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Chapter 1

Introduction

Movement is an omnipresent phenomenon in our lives. Arguably, movement is
what de�nes us as human beings and allowed us to connect cultures, trade across
the globe, and go even beyond our own planet. How we move and where we move
to tells a lot about who we are, whether we travel by car, plane or public transport,
what points of interest we visit, such as supermarkets or hospitals, and who we
meet and connect to. Similarly, movement patterns tell us a lot about other animals
that we share this earth with. Our movement has an e�ect on our surroundings, we
place infrastructure to make movement easier, but also leave pollution depending
on the mode of transport that we choose, and we get stuck in tra�c jams when we
all decide to use the same road. To know about and act upon these e�ects of our
movement, or to better understand the movement of others, it is fundamental to
understand how movement works and what drives movement. For this, we need to
be able to measure movement.

We can de�ne movement as the mapping of time to a location for a speci�c entity
for some time interval. Since we cannot directly work with continuous data, a
convenient and well-established way of representing movement, and thus spatio-
temporal data, is the concept of a trajectory. A trajectory consists of a sequence
of measurements with increasing timestamps that capture the location of an object
at the moment of measuring. The measurements of the trajectory may further be
enriched with auxiliary data that captures the local context of the measurement,
such as weather conditions, acceleration or velocity of the object at that time, or the
current mode of transport (airplane, bus, car).
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1 Introduction

There are myriad ways to acquire trajectories. One common way is to employ the
Global Positioning System (GPS) via dedicated hardware in vehicles, or nowadays
via smartphones. GPS data are particularly convenient since they allow us to track
movement around the globe more easily [102], which makes it useful for human
mobility analysis but also for analysis of animal movement patterns. If we want to
understand movement, we want to �nd patterns in a large set of collected trajecto-
ries or patterns in trajectories with a large number of measurements. Since these
analyses are generally not feasible to do by hand, we need ways to automate our
analyses: we need to develop algorithms to analyze the trajectories. These analyses
may then directly uncover patterns in the trajectory data set, or they may result in
visualizations that make it easier for experts to analyze the trajectory data set.

Using algorithmic trajectory analysis, we may seek to increase our knowledge about
movement of individuals or groups for which we have captured the trajectories.
Though we can analyze the trajectories by purely looking at their spatial and tem-
poral component, this allows for only a limited extraction of meaningful knowledge
from the trajectories. However, movement happens in a context: there are internal
and external factors for the object that in�uence how it moves, why it moves, where
it moves to. Using some knowledge of the context in which we recorded the trajec-
tories, we can achieve deeper and perhaps more meaningful understanding of the
movement represented by the trajectories.

In this thesis, we seek to develop algorithms for analyzing movement that are context-
aware: we make use of the known contextual data, and combine this in our algo-
rithms with the trajectory data which makes it possible to derive new information
or produce visualizations. Since our trajectory data are real-world data, there are
challenges to overcome when working with the data. We discuss these challenges in
more detail in Section 1.1. Then, we describe some important techniques applicable
to trajectories in Section 1.2. We more formally de�ne what we mean by context in
Section 1.3. We also look at what are important types of contextual data and what
we can achieve when adding context to trajectory analysis algorithms in this section.

▶ 1.1 On the nature of trajectory data
Trajectories are a very convenient and helpful way for analyzing movement and
mobility. Formally, we de�ne a trajectory T as a sequence of measurements T =
⟨p1,… , pn⟩, where each measurement is a tuple pi = (xi , yi , ti ,…) of at least posi-
tion (xi , yi) and timestamp ti , and potentially additional measured quantities such as
velocity, heading or acceleration at the time of measuring (see Fig. 1.1 for an exam-
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Figure 1.1 (le�) Sampling movement of an entity results in a trajectory. (right) A
trajetory is then a sequence of tuples with a timestamp and location.

ple). The measurements are ordered in time, that is, for consecutive measurement
mi , mi+1, it holds that ti < ti+1. For convenience, we assume that trajectories are
embedded in Euclidean space. Whenever we acquire trajectories that use a non-
Euclidean space, such as trajectory data collected via GPS, we can project these to
a Euclidean space, introducing a slight error relative to the true measurement loca-
tions. When visualizing trajectories, we often draw them as polylines, as shown in
Fig. 1.1 on the right side. Note that the actual movement between measurements
may have been very di�erent, but this cannot be inferred from the measurements
alone.

As with all real world data, there are some challenges that we need to address when
working with trajectories. Here, we discuss some major challenges that we seek to
overcome in the work presented in this thesis.

Data challenges We discern three types of data challenges when using trajectory
data: noise, privacy and completeness (see Fig. 1.2 for examples). Regarding the
�rst challenge, all measurements using physical sensors are subject to noise, or may
not be precise in their representation of the location of the object. For GPS data in
urban environments, a well-known source of noise is urban canyoning [16], where
re�ection of the signal on buildings makes the measurements more imprecise. In
addition, bad reception also plays a role, in particular when moving through tunnels
that may partially or completely block signals of the GPS receiver.

3



1 Introduction

(a) (b) (c) (d)

Figure 1.2 (a) “Ideal” trajectory in an urban environment. (b) Trajectory, subject
to noise (c) Incomplete trajectory due to privacy. (d) Sparse, incom-
plete trajectory (basemaps by OpenStreetMaps)

Secondly, for human mobility, privacy concerns form an important aspect for the
data. Knowing the exact location of a person for a long period of time reveals private
information of that person, which is deemed unethical or is illegal to reveal in some
regions of the world [69]. To counteract these concerns, trajectory data are often
preprocessed to remove sensitive information such as home location, warehouse
location, etc. This in e�ect then degrades the quality of the individual trajectories for
analysis. Thus, a vast body of research is aimed at developing algorithms to enforce
privacy while �nding the appropriate trade-o� between privacy and usability of the
data (see [51] for a survey).

Finally, the collected trajectory data is by de�nition a subsample of the actual, contin-
uous trajectory. Due to power usage of GPS receiver hardware or privacy concerns,
one may consider sampling the movement with a low temporal sampling frequency,
in e�ect making it more uncertain where the object was between measurements. In
addition, it can occur that entire sections in a trajectory are missing due to hardware
failure or a privacy processing algorithm.
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1.2 Analyzing trajectories

Data set volume Depending on the particular application of interest, the collected
trajectory data may be vastly di�erent: one may be interested in the �ne-grained
movement of a small group of birds, or perhaps the large-scale movement patterns
of as many vehicles in a city as possible. The shapes of these data sets give addi-
tional challenges, simply due to the sheer size of the number of trajectories, of their
individual measurement counts, or both.

Data set completeness Even though the volume of trajectory data sets may be
large, it will rarely be the case that we have a complete picture of the phenomenon
we are studying. Particularly for human mobility, capturing all tra�c at a �ne-
grained resolution would be intractable from a logistical and technical perspective,
and undesirable from a privacy perspective. Hence we can always assume that any
trajectory data set relating to human mobility is a sample of the underlying tra�c,
that is, it is inherently incomplete.

▶ 1.2 Analyzing trajectories
Trajectories themselves can already provide insight into the underlying entities by
simply showing their geometry on maps for experts to interpret. However, using
algorithms to process the raw data, we are able to extract patterns and improve the
visualizations, making interpretation easier for experts. Hence, many processing
and analysis techniques exist for handling trajectory data. Below, we discuss some
important processing and analyzing techniques.

Similarity measures A fundamental aspect to most trajectory analysis algo-
rithms are similarity measures: measures between trajectories that convey how
(dis)similar two trajectories are. In the computational geometry community, well-
known and much used measures for trajectories are amongst others the Fréchet
distance [4], the Hausdor� distance [60] and dynamic time warping [134]. These
measures in general consider a trajectory to be a directed polyline, thus only taking
into account the spatial aspect of trajectories. However, actually incorporating the
temporal component of trajectories in a meaningful way often depends strongly on
the application. The temporal component may just be considered another dimen-
sion, in which case the polyline distances directly apply. Alternatively, it can be
considered a separate special dimension, for instance in the Skorokhod distance [85],
which is very similar to the Fréchet distance, but treats the time dimension di�er-
ently. For other applications, trajectories may periodically exhibit similar behavior,
for instance slow driving during rush hour on week days, thus similarity measures
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should adapt accordingly. In that respect, trajectories can also be considered to be
time series with a spatial component, thus making time series similarity measures
potentially applicable. In particular, edit distances are commonly used, such as the
longest common subsequence (LCSS) and Edit Distance on Real Sequences [107].
These then explicitly take into account the temporal component, often by applying a
time window within which measurements of the compared trajectories are allowed
to match.

Simplifying trajectories Depending on the application and the trajectory data
set, the amount of data in individual trajectories may be too �ne-grained, which
causes processing the trajectories to be slow or visualization of the trajectories di�-
cult. In these cases, it may be bene�cial to simplify trajectories beforehand, that is,
reduce the complexity of the trajectory while maintaining the most important parts
for the application. The idea is in general to keep the trajectory similar enough to
the original to be useful, commonly measured using similarity measures as described
previously. Ideally we reduce the complexity as much as possible. In computational
geometry, this is a well-studied topic, especially with regard to the Fréchet, Haus-
dor� and Dynamic Time Warping distances [111].

▶ 1.3 Context-aware trajectory analysis
Many analysis and processing techniques on trajectories are readily available if
we only have spatio-temporal information of the trajectories. However, movement
rarely happens in the perfectly �at and empty space: we may move in a road-
network, there may be height di�erence in our space, there may be obstacles on
the way, other entities or we are in�uenced by external factors when choosing how
to move, such as tra�c jams or bad weather. That is, movement happens in a cer-
tain context. This context, then, provides more information on the movement of
the entity, thus allowing us to improve the analysis and processing of trajectory or
trajectories, or deriving new information from the trajectory.

▶ 1.3.1 Defining context
Over the past decades, the GIS community has developed a multitude of de�nitions
for what “context” means when it comes to movement. These de�nitions capture
di�erent aspects of the types of context that movement happens in. Buchin, Dodge
and Speckmann de�ne the geographic context as “the locational circumstances of
a moving agent” [23]. In the context of their work, this is often knowledge about
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1.3 Context-aware trajectory analysis

stationary information such as obstacles. Though the context may be localized, its
e�ect does not have to be necessarily, since knowledge of the context by the entities
internally may change the global movement behavior, i.e. anticipating that there is
an obstacle in the future.

Andrienko, Andrienko and Heurich [6] provide a more general, formal description of
context in movement analysis. They de�ne two archetypical elements, spatial objects
and events, from which the major contextual data types derive. Entities (movers in
their terminology) produce trajectories, which are spatial events, mapping speci�c
times to spatial locations. Contextual data is then either a spatial object (�xed loca-
tion, does not change in time), an event (present for �xed time interval, no location)
or a combination of the two.

Sharif and Alesheikh [105] give a de�nition of context for movement data by char-
acterizing the context based on whether it is considered internal or external to the
entity. Context is internal when the contextual data comes from knowledge of the
entity or internal workings of it, while context is external when it describes the
situation that the entity is in. They then further subdivide the internal context into
motivation, movement and modality context. Motivation captures the intrinsic rea-
sons why an entity moves, while modality captures how the entity moves, e.g. what
its capabilities are physically, what its shape is. The movement context is de�ned by
Dodge, Weibel and Lautenschütz [44] as the movement parameters of the entity and
captures the state of the entity, such as its velocity and acceleration. Finally, there
are relations amongst the context types, as well as interactions with the context, for
instance when the entity interacts with other entities.

Broadly speaking then, context is all the circumstances that in any way alter the
movement of an entity or group of entities. Context may then be used as extra
knowledge regarding the movement, thus increasing the amount of information
we can infer from the raw trajectory data and the context. Reversing this idea, we
may also try to infer contextual information from raw trajectory data, commonly
via segmentation or classi�cation, to determine what type of behavior the entity
exhibits for that particular (sub)trajectory.

In the next sections, we introduce several contextual data types that we use in this
thesis to develop algorithms. We then provide descriptions of speci�c analysis and
processing techniques for trajectories that bene�t from this particular type of con-
textual data.

7
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Figure 1.3 (le�) Urban environment that may be context of movement (down-
town Chicago, satellite image courtesy of the U.S. Geological Sur-
vey). (right) Road network representation of the urban environment
(basemap by OpenStreetMaps)

▶ 1.3.2 Road network

One of the key constraining contexts for human mobility is the road network: move-
ment is constrained to a speci�c subspace due to tra�c laws, but also due to the
geometry of surrounding obstacles such as buildings and impassable terrain (moun-
tains, rivers, lakes). This acts as geographic context data. In principle, we can view
a road network as a non-simple polygon with annotated data such as speed lim-
its, driving directions, lane designations, etc (see Fig. 1.3). In practice, we model a
road network as a graph, embedded in ℝ2 (or ℝ3). More formally, we de�ne a road
network  = (V , E) to be a simple, directed graph with vertices V and edges E. In
addition, we assume all edges in E to be straight-line embedded in ℝ2, that is, each
edge is represented by a straight line, where its start and end vertices have a �xed
location in ℝ2.

Note that graph  does not need to be planar, since �y-overs may result in crossing
edges. We can planarize this graph by inserting vertices at the intersections, while
remembering that these vertices are virtual. In this case, we speak of a planarized
road network. When needed, we can associate to the edges or vertices contextual
data such as speed limits, road types (highway, residential road) and other contextual
data. Also note that using an embedded graph for constraining the motion of objects
need not be restricted to a road network: sea lanes and airways can also be modeled
using embedded graphs.

Detecting pa�erns in sets of trajectories When given a set of trajectories,
one can go even further and look for particular behavior of subgroups of enti-
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ties. Typical approaches here are to �nd clusters of trajectories that exhibit similar
behaviour [136], �nding “constructed” trajectories that represent the approximate
movement of a group of trajectories [20] and tracking the formation and dissolu-
tion of groups in space and time [18]. These approaches result in the discovery of
typical behavior in the trajectory data set, which can be used to further analyze the
movement patterns of the entities. When we know that the trajectories are actually
constrained to a road network, we can use the representation of trajectories on the
network: we can describe the measurements of the trajectory by their location on
the graph instead of in ℝ2. This may greatly simplify clustering or make it more
e�cient and meaningful [59, 125]. In Chapter 5, we use this compact representation
of trajectories on road networks to detect major routes in a large trajectory set.

Simplifying trajectories When we know the space that a trajectory moves in,
we can alter our simpli�cation algorithms accordingly. In particular, we want to
have simpli�cations that are reasonable in the new space. When we know that there
are obstacles in our two dimensional space, it makes sense to keep the topology of
the trajectory the same, only allowing trajectories that are homotopic to our input
trajectory [1, 28]. When we know our entities move in a road network however,
homotopic simpli�cations are less meaningful or rather trivial. Instead, one can
consider simplifying the space, that is, the road network itself, and simplifying the
trajectories along with it. We leverage this idea in Chapter 5, where we want to sim-
plify both the network and the trajectories for analysis and visualization. We apply
local simpli�cation operators to the network, while also simplifying the matched
trajectories on the network.

Visualizing trajectory data sets on road networks When visualizing a tra-
jectory data set, one can simply show all trajectories spatially on a plane or map.
However, only for small enough or extremely sparse data sets will this result in a
visualization that is easily interpreted. To be able to visualize meaningful data, we
need a way to aggregate the trajectory data, resulting in less clutter and summariz-
ing the data sets. This may be done by for instance determining the density of the
trajectories [123]. But knowledge of the underlying space that the entities moved
in can also make visualization easier. In particular, if we know that the entities ad-
here to an embedded network, such as a road network or sea lanes, this opens up
possibilities to leverage the network for visualization of the trajectories, potentially
leading to more concise and uncluttered visualizations [5]. In Chapter 5, we use the
knowledge that our tra�c moves in a road network to develop a visualization to
show major mobility patterns in a trajectory data set.

9
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Figure 1.4 We may know the local tra�ic situation such as number of vehicles
passing a point (le�), turning ratios (middle) or average speed over
parts of the road network (right).

▶ 1.3.3 Local tra�ic situation

In addition to knowing that our trajectories occur in the context of a road network,
we may have information about the local tra�c situation. This may commonly be
represented as functions over the graph edges and vertices, describing the state of
local tra�c (see Fig. 1.4). Examples of this would be knowledge of the average veloc-
ity of vehicles passing �xed points in the road-network, knowledge of the amount
of vehicles passing �xed points in the road-network for a speci�c time period or
knowledge of the turning ratio of �ows at intersections (the relative amount of traf-
�c exiting via a speci�c edge of the intersection). This data can be gathered by
installing sensors at �xed locations in the road network. Inductive loop detectors
and cameras are the most common detector types. The inductive loops can be uti-
lized to count the number of vehicles passing a certain location, their approximate
velocity while passing the detector and their approximate length. Using computer
vision techniques, the video feeds of the cameras can be used to recognize num-
ber plates, which allow for more precise tracking of individuals, but also recording
turning ratios of vehicles at intersections. This contextual data can be considered a
combination of the spatial objects and events as de�ned by Andrienko, Andrienko
and Heurich [6].

Reconstructing routes from local tra�ic volume When we have knowledge
of the local tra�c situation, in particular the number of vehicles that passed a certain
location in the network, we can ask the question: is there a reasonable way to infer
the routes of the entities that caused these counts? Essentially, we are reconstructing
the original route set, of which the counts are a local aggregation. We may then
leverage the fact that a set of trajectories and these local counts are complementary
data: while the trajectories are a subset of all routes of tra�c in the network, the
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Figure 1.5 Knowing the maximum speed limits where an entity can be to a disk,
given some initial position.

local counts fully count the tra�c, only does not capture routes. We use this notion
in Chapter 4 to reconstruct realistic routes: routes that remain similar enough to
the input trajectory data, that we deem representative. The idea is then to match as
many routes with the counts as possible, thus reconstructing the routes.

▶ 1.3.4 Physical properties

Another key piece of contextual data is knowing what kind of object or entity was
measured with a trajectory. If we know this, we can derive certain physical proper-
ties that we can use in processing and analyzing the trajectory. For example, a car
in a road network will not travel with the speed of sound, but will reach perhaps
200 to 300 km/h on the German highway at its highest. Similarly, accelerating too
fast is in general not a very comfortable or safe experience for living beings, thus
acceleration of entities is in principal bounded. E�ectively, this information con-
strains the movement characteristics that an entity can have at any given moment
in time, but in addition also limits where an entity can be, given a starting position
and some elapsed time (see Fig. 1.5). We can characterize this contextual data as
modality context according to the de�nition by Sharif and Alesheikh [105].

Finding outliers As discussed previously, collected trajectory data may be sub-
ject to noise. Hence, it is important to assess and if possible improve the trajectory
data before using the data in further analysis. To this end, one uses outlier detection
algorithms, sometimes also referred to as “anomaly” detection algorithms [139]. Us-
ing these algorithms, we can detect which particular measurements in the trajectory
data are not coherent with the other measurements of the trajectory. How to deter-
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mine coherency is then speci�ed by the particular contextual model that one uses for
detecting the outliers, which amongst others can take the physical properties of the
entity into account. In Chapter 2, we apply this idea, �nding outliers by determining
the maximum set of measurements of a trajectory that form a trajectory the entity
could reasonably have taken, given physical constraints on its motion.

Map-matching We can consider the road network as context for trajectories in
a given data set. In that case, we assume that all entities were driving on this road-
network when the measurements were taken. To be able to reason about the trajecto-
ries on the road network, while also removing any potential noise in the trajectories,
we can map-match the trajectories to the road network. When we map-match a tra-
jectory to the network, we want to �nd the (spatio-temporal) representation of the
trajectory on the road network that is as faithful as possible to the original trajectory.
This problem has long been studied in the GIS and computational geometry commu-
nities, giving rise to for example map matchers minimizing several variants of the
Fréchet distance [3] and map matchers employing Hidden Markov Models to �nd
the route maximizing the probability that the input trajectory and route concur [74].

While the road-network as context already provides a lot of information regarding
where a potential similar trajectory could or should be, it may not uniquely de�ne the
desired route in the network. Hence, we can infuse even more contextual data into
the map matchers to account for the behavioral model for the entity that generates
the trajectory. Particularly, the local tra�c laws may be incorporated, disallowing
counter�ow driving and requiring the entity to (approximately) obey the local speed
limits. Additionally, one may use the physical constraints of the entity to discard
routes that requiring unrealistically high velocities or extreme turns given the ve-
locity. We use these ideas to develop a map-matching algorithm in Chapter 3 that
tries to �nd routes in the road network that are similar to the provided trajectory
and makes sense, given the physical constraints for the entity of the trajectory.

▶ 1.4 Contributions

We next describe the contributions of this thesis, seeking to e�ectively employ con-
textual data to improve and enrich analysis and visualization techniques for trajec-
tories.

12
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Maximum Physically Consistent Trajectories

In Chapter 2, we propose algorithms for detecting outliers in trajectories by em-
ploying physical consistency (see Fig. 1.6). This physical consistency models the
capabilities that an entity has when it comes to moving around in space: how fast
can the entity accelerate, how fast can it decelerate, what is its maximum speed?
Using this contextual information for the entities, we propose outlier detection al-
gorithms that �nd the longest subsequence of the trajectory that is consistent under
the known constraints of the object. More precisely, the measurements of the result-
ing subsequence could be measurements of a traveled path that is possible under the
physical constraints.

We present algorithms for concatenable consistency, where consistency of the con-
catenation of two consistent subsequences sharing an end resp. start vertex is guar-
anteed. In addition, we provide an algorithm for conditional consistency, where some
state variables in�uence whether two conditional consistent subsequences sharing
an end resp. start vertex are consistent when concatenated. We then perform an ex-
tensive experimental evaluation, comparing the proposed methods with established
baseline methods.

This chapter is based on
Bram Custers, Mees van de Kerkhof, Wouter Meulemans, Bettina Speckmann, and
Frank Staals. Maximum physically consistent trajectories. ACM Transactions on
Spatial Algorithms and Systems, 7(4):1–33, 2021. doi: 10.1145/3452378

This paper won the best paper award at the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems.
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Figure 1.6 We leverage physical consistency for detecting outliers. (le�) Consis-
tency between measurements in space and time (right) Consistency
for two-dimensional motion.

13

https://doi.org/10.1145/3452378


1 Introduction
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Figure 1.7 Extended physics model (le�) to use for map-matching sparse inputs
(middle, blue line) to the road network to get a route (right, red line).

Physically Consistent Map-Matching

In Chapter 3, we extend the idea of physical consistency of the previous chapter,
and consider the problem of map-matching of trajectories to a road network. We
increase the amount of contextual data that is considered, leveraging the local speed
limits on the road network to bound the maximum speed an entity may achieve.

We provide an algorithm for verifying that a sequence of measurements along with
routes connecting consecutive measurements is physically consistent. We conjec-
ture that the general problem is hard. Hence, we provide a heuristic algorithm for
solving the map-matching problem while leveraging physical consistency (Fig. 1.7).
In our algorithm, we use a k-fastest paths approach to generate candidate paths
for the input trajectory, and leverage our physical consistency check for paths in
the network to eliminate inconsistent paths. We compare our approach with two
baseline Hidden Markov Model approaches.

This chapter is based on
Bram Custers, Wouter Meulemans, Marcel Roelo�zen, Bettina Speckmann, and
Kevin Verbeek. Physically consistent map-matching. In Proceedings of the 30th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
2022. To appear.

Route Reconstruction from Tra�ic Flow via Representative Tra-
jectories

In Chapter 4, we look into the problem of making a set of trajectories more complete.
In particular, we consider tra�c in a road network, collected as a set of trajectories.
In addition, we assume that we are given checkpoint data: measurements of the total
number of vehicles that traversed speci�c points in the network for speci�c time
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+ →

Checkpoint data Trajectory data Reconstructed routes

Figure 1.8 Reconstructing routes using checkpoint and trajectory data

intervals. We now investigate whether we can give a more complete set of routes
(trajectories on the network), assuming that the checkpoint data is fairly complete
and the set of trajectories are representative for tra�c in the network (see Fig. 1.8).

We formally de�ne the problem and show that several simpli�ed variants of the
problem are NP-hard. Hence, we develop a heuristic approach that reconstructs the
routes based on the checkpoint data. We compare our proposed heuristic to baseline
approaches that have varying degree of remaining faithful to the representative
trajectories. We �nd that the approach is promising in terms of remaining faithful
to the input trajectories and compactly representing major routes in the data set.

This chapter is based on
Bram Custers, Wouter Meulemans, Bettina Speckmann, and Kevin Verbeek. Route
reconstruction from tra�c �ow via representative trajectories. In Proceedings of the
29th ACM SIGSPATIAL International Conference on Advances in Geographic Informa-
tion Systems, pages 41–52, 2021. doi: 10.1145/3474717.3483650

Coordinated Schematization for Visualizing Mobility Pa�erns
on Networks
In Chapter 5, we propose a way to visualize the major mobility patterns present in a
trajectory data set, where we assume that the entities all drive vehicles subject to a
road network. In particular, we want to summarize the trajectory data set, allowing
for more intuitive insight into the global structure of the routes present in the data
set. To achieve this, we want to maximally reduce visual clutter before visualizing
the data set, while in addition visualizing the data set on the road network (Fig. 1.9).
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+ →

Trajectory data Road network Schematization

Figure 1.9 Coordinated schematization of trajectory data set and network to pro-
duce a schematization that summarizes the trajectory data set.

We propose a coordinated schematization pipeline, where we simplify the road net-
work, while coordinating the changes of the road network with the trajectories, thus
maintaining stronger cohesion between the trajectories and the road network. We
propose to use a data driven selection of the initial road network, followed by simple
local operators that reduce the complexity of the road network, while maintaining
a mapping of each trajectory to the simpli�ed road network.

This chapter is based on
Bram Custers, Wouter Meulemans, Bettina Speckmann, and Kevin Verbeek. Coordi-
nated schematization for visualizing mobility patterns on networks. In Proceedings of
the 11th International Conference on Geographic Information Science (GIScience 2021),
LIPIcs, 2021. doi: 10.4230/LIPIcs.GIScience.2021.II.7

This paper was nominated for the best paper award at the 11th International Con-
ference on Geographic Information Science (GIScience 2021).

Schematizing Orthogonal Polygons
In Chapter 6, we explore schematizing orthogonal polygons. We introduce the idea of
schematizing orthogonal polygons under the minimum homotopy area measure (see
Fig. 1.10). This measure is more sensitive to topological changes than established
measures, which improves the schematization for certain input polygons. We pro-
vide an algorithm that computes the optimal schematization under the minimum
homotopy area in O(n4(k + log n)) time for polygons of size n and a target output
schematization of size k.

We analyze the behaviour of simpli�cations under the minimum homotopy area,
conjecturing that it is NP-hard to �nd an optimal simpli�cation while retaining sim-
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Figure 1.10 The homotopy area between the blue polygon and the polygon with
the red do�ed boundary, given by the hatched areas.

plicity of the input polygon. Finally, we develop a greedy algorithm for computing
the minimum homotopy area, where we can show that on uniform orthogonal stair-
cases, the proposed greedy algorithm is a constant factor approximation for the
optimal schematization.

This chapter is partially based on
Bram Custers, Je� Erickson, Irina Kostitsyna, Wouter Meulemans, Bettina Speck-
mann, and Kevin Verbeek. Orthogonal schematization with minimum homotopy
area. In Proceedings of the 36th European Workshop on Computational Geometry (Eu-
roCG 2020), pages 451–457, 2020. url: https://www1.pub.informatik.uni-
wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_64.pdf

▶ 1.5 Other results
Apart from the results in this thesis, the author of this thesis worked on data struc-
tures for visibility queries in polygons [19] and a GIS cup challenge, where a heuristic
was developed to maximize the performance of taxis picking up passengers given
historical data [21]. The latter result won second place in the challenge.
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Chapter 2

Maximum Physically
Consistent Trajectories

As we discussed in the introduction, a key challenge when working with trajectory
data is appropriately handling the noise that is inherently present in the trajectories.
For example, GPS readings notoriously stray far from their real location in urban
canyons, resulting in trajectories with multiple signi�cant outliers. These outliers
pose problems for many analysis techniques such as clustering or grouping, and
they skew the results of statistical methods. Hence, it is common practice to try to
eliminate outliers in a preprocessing step.

There are a variety of methods to remove outliers. Some techniques, such as smooth-
ing or averaging the data, have a possibly negative impact on the complete trajectory.
Others, such as map matching, are applicable only to trajectories that can be expected
to coincide with a road network. In this chapter, we focus on outlier detection, that
is, we describe algorithms that identify outliers which can subsequently be handled
as appropriate for the application.

Speci�cally, we aim to identify outliers by employing speci�c contextual informa-
tion for the trajectory: the physical constraints of the moving (real-world) entity.
We de�ne a physics model as a model that describes how an entity can move, given
its physical constraints. We consider two measurements within a trajectory to be
consistent for a particular physics model, if the corresponding entity could have
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traveled between the two measured locations in the time between the two measure-
ments assuming the physics model. In this chapter we present optimal algorithms
to compute maximal consistent subtrajectories according to di�erent (simpli�ed)
physics models, thereby identifying the omitted measurements as outliers under the
chosen model. Before describing our results in more detail, we �rst introduce the
necessary notation and formally state the problem.

Notation Let v− be the minimum speed, or velocity, that the entity can achieve,
and let v+ be the maximum speed that the entity can achieve. Similarly, let a− and a+
be the minimum and maximum possible acceleration. These speed and acceleration
bounds represent physical bounds, and thus the entity cannot exceed them at any
time, even in between consecutive time stamps ti and ti+1. The actual continuous
motion of an entity is assumed to be a continuous path � ∶ [t, t′] → ℝd over time
interval [t, t′] through d-dimensional space (typically, d = 2). We say that a path
� adheres to the physics model if it never exceeds the bounds. For example, the
speed is always in [v−, v+] and the acceleration is always in [a−, a+]. A sequence of
measurements T = ⟨p1,… , pn⟩ is consistent with the physics model, denoted C(T ),
if and only if there exists at least one witness: a path � ∶ [t1, tn]→ ℝd such that (i)
for all i ∈ {1,… , n}, � (ti) coincides with location pi , and (ii) � adheres to the physics
model. We sometimes write C(pi , pj ) instead of C(⟨pi , pj⟩).

We use subtrajectory or subsequence of a trajectory T to refer to a subset of the
measurements in the same order as in T ; note that these measurements do not need
to be consecutive in T .

Formal problem statement Given a trajectory T and a physics model, compute a
maximum-size subsequence S of T such that S is consistent with the given model. Let
the size of S be � . Then, the trajectory T contains k = n− � erroneous measurements,
or outliers, according to the physics model.

Concatenability Regardless of the physics model, if a sequence T is consistent,
then so is any subsequence S of T . But we cannot necessarily construct a consistent
subsequence from smaller ones: the concatenation ⟨p1,… , pn = q1,… , qm⟩ of two
consistent subsequences T = ⟨p1,… , pn⟩ and U = ⟨q1,… , qm⟩ with pn = q1 is not
necessarily consistent. We call a physics model concatenable if this is the case. An
example of a concatenable model is one that limits only the speed of the entity.
Concatenable models generally allow more e�cient algorithms.
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Figure 2.1 (Le�) In an acceleration-bounded model ⟨p1, p2, p3⟩ is not consistent,
even though ⟨p1, p2⟩ and ⟨p2, p3⟩ (and even ⟨p1, p3⟩) are. (Right) A
consistent subtrajectory through p2 (red) may require a di�erent speed
at p4 than a subtrajectory that includes p3 (blue).

Not all physics models are concatenable: for example, a model limiting both the
speed and the acceleration is not concatenable. See Fig. 2.1 (left): both T = ⟨p1, p2⟩
and U = ⟨p2, p3⟩ are consistent, but ⟨p1, p2, p3⟩ is not. The main problem is that
sequences U and T essentially require the entity to have two di�erent speeds at
p2. The two subtrajectories U and T are concatenable in the acceleration-bounded
model, under the condition that they have the same speed at their common mea-
surement. To capture this, we de�ne a notion of conditional consistency, denoted
C(T ∣  ), in which a trajectory T is consistent, provided that it has a witness satis-
fying condition  . In case C(T ∣  ) and C(U ∣  ′) imply that the concatenation of
T and U is consistent, we say that the physics model is conditionally concatenable.
Hence, the model with bounded acceleration is conditionally concatenable, using
the condition that the speed at the common measurement is the same. The speeds
attainable at a certain measurement may depend on the subtrajectory so far (see
Fig. 2.1, right).

Results and organization We present three algorithms and the results of com-
putational experiments investigating the e�cacy of our methods. Speci�cally, in
Section 2.1 we describe a simple, optimal algorithm that runs in O(nk) time for any
concatenable physics model allowingO(1) consistency checks between two measure-
ments. We then describe a more e�cient algorithm which runs in O(n log n log2 k)
time for the speed-bounded model in Section 2.2. Our �nal algorithm, described
in Section 2.3, uses an acceleration-bounded model, that can optionally also bound
the speed. This algorithm runs in O(nk2 log k) time under mild assumptions, that
are validated by our experiments. We also present a variant of this algorithm that
introduces slack in the physics model to obtain an e�cient approximate algorithm
that achieves the given worst-case running time without assumptions.
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In Section 2.4, we discuss the results of a series of computational experiments on
real-world data using our open-source implementation1. Speci�cally, we compare
the quality of our algorithms to simple greedy approaches and conclude that our al-
gorithms are more reliable, especially for trajectories with more than minor levels of
noise. We also observe that the speed-bounded model approximates the acceleration-
bounded model, though there is some dependency on the dataset. Finally, we also
brie�y investigate how sensitive our results are to the model parameters: though
speed bound is quite sensitive, the acceleration bounds have comparatively little
in�uence on the number of outliers detected. We conclude with a discussion of our
results in Section 2.5.

Related work Outlier detection is necessary to cope with imprecise data. Hence,
many di�erent methods have been developed for various contexts. A general survey
of outlier detection is given in [64]; see also [57] for a survey focusing on data with
a temporal component, including trajectories. For trajectories, outlier detection has
mainly focused on �nding outlying trajectories in sets of trajectories [54, 78, 81,
138], and not on �nding outlying measurements in one trajectory. At a glance, de-
tecting outlying measurements resembles trajectory simpli�cation and trajectory
smoothing, both well-studied topics: refer to [139] for a survey. However, simpli�ca-
tion generally aims to minimize the number of measurements while still accurately
describing the trajectory: this typically retains outliers as these are “salient”.

Physics models are often used in trajectory processing. Kalman �ltering [80], for
example, is based upon a linear model for physical motion; its extensions handle
more complex, nonlinear models. Note however, that Kalman �ltering changes the
measurement positions rather than selecting a consistent subset. In a similar vein,
physics models are used to reconstruct trajectories from data, replacing subtrajecto-
ries that cannot be physically realized with ones that can [92, 100]. Here, unrealistic
subtrajectories are detected using a local time window, sliding over the trajectory.

Given a trajectory and a physics model, we aim to determine the maximum num-
ber of measurements that can be explained through a path adhering to the model.
As such, our problem bears some resemblance to two other problems: computing
a longest common subsequence (LCSS) and map matching. The former asks to
compute the maximum subsequence of two strings [12] and has also been used to
compute trajectory similarity [120]. Contrasting our approach, LCSS requires that
both trajectories are known. The latter, map matching, is the problem of determin-
ing the driven route through a street network, given a noisy trajectory. Myriad

1Released as part of the MoveTK library, https://movetk.win.tue.nl/.
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2.1 Concatenable consistency model

algorithms exist, e.g. [3, 94]; see [139] for an overview. Dealing with noise naturally
arises in this application. Though we do not investigate this here, explicit outlier
removal before map matching may improve results of simple and faster algorithms;
postprocessing map matching results using our methodology may give rise to more
realistic results. However, the primary di�erence is that our method does not rely on
knowledge of the street network: the space of potential paths is de�ned implicitly
and as such our methodology is more broadly applicable to movement that does not
follow a prede�ned network (pedestrians, birds, recreational aviation).

▶ 2.1 Concatenable consistency model
We assume an arbitrary concatenable physics model that allows consistency checks
between two measurements in O(f (n)) time for some function f ; typically, f (n) =
O(1). We follow the methodology of the Imai-Iri line-simpli�cation algorithm [68].
LetG = (V , A) be a directed acyclic graph with a vertex vi for each measurement pi of
T and an edge from vi to vj if and only if C(pi , pj ). This graph has O(n2) edges; each
can be tested in O(f (n)) time. By concatenability, a path in G describes a consistent
subsequence. Since G is directed and acyclic, we compute a longest path in G, and
thus a maximum consistent subsequence of T , in O((|V | + |A|)f (n)) = O(n2f (n)) time.

We now develop an output-sensitive variant of this algorithm. Rather than con-
structing the full graph, we build a subgraph in which each vertex v has at most one
incoming edge (uv , v). In particular, uv and v are the last measurements of a longest
consistent subsequence Tv ending in v. Let �v denote the length of Tv .

2.1.1 Theorem. Consider a concatenable physics model that allows checking the consis-
tency of a pair of measurements in O(f (n)) time. A maximum consistent subsequence
of a trajectory T with n measurements can be computed in O(nkf (n)) time, where k is
the number of outliers.

Proof. We handle the measurements in chronological order, maintaining a linked list
 that stores, for each handled measurement v, the value �v and the predecessor uv
in Tv .  is ordered by the lengths �v in descending order. For a new measurement w ,
we traverse  to �nd the �rst measurement v consistent with w . Since  is ordered,
we have thus found a longest consistent subsequence of length �v + 1 ending in w .
We now walk backwards in  and add w to the appropriate place in the list.

After we have handled all measurements, the maximum consistent subsequence can
be retrieved in O(n − k) time, by starting at the head of the list and following the
predecessor pointers. For each of the n − k measurements that end up in the longest
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subsequence, we perform one successful check preceded by at most k failed checks,
and for the k outliers we perform at most n checks. This gives a total of O(nkf (n))
time performing the checks. The time for inserting a measurement in  can be
charged to the number of checks it performs: this takes O(nk) time in total. Hence,
the total running time for the algorithm is O(nkf (n)). □

As the speed-bounded model allows to check consistency between two measure-
ments in constant time, we thus obtain the following running time for this model.
We can, however, improve upon this algorithm in case the trajectory has many out-
liers, as discussed in the next section.

2.1.2 Corollary. For the speed-bounded model, a maximum consistent subsequence of
a trajectory T with n measurements can be computed in O(nk) time, where k is the
number of outliers.

▶ 2.2 The speed-bounded model in 2D

We now consider the speed-bounded model, with maximum speed v+, and trajec-
tories in ℝ2. We present an O(n log n log2 k)-time algorithm to �nd a maximum
consistent subtrajectory in this model. To this end we develop an insertion-only
data structure that, given a measurement q, can determine the length of a maximum
consistent subsequence ending at q in O(log3 n) time. Insertions are supported in
O(log3 n) time. By incrementally building the data structure in chronological order,
we can determine the maximum consistent trajectory in O(n log3 n) time. With a
more careful analysis this can be improved to O(n log n log2 k) time.

