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Abstract—Outcome-oriented predictive process monitoring
aims at classifying a running process execution according to
a given set of categorical outcomes, leveraging data on past
process executions. Most previous studies employ Recurrent
Neural Networks to encode the sequence of events, without
taking the structure of the process into account. However, process
executions typically involve complex control-flow constructs, like
parallelism and loops. Different executions of these constructs can
be recorded as different event sequences in the event log. This
makes it challenging for a recurrent classifier to detect potential
relations between a high-level control-flow construct and the
prediction target. This is especially true in the presence of high
variability in process executions and lack of data. In this paper,
we propose a novel approach which encodes the control-flow
construct each event belongs to. First, we exploit Local Process
Model mining techniques to extract frequently occurring control-
flow patterns from the event log. Then, we employ different
encoding techniques to enrich an on-going process execution
with information related to the extracted control-flow patterns.
We tested the proposed method on nine real-life event logs. The
obtained results show consistent improvements in the prediction
performance.

Index Terms—Predictive Process Monitoring, Process Outcome
Prediction, Local Process Models

I. INTRODUCTION

Nowadays, the pervasive availability of event logs tracking
business process executions has enabled researchers to develop
analysis techniques to support managers and process analysts
in making online decisions [1]. Increasing attention in this field
introduced a new subfield in the process mining discipline
known as Predictive Process Monitoring (PPM). PPM is
concerned with making a prediction at any point during an
execution of a process about the future state of that execution
[2]. For example, a PPM approach may attempt to estimate
the remaining execution time [3] or the next activity to be
performed [4]. In this work, we focus on PPM methods that
seek to predict the outcome of running executions [5]. For
instance, in healthcare processes, a possible outcome may
describe the impact of a given treatment on a patient.

During the past years, there has been an increasing trend in
using Deep Learning (DL) approaches in PPM [6], [7], [8].
The main motivation behind employing DL architectures such
as Long Short-Term Memory (LSTM) [9] or Transformer
networks [10] for PPM came from Natural Language Pro-
cessing (NLP) techniques and their ability to deal with se-
quences of data of arbitrary length. Consequently, previous

PPM approaches propose to treat log traces as sentences,
considering each event as a word. However, there exist some
important differences between the domain of natural language
and business processes. In particular, process executions are
usually characterized by combinations of complex control-flow
constructs, such as concurrency and loops [11]. These be-
haviors are flattened in the event log, with the result that a
single control-flow construct can correspond in the event log
to several different sequences of events. When dealing with
an event log tracking complex, real-world processes, some of
these sequences may occur much less frequently than others,
or not occur at all [12]. This can pose some challenges to a
sequential-based classifier [13], [14], since it may miss pos-
sible correlations existing between a high-level control-flow
construct and the classification target, for instance by learning
such relation only for some of the instances. This challenge
can get worse in the presence of high variability in process
executions, where different instances of the same control-flow
construct can occur in quite heterogeneous contexts.

Some previous studies shown that being able to encode
structural information available in the process models such
as loop and concurrency can be beneficial for some PPM
tasks [13]. However, these methods mainly rely on start-to-
end process models that are either available or mined from
the event log to extract process structure information. From
literature it is well-known that, due to the high variability of
processes in many real-world scenarios, deriving a complete
process model often leads to either a too simplified model
representing only a portion of the process behaviors, or to so-
called spaghetti-like models, which often allow for (almost)
any sequence of events captured in the event log [15], [16].
As a result, control-flow constructs which may have a relation
with the outcome of the process may be missing or only
partially represented in start-to-end process models.

In this work, we investigate an alternative way to exploit
information on control-flow for outcome-oriented PPM. More
precisely, we propose to extract process structural information
by applying Local Process Model (LPM) discovery [16] to
extract portions of process models representing the most
frequently occurring control-flow constructs, instead of mining
start-to-end process models.

To the best of our knowledge, only one previous study,
presented in [17], has investigated the benefits of exploiting
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information from LPMs in predicting patients’ outcome of
palliative treatments. However, their approach encodes such
information by a basic one-hot encoding, and only tested
it with classical machine learning methods. We intend to
extend the previous study to the LSTM network, as this is the
most commonly used DL method in PPM [10], and introduce
novel encoding methods that can be used in LSTM classifiers.
Accordingly, the present work addresses the following research
questions:

RQ1 How can we encode control-flow information into suitable
input data for an LSTM classifier?

