) the model structure contains a Nor-
mal and Gamma mixture model for the AR-coefficients and process noise precision
parameter, respectively. Exact inference with these mixture models quickly leads
to intractable inference through message passing, especially when multiple back-
ground noise models are involved. Therefore, we need to resort to a variational
approximation where the output messages of these mixture models are constrained
to be within the exponential family.

Although variational inference with the mixture models is feasible [47, 25, 109],
it is prone to converge to local minima of the Bethe free energy (BFE) for more com-
plicated models. The variational messages originating from the mixture models are
constrained to either Normal or Gamma distributions, possibly losing important
multi-modal information, and as a result, they can lead to a suboptimal inference
of the context variable. Because the context is vital for the above-underdetermined
source separation stage, we wish to limit the amount of (variational) approxima-
tions during context inference. At the cost of increased computational complexity,
we will remove the variational approximation around the mixture models and in-
stead expand the mixture components into distinct models. As a result, each distinct
model now contains one of the mixture components for a given context and now
results in exact messages originating from the priors of ξi and τi. Therefore we
only need to resort to a variational approximation for the autoregressive node. By
expanding the mixture models into distinct models to reduce the number of vari-
ational approximations, the calculation of the posterior distribution of the context
p(ci | x1:t+) reduces to an approximate Bayesian model comparison problem, sim-
ilarly as described in [133]. Appendix C.3.1 gives a more in-depth description on
how we use Bayesian model comparison for solving the inference task in (5.13).

5.4.2 Inference for trial design of HA tuning parameters

The goal of proposing alternative HA tuning parameter settings (task 3) is to receive
positive user responses in the future. Free energy minimization over desired future
user responses can be achieved through a procedure called Expected Free Energy
(EFE) minimization [122, 138].

EFE as a trial selection criterion induces a natural trade-off between explorative
(information-seeking) and exploitative (reward-seeking) behavior. In the context of
situated HA personalization, this is desirable because soliciting user feedback can be
burdensome and invasive, as described in Section 5.2.2. From the agent’s point of
view, this means that striking a balance between gathering information about user
preferences and satisfying learned preferences is vital. The EFE provides a way to
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tackle this trade-off, inspired by neuro-scientific evidence that brains operate under
a similar protocol [122, 139]. The EFE is defined as [122]

Gu[q] = Eq(r,υ|u)

[
ln

q(υ | u)
p(r, υ | u)

]
, (5.14)

where the subscript indicates that the EFE is a function of a trial u. The EFE can be
decomposed into [122]

Gu[q] ≈ −Eq(r|u)

[
ln p(r)

]
︸ ︷︷ ︸

Utility drive

−Eq(r,υ|u)

[
ln
q(υ | u, r)
q(υ | u)

]
︸ ︷︷ ︸

Information gain

, (5.15)

which contains an information gain term and a utility-driven term. Minimization of
the EFE reduces to maximization of both these terms. Maximization of the utility
drive pushes the agent towards matching predicted user responses q(r | u) with a
goal prior over desired user responses p(r). This goal prior allows the encoding of
beliefs about future observations that we wish to observe. Setting the goal prior
to match positive user responses then drives the agent towards parameter settings
that it believes make the user happy in the future. The information gain term in
(5.15) drives agents that optimize the EFE to seek out responses that are maximally
informative about latent states v.

To select the next set of gains u to propose to the user, we need to find

u∗ = argmin
u

(
min
q
Gu[q]

)
. (5.16)

Intuitively, one can think of (5.16) as a two-step procedure with an inner and an
outer loop. The inner loop finds the approximate posterior q using (approximate)
Bayesian inference, conditioned on a particular action parameter u. The outer loop
evaluates the resulting EFE as a function of u and proposes a new set of gains to
bring the EFE down. For our experiments, we consider a candidate grid of possible
gains. For each candidate, we compute the resulting EFE and then select the lowest
scoring proposal as the next set of gains to be presented to the user.

The probabilistic model used for AIDA is a mixture of GPC. For simplicity, we
will restrict inference to the GP corresponding to the MAP estimate of ci. Between
trials, the corresponding GP needs to be updated to adapt to the new data gathered
from the user. Specifically, we are interested in finding the posterior over the latent
user preference function

p(υ∗ | u1:k, r1:k−1) =

∫
p(υ∗ | u1:k−1,ui, υ)p(υ | u1:k−1, r1:k−1)dυ . (5.17)

where we assume AIDA has access to a dataset consisting of previous queries u1:k−1
and appraisals r1:k−1 and we are querying the model at ui. While this inference
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task in the GPC is intractable, there exist a number of techniques for approximate
inference, such as variational Bayesian methods, Expectation Propagation, and the
Laplace approximation [137]. Appendix C.3.2 describes the exact details of the
inference realization of the inference tasks of AIDA.

5.4.3 Inference for executing the hearing aid algorithm

The main goal of the proposed hearing aid algorithm is to improve audibility and
intelligibility by re-weighing inferred source signals in the HA output signal. In our
model of the observed signal in (5.2)-(5.7) we are interested in iteratively inferring
the marginal distribution over the latent speech and noise signals p(st,nt | x1:t).
This inference task is in literature sometimes referred to as informed source separa-
tion [140]. Inferring the latent speech and noise signals tries to optimally disentan-
gle these signals from the observed signal based on the sub-models of the speech
and noise source.This requires us to compute the posterior distributions associated
with the speech and noise signals. To do so, we perform probabilistic inference by
means of message passing in the acoustic model of (5.2)-(5.7). The posterior distri-
butions can be calculated in an online manner using sequential Bayesian updating
by solving the Chapman-Kolmogorov equation [95]

p(zt,Ψi | x1:t)︸ ︷︷ ︸
posterior

∝ p(xt | zt)︸ ︷︷ ︸
observation

∫
p(zt | zt−1,Ψi)︸ ︷︷ ︸

state dynamics

p(zt−1,Ψi | x1:t−1)︸ ︷︷ ︸
prior

dzt−1,

for t = t−, t− + 1, . . . , t+

(5.18)

where zt and Ψi denote the sets of dynamic states and static parameters zt =
{θt, st,nt} and Ψi = {γ, τi, ζi}, respectively. Here, the states and parameters cor-
respond to the latent AR and TVAR models of (5.3) and (5.5). Furthermore, we
assume that the context does not change, i.e. k is fixed. When the context does
change (5.18) will need to be extended by integrating over the varying parameters.
Unfortunately, the solution of (5.18) is not analytically tractable. This happens
because of 1) the integration over large state spaces, 2) the non-conjugate prior-
posterior pairing, and 3) the absence of a closed-form solution for the evidence
factor [111]. To circumvent this issue, we resort to a hybrid message passing al-
gorithm that combines structured variational message passing (SVMP) and loopy
belief propagation for the minimization of Bethe free energy [43].

Owing to the modularity of the factor graphs, the message passing update rules
can be tabulated and only need to be derived once for each of the included factor
nodes. The derivations of the sum-product update rules for elementary factor nodes
can be found in [48] and the derived structured variational rules for the composite
AR node can be found in [111]. The variational updates in the mixture models can
be found in [25, 109]. The required approximate marginal distribution of some
variable z can be computed by multiplying the incoming and outgoing variational
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messages on the edges corresponding to the variables of our interest as q(z) ∝
ν⃗(z) · ⃗ν(z).

Based on the inferred posterior distributions of st and nt, these signals can be
used for inferring the hearing aid output through (5.8) to produce a personalized
output that compromises between residual noise and speech distortion.

5.5 Experimental verification & validation

In this section, we first verify our approach for the three design tasks of Sec-
tion 5.2.2. Specifically, in Section 5.5.1 we evaluate the context inference approach
by reporting the classification performance of correctly classifying the context cor-
responding to a signal segment. In Section 5.5.2 we evaluate the performance of
our intelligent agent that actively proposes hearing aid settings and learns user pref-
erences. The execution of the hearing aid algorithm is verified in Section 5.5.3 by
evaluating the source separation performance. To conclude this section, we present
a demonstrator for the entire system in Section 5.5.4.

All algorithms have been implemented in the scientific programming language
Julia [101]. Probabilistic inference in our model is automated using the open
source Julia package ReactiveMP2. All of the experiments presented in this section
can be found at our AIDA GitHub repository3.

5.5.1 Context classification verification

To verify that the context is appropriately inferred through Bayesian model selec-
tion, we generated synthetic data from the following generative model:

ci ∼ Cat(Tci−1) (5.19a)

with priors

c0 ∼ Cat(π) (5.20a)

T1:L,j ∼ Dir(ζj), (5.20b)

where co is chosen to have length L = 4. The event probabilities π and concentra-
tion parameters ζj are defined as π = [0.25, 0.25, 0.25, 0.25]⊺ and ζj = [1.0, 1.0, 1.0, 1.0]⊺,
respectively. We generated a sequence of 1000 frames, each containing 100 sam-
ples, such that we have 100 x 1000 data points. Each frame is associated with
one of the 4 different contexts. Each context corresponds to an AR model with the
parameters presented in Table 5.1.

2ReactiveMP [73] is available at https://github.com/biaslab/ReactiveMP.jl.
3The AIDA GitHub repository with all experiments is available at https://github.com/biaslab/

AIDA.

https://github.com/biaslab/ReactiveMP.jl
https://github.com/biaslab/AIDA
https://github.com/biaslab/AIDA
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Table 5.1: The parameters of autoregressive processes that are used for generating a time
series with simulated context dynamics.

AR order ϱ τ−1

1 -0.308 1.0
2 0.722 -0.673 2.0
3 -0.081 0.079 -0.362 0.5
4 -1.433 -0.174 0.757 0.466 1.0

For verification of the context classification procedure, we wish to identify which
model best approximates the observed data. To do that, 4 models with the same
specifications as were used to generate the dataset were employed. We used in-
formative priors for the coefficients and precision of AR models. Additionally, we
extended our set of models with an AR(5) model with weakly informative priors
and a Gaussian i.i.d. model that can be viewed as an AR model of zeroth order, i.e.
AR(0). The individual frames containing 100 samples each were processed individ-
ually and we computed the Bethe free energy for each of the different models. The
Bethe free energy is introduced in Appendix C.1. By approximating the true model
evidence using the Bethe free energy as described in Appendix C.3.1, we performed
approximate Bayesian model selection by selecting the model with the lowest Bethe
free energy. This model then corresponds to the most likely context that we are in.
We highlight the obtained inference result in Figure 5.4.
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Figure 5.4: True and inferred evolution of contexts from frames 200 to 300. Each frame
consists of 100 data points. Circles denote the active contexts that were used to
generate the frame. Crosses denote the model that achieves the lowest Bethe free
energy for a specific frame.
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We evaluate the performance of the context classification procedure using ap-
proximate Bayesian model selection by computing the categorical accuracy metric
defined as

acc =
tp+ tn

N
(5.21)

where tp, tn are the number of true positive and true negative values, respectively.
N corresponds to the number of total observations, which in this experiment is
set to N = 1000. In this context classification experiment, we have achieved a
categorical accuracy of acc = 0.94.