▶ 2.2.1 A consistency data structure

Let P be a subset of measurements from T , and let t̂ be the time of the last measure-
ment in P . We develop a data structure  that can e�ciently answer consistency-
queries on P . That is, for a given new query measurement q occurring at time t ≥ t̂ ,
we can test if there is a measurement in P consistent with q. We view the measure-
ments in P as points in ℝ3, with the third axis being time, that is, pi = (xi , yi , ti).
Measurements pj , with j > i, that are consistent with pi must lie inside a cone that
starts at pi and has radius v+(t − ti) at time t ≥ ti ; see Fig. 2.2. We call this cone the
reachable region of pi ; testing if pj is in the reachable region of pi takes O(1) time.

To determine if a measurement q at time tq ≥ t̂ is consistent with any measurement
of P we use an additively weighted Voronoi diagram (AWVD) [52, 48]. Given a set of

24



2.2 The speed-bounded model in 2D

𝑡 ′

Figure 2.2 Each measurement defines a reachable region (a cone), that intersects
the plane at time t′ in a disk. These disks define an AWVD. A mea-
surement pj is consistent with an earlier measurement pℎ if (and only
if) its cone (shown in red) is contained in the cone of pℎ.

disks with centers {v1,… , vl} and radii {r1,… , rl}, this diagram partitions the plane
into cells {c1,… , cl} associated with the disks, such that for any point v ∈ ci it holds
that d(v, vi) − ri ≤ d(v, vj ) − rj , for all vj ≠ vi . Here, d is a distance measure (in our
case the Euclidean distance), and equality holds only on boundaries between cells.

We construct an AWVD on the measurements in P by using the locations as the
centers and picking ri = v+(t′ − ti) for every measurement for some arbitrary t′ > tn .
Observe that a measurement pj is consistent with pℎ if the reachable region of pj at
t′ is inside the reachable region of pℎ at t′ (see Fig. 2.2). We preprocess the AWVD
for point location queries. Let  denote the resulting data structure, which we refer
to as a consistency data structure. We can now query  with a new measurement
q = pq , giving us a previous measurement pc and a distance sc between the disks
(pq , rq) and (pc , rc ), given by sc = d(pq , pc ) − rq − rc , where d measures the Euclidean
distance between the points in the plane, that is, ignoring the temporal component.
The following lemma then gives us that  can be used to answer consistency queries.

2.2.1 Lemma. Let  be a consistency data structure on a set P of measurements and let
q = pq be a query measurement, resulting in measurement pc on . If sc ≤ −2rq
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2 Maximum Physically Consistent Trajectories

for the resulting distance sc of pc with pq , then pc is consistent with q. Otherwise, no
measurement in P is consistent with q.

Proof. We denote wj = (xj , yj ) for compactness. Let pq = (xq , yq , tq) be the q-th
measurement in a trajectory and let  be the consistency data structure on a subset
P ⊆ {p1,… , pq−1}. Let pc be the measurement associated with the found cell in 
containing (xq , yq) and let sc = d(wq , wc ) − rq − rc .

Since sc = d(pq , pc ) − rq − rc , we can rewrite the inequality sc ≤ −2rq to d(pq , pc ) ≤
rc − rq . Applying the de�nition of rc and rq , the right-hand side can be rewritten to
v+(t′− tc )−v+(t′− tq) = v+(tq − tc ). In other words, we have that the distance between
the measurements is at most the maximum distance that the object can travel in the
given time span. Hence, pq is consistent with pc .

Analogously, if the given inequality does not hold, the distance between the two
measurements is larger than what the object can cover when traveling at maximum
speed: they are not consistent.

To show that no other measurement in P can be consistent, observe that the de�ni-
tion of the AWVD gives us that d(pq , pc ) − rc ≤ d(pq , pk ) − rk for all pk ∈ P ⧵ {pc}.
Subtracting rq from both sides, we get that d(pq , pc ) − rc − rq = sc ≤ d(pq , pk ) − rk − rq .
Thus, if sc > −2rq , we must also have that d(pk , pc ) > rk − rq . Thus, all measurements
pk are not consistent with measurement pq . □

We can construct the AWVD for a set ofm measurements and preprocess this AWVD
for point-location queries in O(m logm) time [48, 52]. The resulting data structure
uses O(m) space, and can answer point-location queries in O(logm) time. Since a
single consistency check takes constant time, we can also answer consistency queries
in O(logm) time.

▶ 2.2.2 Supporting insertions

Next, we describe how to extend our consistency data structure to support insertions.
Testing whether a measurement is consistent with any previous measurement of a
subsequence of T is a decomposable search problem. Thus, we use the approach
by Bentley and Saxe [11] to turn our consistency data structure into an e�cient
insertion-only data structure.

For a set ofm measurements, we maintainO(logm) instances of our static data struc-
ture 1,… ,O(logm) (see Fig. 2.3). Every measurement is in one of these O(logm)
data structures. Data structure i has size 2i . On insertion, we create a new 1 with
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20 21 22 · · ·

20 21 22 · · ·

20 21 22 · · ·

20 21 22 · · ·

Figure 2.3 Inserting elements using Bentley-Saxe. The colored measurements in
the trajectory are the elements in the insertion-only consistency data
structure.

the inserted measurement. When we get two data structures of same size 2i , we
remove both and replace them by a single data structure of size 2i+1. We repeat this
process until all data structures have a unique size. To answer a query we simply
query all O(logm) data structures.

The above construction together with the consistency query structure gives
O(log2m) time for a query and O(log2m) amortized time for an insertion. These
bounds can be made worst case as well [99]. We summarize our results in the
following lemma.

2.2.2 Lemma. There is a consistency data structure  that can store a subset P of m
measurements from T and can answer consistency queries for query points q at time
t ≥ t̂ , in O(log2m) time, and supports insertions in O(log2m) time. Here, t̂ denotes the
time of the last measurement currently in P . The data structure uses O(m) space.

▶ 2.2.3 Maximum subsequence queries

We now use the data structure from Lemma 2.2.2 to build a dynamic data structure
that, for a new query measurement q = pq can determine the length �q of a longest
consistent subsequence Tq ⊆ P ending at q. We store the measurements in p ∈ P in
the leaves of a balanced binary tree  , ordered by the length �p of the longest consis-
tent subsequence ending in p. Each internal node v with right child r corresponds
to a subset Pv ⊆ P , and stores the minimum �p , with p ∈ Pr , occurring in its right
subtree, and a consistency data structure v built on the set Pr (see Fig. 2.4).
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2 Maximum Physically Consistent Trajectories

Given a query measurement q, we �nd a measurement u ∈ P consistent with q with
maximum length �u . It then follows that a maximum-length consistent subsequence
Tq ending in q has length �u + 1, and that u is the predecessor of q in Tq . To �nd u
we start at the root v and query v to test whether any measurement in the right
subtree is consistent with q. If so, we repeat the process in the right child. If not,
we move to the left child. This way we get the longest-path measurement that is
consistent with our query measurement q.

To insert a new measurement q, we �nd the leaf corresponding to length �q and
insert q in the appropriate associated data structures of all ancestors along this root
to leaf path. To keep the tree  balanced, we implement it using a BB[�] tree [14,
95]. When a subtree rooted at a node v becomes unbalanced, we rebuild it and its
associated data structures from scratch.

The lemma below proves that this data structure can be implemented e�ciently.

2.2.3 Lemma. There is a data structure  that can store a subset P of m measurements
from T and that can �nd, given a query measurement q at time tq ≥ t̂ , (the length
�q of) a longest consistent subtrajectory Tq ending in q in O(log3m) time. The data
structure uses O(m logm) space and supports insertions in O(log3m) amortized time.
Here, t̂ denotes the time of the last measurement currently in P .

Proof. To answer a query we follow a path from the root down to a leaf, and query
the associated data structure at each node. Each such query takes O(log2m) time
(Lemma 2.2.2), and thus the total query time is O(log3m). Since each measurement
is stored in the associated data structure of O(logm) nodes, the total space use is
O(m logm), and the total direct cost of an insertion isO(log3m). To prove the lemma,
we need to bound the costs due to rebalancing operations.

short path long path

Figure 2.4 Data structure for maximum subsequence queries.
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2.2 The speed-bounded model in 2D

Assume an insertion of a node triggers a rebalance operation for a subtree v of mv
elements, and C(mv) the total construction time: the time that it takes to acquire all
elements in the subtree and construct a perfectly balanced tree (with its associated
data structures). By the BB[�] de�nition, (1−2�)mv−2 insertions must have occurred
in v to trigger the rebalance operation. This implies that the amortized rebalance
time per insertion is C(mv )

(1−2�)mv−2 .

Consider the tree after rebalancing. At height ℎ > 0 we have intermediate nodes,
each requiring a data structure  constructed on O(2ℎ) elements. There are
O(mv/2ℎ) nodes at height ℎ. In total, to construct nodes with height ℎ, we require
O((mv/2ℎ)2ℎ log2(2ℎ)) = O(mvℎ2) time. Let H = O(logmv) be the height of the
entire subtree; summing up the construction time of all heights in the subtree gives
the total construction time C(mv) = ∑H

ℎ=1 O(mvℎ2) = O(mvH 3) = O(mv log3mv).
Amortized, this construction cost is O(log3m). Hence the entire insertion time is
also O(log3m).2 □

▶ 2.2.4 Maximum consistent subtrajectories

To compute a maximum-length consistent subtrajectory of T , we process all mea-
surements in chronological order. For each we simply query the data structure from
Lemma 2.2.3, and then insert it. This results in an O(n log3 n)-time algorithm. Next,
we show that we can improve this to O(n log n log2 k), with k the number of outliers.

2.2.4 Lemma. For two consistent measurements pi and pj with i < j, the reachable region
for pj for all t > tj is contained in the reachable region of pi .

Proof. In the 3-dimensional space (the third being time), the reachable region of each
measurement is an upward cone starting at the measurement, with slope v+. As pj
is consistent with pi , the former lies inside the latter’s cone. As their direction and
slope are the same, the cone for pj is thus contained in the cone for pi .

We can equally see this in 2-dimensional space. Consider an arbitrary time t > tj . A
hypothetical measurement p∗ at time t consistent with pj must be within distance
v+(t − tj ). Since pi and pj are consistent, we know that their distance is at most
v+(tj − ti). Through triangle inequality, we thus know that the distance between pi
and p∗ is at most v+(t − tj ) + v+(tj − ti) = v+(t − ti). This readily implies that p∗ is
consistent with pi as well. □

2Note that in our improved bound in Theorem 2.2.5 the total reconstruction time, C(mv ), is simply
O(mv logmv log2 k), as rebuilding the associated data structure of a node takes O(mv log2 k) time rather
than O(mv log2mv ) time.
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From the de�nition of the AWVD, we know that if a disk c1 is strictly inside another
disk c2, then c1 will have an empty associated cell in the diagram. Combining this
with Lemma 2.2.4 shows that, any subset of m ≥ 1 measurements thus produces a
diagram with at mostmin(m, k) cells. Hence, a static consistency data structure uses
only O(min(m, k)) space, and querying it requires O(log(min(m, k))) time. When we
insert a new measurement pj into our insertion-only data structure, we �rst query
the data structure to decide whether pj is consistent with some earlier measure pi .
If so, we simply discard pj rather than inserting it; even when inserting additional
points, the cell of pi will contain that of pj . The query and insertion time therefore
both become O(log2min(m, k)).

It now follows that the associated data structure v of every node in v ∈  has
size only O(min(nv , k)), thus querying it requires only O(log2 k) time, and thus
O(log n log2 k) time in total. Similarly, inserting a new measurement takes amor-
tized O(log n log2 k) time.

2.2.5 Theorem. Given a 2D trajectory T with n measurements, of which k are outliers, we
can compute a maximum consistent subsequence of T for the speed-bounded model in
O(n log n log2 k) time.

▶ 2.3 The acceleration-bounded model

We now consider 1D trajectories where each measurement is of the form pi = (xi , ti).
We assume a physics model where both velocity and acceleration are restricted.
The velocity must lie in the range [v−, v+] for constants v−, v+. In addition, the
acceleration must lie in the range [a−, a+] for constants a−, a+. For simplicity, we
assume a− < 0 and refer to deceleration as acceleration with a negative value.

For this acceleration-bounded model, we can still test in constant time if two points
pi and pj are consistent: we can check if the distance between the two measurements
can be traveled using velocities that lie in the range [v−, v+]. If there exists a velocity
at pi such that the required velocity at pj can be reached by accelerating, then the pair
⟨pi , pj⟩ is consistent. Recall, however, that a physics model that limits acceleration
is not concatenable: there may be a triplet of measurements ⟨p1, p2, p3⟩ for which
the measurements are pairwise consistent, but the entire sequence is not (see Fig. 2.1
(left) for an example). Hence, we cannot use the algorithm described in Section 2.2.

In Section 2.3.1 we describe a dynamic programming algorithm which explicitly
computes the velocities achievable at every measurement and, using these veloci-
ties, �nds the length of a maximum-length consistent subtrajectory. In Section 2.3.2
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we show how to retrieve the actual consistent trajectory. The running time of the
dynamic program and of the retrieval procedure depends on the maximal fragmen-
tation of the velocity intervals which can arise during the DP. In Section 2.3.3 we
�rst argue that this number can be as large as Ω(n) for a linear number of sets of
velocities. It is easy to see that the maximal fragmentation is at most O(2n), however,
it is unlikely that this bound would ever be reached in practice. In the following we
consider an acceleration-bounded model with some slack in the acceleration bounds,
modeling real-world imprecision. This slack allows us to prove a linear upper bound
for the fragmentation of any set of velocities. Finally, in Section 2.3.4 we explain
how to extend the acceleration-bounded model to dimensions greater than one.

▶ 2.3.1 Computing the maximum length of a physically consis-
tent subtrajectory

A subtrajectory T is generally not concatenable with another subtrajectory T ′ under
the acceleration-bounded model, but is conditionally concatenable with T ′ when
the velocities at measurements that they have in common are the same. Intuitively,
this follows from the fact that a bound on the acceleration prevents (discontinuous)
jumps in velocity. Based on this, we observe the following:

2.3.1 Observation. A (sub)trajectory S = ⟨p1,… , pm⟩ is consistent in the acceleration-
bounded model if and only if there are velocities ⟨v1,… , vm⟩ such that for all i ∈
{1,… , m − 1} we have that C(pi , pi+1 ∣ vi = vi , vi+1 = vi+1).

Observation 2.3.1 implies that our problem has an optimal substructure. Suppose we
have found all subtrajectories of some length � that are consistent. If we now want
to know whether a subtrajectory of length � + 1 exists, we have to determine only
whether there is a measurement p′ such that the observation holds for one of the
subtrajectories when we add p′ at the end. That is, there should be witness paths
for both the subtrajectory and the trajectory between the last measurement of the
subtrajectory and p′, that have a common velocity at the last measurement of the
subtrajectory. Hence, we can apply the dynamic programming paradigm to �nd the
optimal length for which a subtrajectory is physically consistent.

More formally, for each measurement pi and each possible length � ∈ {1,… , n},
we maintain the set of velocities (� , i) such that for every velocity v ∈ (� , i), a
subsequence S = ⟨… , pi⟩ ending at pi of length � exists that is physically consistent
and has velocity v at pi , so that C(S ∣ vi = v). Let � ∗ be the maximum value, such
that a measurement pi exists for which some set (� ∗, i) is non-empty. It follows that
the maximum consistent subtrajectory of T has length � ∗.
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Given the set of possible velocities (� , ℎ) at pℎ, we can then determine whether a
consistent subsequence of length � + 1 exists that ends at a later measurement pi by
using the conditional concatenability property: if we �nd velocities vℎ ∈ (� , ℎ) and
v ∈ [v−, v+] such that C(pℎ, pi ∣ vℎ = vℎ ∧ vi = v), then a consistent subsequence
⟨… , pℎ, pi⟩ of length � + 1 exists. Hence, we obtain the following recurrence for
(� , i).

(� , i) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

∅, i < �
{v ∣ ∃ℎ ∶ C(pℎ, pi ∣ vi = v)}, � = 2
{v ∣ ∃ℎ ∶ C (pℎ, pi ∣ vℎ ∈ (� − 1, ℎ), vi = v)} , � > 2

Moreover, we prove in Lemma 2.3.2 that when the entity directly travels from pi to
pj , and leaves pi with velocity vi , the possible velocities with which it can arrive at
pj form a connected interval. Thus, the sets (� , i) are actually sets of intervals.

2.3.2 Lemma. Let pi and pj be measurements with ti < tj , and let v1 ≤ v ≤ v2 be velocities.
If C(pi , pj ∣ vj = v1) and C(pi , pj ∣ vj = v2), then we also have C(pi , pj ∣ vj = v).

Proof. C(pi , pj ∣ vj = v1) and C(pi , pj ∣ vj = v2) imply that there are two witnesses:
paths �1(t) and �2(t) between pi and pj that travel Δx = xj − xi distance, obey the
physics model and have velocity v1 respectively v2 at pj . Let a1(t) and a2(t) denote
the acceleration functions describing these paths.

The traveled distance Δx between ti and tj using any acceleration function a′(t) and
velocity v′ at pj is given by

Δx = (tj − ti)(v
′ − ∫

tj

ti
a′(t)dt) + ∫

tj

ti
∫

t

ti
a′(t′)dt′dt (2.1)

Any new path � ∗ which we create using convex combinations v = �v1 + (1 − �)v2
and a(t) = �a1(t) + (1 − �)a2(t) for � ∈ [0, 1], travels exactly the same distance by
linearity of the integrals. Since � ∗ was created via convex combinations, we also
know that it satis�es the velocity and acceleration constraints, since its velocity and
acceleration always lie between the original velocities and accelerations at any time
t in [ti , tj]. Hence, � ∗ is a witness that implies C(pi , pj ∣ vj = v1 + (1 − �)v2) for any
� ∈ [0, 1]. □

Lemma 2.3.3 below shows how to propagate a single speed interval from pi to pj in
constant time. The problem is clearly computable, and has O(1) input complexity:
two measurements and a single interval of velocities. As such, the lemma readily
follows. The complete proof of Lemma 2.3.3, including a derivation of the precise
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ℓ

𝑖

Figure 2.5 The order for computing (� , i) (red arrow and boxes). Blue boxes and
arrows denote dependencies of the cells.

propagation function, requires some lengthy mathematical derivations, which we
relegate to Section 2.6 as to not break the �ow of the chapter.

2.3.3 Lemma. Let pi and pj be two measurements with i < j, and let I be an interval of
velocities at pi . The interval I ′ = {v ∣ C(pi , pj ∣ vi ∈ I ∧vj = v)} of achievable velocities
can be computed in O(1) time.

Let now �(� , i) denote the number of intervals in (� , i). We refer to �(� , i) as the
fragmentation of (� , i). Let �max be the maximum fragmentation over all � and i.
Using the recurrence for  de�ned earlier, we can compute all values (� , i) using
dynamic programming. We compute the (� , i) values by increasing distance k′ from
the diagonal, and stop once there are no more reachable speeds. That is, we start
by computing all (i, i), for increasing i. Observe that these values correspond to
having k′ = 0 outliers. Once we have all sets (i−k′, i) for some k′, we continue with
the (i − (k′ + 1), i) sets (see Fig. 2.5). Let k be the number of outliers in a maximum-
length consistent subtrajectory, then all sets of speed intervals (i − (k + 1), i) will
be empty. Hence, the algorithm �nishes after at most k + 1 “rounds”. To compute
a single entry (i − k′, i) we have to propagate the speed intervals from at most
k other entries (since all sets (� , i) with � > i are also empty). It follows that in
total, this procedure takes O(nk2 ⋅P ) time, where P is the time required to propagate
all speed intervals in some set (� ′, i) to (� , j). Every set (� , i) contains at most
�max intervals, which we keep in sorted order. Propagating a single interval takes
constant time (see Lemma 2.3.3), and merging it with the intervals already in (� , i)
then takes O(log �max) time.

2.3.4 Theorem. Let T be a 1D trajectory with n measurements. Under the acceleration-
bounded model, the maximum length of a physically consistent subtrajectory of T can
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be computed in O(nk2�max log �max) time using O(nk�max) space, where k denotes the
number of outliers and �max the maximum fragmentation.

▶ 2.3.2 Retrieving the physically consistent subtrajectory

The dynamic program computes the length � ∗ of a maximum consistent subsequence.
Generally, keeping track of the choices made in a dynamic program allows easy re-
covery of the actual answer, that is, the actual subsequence. However, we need
slightly more, as we join overlapping intervals and thus no longer store which pre-
vious measurements led to parts of that interval – generally there may not be only
one measurement for an interval.

We could opt for storing a minimum cover of the interval in a cell instead, which
we can easily obtain while computing the union. However, this increases memory
requirements. Alternatively, we can also use “backpropagation”. That is, we extract
S itself using the speed intervals in the sets (� ∗, i). We take an interval I ∈ (� ∗, i)
and use an inverse propagation to �nd a measurement pℎ such that (� ∗ − 1, ℎ) has a
nonempty interval of speeds at which the interval of (� ∗, i) is reachable. We repeat
this backpropagation, until the start of the subsequence is reached.

To do this e�ciently, we leverage that the intervals in (� ∗−1, ℎ) are sorted by the dy-
namic program already. Thus, we use backpropagation in O(1) time by Lemma 2.3.3
to �nd the velocity interval I ′ at pℎ. We then �nd whether one of the intervals in
(� ∗ − 1, ℎ) intersects I ′ using binary search in O(log �max) time. Thus, computing
the subtrajectory after the dynamic program takes O((n − k) log �max) time.

▶ 2.3.3 Bounding the maximum fragmentation

The running time of the dynamic program described in Section 2.3.1 depends on the
maximum fragmentation �max, that is, the maximum number of intervals in any set
of velocities (� , i). Recall that (� , i) may contain more than one velocity interval
(see Fig. 2.1 (right)). We argue in the following lemma that the fragmentation of a
linear number of sets (� , i) may even be Ω(n).

2.3.5 Lemma. There is a 1D trajectory T with n measurements such that Ω(n) sets of
velocities (� , i) have fragmentation Ω(n).

Proof. We construct a trajectory T = ⟨p1,… , pn/2, q1,… , qn/2⟩ such that for param-
eters v− = 0 and a = a+ = −a− = 1, we get Ω(n) speed intervals at each point pj ,
j > n/2.

34



2.3 The acceleration-bounded model

Let Δ > 0 be some real number. We place the points at pi = (−4i ⋅ Δ2, 0), for i ∈
{1,… , n/2}, and qj = (0,Δ), for j ∈ {1,… , n/2} (see Fig. 2.6). We can ensure that all
points have unique time stamps by o�setting them by some arbitrarily small time.
This construction ensures that a consistent subtrajectory cannot use two points pi
and pj simultaneously. We now claim that every point pi together with point q = q1
generates a consistent subtrajectory ⟨pi , q⟩ for which the possible speeds at q are
given by the interval Ii = [vi − Δ, vi + Δ] with vi = 4iΔ. Observe that these intervals
are all pairwise disjoint. Since the other points qj are arbitrarily close to q, the same
argument shows that we get Ω(n) speed intervals at those points.

Since a = 1 and the time between pi and q is short, the velocity that the entity has
at pi must be similar to its velocity at q. If the speed at pi di�ers too much from the
velocity at q, then the entity cannot actually reach q: it will either travel too little or
too far. Next, we formalize this argument.

To derive a contradiction, assume that there is a consistent subtrajectory in which
an entity travels from pj , with j ≠ i, to q and arrives at q with speed v ∈ Ii . Since
v− = 0, the distance that any entity can and has to travel to go from pj to q is exactly
4jΔ2. The entity covers this in Δ time, and hence its average speed must be 4jΔ.
Since a = 1, it then follows that at any time in the time interval [0,Δ] its speed lies
in the range [4jΔ − Δ, 4jΔ + Δ].

The entity achieves speed v ∈ Ii = [vi−Δ, vi+Δ] at q. So, we have 4jΔ−Δ ≤ v ≤ vi+Δ.
Using that vi = 4iΔ we get j ≤ i + 1

2 . As i and j are natural numbers, we get j ≤ i.
Symmetrically, we have vi − Δ ≤ v ≤ 4jΔ + Δ, and get i ≤ j. Combining these results
gives i = j: a contradiction.

Note that in this construction all consistent subtrajectories have length two. We can
easily achieve length � > 2 by pre�xing the construction with a common trajectory
of length � − 2; this pre�x provides su�cient time between its last point and the
points pi , to allow the entity to achieve all speeds vi at pi . □

It is relatively easy to see that the fragmentation �(� , i) is at most O(2i), since any

𝑞𝑛/2

𝑝2𝑝𝑛/2
Δ

𝑝1

𝑞 = 𝑞1

4Δ2
. . .

𝑡

𝑥

Figure 2.6 Instance with Ω(n) disjoint speed intervals at c.
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I(`, i) I(` + 1, j)

⇒

Figure 2.7 Propagation using the slacked model, from pi to pj . Green indicates
standard propagation and red slacked propagation. The result of merg-
ing the intervals is indicated in blue.

�xed subsequence of ⟨… , pi⟩ yields only a single interval (refer to Lemma 2.3.2). To
realize such a large number of intervals, they have to be packed ever more closely
to the minimum or maximum allowed speed threshold. It seems unlikely that this
behavior will appear in realistic settings, and hence we expect that the fragmentation
is much smaller in practice. Below, we hence describe an acceleration-bounded
model which introduces some slack in the parameters a− and a+, which models
real-world imprecision.

An acceleration model with slack In a real-world setting we can assume that
there is some error in the parameters a− and a+ which bound the acceleration. To
model this error we introduce a slack parameter " > 0 for the acceleration bounds.
Speci�cally, let Δa = a+ −a− denote the di�erence between minimum and maximum
acceleration. For our slacked bounds we add "

2Δa to a+ and − "2Δa to a−. During the
dynamic program, we �rst propagate intervals as usual, using the actual bounds a−
and a+. Then we also propagate using the slacked bounds a++ "2Δa and a−− "2Δa. This
is illustrated in Fig. 2.7: the green intervals are the result of standard propagation
and the red intervals are the result of slacked propagation. If two slacked intervals
intersect, then we merge the corresponding standard intervals and use the merged
interval for future propagation (in Fig. 2.7 the blue interval is the result of the merge).

In the following we give an upper bound on the size of any set of intervals (� , i) as
a function of ". To do so, we estimate the number of disjoint intervals that can occur
after propagation. First of all, note that at both the minimum and the maximum
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velocity, standard intervals can degenerate to a point. Slacked intervals, however,
always have non-zero size. Consider now an interval [v,w] which slack-propagates
to a slacked interval [vs ,ws] of minimum size. This implies that in fact v = w,
that is, the input interval degenerates to a point. We want to determine the mini-
mum separation between v and any other input interval whose slacked propagation
touches [vs ,ws]. To this end, we compute the largest input velocity vℎi which slack-
propagates to vs . The separation is now given by |v − vℎi |. We can now compute
a coarse upper bound for the number of intervals by dividing the complete input
range ΔaΔt (see Section 2.6) by the separation:

�prop =
ΔaΔt

|v − vℎi |

Solving for �prop results in

�prop =

⎢
⎢
⎢
⎢
⎢
⎣

√
2

2"
√
1
" + 1(

√
2
√
2
√
1
" + 1 − 1 − 1)

⎥
⎥
⎥
⎥
⎥
⎦

= O("−1/4),

which proves Theorem 2.3.6 below.

2.3.6 Theorem. Let T be a 1D trajectory with n measurements. Under the slacked
acceleration-bounded model, the maximum fragmentation �max for any set of velocities
(� , i) is O(n"−1/4).

▶ 2.3.4 Extending to higher dimensions
The algorithm described above works for one-dimensional data. This may be realistic
in some scenarios: for example, if we track contestants in a race along a prede�ned
route, the known route de�nes an approximately one-dimensional space. However,
in most cases, movement is in two or even three dimensions. There are various ways
of generalizing the acceleration-bounded model.

There are two standard 2D “interpretations” of our algorithm: either we use the
Euclidean distance between the points, or we consider the Euclidean length of the
path through all intermediate measurements. In our view, the former is more suitable
as we aim to remove outliers which could greatly a�ect distances in the latter.

Yet, assuming a linear motion between two measurements is unrealistic as well.
Thus, we use the Euclidean distance between measurements only as a lower bound;
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the upper bound is the Euclidean distance multiplied by a constant �. Note that an
upper bound can also be derived from the current speed and acceleration bounds,
but we use our simpler model in the experiments below. To propagate a velocity
interval, we use the distance lower bound to determine the minimum velocity at the
next measurement, and the upper bound for the maximum velocity.

Of course, the models above assume that the tracked object may turn arbitrarily fast.
E�ectively, this means that positive or negative velocity becomes meaningless as we
can instantaneously rotate from one to the other. We thus set the minimal velocity
to zero. However, the direction of movement cannot be changed arbitrarily fast in
reality, especially at higher speeds. Though we can easily de�ne various physics
models to address this issue, this would require more complex algorithms: we need
to know more than just speed for the propagation and thus must generalize from
intervals to higher-dimensional regions.

▶ 2.4 Experiments
We introduced various algorithms for computing maximum consistent subsequences
of a trajectory, according to di�erent physics models, speci�cally a speed-bounded
and an acceleration-bounded model. The algorithms for the former are simpler and
faster than for the latter. However, the acceleration-bounded model is more accurate.
Through a series of experiments, we investigate the quality of our algorithms and
the trade-o� between them.

▶ 2.4.1 Algorithms

We use the following seven algorithms in our experiments. The �rst two refer to our
optimal output-senstive algorithms described above, their running time depending
on the number of outliers. Additionally, we use three comparison algorithms to
investigate the quality of our methods with respect to simpler algorithms. These
algorithms are two variants of an incremental greedy algorithm (under both physics
models) and a local greedy method (under the speed-bounded model). We imple-
mented all algorithms in C++; these implementations are open source and available
as part of the MoveTK library3.

[OSB] Optimal Speed-Bounded. This algorithm implements the method of Sec-
tion 2.1, under the speed-bounded model.

3https://movetk.win.tue.nl/
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[OAB] Optimal Acceleration-Bounded. This algorithm implements the method
of Section 2.3. We use the 2D generalization, using � = 1.5: the upper bound
on the traveled distance is 1.5 times the Euclidean distance between two mea-
surements.

[GSB/GAB] Greedy Speed/Acceleration-Bounded. We greedily build a consis-
tent subsequence by testing whether the next considered measurement is con-
sistent with the last measurement in the current subsequence under the speed-
bounded model (GSB) or acceleration-bounded model (GAB). For GAB, we use
the propagation technique of OAB to maintain an interval of speeds – the next
measurement is consistent if the interval after propagation is nonempty. These
methods run in O(n) time.

[SGSB/SGAB] Smart Greedy Speed/Acceleration-Bounded. We keep track of
multiple subsequences simultaneously. We append the next measurement to
each subsequence ending in a consistent measurement; if no such subsequence
exists, the measurement starts a new subsequence. The longest subsequence
is returned. These methods run in O(n2) time.

[LGSB] Local Greedy Speed-Bounded. Zheng [139] points to the only other
method that uses a speed bound for outlier detection. However, neither sur-
vey nor the references therein give a detailed description of this heuristic
method. We hence compare against our interpretation of the sketch provided
by Zheng [139]. We construct a graph with a vertex per measurement. Two
vertices are connected if their measurements are successive in the original tra-
jectory and they are consistent according to the speed bound. A measurement
is added to the output, if and only if its vertex is in a connected component
of a user-speci�ed size; we set this value to 3 in our experiments. Note that
this local heuristic does not guarantee that the complete output is consistent
according to the speed bound. This method runs in O(n) time.

▶ 2.4.2 Datasets
We use three real-world datasets in our experiments. They are based on GPS mea-
surements in di�erent modes of transport, at di�erent locations and di�erent times.

[MB] Mountain-bike trips. This dataset consists of 1 214 trajectories of mountain-
bike trips of a single cyclist in several European countries from 2012 to 2019.

[HR] The Hague-Rotterdam. This dataset provided by HERE4 consists of 5 000
4https://www.here.com/
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Table 2.1 Summary of the complexities and speeds of trajectories per dataset.
The final columns list the default model parameters used throughout
the experiment. Speeds are in km/h, accelerations in m/s2

trajectories complexity speed model parameters
mean max. stddev mean stddev v+ a− a+

MB 1 214 3 377.1 22 426 2 643.4 18.8 10.9 35.0 −3.24 1.62
HR 5 000 424.9 8 925 545.6 62.3 43.0 125.0 −10.00 10.00
LA 78 658 304.4 38 719 1 082.0 55.8 1 557.7 129.6 −10.00 10.00

trajectories of cars and trucks in the region of The Hague-Rotterdam (the
Netherlands), on a single day in January 2019.

[LA] Los Angeles. This dataset provided by HERE4 consists of 78 658 trajectories
of cars and trucks in the metropolitan area of Los Angeles, CA (USA), on a
single day in September 2018.

All trajectories in the datasets have at least 10 measurements. General statistics
of these datasets are provided in Table 2.1, along with our parameter settings per
dataset, which are based on the nature and location of the general dataset; note that
v− is always set to 0 to allow the tracked object to remain stationary.

▶ 2.4.3 Comparing algorithms and models
In our analysis of the results, we look primarily at relative lengths, that is, the ratio
of the number of measurements with respect to the input size. Thus, a result that
�lters k outliers and keeps n − k measurements has a relative length of n−k

n ∈ [0, 1].
In the remainder, we simply use length to refer to relative length. We start, however,
with a brief consideration of e�ciency.

E�iciency Table 2.2 provides performance statistics per algorithm and dataset in
terms of running time, as performed on a HP Elitedesk 800 g2 TWR (Intel Core i5-
6500 CPU at 3.20GHz; 16 GB of RAM; 64-bit Windows 10 Enterprise). Overall, the
trend between the algorithms per dataset is roughly the same. We see di�erences
between datasets – speci�cally MB with respect to LA and HR – which are simply a
result of the increased trajectory complexity within the MB dataset. We see that our
OSB is competitive with GSB and even considerably faster than SGSB. As we may
expect from the theoretical analysis, OAB is very slow in comparison to the other
algorithms, yet the greedy alternatives are comparatively fast.
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The main questions to investigate are thus two-fold: (1) is the speed-bounded model
able to achieve reasonable results, compared to the acceleration-bounded model? (2)
how do the faster greedy approaches compare in terms of quality with respect to
the optimal algorithms? We �rst investigate the latter before turning to the former.

Speed-bounded model We have three algorithms that strictly adhere to the
speed-bounded model: OSB, GSB and SGSB (see left two columns of Fig. 2.8). As
OSB computes optimal results, GSB and SGSB cannot result in longer subsequences.
For the MB dataset, we observe that GSB and SGSB perform very similarly in terms
of the number of outliers detected. For the HR and LA datasets we see larger dif-
ferences, especially for GSB. Table 2.3 shows the ratio between OSB and GSB/SGSB
according to di�erent brackets of OSB. These numbers indicate that a vast majority
of trajectories has less than 10% outliers, and that in such cases the results are on
average not much di�erent. The more outliers are present, the more pronounced
the di�erence between our optimal result and the greedy results becomes.

OSB is thus more reliable, as it gives optimal results. When there are few outliers,
this algorithm is close to linear and thus we may expect less of a performance loss
compared to the simpler methods. Indeed, we see that in terms of running time, OSB
(0.48 ms on average per trajectory) performs similarly as the GSB (0.24 ms) and is
actually faster than SGSB (5.35 ms). When there are many outliers, the extra time
spent may be well worth the e�ort to obtain the maximum consistent subsequence.

Acceleration-bounded model Referring to Fig. 2.8 and Table 2.3, we observe
the same patterns between OAB and GAB/SGAB as above for the speed-bounded
variants, but the di�erences are more pronounced. However, it must be noted that
the computation times behave much di�erently. Although the number of intervals
in a single cell never exceeds 2 for almost all trajectories (with a maximum of 4),
the computation time of OAB (224.8 ms on average per trajectory) is signi�cantly
higher than GAB (0.41 ms) and SGSB (2.86 ms). Thus, OAB seems practical mostly
for cases where processing speed is not a primary concern: for example, because
much longer o�ine computations are expected afterwards, or because the trajectory
lengths are limited.

Local strategy The LGSB method can also be compared to OSB. However, because
this method does not ensure that the entire subsequence adheres to the physics
model, it may be the case that LGSB yields a longer sequence than OSB. This is quite
structurally the case (see third column in Fig. 2.8), with more pronounced e�ects
for a large number of outliers (see Table 2.3, LGSB row). This indicates that the
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Figure 2.8 Comparing the various algorithms. Each axis represents the (relative) length. Top row: MB data; middle
row: HR data; bo�om row: LA data. First three columns: comparison of OSB with GSB, SGSB and LGSB;
last two columns: comparison of OAB with GAB and SGAB.
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Table 2.2 Mean, 99 percentile, and maximum running time in milliseconds (ms), unless indicated otherwise. Running
times are shown per dataset, and over all datasets. Note that the imbalance in dataset size skews the mean
over all datasets strongly to the mean of the LA dataset.

MB HR LA All datasets
mean 99% max mean 99% max mean 99% max mean 99% max

OSB 5.32 31.25 203.12 1.01 15.62 62.50 0.37 15.62 359.38 0.48 15.62 359.38
GSB 2.37 15.62 15.62 0.32 15.62 15.62 0.20 15.62 31.25 0.24 15.62 31.25
SGSB 210.26 1 812.50 7 750.00 4.15 78.12 468.75 2.27 15.62 8 593.75 5.35 78.12 8 593.75
LGSB 2.59 15.62 31.25 0.30 15.62 15.62 0.21 15.62 31.25 0.25 15.62 31.25
OAB 7 194.19 89.1s 1 074.6s 71.03 1 640.62 14.7s 127.04 171.88 1 754.6s 224.83 1 156.25 1 754.6s
GAB 4.22 15.62 31.25 0.45 15.62 15.62 0.35 15.62 46.88 0.41 15.62 46.88
SGAB 95.37 921.88 2 656.25 2.35 31.25 234.38 1.47 15.62 4 843.75 2.86 46.88 4 843.75
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Table 2.3 Mean and standard deviation of the ratio between greedy strategies and optimal strategies, split by bins of
the optimal length (“length” row). The “size” row indicates the percentage of trajectories in the correspond-
ing length bin. GSB, SGSB and LGSB are compared to OSB; GAB and SGAB to OAB.