RQ2 Can we improve the performance of outcome prediction
using control-flow information in an LSTM model?

The remainder of this paper is organized as follows. Section
II reviews the relevant related work. Section III provides basic
concepts used throughout the paper. Section IV introduces the
proposed methodology. Section V discusses the experimental
setup and results. Finally, Section VI draws some conclusions
and delineates some ideas for future studies.

II. RELATED WORK

Previous research implemented different deep learning ar-
chitectures, including LSTM [18], [14], Convolutional Neural
Network (CNN) [4], [5], and Graph Neural Network (GNN)
[19] achieving a varying degree of accuracy and performance.
Despite the fact that they have employed diverse architectures,
most of them primarily relied only on the sequence of events
and data payload corresponding to each event to predict how a
running case will evolve in the future. Some studies encoded
activities using one-hot vector encoding, then enriching it
with additional numerical data related to each event, such
as execution time [9], [18], [20]. These approaches faced
dimension challenges when dealing with lengthy prefixes. A
different set of studies employed embedding instead of one-
hot encoding and showed a noticeable improvement in the
performance of the LSTM [21], [22], and CNN [4] classifiers.
Considering resource information [21] and experience [23]
have also been studied in previous research and showed
benefits in some prediction tasks and event logs.

Few recent studies have investigated the opportunity to
include information on the structural aspect of the process in
the PPM models to boost prediction performance. Given the
fact that graph encoding is a convenient way of representing
process executions [24], some of them suggested to encode
the process structure information into graph-based models,
then using GNN for the prediction. The approach proposed
by Venugopal et al. [25] extracts Directly-Follows Graphs for
building a model of the process, then using it with a Graph
Convolutional Neural Network (GCNN) to learn the predic-
tion. Chiorrini et al. [19] implemented a Gated Graph Neural
Network to predict the next activity by building Instance
Graphs from the process model. Another set of works in the
literature have proposed to encode structural information from
the process model for RNN models. For example, Metzger and
Neubauer used encoding methods for representing information
on the parallel branch each activity belongs to (derived by

the overall process model) and encode this information for
training LSTM models [13]. Di FrancescoMarino et al. [26]
proposed to pre-process log traces to derive information on
loops, then using this information, possibly together with
domain knowledge related to execution constraints, to improve
the performance of the next-activity prediction. Despite the
fact that these methods often achieve good performance, many
of them focus only on a subset of the possible control-flow
behaviors, or require a well-defined start-to-end process model.
However, high process variability makes extracting a single
start-to-end process model challenging [15].

In addressing the high variability of processes, recent studies
focused on alternative approaches to applying process dis-
covery techniques to provide evidence-based insights into the
structural relation between events and frequent patterns. Some
studies employed abstraction methods such as Fuzzy Miner
[27] and Heuristic Miner [28], which try to abstract uncommon
and noisy behaviors in order to represent the core process
behaviors. In addition, clustering techniques [29] may be used
to construct a group of models from more homogeneous
behaviors. A different strategy to deal with variable processes
is extracting only a subset of process behaviors that are
of interest according to some user-defined criteria. For this
purpose, we intend to derive LPMs representing the common
control-flow constructs (e.g., choice, concurrency, loops) by
learning the most frequent behavioral patterns from a given
event log. Experiments conducted on real-world datasets have
shown that this approach is able to learn insightful patterns
that would not be properly captured in start-to-end models
mined by process discovery algorithms [16].

III. PRELIMINARIES

This section introduces important concepts used throughout
the paper. The input of most process mining methods is an
event log L composed of traces, where each trace records
a sequence of events, each conveying information about the
executed activities on single process executions (also referred
to as cases) [2].

Definition 1 (Event): Let A be the universe of activities, C
be the universe of case identifiers, T be the time domain, and
Di be the set of additional attributes with i ∈ [1,m], m ∈ Z.
An event is a tuple of e = (a, c, t, d1, . . . , dm), where a ∈ A,
c ∈ C, t ∈ T , and di ∈ Di.