5.5.2 Trial design verification

Evaluating the performance of the intelligent agent is not trivial. Because the agent
adaptively trades off exploration and exploitation, accuracy is not an adequate met-
ric. There are reasons for the agent to veer away from what it believes is the opti-
mum to obtain more information. As a verification experiment we can investigate
how the agent interacts with a simulated user. Our simulated user samples binary
appraisals ri based on the HA parameters ui as

ri ∼ Ber

(
2

1 + exp
(
(ui − u∗)TΛuser(ui − u∗)

)) , (5.22)

where u∗ denotes the optimal parameter setting, ui is the set of parameters pro-
posed by AIDA at time k, Λuser is a diagonal weighting matrix that controls how
quickly the probability of positive appraisals decays with the squared distance to
u∗. The constant 2 ensures that when ui = u∗, the probability of positive appraisals
is 1 instead of 0.5. For our experiments, we set u∗ = [0.8, 0.2]⊺ and the diagonal
elements of Λuser to 0.004. This results in the user preference function p(ri = 1 | ui)
as shown in Figure 5.5. The kernel used for AIDA is a squared exponential kernel
given by

K(u,u′) = σ2 exp

{
−∥u− u′∥22

2l2

}
, (5.23)

where l and σ are the hyperparameters of this kernel. Intuitively, σ is a static noise
parameter and l encodes the smoothness of the kernel function. Both hyperparam-
eters were initialized to σ = l = 0.5, which is uninformative on the scale of the
experiment. We let the agent search for 80 trials and update hyperparameters every
5th trial using conjugate gradient descent as implemented in Optim.jl [141]. We
constrain both hyperparameters to the domain [0.1, 1] to ensure the stability of the
optimization. As we will see, for large parts of each experiment, AIDA only receives
negative appraisals. The generative model of AIDA is fundamentally a classifier, and
unconstrained optimization can lead to degenerate results when the data set only
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Figure 5.5: Simulated user preference function p(ri = 1 | ui). The coloring corresponds to
the probability of the user giving a positive appraisal for the search space of gains
ui = [usk, unk]

⊺.

contains examples of a single class. For all experiments, the first proposal of AIDA
was a randomly sampled parameter from the admissible set of parameters because
the AIDA has no prior knowledge about the user preference function. This random
initial proposal led to distinct behavior for all simulated agents.

We provide two verification experiments for AIDA. First, we will thoroughly
examine a single run to investigate how AIDA switches between exploratory and
exploitative behavior. Secondly, we examine the aggregate performance of an en-
semble of agents to test the average performance. To assess the performance for a
single run, we can examine the evolution of the distinct terms in the EFE decom-
position of (5.15) over time. We expect that when AIDA is primarily exploring, the
utility drive is relatively low while the information gain is relatively high. When
AIDA is primarily engaged in the exploitation, we expect the opposite pattern. We
show these terms separately in Figure 5.6.
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Figure 5.6: Evolution of the utility drive and negative information gain after throughout a
single experiment.

Figure 5.6 shows that there are distinct phases to the experiment. At the begin-
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ning (i < 5) AIDA sees a sharp decrease in utility drive and information gain terms.
This indicates saturation of the search space such that no points present good op-
tions. This happens early due to uninformative hyperparameter settings in the GPC.
After trial 5, these hyperparameters are optimized and the agent no longer thinks it
has saturated the search space, which can be explained by the jumps in Figure 5.6
from trial 5 to 6. From trial 6 throughout 15 we observe a relatively high informa-
tion gain and relatively low utility drive, meaning that the agent is still exploring
the search space for parameter settings which yield a positive user appraisal. The
agent obtains its first positive appraisal at i = 16, as denoted by the jump in utility
drive and drop in information gain. This first positive appraisal is followed by a
period of oscillations in both terms, where the agent is refining its parameters. Fi-
nally, AIDA settles down to predominantly exploitative behavior starting from 41st

trial. To examine the first transition, we can visualize the EFE landscape at i = 5
and i = 6, the upper row of Figure 5.7.

Recall that AIDA is minimizing EFE. Therefore, it is looking for the lowest values
corresponding to blue regions and avoiding the high values corresponding to red
regions. Between k = 5 and k = 6 we perform the first hyperparameter update,
which drastically changes the EFE landscape. This indicates that initial parameter
settings were not informative, as we did not cover the majority of the search space
within the first 5 iterations. The yellow regions at k = 6 indicates regions corre-
sponding to previous proposals of AIDA that resulted into negative appraisals. We
can visualize snapshots of the exploration phase starting from k = 6 in a similar
manner. The second row of Figure 5.7 displays the EFE landscape at two different
time instances during the exploration phase. It shows that over the course of the
experiment, AIDA gradually builds a representation over the search space. In trial
16 this takes the form of patterns of connected regions that denote areas that AIDA
believes are unlikely to results in positive appraisals.

Once AIDA receives its first positive appraisal at k = 16, it switches from explor-
ing the search space to focusing only on the local region. If we examine Figure 5.6,
we see that at this time the information gain term is still reasonably high. This
indicates a subtle point: once AIDA receives a positive appraisal, it starts with local
exploration around where the optimum might be located. However, the agent was
located near the boundary of the optimum and next receives a negative appraisal.
Therefore in trials 18 to 22 AIDA queries points which it deems most informative.
At time 23 the position of AIDA in the search space (black dot in the third row of
Figure 5.7) returns to the edge of the user preference function in Figure 5.5. This
causes AIDA to receive a mixture of positive and negative appraisals in the follow-
ing trials, leading to the oscillations seen in Figure 5.6. Finally, we can examine the
landscape after AIDA has confidently located the optimum and switched to purely
exploitative behavior. This happens at k = 42 where the utility drive goes to 0 and
the information gain concentrates around −1.

The last row of Figure 5.7 shows that once u∗ is confidently located, AIDA dis-
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Figure 5.7: Snapshot of EFE landscape at different time points as a function of gains us and
un. The black dot denotes the current parameter settings and the green dot
denotes u∗.

regards the remainder of the search space in favour of providing good parameter
settings. Finally, if the user continues to supply data to AIDA, it will gradually ex-
tend the potential region of samples around the optimum. This indicates that if
a user keeps requesting updated parameters, AIDA will once again perform local



5

94 AIDA: An Active Inference-based Design Agent for Audio Processing Algorithms

exploration around the optimum. This further indicates that AIDA accommodates
gradual retraining as user’s hearing loss profile changes over time.

Having thoroughly examined an example run and investigated the types of be-
havior produced by AIDA, we can now turn our attention to aggregate performance
over an ensemble of agents. To that end we repeat the experiment 80 times with
identical hyperparameters, but with different initial proposals. The metric we are
most interested in is how quickly AIDA is able to locate the optimum and produce
a positive appraisal.
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Figure 5.8: (Left) Heatmap showing ensemble performance over 80 agents. Positive and neg-
ative responses are indicated with yellow and black squares, respectively. (Right)
Histogram showing time indices where the agents receive their first positive re-
sponse. The right most column indicates agents that failed to obtain a positive
appraisal. In total, 66/80 agents solve the task, corresponding to a success rate
of 82.5%.

Figure 5.8 shows a heatmap of when each agent obtains positive responses.
Positive responses are indicated by yellow squares and negative responses by black
squares. Each row contains results for a single AIDA-agent and each column indi-
cates a time step of the experiment. Consistent with the results for a single agent,
we see that each experiment starts with a period of exploration. A large number
of rows also show a yellow square within the first 35 trials, indicating that the op-
timum was found. Interestingly, no agents receive only positive responses, even
after locating the optimum. This follows from AIDA actively trading off exploration
and exploitation. When exploring, AIDA can select parameters that are suboptimal
with respect to eliciting positive user responses, to gather more information. Fig-
ure 5.8 also shows a histogram indicating when each agent obtains its first positive
appraisal. The very right column shows agents that failed to locate the optimum
within the designated number of trials. In total, 66/80 agents correctly solve the
task, corresponding to a success rate of 82.5%. Disregarding unsuccessful runs, on
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average, AIDA obtains a positive response in 37.8 trials with a median of 29.5 trials.

5.5.3 Hearing aid algorithm execution verification

To verify the proposed inference methodology for the hearing aid algorithm execu-
tion, we synthesized data by sampling from the following generative model:

θt ∼ N (θt−1, ωIK) (5.24a)

st ∼ N (A(θt)st−1, V (γ)) (5.24b)

nt ∼ N (A(ϱ)nt−1, V (τ)) (5.24c)

xt = st + nt, (5.24d)

with priors

θ0 ∼ N (0, ωIM ) (5.25a)

ϱ ∼ N (0, IN ) (5.25b)

γ ∼ Γ(1.0, 1e− 4) (5.25c)

τ ∼ Γ(1.0, 1.0) (5.25d)

ω = 1e− 4 (5.25e)

where K and R are the orders of TVAR and AR models, respectively, and where
K ≥ R holds, as we assume that the noise signal can be modeled by a lower
AR order in comparison to the speech signal. We use an uninformative prior for
the output of the hearing aid yt as in Figure 5.3 to prevent interactions from that
part of the graph. We generated 1000 distinct time series of length 100. For each
generated time series, the (TV)AR orders K and R were sampled from the discrete
domains [4, 8] and [1, 4], respectively. We resampled the priors that initially resulted
into unstable TVAR and AR processes.

The generated time series were used in the following experiment. We first cre-
ated a probabilistic model with the same specifications as the generative model
in (5.24). However, we used non-informative priors for the states and parame-
ters of the model that corresponds to the TVAR process in (5.24b). To ensure the
identifiability of the separated sources, we used weakly informative priors for the
parameters of the AR process in (5.24c). Specifically, the mean of the prior for ζ
was centered around the real AR coefficients that were used in the data generation
process. The goals of the experiment are 1) to verify that the proposed inference
procedure recovers the hidden states θt, st and nt for each generated dataset and
2) to verify convergence of the BFE as convergence is not guaranteed, because our
graph contains loops [142]. For a typical case, the inference results for the hidden
states st and nt are shown in the top row of Figure 5.9. The bottom row of Figure
5.9 shows the tracking of the time-varying coefficients θt. This plot does not show
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Figure 5.9: (Top) Inference results for the hidden states st and nt of coupled (TV)AR pro-
cess on dataset 999. (left) The generated observed signal xt with underlying
generated signals st and nt. (center) The latent signal st and its correspond-
ing posterior approximation. (right) The latent signal nt and its corresponding
posterior approximation. The dashed lines corresponds to the mean of the pos-
terior estimates. The transparent regions represent the corresponding remaining
uncertainty as plus-minus one standard deviation from the mean. (Bottom) In-
ference results for the coefficients θt of dataset 999. The solid lines correspond
to the true latent AR coefficients. The dashed lines correspond to the mean of the
posterior estimates of the coefficients and the transparent regions correspond to
plus-minus one standard deviation from the mean of the estimated coefficients.

the correlation between the inferred coefficients, whereas this actually contains vi-
tal information for modeling an acoustic signal. Namely, the coefficients together
specify a set of poles, which influence the characteristics of the frequency spectrum
of the signal. An interesting example is depicted in Figure 5.10. We can see that the
inference results for the latent states st and nt are swapped with respect to the true
underlying signals. This behavior is undesirable in standard algorithms when the
output of the HA is produced based on hard-coded gains. However, the presence
of our intelligent agent can still find the optimal gains for this situation. The au-
tomation of the hearing aid algorithm and intelligent agent will relieve this burden
on HA clients. As can be seen from Figure 5.11, the Bethe free energy averaged
over all generated time series monotonically decreases. Note that even though the
proposed hybrid message passing algorithm results in a stationary solution, it does
not provide convergence guarantees.
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Figure 5.10: Inference results for the hidden states st and nt of coupled (TV)AR process on
dataset 42. In this particular case it can be noted that the inferred states are
swapped with respect to the true underlying signals. However, the accompany-
ing intelligent agent is able to cope with these kinds of situations, such that the
HA clients do not experience any problems as a result.

0 50 100 150 200 250 300

320

330

340

350

360

370

iteration

B
et

he
fr

ee
en

er
gy

[n
at

s]

BFE

Figure 5.11: Evolution of the Bethe free energy for the coupled autoregressive model aver-
aged over all generated time series. The iteration index specifies the number of
marginal updates for all edges in the graph.

5.5.4 Validation experiments

For the validation of the proposed HA algorithm and AIDA, we created an interac-
tive web application4 to demonstrate the the joint system. Figure 5.12 shows the
interface of the demonstrator.