MB HR LA

Length 0.0 - 0.6 0.6 - 0.8 0.8 - 0.9 0.9 - 1.0 0.0 - 0.6 0.6 - 0.8 0.8 - 0.9 0.9 - 1.0 0.0 - 0.6 0.6 - 0.8 0.8 - 0.9 0.9 - 1.0

Size 0.07% 0.20% 0.57% 99.17% 3.14% 4.58% 5.96% 86.32% 0.33% 2.06% 7.00% 90.61%

GSB 0.87 ±
0.14

0.97 ±
0.01

0.98 ±
0.01

1.00 ±
0.01

0.83 ±
0.20

0.95 ±
0.07

0.98 ±
0.03

1.00 ±
0.01

0.87 ±
0.17

0.93 ±
0.11

0.97 ±
0.05

1.00 ±
0.01

SGSB 0.95 ±
0.06

0.97 ±
0.01

0.98 ±
0.01

1.00 ±
0.01

0.93 ±
0.07

0.97 ±
0.04

0.99 ±
0.02

1.00 ±
0.01

0.94 ±
0.08

0.96 ±
0.05

0.98 ±
0.03

1.00 ±
0.01

LGSB 1.10 ±
0.20

1.08 ±
0.02

1.05 ±
0.01

1.01 ±
0.01

1.22 ±
0.28

1.11 ±
0.07

1.05 ±
0.03

1.00 ±
0.01

1.05 ±
0.48

1.04 ±
0.16

1.05 ±
0.05

1.00 ±
0.01

Size 0.07% 0.21% 0.70% 99.02% 3.14% 4.64% 5.94% 86.32% 0.33% 2.06% 7.33% 90.28%

GAB 0.98 ±
0.06

0.97 ±
0.01

0.98 ±
0.01

1.00 ±
0.01

0.83 ±
0.21

0.95 ±
0.07

0.98 ±
0.03

1.00 ±
0.01

0.87 ±
0.17

0.93 ±
0.11

0.97 ±
0.04

1.00 ±
0.01

SGAB 1.10 ±
0.27

0.97 ±
0.01

0.98 ±
0.01

1.00 ±
0.01

0.93 ±
0.08

0.97 ±
0.04

0.98 ±
0.02

1.00 ±
0.01

0.93 ±
0.09

0.96 ±
0.06

0.98 ±
0.03

1.00 ±
0.01
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Figure 2.9 Postprocessing to ensure a stricter physics model. Le� column: MB
data; middle column: HR data; right column: LA data. Top row:
comparison of LGSB→OSB with OSB; bo�om row: comparison of
OSB→OAB with OAB.

local strategy for determining outliers is not quite suitable for capturing the actual
constraints of the physics model.

We further investigate by postprocessing the results of LGSB by OSB (LGSB→OSB).
That is, we �nd the longest consistent subsequence of the LGSB result. If LGSB
would work perfectly, no outliers are �ltered in this postprocessing step. The more
outliers are found in the LGSB result, the more violations of the physics model
the LGSB result exhibits. The top row of Fig. 2.9 shows the results; note that the
vertical axis shows (relative) length of the �nal result with respect to the length
without postprocessing rather than (relative) length with respect to the input. We
see again that the results depend on the number of outliers in the trajectory, but
overall the di�erence may be quite pronounced: LGSB→OSB on average has 8.75%
less measurements than LGSB for cases with OSB length less than 0.9. The dataset
also has an e�ect: MB has less variance than the other two datasets.

Comparing models Since any acceleration-bounded path in our setting is also
a speed-bounded path, OSB cannot detect more outliers than OAB. That is, OSB
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results can be interpreted in the acceleration-bounded model and we can investigate
how well the model inherently meets the acceleration bound. We follow the same
approach in comparing LGSB to OSB above, postprocessing OSB results by OAB
(OSB→OAB) to determine how many outliers the OSB result still includes according
to the stricter model.

The bottom row of Fig. 2.9 shows the results. We clearly see that that only few
measurements are �ltered in the OAB postprocessing step for all three datasets. This
pattern is strongest in MB (0.09% classi�ed as outliers on average) and HR (0.04%
on average), even for more noisy trajectories. For the LA dataset, slightly more
measurements are �ltered (1.74% on average), but interestingly, this seems mostly
the case for the less noisy trajectories. These averages are based on the cases with
OAB length less than 0.9.

We may conclude that generally the speed-bounded model is capable of getting quite
realistic results even for the acceleration-bounded case, while avoiding the computa-
tional complexity. It is interesting that there seems to be slightly di�erent behaviors
between the two vehicle datasets: this raises the question whether di�erences in traf-
�c and driving behavior make acceleration more important in certain environments
than in others.

▶ 2.4.4 Sensitivity of model parameters
The physics models have a few parameters to capture what is considered feasible
movement through space and time. Here, we look at how sensitive the results are
to changing the parameter values. Following our observations from the previous
section, we focus on the speed-bounded model which e�ectively has one parameter:
the maximum speed v+, but we also brie�y investigate the e�ect of the detour factor
as well as the acceleration bound in OAB.

Procedure Our analysis for each parameter follows the same procedure: we vary
the parameter systematically from very restrictive values to very generous values,
running the optimal algorithm for the model under consideration on all data. We
then consider how the length of the result varies with this parameter.

To allow for summarizing the results, we operationalize the sensitivity � for a sin-
gle trajectory as the maximum of the di�erence between relative length and the
di�erence between two parameter values, over all (consecutive) pairs of parameter
values. We refer to the the two parameters that result in the maximum the sensitive
range � of that trajectory; we use the mean value of the range to compute summary
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statistics. The unit of � is thus the inverse of the unit of the parameter, but we gen-
erally omit this indication. Intuitively, the sensitivity is the “slope” when plotting
the relative length as a function of the parameter, which we refer to as a pro�le. We
illustrate these functions for each case using a selection of the trajectories for each
dataset, consider summary statistics over all trajectories, and investigate the relation
between the sensitivity and the sensitivity range.

Note that our choice of step size in varying the parameter inherently limits the
maximum sensitivity that can be obtained to the reciprocal of the step size. For
example, steps of 2 km/h in varying the speed bound v+, limits the sensitivity to
0.5, which would indicate jumping from length 0 to 1 between two values of v+. In
degenerate, constructed inputs this can indeed be realized – in fact, any arbitrarily
large sensitivity can achieved in theory. Consider a hypothetical trajectory of n
measurements along a straight line, sampled every second, with a distance between
consecutive measurements a distance c. The length of the optimal result for any
v+ < c is then 1/n, as no pair is consistent. However, the length for v+ ≥ c is 1. Thus,
for v+ = c and v+ = c − " we obtain a sensitivity of (1 − 1/n)/". For " approaching
zero, this thus tends to in�nity. Thus, we focus on the practical slope of these curves,
using some reasonable sampling of the domain of the parameter.

Speed bound We run our OSB algorithm, using a speed bound v+ from 2 km/h
to 70 km/h (MB), from 2 km/h to 160 km/h (HR and LA), in steps of 2 km/h. Fig. 2.10
provides a random sample of the resulting pro�les. As we can see, many trajectories
follow roughly the same pattern of a few steep increases at di�erent speed bounds.
We attribute this to di�erent behavior of the moving entity. For MB, this behavior
is fairly consistent, with a high sensitivity around 21.5 km/h (average sensitivity
range). For the other data sets, this is less clear, likely re�ecting di�erent driving
behavior due to local speed limits, which varies between trajectories but also within
a single trajectory.

Table 2.4 and Fig. 2.11 show summary statistics of the sensitivity for the three

Table 2.4 Sensitivity � of the speed bound v+.

dataset mean stddev min 99% max

MB 0.093 ± 0.049 0.013 0.243 0.368
HR 0.059 ± 0.042 0 0.244 0.418
LA 0.047 ± 0.033 0 0.180 0.458
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Figure 2.10 Profile of the speed bound: length of OSB as a function of v+, for 100
random trajectories for each dataset.
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Figure 2.11 Sensitivity � of the speed bound v+ per dataset.

datasets. We see that the sensitivity can be quite high in extreme cases: chang-
ing the parameter by 1 km/h may change the relative length by almost 0.46. On
average, the sensitivity is considerably lower. However, these results still show that
careful selection of the model parameters is important: too low values result in mea-
surements being identi�ed as outliers unjustly, but setting them too high might leave
too many outliers undetected.

With Fig. 2.12, we look at the relation between the sensitivity and the sensitivity
range. We roughly see the same pattern for each of the datasets: a number of trajecto-
ries have their relatively large sensitivity at low speeds, followed by another peak at
higher speeds. Potentially, this separates the trajectories into di�erent cases of actual
behavior: for example, cars drive at di�erent speeds in residential areas, provincial
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Figure 2.12 Sca�erplot relating the sensitivity � of v+ to (the mean of) the sensi-
tivity range �. Each circle represents a single trajectory.

roads and highways – if a trajectory falls mostly within one of the categories, one
may expect the largest sensitivity to occur at that speed. Under this hypothesis, we
see that we used quite reasonable bounds on the maximum speed, that is, values
slightly higher than the sensitivity range for the majority of the trajectories.

Acceleration bound The acceleration-bounded model has, as the name suggests,
parameters controlling the allowed acceleration and deceleration, a+ and a− respec-
tively. Due to the high computational cost of OAB, we restrict our attention to only
six values combinations of a+ and a− per dataset. The parameters we selected for
defaults re�ect fairly extreme capabilities: limits of racing cars (HR and LA) and
estimates of well-trained cyclists (MB). To investigate the e�ect of these parameters,
we thus reduce these parameter values, to re�ect settings of “normal” and “slow” be-
havior in terms of acceleration and deceleration. Speci�cally, we test the following
six combinations for each dataset: a+ ∈ {2, 4, 10} and a− ∈ {−2, −10} (HR and LA);
a+ ∈ {0.8, 1.2, 1.62} and a− ∈ {−2, −3.24} (MB). These values are expressed in m/s2.

We can now study sensitivity of the one parameter by �xing the other parameter
to each of its values. A sample of the resulting pro�les are shown in Fig. 2.13 and
Fig. 2.14. We immediately see that there is very little e�ect of the acceleration or
deceleration bound. As these are not a random sample, but actually the pro�les with
highest sensitivity, this tells us that these parameters are of little in�uence.

The summary statistics over all trajectories further con�rm this, as shown in Fig. 2.15.
Considering our chosen set of parameters, the sensitivity in a+ can be at most 0.5
(HR and LA) or 1.67 (MB); for a− these maxima are 0.125 (HR and LA) and 0.81 (MB).
What we observe, however, is that the actual sensitivity is signi�cantly lower – also
foregoing the need for further re�ning the tested parameter values. The strongest
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Figure 2.13 Profiles of the acceleration bound: length of OAB as a function of a+,
for the 100 most sensitive trajectories for each dataset.
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Figure 2.14 Profiles of the deceleration bound: length of OAB as a function of a−,
for the 100 most sensitive trajectories for each dataset.
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Figure 2.15 Sensitivity of a+ (le�) and a− (right) per dataset and value of the
other parameter. Note that the technical maximum sensitivity is
much higher, but this does not occur, hence the horizontal scale.

sensitivity observed is 0.066 for a+ and 0.01 for a−. This is, however, an “extreme”
with medians and averages laying much closer to zero.

One observation to be made is that the sensitivity for the maximum acceleration in
the MB seems to be slightly higher, though still much lower. This is possibly caused
by the nature of the data: a mountain biker may accelerate and decelerate more
strongly, compared to regular tra�c.

In Fig. 2.16, we show histograms for the sensitivity, split by the sensitivity range.
In these charts, we omit all trajectories which have sensitivity zero – the number
of remaining trajectories is indicated per dataset. Notably, we see that MB has
relatively few trajectories with zero sensitivity, whereas for the other datasets this
is the majority of trajectories. Again, we attribute this to the di�erent nature of MB.

In light of the little dependence on the acceleration bounds, we assume that the speed
bounds used by the acceleration model, in terms of sensitivity, behave similarly as
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Figure 2.16 Histogram relating sensitivity of a− (top two rows) and a+ (bo�om
three rows) to the sensitivity range. Trajectories with sensitivity 0
have been omi�ed. Note that the technical maximum sensitivity
would be significantly higher, but this does not occur – the horizontal
scale has been adjusted.

52



2.4 Experiments

MB

1.0 1.5 2.0
λ

0.0

0.5

1.0

Re
la
tiv

e
le
ng

th

100 tr

HR

1.0 1.5 2.0
λ

100 tr

LA

1.0 1.5 2.0
λ

100 tr

Figure 2.17 Profiles of the detour factor: length of OAB as a function of �, for the
100 most sensitive trajectories for each dataset.
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Figure 2.18 Sensitivity of � per dataset. Note that the technical maximum sensi-
tivity would be 10, but this does not occur – the horizontal scale has
been adjusted.

for the speed-bounded model. More importantly, these results further support our
conclusion from Section 2.4.3: the speed-bounded model provides realistic results
even for the acceleration-bounded model.

Detour factor The OAB algorithm uses a detour factor �, to determine how much
distance can at most be traveled between two measurements, which is � times the
Euclidean distance. In other experiments, this is �xed to 1.5, but here we investigate
how much this parameter may in�uence the results. We run the OAB algorithm
using � from 1 to 2, with increments of 0.1.
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Figure 2.19 Sca�erplot relating the sensitivity � of � to (the mean of) the sensi-
tivity range �. Each circle represents a single trajectory. Trajectories
with sensitivity 0 have been omi�ed. Note that the technical maxi-
mum sensitivity would be 10, but this does not occur – the vertical
scale has been adjusted.

Refer to Figures 2.17 and 2.18. We observe that detour factor � has very little in�u-
ence in general, with most trajectories not being in�uenced by � at all: 52 out of
1 214 for MB, 4 049 out of 5 000 for HR and 74 500 out of 78 658 for LA. The detour
factor is likely to help in cases where turns are made at relatively high speed: the
Euclidean distance might be too short to slow down and reach the next measurement
at the right time – but adding some slack gives enough space to travel between two
somewhat close points at high speed. Thus, this factor can be expected to be of less
in�uence for trajectories with high sampling frequency or without turns are rela-
tively high speed. This may explain why the mountain-bike dataset exhibits more
sensitivity than the other two vehicle datasets.

Fig. 2.19 relates the sensitivity to the sensitivity range. We observe that the highest
sensitivity is found in the sensitivity range [1, 1.1], and generally a trend of higher
sensitivity at lower values of �. This supports our suggestion above as to the cause
of the low sensitivity.

Most of our trajectories have relatively high sampling frequency and as such the
sensitivity is low. The question is how these observations generalize to low sam-
pling frequencies. This will likely depend strongly on the object being tracked. If it
travels frequently at nearly maximum speed, sensitivity may be high. However, if
the general speed is signi�cantly lower, the admitted variation in the reconstructed
speed may already be su�cient to avoid sensitivity in the detour factor.
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OAB OSB

SGABOAB

Figure 2.20 Example trajectory where OAB di�ers from SGAB (top) and OSB
(bo�om). Arrows indicate the direction of travel, blue markers are
measurements that are part of the consistent subsequence computed,
and red markers indicate the corresponding outliers. Both trajecto-
ries are from the LA dataset. Base maps © OpenStreetMap.

▶ 2.5 Discussion

Results Our results indicate that our optimal algorithms outperform simple
greedy strategies, either in quality of the results, running time, or both. Noise levels
and other characteristics do in�uence these results, and our methods are particularly
e�ective for dealing with large amounts of noise. The example in Fig. 2.20 (top)
illustrates a case where the OAB algorithm computes a longer sequence, compared
to SGAB: the cause is that a few erroneous measurements lead this greedy algorithm
to make a sequence that prevents it from selecting many measurements later.

Furthermore, the results suggest that the quality di�erence between speed-bounded
models and acceleration-bounded models is small. This must be considered carefully
though, as there is an e�ect of social or geographic environment. Fig. 2.20 (bottom)
shows a case where the OSB algorithm detects fewer outliers, though the di�erence is
only minor. Contrasting the previous comparison, this implies that OAB performed
better than OSB: OSB fails to capture the outlier that is not physically realizable
in the stronger acceleration-bounded model. That is, there is not enough time to
realistically decelerate and accelerate to capture all near-stationary measurements.
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Figure 2.21 Example results, using di�erent speed bounds v+. One trajectory for
each dataset is shown. Blue line represents the resulting trajectory,
with red dots marking the outliers. Base maps © OpenStreetMap.

The selection of parameters in�uences the results, but this is mostly the case for
the maximum speed. Acceleration and detour factor for our OAB algorithm tend
to have minimal e�ect on the number of outliers detected, though we observed
variation between the types of moving entities. Fig. 2.21 shows a sequence of results
for di�erent speed bounds, for a trajectory from each dataset. Increasing the speed
bound leads to fewer outliers – but possibly less realistic behavior, if the bound is
set too high. The e�ect of lowering the speed bound is that corners tend to be cut
by marking outliers, to lower the traveled distance to one that is achievable within
the speed bound.

More context By design, we do not consider the use of other contextual data
in this chapter, such as a road network that a vehicle is driving on. As we will
discuss in the next chapter, OSB and OAB generalize relatively straightforward when
considering consistency on a road-network. For our faster algorithm under the
speed-bound model, however, this is not quite the case, as the AWVD is no longer
directly applicable, but there may be potential to generalize the approach.

Beyond assessing distances more accurately via road networks, additional data could
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also be used to de�ne more accurate physics models. Our current models are fairly
simple, and use only few parameters to de�ne global thresholds on the maximum
speed and acceleration. However, such thresholds may actually depend on the envi-
ronment. As we show in the next chapter, we can leverage the (expected) maximum
speed for driving in a car, which is di�erent on the highway than it is in an urban
environment. Similarly, cycling uphill or downhill a�ects maximum speed. Ideally,
physics models and, by extension, outlier-detection algorithms should accommodate
for such variations, as this allows for more e�cacious processing of heterogeneous
trajectories that travel through di�erent environments.

Including additional contextual factors will make the models more accurate and real-
istic, but a crisp decision boundary (movement is or is not physically possible) may
no longer exist. Instead, we may want to de�ne that a car can violate speed limits,
but the severity and duration a�ect how likely the behavior is. Future work could
explore “behavioral models” that describe expected movement more closely, includ-
ing context, and are more robust by allowing deviations from the model, thereby
reducing parameter sensitivity.

Enhancing other techniques There are many other forms of trajectory process-
ing and analysis techniques, such as clustering, map matching, and segmentation.
Such techniques may be complemented or enhanced by applying physics models to
de�ne possible or realistic behavior. For example, a map-matching algorithm could
include considerations of whether its result is physically realizable, or clustering
may be done based on what physical behavior would be necessary to realize certain
trajectories. In the next chapter, we explore how to use physical consistency in a
map-matching algorithm, employing local speed limits to derive consistency. We
leave exploring such complementarity of other techniques to future work, but our
results presented here provide a framework and methods that may be integrated
into such enhanced techniques.

▶ 2.6 Derivation of the propagation function
For completeness, we include here the derivation of the propagation functions and
the proofs that they indeed follow the shape that we claim.

For our algorithm under the acceleration-bounded model, we need to determine the
minimum and maximum speed for which the moving entity can arrive at a measure-
ment pj , when starting at a measurement pi with some given velocity. For our asymp-
totic analysis, we already argued that this is possible in linear time (Lemma 2.3.3).
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Here, we show how to precisely compute this interval, providing the exact formula
for propagation and thus proving that this is indeed computable. We do so for the
minimum velocity; computing the maximum velocity is symmetrical. This mini-
mum velocity vmin ∈ ℝ is the smallest value such that C(pi , pj ∣ vi = v, vj = vmin)
for two measurements pi , pj and some initial v ∈ ℝ. Note that these velocities may
be negative, indicating the direction of movement in the 1D space.

We need particular behaviors of the moving entity to accomplish this minimum
velocity. These behaviors are determined by the travel time Δt = tj − ti and distance
Δx = ‖pj − pi‖ between pi and pj , and the initial velocity v: we want to travel ΔxA
between pi and pj within Δt time, while minimizing the velocity at pj .

Checking consistency First, we determine whether any velocity can be obtained,
that is, whether it is physically possible to travel distance Δx in Δt time, starting
with velocity v. That is, we must test whether C(pi , pj ∣ vi = v) holds. The maximum
distance Δx+ that can be traveled, is obtained by accelerating until reaching the
maximum velocity v+ and then maintaining that speed. Accelerating to maximum
speed takes t+ = v+−v

a+ time. If t+ < Δt , the maximum velocity is achieved and we
can express Δx+ as (v + v+)t+/2 + (Δt − t+)v+. Otherwise, this behavior accelerates
maximally for the entire duration, in which caseΔx+ = (2v+a+Δt)Δt/2. Analogously,
we �nd an expression for the minimum distance Δx− that can be traveled. As we
can use a convex combination of achieve any traveled distance between these two
extremes, we know that C(pi , pj ∣ vi = v) if and only if Δx− ≤ Δx ≤ Δx+.

Note that the above test indicates consistency, then we can look for a minimal (and
maximal) velocity. If this consistency does not hold, we know that no velocity can
be reached at all. For the remainder, we assume that C(pi , pj ∣ vi = v) is indeed true.

Finding the minimum velocity We now strive to �nd the necessary behavior
that results in the minimum velocity, vmin , assuming we have already con�rmed
the basic consistency described above. To visualize this behavior, we look at the
velocity-time diagrams for the moving entity; see the examples in Fig. 2.22. The
curve in this diagram represents the velocity as a function of time. In this diagram,
we need that the total area under the curve is exactly the traveled distance Δx . The
speed bounds v−, v+ are now represented as allowed minimum and maximum values
for the curve. The bounds on the acceleration, a−, a+ translate to the minimum and
maximum slope the curve can have at any time.

We can distinguish a number of situations where we need di�erent behavior to
get to the minimum velocity, depending on whether we travel at maximal velocity
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Figure 2.22 (Le�) Velocity-time diagram for the behavior where one maximally
accelerates for a time tacc and then maximally decelerates to obtain
the lowest possible speed vmin . (Right) Velocity-time diagram for
the behavior of accelerating to the maximum velocity v+ in time t+,
then maintaining this velocity for tmax time, and finally maximally
decelerating to get the minimum velocity.

intermediately. If we can reach pj by �rst maximally accelerating for some time
tacc and then maximally decelerating the rest of the time, this gives us the lowest
possible velocity (left diagram in Fig. 2.22). We can, however, encounter the case
where the maximum velocity we reach with this behavior exceeds v+. In this case,
we can accomplish the minimum velocity by accelerating to v+ in time t+, retaining
this speed for some time tmax and then maximally decelerating (right diagram in
Fig. 2.22) for the remaining time. However, if the result of the appropriate situation
above violates the minimum velocity bound v−, then we can conclude that vmin = v−.
Detailed proofs that the �rst two behaviors indeed give the minimum velocity are
given in Sections 2.6.1 and 2.6.2.

To compute the minimum velocity for the �rst and second case, we will use the
equation of motion in 1D, given by

Δx = vΔt + ∫
tj

ti
∫

t

ti
a(t′)dt′dt. (2.2)

This describes the aforementioned requirement that the area under the curve in the
velocity-time diagram is the distance Δx between pi and pj . To �nd the minimum
velocity for the �rst two described situations, we �ll in the shape for the acceleration
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a(t) and determine the minimum velocity, given by

vmin = v + ∫
tj

ti
a(t)dt. (2.3)

Maximally accelerate, then maximally decelerate We �rst consider the situ-
ation where we do not reach the velocity bound when maximally accelerating. In
this �rst situation, our acceleration function is equal to

a(t) =

{
a+, ti ≤ t ≤ ti + tacc
a−, ti + tacc < t ≤ tj

. (2.4)

What remains is to determine tacc . We do this by solving the 1D equation of motion
(Eqn. 2.2) for the distance Δx between the measurements. We �ll in the acceleration
function and integrate to get

Δx = vΔt + 1
2
a+t2acc + (v + a+tacc )(Δt − tacc ) +

1
2
a−(Δt − tacc )2. (2.5)

We can now solve this quadratic equation for tacc . To simplify notation, we use
Δa = a+ − a− and v̄ = Δx/Δt , that is, the average required velocity to travel the
distance in the given amount of time. We pick the root of the solution such that the
resulting tacc is in [ti , tj] and get

tacc = Δt −
√
Δt
Δa

√
a+Δt + 2(v − v̄). (2.6)

With this value, we can now determine the minimum velocity. We �ll in Eqn. 2.3
and get

vmin =v(ti + Δt) = v + tacca+ + (Δt − tacc )a−

=v + Δta+ −
√
ΔaΔt

√
a+Δt + 2(v − v̄)

(2.7)

Note that this situation applies only if we do not exceed the velocity bounds when
accelerating and decelerating. So we require that

v + a+tacc ≤ v+, vmin = v + tacca+ + (Δt − tacc )a− ≥ v− (2.8)

Accelerating to maximum velocity We now consider the situation where we
reach the speed bound v+. We accelerate for some t+ time, until we are moving
with velocity v+, then we retain that velocity for some time tmax , and �nally we
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maximally decelerate to get the minimum velocity. We can describe this behavior
with the following acceleration function:

a(t) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

a+, ti ≤ t ≤ ti + t+

0, ti + t+ < t ≤ ti + t+ + tmax
a−, ti + t+ + tmax < t ≤ tj

(2.9)

We now need to determine t+ and tmax . As before, t+ = v+−v
a+ indicates the time

needed to accelerate from v to v+.

With the equation for t+, we can now determine tmax by again solving the 1D equa-
tion of motion in Eqn. 2.2 with our new acceleration function. This gives us the
following equation of motion, and solution for tmax :

Δx = vt+ + 1
2
a+(t+)2 + v+(Δt − t+) + 1

2
a−(Δt − tmax − t+)2 (2.10)

tmax = Δt − t+ −

√
3a+

a−
(t+)2 +

2Δt(v̄ − v+)
a−

(2.11)

Using the above, we now �nd the minimum velocity, by �lling in Eqn 2.3:

vmin = v+ + (Δt − t+ − tmax )a− = v+ +
√
3a+

a−
(t+)2 +

2Δt(v̄ − v+)
a−

a− (2.12)

This case is applicable only if tmax > 0 and the resulting vmin ≥ v−.

Achieving v− The extreme behavior of the previous two cases achieve the lowest
possible speed, without violating v+, a+ or a−. We can readily choose between the
two cases, by comparing tacc with t+: if the former is at most the latter, the �rst case
applies, and otherwise the second. However, the result may still violate the physics
model, but only v−. That is, if the computed vmin is below v−. Our claim is that,
in such a case, vmin is actually equal to v−. Intuitively, the previous cases in fact
achieve a velocity that is too low: we thus have slack to use less extreme behavior
intermittently, such as standing still (v = 0) for a certain time.

Consider the behavior of the previous cases. If we follow the behavior but maintain
the minimal velocity bound, we have too much area under the curve: we overshoot
our traveled distance. We can compensate for this by accelerating less extremely
or maintaining a velocity below v+. Since some velocity is obtainable, we know
that there is su�cient slack and can indeed achieve v−, if the previous cases would
violate the velocity bound of v−.
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▶ 2.6.1 Proof: achieving minimum velocity without a�aining
velocity bounds

We now show that the behavior of maximally accelerating, followed by maximally
decelerating indeed gives the minimum velocity, provided that the velocity bounds
v−, v+ are never exceeded during this behavior. Without loss of generality, we further
assume that ti = 0 to simplify the exposition, and thus tj = Δt .

The equation of 1D motion (Eqn. 2.2) must satis�ed for a(t), with additional con-
straints that a(t) ∈ [a−, a+] for any t ∈ [0,Δt]. We then want to minimize the velocity
at pj , as given by Eqn. 2.3.

We represent the function a(t) as follows:

a(�, t) = a− + (a+ − a−)�(t) = a− + Δa (t) (2.13)

where �∶ [0,Δt]→ [0, 1]. This way, the acceleration bounds are trivially satis�ed
by the function.

Let a( , t) be the function representing maximal acceleration up to some time tacc ∈
[0,Δt] and then maximum deceleration until tj . In addition, assume that the traveled
distance is satis�ed by this function. We can represent  (t) by

 (t) =

{
1 t ≤ tacc
0 t > tacc

. (2.14)

Let  ′(t) be a function given by  (t) + � (t) where � (t) is a perturbation on the
function, such that a( ′, t) still travels the required distance, but di�ers in at least
one value t from a( , t). We now show that the velocity at pj for this perturbed
function is always greater than the velocity produced by  (t).

By assumption, both travel the same Δx distance in Δt time. Thus, �lling in Eqn. 2.2
for both gives us the following equality and its simpli�cation:

vΔt + ∫
Δt

0
∫

t

0
(a− + Δa (t′))dt′dt = vΔt + ∫

Δt

0
∫

t

0
(a− + Δa( (t′) + � (t′))dt′dt

(2.15)

∫
Δt

0
∫

t

0
� (t′)dt′dt = 0 (2.16)

We know that the velocity at pj is given by Eqn. 2.3. We can now look at the di�erence
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Δv between this velocity for  ′(t) and for  (t). This di�erence is given by

Δv = Δa ∫
Δt

0
� (t)dt. (2.17)

Now, if the minimum velocity at pj for a( ′, t) is smaller than the minimum velocity
for a( , t), this would imply that Δv is negative for the corresponding � function.

By de�nition, the value of � (t) is non-positive for t < tacc and non-negative for
t > tacc , as otherwise the acceleration bounds would be violated. Eqn. 2.16 implies
that ∫ tacc0 � (t)dt < 0 and ∫ Δttacc � (t)dt > 0. Equivalently, the integral ∫ t0 � (t)dt is
non-increasing for the interval [0, tacc] and non-decreasing for the interval [tacc ,Δt].

Assume for a contradiction that Δv is negative for some � , that is, ∫ Δt0 � (t)dt < 0.
This automatically implies that ∫ t0 � (t

′)dt′ ≤ 0 for any t in the interval, due to the
non-decreasing and non-increasing properties of the integration interval. But then
the integral of Eqn. 2.16 is by de�nition negative, which means that a( ′, t) does not
travel Δx distance. Hence, we must have that Δv ≥ 0. Observe that Δv = 0 only if
� (t) is zero.

To prove that maximally decelerating and then accelerating results in the maximum
velocity follows a similar argumentation.

▶ 2.6.2 Proof: achieving minimum velocity when a�aining ve-
locity bounds

We now prove that, if we maximally accelerate to the velocity bound v+ in time t+,
retain this speed for time tmax , and then maximally decelerate, this indeed gives
us the lowest possible velocity, if the previous situation does not apply – that is,
t+ ≤ tacc , and we never reach the velocity lower bound v−. Without loss of generality,
we assume that ti = 0 and tj = Δt .

We follow the argumentation as described in the previous section. We again describe
the acceleration behavior using a( , t) for a to be de�ned function  (t). We assume
that a( , t) travels the required distance given the initial velocity. But now, the
behavior of this case yields a slightly di�erent function for  , do describe a( , t):

 (t) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

1, t ≤ t+

�, t+ < t ≤ t+ + tmax
0, t > t+ + tmax

(2.18)
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Here, � = − a−Δa indicates an acceleration of zero. For brevity, we call the three time
regions with the di�erent behaviors A, B and C , see Fig. 2.22.

We again perturb  (t) to get a function  ′(t) =  (t) + � (t). Here, we again assume
that � (t) is not the zero function. To obey the acceleration bounds, we observe that
� (t) is non-positive in region A and non-negative in region C , which implies that
∫ t0 � (t)dt is non-increasing in region A and non-decreasing in region C .

For region B, we observe that  (t) describes the behavior that results in the highest
possible velocity in that region. So, the velocity at a time t in region B that results
from  ′(t) can be at most the velocity obtained via  (t). The velocity at any time t
is given by

v(�, t) = v + ta− + Δa ∫
t

0
�(t)dt (2.19)

for acceleration function a(�, t). Thus, we can now formalize the observation as
v( ′, t) ≤ v( , t) for all t ∈ B. Using the de�nition of v(�, t) and simplifying, we
obtain that

∫
t

0
� (t) ≤ 0 (2.20)

should hold for all t ∈ B. Since we want that  and  ′ travel the same distance Δx
in Δt time, we again get the identity

∫
tj

ti
∫

t

ti
� (t)dt′dt = 0, (2.21)

as was shown in Section 2.6.1. Similar to the argumentation in Section 2.6.1, we look
at the di�erence in minimum speed Δv at tj :

Δv = Δa ∫
tj

ti
� (t)dt (2.22)

Again,  ′(t) has a lower minimum velocity if Δv is negative. For this to happen,
∫ tjti � (t)dt has to be negative.

Now, assume for a contradiction that for some � , Δv is less than zero, such that
the minimum velocity using a( ′, t) is less than that from a( , t). From Eqn. 2.20,
we see that ∫ t0 � (t)dt is non-positive for all t in regions A and B. In particular, at
the end of region B, the integral is non-positive. We distinguish two cases.

The integral is zero. Suppose the integral ∫ t0 � (t)dt is zero at the end of region
B. Then, since the integral is non-decreasing in region C as established before,
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2.6 Derivation of the propagation function

we cannot have that ∫ Δt0 � (t)dt is less than zero: Δv is non-negative, which
gives a contradiction.

The integral is negative. Suppose now that ∫ t0 � (t)dt is negative at the end of
region B. If we want Δv to be negative, this requires that the ∫ Δt0 � (t)dt is
negative. Since the integral is non-decreasing in region C , we must have that
the integral is negative everywhere in region C to accomplish this. But then
the traveled distance for  (t) and  ′(t) is not the same, since Eqn. 2.21 is less
than zero. This again gives a contradiction.

From the previous argumentation, we can conclude that for any choice of  ′(t) that
satis�es the traveled distance requirement, the minimum velocity at pj is at least the
minimum velocity obtained by using  (t).
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Chapter 3

Physically Consistent
Map-Matching

As we mentioned in the discussion of the previous chapter, we can actually seek to
apply physical consistency in spaces that are di�erent from the Euclidean spaces we
covered in that chapter. In particular, we can consider the road network as the space
that our entity moves in. For human mobility in the form of tra�c, the road network
de�nes and constrains vehicle movement, allowing us to infer local information by
considering where the vehicle was driving in the network. Combining this with
the physical models, we can try to predict what routes an entity could have taken
through the network.

Key challenges for using trajectories are that they may contain noise and may even
be incomplete or sparsely sampled due to measuring or privacy constraints. Algo-
rithms have been developed in previous work to make the trajectories more complete
and less noisy. These try to �ll the gaps for such sparse GPS trajectories while map-
ping them to the road network, such that they are still usable in further analyses.
All algorithms essentially try to infer from the context where on the network the
measured locations should be and aim to estimate reasonable paths along the road
network between these locations. This contextual data is often attached to the road
network: estimated travel times or speed limits may be recorded on road segments.
Alternatively, contextual data on the trajectory measurements themselves, such as
recorded velocity and heading, may be used to guide the algorithms.
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3 Physically Consistent Map-Matching

Contributions In this chapter, we provide an algorithm to verify that a given
route is physically consistent for given speed bounds on the road network and ac-
celeration bounds on the entity. Then, we present a new map-matching algorithm
that leverages physical constraints on a vehicle when traversing the road network
(Section 3.1). In particular, we assume that the vehicle has bounded acceleration (and
deceleration). We also assume that the vehicle is subject to legal constraints: it must
adhere to speed limits on the road network. This allows us to leverage the physical
consistency checking algorithm for routes in our map-matcher. Our algorithm �nds
a solution space of routes that are feasible under the given speed limits and accelera-
tion bounds, which acts as a strong quality guarantee. Between the di�erent routes,
we select a route according to geometric length and road-type changes.

In Section 3.3 we present the results of a brief experiment into the e�ect of such
physical consistency on the quality of map-matching results, comparing to two
baseline hidden Markov models. We observe that consistency helps in ensuring
high-quality routes, though it may struggle to �nd routes when the data violates the
assumptions on movement. Yet, this is detectable and points towards discrepancies
between the set constraints and the movement of the vehicle. We discuss our results
and avenues for further investigation in Section 3.4.

Related work Map matching is a well-studied topic in the GIS community. We
refer the reader to recent surveys for a comprehensive overview [31, 66]; here we
highlight the results that our most relevant in our context.

The most commonly used map-matching algorithms are based on Hidden Markov
Models (HMMs). In these approaches a group of candidate points that lie on the
road network are selected and candidate paths are created to connect them. The al-
gorithm itself is incremental and maintains the “best” paths to each of the candidate
points of a measured location. At each stage these paths are extended to the next
set of candidates points and again the best path to each candidate is stored. Which
paths are best is decided through a set of probabilities based on various measures.
Di�erences between approaches occur based on how probabilities are assigned to
di�erent candidates. The simplest and most common factor is the distance of a can-
didate to its measured location. A second common factor is to consider the length
of the path to each candidate. One could aim to have this distance be close to the
distance between the measured locations [94] or to have it match with the time be-
tween measurements based on speed limits [56]. Other options include considering
the number of turns [98].
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Outside of the incremental HMM method one can also consider speed bounds in
a more global manner. In the ST-matching method as proposed by Lou et al. [84]
a graph is constructed that models paths between candidates. This graph is then
weighted based on discrepancies between the time it would take to traverse a path
and the time di�erences between the measurements. One can then �nd a globally
good path through this graph. This approach can also be extended to include mea-
sured directions of movement [65, 32].

In our work we aim to ensure that the paths found are physically consistent to
provide a quality guarantee on our output. That is, the paths produced are physically
realizable within the given acceleration bound and speed limits. Using physics to
model driver behavior is a common technique in trajectory processing and GIS
analysis in general [89]. In its most simple form, one leverages the velocity of a
vehicle to determine whether a certain distance can be traveled in a given time.
In a GIS context, such a construction is commonly referred to as the space-time
prism. Depending on the type of problem at hand, this can be su�cient. In other
problems where the kinetic properties of a vehicle play a larger role, a more complex
model can be useful, where acceleration is taken into account [83, 75, 36], as we
also investigated in Chapter 2. For graphs Ardizonni et al. [9] describe how to �nd
a fastest path under speed and acceleration bounds. This is similar to what we
are interested in, however, in our case we are not interested in the fastest path,
but in a path that is physically consistent with the measured locations and times.
Additionally, the algorithm proposed by Ardizonni et al. does not run in polynomial
time for general road networks.

Physical consistency Recall from the previous chapter that we consider two mea-
surements of a trajectory T consistent if the vehicle could indeed travel in the time
span between the measurements from the location of the earlier measurement to
that of the later one, considering properties such as maximum speed, acceleration,
or turning rate. The actual movement satisfying such physical properties is then a
witness to the consistency.

In our map-matching application, we assume that our trajectories may contain
noise. We then aim to decide whether a witness exists that describes movement
over the road network that adheres to restrictions both physical (acceleration) and
legal (speed bounds), while arriving at a location close to each measurement at the
designated time.

Recall that if we consider only speed limits, the model is concatenable, meaning
that we can decide consistency between measurements independently, and combine
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3 Physically Consistent Map-Matching

them without violating consistency. That is, in such a model, it does not matter
how one reaches a measurement, for deciding on how to continue to the next. For
locations on the road network, the problem then reduces to computing fastest paths
between the measurements.

Instead, we consider a more detailed model that includes acceleration (and decel-
eration) bounds, which is conditionally concatenable: how the witness arrives at a
measurement (in our case, at which speed) in�uences if or how we can reach the
next measurement.

▶ 3.1 Consistent map matching
Our overall algorithm for map matching based on consistency is designed similarly
to a Hidden Markov Model. Our method maps a trajectory T to a given road network
 as follows:

1. First, we generate c candidate locations on  for each of the measurements
in T . These candidate locations are the nearest point on the c nearest road
segments in .

2. Then, we generate a consistent route for every candidate location of one mea-
surement to each candidate location of the next measurement, if such consis-
tent route indeed exists. Since we have bounded acceleration, it matters at
which speed the vehicle is driving at the former candidate location, to decide
how it can continue to the next. As such, we must keep track of intervals
of speeds at which the vehicle could have reached the candidate location, in
order to ensure consistency of the entire eventual route.

3. Finally, we trace back through our generated consistent routes from candidate
location to candidate location, to reconstruct the overall route.