Definition 2 (Trace, Prefix Trace, Event log): A trace σn,
n = 1, 2, . . . , N , represents the nth execution of a process
consisting of a finite non-empty sequence of ln = |σn| discrete
events in which their timestamp does not decrease. Let E be
the set of events; we define the following mapping functions to
map each event to its corresponding timestamp by πT : E →
T , to its case identifier by πC : E → C, and to its activity
by πA : E → A. For each trace σn = ⟨e1, e2, . . . , e|σn|⟩ we
must have πC(ei) = πC(ej), ∀i, j ∈ [1, |σn|], and πT (ei) ≤
πT (ej), if i < j. An event log L is a set of traces.
We define a Prefix Trace, Pσk

n = ⟨e1, e2, . . . , ek⟩, of arbitrary
length 1 ≤ k ≤ |σn| as a trace sub-sequence that begins at the
beginning of the trace σn.
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Definition 3 (Prefix Trace Encoder): Let X be the set of
prefix traces. A Prefix Trace Encoder is a function g : X → W
that takes as input a prefix trace and returns a feature vector
in W .

Fig. 1. An example process tree and its equivalent Petri-net [16]

Definition 4 (Outcome Classifier): Let Φ be a set of
nominal values representing possible classification outcomes.
An Outcome Classifier is defined as a function f : W → Φ,
that takes an encoded vector of a trace prefix and returns the
corresponding outcome. For example, an outcome value might
represent the satisfaction of a constraint on the cycle time of
the case, or the validity of a temporal logic constraint.

Definition 5 (Local Process Model): Let Ω = {→,×,∧,⟳}
be the set of operators indicating sequence, choice, concur-
rency, and loop behavior in a process, respectively. A Local
Process Model LN is a (process) tree, where each leaf node is
an activity a ∈ A and each non-leaf node an operator ω ∈ Ω.
LPMs are often represented as Petri nets [16]. An example of
an LPM in the form of a process tree and its conversion into
a Petri net is shown in Fig. 1.

Definition 6 (LPM Discovery Function): A LPM Dis-
covery Function gets an event log L and returns the set
ΘL = {LNL

1 , . . . , LN
L
z } of all LPMs satisfying user-defined

thresholds over five quality criteria [16]: support (i.e., the
number of occurrences of the LPM), confidence (i.e., the
fraction of events of the activities in L which fit the behavior
described by the LPM), language fit (which measures the
portion of behaviors allowed by the LPM that is observed in
L), determinism (which relates to the degree to which future
behavior can be determined), and coverage (which measures
the frequency of the activities described by the LPM in L).

IV. METHODOLOGY

The overview of the proposed method is depicted in Fig 2.
Given an event log L, we aim to build a classifier to predict the
outcome of a running case considering the encoded control-
flow construct information derived from LPMs. To this end, we
first mine the set of LPMs. Then, we introduce an LPM feature
generator function and two prefix trace encoding methods to
encode the prefix traces enriched with the LPM feature into
suitable input data for LSTM models. The encoded prefixes
are then given as input to the classifier.

A. LPM Feature Generation

In this study, we follow the discovery method proposed by
Tax et al. [16] to extract the LPMs from the event log. After

discovering the set of LPMs, the trace prefix set is created,
by generating for each trace σn all prefix traces Pσk

n for
2 ≤ k ≤ |σn|. Then, conformance checking techniques [30]
are used to check whether one or more LPMs occur in each
prefix trace. More precisely, we introduce the LPM feature
LA as a new event attribute denoting the set of LPMs each
event in a prefix trace belongs to. To avoid uncertainty due to
partial occurrences of LPMs in defining the LPMs feature,
we only consider complete occurrences of LPMs. Namely,
an event is marked as belonging to one LPM only if all the
activities belonging to the LPM occur in the appropriate order
in the corresponding prefix trace. Note that it can happen that
an LPM involves one or more activities for which multiple
events of a trace can be matched. In that case, our approach
will select for each activity the event that comes first in the
trace. Different matching strategies can be explored like, for
instance, matching the events in such a way to minimize the
time in between the activities of the LPM instance. We plan to
explore more sophisticated matching strategies in future work.
Note that it is possible that there are overlapping LPMs, with
the result that a single event may belong to multiple LPMs.
Let 2ΘL be the power set of set ΘL, which represents the
extracted LPMs from event log L. We can rephrase events as
e = (a, c, LA), where LA ∈ 2ΘL . Note that here we omit the
timestamp and other data features, since they are not used in
our method.

An example of prefix traces enriched with the LPMs feature
is shown in Fig. 3. For the sake of simplicity, we only show
the activity and the LA feature for each event. For example,
the prefix trace ⟨(A, {LNL

2 }), (B, ∅), (C, {LNL
2 })⟩ contains

three events with activity classes A, B, C respectively, where
the first and the third event belong to the LPM LNL

2 .