4A web application of AIDA is available at https://github.com/biaslab/AIDA-app/.

https://github.com/biaslab/AIDA-app/
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Figure 5.12: Screenshot of the interactive web application of AIDA. The dashboard consists
of four distinct cells. The top cell Environment allows the user to change the
interfering noise signal from a generated noise signal (synthetic) to a real noise
signal. Furthermore it contains a reset button for resetting the application. The
Hearing Aid cell provides an interactive plot of the input, separated speech, sep-
arated noise, and generated output waveform signals. Each waveform can be
played when the corresponding button is pressed. The NEXT button loads a
new audio file for evaluation. The thumbs-up and thumbs-down buttons cor-
respond to providing AIDA with positive and negative appraisals, respectively.
The brain button starts optimization of the parameters of GPC. The EFE Agent
cell reflects the agent’s beliefs about optimal parameters for the user as an EFE
heatmap. The Classifier cell shows the Bethe free energy (BFE) score for the dif-
ferent models, corresponding to the different contexts. For the real noise signal,
the algorithm automatically determines whether we are surrounded by babble
noise, or by noise from a train station.
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The user listens to the output of the hearing aid algorithm by pressing the "out-
put" button. The buttons "speech" and "noise" correspond to the beliefs of AIDA
about the constituent signals of the HA input. Note that in reality the user does not
have access to this information and can only listen to HA output. After listening to
the output signal, the user is invited to assess the performance of the current HA
setting. The user can send positive and negative appraisals by pressing the thumb
up or thumb down buttons respectively. Once the appraisal is sent, AIDA updates
its beliefs about the parameters’ space and provides new settings for the HA algo-
rithm to make the user happy. As AIDA models user appraisals using a GPC, we
provide an additional button that forces AIDA to optimize the parameters of GPC.
This could be useful when AIDA has already collected some feedback from the user
that contains both positive and negative appraisals.

The demonstrator works in two environments: synthetic and real. The synthetic
environment allows the user to listen to a spoken sentence with two artificial noise
sources, i.e. either interference from a sinusoidal wave or a drilling machine. In
the synthetic environment the hearing aid algorithm exploits the knowledge about
acoustic contexts, i.e, it uses informative priors for the AR model that corresponds
to noise. The real environment uses the data from NOIZEUS speech corpus5. In
particular, the real environment consists of 30 sentences pronounced in two differ-
ent noise environments. Here the user is either experiencing surrounding noise at a
train station or babble noise. In the real environment, the HA algorithm uses weakly
informative priors for the background noise which influences the performance of
the HA algorithm. Both the HA algorithm and AIDA determine the acoustic context
based on the Bethe free energy score, which is also shown in the demonstrator. The
context with the lower Bethe free energy score corresponds to the selected acoustic
context.

5.6 Discussion

We have introduced a design agent that is capable of tuning the context-dependent
parameters of a hearing aid algorithm by incorporating user feedback. Through-
out the paper, we have made several design choices whose implications we shortly
review in this section.

The audio model introduced in Section 5.3.1 describes the dynamics of the
speech signal perturbed by colored noise. Despite the fact that the proposed infer-
ence algorithm allows for the decomposition of such signals into speech and noise
components, there are a few limitations that must be highlighted. First, the identi-
fiability of the coupled AR model depends on the selected priors. Non-informative
priors can lead to poor source estimation [143, 144]. To tackle the identifiability

5The NOIZEUS database is available at https://ecs.utdallas.edu/loizou/speech/noizeus/.

https://ecs.utdallas.edu/loizou/speech/noizeus/
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issue, we use informative context-dependent priors. In other words, for each con-
text, we use a different set of priors that better describe the dynamics of the acoustic
signal in that context. Secondly, throughout our experiments, we used fixed orders
of TVAR and AR models. In reality, we do not have prior information about the ac-
tual order of the underlying signals. Therefore, to continuously update our models
of the underlying sources we need to perform active order selection, which can be
realized using Bayesian model reduction [145, 146]. Thirdly, our model assumes
that the hearing aid device only has access to a monaural input, which means that
the observed signal originates from a single microphone. As a result, we do not
use any spatial information about an acoustic signal that could have been obtained
using multiple microphones. This assumption is mostly influenced by our desire to
focus on the concept of designing a novel class of hearing aid algorithms rather than
building a real-world HA engine. Fortunately, the proposed framework allows for
the easy substitution of source models with more versatile models that might be bet-
ter suited for speech. For instance, one can use several microphones, as commonly
done in beamforming [147], or use a frequency decomposition for improving the
source separation performance [148, 149, 150]. Inevitably, a more complex model
will also likely result in a higher computational burden. Hence, the implementation
of this algorithm on an embedded device remains a challenge.

The power of the agent comes from the choice of the objective function. Since
the objective is independent of the generative model, a straightforward approach
to improving the agent is to adapt the generative model. In particular, a GPC is a
nonparametric model with very few assumptions on the underlying function. Plac-
ing constraints on the preference function, such as was done in [151, 18], is likely
to improve the data efficiency of the agent. Arguably, a core move of [151, 18]
is to acknowledge that user preferences are likely to be peaked around one or a
few optima. Even if the true preference function has multiple modes, assuming
a single peak for the agent is safe since it only needs to locate one of the modes
to provide good parameter settings. Making this assumption allows the authors to
work with a parametric model over user preferences. Working with a less flexible
model predictably leads to higher data efficiency, which can aid the performance of
the agent. Given that the target demographic for AIDA consists of HA users, it is of
paramount importance that the agent is able to learn an adequate representation of
user preferences in as few trials as possible to avoid inconveniencing the user.

During model specification in Section 5.3.2, we make some assumptions on the
control variable ui and user appraisals ri. First, we set the domain of the ele-
ments of the control variable ui to [0, 1]. Note that this is an arbitrary constraint
that we use for illustrative purposes. The domain can be easily rescaled without
loss of generality. For example, in our demonstrator, we use the default domain
of ui ∈ [0, 2]2. Secondly, we opt for binary user appraisals, i.e. ri ∈ {∅, 0, 1}.
This design choice follows from the requirement of allowing users to communicate
covertly to AIDA. Binary user appraisal can more easily be linked to for example
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covert wrist movements when wearing a smartwatch to update the control vari-
ables. With continuous user appraisals, e.g. ri ∈ [0, 1], or pairwise comparison tests
the convergence of AIDA can be greatly improved as these appraisals yield more
information per appraisal. However, providing AIDA with these appraisals requires
more attention, which is undesirable in certain circumstances, for example during
business meetings.

Real-world testing of AIDA has not been included in our work. The performance
evaluation with human HA clients is not straightforward. To evaluate the perfor-
mance of AIDA, we need to conduct a randomized controlled trial (RCT), where
HA clients should be randomly assigned to either an experimental group or a con-
trol group. While the current intelligent AIDA agent can interact with users in real
time, the source separation framework is currently limiting the actual real-time
performance. Under the current model assumptions, i.e., two autoregressive filters
under a variational approximation, we obtain a pretty good source separation per-
formance at the cost of computational complexity. Hence, the complete framework
is not suitable for the proper RCT setting. Nonetheless, we provide a demo that
simulates AIDA and can be tested freely. In future work, we shall focus on speci-
fying source models that exhibit cheap computations allowing us to run the source
separation algorithms in real-time.

5.7 Related work

The problem of hearing aid personalization has been explored in various works.
In [114]the HA parameters are tuned according to pairwise user assessment tests,
during which the user’s perception is encoded using Gaussian processes. The in-
tractable posterior distribution corresponding to the user’s perception is then com-
puted using a Laplace approximation with Expected Improvement as the acquisition
function used to select the next set of gains. Our agent improves upon [114] in two
concrete ways. Firstly, AIDA places a lower cognitive load on the user by not re-
quiring pairwise comparisons. This means the user does not need to keep in her
memory what the HA sounded like at the previous trial but only needs to consider
the current HA output. AIDA accomplishes this without requiring more trials for
training. In fact, since AIDA does not require pre-training but can be trained fully
online under in-situ conditions, AIDA requires fewer data to locate optimal gains.
Secondly, AIDA can be trained and retrained in a continual learning fashion. In
case the user’s preferences change over time, for instance, by a change in the hear-
ing loss profile, AIDA can smoothly accommodate the user as long as she continues
to provide the agent with feedback. Using EFE as an acquisition function means
the agent will engage in local exploration once the optimum is located, leading the
agent to naturally learn shifts in the user’s preferences by balancing exploration
and exploitation. In [115], personalization of the hearing aid compression algo-



5

102 AIDA: An Active Inference-based Design Agent for Audio Processing Algorithms

rithm is framed in terms of deep reinforcement learning. On the contrary, in our
work, we take inspiration from the active inference framework where agents act to
maximize model evidence of their underlying generative model. Importantly, this
does not require us to explicitly specify a loss function that drives exploitative and
epistemic behavior. In the recent work of [151], the hearing aid preference learning
algorithm is implemented through sequential Bayesian optimization with pairwise
comparisons. Their hearing aid system comprises two subsystems representing a
user with their preferences and the agent that guides the learning process. How-
ever, [151] focuses only on an exploration through maximizing information gain
with a parametric model. The EFE additionally adds a goal-directed term that en-
sures the agent will stay near the optimum once located, even if other parameter
settings provide more information. Extending the model of [151] to employ the
full EFE is an exciting potential direction for future work. Finally neither [114] nor
[151] takes context dependence into account.

[152] introduces Active Listening (AL), which performs speech recognition based
on the principles of active inference. In [152], they regard listening as an active pro-
cess that is largely influenced by lexical, speaker, and prosodic information. [152]
distinguishes itself from conventional audio processing algorithms because it explic-
itly includes the process of word boundary selection before word classification and
recognition, and they regard this as an active process. Word boundaries are selected
from a group of candidate word boundaries, based on Bayesian model selection, by
choosing the word boundary that optimizes the VFE during classification. In the
future, we see the potential of incorporating the AL approach into AIDA. The active
inference is successfully applied in the work [32] that studies to model selective
attention in a cocktail party listening setup.

The audio processing components of AIDA essentially perform informed source
separation [140], where sources are separated based on prior knowledge. Even
though blind source separation approaches [153, 154] always use some degree of
prior information, we do not focus on this direction and instead, we actively try to
model the underlying sources based on variations of auto-regressive processes. For
audio processing applications source separation has often been performed in the
log-power domain [148, 149, 150]. However, the interaction of the signals in this
domain is no longer linear. The intractability that results from performing exact
inference in this model is often resolved by simplifying the interaction function
[155, 156]. Although this approach has shown to be successful in the past, its
performance is limited because of the negligence of phase information.

5.8 Conclusions

This paper has presented AIDA, an active inference design agent for novel situation-
aware personalized hearing aid algorithms. AIDA and the corresponding hearing
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aid algorithm are based on probabilistic generative models that model the user and
the underlying speech and context-dependent background noise signals of the ob-
served acoustic signal, respectively. Through probabilistic inference by means of
message passing, we perform informed source separation in this model and use the
separated signals to perform source-specific filtering. AIDA then learns personalized
source-specific gains through user interaction, depending on the environment that
the user is in. Users can give a binary appraisal, after which the agent will make
an improved proposal based on expected free energy minimization for encouraging
both exploitative and epistemic behavior. AIDA’s operations are context-dependent
and use the context from the hearing aid algorithm, which is based on Bayesian
model selection. Experimental results show that hybrid message passing is capa-
ble of finding the hidden states of the coupled AR model that are associated with
the speech and noise components. Moreover, Bayesian model selection has been
tested for the context inference problem where each source is modeled by the AR
process. The experiments on preference learning showed the potential of applying
expected free energy minimization for finding the optimal settings of the hearing
aid algorithm. Although real-world implementations still present challenges, this
novel class of audio processing algorithms has the potential to change the lead-
ing approach to hearing aid algorithm design. Future plans encompass developing
AIDA towards real-time applications.
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Chapter 6
Discussion and Conclusions

6.1 Contributions

This thesis has explored and built a methodology for message passing-based in-
ference in hierarchical autoregressive models. The central research question this
dissertation endeavored to answer was:

How can Bayesian inference be realized for hierarchical autoregressive models
for signal processing applications?