In the upcoming sections, we �rst treat the main question: how do we generate
consistent routes, adhering to speed and acceleration bounds, in a road network,
from one candidate location to the next? Afterwards, we brie�y discuss various
other implementation concerns and optimizations of our method.

▶ 3.1.1 Computing a consistent route
Validating a given route We begin our algorithmic consideration with a valida-
tion question: how do we check whether a given route, travelling through candidate
locations is indeed consistent? That is, does a witness exist that demonstrates that

70



3.1 Consistent map matching

these candidate locations can be visited at exactly the given times, while adhering to
the local speed bounds and global acceleration bounds? Overall, we use an approach
akin to that presented in the previous chapter: knowing the interval(s) of speeds at
which the vehicle could travel at one candidate location, we propagate this under
consistency to the next candidate location to �nd new interval(s). However, where
we considered a global speed bound in the previous chapter, our speed bound varies
along the route. As such, the method for propagating from one location to the next,
even if we know the route, needs reconsideration.

To propagate, our input hence is four-fold: (1) a route through the network – a
sequence of edge lengths ⟨�1,… , �m⟩ and speed limits ⟨v1,… , vm⟩; (2) an interval of
possible initial speeds [v↓, v↑]; (3) a total time Δt between the candidate locations;
(4) an interval of realistic acceleration [a↓, a↑]. We wish to determine the interval
[v↓,f , v↑,f ] of �nal speeds that the vehicle may travel at, when it reaches the end of
the route, while taking exactly Δt time and adhering to the local speed limits and
global acceleration bounds. Note that we use speed instead of velocity, assuming
that the vehicle always travels forwards along the route. Moving backwards is in
principle possible, but unlikely to be done in such amounts as to a�ect consistency
between candidate locations – driving back and forth can be mimicked by standing
still after all.

As computational model we assume the real RAM model with square roots, such
that square root computations are constant time operations. We discuss robustness
implications when we discuss our implementation.

SIS diagrams We introduce a space-inverse-speed diagram (SIS diagram) as a tool
to reason about witnesses. In a SIS diagram, we plot the inverse speed of the vehicle
as a function of space. By our assumption of only moving forward, this is indeed a
function. In the limit of moving arbitrarily slowly, the vehicle can also stand still. We
use the inverse speed, such that the integral of this function is exactly the travel time.
To match intuition of the function in the diagram visually going up to increasing
speed, we draw the vertical axis downwards, with zero (of inverse speed, so in�nite
speed) at the top. The travel time is then the area above the curve.

The local speed bounds translate to horizontal segments in the SIS diagram. At the
transition, there is a jump in the speed limit, but due to the acceleration bounds, the
vehicle cannot discretely change its speed. To strictly adhere to limits, acceleration
or deceleration to reach the new speed bound must happen in the segment that has
a higher speed bound. Hence, considering also acceleration bounds as well as the
maximum initial speed v↑, we obtain a continuous function U (x) that indicates the
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s1 s2 s3 s4

1/v

x

U

Figure 3.1 Example SIS diagram. Shown are four segments s1, s2, s3, s4, with the
blue line indicating the maximum achievable speed U . The hatched
area indicates the travel time to traverse these segments at maximum
speed and acceleration. Witnesses must stay on or below U .

maximum achievable speed at distance x along the route, measured from the starting
point. Any witness must stay below or on this function in the diagram. An example
is given in Fig. 3.1.

The function U is de�ned by pieces of movement following extremes; also in our
later proofs, we use extreme movement. We distinguish the following types.

(S) The vehicle travels at maximum local speed v as de�ned by . This corre-
sponds to a horizontal line at 1/v in a SIS diagram.

(A) The vehicle accelerates maximally, at a rate of a↑. If the initial speed is vi, then
we can express speed as a function of time as v(t) = vi + a↑t . The distance
traveled is then expressed as

x(t) = ∫
t

y=0
v(y)dy = vit +

a↑
2
t2. (3.1)

However, we need speed as a function of space. Solving the latter for t gives
us time as a function of space:

t(x) =
−vi ±

√
v2i + 2a↑x
a↑

. (3.2)

Using this in the former gives v(x) = v(t(x)) = ±
√

v2i + 2a↑x . Since we assume

positive speeds, this equals v(x) =
√

v2i + 2a↑x . In a SIS diagram, this piece is
1/v(x) and thus a decreasing curve (going up in the drawing).
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3.1 Consistent map matching

(D) The vehicle decelerates maximally. That is, it accelerates at a rate of a↓,
since a↓ will be negative. Following the same computations, this de�nes
v(x) =

√
v2i + 2a↓x , an increasing curve in the SIS diagram (going down in

the drawing).

Pieces of type (A) and (D) we also sometimes de�ne based on their �nal speed vf.
Using L = ∑ �i , these curves are then expressed as v(x) =

√
v2f − 2a(L − x) where a

is a↑ for accelerating towards this �nal speed, and a↓ for decelerating.

Computing propagation What follows is a sequence of lemmata, to establish
eventually that we can propagate an interval of speeds from one candidate location
to the next, for a given route, in time linear in the complexity of the route.

3.1.1 Lemma. For a route of m segments and an initial speed interval [v↓, v↑], we can
compute U in O(m) time.

Proof. We assume that each segment has a speed bound, di�erent from its direct
neighbors in the path; if not, we preprocess the route in linear time to merge these
segments. We build U incrementally, storing the pieces of the curve in a stack,
keeping track of the current speed vc of U , which is initially v↑, the maximum initial
speed of the route. For each segment in the route, we now proceed as follows:

We want to add a type-(S) curve to U for the current segment �i with speed bound vi .
However, we must accommodate for accelerating or decelerating to this new speed
bound. So, if vi > vc, we must accelerate. To this end, we intersect the type-(A) curve
starting at vc with the type-(S) curve. If these intersect before the end of the current
segment, we add the appropriate pieces of the accelerating curve and maximum-
speed curve to the stack; vc is set to vi . Otherwise, we add only the accelerating
curve, setting vc to the speed at the end of the current segment.

If vi < vc, we must decelerate such that we achieve vi at the start of the current
segment, this de�nes a type-(D) curve. We need to revise the curves on our stack to
accommodate this curve. To this end, we pop curves from the stack, until the type-(D)
curve intersects the top curve on the stack. We shorten that curve to this intersection
and add the decelerating curve, followed by the maximum-velocity curve of the
current segment. We set vc to vi . If the stack becomes empty during this process,
we check the speed of the curve at x = 0. If it is below v↓, then no witness exist
for the given initial interval, and we stop the computation. Otherwise we place the
type-(D) curve on the stack.
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Each of the above computations can be done in O(1) time. Adding a segment where
the speed increases readily takes only O(1) operations. Though adding a segment
where the speed decreases may need to pop multiple curves from the stack. each
segment adds at most two curves to the stack: the total number of curves to pop
from the stack is at most 2m in total over all segments. As a result, this procedure
runs in O(m) time. □

3.1.2 Corollary. We can test whether a witness taking at most Δt time exists for a given
route in linear time.

Proof. We compute U in linear time (Lemma 3.1.1), and compute the area above the
curve for each of its pieces (if it exists). This area represents the fastest time, and
hence we compare it to Δt . □

3.1.3 Lemma. If a route admits both a witness with total time less than Δt and a witness
with total time more than Δt , then a witness exists that takes exactly Δt time.

Proof. Let v′(x) and v′′(x) denote the speed functions over space of both witnesses.
Consider a convex combination of these functions, v(x) = �v′(x) + (1 − �)v′′(x). To
prove that v(x) is a witness, it must adhere to the speed bounds as well as acceleration
bounds. Since v′ and v′′ are witnesses, we know that they adhere to these bounds as
well. Since the speed and acceleration of the convex combination must be between
the speed and acceleration of these witnesses, we know that v is a witness as well.

The velocity-over-space functions directly imply a travel time (the area over the
curve in the SIS diagram). As the convex combination changes continuously as a
function of �, so does the implied travel time. Since v′ has a travel time less than Δt
and v′′ more than Δt , there must exist a � where the travel time is exactly Δt . □

3.1.4 Lemma. Given a route, total time Δt and an interval [v↓, v↑] of initial speeds, we can
compute the interval [v↓,f, v↑,f] of �nal speeds for all witnesses in linear time.

Proof. We construct U , the maximal attainable speed over space, using Lemma 3.1.1
in linear time for the given interval. By iterating over the curves, we can compute
the total travel time in linear time as well. If this exceeds Δt or if U does not exist,
then no consistent witness exists and the �nal interval is empty. Otherwise, we
continue as follows.

Conceptually, the maximum �nal speed v↑,f can be obtained by �rst decelerating for
some distance, possibly fully stopping, followed by a maximal acceleration towards
the speed bound. Our goal is then to �nd a witness with total travel time equal to
or exceeding Δt with an as high as possible �nal speed: Lemma 3.1.3 then implies
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U
1/v

x

ed

x x

Figure 3.2 Several cases for finding v↑,f : if d and e do not intersect and reach
speed zero, U determines the maximum speed at the end of the route
(le�); otherwise we search for an ending speed by finding a shi� of
e where we achieve exactly the right time span Δt (middle); though
such may not exist if d does not reach zero (right).

that a witness with the right travel time exists, by combining it with U (the convex
combination does not decrease the �nal speed after all).

Let vU denote the maximum achievable �nal speed by U . We construct the following
two curves: a type-(D) curve d(x) maximally decelerating starting from speed v↓; a
type-(A) curve e(x) maximally accelerating to end with speed vU . We consider both
curves only until speed zero is reached, or the other endpoint of the route. Note that,
by construction, these curves cannot properly intersect U .

We distinguish cases, based on how d and e intersect each other and the limits of
the SIS diagram; see also Fig. 3.2.

If d and e intersect, we construct the witness they imply through taking v(x) =
max{d(x), e(x)}. If this witness takes at least Δt time, we are done and conclude
that v↑,f = vU . If this witness takes less time, we �rst test whether a slow enough
solution must exist: if d reaches zero, then this is always the case. Otherwise, we
test the time taken by the witness d . If this slowest witness is still too fast, then no
solution exists and the �nal interval is empty. Otherwise, we search for a minimal
shift1 of e, such that the resulting witness, constructed with the intersection of d
takes exactly Δt time. Since we know a solution must exist before reaching speed
zero, this equates to solving

∫
L

x=0
1/max{

√
v2↓ + 2a↓x,

√
v2↑,f − 2a↑(L − x)}dx = Δt.

1Note that this is not a geometric translation of the curve in the SIS diagram; technically, we shift the
�nal speed, which then determines a di�erent curve.
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f

1/v

x x x

U

Figure 3.3 Several cases for finding v↓,f : if f intersects U such that this witness
takes at most Δt time, we can reach speed zero (le�); if f stays fully
below U , we may need to adjust for v↓ (middle); if the initial witness
takes too much time, we shi� f up, reducing the time span, to find the
right value for v↓,f (right).

As we show in Section 3.2, the solution to this equation is

v↑,f =
√

v2↓ + 2a↓x
′ + 2a↑(L − x′),

with

x′ = −

√
(v↓ + a↑Δt)2(−2L + 2v↓Δt + a↑Δt2)

a↑ − a↓

−
2a↑L + 2a↓v↓Δt − 2a2↑Δt

2 + a↑Δt(−4v↓ + a↓Δt)
2(a↑ − a↓)

.

If d and e do not intersect, we follow a similar procedure. If they both reach zero,
then their implied witness must be slow enough (since we can just wait), and we
set v↑,f = vU . However, if they do not intersect as e reaches x = 0 above d , then we
should test whether e as a witness is slow enough. If it is, then we also conclude
v↑,f = vU . Otherwise, we follow the same search procedure as above, �rst testing
whether the slowest option constructed via d only is su�ciently slow.

Provided the above computations found v↑,f instead of concluding an empty interval,
what remains is to compute the minimum �nal speed v↓,f . We take a conceptually
similar approach: to minimize the �nal speed, we must traverse as quickly as possible
early on, to slow down as much as possible at the end, while achieving the right
travel time Δt . If we consider the type-(D) curve f of maximally decelerating curve
to end at speed v↓,f = 0, then we may use this curve in combination with U to
construct such a witness (taking the minimum). Again, we must distinguish several
cases; see also Fig. 3.3.
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We intersect f with U to construct a witness ending at speed zero. If this witness
takes less than Δt time, we are done: we can wait at the end until the right time
has passed. However, if this witness takes more time, then the witness needs to
increase its speed; this can be done only by increasing the �nal speed. As increasing
this �nal speed will monotonically increase the time of the constructed witness, and
intersect U at increasing values of x , we may simply test the type-(A) and type-
(S) pieces of U whether they will contain the intersection point that leads to an
exact time of Δt , and subsequently solving for the exact intersection point, akin
to the above description. For a type-(A), similar to v↑,f , the solution is given by
v↓,f =

√
v2 + 2a↑x′ + 2a↓(L − x′), where

x′ =
2La↓ + (a↑ − 2a↓)Δt′(2v + a↓Δt′)

2(a↑ − a↓)
±

√
(v + a↓Δt′)2(2L − Δt(2v + a↓Δt′))

a↑ − a↓
.

Here, Δt′ is the total time Δt minus the travel time (area above of the curve) of U ,
left of the type-(A) curve and v the initial velocity of the curve. For a type-(S) curve,
the solution is

v↓,f =

√

v2 + 2a↓(
L − vΔt′ +

√
2

√
v2(c − vΔt′)

a↓ )

with v the speed of the type-(S) curve and Δt′ similarly de�ned as for the type-(A)
curve. For details on these derivations, refer to Section 3.2.

In the above, we must take care of a boundary case: if f does not intersect U at all,
and has a speed at x = 0 below v↓, then we shift it such that f starts at this minimum
initial speed. Since we then do not reach speed zero, we cannot wait arbitrarily: if
this curve has a time less than Δt , there is no consistent witness spanning exactly
Δt time. Note, however, that this last case cannot occur, since we have already
concluded that a witness exists via the maximum �nal speed.

We spend linear time to compute U by Lemma 3.1.1. The computations for the
maximum speed require a constant number of cases to be checked. The computations
for the minimum require traversing U at most once, and thus also takes linear time.
Hence, the entire propagation procedure runs in linear time. □

3.1.5 Theorem. Given a trajectory T whose measurements lie on a route P through a road
network, we can compute in linear time whether P is consistent with T given global
acceleration bounds and local speed bounds.
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Proof. We begin by partitioning P into the subroutes that re�ect the pieces from
one measurement to the next in T ; this can be done trivially in linear time. Now,
we initialize an interval of speeds from zero to the local maximum speed at the �rst
measurement in T . We use Lemma 3.1.4 to repeatedly propagate this interval the an
interval of speeds at the next measurement, for the given subroute. This takes linear
time in the complexity of the subroute, and thus linear time overall. We conclude
that P is consistent with T if this interval is never empty. □

Finding a route The goal of our map matcher is to �nd a route, rather than just
to validate a given one. However, generalizing our method above to a �nd a route in
a network is problematic. Our approach relies heavily on velocity being a function
of space (distance along the given route), avoiding a need for explicit consideration
of when we arrive at a speci�c location along the route – this is captured implicitly
by the area above the curve after all. For a given route, this simply means that we
assume the vehicle did not drive backwards.

In a network we need an explicit consideration of intermediate vertices in order to
aggregate information about di�erent routes through , if we are to avoid enumer-
ating all routes. However, this implies that we must consider not only the speed
at a vertex, but also how long it took the vehicle to get to this vertex. That is, the
information we need goes from 1-dimensional (interval of speeds, at a �xed time) to
2-dimensional (areas in a “speed-time” diagram). Propagation of such information
is cumbersome at best, even if we assume some form of order between the vertices
(e.g., the spanned subnetwork is a DAG). But generally, this subnetwork will not
have a clear order, and we may visit two vertices in either order in a route; even if
we assume we are after a simple route and thereby forbid revisiting a vertex in a
route, computationally, we may need to consider vertices multiple times, since the
order of traversal matters.

Hence, we opt to use another assumption: the vehicle moves along some route that
is “reasonable”: a fast route, though not necessarily the fastest. With this assump-
tion in mind, we thus generate k fastest alternative routes between two candidate
locations, using purely the speed bounds. Speci�cally, we use the k-shortest paths
algorithm [133] with edge weights corresponding to traversal times of the edges.
For each alternative route, we consider consistency and propagate intervals, using
the method described above. Though we could also consider computing the fastest
path with acceleration bounds [8], the parameter used in the presented algorithm is
higher than a trivial constant, leading to impractical running times.
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Fragmentation When combining feasible intervals from multiple paths between
two measurement, it may be the case that the resulting intervals at the second mea-
surement are disjoint. This phenomenon is referred to as fragmentation of the speed
interval [36]. Since we can mimic free movement as considered in [36] through a
fully connected road network, fragmentation in our case is also in the worst case at
least linear, and at most exponential – though the exponential term now relies on
the number of paths through the network, rather than the number of measurements
(since we do not skip any measurements). In our map matcher, we combine intervals
into a single interval if they overlap for further propagation, though we do store the
intervals separately to support reconstructing the route.

▶ 3.2 Intermezzo: computing v↑,f and v↓,f
For completeness, we brie�y discuss in this section how to derive the analytical
functions for the computations of v↑,f and v↓,f . To compute v↑,f , we need to solve
the equation

∫
L

x=0
1/max{

√
v2↓ + 2a↓x,

√
v2↑,f − 2a↑(L − x)}dx = Δt.

We �rst reformulate the equation, by expressing e as the function that starts at
the intersection point between d and e with the velocity of d at that intersection.
We introduce x′ to be the x coordinate where d and e intersect. This allows us to
eliminate the max term, which is replaced by two separate integrals (0 to x′ over
curve d , and x′ to total length L over curve e). It also eliminates v↑,f , which is now
readily implied from x′. The equation becomes, after integrating the individual
terms:

−
√

v2↓ + 2a↑x
′ +

√
2La↓ + v2↓ + 2a↑x

′ − 2a↓x′

a↓
+
−v↓ +

√
v2↓ + 2a↑x

′

a↑
= Δt

To solve this equation analytically, we use Wolfram Mathematica 12. We apply the
Reduce function, adding non-negativity or negativity constraints for a↓, a↑,Δt, x′

and L. This results in the following solution for intersection point x′:

x′ = −

√
(v↓ + a↑Δt)2(−2L + 2v↓Δt + a↑Δt2)

a↑ − a↓

−
2a↑L + 2a↓v↓Δt − 2a2↑Δt

2 + a↑Δt(−4v↓ + a↓Δt)
2(a↑ − a↓)
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With the above expression for x′, we can now compute v↑,f using

v↑,f =
√

v2↓ + 2a↓x
′ + 2a↑(L − x′)

Similarly, for v↓,f , we solve the same equation, with a↓ replaced by a↑ and vice versa.
Note that di�erent non-negativity constraints now apply. We replace v↓ with v, the
velocity at the start of the type-(A) curve we want to intersect. Let Δt′ be the total
time Δt , minus the area above curve U , left of the type-(A) curve.

Again solving for the intersection point, we arrive at

x′ =
2La↓ + (a↑ − 2a↓)Δt′(2v + a↓Δt′)

2(a↑ − a↓)
±

√
(v + a↓Δt′)2(2L − Δt(2v + a↓Δt′))

a↑ − a↓

where the sign is positive only if Δt′ > − v
a↓

. In similar fashion to v↑,f , we can now
compute v↓,f using

v↓,f =
√

v2 + 2a↑x′ + 2a↓(L − x′)

▶ 3.2.1 Other aspects
Slack on speed bounds In general, one might expect inaccuracies in locations
of the considered candidates, but people may also slightly exceed the provided max-
imum speed. In other words, we have a “behavioral” model [36] when it comes to
speed bounds. Additionally, it may occur that certain speed bounds on the road net-
work are inaccurate or outdated. To be able to cope with these e�ects, we introduce
a slack � for the speed bounds, such that a vehicle is allowed to travel 1 + � times
the speed bound on the edges.

We have two approaches to using slack: either, we set a global parameter, e�ectively
changing all speed bounds, or we apply slack when no physically consistent path
with the current bounds exists. In the latter case, we gradually increase the slack
if none of the candidate locations of a measurement have an interval of speeds
that can be reached under the current bounds, to subsequently recompute physical
consistency from the previous candidate locations to the current ones, using the
increased slack.

Choices in reconstruction The solution space produced by the physically con-
sistent map matcher may be quite large, if the vehicle is moving at a speed below

80



3.3 Experiments

the given bounds. To be able to select reasonable paths within the solution space,
we propose to leverage the geometric length of reconstructed paths, as well as the
number of changes of road types. If no explicit road types are available, this can also
be mimicked using changes in speed bounds.

Speci�cally, we select routes such that length in meters plus 100 times type changes is
minimal. E�ectively, this means that routes may be slightly longer than the shortest
path, if this saves on changing road types, but not more than 100m for each type
change less than the number of changes in the shortest path.

Limiting search network To improve performance for searching shortest and
fastest paths, we can limit the network to search in by taking the intersection of
the space-time cones of consecutive measurements, assuming some large maximum
velocity. This gives us ellipses around the measurements within which we can search
for candidates and shortest or fastest paths. We use a maximum velocity of 45 m/s.

Reducing reconstruction solution space In the worst case, where all potential
routes are physically consistent, the number of reconstructable physically consistent
trajectories can be as large as O((c2k)n), with c the number of candidates, k the
number of fastest paths considered and n the complexity of the trajectory.

To keep the considered number of reconstructable routes manageable, we use the
geometric length and road types as described earlier to weigh the reconstructed
candidates. We build up the set of possible consistent routes between measurements,
weigh the consistent routes, and retain only a �xed number of consistent subroutes
to consider at the next measurement. We set this number to 100 in our experiments.
Note that this may imply that we do not �nd the route that optimally minimizes the
geometric length and road-type changes.

▶ 3.3 Experiments

Dataset We use a trajectory dataset provided by HERE Technologies2 in the
metropolitan region of Los Angeles, California, USA. We use a sample of the dataset,
containing 30 trajectories. On average, these trajectories are 37 km long, take 38
minutes, and have a measurement every 1.7 seconds. For the road network, we use
data from OpenStreetMap3. We use the tag annotation to infer the maximum speed

2https://www.here.com
3https://www.openstreetmap.org
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3 Physically Consistent Map-Matching

whenever available, otherwise we use predetermined maximum speeds per road
type according to local tra�c rules.

Ground truth To estimate accuracy of the map-matching results, we construct a
ground truth for all trajectories. We select trajectories in the dataset with high mea-
surement frequency. We apply some clustering to remove any local noise and then
map-match these trajectories using the map matcher by Newson and Krumm [94].
Afterwards, we manually verify that the result is a logical route for the given trajec-
tory and manually make minor alterations to arrive at a good ground truth.

Sparsification We then create sparse trajectories by subsampling each trajectory
as follows: we �rst �x a target time s between samples. Then, we go through the
trajectory from start to end and drop any later measurement that is within time
less than s for the currently considered measurement. We always retain the last
measurement of the trajectory. We do this for s ∈ {2, 5, 10, 30, 60, 120} seconds.

Performance measures We use the measures that are in line with previous
work [66, 31]. Speci�cally, we use:

CMP The correct matching percentage (precision) is de�ned as the percentage of
the correctly identi�ed road segments (edges in the network) with respect to
the ground truth. That is, if the result of the map matcher is a route P , and
the ground truth is a route GT , then we interpret both as a set of edges and
measure |P ∩ GT |/|GT |.

R The recall is de�ned as the percentage of correctly identi�ed road segments with
respect to the complete resulting route. That is, we measure |P ∩ GT |/|P |.

LCMP The length correct matching percentage is similar to CMP, but measures the
length of common edges as a percentage of the total length.

C The circuity is similar to R, but measures edge lengths.

Algorithms We denote our physically consistent map matcher by PC, when using
a �xed slack � . The variant where the slack is modi�ed dynamically is denoted by
PC+. We compare our approach with two baseline map matchers that use an HMM:
a pure spatial version, denoted by MS, where no additional data apart from the
geometry encoded in  are considered [94]; and a spatio-temporal version, denoted
by MT, that leverages the estimated travel time [74] based on speed bounds.
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For all algorithms, we �x the number of considered candidates c to 5. For PC and
PC+, we compute k = 2 fastest paths for connecting candidates. Thus, we generate
a total of 50 paths for every pair of consecutive measurements of the input trajec-
tory. Finally, PC uses a speed slack � of 0.3, unless indicated otherwise; PC+ uses
an initial slack of 0.1, increasing it up to 0.6 in steps of 0.05. We �x the acceleration
bounds at a↓ = −5.0m/s2 and a↑ = 6.0m/s2, which corresponds to relatively safe
driving [47]. For the baseline map matchers, we set the standard deviation for ob-
servation probabilities to 100m and the scale factor for the transition probabilities
to 300m.

Implementation We implement the algorithms using Python, using NetworkX,
pyproj and (Geo)Pandas, loading the OpenStreetMap data into a SpatiaLite database4

for e�cient querying. We visualize our data on the OpenStreetMap network using
ipylea�et. Since we only have �nite precision and we work with complex operators
to compute the speed intervals, robustness issues may arise. To be able to cope with
this, we slightly scale up intervals when querying whether values lie within the
intervals. This approach is especially useful when we propagate intervals backwards
for reconstructing the routes when the computed intervals are very small.

▶ 3.3.1 Comparison with baseline map matchers
�alitative comparison We start our evaluation by discussing two speci�c ex-
amples in Fig. 3.1. In the �rst example the result of PC nicely follows the ground
truth, and we know that this is physically consistent (up to the used slack) by con-
struction. The HMM models create less intuitive results and deviate from the ground
truth: MS produces an unrealistic result, especially in the south-western corner of
the graphic; MT does follow the highway over the interchange, but opted for a dif-
ferent road at the start, causing it to take a detour to get onto the highway. It is not
obvious whether these choices are physically consistent.

In the second example both MT and MS opt for taking the shortcut, suggesting that
it is a slightly shorter and faster route – though it may not be physically realizable
if we factor in acceleration. On the other hand, PC remains on the highway, indeed
following the ground truth. By construction, the route is physically consistent, and
thus, in combination with fewer road-type changes, is deemed a more likely route. In
other words, even though there may have been a theoretically faster route (excluding
physical consistency and other factors such as tra�c lights), we see that our model
can nonetheless capture the right behavior.

4https://www.gaia-gis.it/fossil/libspatialite/index, version 5.0.1
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MS MT MS MT

Table 3.1 Two snippets for a result subsampled with s = 120s. Shown are the subsampled trajectory (input, blue), the
ground truth (GT, green), and map-matching results (red).
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Figure 3.4 Comparison of the di�erent methods on the performance measures, under varying sparsification s. For
all measures, higher values indicate be�er performance.
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�antitative comparison Fig. 3.4 shows the performance measures for the dif-
ferent algorithms, separately for each subsampling time s. With very dense data, we
see that PC and PC+ perform slightly under MS and MT in terms of precision (CMP,
LCMP), though very similarly in recall (R, C). But as the trajectories become sparser,
we see that the HMM-based methods take a more considerable performance hit, in
both precision and recall. On the other hand, PC and PC+ keep a very similar recall:
that is, even for sparse trajectories, the reconstructed routes remain of high quality,
following physical consistency and road-type changes.

Precision for PC and PC+ is slightly reduced, but remains higher on the sparsest
setting (s = 120s) compared to MS and MT. This reduction is caused by the discon-
nects that PC(+) may produce: when there are no physically consistent routes to be
found. In other words, though it may not be able to reconstruct all parts of the route,
the parts that it does �nd are of high quality. And rather than outputting a route
of low quality like MS and MT (which may be hard to detect), such disconnects are
trivial to detect to allow manual review or post-processing. Overall, we observe in
our experiments that approximately one third of the produced routes of MS and MT
are fully physically consistent. Approximately 41% of the routes produced by PC are
full routes, where the other results consist of two or more parts.

Interestingly, we see that PC+ sometimes performs worse than PC, even though it
has the ability to use higher slack. In cases where it did not disconnect, it uses 2.42
steps on average to increase the speed slack, resulting in an average slack of 0.221,
which is below the 0.3 used for PC. However, this may result in more disconnects
in certain cases. Starting with very low slack as PC+ can result in very small speed
intervals from which the path cannot be continued consistently, even by a large
increase in slack. With PC the slack already starts higher and it may be able to avoid
this problem resulting in fewer disconnects. In the next section, we dive more into
the e�ect of the slack parameter � .

▶ 3.3.2 E�ect of speed slack

�alitative comparison. Fig. 3.5 shows a part of a result for PC, run with varying
values for the speed slack � and s = 120s. Since the result disconnects, we know
that the vehicle must have been moving faster than the local speed bounds allow –
or we may use it as an indication that the local speed bound is incorrect or outdated.
As the slack increases, PC is able to recover more of the route. However, too much
slack allows for routes that are unrealistic and do not match the ground truth: see
for example the south-eastern corner for the � = 0.5 result. Hence, we should
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Input & GT � = 0.1 � = 0.2 � = 0.3 � = 0.5

Figure 3.5 Snippet of a trajectory where PC detects that speeding occurs: with
more speed slack, more connected segments are found for the input
trajectory.

balance slack such that it allows some �exibility and handling of uncertainty, without
allowing for unsatisfactory routes to become physically consistent.

�antitative comparison Fig. 3.6 shows the performance measures for di�erent
values of � . We see that precision (CMP, LCMP) indeed increases with higher slack,
though the e�ect seems to be strongest for more dense trajectories. Recall (R, C) is
much less e�ected, though we see that � = 0.3 has fewer outliers than � = 0.5. This
further supports our conclusion of the qualitative comparison, in needing to balance
the slack parameter.

▶ 3.4 Conclusion and discussion
We developed a method that allows us to map-match sparse trajectories, in such
a way that the resulting route adheres to constraints on local speed and global ac-
celeration. Though we did not experimentally investigate running time, in our im-
plementation the bottlenecks are computing the k fastest paths between candidates
and actually loading all map data; computing with consistency itself is e�cient, as
demonstrated by Theorem 3.1.5.

Our results suggest that such physical consistency can help �nding the correct route,
and the reconstructed routes contain few errors. However, we also saw that devia-
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Figure 3.6 Performance of PC, when increasing the slack � . For all measures, higher values indicate be�er perfor-
mance.
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tions from the local speed bounds (because the vehicle is violating the bounds, or
because the data is inaccurate) can cause our method to not represent all parts of
route. Yet, our method guarantees that the parts that are reconstructed adhere to
the model of movement, and it helps in identifying problematic areas.

We note that our dataset consists of vehicles that have a clear destination, and follow
an e�cient route, which we can leverage by applying physical consistency. However,
sparse trajectories of vehicles that do not exhibit such behavior are likely more
problematic. For example, with a taxi roaming to �nd customers, there is simply not
enough information to reasonably reconstruct the trajectories from sparse samples.
This seems unavoidable, unless we can infer such from other context information,
such as popular places and common roaming routes.

Below, we brie�y review some possible avenues for future investigation.

Improving the map matcher We use only acceleration in our model, disregard-
ing that taking sharp turns requires a lower speed. Though we could model a turning
rate explicitly, it seems reasonable to assume that turns in the road network can be
taken, if the vehicle travels at a su�ciently low speed. Such an approach can easily
be modeled in our method, injecting zero-length edges at turns with a speed limit
depending on the angle of the turn.

A common problem in HMM-based map matchers is the need for good candidate
selection. Our presented method also su�ers from this problem, disconnecting the
path when no physically consistent route was found. If we are to follow an approach
where we explicitly construct the reachable locations from a previous candidate lo-
cation (instead of the generate-a-route-and-test approach in our current implemen-
tation), this may possibly be circumvented: rather than testing pairs of locations that
are decided upfront, we may be able to �nd the locations that are physically con-
sistent and closest to the next measurement. Alternatives include using continuous
candidates (e.g., use an entire road segment as a “location”) or replacing candidates
that are not consistent.

Our approach relies on driving at maximum speed, maximally accelerating and max-
imally decelerating, to decide consistency. Typically, this results in a variety of
possible ways to have driven the reconstructed route. If we are to estimate the ac-
tual location (and thereby speed and acceleration) of the vehicle at all times, we are
looking for the “most reasonable” witness and may consider minimizing e.g. the
variation in acceleration, or the deviation from the local speed bounds.
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The disconnects caused by our map matcher may arise due to inaccuracies in the data:
not just the GPS measurements, but speci�cally also the speed limits. Integrating
estimates of actual driven speed may help here. Yet, such data varies over time,
possibly increasing the algorithmic complexity of ensuring consistency.

Using physical consistency We compared our method to comparatively simple
HMM-based map matchers. The purpose here is to allow assessing the added value
of physical consistency, without the interference of many facets as combined into a
typical map matcher. With the potential of physical consistency demonstrated, we
may look into how to integrate this into more complex map-matching algorithms.
Speci�cally, we see potential to also integrate consistency into map matchers that
provide an explicit matching between the trajectory and the reconstructed route,
such as the Fréchet-distance-based map matcher [3].

Furthermore, it may be interesting to consider the “inverse” problem of map match-
ing with physical consistency, in order to augment a road network or assess its
quality: if we are given a route and acceleration bounds, what would reasonable
speed limits on the network be? Or similarly, how much do the given speed limits
need to change to accommodate a consistent route?
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Chapter 4

Route Reconstruction from
Tra�ic Flow via
Representative Trajectories

It can not only be the case that trajectories themselves are incomplete as we discussed
in the last chapter, but the same can apply to trajectory data sets. In general, when
acquiring trajectory data of human movement, the data set is not a complete sample
of all tra�c in the road network. But for analysis of mobility patterns, it may be of
interest to have a more complete picture of the trajectories and routes. Hence we
can look at contextual data and see if we can enrich the trajectory data by employing
this additional data, potentially �lling the gaps of the trajectory data set.

Checkpoint data originate from measurements by static devices such as loop detec-
tors or tra�c cameras, placed on �xed locations throughout the road network. They
provide a comprehensive view of the amount of tra�c �ow at that particular loca-
tion, but inherently no information on how people navigate through the network.
Tracking data, on the other hand – predominantly captured through GPS in smart
phones and navigation systems – provide a detailed view of individual behavior in
the form of trajectories. However, trajectory data does not describe the general traf-
�c �ow, as not all vehicles are tracked or tracked by the same system. Furthermore,
the (often signi�cant) detail in trajectories also raises privacy concerns, so trajectory
data are frequently segmented and anonymized before analysis.
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Both trajectory and checkpoint data thus give only a partial view on the full dy-
namics of human mobility. Given their complementarity it is natural to investigate
possibilities for data fusion, that is, data enrichment that leverages the strength of
both. Given loop-detector measurements as well as a (small) set of representative
trajectories, we investigate how one can e�ectively combine these two partial data
sources to create a more complete picture of the underlying mobility patterns. Specif-
ically, we want to reconstruct a concise set of realistic routes from the loop-detector
data, using the given trajectories as representatives of typical behavior.

Contributions and organization After a brief review of related work, we for-
mally model our problem in Section 4.1, while also introducing the necessary con-
cepts and notation. We arrive at a formal problem statement which models the
loop-detector data as a time-independent network �ow that needs to be covered by
the reconstructed routes; we capture the realism of the routes via the strong Fréchet
distance to the representative trajectories. In Section 4.2 we prove that several forms
of the resulting algorithmic problem are NP-hard even in restricted settings. Hence,
we explore heuristic approaches which decompose the �ow well while following the
representative trajectories to varying degrees. In Section 4.3, we propose an iterative
Fréchet Routes (FR) heuristic which generates candidate routes with bounded Fréchet
distance to the representative trajectories. In the same section we also describe a
variant of multi-commodity min-cost �ow (MCMCF) which is only loosely coupled
to the trajectories.

In Section 4.4 we report on an experimental evaluation of these proposed approaches
in comparison to a global min-cost �ow baseline (GMCF) which is essentially ag-
nostic to the representative trajectories. To make meaningful claims in terms of
quality, we derive a ground truth by map matching real-world trajectories. We �nd
that GMCF explains the �ow best, but produces a large number of often nonsensical
routes (signi�cantly more than the ground truth). MCMCF produces a large num-
ber of mostly realistic routes that explain the �ow reasonably well. In contrast, FR
produces signi�cantly smaller sets of realistic routes that still explain the �ow well,
albeit at the cost of a higher running time. In Section 4.5 we report on the results of a
case study which combines real-world loop-detector data and representative trajec-
tories for the region around The Hague, the Netherlands. Though we predominantly
discuss loop-detector data in this chapter, our approaches work for any type of data
source that can induce a �ow �eld and are not restricted to loop-detector data. We
re�ect on our results and discuss avenues for further research in Section 4.6.
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Related work Our problem is closely related to �ow decomposition, where the
goal is to decompose an aggregated �ow into paths, optimizing a given objective
function. Any �ow can be decomposed into at mostO(E) paths and cycles, where E is
the number of edges in the graph [2]. However, given a set of paths that decompose
the �ow, it is NP-hard to determine the correct integral coe�cients for each path [72].
Minimizing the number of paths in a decomposition is also NP-hard [118], and thus
various approximation algorithms have been developed [61]. We require that the
reconstructed routes are similar to one of the representative trajectories, but we do
not require that the �ow is explained completely.

We are aware of only a single geometric approach to reconstruct �ow from check-
point data. Duckham et al. [46] use the Earth Mover’s distance to estimate the
movement of couriers from checkpoint data. Given the limited data, the results are
quite accurate, but a full reconstruction of the movement is clearly out of reach.

Reconstructing a route (in a network) given a GPS trajectory is referred to as map
matching [3, 62, 70, 122]; see also the survey by Quddus et al. [101]. The goal is to
�nd a route in a given network, accounting for potential misalignment between GPS
measurements and the network, noise inherent in GPS systems, and inaccuracies in
the road network. There are a wide variety of available algorithms; various solutions
are based on hidden Markov models, a strategy that was pioneered by Newson and
Krumm [94]. The map-matching algorithm by Alt et al. [3] is particularly relevant to
our work (see Section 4.3), as it decides in quadratic time whether a graph admits a
path with Fréchet distance at most " to an input trajectory. Generally, map-matching
techniques are not designed to explain �ow data, but rather to correct measurement
errors in a single trajectory. Moreover, if we insist on simple routes, map matching
is NP-hard for various measures, including the Fréchet distance [82] and Hausdor�
distance [15]. If the road network is a perfect grid, routes with bounded (but not
necessarily minimal) Fréchet and Hausdor� distance can be found e�ciently [15].

The problem we study resembles tra�c generation [91, 103]. The main di�erence is
that we prefer a succinct set of routes, which is not the case for tra�c generation
approaches in general.

▶ 4.1 Modeling

Our input has three components: (1) a road network, given as a graph ; (2) a
set of representative trajectories  , each encoded by a sequence of measurements;
and (3) loop-detector data, which are tra�c-volume measurements expressed as the
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number of cars at a speci�c time at a speci�c location. Our goal is to combine these
heterogeneous data sources to create a more complete picture of the underlying
mobility patterns. Speci�cally, we want to reconstruct a realistic set of routes from
the loop-detector data, using the trajectories as representatives of typical behavior.
Here we discuss the modeling decisions we made to �nally arrive at a formal problem
statement which is amenable to algorithmic treatment.

For ease of notation, we introduce the function M(P, e) that indicates how often
the edge e ∈ E is traversed in a route P . Note that M(P, e) is 0 or 1 if P is simple
(necessary but not su�cient), but may take on higher values if P is not simple.