Fig. 3. An example of LPMs feature generating

B. Encoding Prefix Traces
We introduce two novel encoding methods to encode the

prefix traces enriched with the LPM feature. These techniques
are based on the two most common event encoding approaches
in previous PPM studies for LSTM models, i.e., one-hot
encoding and embedding layers [6], and differ in the amount
of encoded information (and, consequently, in the complexity
of the encoding). The following subsections delve into the
characteristics of each encoding.

1) Wrapped-One-Hot encoding: The one-hot encoding is
used to encode categorical values in a binary representa-
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Fig. 2. Overview of the proposed method

tion [31]. In this context, each event e is transformed into
a binary vector V of length |A|. The encoding defines an
arbitrary but consistent index to each activity over set A
where index : A → {1, 2, . . . , |A|}. Then, it assigns value
1 to feature number index(πA(e)), and value 0 to the rest
of the elements of the vector. We refer to this form of
encoding as OHAct from now on. A straightforward way to
add information about LPMs in this encoding would be to
add the one-hot encoded vector of LPMs to each one-hot
encoded event e. However, a possible drawback of this solution
is dimension explosion, since using one-hot encoding each
additional feature can result in many features to add to the one-
hot vector of the process activities. To tackle this challenge,
we wrap the defined LPMs feature into OHAct using a scalar
transformation, instead of extending the one-hot vector with
these patterns. By doing so, we keep the same dimension of
the original vector of activities. From now on, we call this
encoding Wrapped-One-Hot encoding (WOH).

More precisely, we multiply vector V with a scalar s to
create vector V ′, which wraps the LPMs feature. We use two
different approaches for defining the scalar s. Let πL : E →
2ΘL be a mapping function that maps each event to the LPMs
it belongs to. The first approach, called Wrapped-One-Hot-
Br (WOHB), utilizes a function I(πL(e)) = 1, if πL(e) ̸=
∅ and I(πL(e)) = 0 otherwise. As a result, we can define
s = I(πL(e)) + 1.

The second encoding strategy, named Wrapped-One-Hot-Fr
(WOHF ), aims to encode the frequency of LPMs correspond-
ing to each event. In this case, s = |πL(e)|+ 1.

The Wrapped one-hot encoding provides a simple means
to identify events belonging to at least one LPM (or to how
many, depending on the encoding used), thus distinguishing
them from those events for which no LPMs could be detected.
However, when several LPMs can occur in the same execution,
this representation is likely to provide little information, since
many or most of the activities in the prefix will have the same
value in the encoded vector. Furthermore, since it does not
represent information related to which LPMs an event belongs
to, it offers little support in recognising high-level control-flow
constructs from the sequential prefix trace. To deal with these
limitations, we use the embedding layers.

2) Embedding Layers: Embedded encoding comes mostly
from NLP and the information retrieval domain to create

highly informative but low-dimensional vectors [31]. Inspired
by previous PPM studies using embedding layers to take into
account categorical attributes [14], [32], we exploit embedding
layers to represent the relation between events and their cor-
responding process behaviors (i.e., the LPMs) while limiting
the feature vector size.

We define two embedding layers, one for the set of activities
and one for the set of LPMs. We define an arbitrary but
consistent function ID : A → {1, 2, . . . , |A|} as done in
previous work for embedding layers [32]. Thus, if we have
a prefix trace Pσk

n = ⟨e1, e2, . . . , ek⟩ we transform it to
P ′σk

n = ⟨ID(πA(e1)), ID(πA(e2)) . . . , ID(πA(ek)⟩. In this
way, we have a unique integer value in place of each activity
inside the trace.

The transformed prefix trace is given as input to an
embedding layer in the neural network, which starts with
generating a vector of a given size with random numbers for
each activity. During the training of the network, the random
values are gradually adjusted via backpropagation; namely,
the embedding layer is optimized to learn similarities between
activities so as to minimize the loss function for the specific
outcome prediction problem. The embedded vector dimension
is determined during the hyperparameter tuning. We call this
Encoding Activity Embedding (EmbAct) from now on.