Chapter 2 presented Forney-style factor graphs (FFGs) as an efficient framework
for Bayesian inference in state-space models (Section 2.4). We have introduced a
hierarchical model - the TVAR model that could be used in different signal modeling
scenarios. Bayesian inference of FFGs is achieved by the message passing algorithm,
which has linear complexity with respect to added nodes. We demonstrated how
TVAR model could reduce to simpler AR-like models by manipulating AR nodes
(Section 2.6). Additionally, we explored the process of online model selection for
this class of models.

Intending to add regime-switching behavior to HAR models, chapter 3 focused
on a mixture of Gamma distributions model (ΓMM). The ΓMM was cast to an FFG
that rests upon composite ΓM nodes, see Fig. 3.1. To deal with the intractabil-
ity of the posterior distribution of the shape parameter of ΓM, we introduced two
MP-based approximation techniques. This preliminary step opened the doors for
making a fully-Bayesian switching autoregressive model (SwAR) that tracks chang-
ing states in the acoustic environment (Chapter 4).

Finally, this dissertation has presented an active inference-based design agent
(AIDA) to develop context-dependent audio processing algorithms (Chapter 5). The
modularity of the FFG framework allowed us to fuse the models of previous chap-
ters into a single generative state-space model representing the acoustic environ-
ment of AIDA that consists of coupled TVAR and SwAR models. We have presented
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a GP-based user preference model that enabled AIDA to set personalized gains de-
pending on the acoustic environment that the user is in. Moreover, Bayesian model
selection has been employed for the acoustic context inference problem, where the
AR process models each acoustic source. Ultimately, we framed the results into an
open-source demonstrator (Figure 5.12).

All derived message passing updates and free-energy computation rules have
been implemented in the open-source Julia package ReactiveMP.jl that is de-
signed with a focus on efficient and scalable Bayesian inference.

6.2 Strength and Limitations

In this section, we analyze the strengths and limitations of our contributions. To
answer this dissertation’s central question, we recognized that the construction of
hierarchies in autoregressive models could be implemented by extending the mean
or variance of the probability distribution for the AR model. Unfortunately, the con-
struction of such hierarchies leads to intractable inference. Hence some questions
about approximate inference solutions for hierarchical autoregressive models arose.
At first, we focused on a subclass of HAR models, namely TVAR models. The first
research question was formulated as follows:

Q1. How can approximate Bayesian inference be implemented for time-varying
autoregressive models?

To answer this question, we first showed why we are interested in calculating
the model evidence as a performance metric for the TVAR model. Indeed, as shown
in Chapter 2, the model evidence is fundamental to assessing the performance of
any probabilistic model. We also showed how state inference can be formulated as a
prediction-correction process. Unable to compute the model evidence for the TVAR
model, we translated the problem to the minimization of VFE. We then cast the
TVAR model into the language of Forney-style factor graphs. The FFG framework
allowed us to cast the inference problem into the problem of deriving the message
update rules for the AR node. We showed how to employ the hybrid message
passing algorithm for TVAR models based on a combination of BP and structured
VMP. Additionally, we illustrated how to evaluate the VFE for TVAR models by
decomposing VFE into the sum of local average energy and entropy terms. Finally,
we showed the applicability of the proposed methods for temperature modeling
and speech enhancement problems. The main strength of the advocated solution
can be summarized as follows:

• Closed-form variational update rules for the AR node;

• Closed-form FE computation rules for the AR node;
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• A modular FFG representation of TVAR models. The modular nature of the
FFG framework supports flexible re-use of the AR node in different models;

The closed-form update rules are important since we are interested to implement
these models on wearable devices, so low power consumption is essential.

One of the limitations of this work is the omission of multivariate autoregressive
(MAR) models [70]. This class of models is actively used in finance and neuro-
science applications. One of the reasons for omitting MAR is its low applicability to
the problem of speech signal processing. As opposed to AR models, MAR models use
matrices instead of a vector of AR coefficients. In the context of Bayesian inference,
we would need to insert matrix normal distributions for these matrices. However,
working with such distributions creates difficulties associated with tractability and
speed of inference. Still, creating a MAR node may be of interest in future research
endeavors.

This work has also explored two factorizations of the variational posterior dis-
tribution of the AR node, namely, a naive mean-field and a structured mean-field
factorization between past and current states. Technically, we could consider al-
ternative factorizations and compare their effect on the inference. Furthermore, it
would be interesting to compare the inference results of our algorithm with other
algorithms, based on sampling or Stochastic Variational Inference (SVI) [157, 158].
However, since we are interested in real-time inference in our application, we
elected not to pursue sampling-based inference methods as they are considered
accurate but computationally very expensive.

This chapter has not rigorously explored the model selection procedure for TVAR
models. In section 2.6, we favored models based on lower values of the minimized
VFE. However, VFE is an unnormalized value, meaning that a "blind" comparison
of its value for entirely different models and inference algorithms is theoretically
unfounded [45, 159]. In our case, we were justified in doing so in view of the fact
that inference for competing models can be seen as manipulating the variational
constraints rather than the models. That is why we have obtained interpretable
empirical results in the model selection experiments.

Our next concrete research question focused on the inference in the ΓM model:

Q2. How can Bayesian inference be implemented for tracking hidden states and
parameters in a Gamma mixture model?

As mentioned in Chapter 1, the answer to this question is crucial from the point of
view of building SwAR models. Chapter 3 answers Q2 by introducing the ΓM node
and providing two MP-based inference schemes: VMP-EM and VMP-MM. While
VMP-EM enjoys faster inference, unlike VMP-MM, it does not provide a "full" poste-
rior distribution for the shape parameter of ΓMM. This means that VMP-EM is not
suitable for tracking problems. We showed how combinations of ΓM nodes could
be used to process univariate and multivariate observations with positive support.
The main strength of our solution can be summarized as follows:
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• Development of the ΓM node that can be used as a plug-in module in various
hierarchical models;

• Closed-form variational update rules for ΓM node;

This work also has a few shortcomings. First, the performance of the inference
has not been compared to methods based solely on sampling. Second, we did not
consider alternative approximation techniques of the messages towards the rate
parameters. In future studies, it would be interesting to use Gaussian quadrature-
based methods [95, Chapter 6] which deterministically select sample points and
approximate the integral (update message) as the weighted average. Owing to the
deterministic nature of the methods, they can provide faster inference. Perhaps the
main disadvantage of this chapter is the lack of rigorous procedures for evaluating
the number of mixtures. For example, to choose the optimal number of mixture
components, we computed the values of mixing coefficients with different numbers
of mixture components. Mixing coefficients that converge to 0 suggest that the
corresponding mixture component is not contributing. Theoretically, the number of
mixtures can be determined using a Dirichlet process [160] as a prior probability
distribution.

The development of the ΓM node allowed us to tackle the next concrete research
question easily:

Q3. How can approximate Bayesian inference be implemented in switching au-
toregressive models?

To answer Q3 we constructed an FFG representation of the SwAR model using ΓM,
GM nodes, and a hidden Markov model (HMM). The inference of the states and
parameters in the SwAR model was subject to the local computation of rules of
the basis nodes. The strength of this work lies in the modular design of the SwAR
model that allows for its integration into more complex hierarchical models. We
have successfully applied the SwAR model for acoustic scene classification.

As a disadvantage, chapter 4 did not explore alternative ways of modeling the
switching precision of the SwAR. For instance, the precision of the SwAR could fol-
low the Switching Hierarchical Gaussian filter (SHGF) proposed by us in [161]. A
comparison of SwAR models based on ΓMM and SHGF would be an exciting direc-
tion for future research. Finally, this work has not explored the applicability of the
proposed inference method to real-time filtering problems when new observations
become available in sequential order.

"Armed" with automated inference procedures in TVAR and SwAR models, we
moved on to the final concrete research question of this thesis:

Q4. How can hierarchical autoregressive models support the development of novel
personalized hearing aid algorithms?
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To answer Q4, we introduced in chapter 5 an acoustic environment for the hearing
aid agent based on a HAR model composed of both the TVAR and SwAR models.
The TVAR model describes a clean speech signal, while the SwAR model charac-
terizes the switching dynamics of the acoustic scenes (noise). The modular FFG
approach allowed us to easily couple these two models and carry out inference by
using previously derived message passing update rules. The proposed inference
algorithm provides strong performance in terms of source separation.

However, the limiting factor of our solution is still the inability to perform real-
time inference on a standard laptop. The coupling of two autoregressive models
(TVAR and SwAR) through a deterministic addition node creates an unbreakable
loop. To still be able to run inference, we used a loopy BP algorithm. We showed
empirically that our algorithm converges within more than 200 iterations. Unfortu-
nately, using so many iterations is unacceptable for real-time signal processing. We
see one potential remedy that would decrease the computational burden. Instead of
a linear mapping between states, one can find a nonlinear state transformation us-
ing neural networks such as normalizing flows [162, 163]. In this case, the learning
part will be decoupled from inference, yielding a substantially faster signal process-
ing procedure.

Our answer to Q4 takes inspiration from the Active Inference (AIF) framework,
which constitutes a unified variational Bayesian procedure for data processing,
learning, and inference of actions. We have introduced an AIF-based agent named
AIDA, and presented three tasks that AIDA aims to solve: (1) classification of acous-
tic context, (2) trial design, and (3) execution of the signal processing algorithm.
Although we formulated and worked our all three tasks separately as free-energy
minimization tasks, we have yet to fuse them into a single optimization problem.
For instance, context classification and signal processing is achieved by minimizing
BFE through message passing, while trial design minimizes Expected FE of future
states, which is a task that we have not yet realized by MP in an FFG. Moreover,
to learn the user’s preferences, we used a GP classifier, which is a non-parametric
model that we did not yet condense into an FFG node. The representation of GPs
in FFGs is an exciting perspective for future research.

In summary, the answers to questions Q1-Q4 provide a recipe for the realization
of Bayesian inference in hierarchical autoregressive models for audio signal process-
ing applications, hence yielding the answer to the main question of this dissertation.
It was shown how HAR models could be built by combining various modules in fac-
tor graphs. As a product, we presented the add-on software to the existing message
passing frameworks, e.g. ReactiveMP.jl and ForneyLab.jl. In Chapter 5, it was
shown how HAR models could help design audio processing applications. To share
our results, we have created an open-source demonstrator of AIDA.
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6.3 Outlook

Even though this dissertation focuses on hierarchical autoregressive models, the
contribution of the work goes beyond that. The somewhat veiled goal of this work
is to show how one can create large, complex systems by manipulating simple in-
dependent modules. Indeed, we have started the journey by simply creating an
autoregressive node, then a mixture node, and then we "suddenly" emerged on
the coupled AR model with time-varying and switching priors (Chapter 5). To en-
sure the compatibility of the constituent nodes, this dissertation committed to the
message passing on Forney-Style factor graphs. However, the same principles for
building complicated models can apply to other factor graph frameworks.

In Appendices A.1-B.1, we show in detail how to derive messages and marginals
for the autoregressive and Gamma mixture nodes. The reader will notice that, in
its essence, auto-regression is nothing more than a linear transformation of Gaus-
sian states. The transition matrix has been parameterized by a multivariate normal
distribution. Hence, the analogous derivations can be carried out to similar linear
transformations. The same goes for the derivations of the Gamma mixture node.
The reader can follow the node formalization and update rules derivations and ap-
ply these manipulations to other kinds of mixture nodes, such as a Beta mixture
node.