▶ 4.1.1 Modeling loop-detector data as time-independent com-
plete flows

Loop-detector data is gathered by counting the number of vehicles passing an in-
duction loop in the road network, aggregated over a �xed time interval. These time
intervals generally range from minutes to hours and thus can give an accurate view
on the tra�c volume over time at that particular location.

Mathematically speaking, loop-detector data can be interpreted as an (incomplete)
�ow on the road network: we assign the aggregate loop-detector data to the edge
in the road network where the detector is located and interpret the data as the
volume of tra�c through this edge. As not every edge in a road network has a
loop detector, the �ow data is a priori incomplete. Reconstructing a complete �ow
is challenging due to the inherent uncertainty surrounding the exact driven routes
between detector locations [27]. We focus initially on complete �ow information,
and brie�y consider incomplete �ows in the case study.

Loop-detector data inherently depend on time and hence a priori imply a time-
dependent �ow. However, time-dependent �ows pose several data, modeling, and
complexity problems. First of all, we need additional data to model the time needed
to traverse the network. We need to know the travel times for edges to be able to
reason about realistic routes in the network for the �ow. The realism of the recon-
structed routes then heavily depends on the accuracy of these values and on time it-
self. Furthermore, time-dependent �ows naturally require the use of time-dependent
representative trajectories, in which case the set of representative trajectories will
generally be (too) sparse. In addition, as we show in Section 4.2, time-independent
formulations of our problem are already computationally hard, which suggests that
the time-dependent problem will be even harder to compute. Hence, we model the
loop-detector data via time-independent �ow, which one can interpret as a “long-time
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average” of the loop-detector measurements.

We formalize the �ow as follows: given a network  = (V , E), a �ow (f , S, T ) on
 is speci�ed by a �ow function f ∶ E → ℝ≥0 mapping each edge of  to its �ow
value. In addition, there are sources S ⊆ V and sinks T ⊆ V for the �ow. Commonly,
a �ow function must satisfy the �ow-conservation property: for each vertex that
is neither a source nor a sink, the sum over all incoming �ow is equal to the sum
over all outgoing �ow. However, errors in actual data may cause violations of the
�ow-conservation property. Furthermore, tra�c volume generally does not specify
sources or sinks. We hence introduce the notion of a �ow �eld to describe the
measured tra�c volume, which is a function �∶ E → ℕ (not necessarily satisfying
the �ow-conservation property).

▶ 4.1.2 Reconstructed routes

Our goal is to compute a multiset of realistic routes that explains a �ow �eld � well.
We represent the multiset  by a base set of routes  (a basis  for short), along with
associated frequency counts. It seems natural to assume that these counts should
have integer values. However, with that restriction, even computing the correct
counts for a speci�c basis to explain a given �ow is NP-hard [72]. We therefore relax
the counts c ∶  → ℝ≥0 to be fractional coe�cients. This relaxation allows us to
e�ciently compute the coe�cients for a speci�c basis and �ow. We say that the
real-valued multiset of routes  = ( , c) is a reconstruction of the �ow �eld �.

We need to quantify how well a reconstruction ( , c) explains the input �ow �eld �.
To this end, we derive a �ow �eld �( ,c) from ( , c) as follows:

∀e ∈ E ∶ �( ,c)(e) = ∑
P∈

M(P, e)c(P ).

The error in the loop-detector measurements can be positive or negative, suggesting
a measure based on the absolute di�erence between �( ,c) and � per edge. In line
with tra�c-analysis literature [25, 26], we compute the �ow deviation Δ( , c, �) as
the sum of squared di�erences between �( ,c) and � over all edges.

Δ( , c, �) = ∑
e∈E
(�(e) − �( ,c)(e))2

For a �xed basis  , the coe�cients c that minimize the �ow deviation can be com-
puted e�ciently with standard techniques [17, 71].
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▶ 4.1.3 Realistic routes

We are given a set  of trajectories that represent typical behavior of vehicles in the
network. Our aim is to compute a realistic reconstruction of the �ow �eld based on
 . We measure the realism of a route in the basis  via its distance to the closest
trajectory in  .

There are many possible similarity measures for polylines such as the Fréchet dis-
tance [4], the Hausdor� distance, and Dynamic Time Warping [13]. In our setting
we might encounter a large di�erence (either way) in spatial resolution between the
road network and the representative trajectories, since the sampling densities of ve-
hicle trajectories di�er greatly between providers and sampling technologies used.
In the presence of such large discrepancy in sampling density, discrete measures
such as Dynamic Time Warping and the discrete versions of the Fréchet distance
and Hausdor� distance are known to perform poorly, since measurements have to
be matched to vertices of the road network.

The Hausdor� distance and the weak Fréchet distance do not capture the order of
points and edges in trajectories and are hence less suitable for our purpose. Hence,
we choose the strong Fréchet distance to measure the realism of our reconstructed
routes: it naturally captures the variability in the paths while encouraging that the
general direction of reconstructed routes and representative trajectories are similar.

The (strong) Fréchet distance dF (P, Q) between two curves P, Q ∶ [0, 1] → ℝ2 is
de�ned as

dF (P, Q) = inf
�,�

sup
t∈[0,1]

||P (�(t)) − Q(�(t))||,

where � and � are reparameterizations of P and Q, respectively. The functions �, �
must be strictly monotonically increasing, with �(0) = �(0) = 0 and �(1) = �(1) = 1.
To determine if two curves lie at Fréchet distance at most ", we use the so-called
free-space diagram [4]. This diagram represents matching locations on curves P
and Q that are within " Euclidean distance of each other. Two curves have Fréchet
distance at most " if the diagram admits a strictly monotone path. This problem can
be solved in O(n2) time where n is the total complexity of the two curves [4].

We say that a route is realistic if it lies within a prespeci�ed Fréchet distance " of
the closest representative trajectory. The parameter " controls the realism of our
reconstruction. A reconstruction ( , c) is realistic if all routes P ∈  are realistic.

The routes taken by vehicles tend to be simple, since humans generally take shortest
paths to their destinations. Hence, we would prefer to reconstruct simple routes
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only. However, as we show in Section 4.2, even just minimizing the �ow deviation
is NP-hard for simple paths. Our heuristic approaches hence prefer simple routes
but do not exclude non-simple ones.

▶ 4.1.4 Formal problem statement
Our complete input is the road network  = (V , E), the set of representative trajec-
tories  , the �ow �eld � induced by the loop-detector data, and realism parameter
" > 0. We want to �nd a realistic reconstruction ( , c) such that the �ow deviation
Δ( , c, �) is minimized. Following Occam’s Razor, we are looking for a concise expla-
nation of the �ow �eld given the representatives, that is, we prefer reconstructions
with small cardinality | |.

▶ 4.2 Computational complexity
In this section we explore the computational complexity of our problem. First of all,
we restrict the reconstructed routes to be simple. In this setting, even computing just
a single realistic route is NP-hard [82]. By extension, computing a realistic simple
reconstruction is hard as well. Hence, we next consider a restricted variant of the
problem, where the reconstructed routes do not have to be realistic and even share
start and end point. Speci�cally, we require that all routes in the reconstruction are
simple and start at a vertex s and end at a vertex t . We refer to such a reconstruction
as an (s, t)-reconstruction. However, we show that even this simpli�ed problem is
NP-hard. For this result, we consider two variants of the deviation function: the
sum of squared di�erences as de�ned in the previous section, but also the sum of
absolute di�erences. In the following two theorems we refer to these as squared and
absolute deviation, respectively.

4.2.1 Theorem. Given a road network  with source s, sink t and an associated �ow
�eld �, it is NP-hard to compute an (s, t)-reconstruction with only simple paths that
minimizes the absolute deviation to �.

Proof. We show that it is NP-hard to determine whether there exists an (s, t)-
reconstruction with simple paths such that the absolute deviation Δabs( , c, �) ≤ �
for some � ≥ 0.

Our proof uses a reduction from the longest-path problem: given a graph ′ =
(V ′, E′), a source s′ and sink t′ in V ′, and a threshold L > 0, decide whether ′
admits a simple path of at least L edges from s′ to t′. We turn this into an instance
of our problem as follows. We augment the network to  by adding a new vertex
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Figure 4.1 Schematic sketch of the constructions to prove NP-hardness of the
(s, t)−reconstruction problem while minimizing the absolute deviation
(le�) and the squared deviation (right). The longest-path graph ′ is in
the dashed circle. For the squared deviation construction, E1 is shown
in blue and E2 is shown in red.

s

s connected by a new path of L − 1 edges to s′ s(see Figure 4.1, left). For the sink,
we use the same vertex, t = t′. The �ow �eld � has value 1 for all edges in E′, and
value 0 otherwise. Finally, we set the deviation threshold at � = |E′| − 1. We claim
that this instance admits an (s, t)-reconstruction with absolute deviation at most � ,
if and only if ′ admits a simple path of length at least L from s′ to t′.

Assume that ′ admits a simple path of length at least L from s′ to t′. Let P ′ denote
this path, and P the route in  consisting of the path from s to s′ concatenated with
P ′. Consider the reconstruction consisting only of P with coe�cient 1. The result
is an (s, t)-reconstruction with only simple paths by construction. For every edge e
originally from P ′ we have that |�(e) −∑P∈ M(P, e)c(P )| = 0; for every other edge
this value is 1. Thus, the absolute deviation Δabs( , c, �) is the number of edges
along the path from s to s′ plus the number number of edges in ′ not covered by
P ′. Hence, this is at most (L − 1) + (|E′| − L) = |E′| − 1 = � .

Now, assume that an (s, t)-reconstruction ( , c) exists with absolute deviation at
most � . Speci�cally, we assume that Δabs( ⧵ {P}, c, �) > Δabs( , c, �) for all routes
P ∈  . In other words, removing any route increases the deviation. Observe that
a reconstruction without any routes would achieve deviation |E′| > � , thus the
reconstruction must contain at least one route. Consider a route P ∈  . As P must
start at s and end at t , and the �ow �eld at all edges between s and s′ is zero, we know
that removing P from the solution locally decreases the deviation by (L − 1) ⋅ c(P ).
Since removing a path must increase deviation and the deviation at one edge can
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increase by at most c(P ), P must contain at least L edges originating from ′. Hence,
the subpath of P starting at s′ and ending at t′ has at least L edges. As a result, we
conclude that ′ has a simple path of length at least L.

Finally note that the construction can easily be performed in polynomial time, so
the stated problem is NP-hard. □

4.2.2 Theorem. Given a road network  with source s, sink t and an associated �ow
�eld �, it is NP-hard to compute an (s, t)-reconstruction with only simple paths that
minimizes the squared deviation to �.

Proof. We again use a reduction from the longest path problem. Let the instance of
the longest path problem consist of a graph ′ = (V ′, E′) along with source s′, sink
t′, and threshold L. We augment ′ to obtain  = (V , E) as follows. We �rst add a
new path of L−1 edges from the new source vertex s to s′, and we refer to this set of
new edges as E1. Furthermore, we add a new path of L−1 edges from s′ to t′, and we
refer to this set of edges as E2 (see Figure 4.1, right). Hence we have E = E′ ∪ E1 ∪ E2.
For the sink, we use the same vertex t = t′. For the �ow �eld � we set �(e) = 0 if
e ∈ E1, �(e) = 1 if e ∈ E′, and �(e) = 2 if e ∈ E2. We now claim the following: (1) the
minimum deviation for the instance formed by  and � is |E| if the longest simple
path in ′ has length at most L − 1, and (2) the minimum deviation is strictly smaller
than |E| if there exists a path of length at least L in ′. Note that (1) and (2) taken
together directly imply that the stated reconstruction problem is NP-hard.

For (1), �rst assume that the longest simple path in ′ has length at most L − 1.
Consider the (s, t)-reconstruction ( , c) consisting of a single path P ∗ ∈  with
P ∗ = E1 ∪ E2 and c(P ∗) = 1. Note that the deviation of this reconstruction is exactly
|E|. Now consider any simple path P between s and t and add it to  with c(P ) = 0
(this does not really change the decomposition). By de�nition, the derivative of the
deviation with respect to the coe�cient c(P ) is given by:

)Δ( , c, f )
)c(P )

= ∑
e∈E

−2M(P, e)(f (e) − ∑
Pi∈

M(Pi , e)c(Pi))

= 2∑
e∈E

M(P, e)(M(P ∗, e) − f (e))

= 2(|P ∩ E1| − |P ∩ E2| − |P ∩ E′|)

The last step in the above is due toM(P ∗, e)− f (e) being 1 for e ∈ E1 and −1 otherwise.
Note that |P ∩ E1| = L − 1 by construction. As any simple path P either passes
through ′ or is equal to P ∗, precisely one of the other terms is zero. If P = P ∗,
then |P ∩ E2| = L − 1 and thus the derivative is zero. Otherwise, P passes through
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′ and thus |P ∩ E′| ≤ L − 1. Hence, the derivative with respect to c(P ) is always
non-negative. Since c(P ) cannot become smaller than zero, we conclude that ( , c)
is a local minimum for the deviation function. Since both the constraints and the
deviation function are convex, this local minimum must also be the global minimum.

For (2), assume that there exists a simple path P ′ in ′ with length at least L. As
above, let P ∗ = E1 ∪ E2, and let P = E1 ∪ P ′. We now show that there always exists a
solution with deviation at most |E|. In particular, consider the (s, t)-reconstruction
( , c) with  = {P ∗, P}, c(P ∗) = 1, and c(P ) = �. Note that the edges in E2 contribute
exactly |E2| to the deviation. For an edge e ∈ E1, the deviation is (1 + �)2, and for
an edge e ∈ P ′ the deviation is (1 − �)2. In total, the edges in E′ contribute at most
|E′| − L + L(1 − �)2 to the deviation. We obtain the following total deviation:

Δ( , c, f ) ≤ |E2| + |E′| − L + L(1 − �)2 + (L − 1)(1 + �)2

= |E| − 2L + 1 + L(1 − �)2 + (L − 1)(1 + �)2

= |E| − 2L + 1 + 2(L − 1)(1 + �2) + (1 − �)2

= |E| − 1 + 2(L − 1)�2 + (1 − �)2

= |E| + (2L − 2)�2 − 2� + �2

= |E| + �((2L − 1)� − 2)

Finally, by choosing � = 1/(2L − 1), we obtain that Δ( , c, f ) = |E| − 1/(2L − 1) < |E|,
which concludes the proof. □

Consequently, we weaken the requirements even further and study relaxed (s, t)-
reconstructions which may contain non-simple routes. We sketch a simple algorithm
using positive parameter " which, in the limit of ever smaller ", approaches a relaxed
(s, t)-reconstruction with optimal �ow deviation: �rst, we �nd the min-cost �ow
that minimizes the squared di�erence or absolute di�erence between the input �ow
�eld and the �ow [119]. Note that if we can construct routes that cover all �ow of
this min-cost �ow solution, it must be optimal. We decompose the resulting �ow
of the min-cost �ow computation into �ows along simple-paths and �ows along
cycles [2]. The path �ows are already valid reconstructed routes. However, we still
need to cover that �ow of the cycles. We can construct non-simple routes from the
cycles by routing a shortest (s, t)-path via each cycle. By sending a very small "
amount of �ow along these routes and spinning around the cycles many times, we
can construct non-simple route �ows that come arbitrarily close to the cycle �ows
they were constructed from. Hence, they also come arbitrarily close to the optimal
deviation. The resulting routes are highly non-simple and generally not what we
consider realistic behavior, thus we need the realism measure to enforce this.
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We now return to the problem as stated in Section 4.1.4: we reintroduce the require-
ment that the reconstructed routes must be realistic, while still allowing non-simple
routes and dropping the (s, t)-requirement. In this setting, minimizing the �ow de-
viation becomes trivial if " is large enough: when all individual edges are within "
of a representative trajectory, we can simply use them as routes in our reconstruc-
tion, trivially covering the entire �ow �eld. If, on the other hand, " is smaller than
the smallest Fréchet distance from a representative to the road-network, we cannot
reconstruct any routes and thus cannot cover any �ow.

For values for " between these extremes, as of yet we cannot establish the computa-
tional complexity. We observe that, already for simple paths, the problem under the
absolute and squared deviations is always convex; the di�culty stems from the expo-
nential number of candidate paths to consider for the reconstruction. Furthermore,
by Carathéodory’s Theorem, we know that the optimal reconstruction contains at
most |E| paths. Thus, the di�culty of the problem lies in e�ciently searching through
the solution space for the best routes. Allowing non-simple routes grows the solu-
tion space, but may potentially make it possible to search the space more e�ciently.
However, we see no reason why this would be the case if the routes must also be
realistic. We therefore conjecture that the problem is also NP-hard for non-simple
realistic reconstructions.

▶ 4.3 Route reconstruction algorithms
Here we present heuristic approaches that decompose the �ow well while follow-
ing the representative trajectories to varying degrees. In Section 4.3.1 we describe
our iterative Fréchet Routes (FR) heuristics which creates only realistic routes, i.e.,
routes that have bounded Fréchet distance to a representative trajectory. We discuss
two variants (WFR and EFR) which di�er in their approach to constructing routes.
In Section 4.3.2 we describe a multi-commodity min-cost �ow approach (MCMCF)
which is loosely coupled to the representative trajectories, and a global min-cost �ow
baseline (GMCF) which is essentially agnostic to the representative trajectories.

▶ 4.3.1 Fréchet Routes
Recall that our goal is to �nd a realistic basis  and coe�cients c such that the
�ow deviation is minimized. Our Fréchet Routes (FR) heuristic decouples �nding
the basis and deciding on the coe�cients c for a given basis. We grow the basis
iteratively, aiming to improve the deviation after each iteration (see Figure 4.2).
Since the solution space is in�nite, the main challenge is to �nd a basis that is small
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Figure 4.2 High-level overview of the proposed Fréchet Routes approach.

enough for e�cient computation but comprehensive enough to result in a small
deviation from the �ow �eld.

In one iteration of our heuristic we add new routes to the basis for each representa-
tive trajectory independently (“Modi�ed map-matcher”) and evaluate the resulting
basis. For a given basis we can compute the coe�cients c that minimize the �ow de-
viation e�ciently with standard techniques [17, 71] (“Non-negative least squares”),
resulting in a solution of weighted routes. We prune the basis by eliminating dupli-
cate routes and routes with coe�cient zero. Furthermore, we compute the residual
�ow �eld �r ∶ E → ℝ, de�ned as �r (e) = �(e) − �( ,c)(e) for all edges e ∈ E. The
residual �ow �eld guides our search for new basis elements.

Generating basis routes Given the road network , a single representative tra-
jectory T , the residual �ow �eld �r (or the �ow �eld � in the �rst iteration), and
threshold " on the Fréchet distance, we generate basis routes for T as follows. The
residual �ow �eld stems from our current reconstruction ( , c). This reconstruction
has an associated deviation Δ( , c, �) (this deviation is the �ow within � initially).
If we extend the basis  with a path P and an associated positive coe�cient cP , the
deviation changes by:

Δ( ⊕ P, c ⊕ cP , �) − Δ( , c, �) = ∑e∈P (�r (e) −M(P, e)cP )2 − �r (e)2

= −cP ∑e∈P M(P, e)(2�r (e) −M(P, e)cP )
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For routes that visit an edge at most once (e.g., simple routes), the above simpli�es
to −cP ∑e∈P (2�r (e) − cP ). Negative values reduce deviation, so we are particularly
interested in capturing edges in routes which have high residual �ow ∑e∈P �r (e).
Below we describe two di�erent approaches to do so: Edge-inclusion Fréchet Routes
(EFR), which selects k new routes per trajectory, and Weighted Fréchet Routes (WFR),
which select one new route per trajectory. Both are adaptations of the Fréchet map-
matching algorithm as described by Alt et al. [3], which we brie�y describe �rst.

Fréchet map-matching Alt et al. [3] present an algorithm to map-match a tra-
jectory T = ⟨p1,… , p� ⟩ to a road network : the result is a route in  such that its
Fréchet distance to T is at most ". This decision version can subsequently be used
to �nd the route that minimizes the Fréchet distance to T , but we need only this
decision algorithm.

Let the allowed Fréchet distance be �xed to ", and let T be parameterized on [1, � ]
such that for � ∈ [i, i + 1], T (� ) = pi + (� − i)(pi+1 − pi). Furthermore, we assume for
simplicity here that  is the subset of the overall network that is fully covered by
the Minkowski sum of a disk of radius " with the trajectory T .

Trajectory T , network  and " de�ne a free-space manifold  . This manifold is
de�ned as the locations in the direct product space (� , r) ∈ T × such that d(T (� ), r) ≤
". A monotone path through the free space on this free-space manifold from some
point with � = 1 to some point with � = � then matches to a route in  with Fréchet
distance at most ". Note that the monotonicity avoids moving backwards along an
edge, but an edge may be visited multiple times.

First, for each vertex v of , the algorithm computes a 1-dimensional free-space
diagram FD(v)∶ [1, � ] → {0, 1}. In this diagram, intervals that map to value 1 are
called white intervals. The white intervals mark the parameter values of � on T for
which v is within Euclidean distance " and thus a potential match.

Then, for each edge (u, v) in , the algorithm computes the left-right pointers for
all white intervals I of FD(u). These left-right pointers mark a range of FD(v) that
can be reached from I by a monotone path in the free space of the connecting 2-
dimensional free-space strip de�ned by (u, v) and T . Due to convexity, any point in
the free space of FD(v) between these extremal left-right pointers can be reached,
but note that this range may encompass multiple white intervals at v.

To determine whether a route exists within Fréchet distance ", the algorithm now
applies a sweep-line algorithm over the parameter space de�ned by � , starting at 1.
For every vertex v, it maintains a list C(v) of ranges in FD(v) that can be reached
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by a monotone path in the free-space manifold de�ned by  and T . That is, the
intersection of C(v) with the white intervals of FD(v) de�ne reachable intervals. In
particular, this list contains the ranges such that the last part of the matching path
ends at or goes through the sweep-line value in the dimension of � . If C(v) includes
an interval that contains t = � , there must be a route within " Fréchet distance.

The events that the sweep line handles are when the start of a reachable white
interval I in some C(u) is reached that was previously not discovered yet. This event
is handled by updating all C(v) for all neighboring v such that (u, v) in E, taking
into account the new intervals that can be reached from I . These can be e�ciently
retrieved via the precomputed left-right pointers.

The sweep line stops as soon as either a white interval is added to some C(v) that
contains parameter value � or no white intervals are available anymore. The former
implies the existence of a route within Fréchet distance ", whereas the latter implies
that such a route does not exist. To reconstruct the route, the algorithm keeps track
of predecessor vertices whenever the white intervals in C(v) are updated when
handling a white interval I . In total, the algorithm runs inO(l(V +E)) time, assuming
e�cient bookkeeping.

Edge-inclusion Fréchet Routes (EFR) We modify the map-matching algorithm
to �nd a route that must include a speci�c edge e = (u, v) with high residual �ow. In
fact, we are attempting to �nd k routes which include the k edges with the highest
residual �ow and that each have positive residual �ow. To �nd a route within Fréchet
distance " of the representative trajectory T which contains edge e, we need to �nd
two path in the free-space manifold  : a path from the start to a white interval at
u and a path from a white interval at v to the end. Moreover, the concatenation
of these two paths with e needs to be monotone in  . To do so, we consider each
white interval at u, decide if it is reachable from the start, and if so, continue from
all possible white intervals at v.

EFR stops its search in the free-space manifold as soon as the begin/endpoint of the
reconstructed route lies within " Euclidean distance of the start/end of T . This might
ignore �ow on edges in the "-vicinity of the start and end of T . Hence, we greedily
add suitable edges to the ends of the route, taking care not to introduce cycles and
to not decrease the average amount of residual �ow per edge in the route.

Weighted Fréchet Routes (WFR) EFR uses the residual �ow only to indicate
the top k routes. We further modify the map-matching algorithm to �nd routes that
generally include edges with high residual �ow, that is, high weight. To do so, we
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maintain a sorted list of weights with each white interval. Let � be the parameter
of trajectory T (recall that these are the height values of the free-space manifold
 ) and consider an interval I for vertex v. Each entry in the list for I is a tuple
(� ,  ) such that there is a monotone path through  with weight at least  ending
in v with height at least � . Note that the value of  depends on the execution order
of Dijkstra’s algorithm and is hence only a lower bound. We prune tuples (� ,  )
for I whenever there is another tuple (� ′,  ′) in the list where � ′ < � and  ′ ≥  .
We maintain the weights as we execute the map-matching algorithm. In principle,
we can construct a high-weight route at the end of the algorithm. However, note
that the road network  can contain cycles which result in cycles between white
intervals. Hence we construct a high-weight route explicitly via back-tracking, using
each tuple at most once. Note that the resulting route may still contain cycles in the
road-network; we only break cycles in the dependency of white intervals.

▶ 4.3.2 Min-cost flow

We now describe two heuristics that are based on min-cost �ow and relax the real-
ism constraint of Fréchet Routes. On a high level, both heuristics follow the same
approach: we �rst solve the min-cost �ow problem for the �ow �eld (guided by the
representatives to a certain degree) using our �ow deviation as cost function, and
then we heuristically compute a reconstruction from the resulting �ow.

Multi-commodity min-cost flow (MCMCF) For each representative trajectory
T we construct a subgraph G(T ) of  with all vertices and edges within distance "
of T . Vertices within distance " from the start or end of T can act as sources or sinks
of a �ow in G(T ). Each representative trajectory hence induces a single (min-cost)
�ow problem. By overlapping the graphs G(T ) for all T ∈  , we construct a multi-
commodity min-cost �ow problem on , where each trajectory T has an associated
commodity. We can solve the resulting MCMCF using standard software packages
(see Section 4.4).

Global min-cost flow (GMCF) We retain only the sources and sinks of MCMCF
and otherwise impose no restriction on the �ow. This results in a min-cost �ow
problem over the entire road network , which is essentially agnostic to the repre-
sentative trajectories.

Heuristic path reconstruction The result of either min-cost �ow approach is
an edge �ow per commodity or over the complete road network. Our goal is to
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approximate these �ows via a reconstruction that may use non-simple paths. For
each commodity (or the complete network) we �rst compute a “path �ows-cycle
�ows” decomposition [2], which is equivalent to the edge �ows. We can directly
add the resulting path �ows to our basis. The cycle �ows, however, generally are
not correct source-sink paths. We observe that cycle �ows which are disjoint from
all path �ows cannot be close to any of the representative trajectories; we hence
exclude them from the basis. For each other cycle �ow, we greedily merge it with
one of the path-�ows that overlap it at one or more vertices. If the path �ow is
higher than the cycle �ow, then we reduce it to be equal to the cycle �ow. If the path
�ow is lower than the cycle �ow, then we traverse the cycle multiple times, using
the path �ow, to create a consistent (non-simple) route, rounding where necessary.

▶ 4.4 Experimental evaluation
We evaluate and compare the various heuristics of the previous section using real-
world trajectories. Particularly, we investigate the extensions and parameters of our
Fréchet-Routes methods and compare Fréchet Routes to the min-cost-�ow-based
methods.

We implemented all algorithms1 in C++ using Boost and MoveTK2. For �ow prob-
lems and determining coe�cients c, we use IBM ILOG CPLEX 12.9. We ran all
experiments single-threaded on Ubuntu 18.04, on an Intel(R) Xeon(R) Gold 5118
CPU @ 2.30GHz.

Data To evaluate how well representative trajectories assist in route reconstruc-
tion beyond the given sample, we require a ground truth: all driven routes  ∗ that
together de�ne the �ow �eld �. We use as network  the roads surrounding The
Hague (the Netherlands) extracted from OpenStreetMap [97]; see Fig. 4.3, the left
�gure. As the complete trajectory set  ∗, we use 11 445 real-world trajectories pro-
vided by HERE Technologies3 in the same area. We map-match  ∗ to  to obtain
 ∗. To avoid bias, we use the approach by Yang and Gidofalvi [131] instead of the
approach by Altet al. [3], as the latter relies on the Fréchet distance and is the basis
for our Fréchet Routes. We derive the �ow �eld � for  by counting the number of
occurrences of each edge in  ∗. The representative trajectories  are sampled from
 ∗, using � > 0 such that | | = ⌈� | ∗|⌉.

1Source available at https://github.com/tue-alga/RouteReconstruction
2https://movetk.win.tue.nl
3https://www.here.com
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4.4 Experimental evaluation

Measures To evaluate our heuristics, we use the measures listed below that are
generally based on Section 4.1. Whereas some measures can be used to assess any
result, the two measures marked with “GT” rely on having a ground truth. That is,
the latter type can measure performance beyond the provided representatives.

�ow deviation: how well do the reconstructed routes represent the input �ow?
We measure the sum of squared di�erences between input and reconstructed
�ow, over all edges.

realism: how realistic is the reconstruction? We average the Fréchet distance from
each reconstructed route to its closest representative trajectory in  , weighted
by the coe�cients.

realism (GT): how realistic are the reconstructed routes in relation to the ground
truth? This is identical to realism, but we use the closest trajectory in the  ∗

data set.

completeness (GT): how well is the ground truth captured by the result? We aver-
age the Fréchet distance from each route in the ground truth  ∗ to the closest
reconstructed route.

cardinality: the number of reconstructed routes.

running time: total computation time (wall clock).

For all measures, lower values indicate better performance. We note that �nding a
subset of  with optimal completeness is NP-hard, via a reduction from dominating
set for unit-disk graphs [86]. Generally, the data does not admit a solution with per-
fect completeness or realism, as the trajectories are not aligned to the road network.
To indicate the distortion inherent in the data due to map matching, we visualize
the Fréchet distance between  ∗ and  ∗ in Fig. 4.3 on the right side.

▶ 4.4.1 Fréchet Routes
Here we investigate our Fréchet-Routes algorithm, in terms of candidate-generation
methods and its parameters. Throughout this section, we keep " �xed at 100m and
run each trial with seven random samples and average the results. Throughout this
investigation, we do not consider our realism measures, since FR and its extensions
guarantee realism by construction.

Candidate generation We aim to investigate EFR and WEFR to generate ba-
sis routes. Speci�cally, we run four variants: with weighted routes (WFR), with
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Figure 4.3 (le�) Road network of The Hague used in our experiments, 60 277 ver-
tices and 100 654 edges, with color indicating the flow field induced
by  ∗; gray edges do not contain flow. (right) Histogram of Fréchet
distances between all T ∈  ∗ and their routes in  ∗. The rightmost
bar aggregates higher values, which is approximately 3% of the trajec-
tories.

edge-inclusion (EFR), with both (WEFR) and without either extension (FR). We use
� = 0.05, imax = 8 and k = 2. Fig. 4.4 summarizes the results. Compared to FR,
the extensions have a mild positive e�ect on completeness and a strong positive
e�ect on deviation, but increase cardinality. Whereas EFR is slightly worse in devi-
ation, completeness and running time than WFR, it performs better in cardinality.
Interestingly, WEFR seems to e�ectively combine these, resulting in deviation and
complexity between WFR and EFR and completeness is actually slightly better than
either variant in isolation, suggesting a complementary nature here in obtaining
large variation (WFR) and trying to address speci�c edges with deviation (EFR). The
drawback is the increase in running time, since we e�ectively run both methods
together.

Iterations and edge inclusion For WEFR we investigate the e�ect of imax, the
number of iterations, and k, the number of paths generated by edge inclusion. We
run our algorithm with � = 0.05 and k ∈ {2, 10} for imax = 8 iterations, recording
the result after each iteration. Fig. 4.5 illustrates the results. The time spent per
iteration remains roughly similar, even though cardinality tends to increase. Iterat-
ing has a very mild positive e�ect on completeness and �ow deviation. Cardinality
increases quickly in the �rst iterations, but the later ones do not necessarily increase
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Figure 4.4 Results using variants of Fréchet Routes, from le� to right: FR (purple),
WFR (red), EFR (orange), WEFR (blue).
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Figure 4.5 Results for WEFR per iteration, with k = 2 (blue) and k = 10 (green).

cardinality, as alternative routes are generated that can replace earlier candidates.
Compared to k = 2, k = 10 yields higher cardinality and running time, but improves
deviation. The somewhat unstable completeness can be attributed to the incomplete
knowledge about the ground truth: routes can improve deviation while being further
away from unknown ground truth routes.

▶ 4.4.2 Comparing di�erent methods

We now compare WEFR to the MCF-based (min-cost-�ow) methods: GMCF and
MCMCF. We look into the e�ect of varying the sampling rate for the approaches,
and then provide an in-depth analysis of the structure of the solutions provided by
the approaches.

Sampling rate We vary � using values in {0.05, 0.1, 0.15, 0.2, 0.25}. This mimics
di�erent degrees of coverage of the representative trajectories relative to the overall
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Figure 4.6 Results of WEFR (green), GMCF (blue) and MCMCF (purple) for vary-
ing sampling rate � .

tra�c. Generally, we may expect that solution quality increases as we have more
representative trajectories. Based on the analysis of the FR approaches, we use k = 2
but reduce imax to 5 for WEFR, since a larger sample implies that more candidates
are generated per iteration. We show the results for WEFR, GMCF and MCMCF
in Fig. 4.6. As expected, increasing sampling rate yields better deviation and com-
pleteness at the expense of longer computation times and higher cardinality for all
approaches. We observe that completeness seems to not vary much for � between
0.1 and 0.25 for WEFR: there may be outlying behavior in the full dataset which is
not readily captured by other tra�c, but this may also be in part due to the inherent
error in the ground truth (see Fig 4.3, right). Interestingly, at � = 0.25, the deviation
for both WEFR and MCMCF is already close to the deviation of GMCF, the least
restrictive approach. Both approaches dominate GMCF in terms of realism and com-
pleteness, showing that they are able to balance realism, completeness and deviation
better for higher sampling rates.
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Table 4.1 Deviation and cardinality for the three di�erent methods on the full
solution, as well as on subsets thereof.

WEFR MCMCF GMCF

Full Deviation (×107) 2.13 1.95 1.07
Cardinality 926 11553 19336
Running time (min) 46.6 31.1 43.5

Restricted Deviation (×107) 2.13 3.35 15.7
Cardinality 465 638 28

Adjusted Deviation (×107) 2.13 2.12 14.1
Cardinality 465 638 28

Reduced Deviation (×107) 2.13 2.16
Cardinality 465 465

Analyzing the structure of the solutions We now analyze the structure of the
di�erent solutions that are produced by our approaches. We use � = 100m and
� = 0.05 to get representative trajectories. We repeated the analysis below for
seven random samples, but the outcome was similar every time; we hence focus our
exposition on one such random sample here.

Table 4.1 lists measures of the (full) solution for each of the three methods. MCMCF
and WEFR are similar in deviation, with MCMCF performing about 10% better than
WEFR. Considering cardinality, WEFR achieves this deviation with but a fraction of
the routes that MCMCF uses. Interestingly, we see that MCMCF uses roughly the
same (but slightly more) routes than in the ground truth. The question is though,
how realistic all such routes are. GMCF achieves the lowest deviation, but is also least
constrained in terms of realism. Running times are in the same order of magnitude,
with WEFR being slowest and MCMCF being fastest.

In Fig. 4.7 we relate the coe�cient of each reconstructed route to its realism (GT);
we use the ground-truth variant which gives a slight advantage to the MCF-based
methods, as WEFR constructs realistic routes by de�nition. We observe that the
MCF-based methods include many unrealistic routes, even when measuring with
respect to  ∗. Also, there are one or two routes with considerable coe�cient, and
many routes with low coe�cients for this dataset.
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Figure 4.7 Relation between realism (GT) in meters on the horizontal axes and
the coe�icient of each reconstructed route in the solutions of WEFR,
MCMCF and GMCF. Here � = 100m and � = 0.05. (Top) Routes in the
full solution. (Bo�om) Routes for WEFR and MCMCF a�er restricting
the routes and for MCMCF also a�er adjusting coe�icients.

We thus restrict the solutions. First, we �lter to include only reconstructed routes
that are deemed realistic with respect to the ground truth, using a threshold of 100m.
Motivated by the very high cardinality of the MCF solutions, we also �lter to include
only routes that have a coe�cient of at least 1: that is, we focus on those routes that
actually contribute to the �ow deviation minimization.

Table 4.1 lists statistics for these restricted solutions. WEFR retains roughly half of
its routes (only based on the coe�cient). Yet, the deviation is hardly a�ected. For
MCMCF, the cardinality is reduced to roughly 5%, though this increases deviation to
be over 50% worse than WEFR. This suggests that MCMCF produces fairly realistic
routes, among many unrealistic ones, yet they are not immediately selected to rep-
resent the �ow �eld. GMCF reduces to few routes, with excessive deviation: it does
not explain tra�c �ow well with realistic routes and we do not consider it further.

Fig. 4.7 illustrates also the coe�cient-realism relation for WEFR and MCMCF for
the restricted solutions. Here, it is evident that WEFR and MCMCF have somewhat
similar structure, whereas nearly all routes in the GMCF disappear. Of note is that
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one of the two high-coe�cient routes was �ltered out for MCMCF.

By removing routes from the solution, the computed coe�cients are no longer opti-
mal for �ow deviation. For better understanding the solution, we adjust the coe�-
cients by recomputing them for the restricted set. For these adjusted (and restricted)
solutions, MCMCF recovers its loss in deviation to be comparable with WEFR; GMCF
barely recovers (see Table 4.1). In Fig. 4.7 we see that the solution structure resembles
the WEFR situation even more.

To assess to what degree the higher cardinality of MCMCF in�uences the above, we
reduce its solution further: we select the 465 highest-coe�cient routes, and again ad-
just the coe�cients. For this reduced set, we see that the deviation is increased again
slightly, to be only slightly worse than WEFR (Table 4.1). This reinforces the conclu-
sion that MCMCF is able to �nd realistic routes, but that these are hidden between
the unrealistic ones. Though �ltering as above is possible, it provides computational
overhead compared to using WEFR which directly guarantees realism.

▶ 4.5 Case study
We present a case study using real-world loop-detector data, obtained from the Dutch
National Tra�c Dataportal4. Using this loop-detector data and the full trajectory
set  ∗ described in the previous section, we apply the di�erent approaches to recon-
struct routes from these loop detectors. Fig. 4.8 illustrates the locations of the loop
detectors and their amount of �ow for a single hour during the day the trajectory
dataset was recorded. To acquire a (partial) �ow �eld out of the detector data, we
assign their �ow to the nearest edge in the road network, selecting the maximum
�ow when multiple detectors match to the same edge.

Incomplete flow As Fig. 4.8 illustrates, the loop detectors do not cover all edges
in the road-network and it hence gives an incomplete �ow �eld. Hence, we adapt
the deviation measure to include only edges that have a loop detector and we adapt
the non-negative least squares accordingly. This does not fundamentally alter the
described approaches. One consequence of this approach is that there are (sub)routes
in the network that do not a�ect �ow deviation, and thus may lead to unnatural
routes which include small cycles and detours. EFR does not su�er from this problem
as the underlying algorithm [3] tends to create short paths. For WFR we discourage
the use of edges without a loop detector by giving them a small negative residual

4https://ndw.nu/en/
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Figure 4.8 Case study: (Top) real-world loop-detector measurements and repre-
sentative trajectories. (Bo�om) Results of WEFR, MCMCF, and GMCF,
visualized as the induced flow field derived from the routes and their
coe�icients. Here, again � = 100m.