In a similar way we define LPMs Embedding (EmbLPMs)
approach by encoding the sequence of corresponding patterns
to each event in a prefix trace using the defined LPMs
feature. To this end, we define an arbitrary but consis-
tent function IDL : ΘL → {1, 2, . . . , 2|ΘL|}. Then, given
the prefix trace Pσk

n = ⟨e1, e2, . . . , ek⟩ we transform it
to P ′′σk

n = ⟨ID(πL(e1)), ID(πL(e2)) . . . , ID(πL(ek)⟩. This
sequence is then given as input to the embedding layer.
Besides embedding the sequence of activities and correspond-
ing LPMs, we also concatenate the two embedded vectors
for LSTM training to combine activity and LPMs features
named Act+LPMs Embedding (EmbAct+LPMs) encoding.
Fig. 4 zooms in the training part of the schema in Fig. 2
for the EmbAct+LPMs encoding, showing a schematic of the
generation of the encoded vector. Two embedded activities
and LPMs vectors are concatenated after concatenating layer
in such a way to create one vector for each events consisting
of its (embedded) activity (shown in gray) and LPMs (shown
in white) before feeding to the LSTM layers.
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Fig. 4. The architecture of EmbAct+LPMs layers with LSTM network

V. EXPERIMENTAL SETUP

This section discusses a set of experiments carried out to
evaluate the proposed approach. In the previous section, we
discussed two different encoding approaches we introduced to
answer RQ1: How can we encode control-flow information for
an LSTM classifier? Here, we intend to study the performance
of the proposed encoding strategies to answer RQ2: Can we
improve the performance of outcome prediction using control-
flow information in an LSTM model?

The following subsections describe the experimental set-
tings, the datasets and the experimental results.

A. Implementation

For mining the LPMs set, we used the LPM miner plugin
available in ProM 6.91 based on [16] and the default plugin
settings for extracting LPMs from each event log. We imple-
mented our approach for the LPM feature generator, prefix
trace encoding, and LSTM models with Python2.

B. Settings

We implemented an LSTM architecture with two different
input layers based on the two proposed encoding methods.
One LSTM is built with a normal input layer for OHAct,
WOHB , and WOHF encoding methods. Another LSTM con-
tains embedding (and concatenating) layers for the EmbAct,
EmbAct+LPMs, and EmbLPMs encoding strategies.

We implemented a single LSTM network to predict all
prefix sizes and zero-padding is used to ensure the same size
of the input data. To reduce the dimension of input data and
the complexity of the models, we trim traces after the point
that 90% of cases with the minority outcome class has finished
with an upper bound of 40 events per trace, as suggested in
[1]. We have also filtered out incomplete traces for which there
is no outcome recorded.

We first divide each event log into testing and training
sets and then perform the LPM discovery method only on

1https://www.promtools.org/doku.php
2https://github.com/MozhganVD/LPMforPPM

TABLE I
HYPERPARAMETER OPTIMIZATION SEARCH SPACE

Parameters Range
Learning rate Uniform [0.00001, 0.0001]

Number of layers {1, 2, 3, 4}
Batch size {8, 16, 32, 64, 128, 256}

Number of units Uniform [10, 100]
Dropout rate Uniform [0.01, 0.3]

Optimization function {Adam, RMSprop}
Activity embedding dimension Uniform [| C | / 2 , 2 * | C | ]
LPMs embedding dimension Uniform [| 2ΘL | / 2 , 2 * | 2ΘL | ]

training cases. More precisely, we divided each dataset into
80% for training and 20% for final testing. We shuffled cases
and randomly divided cases into train and test while keeping
the distribution of case length and outcome classes in the test
set the same as the training set. In particular, as we split event
logs on the level of cases, different prefix traces of the same
case remain either in the training or the testing set. Note that,
in doing this, we hold an assumption that there is no concept
drift in the business process, and past structural behaviors in
a business process can be used to predict future outcomes.

For the hyperparameter optimization, we used the imple-
mentation of the Tree-structured Parzen Estimator (TPE) [33]
in Python. The optimization phase is conducted using 10% of
the training set as a validation set. The range of possible values
for parameters explored in this phase is reported in Table I. To
avoid over-fitting, we also performed early stopping by halting
training when loss on the validation set does not improve for
10 consecutive epochs, and we added dropout to each LSTM
layer. The dropout rate is defined by hyperparameter tuning.

C. Datasets

To evaluate the proposed method, we have used public event
logs widely used in the literature, accessible from the 4TU
Centre for Research Data3. We have considered the datasets
used in [1] with same labeling strategy for the current research.

Production represents a manufacturing process with a lim-
ited number of cases but high variants. The outcome of each
trace is defined based on whether the number of rejected work
orders exceeds zero or not.