The derivation of update equations for complex nodes is a complex effort that
requires patience and attention. Due to the existence of tools that automate stochas-
tic variational inference (SVI) and sampling, it is tempting to skip this manual
work. However, we should note that both SVI and sampling-based inference are
very resource-intensive and less accurate than their analytical counterparts. There-
fore, if we want to adhere to situated, real-time processing, perform online model
selection and reach scalable Bayesian inference on resource-constrained devices,
we cannot avoid some algebraic acrobatics that leads to closed-form update rules.

Most of this work uses ReactiveMP.jl and contributes to this toolbox. In
addition to being written in the high-performance Julia programming language,
ReactiveMP.jl uses a very efficient schedule-free inference engine. Unlike other
toolboxes, such as ForneyLab.jl [164] or Infer.NET [165], ReactiveMP.jl does
not create any sequential schedule for message updates. A fixed schedule requires
traversing the whole factor graph corresponding to the probabilistic model. In real-
world applications, the model may be subject to structural adaptation, e.g., it may
turn out that some factor nodes are no longer needed or the model needs to be
extended. Recomputing the schedule will result in additional computational over-
head. ReactiveMP.jl reacts to changes in data sources, executing the computa-
tions dynamically. As a result, a pre-computed schedule becomes irrelevant.

This dissertation does not include some works devoted to nonlinear autoregres-
sive models in factor graphs [166]. This powerful set of models is used in various
fields such as control theory and signal processing [167]. However, it is worth not-
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ing that, from the perspective of the factor graph framework, creating nonlinear
autoregressive nodes will not be much different from creating a regular AR node.
The main difference will be in calculating the approximation of the message update
rules.





A

Appendix A
Message Passing-based Inference
in Time-Varying Autoregressive
Models

A.1 AR node

Figure A.1 represents a composite AR node.

A

× N

V
A

←−ν (θ) −→ν (θ)↑ ↓

Ax

−→ν (y)

←−ν (y)
←
→←−ν (x)

−→ν (x)

←
→

V

←−ν (γ) −→ν (γ)↑ ↓

Figure A.1: Autoregressive (AR) node.

The corresponding node function of Figure A.1 f(y x,θ, γ):

f(y x,θ, γ) = N (y | Ax,V )
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where

A = A(θ) V = V (γ) =


γ−1 0 0 . . . 0

0 0 0 . . .
...

0 0 0 . . .
...

...
...

. . .
. . .

...


.

A.2 Structural Variational Message Passing

The message update rule (2.24) implies a mean-field factorization, meaning that
all variables represented by edges around the factor node f are independent. In
this paper, we impose a structural dependence between states. To illustrate how
structured VMP works, let us consider the example depicted in Figure A.2.

f

←−ν (z)−→ν (z)

−→ν (x)·←−ν (x) −→ν (y)·←−ν (y)

Figure A.2: A node f(x, y, z) representing an arbitrary joint distribution. Arrows above the
messages ν(·) indicate the direction (incoming or outgoing).

Suppose that we constrain the joint posterior (A.1) as

q(x, y, z) = q(x, y)q(z) (A.1)

The message passing algorithm for updating the marginal posteriors q∗(x, y) and
q∗(z) can now be executed as follows: (1) compute outgoing messages ν⃗(y), ⃗ν(x):

ν⃗(y) ∝
∫
ν⃗(x) exp

(∫
q(z) log [f(x, y, z)] dz

)
dx (A.2a)

⃗ν(x) ∝
∫

⃗ν(y) exp

(∫
q(z) log [f(x, y, z)] dz

)
dy (A.2b)

(2) update the joint posterior q∗(x, y):

q∗(x, y) ∝ ν⃗(x) exp
(∫

q(z) log f(x, y, z)dz

)
⃗ν(y) (A.3)
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(3) compute the outgoing message ν⃗(z):

ν⃗(z) ∝ exp

(∫
q∗(x, y) log f(x, y, z)dxdy

)
, (A.4)

(4) update posterior q∗(z):
q∗(z) ∝ ν⃗(z) ⃗ν(z) (A.5)

Every marginal update rule (equations (2.25), (A.3), (A.5)) corresponds to a coor-
dinate descent step on the variational free energy, and therefore the free energy is
guaranteed to converge to a local minimum.

A.3 Auxiliary node function

Before obtaining the update messages for AR node, we need to evaluate the aux-
iliary node function f̃(x,y) ∝ exp

{
Eq(γ)q(θ) log [f(y x,θ, γ)]

}
. We also need to

address the issue of invertability of the covariance matrix V . To tackle this prob-
lem, we assume ϵ > 0, ϵ2 ≈ 0 which allows us to introduce matrix W = V −1

(WV = V W = I).

V =


γ−1 0 0 . . . 0

0 ϵ 0 . . .
...

0 0 ϵ . . .
...

...
...

. . .
. . .

...


log f̃(x,y) = Eq(γ)q(θ) log f(y x,θ, γ) + const

=
1

2
Eq(γ) [log |W |]−

1

2
Eq(γ)q(θ)

[
(y −Ax)⊤W (y −Ax)

]
+ const

= −1

2
Eq(γ)q(θ)

[
tr
(
W (y −Ax) (y −Ax)

⊤
)]

+ const

= −1

2
tr
(
mW Eq(θ)

[
(y −Ax) (y −Ax)

⊤
])

+ const

= −1

2
tr
(
mW

(
yy⊤ −mAxy⊤ − yx⊤mA + Eq(θ)

[
Axx⊤A⊤]))

+ const

We work out the expectation term inside the trace separately. To do this, we notice,
that the product Ax can be separated in the shifting operator Sx and the inner
vector product e1x⊤θ in the following way:

Ax = Sx+ e1x
⊤θ = (S + e1θ

⊤)x︸ ︷︷ ︸
Ax

(A.6)
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where

S =

[
0⊤

IK−1 0

]
e1 = (1, 0, . . . , 0)⊤

Eq(θ)

[
Axx⊤A⊤] = Eq(θ)

[(
Sx+ e1x

⊤θ
) (

Sx+ e1x
⊤θ
)⊤]

= Eq(θ)

[
Sx(Sx)⊤ + e1x

⊤θ(Sx)⊤ + Sx(e1x
⊤θ)⊤ + e1x

⊤θθ⊤xe⊤1
]

= Sx(Sx)⊤ + e1x
⊤mθ(Sx)

⊤ + Sx(e1x
⊤mθ)

⊤ + e1x
⊤ [Vθ +mθm

⊤
θ

]
xe⊤1

=
(
Sx+ e1x

⊤mθ

) (
Sx+ e1x

⊤mθ

)⊤
+ e1x

⊤Vθxe
⊤
1

= mAx(mAx)⊤ + e1x
⊤Vθxe

⊤
1

Hence

log f̃(y,x)

= −1

2
tr
(
mW

[
yy⊤ −mAxy⊤ − yx⊤mA +mAx(mAx)⊤ + e1x

⊤Vθxe
⊤
1

])
+ const

= −1

2

(
y⊤mWy − y⊤mWmAx− (mAx)⊤mWy + (mAx)⊤mWmAx

)
− mγ

2
x⊤Vθx+ const

= −1

2
(y −mAx)⊤mW (y −mAx)− mγ

2
x⊤Vθx+ const

We can write the auxiliary node function as

f̃(x, y) ∝ N (y|mAx,m−1W )N (x|0, (mγVθ)
−1) (A.7)

A.4 Update of message to y

Owing Eq. (A.7),

ν⃗(y) ∝
∫
ν⃗(x)f̃(x,y)dx

∝
∫
N (x|mx,Vx)N (y|mAx,m−1W )N (x|0, (mγVθ)

−1)dx

∝
∫
N (x|Λ−1z,Λ−1)N (y|mAx,m−1W )dx
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where

Λ = V −1x +mγVθ

z = V −1x mx

In this way, the message ν⃗(y)

ν⃗(y) ∝ N
(
y|mA(V −1x +mγVθ)

−1V −1x mx,mA(V −1x +mγVθ)
−1m⊤A +mV

)
A.5 Update of message to x

Owing Eq. (A.7),

⃗ν(x) ∝
∫

⃗ν(y)f̃(x,y)dy

∝
∫
N (y|my, Vy)N (y|mAx,m−1W )N (x|0, (mγVθ)

−1)dy

Let us consider the log of N (y|mAx,m−1W ):

log
[
N (y|mAx,m−1W )

]
= (y −mAx)⊤mW (y −mAx) + const

= (−m−1A y + x)⊤m⊤AmWmA(−m−1A y + x) + const

Which yields,

N (y|mAx,m−1W ) ∝ N (x|m−1A y, (m⊤AmWmA)−1) (A.8)

Therefore,

⃗ν(x) ∝
∫
N (y|my, Vy)N (x|m−1A y, (m⊤AmWmA)−1)N (x|0, (mγVθ)

−1)dy

∝ N (x|0, (mγVθ)
−1)

∫
N (y|my, Vy)N (x|m−1A y, (m⊤AmWmA)−1)dy

∝ N (x|0, (mγVθ)
−1)N (x|m−1A my,m

−1
A Vym

−⊤
A + (m⊤AmWmA)−1)

∝ N (x|0, (mγVθ)
−1)N (x|m−1A my,m

−1
A (Vy +mV )m−⊤A )

Multiplication of two gaussians yields

⃗ν(x) ∝ N
(
x|Λ−1z,Λ−1

)
where

Λ = m⊤A (Vy +mV )
−1

mA +mγVθ

z = m⊤A (Vy +mV )
−1

my
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A.6 Update of message to θ

The outgoing variational message to θ is defined as

⃗ν(θ) ∝ exp
{
Eq(x,y)q(γ) log f(y x,θ, γ)

}
Instead of working out ⃗ν(θ), we will work with corresponding log message

log ⃗ν(θ) = Eq(x,y)q(γ)

[
log |W | 12 − 1

2

(
(y −Ax)⊤W (y −Ax)

)]
+ const

= −1

2
tr
(
mW Eq(x,y)

[
yy⊤ −Axy⊤ − y(Ax)⊤ +Ax(Ax)⊤

])
+ const

= −1

2
tr
(
mW Eq(x,y)

[
−Axy⊤ − y(Ax)⊤ +Ax(Ax)⊤

])
+ const

= −1

2
tr
(
mW Eq(x,y)

[
−(Sx+ e1x

⊤θ)y⊤ − y(Sx+ e1x
⊤θ)⊤

])
− 1

2
tr
(
mW Eq(x,y)(Sx+ e1x

⊤θ)(Sx+ e1x
⊤θ)⊤

)
+ const

To proceed further, we recall one useful property

S⊤Σe1 = 0 e⊤1 ΣS = 0⊤

where Σ is an arbitrary diagonal matrix. Now, let us work out the following term

tr
(
mW (Sx+ e1x

⊤θ)(Sx+ e1x
⊤θ)⊤

)
= tr

(
mW

[
Sxx⊤S⊤ + Sxθ⊤xe⊤1 + e1x

⊤θx⊤S⊤ + e1x
⊤θθ⊤xe⊤1

])
=

(Sx)⊤mWSx+ e⊤1 mWSxθ⊤x︸ ︷︷ ︸
0⊤

+S⊤mW e1x
⊤θx⊤︸ ︷︷ ︸

0

+e⊤1 mW e1x
⊤θθ⊤x


= tr

(
mW

[
Sxx⊤S⊤ + e1x

⊤θθ⊤xe⊤1
])

Therefore,

log ⃗ν(θ) = −1

2
tr
(
mW Eq(x,y)