Table 4.2 �ality measures for the case study.

WEFR MCMCF GMCF

Deviation (×107) 3.89 4.03 3.07
Cardinality 109 646 271
Realism (m) 82.4 98.2 503.7
Running time (min) 153.2 26.9 1.3

value. For MCMCF one could consider to also include some form of minimization
of the �ow on edges not having a loop detector; however, preliminary tests suggest
that this is not e�ective; we leave improving realism for MCMCF on incomplete
�ows to future work. Finally, we do not modify GMCF as it does not exhibit this
problem and, as we shall see, such an approach may even exacerbate the issues of
this method.
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Analysis Fig. 4.8 shows the reconstructed routes as the derived �ow �eld for all
algorithms, and Table 4.2 shows applicable quality measures. It is clear in Fig. 4.8
that GMCF very greedily constructs routes: the routes are mostly short disjoint
pieces that cover loop detector �ow. For WEFR and MCMCF we see longer routes,
extending beyond the immediate vicinity of the loop detectors: this we can attribute
to the stricter realism requirements which cause entire (mostly) realistic routes to
be selected. This is further supported by the deviation and realism of the di�erent
approaches (Table 4.2): GMCF performs best regarding deviation, but at the expense
of low realism. WEFR and MCMCF perform better here, where WEFR balances the
realism and deviation best of the two. This can be attributed to the more targeted
search of WEFR for high-weight routes.

Contrasting our previous experiments with complete �ows, WEFR now actually
achieves better �ow deviation than MCMCF, in spite of MCMCF having higher car-
dinality. The drawback is that WEFR scales less well with the higher number of
representative trajectories, taking about �ve times as long as MCMCF – but reduc-
ing the number of iterations may partially alleviate this drawback.

▶ 4.6 Discussion

Our work shows that the studied problem is challenging even in “simple” forms, but
our evaluation shows promising results. As such, it leads to various avenues for
further research.

Representatives Our experiments show that more representatives can improve
the performance of route reconstruction. Yet, this also comes at a computational cost.
However, this is mostly as it diversi�es behavior: adding very similar representatives
will not improve the results drastically, if at all. As our methods do not require
that the representatives are actually part of the tra�c generating the �ow data, we
could preprocess representatives using clustering and central trajectories to reduce
computation time of our algorithms. Furthermore, we could use the information
from such clustering methods, or from map-matching accuracy, to vary the threshold
" per representative, to relate realism to the uncertainty in the data. We leave to
future work to investigate how such techniques a�ect e�ciency and quality.

Reconstruction MCMCF does not guarantee a bound on the Fréchet distance, and
we observed that its very large basis contains many routes that exceeded the given
realism parameter. We showed that we can post-process the routes to include only
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realistic ones to overcome this issue, but this increases computation time and �ow
deviation. An interesting direction of research could be to incorporate this directly
into the route-reconstruction phase, to avoid or at least reduce this overhead.

As demonstrated, our techniques can be adapted to handle cases where not all edges
have associated �ow. We observed a need to incorporate information on the roads
without �ow data, to avoid unnatural cycles and detours in the reconstructed routes.
Requiring strict simplicity may eliminate cycles, yet it is unlikely to fully address
the problem and makes the problem signi�cantly harder. Hence, we may want to
consider other models to further restrict what de�nes a realistic route, beyond the
Fréchet distance used here.

Time-varying flow data We considered only �ow data that is static: an edge
has a single value associated with it (if any) representing the amount of tra�c in a
certain time interval. However, tra�c changes over time and hence �ow data is time-
varying. As we discussed in Section 4.1, the time-varying nature of the data poses
several challenges that need to be overcome to reconstruct routes in this setting. We
brie�y sketch some ideas for future work that may tackle some of the challenges.

A �rst challenge that arises is that we should incorporate time into the reconstructed
routes. To be able to determine what a reasonable route can be, we need to model
the time it takes to traverse individual edges of the road network. A relatively
straightforward approach is to add �xed travel times to each edge, which dictate how
long an entity takes to traverse the edge. If we model these travel times as integral
amounts, we can employ a time-expanded network [106]5. This networks contains for
each time unit a replication of the vertices of the road-network, a time layer. Vertices
between layers are connected according to the travel times for the associated edges
in the original network. Note that, depending on the time resolution, this may be a
very memory intensive data structure. Selecting a sequence of connected edges in
the time-expanded network now gives us time-dependent routes.

A second challenge is how to handle the time-varying checkpoint data. For check-
point data, the number of vehicles passing the measurement location is often aggre-
gated over �xed time intervals. Using this notion, we can de�ne our �ow deviation
on the measurements of the individual time intervals, minimizing the squared dif-
ference between the measurement and the number of routes through the edge in
question, at the speci�ed time interval. If the time intervals are as small as the time
unit for the time-expanded network, we can assign the measurements directly to

5This choice amounts to picking the so-called discrete time model for our time component.
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edges in the time-expanded network, resulting in a setup very similar to the time-
independent case. If, however, the time intervals are not exactly our time units, we
need to take into account the number of routes over multiple edges in the time-
expanded graph. Due to this coupling, the min-cost-�ow-based methods are not
applicable anymore.

A third challenge is picking the appropriate way of measuring realism, and adapting
our reconstructed routes accordingly. If we simply assume that the route of the
trajectories is what makes them representative, then polyline distance measures,
such as the Fréchet distance that we use, can still be applied. Extending the Fréchet
map-matching approach to a time-expanded network seems relatively straightfor-
ward. If, on the other hand, we also assume that the dynamics of the representative
are indicative for the local tra�c, then we need new distance measures to capture
this requirement. The particular choice then will greatly a�ect how to generate any
routes to incorporate into the solution.
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Chapter 5

Coordinated Schematization
for Visualizing Mobility
Pa�erns on Networks

One key use for large data sets of trajectory data is to analyze and understand pat-
terns of the moving objects. In the context of human trajectory data, these mobility
patterns provide insight for tra�c analysis and urban planning. Visualization of
this trajectory data then makes it possible for experts to properly analyze the data.
But, as noted before, the sheer volume of the data makes it challenging to render
trajectory collections in a meaningful way as to show the general, overarching pat-
terns. Simply plotting all trajectories results in the infamous “spaghetti heaps”. Heat
maps [77, 104] and other aggregation techniques such as Voronoi aggregation [7]
are helpful to “untangle” tra�c locally, but they generally fail to capture structural
patterns, such as important longer routes.

Summarizing trajectory collections visually, such that salient patterns emerge, inher-
ently requires a form of aggregation or simpli�cation of the data. That is, the level
of detail and information shown should be scale-appropriate and avoid a cognitive
overload, while still being able to provide insight into the overall mobility. There are
various techniques to cluster trajectories and compute a representative for visual-
ization [20, 79], or to simplify trajectories [67]. However, these techniques typically
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focus on trajectories in a general 2D space, whereas our focus lies on trajectory data
on transportation networks, speci�cally vehicles on a road network. As such, the
problem changes in nature, as selecting representative routes and performing simpli-
�cation needs to be “network-aware”. Stronger still, to reduce the visual complexity
of the eventual visualization, not only the trajectories need to be simpli�ed, but also
the underlying street network. To arrive at meaningful results which show tra�c
patterns in the correct context, the simpli�cation and aggregation of the trajectory
collection and of the network have to go hand-in-hand: they need to be coordinated.

Contribution and organization We propose a coordinated fully-automated
pipeline for computing a schematic overview of mobility patterns. Our pipeline con-
sists of �ve steps, each utilizing well-known building blocks from GIS, automated
cartography and trajectory analysis: map matching, road selection, schematization,
movement patterns, and metro-map style rendering. We present our overall pipeline
and its rationale in Section 5.1; the subsequent sections describe each step in more
detail. Each of these sections also describes how we implemented the corresponding
step in our proof-of-concept. For illustration we use a real-world dataset of vehicle
trajectories around The Hague in the Netherlands. In Section 5.7 we discuss the
results of our pipeline using a second real-world data set around Beijing. We close
with a general discussion of our pipeline and future work in Section 5.8.

Related work We focus here on related work pertaining to the visualization of
large volumes of trajectories and discuss related work for each step of the pipeline
in the respective section. Most research in this area aims to provide an overview of
space usage, without showing or using the temporal component of trajectories; see
the two extensive surveys by Chen et al. [34] and Andrienko et al. [5]. The notable
exception are space-time cubes [73, 110], though they do not scale well to large
numbers of trajectories without some form of aggregation.

To identify larger patterns, one can focus on visualizing the origin-destination data
only, that is, focus only on the endpoints of the trajectories, possibly with some
form of spatial aggregation. There are various techniques to visualize such informa-
tion, e.g., [113, 126, 132]. Visualizing OD-data shows patterns beyond local tra�c,
but typically does not show any information on the actual routes. As such it does
not support understanding mobility from the viewpoint of traveling through a net-
work. Indeed, these techniques are typically applied in situations where the exact
trajectories or routes are not available or not of interest.
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▶ 5.1 The pipeline

Our input is a set  of trajectories, and a network G. Our goal is a schematized
representation of G together with the most salient mobility patterns in  . Before
we can describe our pipeline in more detail, we �rst give the necessary de�nitions.

Definitions Recall that a road network is a directed, embedded graph in ℝ2. For
our pipeline, we assume that the network is planar, that is, the edges do not cross
except at common endpoints. This condition is not generally satis�ed by actual road
networks, but we can introduce extra vertices on these intersections to planarize
the network. By marking these extra vertices, we can perform algorithms both on
the planarized and original network. We further use |G | to denote the complexity
of the network, measured as its number of edges, though note that this assumption
implies that |G | = |E| = O(|V |).

We use route to refer to a (directed) path in the network. For example, map-matching
a trajectory results in its route: the path in the network that the entity traverses as
captured by the trajectory. We refer to such a path as the route of the trajectory.

A route does not have to correspond to a single or entire trajectory. Speci�cally, we
say that a route is supported by a trajectory T if it is a subpath of the route of T .
We use bundle to indicate a route that is supported by multiple trajectories, using
the support of a bundle to indicate the number of supporting trajectories. Bundles
should aim to capture mobility patterns; precise criteria to form meaningful bundles
are discussed in Section 5.5.

The pipeline Our goal is to compute a schematic representation of G with salient
bundles that are “supported by”  . To achieve this, our pipeline consists of �ve steps,
brie�y sketched below. See Fig. 5.1 for an example of the results of these steps. In
the subsequent sections we discuss each in more detail. Important in our treatment
of the network and the trajectory information is to coordinate changes: changes in
the network should be translated to changes in the trajectory information.

Step 1: Map-match We aim to visualize mobility patterns via bundles, frequent
routes in the data. However, trajectories are not the same as routes, and thus
cannot support a bundle. As such, we �rst map-match the trajectories to the
network. The minimal input to this step is a single trajectory and the network,
such that each trajectory can be processed individually. Map-matching com-
putes the route associated with this trajectory. The result of this step is a set
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Figure 5.1 Our pipeline for coordinated schematization on the The Hague dataset.
The input trajectories are shown as a density map. For the map-
matched routes, we use a orange to red scale to convey low to high traf-
fic volume per edge. We compute the bundles in Step 4 with Smin = 500,
Lmin = 10000m, p = 0.5 and shrunk edge lengths, see Section 5.5 for
more details on these parameters.
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5.2 Step 1: Map-match trajectories to the network

 of routes, rather than trajectories. In our implementation, the trajectories
are not used further. This step enables our pipeline to coordinate changes in
the network and the routes.

Step 2: Select roads A typical road network is very detailed, much beyond the
level of detail that we need to visualize the general mobility patterns and well-
supported bundles. The minimal input to this step is the road network and the
set of routes derived in Step 1. Note that we could, in principle, base selection
purely on the network, and adapt the routes as necessary. However, we also
choose to include all parts of the network which are frequented heavily by
the routes. The result is a subset of the network and a mapping of the original
routes to this selected network.

Step 3: Schematize To reinforce the summarizing nature of the eventual visual-
ization, we reduce the visual complexity of the selected network via schema-
tization. The input is the selected network and the mapping of the routes.
The output is a strongly simpli�ed version of this network. The mapping of
the routes is maintained (coordinated) during this process. Optionally, the
edges of this schematic network may be annotated with information about
the length of the edge for the purpose of bundling.

Step 4: Bundle In our schematic representation, we �nd well-supported bundles.
The input is the schematic network and the mapping of routes to this network.
The output is a set of bundles that are well supported.

Step 5: Render We now have all ingredients for our visualization: the schematic
network as well as salient mobility patterns (bundles). The result is the even-
tual visualization which shows these two pieces of information e�ectively.

▶ 5.2 Step 1: Map-match trajectories to the network

Desiderata To eventually visualize common routes in the network, we must en-
sure that our trajectory information is mapped to the network, that is, that each
trajectory is translated into a route. This is the map matching problem.

Related work Map matching is a broadly studied topic in GIS; see [31] for a re-
cent survey and Chapter 3 for more details. As discussed in the survey, the di�erent
approaches are categorized by their matching model. For our purpose, we consider
a map-matching approach using the similarity model, since this requires less param-
eters. But in principle, any approach will work in our pipeline.
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5 Coordinated Schematization for Visualizing Mobility Patterns on Networks

Our implementation We use the map-matching algorithm described by Alt et
al. [3], which runs in O(|G ||T | log |G ||T | log |G |) time on a network G and trajectory
T . The algorithm ensures that the route found has minimal Fréchet distance to the
trajectory and thus that it is geometrically close. Our motivation for doing so is
to remain as close as possible to the information of the trajectory. That is, to the
information “visible” if we were to simply draw all trajectories. This algorithm is
able to handle noise relatively well, but in case of very sparsely sampled trajectory
data, it may struggle to �nd the most natural route.

▶ 5.3 Step 2: Select roads

Desiderata We aim to select the roads for two somewhat distinct purposes. First,
we want to select the roads where there is considerable tra�c, to facilitate well-
supported bundles. This purpose is thus inherently data-driven. But second, we
want to select major roads to provide a frame of reference for the viewer as to how
the mobility patterns are situated in space. It stands to reason that often, major roads
also carry a large part of the tra�c. However, this is not necessarily the case.

Related work Selection is an important part of road network generalization algo-
rithms. The goal is to select the most important parts of the network, such that the
remainder can be discarded in the simpli�cation process. Di�erent approaches exist
to determine what features of the road-network are “salient”. Examples of these ap-
proaches are using the mesh density [33], using user de�ned weights [76] and using
areas of faces combined with semantic labels [108]. Di�erent from the previous are
approaches that focus on “strokes” through the network: lines of good continuation,
that is, lines with small local curvature [109]. During generalization, these strokes

Figure 5.2 Selection by road type (le�) and by tra�ic (middle), combination of
both (right).
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are considered atomic units and are selected based on their relative importance. This
importance is often determined via network centrality measures [121, 130].

More recently, approaches focus on using tra�c data to inform the selection pro-
cess [112, 135]. Yu et al. propose an approach that is based on strokes, but during the
selection process considers tra�c �ow from one stroke to the other, increasing the
likelihood that strokes that give good tra�c �ow continuation are selected together.
Van de Kerkhof et al. [112] follow a di�erent approach, where the selection process
is formulated as a covering problem, and the trajectories need to be covered by the
selection of the road-network.

Our implementation We use the approach by van de Kerkhof et al. [112] which
seeks to select a subgraph G′ of the network with bounded length, such that the
number of routes that are completely within this subgraph is maximized. Though
the authors prove that this problem is NP-hard, they also describe a heuristic that
runs in O(| |2 log | |+ | ||G |) time; we use this heuristic in our implementation (see
Fig. 5.2 (middle)). After selectingG′, we add any edges that were not selected yet and
have a large enough road type. If the resulting selected network is not connected, we
optionally select the largest connected component; none of the later steps require
the network to be connected (see Fig. 5.2 (left) and (right)).

▶ 5.4 Step 3: Schematize the network

Desiderata Even after selection, the network tends to contain more detail than
necessary to provide a meaningful overview of mobility patterns: di�erent lanes,
cloverleaves, etc. Instead, we should get a high-level overview that communicates
the main connectivity in the network, and as such create space to visualize mobility
patterns (bundles). That is, we should collapse (aggregate) and simplify such local
details. We do so beyond the need of target scale, instead focusing on functional
detail: that is, we schematize the network. The network should remain spatially
informative: roughly similar to the overall input geometry.

Related work In automated cartography, the process of schematization is used
to render aesthetically pleasing networks or polygonal domains that are decluttered
enough to convey important information on the schematic [87]. Compared to gen-
eralization, schematization commonly reduces the input to such an extent that it is
not necessarily realistic anymore, albeit retaining important features to recognize
the original. Note that in general, the input to these algorithms is a detailed map
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5 Coordinated Schematization for Visualizing Mobility Patterns on Networks

of the road-network, whereas we input a selection of the map based on data, thus
making it a data-driven schematization.

One approach is to limit the type of the geometry in the output, thus naturally
reducing detail. Here it is common to �x the allowed number of orientations of lines
in the network [24, 124], particularly in the context of metro maps. Alternatively
one can �x the geometric primitives that can be used, for instance circular arcs [114]
or Bézier curves [55].

To retain recognizability, schematization typically limits the spatial distortion be-
tween input and output by �xing vertex locations [24] or minimizing the distance
between input and output edges, for instance via the Fréchet distance [114]. In ad-
dition, it is common to maintain the topology of the input, which plays a key role
in recognition of the output. We note that for our approach, we want to retain the
topology of the network at a certain scale, thus small topological features should
be removed prior to applying a topology-preserving schematization approach. An
alternative would be to consider continuous scale generalizations [116, 117] and
applying schematization at the desired scale. An important aspect is then to be able
to retain a mapping from the edges in the selected network to the schematization.

Our implementation We �rst drastically simplify and collapse the selected net-
work G′, after which we apply the arc schematization algorithm by van Dijk et
al. [114] for its aesthetic and clean representation, resulting in a schematic road-
network .

Our implementation applies the sequence of operations described below. We use
simple steps in an incremental fashion to facilitate coordination and maintain a
mapping between the edges of the selected network and the schematic network.
Our simple operations can result in fairly coarse approximations. However, since
our target is a highly abstracted �nal map, the coarseness of the earlier operations
is not an issue.

Collapse dead ends We �rst remove short paths in the network that do not in-
crease the overall connectivity. Starting at a degree-1 vertex, we move along
degree-2 vertices only to trace a visual “dead end” until we �nd a vertex that
does not have degree 2. We compare its geometric length to a prede�ned pa-
rameter lmax , and collapse the path to this last vertex if its length falls below
this threshold. We use lmax = 100m initially, and lmax = 1000m after the face-
collapse operation. For coordination, we reroute any route along the collapsed
edges to the endpoint that remains.
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e0 e1

e′

α

Figure 5.3 (le�) Replacing shallow turns; (middle) network before; (right) network
a�er.

Replace shallow turns A detailed input network frequently contains small bends.
The �nal schematization would remove such detail, but we perform this step
early to simplify the merge and collapse operations to follow. For every degree-
2 vertex, we consider the smallest angle between its incident edges. If this an-
gle exceeds some prede�ned limit � , we replace the vertex and its two incident
edges with a single edge; see Fig. 5.3. We use � = 150◦ before and � = 140◦

after the face-collapse step. For coordination, we reroute any route on one or
both of the replaced edges e0 and e1 to the new edge e′.

Merging vertices Junctions in the road-network are too detailed for our schematic;
ideally we represent them by a single vertex. To this end, we �x a radius r
within which we merge vertices. For a vertex v, the merge operation for
v merges all vertices within distance r of v (including v itself) to a single
new vertex, placed at the centroid of the merged vertices (see Fig. 5.4). We
iteratively merge vertices, prioritized by the number of vertices within radius
r . We use r = 0.01D with D the length of the diagonal of the bounding box of
the network. After merging faces, we use a larger radius of r = 0.03D.

For coordination, edges inside the merge radius are mapped to the new ver-
tex (e.g., red edges to vr in �gure). Edges between di�erent new vertices or
between a new vertex and an unmerged vertex are consolidated to new edges
(purple and blue in �gure).

Merging vertices with edges A vertex can be close to an edge, even though it is
not close to its endpoints. In such cases, we merge vertices into nearby edges
that are not incident to the vertex itself. We use the distance r as speci�ed
earlier, and try to collapse a vertex v to the closest non-incident edge e that is
within distance r , where we demand that v lies in the slab spanned by e (see
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Figure 5.4 (le�) Merging vertices; (middle) network before; (right) network a�er.

ev
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v

Figure 5.5 (le�) Vertex-edge merging; (middle) network before; (right) network
a�er.

Fig. 5.5). For coordination, any route using the former edge e is now using the
two (possibly new) edges e′0 and e′1 from v to the endpoints of e.

Face collapse We now consider the faces of the network and collapse them onto
a single geometry, if they are “small”. Speci�cally, we collapse faces with an
area of at most amax = 0.01A, where A is the area of the bounding box of the
network.

To collapse a small face F , we �rst collapse all interior degree-2 paths, inde-
pendent of length. We then compute the minimal oriented bounding box of
F , select its major axis, and cut F along this axis. In case of a non-convex
face, we select the longest internal intersection between F and the axis (see
Fig. 5.6). The cut introduces two cycles; we break both cycles by removing an
edge or a path of degree-2 vertices from each; we can do so while maintain-
ing the distances to the cut along the cycle for all higher-degree vertices. For
coordination, we reroute any route that used the removed edges via the cut.
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Figure 5.6 (le�) Face collapse; (middle) network before; (right) network a�er.

Cleanup After face merging, we repeat all earlier operations once more to clean
up the geometry and prepare for computing the �nal schematization.

Arc schematization For our �nal schematization, we chose the arc schematization
algorithm by van Dijk et al. [114]. This algorithm produces a low complex-
ity schematization using (circular) arcs, while maintaining the topology of
network. To encourage the use of straight lines over very shallow arcs, we
increase the relative importance of straight lines by reducing the Fréchet dis-
tance for straight lines by a factor 0.3. Because this algorithm only removes
vertices, coordination is straightforward, similar to replacing shallow turns.

Time complexity The simpli�cation operators run in roughly quadratic time with
a straightforward implementation. The arc schematization algorithm dominates the
operations to simplify the network. Thus, the time complexity isO(n2ℎ log n), where
ℎ is the number of vertices with degree higher than three in the input simpli�ca-
tion and n the number of vertices, which is greatly reduced from the input at this
point. Coordinating the changes between the road network and a trajectory T takes
roughly O(|G ||T |).

▶ 5.5 Step 4: Detect bundles

Desiderata We aim to detect bundles that are well-supported by the routes to
provide insight into the overall mobility patterns. As such, we identify two desired
properties of a bundle. First, it has to be supported by many routes. Speci�cally, we
do not want a bundle representing a single trajectory (potentially an outlier), but
rather the common behavior. Second, a bundle should be long in terms of (geometric)
length. We aim to show mobility patterns that describe how vehicles move through
the space. A long bundle is more descriptive of behavior than a short one; in the
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extreme case, a short bundle (even or especially if it is supported by many routes)
may consist of one single edge (road segment), which does not help to communicate
patterns beyond the existence of considerable local tra�c. That is, we want to �nd
long bundles that are supported by many routes.

As we aim to visualize not one but multiple bundles simultaneously, we further use
three criteria to assess a set of bundles. First, we restrict our attention to maximal
bundles only. That is, we consider only bundles to which we cannot add another
route for its support, but speci�cally also not increase its length without having to
reduce its support. Second, we generally want to see patterns of mobility that are
spatially diverse: we prefer having bundles through di�erent parts of the network, if
the trajectories allow them. That is, we would like to avoid overlap between bundles
as overlap communicates the same (local) behavior.

Third, a bundle fully contained within another may not provide much extra insight
into mobility beyond showing a higher support for the contained route. We call
a set of bundles containment-free if no bundle is a subroute of another. Note that
containment-free bundles are not necessarily overlap-free and thus this is di�erent
from spatial diversity. Overlap-free bundles are containment-free, but we do not
interpret spatial diversity as strict overlap-free.

In a containment-free set of maximal bundles each route may still support multiple
bundles. If these are disjoint bundles, then we accept this as a bundle. However, as
we are to eventually visualize the bundles, it may be misleading if well-supported
bundles that share an edge are only well-supported because they share many tra-
jectories. Thus, we choose to count the support for bundles in a disjoint manner:
that is, routes through the overlap of bundles can be counted to support only one of
these. We refer to this as the disjoint support.

Finally, note that we consider the network bidirectional, in the sense that each edge
is present twice, once for each direction of travel. The considerations above should
consider the direction of travel. That is, a bundle is directed and can, for example,
only be supported by routes in the same direction. Two bundles that use the same set
of edges, but travel in opposite direction, would hence be considered overlap-free.

Related work Our bundling is closely related to �nding groups of trajectories
and �nding representatives of trajectories, so-called centers. In the context of spatio-
temporal data, grouping structures are used to �nd common patterns of mobility [18].
The groups that are constructed essentially are trajectories that move close together
for a su�cient amount of time and with enough members in the group. Since we
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work with map-matched trajectories, we consider routes close when they share
edges in the network, and we require bundles to have at least some minimum length.

Note that �nding a group does not directly result in �nding a representation for the
behavior of the group. To represent the behavior of groups, a common approach
is to cluster trajectories according to some metric, resulting in centers describing
common behaviour for the trajectories that are close to these centers under the used
metric. This has been applied to the spatial component under di�erent metrics and
algorithmic approaches [20, 79, 93]; see [137] for a more comprehensive overview.

Since we work with map-matched routes, �nding the bundles is similar to �nding
common substrings over a �nite alphabet, where the alphabet is the set of edges
and the routes form strings over this alphabet. Finding k-common substrings [10]
is particularly related, since it demands a minimum number of matches k, similar to
our high support requirement.

Our implementation We search for a spatially diverse set of up to k bundles,
where each bundle is a maximal bundle with a minimum length Lmin and minimum
disjoint support Smin. We construct this set by incrementally adding the “most in-
formative” bundle.

To quantify this, we de�ne the importance of a bundle in a way that allows a trade-o�
between length, disjoint support and spatial diversity. Speci�cally, the importance
I (B) of a bundle B is de�ned as I (B) = Lp |S|1−p for p ∈ [0, 1], where L is the length of
the bundle and S is the (disjoint) set of supporting routes. The rationale behind this
is that, in the case of p = 0 or p = 1 we simply prioritize by total support or bundle
length, respectively. However, if we set p = 0.5, then we prioritize the bundles by the
total length of the route-set in its support. This allows a trade-o� between length
and disjoint support.

We de�ne the length of a bundle B as ∑e∈B � (e) for some function � . With � (e) = |e|
(the Euclidean length) we promote long bundles directly. As we use disjoint support,
there is already some preference for spatially diverse bundles, but we observe that
this still leads to very similar bundles. To promote spatial diversity further, we may
alter � . Speci�cally, we also allow for using � (e) = |e|/(1 + b(e)) where b(e) is the
number of selected bundles already using edge e. That is, conceptually, we “shrink”
edges that have been used by other bundles. We thus refer to this setting as shrunk
edge lengths.

We compute the most important bundle B by using a simple backtracking procedure.
We then add B to our bundle set and remove its support from the complete set of
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routes. We repeat this process until k bundles have been found. If no bundle of
su�cient length and support is found but we do not have k bundles yet, we halve
Smin and repeat. We halve Smin at most twice, creating three classes of bundles
(“thick”, “medium” and “thin” bundles).

Intuitively, focusing on bundle length (higher values of p) is suitable for �nding
longer bundles that may have less support; useful to investigate longer mobility
patterns. Reducing p focuses more on support and thus on patterns that are very
frequent. In Fig. 5.7 (rendered according to our �nal step) we vary p and observe
that reducing p (i.e., increasing importance of support) leads to less spatially diverse
routes, but increases the bundle classes.

Changing the edge lengths may encourage diversity, but may result in bundles of
lower classes, as routes through existing bundles are “shorter” and thus less im-
portant. In Fig. 5.8 we compare the result using both our settings. Euclidean edge
lengths show mostly similar routes, but we observe that shrunk edge lengths in-
crease the spatial diversity. It does not avoid overlap, but it does reduce containment
slightly (from 5 to 2 contained pairs).

Computing one bundle takes O(| |||) time, where  is the schematized network.
This time includes the necessary changes to the information for computing the next
bundle, so computing k bundles takes O(k| |||) time.

Figure 5.7 Ten bundles for di�erent importance schemes: p = 1 (le�), p = 0.5
(middle) and p = 0 (right). We used Smin = 500 and Lmin = 6000m,
with shrunk edge lengths.
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Figure 5.8 Ten bundles for di�erent approaches to spatial diversity: Euclidean
edge lengths (le�), shrunk edge lengths (right). We used Smin = 500
and Lmin = 6000m and p = 0.5.

▶ 5.6 Step 5: Render schematic network with bundles

Desiderata We now aim to jointly render the bundles and the schematic network,
such that the bundles are clearly conveyed. For this, the bundles should be easily
identi�ed. Common practice is to use colors to identify the separate bundles, and
in addition separate them visually. However, the bundles need to be rendered such
that it is also easy to determine from what parts of the network they originate. Thus,
rendering them in close spatial proximity to the associated edges would also be
bene�cial to the readability of the schematic. In addition, it should be possible to
identify the (approximate) support for a bundle.

Related work Rendering bundles in a network is similar to rendering the lines
of a metro network, which is a well studied topic [127]. Common problems involve
ordering lines on a common connection to avoid crossings and ensure good contin-
uation at stations.

The o�set rendering used in our implementation may want to avoid o�setting edges
of a bundle with di�erent distances, thus encouraging good continuation. If we allow
gaps between bundles at an edge but disallow di�erences in o�set within a single
bundle, the problem is essentially to assign a layer to each bundle, minimizing the
number of layers, such that two overlapping bundles use di�erent layers. Even if the
network would be a single cycle, this problem is NP-hard [53]; minimizing change
is hence NP-hard as well.

Our implementation Our main approach is to render each bundle as a a curve
that is slightly o�set from the network, such that they do not coincide with the
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(a) (b)

Figure 5.9 (a) A local self-intersection caused by o�se�ing and its resolution. (b)
Local deviation from the direction of travel of the bundle and its reso-
lution.

network, nor each other. We visualize the direction of a bundle by o�setting its
curves to a particular side of the network edges. As our example datasets are both
in areas where cars drive on the right side of the road, we hence locally o�set to the
right. This scheme allows for identifying the direction of a bundle, without relying
on other visual cues such as arrow heads.

We lay out the bundles one at the time along the network. Each edge in the bundle
gives an arc that is o�set from the edge by a distance d(b + 1) for some constant
d > 0, where b is the number bundles already placed at that edge. The bundle is now
a sequence of arcs that do not quite connect correctly yet. We initially reconnect
the arcs using straight segments. If this causes the curve to locally self-intersect
(Fig. 5.9(a)) or cause small corners (Fig. 5.9(b)), directed opposite to the actual bundle
direction, we simplify these artifacts as to achieve a simple curve that is always
(roughly) directed in the direction of travel of the bundle. This operation takes
O(l log l) time, where l is the total complexity of the rendered bundles. Finally, we
slightly smooth the connecting segments by reducing the arcs by a small distance
and using the old endpoints as control points for a Bézier curve instead. We render
the resulting curves using colors of the “10-class Paired” qualitative scheme from
ColorBrewer (https://colorbrewer2.org/), and use a line thickness based on
bundle class. By using classes instead of support, it is primarily aimed at separating
main from secondary patterns.

▶ 5.7 Results

We implemented our proposed pipeline in C++, using MoveTK1 for trajectory pro-
cessing and CGAL2 for geometric operations.

The HR dataset has been used to illustrate and discuss our pipeline throughout
1https://movetk.win.tue.nl/
2https://cgal.org/
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the chapter. It covers the area of The Hague, the Netherlands. The network is
obtained from OpenStreetMap3 and has 60 277 vertices and 66 895 edges. In step 2,
we use ‘primary’ as the minimum road level for selection4. The GPS trajectories were
provided by HERE Technologies (https://www.here.com/). As we are looking for
patterns in mobility, we used only trajectories with a length of at least 10 000m
that fall within the bounding box of the network. Trajectories partially within the
bounding box were split and each part was treated as a separate trajectory. This left
us with 3 795 trajectories as input.

The BJ dataset covers the metropolitan area of Beijing, China. The network is also
obtained from OpenStreetMap and has 77 691 vertices and 132 167 edges. In step 2,
we again use ‘primary’ as the minimum road level for selection. The GPS trajectories
originate from the open Geolife trajectory dataset by Microsoft [140], constrained
to this region. We apply the same �ltering step as for HR; this left us with 7 520
trajectories as input. The result of our pipeline is shown in Fig. 5.10. The Geolife
dataset mainly contains trajectories obtained from taxi-drivers. We can clearly see
in the heat-map of the dataset that there is a high concentration in the top-left, and
in our schematic we see that relatively small, loop-like routes, capture a lot of the
tra�c in that region. Moreover, we see that most bundles occur in pairs, that is, two
roughly identical bundles but in opposite directions.

Our schematic map generally captures the outer ringroad, but struggles somewhat
to capture the grid-like structure of the inner city. This is because the arc-based
nature of our schematization algorithm is somewhat opposite to such structures. Fu-
ture work may investigate hybrid approaches to schematizing such mixed networks
of ring roads and non-grid-like structures with arcs, but grid-like structures with
parallel segments.

▶ 5.8 Discussion and future work

We propose a coordinated pipeline to create abstract visual summaries of mobility
patterns in trajectory data. Our proof-of-concept implementation shows that the
pipeline is feasible and can fully automatically compute such schematic maps. The
advantage of a pipelined approach is that we may improve upon steps individually to
improve the eventual result. Below, we re�ect on our choices in the pipeline design,
and discuss future work.

3https://www.openstreetmap.org/
4https://wiki.openstreetmap.org/wiki/Key:highway
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Figure 5.10 Our pipeline on the BJ data. The input trajectories are shown as a
density map. For the map-matched routes, we use a orange to red
scale to convey low to high tra�ic volume per edge. We compute the
bundles in Step 4 with Smin = 150, Lmin = 8000m, p = 0 and shrunk
edge lengths.
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Step order We could in principle also map-match (step 1) after selection (step 2).
However, this would not allow for a data-driven approach for selection. Moreover,
this forces all tra�c to the selected roads, which may hide information on tra�c that
does not follow the selected (major) roads. For HR, the data-driven selection seems
to not have made a large impact on the selected network; for BJ more extensive parts
of the network were added because of the data-driven selection. We leave to future
work to investigate whether inversion of these steps is able to provide meaningful
visualizations.

Similarly, we may wonder whether we would want to detect bundles (step 4) before
schematization (step 3). As schematization reduces the network complexity, it is
more e�cient to do afterwards. It may distort distances, but we can keep track of
the original distances if desired – note that aggregation in step 3 does not make each
route in the schematic network map to precisely one route in the original network.
Another reason supporting our choice for the given order is that schematization
may further aggregate dense areas of the network. By bundling afterwards, the
support for such bundles grows since they are e�ectively representing more tra�c
that generally traverses the dense area in roughly the same way. We believe that
our choice helps in promoting spatial diversity, as dense areas with low tra�c per
road may reduce to a single road with higher tra�c. In light of our very spatially
uneven datasets, this seems desirable. However, we leave the full exploration of the
impact of this choice as future work.

Augmenting the schematic map We split the map-matched trajectories accord-
ing to whether or not the route is on the selected network. This leaves us with
parts of the trajectories that go through unselected parts of the network and are
thus dropped from the schematic map. We intend to explore ways of visualizing
these dropped subroutes to provide information on the tra�c not part of the se-
lected network. On a computational level, an approach we see for this is to track
these subroutes relative to the faces of an embedding of the network. This, however,
demands that we meticulously keep track of what happens to these faces during the
simpli�cation stages. But it also requires visual design: what do we want to show of
these dropped routes, and how does that combine with the shown bundles?

While our mapping between simpli�cations is discrete in nature, an interesting di-
rection of research would be to extend this to continuous mappings, where routes
are also allowed to start in the middle of edges. An appropriate map-matcher should
also be selected, since the Fréchet map-matching approach maps only to full edges,
though we expect the overall impact of allowing continuous routes here to be minor,
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as it is performed on the original, detailed network. The primary question is how
we can alter the schematization step to allow for high-quality continuous mapping
through aggregation and simpli�cation of the network.

Using the schematic map In our proposed pipeline, we do not incorporate the
time component of the input trajectories explicitly. Given that the schematic shows
strongly aggregated data in a concise way, we can easily use our approach to show
small-multiples for di�erent time frames in the data set. This leaves open the ques-
tion what the best selection method of the road-network is in this case, which we
defer to future work.

Our method hides any of the e�ects of sampling and noise in the data, as well as the
deformation and aggregation that occurs in our pipeline, which may be unintuitive
to end users. Though the schematic appearance aims to implicitly convey such
information, it may be communicated more explicitly with additional uncertainty
visualization, albeit at the cost of added visual complexity.

The �nal schematization is strongly in�uenced by the selected parameters in steps
of our pipeline. We scale parameters by a typical size (e.g. bounding box diagonal or
area) to be able to assign parameters independent of scale. Nevertheless, visualizing
the impact of the parameters on the end result could help users pick appropriate
values for their use cases.
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Chapter 6

Schematizing Orthogonal
Polygons

In this chapter, we seek to analyze the schematization of polygons under new simi-
larity measures. These similarity measures are vital for the schematization process,
since they largely determine what we deem high quality schematizations. Thus they
should capture our intuition for nice schematizations well. Though we often use
bottleneck distances such as the Hausdor� distance and Fréchet distance because
of their easy implementation and interpretation, more complex distance measures
may be needed to properly capture what constitutes good schematizations. This is
especially so when we have to deal with outlying features of the polygon, to which
the bottleneck measures are particularly sensitive. To this end, we can consider area-
based similarity measures such as the area of symmetric di�erence. We use a more
generalized version of this measure, namely the minimum homotopy area [30], that
also incorporates how one shape is transformed into the other, which ties into our
intuition that shapes should not deform too much if we need them to be similar [58].

To be able to more easily analyze our schematization techniques, we restrict our-
selves to orthogonal polygons as input and output: any polygon we consider only
has edges that are strictly horizontal or vertical; see Fig. 6.1 for two examples. We
abbreviate them as ortho-polygons, similarly for polylines that are orthogonal to
ortho-polylines. One can interpret these polygons as a rasterization of a general
polygon, tracing the boundary of the polygon afterwards.
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6 Schematizing Orthogonal Polygons

Figure 6.1 Examples of simple orthogonal polygons.

Minimum homotopy area Minimum homotopy area is a measure, proposed by
Chambers and Wang [30] as a generalization of the Fréchet distance. It measures
the similarity between (closed) curves by considering the deformation from one
to the other. It has been used for comparing polygons as well as trajectories [29,
30]. To de�ne homotopy area for our setting, consider an input polygon P that we
schematize into a polygon S. We interpret the input polygon P and its schematization
S as continuous functions mapping the unit interval [0, 1] to ℝ2 for an arbitrary �xed
starting point on the polygon. Let � ∶ [0, 1] → [0, 1] be a bijective function that
de�nes a matching between S and P using their respective parameterizations. Then,
a homotopy H ∶ [0, 1] × [0, 1]→ ℝ2 between polygons P and S with some mapping
� is de�ned as a continuous deformation from P to S over a time t ∈ [0, 1] such that
H (a, t = 0) = P (a) and H (a, t = 1) = S(� (a)). Here, a and is the parameter for the
parameterization of P .