BPIC2012 contains the execution history of a loan ap-
plication process in a Dutch financial institution. We define
three binary outcomes (hence, three datasets) for cases based
on whether their loan application is accepted (BPIC2012-ac),
rejected (BPIC2012-re), or canceled (BPIC2012-ca).

BPIC2011 assembles patients’ medical history from the
Gynaecology department of a Dutch Academic Hospital. Sim-
ilar to previous works, we defined four datasets with binary
outcomes for cases from this event log referring to [1] based on
the satisfaction of different temporal constraints on the order of
occurrence of tasks in a case, named BPIC2011-f1, BPIC2011-
f2, BPIC2011-f3, BPIC2011-f4.

3https://data.4tu.nl/
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TABLE II
EVALUATION RESULTS

Dataset Encoding Group Encoding AUC Accuracy F1-score
BPIC2011-f1 One-hot encoding OHAct 74.76% 69.06% 69.07%

WOHB 81.38% 72.66% 72.70%
WOHF 78.77% 70.52% 70.55%

Embedding EmbAct 84.58% 75.05% 75.05%
EmbAct+LPMs 84.71% 76.36% 76.38%

EmbLPMs 67.62% 63.77% 62.51%
BPIC2011-f2 One-hot encoding OHAct 80.21% 79.06% 77.01%

WOHB 81.48% 79.42% 77.83%
WOHF 77.71% 77.87% 75.71%

Embedding EmbAct 89.51% 85.55% 84.69%
EmbAct+LPMs 89.85% 85.05% 84.14%

EmbLPMs 47.20% 70.10% 57.78%
BPIC2011-f3 One-hot encoding OHAct 74.43% 72.64% 70.93%

WOHB 76.18% 73.52% 73.81%
WOHF 74.65% 72.75% 69.37%

Embedding EmbAct 79.95% 74.97% 75.16%
EmbAct+LPMs 81.58% 76.08% 73.85%

EmbLPMs 71.28% 71.72% 63.40%
BPIC2011-f4 One-hot encoding OHAct 72.27% 63.31% 63.55%

WOHB 73.72% 65.49% 65.67%
WOHF 73.18% 65.17% 64.64%

Embedding EmbAct 78.04% 68.97% 69.10%
EmbAct+LPMs 79.34% 69.87% 69.93%

EmbLPMs 69.22% 64.60% 63.50%
BPIC2012-ac One-hot encoding OHAct 69.83% 63.11% 62.49%

WOHB 70.07% 63.35% 62.49%
WOHF 70.11% 63.49% 62.85%

Embedding EmbAct 71.00% 63.00% 60.78%
EmbAct+LPMs 72.09% 64.35% 63.73%

EmbLPMs 65.65% 59.99% 58.80%
BPIC2012-re One-hot encoding OHAct 63.15% 83.88% 77.26%

WOHB 66.20% 83.90% 77.32%
WOHF 66.09% 83.97% 77.56%

Embedding EmbAct 64.2% 84.01% 77.67%
EmbAct+LPMs 66.65% 84.00% 77.65%

EmbLPMs 64.62% 82.90% 75.60%
BPIC2012-ca One-hot encoding OHAct 70.73% 71.66% 66.24%

WOHB 76.90% 75.76% 72.46%
WOHF 76.81% 74.92% 72.02%

Embedding EmbAct 71.35% 71.87% 65.53%
EmbAct+LPMs 77.42% 75.55% 71.78%

EmbLPMs 72.44% 74.00% 70.02%
Production One-hot encoding OHAct 61.69% 55.64% 53.48%

WOHB 62.49% 56.79% 54.37%
WOHF 61.87% 54.85% 51.54%

Embedding EmbAct 78.80% 72.51% 72.20%
EmbAct+LPMs 79.12% 72.75% 72.54%

EmbLPMs 64.27% 53.53% 37.33%
Traffic Fine One-hot encoding OHAct 81.98% 80.94% 80.10%

WOHB 81.95% 80.95% 80.10%
WOHF 81.97% 80.95% 80.10%

Embedding EmbAct 82.17% 81.28% 80.52%
EmbAct+LPMs 82.13% 81.29% 80.54%

EmbLPMs 68.18% 64.49% 58.59%

Traffic Fine corresponds to a road traffic management
system. The labeling is established based on whether the fine
was paid in whole or if it was referred to credit collection.