[
−Sxy⊤ − e1x

⊤θy⊤ − yx⊤S⊤ − yθ⊤xe⊤1
])

− 1

2
tr
(
mW Eq(x,y)

[
Sxx⊤S⊤ + e1x

⊤θθ⊤xe⊤1
])

+ const
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We move terms which do not depend on θ to the const, hence

log ⃗ν(θ) = −1

2
tr
(
mW Eq(x,y)

[
−e1x⊤θy⊤ − yθ⊤xe⊤1 + e1x

⊤θθ⊤xe⊤1
])

+ const

= −1

2
tr
(
mW

[
−e1θ⊤(Vx,y⊤ +mxm

⊤
y )− (Vx,y⊤ +mxm

⊤
y )θe

⊤
1

])
− 1

2
tr
(
mW

[
e1
(
tr(θθ⊤Vx) +m⊤xθθ

⊤mx

)
e⊤1
])

+ const

= −1

2

− e⊤1 mW (Vx,y +mym
⊤
x )︸ ︷︷ ︸

z⊤

θ − θ⊤ (Vx,y +mxm
⊤
y )mW e1︸ ︷︷ ︸

z


− 1

2

θ⊤mγ(Vx +mxm
⊤
x )︸ ︷︷ ︸

Λ

θ

+ const

= −1

2

[
θ⊤Λθ − z⊤θ − θ⊤z

]
+ const

Hence,

⃗ν(θ) ∝ N (Λ−1z,Λ−1)

where

Λ = mγ(Vx +mxm
⊤
x )

z = (Vxy +mxm
⊤
y )e1mγ

A.7 Update of message to γ

log ⃗ν(γ) = Eq(x,y)q(θ) log f(y,x,θ, γ) + const

= Eq(x,y)q(θ)

[
log |W | 12 − 1

2

(
(y −Ax)⊤W (y −Ax)

)]
+ const

= log |W | 12 − 1

2
tr
(
W Eq(x,y)q(θ)

[
yy⊤ −Axy⊤ +Axx⊤A⊤ − yx⊤A⊤

])
+ const
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First of all, let us work out the term log |W | 12

log |W | 12 =
1

2
log

∣∣∣∣∣∣∣∣∣∣∣

γ 0 0 . . . 0

0 1
ϵ 0 . . .

...

0 0 1
ϵ . . .

...
...

...
. . .

. . .
...

∣∣∣∣∣∣∣∣∣∣∣
=

1

2
log γ +

1

2
(1−K) log(ϵ) = log γ

1
2 + const

We split the expression under the expectation into four terms:
I: W Eq(x,y)q(θ)

[
yy⊤

]
II: W Eq(x,y)q(θ)

[
Axy⊤

]
III: W Eq(x,y)q(θ)

[
yx⊤A⊤

]
and

IV: W Eq(x,y)q(θ)

[
Axx⊤A⊤

]
Term I:

W Eq(x,y)q(θ)

[
yy⊤

]
= W

(
Vy +mym

⊤
y

)
Recalling Eq. (A.6), term II:

W Eq(x,y)q(θ)

[
Axy⊤

]
= W Eq(x,y)q(θ)

(
(S + e1θ

⊤)xy⊤
)

= W
(
mA(Vxy⊤ +mxm

⊤
y )
)

Term III:

W Eq(x,y)q(θ)

[
yx⊤A⊤

]
= W

(
(Vyx⊤ +mym

⊤
x )m

⊤
A

)
Term IV:

W Eq(x,y)q(θ)

[
Axx⊤A⊤

]
= W E

[
(S + e1θ

⊤)xx⊤(S + e1θ
⊤)⊤

]
= W Eq(x,y)q(θ)

[
Sxx⊤S⊤ + e1θ

⊤xx⊤S⊤ + Sxx⊤θe⊤1 + e1θ
⊤xx⊤θe⊤1

]
= W Eq(x,y)

[
Sxx⊤S⊤ + e1m

⊤
θ xx

⊤S⊤ + Sxx⊤mθe
⊤
1

]
+W Eq(x,y)

[
e1(x

⊤Vθx+m⊤θ xx
⊤mθ)e

⊤
1

]
= W Eq(x,y)

[
mAxx⊤m⊤A + e1x

⊤Vθxe
⊤
1

]
= W

[
mA(Vx +mxm

⊤
x )m

⊤
A + e1(tr(VθVx) +m⊤xVθmx)e

⊤
1

]
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As the resulting message should depend solely on γ we need to get rid of all terms
which incorporate matrix W . We notice that

tr (WΣ) = tr

Σ ·


γ 0 0 . . . 0

0 1
ϵ 0 . . .

...

0 0 1
ϵ . . .

...
...

...
. . .

. . .
...



 = e⊤1 γΣe1 + const

where Σ is an arbitrary matrix of the same dimensionality as the matrix W . In this
way

log ⃗ν(γ) = log γ
1
2 − γ

2
e⊤1
[
Vy +mym

⊤
y − 2mA(Vxy⊤ +mxm

⊤
y )
]
e1

− γ

2
e⊤1
[
mA(Vx +mxm

⊤
x )m

⊤
A + tr(VθVx) +m⊤xVθmx)

]
e1

After exponentiating log ⃗ν(γ) it yields the gamma distribution:

⃗ν(γ) ∝ γ 1
2 exp

{
−γ
2
b
}

or

⃗ν(γ) ∝ Γ

(
3

2
,
b

2

)
where

b =
(
Vy +mym

⊤
y

)
− 2

(
mA(Vxy⊤ +mxm

⊤
y )
)

+
(
mA(Vx +mxm

⊤
x )m

⊤
A

)
+ tr(Vθ

(
Vx +mxm

⊤
x

)
)

A.8 Derivation of q(x,y)

The joint variational distribution is given by

q(x,y) ∝ ν⃗(x)f̃(x,y) ⃗ν(y)

= N (x|mx,Vx)N (y|mAx,m−1W )N (x|0, (mγVθ)
−1)N (y|my,Vy)

= N
(
x|Λ−1z,Λ−1

)
N (y|my,Vy)N (y|mAx,m−1W )

where

Λ = V −1x +mγVθ

z = V −1x mx
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q(x,y) ∝ N

([
y
x

] ∣∣∣∣ [ my

Λ−1z

]
,

[
V −1y 0
0 Λ

]−1)
N (y|mAx,m−1W )

Let us rearrange the terms in the Gaussian N (y|mAx,m−1W )

N (y|mAx,m−1W ) ∝ exp

(
−1

2
(y −mAx)⊤mW (y −mAx)

)
∝ exp

(
−1

2

[
y⊤mWy − y⊤mWmAx+ x⊤m⊤AmWmAx− x⊤m⊤AmWy

])
∝ N

([
y
x

] ∣∣∣∣ [00
]
,

[
mW −mWmA

−m⊤AmW m⊤AmWmA

]−1)

q(x,y) ∝ N

([
y
x

] ∣∣∣∣ [ my

Λ−1z

]
,

[
V −1y 0
0 Λ

]−1)
(A.9a)

· N

([
y
x

] ∣∣∣∣ [00
]
,

[
mW −mWmA

−m⊤AmW m⊤AmWmA

]−1)
(A.9b)

The final expression for the joint marginal is

q(x,y) ∝ N
([

y
x

] ∣∣∣∣Ŵ−1
[
V −1y my

V −1x mx

]
, Ŵ−1

)
where

Ŵ =

[
mW + V −1y −mWmA

−m⊤AmW m⊤AmWmA +Λ

]
The precision matrix Ŵ , to put it mildly, is quite far from a nice shape as it contains
"unpleasant" matrix mW with ϵ−1 on the diagonal. Let us workout the covariance
matrix V̂ = Ŵ−1. To do this, we recall two important matrix identities:

(A+B)−1 = A−1 −A−1(B−1 +A−1)−1A−1 (A.10)

and[
A B
C D

]−1
=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
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Let us denote the block elements of Ŵ as follows:

A = mW + V −1y B = −mWmA

C = −m⊤AmW Dm⊤AmWmA + V −1x +mγVθ︸ ︷︷ ︸
D∗

In this way,

(A−BD−1C)−1 = (mW + V −1y︸ ︷︷ ︸
A

−mWmAD−∗m⊤AmW )−1

D = A−1 −A−1(A−1 − (mWmAD−∗m⊤AmW )−1)−1A−1

Let us work out the auxiliary terms

A−1 = (mW + V −1y )−1 = Vy − Vy(mV + Vy)
−1Vy

= mV −mV (Vy +mV )−1mV︸ ︷︷ ︸
BD

(mWmAD−∗m⊤AmW )−1 = mV m−⊤A D∗m−1A mV

= mV m−⊤A (m⊤AmWmA + V −1x +mγVθ)m
−1
A mV

= mV +mV m−⊤A (V −1x +mγVθ)m
−1
A mV︸ ︷︷ ︸

F

Hence,

(A−BD−1C)−1 = E −E(F +E)−1E

Next, let us consider D−1, D−1C and BD−1:

D−1 = D−∗ =
(
m⊤AmWmA + (V −1x +mγVθ)

)−1
= m−1A mV m−⊤A

−m−1A mV m−⊤A
[
m−1A mV m−⊤A + (V −1x +mγVθ)

−1]−1 m−1A mV m−⊤A

D−1C = D−1(−m⊤AmW )

= −m−1A +m−1A mV m−⊤A
[
m−1A mV m−⊤A + (V −1x +mγVθ)

−1]−1 m−1A

BD−1 = (−mWmA)D−1

= −m−⊤A +m−⊤A
[
m−1A mV m−⊤A + (V −1x +mγVθ)

−1]−1 m−1A mV m−⊤A

Although the resulting expressions do not have a nice form, we got rid of "unpleas-
ant" matrix mW .
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A.9 Free energy derivations

In this section, we describe how to compute the variational free energy of AR node
f(y,x,θ, γ). Note that essentially AR node implements the univariate Gaussian
f(y,x,θ, γ) = N

(
y
∣∣ θ⊤x, γ−1) (Multivariate formulation is needed for bookkeep-

ing previous states). The free energy functional is defined as

F [q] ≜ U [q]−H[q]

U [q] ≜ −Eq(x,y)q(θ)q(γ) log f

H[q] ≜ −Eq(x,y)q(θ)q(γ) log q

At first, let us work out the entropy term H[q].

H[q] = −Eq(x,y) log q(x, y)− Eq(θ) log q(θ)− Eq(γ) log q(γ)

=
1

2
(log |2πeVxy|+ log |2πeVθ|)

− α− log β + log Γ(α) + (1− α)ψ(α)

where ψ(α) denotes digamma function.
Now, let us consider the average energy U [q]

−Eq(x,y)q(θ)q(γ)

[
log

γ1/2√
2π
− γ

2
(y − θ⊤x)2

]
We split the expression under the expectation into two terms:
I: −Eq(γ)

[
log γ1/2

√
2π

]
II: −Eq(x,y)q(θ)q(γ)

[
−γ

2 (y − θ⊤x)2
]

Term I:

−Eq(γ)

[
log

γ1/2√
2π

]
= −Eq(γ)

[
1

2
log γ − 1

2
log 2π

]
= −1

2
[ψ(α)− log β] +

1

2
log 2π

Term II:

− Eq(x,y)q(θ)q(γ)

[
−γ
2
(y − θ⊤x)2

]
=
mγ

2
Eq(x,y)q(θ)

[
(y − θ⊤x)2

]
=
mγ

2
Eq(x,y)q(θ)

[
y2 − 2yθ⊤x+ θ⊤xx⊤θ

]
=
mγ

2

[
σ2
y +m2

y − 2
[
Vyx⊤ +mym

⊤
x

]
mθ + tr

[
(Vθ +mθm

⊤
θ )Vx

]]
+
mγ

2

[
m⊤θ (Vx +mxm

⊤
x )mθ

]
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hence

U [q] = −1

2
[ψ(α)− log β] +

1

2
log 2π +

mγ

2
d

where

d = σ2
y +m2

y − 2
[
Vyx⊤ +mym

⊤
x

]
mθ + tr

[
(Vθ +mθm

⊤
θ )Vx

]
+m⊤θ (Vx +mxm

⊤
x )mθ
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Appendix B
Message Passing-based Inference
in Gamma-Mixture Models

B.1 Gamma Mixture node

The likelihood function of the Gamma mixture node is specified by

f(xt, st,a, b) = p(xt|st,a, b) =
L∏

l=1

Γ(xt|al, bl)stl , (B.1)

where Γ(xt|al, bl) specifies the Gamma distribution for xt with shape and rate pa-
rameters al and bl, respectively. a ≜ [a1, . . . , aM ] and b ≜ [b1, . . . , bM ] are vec-
tors of the parameters of the Gamma distributions such that al, bl ∈ R>0 for every
m = 1, . . . ,M . For each observation xt we have a corresponding latent selector
variable st comprising a 1-of-M binary vector with elements stl ∈ {0, 1}, which are
constrained by

∑
l stl = 1.