The homotopy area of H is de�ned as the total area that is swept by the deformation,
with multiplicity. That is, any area that is swept over multiple times is counted that
many times. The minimal homotopy, H ∗, between two curves is a homotopy with
the smallest homotopy area; we denote its homotopy area by � (P, S). See Fig. 6.2 for
an example of a minimum homotopy and its associated area.

If two polygon boundaries do not intersect, either their interiors are fully disjoint or
one is fully inside another. In both cases, the minimal area of a deformation from one
to the other is actually the area of symmetric di�erence between the two polygons.
So only when the two polygons intersect do the minimum homotopy area and the
area of symmetric di�erence di�er. However, a key conceptual di�erence is that,
whereas the area of symmetric di�erence looks at the area of the polygons only and
any mismatch in that, the minimum homotopy consider the polygon boundaries
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Figure 6.2 Homotopy and its associated area between two polygons, one defined
by the black boundary and blue interior and the other by the do�ed
red boundary. Hatched area shows area contributing to the minimum
homotopy area (doubly hatched is counted twice). Grey dashed line
shows the original shape of the black and blue polygon.

to be important, which is useful in the schematization process. In that regard, the
minimum homotopy area is more similar to Fréchet distance: both consider a con-
tinuous deformation between the curves. However, the Fréchet distance measures
the maximum distance between the start and end location of any point on the curve,
whereas the minimum homotopy area considers the total swept area.

As Meulemans [87] showed, the correct choice of distance measure for schematiza-
tion is very important for a speci�c application. Bottleneck measures such as the
Fréchet distance are particularly sensitive to noisy outliers of the input shape, or in
general long spikes that may stick out of the shape. As shown in the example of
Fig. 6.3, a bottleneck distance such as the Fréchet distance needs to shift towards the
spike feature, whereas an area-based measure is less sensitive to the spike, since its
area is small.

To make the schematization less sensitive to outliers and spikes, an area-based mea-
sure, such as the area of symmetric di�erence or the minimum homotopy area, thus
can be chosen. However, as Meulemans [87] shows, the area of symmetric di�erence
does not take into account some salient local topological features, such as the open-
ing of the U-shape in Fig. 6.4. In this example, the desired schematization maintains
the U-shape of the input curve, which amounts to maintaining the top gap in the
input shape. However, for the area of symmetric di�erence, a C-shape is better. For
the homotopy area, producing the C-shape requires moving the boundaries more,
thus creating a large swept area, with a part being doubly swept. Hence, the U-shape
is better for the homotopy area measure.
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6 Schematizing Orthogonal Polygons

Fréchet Area of symmetric difference

Figure 6.3 Schematizing a polygon with an outlying spike. The blue polygon is
the input polygon, red curve shows the resulting polygon boundary
a�er schematization. (le�) Schematization under the Fréchet distance
(bo�leneck distance given by dashed line). (right) Schematization un-
der the area of symmetric di�erence (hatched areas contribute to the
area of symmetric di�erence).

Related work Schematization is a well studied topic for di�erent geometric ob-
jects. Recall from the previous chapter that we schematize a geometric object to get
a more concise representation that can be used for visualization. In this chapter, we
consider the speci�c case of orthogonal schematization.

A particular way to remove irrelevant details of geometric objects is to stylize the
object. In particular, one can limit the type of geometry that is allowed for the
schematization. Many di�erent styles have been developed in the past. -oriented
schematizations [24, 42] only allow straight lines to be used for the geometric object
boundaries, where the orientations are limited to a constant number of orienta-
tions, de�ned in a set . From this class of stylistic schematizations, orthogonal and
octilinear schematizations are well-known examples [128]. Alternatively, one can
restrict the geometry connecting vertices of the schematized object, such as only
using circular arcs [43] or bounded-degree curves [50].

Apart from stylistic choices for the resulting geometry, it is important to pick the
right similarity measures or criteria that we are optimizing for, such that a certain
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Area of symmetric difference

Homotopy area

Figure 6.4 Orthogonal polygon with 10 edges (top le�), with an unreasonable
(middle columm) and reasonable (right column) schematization for
k = 8. Red curve shows schematization, hatched areas show incurred
area cost for the area of symmetric di�erence (top row) and homotopy
area (bo�om row). Doubly hatched areas are counted twice.

semblance to the input is retained for the resulting schematization and such that
visualization goals are met. Measures such as the Fréchet distance and Hausdor�
distance are used [43, 111]. Optimization criteria may include area preservation
or minimizing bends [88, 96]. In this chapter, we consider schematization under
the minimum homotopy area, which conceptually is similar to area of symmetric
di�erence and the Fréchet distance. Additionally, taking into account topology is
important for schematization. That is, we want the local connectivity of the polygon
with itself and its surroundings to remain the same. In particular for polygons, when
the input polygon is a simple polygon without holes, it stands to reason that the
schematization should have these same properties (see Fig. 6.5a for an example of
where simplicity is not retained). For many variants of the schematization problem,
keeping the topology the same between input and schematization is actually an NP-
hard problem [49, 63, 82]. We explore the implications of maintaining simplicity
for the schematization under the minimum homotopy area, and conjecture that
maintaining simplicity when the input polygon is simple is also an NP-hard problem.

While schematization can be applied to single polygons and polylines, it is common
to consider a planar subdivision, such as in the case of countries on a continent.
Algorithms have been developed for this particular setting as well, where in partic-
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6 Schematizing Orthogonal Polygons

(a) (b)

Figure 6.5 (a) Not retaining simplicity in the schematization may result in a
schematization that is not meaningful (right side). (b) Connectivity in
a planar subdivision is important to retain when schematizing.

ular the topology plays a large role: it is undesirable to have countries bordering
new countries that they previously did not share a border with [88, 115]. Fig. 6.5b
shows an example where the connectivity of the blue and green region with the
purple region is erased in the schematization, which may result in incorrect inter-
pretation of the connectivity between the regions. In this chapter, we limit ourselves
to schematizing polygons only, though extending it to planar subdivision would be
an interesting direction for future work.

Problem statement Formally, we seek to answer the following question in this
chapter: given a simple orthogonal polygon P of complexity n, can we e�ciently
compute a orthogonal polygon S of complexity k, which we call its schematization,
such that the minimum homotopy area between P and S is minimized?

Contributions In this chapter, we present a new algorithm that computes the op-
timal schematization of an orthogonal polygon under the minimum homotopy area
in O(n4(k + log n)) time, where the resulting schematization S may be non-simple.
To improve the running time of the algorithm, we consider a greedy algorithm that
heuristically estimates the cost of a schematization step. We analyze the perfor-
mance on staircases, de�ned as xy-monotone orthogonal polylines. We show that
for staircases that have uniform edge lengths, the greedy approach yields a schema-
tization that is a constant factor approximation for the optimal schematization with
factor 36. This result generalizes to staircases where all horizontal edges are of the
same length and all vertical edges are of the same length.
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6.1 Minimum homotopy area for schematization

Organization In Section 6.1 we discuss how to compute the minimum homotopy
area measure for completeness and analyze the results of schematization under the
minimum homotopy area if simplicity is desired. We show how to compute an opti-
mal schematization that is allowed to self-intersect in Section 6.2. Since the running
time for this algorithm is high, we seek to approximate the optimal schematiza-
tion. In Section 6.3 we propose a greedy approximation algorithm and analyze its
performance for uniform staircases. Finally, we re�ect on our results in Section 6.4.

▶ 6.1 Minimum homotopy area for schematization
We �rst discuss how to compute the minimum homotopy area for completeness
and to introduce important concepts that we reuse in our algorithm for schematiz-
ing polygons where the schematization may self-intersect. We then characterize
schematizations under the minimum homotopy area, where we demand simplicity
of the produced schematizations.

▶ 6.1.1 Computing the minimum homotopy area
For completeness, we describe here on a high level how to compute the minimum
homotopy area between two polygons, as proposed by Chambers and Wang [30].
We also introduce important concepts that we use in our schematization algorithm
in Section 6.2 during the process.

Consider two polygons P and S and let the minimal homotopy be de�ned as de-
scribed in the previous section. We de�ne anchorpoints for some homotopy H be-
tween P and S to be points on P and S that remain stationary throughout the de-
formation H . Since H maps P to S, this automatically means that anchorpoints can
only be points where P and S intersect. Moreover, these anchorpoints are stationary
in the minimal homotopy and must therefore occur in the same order along both
curves (Observation 3.1 in [30]).

Chambers and Wang show that when the two polygons intersect, the minimum
homotopy area has at least one anchor point. Each pair of consecutive anchor points
(or the only anchor point twice) delimit a subcurve of both P and S that morph to
each other via the homotopy. We call this deformation a subhomotopy of the (total)
homotopy. It then follows that the minimal homotopy has subhomotopies that are
minimal on their own for the subcurves of P and S (see Fig. 6.6a for an example).
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6 Schematizing Orthogonal Polygons

0

1 0 1

-1 0 -1
0 -1 0
-1

(a) (b) (c)

-1-2 -2

Figure 6.6 (a) Morphing the blue polygon to the red polygon boundary. Subhomo-
topies morph over the hatched areas, with anchorpoints (red markers)
separating the subhomotopies. Arrows show the local directions. (b-c)
Homotopy between black and red polygon boundary that has incon-
sistent (b) and consistent (c) winding number. Numbers are given in
the cells. Arrow on the boundary shows assumed direction.

To be able to compute the homotopy area for a single subhomotopy, Chambers and
Wang show that this can be done by considering the concatenation of the subcurves
of P and S that the subhomotopy morphs. When concatenating the two, we create
a new, possibly non-simple, polygon. We consider the arrangement of this polygon,
where all self-intersections are vertices. Each cell of this arrangement has an as-
sociated winding number : the number of times one wraps around when at a point
in the cell and following the polygon boundary. As Chambers and Wang show, a
subhomotopy can only be part of the minimal homotopy if it has consistent winding
numbers (Lemma 3.2 and 4.1 in [30]), that is, all winding numbers in the cells of the
arrangement are non-positive or all are non-negative (see Fig. 6.6b-c). If this is the
case, the homotopy is also sense-preserving: the deformation consistently deforms
the polygon locally either to the left or to the right. Finally then, the minimum homo-
topy area of the subhomotopy is the sum of the areas of all cells in the arrangement,
weighted by their respective absolute winding number.

By formulating a dynamic program over the intersections between P and S, one can
now �nd the subhomotopies such that each subhomotopy has consistent winding
number and the total homotopy area of the subhomotopies is minimal. By using a
smart data structure to check the consistency of winding numbers in the arrange-
ments of subhomotopies, the total running time isO(I 2 log I +n log n), usingO(I 2+n)
space, with I the number of intersections and n the total complexity of the curves.
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6.1 Minimum homotopy area for schematization

1

1

δ
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ε

ε

Figure 6.7 (le�) Orthogonal polygon with 10 edges. (middle) Optimal simple
schematization S has homotopy area Ω(�) for small ". (right) Opti-
mal nonsimple schematization S′ with 8 edges self-intersects and has
homotopy area �2.

▶ 6.1.2 Simplicity of a schematization under minimum homo-
topy area

An important property that we would like to preserve is the simplicity of the input
shape: if the input polygon P is simple, can we guarantee that its schematization S
is simple?

For the minimum homotopy area measure, we can show that this is not the case
unfortunately. Moreover, we can characterize the di�erence in area between the op-
timal simple and non-simple schematization by the ratio � of the shortest to longest
edge length. Let P be an orthogonal polygon with a ratio � ≪ 1 between the longest
and shortest edge length as shown in Fig. 6.7. Let S and S′ be the optimal simple and
nonsimple schematization of P with complexity |P | − 2. Since the simple schematiza-
tion needs to avoid creating an intersection in the middle, it needs to move one of
the longer edges to eliminate two edges, thus incurring more area for the homotopy
area. If it were to move the vertical short edge to the right or the horizontal one to
the top, the minimum homotopy area would be worse than moving a longer edge,
and thus not be optimal. Following this example, we see that the optimal non-simple
schematization should have at least minimum homotopy area �2, whereas the simple
version has homotopy area at least (� − ") ⋅ (1 − ") = Ω(�) for small ". Thus, the ratio
of the areas of the optimal nonsimple and simple schematizations � (P, S)/� (P, S′) is
lowerbounded by Ω(1/�).
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(a)

A

d d

d

(b)

Figure 6.8 (a) Ortho-polygon with n = 34 and � = 4. Length d is larger than area
A; drawing shows d to be smaller for clarity of illustration. (b) Optimal
nonsimple schematization S′ for k = 18, with �2 = Ω(k2) intersections.

A natural next question would be how many self-intersections an optimal schemati-
zation under the minimum homotopy area can have, as a way to quantify nonsim-
pleness. We show the following lemma.

6.1.1 Lemma. Let P be a simple input polygon. The nonsimple schematization S′ of P of
complexity k can have Ω(k2) self-intersections in the worst-case.

Proof. Consider the example in Fig. 6.8. We construct the example such that the
thin subpolygons of length d and width � are such that � ≪ d and d > A. We
now require that we remove enough edges such that the bumps in area A can all
be �attened. Since the long thin subpolygons are too large to remove, the optimal
minimum homotopy area schematization needs to remove the small bumps. It thus
sweeps an area of A, resulting in a number of intersections that is quadratic in the
number of removed edges.

If we now repeat the number of bumps at the top � times, and similarly make � teeth
of the bottom comb, we get that there are at least Ω(�2) intersections if we require
k = 2�. We then have that k = Θ(�), and thus the lemma follows. □

Note that this bound is trivially asymptotically tight.
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6.2 Computing minimum homotopy area schematizations

e
e

Figure 6.9 Illustration for proof that an anchorpoint is always need. (le�) Edge
e of the schematization (red) does not have an anchor point and
thus can freely move locally in the opposite direction of the sense-
preserving homotopy (black arrows). (right) Moving e in the opposite
direction of the homotopy worsens the homotopy area by a certain
amount(hatched red area), thus the edge must have an anchorpoint

▶ 6.2 Computing minimum homotopy area schema-
tizations

From the previous, it follows that minimizing the minimum homotopy area only does
not guarantee simplicity. We conjecture that actually computing a schematization
that is simple and minimizes the minimum homotopy area over all possible simple
schematizations is NP-hard, in line with hardness results for related schematization
problems. Thus, we now compute an optimal schematization S∗ for a given value
of k that is allowed to self-intersect. Leveraging the results by Chambers and Wang
[30], we �rst prove that there exists an optimal solution that has a canonical form.
Using the fact that this canonical form exists, we propose a dynamic program for
computing an optimal schematization in polynomial time.

▶ 6.2.1 Canonical form
We �rst show that the resulting schematization has a canonical form: there exists
a schematization whose edges overlap edges of the input and whose minimum ho-
motopy area is optimal. To show this, we �rst prove the following lemma for the
optimal schematization S∗:

6.2.1 Lemma. Each edge of S∗ has at least one anchorpoint.

Proof. Assume for contradiction that the optimal solution S∗ has an edge e without
any anchorpoints(see Fig. 6.9). Let H ∗ denote the minimal homotopy between S∗

and P . Consider the subcurve S of S∗ between two consecutive anchorpoints that
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6 Schematizing Orthogonal Polygons

Figure 6.10 Illustration of the canonical form of an optimal solution. (le�) an edge
of the schematization (red horizontal segment) that has multiple an-
chorpoints (red markers), but does not have an anchor segment. The
optimal placement is shown with the dashed red line. (right) Mov-
ing beyond the stable position incurs too much homotopy area (red
hatched) versus the amount of area gained (blue hatched).

contains e with associated subhomotopy H . As H has no anchorpoints, it must be
sense preserving (Lemma 3.1 of [30], using our observation that this generalizes to
self-intersecting curves). Then, changing S∗ by moving e slightly in the direction of
deformation decreases the homotopy area of H and thus of H ∗. This contradicts that
S∗ has minimal homotopy area and the lemma follows. □

Hence, in an optimal solution, subhomotopies span at most two edges in S∗ and the
matching subcurve is simple. Thus, self-intersections of S∗ can occur only between
edges separated by anchorpoints. We de�ne an anchorsegment to be a nonempty
subsegment of an edge e of S∗ that coincides with an edge e′ of P , such that all points
on this anchorsegment are anchorpoints; the direction of e and e′ must match, if
this segment is more than a single point. We can now show the following.

6.2.2 Lemma. There exists an optimal schematization S∗ such that every edge of S∗ has an
anchorsegment.

Proof. For a contradiction, assume that all optimal schematizations have an edge e
that does not overlap an edge of P with the same direction (see Fig. 6.10 for an illus-
tration). Let H ∗ denote the minimal homotopy between S∗ and P . By Lemma 6.2.1,
we know that e has one or more anchorpoints and thus we may consider the two
or more subhomotopies H1,… , Hm that involve parts of e. Each Hi is between two
simple curves and thus sense preserving (Lemma 3.2 of [30]).

Without loss of generality, assume e is horizontal. As the subcurves are simple, each
subhomotopy area is the multiplication of area and winding number, summed over
all faces in the arrangement (Lemma 4.1 and Lemma 4.3 of [30]). Consider moving e
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6.2 Computing minimum homotopy area schematizations

up or down: this move may change the homotopy area for each Hi , but cannot cause
local intersections in the subcurves. Hence, the total change Δℎ in the area of all
minimal subhomotopies is the change in face area with winding-number multiplicity.
Either Δℎ is zero in both directions, or Δℎ is positive in one direction and negative
in the other.

In the latter case, we �nd a contradiction with the optimality of S∗, so assume Δℎ = 0.
We may freely move the edge up or down, until one of the considered arrangements
changes. At this moment e must overlap some edge e′ of P , also considered in one
of the original subhomotopies. Let S′ denote the new schematization, with minimal
homotopy H ′. Now, either (a part of) this overlap is stationary in H ′ and thus an
anchorsegment, or the entire edge still moves in H ′. The former case implies an
overlap in more than a single point: otherwise, Δℎ does not change. That is, the
arrangement may have a face split, but these have the same winding numbers. In
the latter case, we can continue shifting our edge e as Δℎ is zero (or positive in the
same direction, contradicting optimality).

Note that we cannot make an edge of S∗ disappear during this motion. □

Lemma 6.2.2 implies a canonical form for S∗, in which each edge is anchored to an
edge of P through its anchorsegment. Consequently, every vertex of S∗ lies on the
grid G induced by the edges of P . This now allows us to de�ne an algorithm for
computing this optimal solution.

▶ 6.2.2 Computing the optimal schematization

We are now ready to compute the optimal schematization of a polygon P under the
minimum homotopy area. For easier explanation, we de�ne the forward hal�ine of
an edge ei as the hal�ine originating from vi , overlapping ei . Similarly, the backward
hal�ine of an edge ei originates from vi+1, overlapping ei . An edge e of S∗ must then
start on the backward hal�ine of its anchored edge in P and end on the forward
hal�ine, and the direction of e matches the direction of its anchored edge.

We compute the optimal schematization as follows. First, we pick a midpoint of
an edge of G that is on an edge of P to cut P into an orthogonal polyline P ′. Next,
we select only vertices of G as intermediate vertices for a potential schematization.
Thus, an optimal schematization of P ′ with k + 1 edges is a schematization of P with
k edges. Testing all O(n2) midpoints yields the optimal schematization S∗, as any
anchorsegment must contain such a midpoint. Let P be an orthogonal polyline in
the remainder of this section, to be schematized with k edges. We now describe the
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6 Schematizing Orthogonal Polygons

structure that a partial solution takes, allowing us to formulate a dynamic program
to compute the optimal schematization for P ′.

Partial solutions. We de�ne a partial solution to be an ortho-polyline S where
each edge has an anchorsegment. It represents a schematic up to some edge of
P with a �xed starting edge of P (chosen by the midpoint that we split). Its �rst
anchorsegment starts at v1 on e1. The last anchorsegment anchors to some edge
ej , but is not yet complete. In particular, the one before last vertex of S lies on a
gridpoint  (i, j), de�ned by the intersection of the forward hal�ine of the edge ei
that the one before last edge of S anchors to, and the backward hal�ine of edge
ej that the last edge of S anchors to. Let g(j, m) be the m-th gridpoint on edge ej ,
indexed from start to end in the canonical direction. Then, the last vertex of S is the
gridpoint g(j, m′) of G such that g(j, m′ − 1) and g(j, m′) form a subsegment of ej ,
encountered along the forward hal�ine of ej starting from  (i, j)(see Fig. 6.11). Note
that g(j, m′ − 1) coincides with  (i, j) for cases (c) and (d) in the �gure.

Between two anchorsegments of S we can compute the minimal subhomotopy area,
even if the last is not yet complete. That is, consider two subsequent anchorsegments
of S, anchored to edges ei and ej of P with i < j. The corresponding subhomotopy
� (i, j) can be computed purely from this information, since we only need the sub-
curves between the anchorsegments to compute the minimal subhomotopy area. If
the forward hal�ine of ei does not intersect the backward hal�ine of ej , we call such
a pair incompatible and use � (i, j) = ∞. As anchorsegments are directed and ordered,
we need to consider only pairs of edges that are compatible ( (i, j) exists).

However, we must be careful not to reverse an edge of S. Suppose S ends with edges
anchored at ei′′ , ei′ and ei , such that the �rst two edges are compatible, as well as the
last two. If  (i′, i) is after  (i′′, i′) in the direction of ei′ , then the edge of S anchored

ej

ei

γ(i, j)

(a)

ej

ei

(b)

γ(i, j)

ei

(c)

ejγ(i, j) ej

ei

(d)

γ(i, j)

Figure 6.11 Four cases for compatible edges ei and ej to compute � (i, j). The
gridpoint  (i, j) (red marker) can be outside both edges (a), on one of
both edges (b,c), or on both edges (d).
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Figure 6.12 Partial solutions for input P (blue) with v1 at the top. Shown in red
are D[9, g, 3] for various gridpoints g. Homotopy areas are given by
the red, hatched area.

on ei′ is directed along ei′ . However, if this is not the case, this edge of S is reversed
and does not follow the canonical form. Hence, we do not need to consider these
cases.

To decide whether we can extend partial solution S ending at ej thus depends on
where the last vertex of S is located with respect to ej . We thus pair edge indices j
with gridpoints g. We call a pair (i, g) a compatible predecessor for (j, g′) if i < j, edges
ei and ej are not incompatible, g is on or before  (i, j) along the forward hal�ine of
ei , and g′ occurs before  (i, j) along the backward hal�ine of ej .

Dynamic program. With the de�nition of our partial solution, we can now for-
mulate a dynamic program to �nd the optimal schematization. Recall that g(i, m) is
the m-th gridpoint on edge ei , when following its canonical direction. We character-
ize a subproblem of our dynamic program as D[i, g(i, m), l], the minimal homotopy
area for the optimal partial solution S with l edges, such that g(i, m) is the last vertex
of S. Note that by de�nition of the partial solution, g(i, m − 1) is also a gridpoint
on ej . Thus, j is always at least 2. Fig. 6.12 shows examples for partial solutions.
The main question is how to compute D[j, g(j, m), l] based on “smaller” instances
D[i, g(i, m′), l′]. We are e�ectively choosing anchorsegments one at a time. As these
occur in order, smaller instances have 1 ≤ i < j and l′ = l − 1.

Consider two di�erent gridpoints de�ned by g1 = g(i, m1), g2 = g(i, m2), m1 < m2,
for the previous solution ending at edge ei with length l − 1. g2 is less restrictive for
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g(j, 2)

g(j, 3)

g(j, 4)

g(j, 5)
ej

ei
ei+4

ei+8

λ(i, j)

λ(i+ 4, j)

λ(i+ 8, j)
ei+12

λ(i+ 12, j)

Figure 6.13 (le�) Most restrictive predecessor gridpoints for edge ej , starting at
several edges (black lines). Arrows show canonical edge direction,
dashed grey lines the induced grid. (right) Edges (black lines) for
which a gridpoint on the edge ej is the most restrictive gridpoint
(association via the grey brackets).

the partial solution: it allows for more possible previous partial solutions, including
the ones for g1. Moreover, the homotopy area for a partial solution ending at g1 that
is extended from g1 to g2 does not change: the segment between g1 and g2 is on the
input and cannot incur any homotopy area. Hence, it must be that D[i, g(i, m1), l −
1] ≤ D[i, g(i, m2), l −1] for any m1 < m2. Thus, it su�ces to only check the gridpoint
furthest along ei that is still compatible with (j, g) when computing D[j, g, l]. We
denote this least restrictive predecessor by �(i, j) (see Fig. 6.13, left).

In the same line of argumentation, we can look at the di�erent gridpoints g′ ∈ G in
entriesD[j, g′, l]. From the previous argumentation, it follows that we do not need to
recompute the minimum homotopy area for every gridpoint over all previous edges
for entries l − 1. Instead, we only have to compute the minimum homotopy area for
the gridpoint g′ on ej that is the most restrictive (see Fig. 6.13,right). That is, consider
previous edge ei . We only have to compute the minimum homotopy area for the
next partial solution extending from ei by looking at gridpoint  (i, j) at ej , or the �rst
gridpoint along edge ej if  (i, j) is not on ej . For any following gridpoint along ej , the
minimum homotopy area for any partial solution extending from ei is exactly the
same by the previous argumentation. The minimum homotopy area D[j, g(i, m), l]
is then the minimum of the minimum homotopy areas of solutions to gridpoints
g(j, m′) for m′ < m, and the homotopy areas for previous entries D[i, g′, l − 1] for
which g(i, m) is the most restrictive gridpoint.

We obtain the following dynamic program. If j < l, the schematization should have
more edges than the input so far, thus we set D[j, g, l] to ∞. If l = j = 1, we have not
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6.2 Computing minimum homotopy area schematizations

created a second anchorsegment and thus D[j, g, l] = 0. Also, we set D[j, g, l] = ∞
for all g = g(j, 1), since those do not represent valid partial solutions. Otherwise, we
set D[j, g, l] to

D[j, g(j, m), l] = min(
D[j, g(j, m − 1), l],
min

i∈I (j,m)
� (i, j) + D[i, �(i, j), l − 1]

)

where I (j, m) is the set of all i such that i < j and g(j, m) is the most restrictive
gridpoint for edge ei .

To e�ciently compute the entries of D[j, g(j, m), l] for �xed (j, l), we �rst precom-
pute extra information to determine the least restrictive predecessor and the most
restrictive gridpoints in O(1) time. To do this, we proceed as follows. We assign an
index to each horizontal and each vertical gridline of the induced grid, increasing for
upwards for horizontal gridlines and towards the right for vertical gridlines. Then,
with each edge ei of the input we associate the indices If (i) and Il (i) of �rst resp. last
gridline that intersects the edge perpendicularly. Additionally, we store the index of
the gridline that the edge de�nes, Ie(i). This way, we can associate gridpoint g(i, m)
on edge ei with the gridline index that intersects it, namely If (i) + m − 1. We can
compute indices If , Il and Ie for all edges of the input in O(n log n) time.

Next, to compute the least restrictive predecessor for a gridpoint g on ej given a
previous edge ei , we do the following. We can use the index Ie(j) to �nd the gridpoint
of ei that is at that gridline index. If such a gridpoint exists, this must be the least
restrictive predecessor. If no such gridpoint exists, the last gridpoint of ei must be
the least restrictive predecessor.

Finally, we need to compute most restrictive gridpoints. This essentially is the re-
verse of the least restrictive predecessor. For a given edge ej and previous edge ei ,
the least restrictive predecessor is either the gridpoint of ej at the gridline with index
Ie(i) or g(j, 2) if the gridpoint at index Ie(i) does not exist or is g(j, 1).

Running time. We can �rst precompute all � (i, j) values. Per value, we spend
O(n2 log n) time to compute � (i, j) using the algorithm by Chambers and Wang [30]:
we have at most O(n) intersections, as the schematic part consists of two segments.
Thus, this precomputation takes O(n4 log n) time and requires O(n2) space to store
the results. To compute the gridline indices associated with the edges, we spend
O(n log n) time, which is dominated by the homotopy area computations.
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For computing the D[i, g, l] entries for �xed (i, l) and all gridpoints on ei , we use the
prestored gridline indices associated with the edges to lookup least restrictive prede-
cessors and most restrictive gridpoints in O(1) time per lookup. For each gridpoint g,
we �rst compute all homotopy areas for the edges for which g is the most restrictive
gridpoint, taking O(n) time for all gridpoints of (i, l). Then, we take the minimum
of the stored minimum area and the minimum area of the previous gridpoint for
increasing gridpoints in O(n) time. Thus, computation of all cells D[i, g, l] for �xed
(i, l) takes O(n) computation time in total. Repeating the dynamic program for every
of the O(n2) possible midpoints yields the our desired result:

6.2.3 Theorem. Given a simple ortho-polygon P with n vertices and an integer k < n, we
can compute the schematization S∗ of at most k vertices with minimal homotopy area
to P in O(n4(k + log n)) time, if S∗ is allowed to self-intersect.

▶ 6.3 Greedy approximation algorithm for staircases
The algorithm presented in the previous section gives us an exact solution to the
schematization problem, at the expense of a rather long, though polynomial, run-
ning time and no guarantees on simplicity. To be able to make the algorithm more
feasible in practice, we consider approximating the optimal solution. To this end,
we propose a very intuitive greedy algorithm. We draw inspiration from Buchin,
Meulemans, Van Renssen and Speckmann [88, 22], who also consider schematiza-
tion of orthogonal polygons. They describe di�erent con�gurations that can occur
in orthogonal polygons and de�ne moves to eliminate the con�gurations, which
reduces the complexity of the polygon. We choose to apply the moves one at a time,
and do not take into account the area-preservation that is present in their approach.
Moreover, for our setting, we see that we can represent the subhomotopy for two
consecutive edges of the schematization as a sequence of eliminations of so called
C-con�gurations when considering the concatenation of the subcurves of the ho-
motopy (see Fig. 6.14), thus connecting their moves to the minimum homotopy area.
Eliminating a C- or S-con�guration can be seen as moving the middle edge until one
of the other edges is eliminated, as well as the middle edge (ei and ei+1 in Fig. 6.14).
Such an elimination then de�nes a move.

We can de�ne a move formally by �rst interpreting the orthogonal polygon as a list of
alternating x and y coordinates, that is P = ⟨x1, y1,… , xn/2, yn/2⟩, such that vertex vi
has coordinates (x⌈(i+1)/2⌉, y⌈i/2⌉). Let ei and ei+1 be the edges that de�ne some move
m. The coordinates of the vertices of these edges are four consecutive elements
in the xy-representation of P , we denote these by pi ,… , pi+3. We now de�ne the

156



6.3 Greedy approximation algorithm for staircases

ei

ei+1

ei+2 ei+2ei−1

ei−1

ei

ei+1

ei+2 ei+2

ei−1
ei−1

(a) (b) (c) (d)

Figure 6.14 (a) A C-configuration (green lines) that we can eliminate. (b) The
resulting schematization. Here the hatched area is the minimum
homotopy area between the before and a�er state, the do�ed outline
shows the boundary of the homotopy, which we call the box of the
move. (c) An S-configuration can also be eliminated by moving the
middle edge resulting in (d).

resulting polygon P ′ after applying m on polygon P to be the original polygon P
with pi+1, pi+2 eliminated from the xy-representation1. Intuitively, we can see this
as follows: take the axis-aligned box with sides ei and ei+1 (we refer to this box as
the box of the move). We now replace ei and ei+1 by the other two sides of this box
and eliminate any collinear vertices and degenerate edges. From the de�nition that
uses the xy-representation, it is also easy to see that any schematization still lies on
the induced grid, since the x- and y-coordinates that de�ne the schematization are a
subset of the ones present in P . Note that the consecutive elements in P that de�ne
the move only have to be consecutive in the schematization to which we apply the
move.

Greedy algorithm With the move now formally de�ned, we can present the
greedy algorithm we consider in this section. We start with a polygon P of com-
plexity n and want to schematize it to a complexity of k. The key idea is that we
pick (n − k)/2 moves such that we get close to the optimal minimum homotopy area
schematization. For this, we propose to select the move of the current schemati-
zation that has smallest area. We de�ne the area of the move m as the area swept
by moving edge, which is the area of the axis aligned box with as sides ei and ei+1
that together de�ne move m (see Fig. 6.14). Note that this is simply the area of
the box of the move. We then apply this move with minimal move area, resulting

1Note that in principle degenerate edges may arise, though we may assume unique x and y coordinates
for the edges of P or simply eliminate the degenerate edges as well
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6 Schematizing Orthogonal Polygons

in a new schematization. For this new schematization, we then again select the
move with smallest area. We continue this process until the schematization is of the
right complexity. We note that the greedy algorithm is very similar to the approach
by Buchin, Meulemans, Van Renssen and Speckmann [88, 22], though we do not
take into account area preservation nor simplicity and by our choice of moves the
resulting schematization is on the induced grid of the input polygon.

Analyzing this greedy approach proves di�cult for simple polygons, since there is
no direct obvious lowerbound on the minimum homotopy area for optimal schema-
tizations that we can relate the minimum homotopy area of the greedy approach
to. Thus, to gain more insight we analyze the performance on orthogonal staircases:
orthogonal polylines that are xy-monotone. A simple polygon can be interpreted as
a sequence of staircases, albeit not all oriented in the same direction, thus staircases
could provide more insight into the problem for polygons. We consider staircases
where the �rst edge is horizontal, the last edge is vertical, and the �rst of last edge
are much larger than any intermediate edge, such that they are never considered in
a move.

In the remainder of this section, we show that our proposed greedy algorithm ap-
proximates the optimal approach by a constant factor, when we consider uniform
staircases. We conjecture that the same holds for non-uniform staircases and for
potentially simple polygons.

▶ 6.3.1 Properties staircase schematizations under the greedy
and optimal algorithm

We brie�y show some key properties of staircase schematizations that we need for
our main result.

We say that an edge e of the schematization is supported by another edge e′ if e′ is
a subsegment of e. We now have the following:

6.3.1 Lemma. Every edge in a move-based schematization is supported by an input edge.

Proof. We can prove this by induction on the number of moves. Initially, before any
move is applied, all edges of the schematization coincide with the input, thus the
claim trivially holds.

Then, suppose it holds for all previous move and consider a next move m. When we
applym, we remove the two edges that de�nem and extend the two edge before and
after these edge. This means that we only need to consider whether the two extended
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Figure 6.15 (a) Sketch for the greedy property for a move mM we are about to
take, relative to the neighboring moves mL and mR . (b) Setup for a
later move mA relative to some move mM .

edges are still supported by the input. By de�nition, the edges are supported when an
edge of the input is a subsegment of the current edges. By the induction hypothesis,
we know that all edges are supported before the move. Since we are only extending
the edges, the new edges are strict supersegments of the original edges. It must hold
that the new edges are supported by an input edge. Thus the claim still holds after
a next move. So we can conclude by induction that the claim must hold. □

Note that this lemma does not directly apply when the polyline is not strictly xy-
montone, since some edges of the schematization may contract when applying the
move.

6.3.2 Lemma. Let ⟨m1,… , ml⟩ be the sequence of moves to get from input polygon P to
the target schematization S using the greedy algorithm. The area of mi is less than or
equal to the area of mj for i < j.

Proof. Applying a move strictly increases the length of two edges in the schemati-
zation, as we argued in the proof of Lemma 6.3.1. Since the area of the moves are
simply the area of the boxes of the edges de�ning the moves, i.e. the multiplication of
the edge lengths of the de�ning edges, the area of moves of the next schematization
can only be the same or larger. □

For argumentation purposes, let wA and ℎA be the width and height of the axis
aligned box of the edges that de�ne a move mA, whose area is AA = wAℎA.

159



6 Schematizing Orthogonal Polygons

6.3.3 Lemma. Consider six consecutive edges ei+1,… ei+6 of a staircase, where ei+1 is a
horizontal edge, and letmL, mM , mR be the moves de�ned by the three consecutive edge
pairs of these six edges (see Fig. 6.15a). Suppose we are about to apply move mM . The
following must hold

wM ≤ wL, ℎM ≤ ℎR .

Proof. Since mM is the greedy move we are applying, any other move has cost at
least the cost of mM , thus the area of the box of mM . In particular, then, the area of
the move between mL and mM is greater than or equal to mM . It is easy to see that
the area of this box is ℎMwL, since it shares edges with mL and mM . It then follows
that ℎMwM ≤ ℎMwL, and the �rst claim follows. The second claim we can argue in
a symmetrical fashion, now considering the move between mM and mR . □

Note that a similar lemma applies when the �rst edge is vertical, where we now need
to exchange w and ℎ in the result.

We can extend the lemma by considering actual moves that are applied later:

6.3.4 Lemma. Consider a move mM that we are about to apply, and let S be the current
schematization. Suppose there is a move mA that depends on mM and whose edges
overlap with the two edges directly before the edges de�ning mM in S (see Fig. 6.15b).
We claim

AM ≤ AA − ℎAwM

Proof. By Lemma 6.3.3, we know that the area of mM must be smaller than the area
of the box de�ned by ei+1, ei+2. Moreover, since mA depends on mM , its width wA
must be greater than or equal to |ei+2| + |ei+4| = |ei+2| + wM . Finally, its height must
be greater than or equal to |ei+1| by construction. Thus, we have that

AM ≤ |ei+1| ⋅ |ei+2|
≤ ℎA|ei+2|
≤ ℎA(wA − wM ) = AA − ℎAwM

Thus, the lemma follows. □

▶ 6.3.2 Minimum greedy move size
To be able to show that our greedy approach approximates the optimal schematiza-
tion, we need to relate the minimum homotopy area to the input from the greedy
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(b)(a)

m1 ml. . .
eL

eR
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x1 x2 x3y2 y3y1P =
x1 x3y3y1P ′ =

x3y1P ′′ =

Figure 6.16 (a) A bracket and its associated input. The interior of the bracket is
shown with the green region. (b) Applying mD gives a higher max-
imum area, namely the total red area, than applying m1,… , ml in-
stead. (c) The blue move (with coordinates y1, x1, y3, x3, blue area
plus hatched blue area) depends on the red move (with coordinates
x1, y2, x2, y3, red area).

schematization to the areas of the moves that occurred in some way. To this end, we
�rst de�ne a bracket of a schematization to be the subsegments of two consecutive
edges that are connected and do not intersect any part of the input (see Fig. 6.16a).
By the associated input of the bracket we mean the input that is between the edges
of the input that the edges of bracket overlap with.

6.3.5 Lemma. Consider a bracket of a schematization and its associated input. We can
minimize the maximum area over all moves needed to simplify to the bracket by only
applying moves that result in a schematization that lies closer to the corner of the
bracket.