D. Results

We measured the performance of each model w.r.t common
measurements, including area under the ROC curve (AUC),
accuracy, and weighted F1-score. Among mentioned metrics,
AUC is the more reliable measure to compare different
methods because it is a threshold-independent measure and
not biased in the case of highly imbalanced data [34]. We
considered a 0.5 threshold value for the other measurements.
Table II shows the average performance of each classifier for
the tested event logs. Bold numbers show the best performance
for each dataset regarding two main encoding scenarios.

A first observation that can be drawn from Table II is
that, in general, encoding only information related to LPMs,
neglecting information related to the activities, leads to a
too high loss of information. Indeed, EmbLPMs encoding

performed generally poorly in all the evaluated scenarios, with
few exceptions (e.g., the production dataset). This result is
reasonable, because when we use only LPMs features we miss
information about activities that are not inside any discovered
LPMs; as a result, we may miss discriminative activities.

Comparing the reported AUC in Table II, encoding the
combination of activity sequences and LPMs feature into
LSTM models leads to a consistent improvement of at least
one performance measure (but all of them in most cases) for
all event logs, except for Traffic Fine.

We performed the Friedman test to statistically test whether
the improvement in the performance of models including
LPMs feature is significant [35]. We focus on the AUC metric
since, as mentioned above, it has the benefit of being indepen-
dent from the trheshold. The Friedman test is a non-parametric
test which ranks the methods for each data set separately with
a null hypothesis that there is no significant difference in their
ranking. Considering the AUC of each evaluated method for
ranking methods in the Friedman test, the null hypothesis is
rejected with p-value≤ 0.05. In order to further assess the
relative performance of each pair of methods, we used the
Nemenyi test for two groups of encoding separately. In this
way, we can assess whether adding the LPMs feature could
increase performance without taking to account the effect of
different encoding on performance improvement. In particular,
the critical difference diagrams in Fig 5 show that using
LPMs features leads to higher prediction performance in both
encoding group methods using a 0.05 significance level.

E. Discussion

The results show a consistent improvement in the prediction
performance due to the use of LPMs, thus showing that encod-
ing control-flow construct information has a positive impact
on the performance of case outcome prediction. As expected,
the encoding with embedding layers usually outperforms their
one-hot encoding counterpart.

At the same time, however, the performance improvements
are quite little for some of the tested datasets, with improve-
ments around (or less than) 1% or 2%, while in the Traffic
Fine we observed a (slight) reduction (around 0.04%). To
shed some light on the reason for the obtained performance,
we need to consider the characteristics of the event logs and
of the discovered LPMs. Indeed, we expect LPMs involving
non sequential behaviors to be the most beneficial in terms
of classification performance, since they offer the higher
abstraction means. To delve into this aspect, we have computed
for each LPMs set of each dataset the average percentage
of different common control-flow constructs (i.e, sequence,
choice, parallel, direct loop, and indirect loop) covered by the
set of extracted LPMs, shown in Table III. For each activity
inside each LPM, we count the number of branches which are
in parallel or alternative to the activity branch, together with
the number of short or indirect loops it belongs to. If there
were none of these structures, we assumed it was involved
only in a sequence. We then went through all LPMs and
count these values for each activity (cumulative). At the end,
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Fig. 5. Pairwise comparison of LSTM models with (a) embedding, and (b) variations of One-hot encoding methods using Friedman-Nemenyi test

TABLE III
OVERVIEW OF THE EVENT LOGS AND DISCOVERED LPMS CHARACTERISTICS

Characteristics Metrics BPIC11-f1 BPIC11-f2 BPIC11-f3 BPIC11-f4 BPIC12-ac BPIC12-re BPIC12-ca Production TrafficFine
LPMs sequence 75.3% 78.8% 58.7% 81.5% 72.4% 78.7% 67.1% 74.6% 91.3%

choice 2.6% 0.0% 23.1% 0.0% 0.0% 0.3% 7.0% 0.0% 0.0%
parallel 7.6% 0.0% 0.0% 0.0% 1.5% 0.6% 1.4% 1.4% 8.7%

Direct loop 14.0% 21.2% 18.2% 16.4% 23.1% 17.3% 23.1% 15.2% 0.0%
Indirect loop 0.5% 0.0% 0.0% 2.1% 3.0% 3.1% 1.4% 8.7% 0.0%

Overlapped LPMs 80.0% 75.0% 84.0% 86.1% 88.6% 95.5% 85.7% 95.1% 70.0%
Covered activities 9% 4% 10% 13% 44% 63.9% 42% 27% 60%

Event logs Max. trace length 36 32 30 30 40 40 40 23 10
Med. trace length 25 54 21 44 35 35 35 9 4

Pos. class ratio 40% 78% 23% 28.0% 48% 17% 32% 53% 46%
Variant 815 977 793 977 3578 3578 3578 203 185

for each control-flow construct we have a vector of values,
each corresponding to one activity, from which we compute
the average values for each control-flow constructs. We have
reported the fraction of each control-flow constructs to all
observed behaviors (in percentage) to assess which one is
mostly supported by extracted LPMs set.