We assume a mean-field factorization around the Gamma mixture node as

q(xt, st,a, b) = q(xt)q(st)q(a)q(b) (B.2)

where q(a) =
∏L

l=1 q(al) and q(b) =
∏L

l=1 q(bl).
We assume the following functional forms for the approximate posterior marginals:

q(xt) = Γ(xt | α̂(x)
t , β̂

(x)
t ) α̂

(x)
t , β̂

(x)
t ∈ R>0

q(st) =

L∏
l=1

π̂stl
l such that

M∑
m=1

π̂l = 1

q(al) = δ(al − âl) or q(al) = Γ(al | α̂(a)
l , β̂

(a)
l ) α̂

(a)
t , β̂

(a)
t ∈ R>0

q(bl) = Γ(bl | α̂(b)
l , β̂

(b)
l ) α̂

(b)
t , β̂

(b)
t ∈ R>0
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Here the marginal q(al) has two forms, depending on the inference methodology.
For expectation-maximization the marginal follows a Dirac delta function and for
moment matching the marginal follows a Gamma function. As a result, we will not
express the expectations related to this distributions in terms of the corresponding
parameters.

B.2 Mathematical identities

In this section we will derive some relatively common expectations to simplify
derivations later on. We use C ∈ R to denote a constant. Consider the follow-
ing expectation where q(x) = Γ(x | α, β):

Eq(x) [ln Γ(x)] = Eq(x) [− ln(x) + lnΓ(x+ 1)] (Γ(x+ 1) = xΓ(x))

≈ −Eq(x) [ln(x)] + Eq(x)

[
ln
(√

2πx
(x
e

)x)]
Stirling’s approximation

= −Eq(x) [ln(x)] + Eq(x)

[
1

2
ln(2πx) + x(ln(x)− 1)

]
=

1

2
ln(2π)− 1

2
Eq(x) [ln(x)] + Eq(x) [x ln(x)]− Eq(x) [x]

=
1

2
ln(2π)− 1

2
(ψ(α)− ln(β))− α

β
+ Eq(x) [x ln(x)]

(B.3)

where Stirling’s approximation approximates the Γ-function (especially well for x ≥
1). The term Eq(x)[x ln(x)] can be determined as

Eq(x)[x ln(x)] =

∫ ∞
0

q(x)x ln(x)dx

=

∫ ∞
0

βα

Γ(α)
xα−1e−βxx ln(x)dx

=
Γ(α+ 1)

Γ(α)β

∫ ∞
0

β(α+1)

Γ(α)
x(α+1)−1e−βx ln(x)dx

=
α

β
Ex∼Γ(α+1,β) [ln(x)]

=
α

β
(ψ(α+ 1)− ln(β))

(B.4)

Concluding

Eq(x) [ln Γ(x)] =
1

2
ln(2π)− 1

2
(ψ(α)− ln(β)) +

α

β
(−1 + ψ(α+ 1)− ln(β)) (B.5)

Here ψ(·) denotes the digamma function.
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B.3 Message ν⃗(xt)

The message ln ν⃗(xt) can be determined

ln ν⃗(xt) = Eq(st)q(a)q(b)

[
ln

(
L∏

l=1

Γ(xt|al, bl)stl
)]

+ C

= Eq(st)q(a)q(b)

[
M∑

m=1

stl ln(Γ(xt | al, bl))

]
+ C

=

M∑
m=1

Eq(stl) [stl] Eq(al)q(bl) [ln(Γ(xt | al, bl))] + C

=

M∑
m=1

π̂lEq(al)q(bl)

[
ln

(
bal

l

Γ(al)
xal−1
t e−blxt

)]
+ C

=

M∑
m=1

π̂lEq(al)q(bl) [− ln(Γ(al)) + al ln(bl) + (al − 1) ln(xt)− blxt] + C

=

M∑
m=1

π̂l
(
Eq(al)q(bl) [(al − 1) ln(xt)− blxt]

)
=

M∑
m=1

π̂l
((
Eq(al) [al]− 1

)
ln(xt)− Eq(bl) [bl]xt

)
+ C

=

M∑
m=1

π̂l

((
Eq(al) [al]− 1

)
ln(xt)−

α̂
(b)
l

β̂
(b)
l

xt

)
+ C

=

(
M∑

m=1

π̂lEq(al) [al]− 1

)
ln(xt)−

(
M∑

m=1

π̂l
α̂
(b)
l

β̂
(b)
l

)
xt + C

(B.6)

From this, the variational message ν⃗(xt) can be determined as

ν⃗(xt) ∝ Γ

(
xt

∣∣∣∣ M∑
m=1

π̂lEq(al) [al] ,

M∑
m=1

π̂l
α̂
(b)
l

β̂
(b)
l

)
(B.7)
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B.4 Message ⃗ν(st)

The message ln ⃗ν(st) can be determined as

ln ⃗ν(st) = Eq(a)q(b)q(xt)

[
ln

(
L∏

l=1

Γ(xt|al, bl)stl
)]

+ C

= Eq(a)q(b)q(xt)

[
M∑

m=1

stl ln (Γ(xt|al, bl))

]
+ C

= Eq(a)q(b)q(xt)

[
M∑

m=1

stl ln

(
bal

l x
al−1
t

Γ(al)
exp (−blxt)

)]
+ C

=

M∑
m=1

stlEq(a)q(b)q(xt) [al ln bl + (al − 1) lnxt − ln Γ(al)− blxt] + C

=

M∑
m=1

stl
(
Eq(al)q(bl)[al ln bl] + Eq(al)q(xt)(al − 1) lnxt

)
+

M∑
m=1

stl
(
−Eq(al) [ln Γ(al)]− Eq(xt)q(bl)[blxt]

)
+ C

=

M∑
m=1

stl ln ρtl + C

From this, the variational message ⃗ν(st) can be determined as

⃗ν(st) ∝ exp

M∑
m=1

stl ln ρtl =

M∏
m=1

ρstltl

where

ρtl =exp
{
Eq(al)q(bl)[al ln bl] + Eq(al)q(xt)(al − 1) lnxt

}
· exp

{
−Eq(al) [ln Γ(al)] + Eq(xt)q(bl)[blxt]

}
In order to ensure that the message will be a proper distribution, the event prob-
abilities have to sum to 1. Hence, all event probabilities are normalized and the
message becomes:

⃗ν(st) =

M∏
m=1

(
ρtl∑
l ρtl

)stl

(B.8)
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The individual expectations of ρtl can be calculated as

Eq(al)q(bl) [al ln bl] = Eq(al)[al]
(
ψ(α̂

(b)
l )− ln(β̂

(b)
l )
)

(B.9a)

Eq(al)q(xt)[(al − 1) lnxt] =
(
Eq(al)[al]− 1

) (
ψ(α̂

(x)
l )− ln(β̂

(x)
l )
)

(B.9b)

Eq(xt)q(bl)[blxt] =
α̂
(b)
l α̂

(x)
t

β̂
(b)
l β̂

(x)
t

(B.9c)

The expectation Eq(al)[ln Γ(al)] has been derived in Section B.2.

B.5 Message ⃗ν(bl)

The message ⃗ν(bl) can be determined as

ln ⃗ν(bl) = E\q(bl)

[
ln

(
L∏

l=1

Γ(xt|al, bl)stl
)]

+ C

= E\q(bl)

[
M∑

m=1

stl ln(Γ(xt | al, bl))

]
+ C

= Eq(st) [stl] Eq(al)q(xt) [ln (Γ(xt | al, bl))] + C

= π̂lEq(al)q(xt) [− ln(Γ(al)) + al ln(bl) + (al − 1) ln(xt)− blxt] + C

= π̂l
(
Eq(al)q(xt) [al ln(bl)− blxt]

)
+ C

= π̂l
(
Eq(al) [al] ln(bl)− blEq(xt) [xt]

)
+ C

= π̂l

(
Eq(al) [al] ln(bl)−

α̂
(x)
t

β̂
(x)
t

bl

)
+ C

=
(
π̂lEq(al) [al]

)
ln(bl)−

(
π̂l
α̂
(x)
t

β̂
(x)
t

)
bl + C

(B.10)

⃗ν(bl) ∝ Γ

(
bl

∣∣∣∣1 + π̂lEq(al) [al] , π̂l
α̂
(x)
t

β̂
(x)
t

)
(B.11)
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B.6 Message ⃗ν(al)

ln ⃗ν(al) = E\q(al) ln

[
L∏

l=1

Γ(xt|al, bl)stl
]
+ C

= E\q(al)

[
M∑

m=1

stl ln

(
bal

l x
al−1

Γ(al)
exp (−blx)

)]
+ C

= E\q(al)

[
M∑

m=1

stl (al ln(bl) + (al − 1) ln(xt)− ln(Γ(al))− blxt)

]
+ C

= π̂l
[
alEq(bl)[ln(bl)] + alEq(xt)[ln(xt)]− ln(Γ(al))

]
+ C

= π̂l

al (ψ(α̂(b)
l )− ln(β̂

(b)
l ) + ψ(α

(x)
t )− ln(β

(x)
t )
)

︸ ︷︷ ︸
ζtl

− ln(Γ(al))

+ C

= π̂l (alζtl − ln Γ(al)) + C

From this the variational message ⃗ν(al) can be determined as

⃗ν(al) ∝ exp (π̂l (alζtl − ln Γ(al)))

B.7 Local variational free energy

The local variational free energy of the Gamma mixture node can be computed as
follows:

F [q] = −Eq(xt)q(a)q(b)q(st)

[
ln(p(xt|st,a, b))

]
︸ ︷︷ ︸

Average energy

+Eq(xt)q(a)q(b)q(st)

[
ln(q(xt)q(st)q(a)q(b)

]
)︸ ︷︷ ︸

-Entropy

Since the entropy of the incoming marginals can easily be computed, let us focus
on the average energy term

Eq(xt)q(a)q(b)q(st)

[
ln(p(xt|st,a, b))

]
= Eq(xt)q(a)q(b)q(st)

[
ln

(
L∏

l=1

Γ(xt|al, bl)stl
)]

= Eq(xt)q(a)q(b)q(st)

[
M∑

m=1

stl ln (Γ(xt|al, bl))

]

=

M∑
m=1

π̂lEq(a)q(b)q(xt) [al ln bl + (al − 1) ln(xt)− ln(Γ(al))− blxt]



B

B.7 Local variational free energy 133

The required expectations are given in (B.3) and(B.9).
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Appendix C
AIDA: An Active Inference-based
Design Agent for Audio
Processing Algorithms

C.1 Bethe free energy

The Bethe assumption

q(z) =
∏
a∈V

qa(za)
∏
i∈E

qi(zi)
−1. (C.1)

is a useful constraint on the approximate posterior q(z), [168].
Here we made use of the fact that all edges in the FFG have a maximum degree

of two, which can be strictly enforced by adding uninformative priors p(zi) = 1 to
dangling edges. Under the Bethe assumption, the VFE reduces to the Bethe free
energy (BFE)

FB [q, f ] = −
∑
a∈V

Eq(za) [ln fa(za)]−
∑
a∈V

H[qa(za)] +
∑
i∈E

H[qi(zi)], (C.2)

which equals the VFE for acyclic graphs (i.e. trees). The BFE decomposes the VFE
into a sum of node-local free energies contributions and edge-specific entropies H.