We have also calculated the percentage of overlapped LPMs
discovered from each event log (Overlapped LPMs) and the
percentage of activity classes covered by all discovered LPMs
(Covered activities). Additional information about the event
logs such as, e.g., the median and maximum (after truncating
lengthy traces) are reported in Table III.

According to the table, most of the mined LPMs show a
prevalence of sequential behaviors, which can partly justify the
limited improvement in performance. Indeed, in this context,
the LPMs can still provide useful abstractions when they
occur in log traces where different activities occur in between
the activities modeled by an LPM (recall that LPMs show
eventually follow relations); however, when the behavior is
completely sequential, not much useful information is added.
The second most frequent construct is the direct loop, with a
percentage of 14% or more in all the datasets; on the contrary,
parallel and choice constructs are mostly very infrequent (with
the exception of the choice construct in BPIC11-f3, where it
achieves 23%). Overall, these results do not allow to detect a
relation between the different constructs and the magnitude of
the increase of the classification performance.

It is worth noting that the highest amount of sequential
behaviors is shown by the Traffic Fine dataset; indeed, despite
the fact that this dataset shows a relatively high amount of
parallel behaviors with respect to the other datasets (8.7%), the
large majority of behaviors captured by LPMs are sequential
(91.3%). This observation suggests that discovered LPMs do

not boost the LSTM model with new information about non-
sequential behaviors. Another unique characteristics of Traffic
Fine dataset is having short traces with median length of
four events per trace. This implies that most prefix traces
are actually too short to show complete occurrence of LPMs;
consequently, the added LPMs features is a sparse matrix
adding noise instead of helpful information.

Overall, these results suggest that an interesting direction
to explore to improve the classification performance is to
tailor the extraction of LPMs to the classification task. In
this study, we used the default setting for the LPM extrac-
tion; however, these settings have been designed to fulfill a
process discovery task, i.e., to generate patterns showing a
good balance between support, precision and generalization.
However, such criteria may not be the best choice for a
classification task. For instance, an LPM showing a lower
precision but involving a higher amount of parallelism may
be more beneficial for classification purposes than sequential
patterns. Similarly, taking into account potential correlations
between the mined patterns and the outcome class could lead
to extract patterns which may be otherwise filtered out because
of a low support. On the same line, taking into account
domain knowledge in determining patterns expected to have
an impact on the outcome can also be a valuable means to
support the classification task. Furthermore, we did not take
into account other attributes corresponding to each event in this
study; however, in some datasets there could be an interesting
relation between extracted LPMs and other event attributes
which could be used to boost prediction results. We plan to
explore these directions in future work.

VI. CONCLUSION AND FUTURE WORK

This paper examined the impact of encoding high-level
control-flow construct information on the process outcome
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prediction problem. We employed LPM discovery to derive
frequent control-flow constructs which may not be observed
through a start-to-end process model. Then, we studied two
novel encoding methods to encode prefix traces including
corresponding frequent control-flow constructs for LSTM clas-
sifiers. The experimental results have shown that using the
proposed method we are able to improve the performance of
outcome prediction tasks consistently. Additionally, the results
showed that embedding layers mostly outperform the one-hot
encoding technique. The results also suggest that encoding
control-flow construct information is expected to lead to better
results in datasets whose process executions are long enough
to allow the detection of interesting patterns. By delving into
the structure of the tested datasets we also observed that the
mined LPMs capture mostly sequential behaviors, which can
justify the limited improvements in the performance of the
classifier in several datasets.

In future work, we intend to design an integrated method-
ology to extract LPMs based on the characteristics of each
event logs and their impact on the outcome prediction task. We
also plan to investigate the impact of different event matching
strategies for generating the LPM feature. Additionally, we
are interested to design a suitable encoding method for graph-
based neural networks, to exploit their ability to encode
process structures to encode the specific relations occurring
within the detected LPMs.
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