C.1.1 Variational and hybrid message passing

Under the variational approximation we can employ variational inference in the
model, which iteratively finds stationary points on the BFE by fixing all approxi-
mate posterior distributions besides the one that is being optimized. This inference
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procedure can be cast to a message passing paradigm and is called variational mes-
sage passing [77]. Here the exact message update rule of reduces to the variational
message update rule [77]

ν⃗(zi) ∝ exp
{
Eq(za\i) [ln fa(za)]

}
(C.3)

where ν⃗(zi) denotes the outgoing variational message on edge zi. The approximate
marginal distributions are then iteratively updated as

qi(zi) ∝ ν⃗(zi) · ⃗ν(zi). (C.4)

The calculations of variational messages and approximate marginal distributions
are then iteratively repeated until convergence of the VFE is reached.

In addition to the structure imposed by the Bethe approximation, additional con-
straints can be enforced. Depending on these local constraints different inference
algorithms naturally follow [43]. [43] shows that amongst others the sum-product
algorithm [97, 96], variational message passing [77] and expectation propagation
[169] can be recovered. By combining different local constraints we can achieve
hybrid message passing-based inference in the probabilistic model. We highly rec-
ommend the interested reader the work of [43] for an extensive overview of hybrid
message passing schemes.

C.2 Probabilistic model overview

This appendix gives a concise overview of the generative model of the acoustic
model and AIDA. The prior distributions are uninformative unless stated otherwise
in Section 5.5.

C.2.1 Acoustic model

The observed signal xt is the sum of a speech and noise signal as

xt = st + nt

The speech signal st = e⊺1st is modeled by a time-varying autoregressive process as

st ∼ N (A(θt)st−1, V (γ))

The autoregressive coefficients of the speech signal are time-varying as

θt ∼ N (θt−1, ωIM )
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The noise signal nt = e⊺1nt is also modeled by an autoregressive process

nt ∼ N (A(ϱi)nt−1, V (τi))

where t = t−, t− + 1, . . . , t+

The parameters of the noise model depend on the context

ϱi ∼
L∏

l=1

N (ml,Vl)
ci

τi ∼
L∏

l=1

Γ (al, bl)
ci

The context ci evolves over a different time scale indexed by k as

ci ∼ Cat(Tci−1)

The transition matrix of the context is modeled as

T1:L,j ∼ Dir(αj)

Finally, the output of the hearing aid algorithm yt is formed as the weighted sum of
the speech and noise signals as

yt = uskst + unknt

where t = t−, t− + 1, . . . , t+

C.2.2 AIDA’s user response model

The user responses are modeled by a Bernoulli distribution containing a Gaussian
cumulative probability distribution that enforces the output υi(ui) to the allowed
domain for the argument of the Bernoulli distribution

ri ∼ Ber(Φ(υi(ui))) if ri ∈ {0, 1}
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υi(ui) encodes our beliefs about the user response function (evaluated at ui), mod-
eled by a mixture of Gaussian processes as

υi ∼
L∏

l=1

GP(ml(·),Kl(·, ·))cli

whose kernel function is defined as

K(u,u′) = σ2 exp

{
−∥u− u′∥22

2l2

}
where σ denotes noise and l the length scale of the kernel.

C.3 Inference realization

This appendix describes in detail how the inference tasks of Sections 5.4.1 and
5.4.2 are realized. The inference task of Section 5.4.3 is performed by automated
message passing using the update rules of [111].

C.3.1 Realization of inference for context classification

The inference task for context classification of (5.13) renders intractable as dis-
cussed in Section (5.4.1). To circumvent this problem, we will solve this task as a
Bayesian model comparison task.

In a Bayesian model comparison task, we are interested in calculating the pos-
terior probability p(ml | x) of some model ml after observing data x.

The posterior model probability p(ml | x) can be calculated using Bayes’ rule as

p(ml | x) =
p(x | ml)p(ml)∑
j p(x | mj)p(mj)

, (C.7)

where the denominator represents the weighted model evidence p(x), i.e. the
model evidence obtained for the individual models p(x | ml), weighted by their
priors p(ml).

To formulate our inference task as a Bayesian model comparison task, the dis-
tinct models ml first have to be specified. In order to do so, we first note that we
obtain the priors of ci−1 and zt−−1 in (5.13) separately, and therefore we implicitly
assume a factorization of our prior p(ci−1, zt−−1 | x1:t−−1) as

p(ci−1, zt−−1 | x1:t−−1) = p(ci−1 | xt−−1) p(zt−−1 | x1:t−−1). (C.8)
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As a result (5.13) can be rewritten as

p(ci | x1:t+) ∝
∫
p(ci,T | ci−1) p(ci−1 | x1:t−−1) dT dci−1︸ ︷︷ ︸

µ⃗(ci)

·
∫
p(zt−:t+ ,Ψi,xt−:t+ | zt−−1, c) p(zt−−1 | x1:t−−1) dzt−−1:t+ dΨi︸ ︷︷ ︸

p(xt−:t+ |x1:t−−1,ci)

.

(C.9)

The first term µ⃗(ci) can be regarded as the forward message towards the context
ci originating from the previous context. It gives us an estimate of the new con-
text solely based on the context dynamics as stipulated by the transition matrix T.
The second term p(xt−:t+ | x1:t−−1, ci) can be regarded as the incremental model
evidence under some given context ci. Comparison of (C.9) and (C.7) allows us
to formulate our inference problem in (5.13) into a Bayesian model comparison
problem by defining

p(ml) = µ⃗(ci = el), (C.10a)

p(x | ml) = p(xt−:t+ | x1:t−−1, ci = el). (C.10b)

We can therefore define a model ml by clamping the context variable in generative
model as ci = el. This means that each model only has one active component for
both the Gaussian and Gamma mixture nodes and therefore the messages originat-
ing from these nodes are exact and do not require a variational approximation.

Despite the expansion of the mixture models, the incremental model evidence
p(xt−:t+ | x1:t−−1, ci = el) cannot be computed exactly as the autoregressive source
models lead to intractable inference. As a result, we approximate the model evi-
dence in (C.10b) using the Bethe free energy, as defined in (C.2) in Section C.1,
as

p(x | ml) ≈ exp{−FB [q,ml]}, (C.11)

where FB [q,ml] denotes the Bethe free energy observed after convergence of the in-
ference algorithm for model ml. Similarly the calculation of (C.10a) is intractable.
Therefore we will approximate the model prior with the variational message to-
wards ci instead as

p(ml) ≈ ν⃗(ci = el). (C.12)

C.3.2 Realization of inference for trial design

Probabilistic inference in AIDA encompasses 2 tasks: 1) optimal proposal selection
and 2) updating of the Gaussian process classifier (GPC). Here we specify how these
inference tasks are executed in more detail.
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Optimal proposal selection

A closed-form expression of the EFE decomposition in (5.15) can be obtained for
the GPC as shown in [134].

The first term in the decomposition, the negative utility drive, resembles the
cross-entropy loss between our goal prior and posterior marginal. Since user re-
sponses are binary, we can evaluate this binary cross-entropy term as [134]

−Eq(r|u) [ln p(r)] = Φ

 m|u,D√
σ2
|u,D + 1

 lnEp(r)[r]

+

1− Φ

 m|u,D√
σ2
|u,D + 1

 ln
(
1− Ep(r)[r]

)
, (C.13)

wherem|u,D and σ2
|u,D denote the posterior mean and variance returned by the GPC

when queried at the point u given some data set D = {u1:k−1, r1:k−1}, respectively.
More concretely, the GPC returns a Gaussian distribution from which the posterior
mean and variance are extracted as v(u) = N (m|u,D, σ

2
|u,D). Φ(·) denotes the

standard Gaussian cumulative distribution function. p(r) denotes the Bernoulli goal

prior over desired user feedback. h is the binary entropy function and C =
√

π ln 2
2 .

For brevity, we denote the data set of parameters and matching user responses
collected so far as D.

The second term in the decomposition, the (negative) information gain, de-
scribes how much information we gain by observing a new user appraisal. This
information gain term (IG) can be expressed in a GPC as [134]

IG[r, v | D,u] ≈ h

Φ

 m|u,D√
σ2
|u,D + 1

− C√
σ2
|u,D + C2

exp

− m2
|u,D

2
(
σ2
|u,D + C2

)
 ,

(C.14)

where the constant C is defined as C =
√

π ln 2
2 and where h(·) is defined as h(p) =

−p ln(p)− (1− p) ln(1− p).

Inference in the Gaussian process classifier

For our experiments, we use Laplace approximation as described in [137, Chapter
3.4] for performing inference in the GPC. The Laplace approximation is a two-step
procedure, where we approximate the posterior distribution by a Gaussian distri-
bution. We first find the mode of the exact posterior, which resembles the mean of
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the approximated Gaussian distribution. Then we approximate the corresponding
precision as the negative Hessian around the mode. Finding the exact posterior
p(υ | D) amounts to calculating

p(υ | D) =
p(r1:k−1 | υ)p(υ | u1:k−1)

p(r1:k−1 | u1:k−1)
∝ p(r1:k−1 | υ)p(υ | u1:k−1) . (C.15a)

Taking the logarithm of (C.15a) and differentiating twice with respect to υ gives

∇υ ln p(υ | D) = ∇υ ln p(r1:k−1 | υ)−K−1υ (C.16a)

∇υ∇υ ln p(υ | D) = ∇υ∇υ ln p(r1:k−1 | υ)−K−1 = −W −K−1 (C.16b)

where ∇υ denotes the gradient with respect to υ, K = K(u1:k−1,u1:k−1) is the
kernel matrix over the queries u1:k−1 and W = −∇υ∇υ ln p(r1:k−1 | υ) is a diagonal
matrix since the likelihood factorizes over independent observations. At the mode
υ̂ (C.16a) equals zero which implies

υ̂ = K∇υ ln p(r1:k−1|υ̂) . (C.17)

Directly solving (C.17) is intractable because of the recursive non-linear relation-
ship. Instead we can estimate v̂ using Newton’s method, where we perform itera-
tions with an adaptive step size. We omit the computational and implementation
details here and instead refer to [137, Algorithm 3.1]. We determine the step size
using a line search as implemented in Optim.jl [141]. Having found the mode υ̂,
we can construct our posterior approximation as

p(υ | D) ≈ N
(
υ̂,
(
K−1 +W

)−1)
, (C.18)

where W is evaluated at υ = υ̂. If we now recall that evaluating a GP at any finite
number of points results in a Gaussian, we see that under the Laplace approximation
the solution can be obtained using standard results for marginalization of jointly
Gaussian variables. We define the shorthand K(ui,u1:k−1) = K1:k and K(ui,ui) =
Ki and find the posterior mean m|u,D as [137, p. 44]

m|u,D = K⊺
1:kK

−1υ̂ = K⊺
1:k∇ ln p(r1:k−1 | v̂) . (C.19)

The posterior covariance σ2
|u,D is given by [137, p. 44]

σ2
|u,D = Ki −K⊺

1:k

(
K +W−1

)−1K1:k . (C.20)
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