Proof. Assume w.l.o.g. that the bracket consists of a horizontal followed by a vertical
segment. This then means that its associated input lies above and to the left of the
segments of the bracket. Now suppose we applied some move that did not result
in a schematization that is closer to the bracket. This means that the move locally
moved the previous schematization edges upwards and to the left, resulting in a
schematization that has a corner that lies above the input. But since we ultimately
need to move the input to the bracket of the schematization, this corner must be
moved downwards at some point. Consider now the schematization just before we
move this corner downwards by some move mD (see Fig. 6.16). Let eL and eR be
the input edges that support the edges that de�ne move mD . If we were to apply
all moves left of eL and right of eR that were taken before mD exactly in the same
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Figure 6.17 (a) We consider a corner p0 and the area A of the box B0 between p0
and the bracket corner. (b) Special case where all moves are to the
le� of p0. (c) Defining L and R type moves using rays starting from
edges e0 and e1 that define move m0. This move eliminates corner p0.

order, but instead of applying the moves that lead up to mD , we would apply the
moves from the input downwards (moves m1,… , mL in Fig. 6.16), their total area is
less than the area of move mD . It then immediately follows that replacing the moves
that lead up to mD and mD itself with these downwards moves uses strictly lower
maximum move area. □

To more easily analyze the moves, we introduce the notion of a dependent move.
Suppose we are simplifying polygon P to some target polygon S with a sequence
of moves ⟨m1,… , ml⟩. We say that a move mj depends on a move mi if i < j and
mi must be applied to be able to apply mj . More speci�cally, consider the four
elements of the xy-representation of P that de�ne move mj , ci ,… , ci+3. mj can only
be applied when these coordinates are consecutive in the current schematization.
If mj depends on move mi , the elements of mi must lie between or on one of the
pairs (ci , ci+1), (ci+1, ci+2), (ci+2, ci+3) in P , which hence must have been applied for
ci ,… , ci+3 to be consecutive in the current schematization (see Fig. 6.16c).

6.3.6 Lemma. Consider a bracket of a greedy schematization and let A be the area of some
box between the bracket and its associated input. It must be that a move of area at least
cA occurred during the schematization to this bracket, with c = 1

2 .

Proof. By Lemma 6.3.5 we know that the maximum area over all moves in a bracket is
minimized by only considering moves towards the bracket, hence we only consider
these moves. We assume w.l.o.g. that the bracket consists of a horizontal and then a
vertical segment, the complementary situation is completely symmetrical. This then
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means that we only consider moves that locally move the schematization downwards
and to the right.

So consider the situation as shown in Fig. 6.17a. Let p0 be some corner of the
associated input of the bracket. The area A is then the area of the box B0 between
the corner of the bracket and p0. We now consider the schematization of the input
at the point where we are about to move corner p0 by a move m0. We then only
consider moves that depend on m0. Since this set of moves contains the last move
in the bracket, which by Lemma 6.3.2 is the move with largest area, it must be that
the moves that do not depend on m0 do not in�uence c.

We can split the moves that depend on m0 into two types: L1,… , Ll , the moves such
that the downwards ray, starting at the middle of e1 intersects its box, and R1,… , Rl′ ,
the moves such that the rightwards ray, starting at the middle of e0 intersects its
box (see Fig. 6.17c). For simplicity of notation we set L0 = R0 = m0.

Suppose that the moves that depend on m0 are only the moves L1,… , Ll , where Ll
is adjacent to the bracket corner(see Fig. 6.17b). Since there are no moves of type
R, it must be that all dependent moves are adjacent to the vertical bracket edge. Let
wi , ℎi denote the width and height of move Li . By Lemma 6.3.4, the following must
hold

Ai ≤ Ai+1 − ℎi+1wi , for all 0 ≤ i < l

Repeatedly applying this inequality gives

A0 ≤ Al −
l−1
∑
i=0

ℎi+1wi = Al −
l

∑
i=1

ℎiwi−1, ⟺
l

∑
i=1

ℎiwi−1 ≤ Al − A0

By construction, each move Li+1 depends on move Li , hence it must be thatwi ≤ wi+1.
Finally, we know that A = w0∑l

i=0 ℎi . Combining these relations, we can bound A
as follows.

A = w0
l

∑
i=0

ℎi = w0ℎ0 + w0
l

∑
i=1

ℎi ≤ A0 +
l

∑
i=1

ℎiwi−1 ≤ A0 + Al − A0 = Al

Hence there must have been a move, Ll , of area Al that was greater than or equal to
A. Thus the lemma holds in this case with c = 1. Note that if we only have R1,… , Rl′ ,
and no L moves, we can make a symmetrical argument.

We now consider the situation where there are moves of both types, so we have
moves L1,… , Ll and R1,… , Rl′ for l, l′ ≥ 1, such that they all depend on m0 = L0 =
R0. To be able to prove the lemma for this situation, we �rst prove another claim.
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Figure 6.18 The three di�erent cases we consider for showing that the area E(i, j)
remains less than the sum of the areas AL(i, j) and AR(i, j). Note that
the configurations are schematic versions, the proportions are not
correct. I ′ marks the intersection of the configuration before Li , Rj .
Red do�ed boxes mark the moves, the purple region marks E′, the
region of the previous moves.

Consider two moves Li and Rj . By extending the bottom of the box of Li to the right
and the right side of the box of Rj downwards, we get an intersection point I . Let
E(i, j) be the box between I and p0. We now claim that the area of E(i, j) is at most
the sum of the areas of the parts of Li and Rj that lie to the left of and above I . We
denote the areas of these parts of Li and Rj by AL(i, j) resp. AR(i, j), such that our
claim becomes E(i, j) ≤ AL(i, j) + AR(i, j) for any i, j for which the above holds. We
prove this claim by structural induction on i and j.

First, however, we show that the intersection point must always be on the box of
one of the two moves. Suppose this is not the case. The moves are then disjoint in
both x and y coordinates, or they may touch in a single point. This implies that, in
the xy-representation of the input polygon P , the moves share a single coordinate,
or they are separated. Since both are dependent on m0, the coordinates of m0 must
be between one of their consecutive coordinate pairs. But since the moves do not
overlap in P , it cannot be that both are dependent on m0, giving a contradiction.

Consider �rst the base case where i = j = 0. The areas AL(i, j) and AR(i, j) and E(i, j)
are all the same as the area of move m0. Thus the claim trivially holds.

Next, we prove that the claim holds, assuming that one step back the claim held. For
this, assume w.l.o.g. that the intersection point I always lies on the box of Rj . We
now consider three separate cases (Fig. 6.18):
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(a) Li and Rj do not touch, we only have to consider the case where the previous
move was Rj−1

(b) Li and Rj do touch, and the previous move was Li−1.

(c) Li and Rj do touch, and the previous move was Rj−1.

First, we look at case (a). We only have to consider the case where the claim held
for Li , Rj−1, since there must always be one or more moves before Rj that close the
gap between Li and Rj . This cannot be done using any moves of type L, since those
are either above or below Li by de�nition, and thus cannot close the gap to the right
of Li . Now, we assume that the claim held for Li , Rj−1, we now show that it holds
for Li , Rj . Let E′ be the enclosed area of Li , Rj−1. We need to show that the enclosed
area E(i, j) of Li and Rj satis�es E(i, j) ≤ AL(i, j) + AR(i, j). We can vertically split
the move Rj in four regions D0, D1, D2, D3 such that the union of these regions is
Rj , where we split on the horizontal lines de�ned by the y-coordinate of the bottom
of Li , the y-coordinate of p0 and the y-coordinate of the top of Rj−1. D0 can be an
empty region. By de�nition now, E(i, j) = E′ +D1. Also, from Lemma 6.3.4, we know
that the area of Rj−1, A(Rj−1), is less than the area of region D3(Fig. 6.18a). Then, we
have that

E(i, j) = E′ + D1 ≤ AL(i, j − 1) + AR(i, j − 1) + D1
≤ AL(i, j − 1) + A(Rj−1) + D1
≤ AL(i, j − 1) + D1 + D3
≤ AL(i, j) + AR(i, j)

where we use that in this case, AL(i, j) = AL(i, j − 1). Thus, the claim still holds.

We now consider case (b). Here, we consider that the claim held for Li−1, Rj and
prove that it holds for Li , Rj . We split Li into regions D2, D3, D4, using the vertical
lines with as x-coordinate the left x-coordinate of Li−1, and the x-coordinate of p0.
In addition, let D1 be the region of Rj that lies between the top and bottom of Li (see
Fig. 6.18b). We see that E(i, j) = E′+D1+D2. We also know thatAL(i−1, j) = Li−1 ≤ D4.
Finally, AR(i − 1, j) + D1 = AR(i, j). Thus, we have that

E(i, j) = E′ + D1 + D2 ≤ AL(i − 1, j) + AR(i − 1, j) + D1 + D2
≤ AR(i − 1, j) + D1 + D2 + D4
≤ AR(i, j) + D2 + D4
≤ AL(i, j) + AR(i, j)
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l

A(l)

Figure 6.19 Area A(l) for a bracket with a side length l. The lengths of the sides
of the bracket are the same when the staircase is uniform.

Finally, we consider case (c). Here, we apply the same split as with case (a) for Rj ,
resulting in regions D0, D1, D2, D3. We can then apply the exact same argumentation
as for case (c).

By structural induction now, we can conclude that E(i, j) ≤ AL(i, j) + AR(i, j) for any
valid i, j. In particular then, the claim holds for i = l and j = l′, the last L move and
the last R move. Since both moves border the bracket, AL(i, j) and AR(i, j) are the
areas of these moves. Also, E(l, l′) is exactly the area A that we want to bound.

The intersection point for the moves is exactly the corner of the bracket, hence one
of these moves has to be the last move before arriving at the bracket. This move
must then be larger than the other one. Assume w.l.o.g. that this move is Ll of size
A(Ll ). It then follows that A = E(l, l′), the area between p0 and the bracket corner,
is at most 2A(Ll ). So, there must have been a move, move Ll , with area at least 1

2A,
proving the lemma with c = 1

2 . □

6.3.7 Corollary. Let Amax be the area of the largest box in a greedy bracket. There must
have been a move of 12Amax in the bracket.

▶ 6.3.3 Approximation factor for uniform staircase

Using the insights from the previous section, we now show that the greedy algorithm
is a constant factor approximation algorithm, if we restrict our attention to uniform
staircases. So consider a uniform staircase of complexity n, consisting of an in�nitely
long �rst and last edge and n − 2 edges of unit length. We claim the following.
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6.3.8 Lemma. The optimal schematization of size k under the minimum homotopy area
for a uniform staircase of complexity n has minimum homotopy area of at least 12 (k −
1)l′(l′ + 1) with l′ = 1

2
n−k
k−1 .

Proof. Consider a bracket for a uniform staircase. Since all edges (except the �rst and
last) are of unit length, the sides of a bracket are of equal size (see Fig. 6.19). Moreover,
given a side length l of a bracket, it is easy to see that the bracket contributes 1

2 l(l+1)
to the homotopy area.

The total minimum homotopy area then is the sum of the contributions of all brack-
ets, giving

A(O) =
1
2
∑
b∈B

lb(lb + 1) (6.1)

with B all brackets of the current schematization (one per move) and lb the length
of a side of the bracket. Note that there are k −1 moves, and thus brackets. Since the
total side length is �xed and we are minimizing a sum of squares over the lengths, it
must be that A(O) is minimized when all lb are approximately equal. It is maximized
when one bracket has a maximal side length while all others are assigned zero length.

Excluding the start and end, the input staircase has width and height 12 (n − 2). Since
the schematization has the same width and height as the input, it must be that

1
2
(k − 2) +∑

b∈B
lb =

1
2
(n − 2). (6.2)

To distribute the lengths as evenly as possible, we set the base length for lc to lbase =
⌊ 12

n−k
k−1 ⌋ and distribute the remainder of unassigned length over the corners, giving

at most k −2 corner lengths of lbase +1. Taking the sum over all the brackets of these
side lengths, we get the optimal schematization area

A(O) =
1
2
∑
b∈B

(⌊
1
2
n − k
k − 1 ⌋

+ �b)(⌊
1
2
n − k
k − 1 ⌋

+ �b + 1)

where �b is 1 for at most k − 2 corners and zero otherwise.

By de�nition of the sum of squares, having all lengths exactly equal will result in a
lower value than having some values being slightly larger, when we force the sum
of all values that we are squaring to be a �xed value. Thus, it must be that

A(O) ≥
1
2
∑
b∈B

1
2
n − k
k − 1 (

1
2
n − k
k − 1

+ 1) =
1
2
(k − 1)l′(l′ + 1)
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with l′ = 1
2
n−k
k−1 . In the last step, we use that the total number of brackets is k − 1. □

We now proceed to show that the greedy approach results in a constant factor ap-
proximation for the optimal schematization.

6.3.9 Theorem. The resulting schematization SG of the greedy algorithm of a uniform
staircase is a 36-approximation of the optimal schematization SO .

Proof. Let the length of a move be the sum of the lengths of the edges that de�ne
the move. Consider all moves on a single side of the staircase (either top or bottom).
There are at most k/2moves on one side of the staircase. However, the total length of
the staircase remains the same under moves. Thus, the total length of the staircase
(ignoring the �rst and last edge) is n − 2. Since the sum of lengths of all moves
on one side is exactly the total staircase length, it must be that there exists a move
with maximum length n−2

k/2 . Given a �xed length for a move, its area is maximized
if we make the edges de�ning the move of equal size. Thus, its area is at most
( 12

n−2
k/2 )

2 = (n−2k )
2.

With this bound and the result in Lemma 6.3.2, we know that all moves applied
to get to the current schematization must have had an area of at most (n−2k )

2. By
Lemma 6.3.6, it must then also hold that the largest box between the input and any
bracket of the greedy schematization is at most 2 (n−2k )

2.

Consider a bracket with side length l. The largest box that �ts in a bracket of a
uniform staircase has close to equal sides and has an areaABox of at most ⌈ l+12 ⌉⋅⌊ l+12 ⌋.
Let AB be the area between the bracket and its associated input, which must be
1
2 l(l + 1). It then follows that

ABox = ⌈
l + 1
2 ⌉ ⋅ ⌊

l + 1
2 ⌋ ≥

1
2
⋅
1
2
l(l + 1) =

1
2
AB ,

provided that l is a positive integer. From the inequality, we see that the total area
between the bracket and its associated input is at most twice the area of the largest
box that �ts between the bracket and its associated input. Using the previous bound
on this largest box, it follows that the area between any bracket and its associated
input is at most 4 (n−2k )

2.

From Lemma 6.3.8, we know a lowerbound on the optimal schematization minimum
homotopy area. We upperbound the minimum homotopy area for the greedy ap-
proach using k − 1 times the area of the largest area for a single bracket. We now
take the ratio of this area and a lowerbound on the total minimum homotopy area

168



6.3 Greedy approximation algorithm for staircases

of the optimal solution, to get

A(G)
A(O)

≤
k − 1
k − 1

4 (n−2k )
2

l′(l′ + 1)/2
= 8 (n−2k )

2

l′(l′ + 1)
= 8 (n−2k )

2

1
2
n−k
k−1 (

1
2
n−k
k−1 + 1)

.

Let �1(n, k) be the rightmost expression. Taking the partial derivative of �1(n, k) to
k yields

)�1
)k

=
64(k − 1)(n − 2)2

k3(k − n)2(k + n − 2)2
(3k − 3k2 + k3 + n(n − 2))

Whether the partial derivative is positive or negative is then solely determined by
3k − 3k2 + k3 + n(n − 2). Assuming n ≥ 4 and k ≥ 2, this is always positive, thus
using higher k upperbounds �1(n, k) for all lower k regarding the ratio of areas of
symmetric di�erence.

We can give an alternative upperbound on the ratio of the two areas. We reuse the
bound for the maximum area for any bracket of the greedy schematization. We
know that the number of moves applied is n−k

2 , since any move removes two edges
of the schematization it is applied to. Then, it must be that the number of non-empty
brackets of the greedy schematization must also be at most n−k

2 , since a non-empty
bracket can only be created by one or more moves that the associated move of the
bracket depends on. Hence, we can upperbound A(G) by n−k

2 ⋅ 4 (n−2k )
2. Addition-

ally, we can trivially lowerbound A(O) by n−k
2 , since by construction, the minimum

homotopy area for staircases is non-decreasing and thus each move constributes at
least area 1 to the minimum homotopy area. Then, we have the second ratio

A(G)
A(O)

≤
(n − k)/2
(n − k)/2

⋅ 4(
n − 2
k )

2
= 4(

n − 2
k )

2

Let the rightmost expression be �2(n, k). We now have

)�2
)k

= −
8(n − 2)2

k3

which is negative for positive k.

Since both upperbounds should hold, we can derive a new bound by taking the
minimum of �1(n, k) and �2(n, k) as an upperbound, that is

A(G)
A(O)

≤ min(�1(n, k), �2(n, k)).

We can derive that �1(n, k) and �2(n, k) intersect at k = 4−n
3 and k = 2+n

3 . Since
we assume k ≥ 2, the �rst result is not of interest. Now, since �1(n, k) is strictly
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increasing with higher k and �2(n, k) is strictly decreasing for k ≥ 2 it must be that
the maximum of the two functions is along the line k = 2+n

3 . By �lling in k in �2(n, k)
we see that the maximum value is

min(�1(n,
2 + n
3

), �2(n,
2 + n
3

)) = 36
(n − 2)2

(n + 2)2
≤ 36.

Hence, we have that A(G)
A(O) ≤ min(�1(n, k), �2(n, k)) ≤ 36. Thus the greedy algorithm

results in a schematization that is a 36-approximation of the optimal schematization.
□

With this theorem, we generalize the result a bit. For this, we de�ne a non-uniformly
scaled staircase as a staircase whose horizontal edges are of unit length (except for
the �rst edge), and whose vertical edges are of length y (except for the last edge).
Then, we have the following generalization

6.3.10 Theorem. The resulting schematization SG of the greedy algorithm of a non-uniformly
scaled staircase is a 36-approximation of the optimal schematization SO .

Proof. Consider a schematization produced by the greedy approach on the uniform
staircase of the required target complexity. Scaling the areas of the moves that to-
gether produced the schematization does not change the relative order of the moves.
Thus the greedy approach would produce the same result on the non-uniformly
scaled staircase, only scaled by the factor of the non-uniformly scaled staircase.

For the optimal schematization, we see that a bracket still spans the same number of
edges of the input horizontally and vertically, but now the vertical edges are scaled
by y. Careful analysis of the area of a bracket then shows that the area of a single
bracket is exactly the scaled area of the uniform bracket. Hence, the area of the
optimal schematization is also simply scaled.

Since the approximation factor is the ratio of the areas of SG and SO , the non-uniform
scaling factor is eliminated, thus we get the same resulting factor in this setting. □

▶ 6.4 Conclusion
In this chapter, we have considered di�erent ways of improving schematization of or-
thogonal polygons by considering other distance measures and a move based model
that potentially alleviate issues with other measures. We proposed an algorithm
for computing orthogonal schematizations under the minimum homotopy area and
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showed that a very simple greedy algorithm exists for staircases that approximates
this schematization within a constant factor.

We gave an algorithm to compute the optimal schematization for orthogonal poly-
gons under the minimum homotopy area, allowing self-intersections. It would be
interesting to see if this algorithm generalizes to other -regular settings or even
for arbitrary simple polygons. The challenge is then to �nd a new canonical form,
since the it is not directly obvious how and if the canonical form generalizes to these
settings. Similarly, one may consider the schematization of planar subdivisions, and
see if we can generalize the algorithm to that setting, for orthogonal polygons or
more general polygons if possible.

As we showed when analyzing the characteristics of the homotopy area, we can
construct examples where simplicity of the input polygon is not preserved and we
actually can get the asymptotically worst case number of intersections. However,
these examples hinge on the fact that the polygon contains very narrow parts. This
seems to suggest that if we bound the narrowness of these corridors in the polygon,
better bounds may be achieved. This may then be used to try to formulate an algo-
rithm that does actually maintain simplicity under these assumptions. Alternatively,
a hybrid measure could be bene�cial in this particular case, where the area of these
small corridors is used to weigh particular moves. This then resembles using the
erosion thickness of the medial axis of a polygon for simpli�cation [129]. We envi-
sion that by considering simultaneous moves, we may be able to achieve a similar
simpli�cation when considering moves.

For future work, one can consider the non-uniform staircases and simple polygons
under the move-based model. In particular, though we highly suspect a constant
factor approximation for the greedy approach when considering non-uniform stair-
cases, we have not yet found a fully viable proof. A natural extension beyond stair-
cases is to look at skyline polygons and �nally simple polygons. A key challenge
there is that move costs for the greedy approach may also decrease. Hence, it will
be more di�cult to argue what the behavior of greedy exactly is without having
speci�c instances.

In addition to extending the approach, we aim to improve the approximation factor
for the uniform staircase. From exploratory experiments of the schematizations of
staircases using the greedy approach, it seems likely that a large class of staircases
exhibit a better approximation factor, where 2 seems to be the most likely candi-
date. This, however, requires even deeper insight into the problem and carefully
formulated proof strategies. We leave this for future work.

171



172



Chapter 7

Conclusion and Future Work

In this thesis, we discussed several approaches where we use contextual data to
enrich algorithms and derive new information that can be used for further analysis
to understand movement. We in particular consider the road network, physical
properties of entities and the local tra�c situation as context to our algorithms.

▶ 7.1 Main results
Using physical properties of the entities of the trajectories as contextual data, we
proposed a new outlier detection method that �nds inconsistent measurements in
a trajectory. In particular, we leverage the maximum speed and acceleration of
entities to determine what possible paths they could have traversed, and then see if
this concurs with the measurements that are present in the trajectory. We propose
a method for concatenable consistency, where we use the maximum speed of an
entity to e�ciently �nd outliers in 1D and 2D. Furthermore, we propose a 1D method
for detecting outliers that also incorporates acceleration bounds, thus resulting in
conditional concatenability. We extensively evaluate the proposed methods against
base line algorithms and investigate the sensitivity of the parameters.

We then continued using physical properties of the entities, but also introduced the
road network and local tra�c laws to expand the contextual data we had for the
entities. Using this contextual data, we proposed a map matching algorithm that
takes into account the physical properties of the entities, thus limiting the poten-
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tial paths an entity could have taken. By leveraging a consistency check for paths
through the network, we were able to use a k-fastest paths approach for generating
potential map matched paths and eliminate inconsistent paths, which allowed us to
afterwards heuristically select a good path. We argued that this approach is bene�-
cial when we need a certi�cate that the map matched path obeys certain physical
properties.

We investigated using contextual information of the local tra�c situation to see if
we could leverage trajectory data to reconstruct routes in a road network. For this,
we used local vehicle counts, recorded at �xed positions in the road network, as
contextual data, interpreting our trajectories as a representative set for the tra�c in
the network. We then required the reconstructed routes to be realistic, i.e. that they
are close to the representative trajectories under the Fréchet distance. We showed
that trying to reconstruct routes such that all counts are matched is NP-hard under
certain optimization criteria. Thus we developed heuristics for solving the problem.
Experimentally, we showed that our proposed heuristic guarantees realism of the
reconstructed routes while requiring more running time and in general matching
less of the tra�c counts, whereas baseline approaches are faster, but do not result
in realistic routes though they may better match the tra�c counts.

To be able to visualize major routes in a trajectory data set, we leveraged the road
network as context to schematize the trajectory data set and road network in a coor-
dinated fashion. That is, we proposed a pipeline that ensured that any simpli�cation
of the road network is re�ected in the trajectory data set, such that a mapping be-
tween the road network and trajectories remain across the simpli�cation operations.
After signi�cant simpli�cation of the road network, we can look for major routes
by �nding bundles, which are routes that are long and are a subtrajectory of a high
number of trajectories in the data set. We explored the results of the pipeline on two
real-world data sets.

Finally, we proposed to use the minimum homotopy area as a similarity measure
for schematizing orthogonal polygons. This measure retains more of the intuitive
topology of the input in the schematization. We provided an algorithm to compute
the optimal schematization under the minimum homotopy, where we do not enforce
simplicity of the schematization when the input is simple. Due to the high running
time for this algorithm, we considered a greedy algorithm to approximate the optimal
schematization. We then showed that this algorithm is actually a constant factor
approximation when we consider orthogonal staircases. We conjectured that this
result generalizes to non-uniform staircases.
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▶ 7.2 Future work
We investigated di�erent approaches of using contextual data to process and visual-
ize trajectory data for understanding mobility patterns. We next explore directions
that may be of interest for future research.

▶ 7.2.1 Using the temporal component of trajectories and con-
text

In the �rst two chapters of this thesis, we truly leverage the fact that our trajecto-
ries are spatio-temporal data: we can use the timestamps in conjunction with the
locations of the measurements to derive where the entity could have been at a next
timestamp, assuming it was somewhere at some time previously. However, in the
chapters regarding route reconstruction and coordinated schematization for trajec-
tory visualization, we mainly ignore the temporal component of the data, reinter-
preting the trajectories as directed polylines. The general question when analyzing
trajectories is how important the temporal component is. If we are interested in
routes only, then the dynamics of the trajectories are not that important, and the in-
terpretation as polylines is warranted. When the dynamics are of concern however,
the question is then how to use the temporal component in conjunction with the
spatial component: is the behavior that we expect periodic (e.g. rush hours during
weekdays) or is it not? Do we expect similar behavior to be dependent on the loca-
tion? Context then plays an important role in distinguishing between these di�erent
situations.

▶ 7.2.2 Anonymization, privacy and contextual data
One of the challenges when working with trajectory data derived from human mo-
bility is that it is very privacy-sensitive: full, unprocessed trajectories contain a lot
of personal information or can lead to a lot of personal information when combined
with the appropriate sources. This is one of the reasons why accurate open data sets
are scarce. To be able to publish trajectory data, algorithms have been developed
that anonymize the trajectories, making it harder to link multiple collected trajecto-
ries to the same person or even deriving what locations of interest a person visited.
However, on the other hand we want to derive meaningful information from the
trajectory data, expanding our understanding of the underlying mobility of people.
Thus, there is a balance to be struck between how much privacy is guaranteed and
the amount of meaningful knowledge we can extract from the trajectory data. Look-
ing at context-aware algorithms, it is then also important to know how much we can
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still infer from the trajectory data, given certain contextual information, knowing
that the trajectory data is anonymized. Or, in the reverse case, it is important to
investigate how much we can infer from contextual data sources, such that we can
build policies on this knowledge to avoid a potential breach of privacy.

▶ 7.2.3 Realistic input models
As we saw in this thesis, the problems we aim to solve for movement analysis often
are NP-hard in the general case. However, since we have a very speci�c application
area, it could make sense to leverage realistic input models for further analysis and
algorithm development to solve the problems [41, 90]. E�ectively, we can analyze
our input and characterize its properties, which we can then use to develop more
e�cient algorithms. Such properties for a road network could be for instance a small
crossing number, low maximum vertex degree and low density of its geometry in
general. For trajectories, examples are c-packedness of curves [45] or low density
of curves [41]. These properties can be leveraged to make more e�cient algorithms,
such as for computing the Fréchet distance [45]. While the properties discussed
by De Berg et al. [41] are mainly meant for analyzing geometric problems, it is in-
teresting to see if contextual data such as the local tra�c situation or tra�c laws
exhibit similarly useful properties as well. This may then be combined with geomet-
ric realistic properties to further re�ne and analyze context-aware algorithms for
movement analysis.

176



Bibliography

[1] Mohammad Abam, Shervin Daneshpajouh, Lasse Deleuran, Shayan Ehsani,
and Mohammad Ghodsi. Computing homotopic line simpli�cation. Compu-
tational Geometry, 47(7):728–739, 2014. doi: 10.1016/j.comgeo.2014.02.
002.

[2] Ravindra K Ahuja.Network Flows: Theory, Algorithms, and Applications. Pear-
son Education, 1993.

[3] Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar
maps. Journal of Algorithms, 49(2):262–283, 2003. doi: 10.1016/S0196-
6774(03)00085-3.

[4] Helmut Alt and Michael Godau. Computing the fréchet distance between
two polygonal curves. International Journal of Computational Geometry &
Applications, 5(01n02):75–91, 1995. doi: 10.1142/S0218195995000064.

[5] Gennady Andrienko, Natalia Andrienko, Wei Chen, Ross Maciejewski, and
Ye Zhao. Visual Analytics of Mobility and Transportation: State of the Art
and Further Research Directions. IEEE Transactions on Intelligent Transporta-
tion Systems, 18(8):2232–2249, 2017. doi: 10.1109/TITS.2017.2683539.

[6] Gennady Andrienko, Natalia Andrienko, and Marco Heurich. An event-
based conceptual model for context-aware movement analysis. International
Journal of Geographical Information Science, 25(9):1347–1370, 2011. doi: 10.
1080/13658816.2011.556120.

[7] Natalia Andrienko and Gennady Andrienko. Spatial generalization and ag-
gregation of massive movement data. IEEE Transactions on Visualization and
Computer Graphics, 17(2):205–219, 2010. doi: 10.1109/TVCG.2010.44.

177

https://doi.org/10.1016/j.comgeo.2014.02.002
https://doi.org/10.1016/j.comgeo.2014.02.002
https://doi.org/10.1016/S0196-6774(03)00085-3
https://doi.org/10.1016/S0196-6774(03)00085-3
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1109/TITS.2017.2683539
https://doi.org/10.1080/13658816.2011.556120
https://doi.org/10.1080/13658816.2011.556120
https://doi.org/10.1109/TVCG.2010.44


Bibliography

[8] Stefano Ardizzoni, Luca Consolini, Mattia Laurini, and Marco Locatelli. Ef-
�cient solution algorithms for the bounded acceleration shortest path prob-
lem. In Proceedings of the 60th IEEE Conference on Decision and Control (CDC
2021), pages 5729–5734, 2021. doi: 10.1109/CDC45484.2021.9683191.

[9] Stefano Ardizzoni, Luca Consolini, Mattia Laurini, and Marco Locatelli. So-
lution algorithms for the bounded acceleration shortest path problem. IEEE
Transactions on Automatic Control, 2022. doi: 10.1109/TAC.2022.3172169.

[10] Michael Arnold and Enno Ohlebusch. Linear time algorithms for general-
izations of the longest common substring problem. Algorithmica, 60(4):806–
818, 2011. doi: 10.1007/s00453-009-9369-1.

[11] Jon Bentley and James Saxe. Decomposable searching problems I. static-
to-dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980. doi:
10.1016/0196-6774(80)90015-2.

[12] Lasse Bergroth, Harri Hakonen, and Timo Raita. A survey of longest com-
mon subsequence algorithms. In Proceedings of the 7th International Sympo-
sium on String Processing and Information Retrieval, pages 39–48, 2000. doi:
10.1109/SPIRE.2000.878178.

[13] Donald J Berndt and James Cli�ord. Using dynamic time warping to �nd
patterns in time series. In KDD workshop, volume 10(16), pages 359–370,
1994.

[14] Norbert Blum and Kurt Mehlhorn. On the average number of rebalancing
operations in weight-balanced trees. Theoretical Computer Science, 11:303–
320, 1978. url: https : / / publikationen . sulb . uni - saarland . de /
bitstream/20.500.11880/26129/1/fb14_1978_06.pdf.

[15] Quirijn W Bouts, Irina Irina Kostitsyna, Marc van Kreveld, Wouter Meule-
mans, Willem Sonke, and Kevin Verbeek. Mapping polygons to the grid with
small Hausdor� and Fréchet distance. In Proceedings of the 24th Annual Euro-
pean Symposium on Algorithms (ESA 2016), volume 57 of LIPIcs, pages 22–1,
2016. doi: 10.4230/LIPIcs.ESA.2016.22.

[16] Michael S. Braasch. In Peter Teunissen and Oliver Montenbruck, editors,
Springer handbook of global navigation satellite systems. Volume 10, chap-
ter 15, pages 443–468. Springer, 2017. doi: 10.1007/978-3-319-42928-1.

[17] Rasmus Bro and Sijmen De Jong. A fast non-negativity-constrained least
squares algorithm. Journal of Chemometrics: A Journal of the Chemometrics
Society, 11(5):393–401, 1997. doi: 10.1002/(SICI)1099-128X(199709/
10)11:5<393::AID-CEM483>3.0.CO;2-L.

178

https://doi.org/10.1109/CDC45484.2021.9683191
https://doi.org/10.1109/TAC.2022.3172169
https://doi.org/10.1007/s00453-009-9369-1
https://doi.org/10.1016/0196-6774(80)90015-2
https://doi.org/10.1109/SPIRE.2000.878178
https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/26129/1/fb14_1978_06.pdf
https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/26129/1/fb14_1978_06.pdf
https://doi.org/10.4230/LIPIcs.ESA.2016.22
https://doi.org/10.1007/978-3-319-42928-1
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L


Bibliography

[18] Kevin Buchin, Maike Buchin, Marc van Kreveld, Bettina Speckmann, and
Frank Staals. Trajectory grouping structure. In Proceedings of the Workshop
on Algorithms and Data Structures (WADS 2013), pages 219–230. Springer,
2013. doi: 10.1007/978-3-642-40104-6_19.

[19] Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Lö�er, Aleksandr
Popov, Marcel Roelo�zen, and Frank Staals. Segment visibility counting
queries in polygons. arXiv preprint arXiv:2201.03490, 2022.

[20] Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina
Kostitsyna, Maarten Lö�er, and Martijn Struijs. Approximating (k, l)-center
clustering for curves. In Proceedings of the 30th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2019), pages 2922–2938. SIAM, 2019. doi:
10.1137/1.9781611975482.181.

[21] Kevin Buchin, Irina Kostitsyna, Bram Custers, and Martijn Struijs. A
sampling-based strategy for distributing taxis in a road network for occu-
pancy maximization (GIS cup). In Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems,
pages 616–619, 2019. doi: 10.1145/3347146.3363348.

[22] Kevin Buchin, Wouter Meulemans, André Van Renssen, and Bettina Speck-
mann. Area-preserving simpli�cation and schematization of polygonal sub-
divisions. ACM Transactions on Spatial Algorithms and Systems, 2(1), April
2016. issn: 2374-0353. doi: 10.1145/2818373.

[23] Maike Buchin, Somayeh Dodge, and Bettina Speckmann. Similarity of trajec-
tories taking into account geographic context. Journal of Spatial Information
Science, (9):101–124, 2014. doi: 10.5311/JOSIS.2014.9.179.

[24] Sergio Cabello, Mark de Berg, and Marc van Kreveld. Schematization of
networks. Computational Geometry, 30(3):223–238, 2005. doi: 10.1016/j.
comgeo.2004.11.002.

[25] Peng Cao, Tomio Miwa, Toshiyuki Yamamoto, and Takayuki Morikawa.
Bilevel generalized least squares estimation of dynamic origin–destination
matrix for urban network with probe vehicle data. Transportation research
record, 2333(1):66–73, 2013. doi: 10.3141/2333-08.

[26] Ennio Cascetta. Estimation of trip matrices from tra�c counts and survey
data: a generalized least squares estimator. Transportation Research Part
B: Methodological, 18(4-5):289–299, 1984. doi: 10.1016/0191-2615(84)
90012-2.

179

https://doi.org/10.1007/978-3-642-40104-6_19
https://doi.org/10.1137/1.9781611975482.181
https://doi.org/10.1145/3347146.3363348
https://doi.org/10.1145/2818373
https://doi.org/10.5311/JOSIS.2014.9.179
https://doi.org/10.1016/j.comgeo.2004.11.002
https://doi.org/10.1016/j.comgeo.2004.11.002
https://doi.org/10.3141/2333-08
https://doi.org/10.1016/0191-2615(84)90012-2
https://doi.org/10.1016/0191-2615(84)90012-2


Bibliography

[27] Enrique Castillo, Antonio J Conejo, José María Menéndez, and Pilar Jiménez.
The observability problem in tra�c network models. Computer-Aided Civil
and Infrastructure Engineering, 23(3):208–222, 2008. doi: 10.1111/j.1467-
8667.2008.00531.x.

[28] Erin Chambers, Eric de Verdiere, Je� Erickson, Sylvain Lazard, Francis
Lazarus, and Shripad Thite. Homotopic Fréchet distance between curves
or, walking your dog in the woods in polynomial time. Computational
Geometry, 43(3):295–311, 2010. doi: 10.1016/j.comgeo.2009.02.008.

[29] Erin Chambers, Irina Kostitsyna, Maarten Lö�er, and Frank Staals. Homo-
topy measures for representative trajectories. In Proceedings of the 24th
Annual European Symposium on Algorithms (ESA 2016), LIPIcs, 2016. doi:
10.4230/LIPIcs.ESA.2016.27.

[30] Erin Wolf Chambers and Yusu Wang. Measuring similarity between curves
on 2-manifolds via homotopy area. Journal of Computational Geometry,
10(1):96–126, May 2019. doi: 10.20382/jocg.v10i1a4.

[31] Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. A survey on map-
matching algorithms. In Proceedings of the Australasian Database Conference,
LNISA 12008, pages 121–133, 2020. doi: 10.1007/978-3-030-39469-1_10.

[32] Mingliang Che, Yingli Wang, Chi Zhang, and Xinliang Cao. An enhanced
hidden Markov map matching model for �oating car data. Sensors, 18(6),
2018. doi: 10.3390/s18061758.

[33] Jun Chen, Yungang Hu, Zhilin Li, Renliang Zhao, and Liqiu Meng. Selec-
tive omission of road features based on mesh density for automatic map
generalization. International Journal of Geographical Information Science,
23(8):1013–1032, 2009. doi: 10.1080/13658810802070730.

[34] Wei Chen, Fangzhou Guo, and Fei-Yue Wang. A survey of tra�c data visual-
ization. IEEE Transactions on Intelligent Transportation Systems, 16(6):2970–
2984, 2015. doi: 10.1109/TITS.2015.2436897.

[35] Bram Custers, Je� Erickson, Irina Kostitsyna, Wouter Meulemans, Bettina
Speckmann, and Kevin Verbeek. Orthogonal schematization with minimum
homotopy area. In Proceedings of the 36th European Workshop on Computa-
tional Geometry (EuroCG 2020), pages 451–457, 2020. url: https://www1.
pub.informatik.uni- wuerzburg.de/eurocg2020/data/uploads/
papers/eurocg20_paper_64.pdf.

180

https://doi.org/10.1111/j.1467-8667.2008.00531.x
https://doi.org/10.1111/j.1467-8667.2008.00531.x
https://doi.org/10.1016/j.comgeo.2009.02.008
https://doi.org/10.4230/LIPIcs.ESA.2016.27
https://doi.org/10.20382/jocg.v10i1a4
https://doi.org/10.1007/978-3-030-39469-1_10
https://doi.org/10.3390/s18061758
https://doi.org/10.1080/13658810802070730
https://doi.org/10.1109/TITS.2015.2436897
https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_64.pdf
https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_64.pdf
https://www1.pub.informatik.uni-wuerzburg.de/eurocg2020/data/uploads/papers/eurocg20_paper_64.pdf


Bibliography

[36] Bram Custers, Mees Van De Kerkhof, Wouter Meulemans, Bettina Speck-
mann, and Frank Staals. Maximum physically consistent trajectories. ACM
Transactions on Spatial Algorithms and Systems, 7(4), 2021. doi: 10.1145/
3452378.

[37] Bram Custers, Mees van de Kerkhof, Wouter Meulemans, Bettina Speck-
mann, and Frank Staals. Maximum physically consistent trajectories. ACM
Transactions on Spatial Algorithms and Systems, 7(4):1–33, 2021. doi: 10.
1145/3452378.

[38] Bram Custers, Wouter Meulemans, Marcel Roelo�zen, Bettina Speckmann,
and Kevin Verbeek. Physically consistent map-matching. In Proceedings of
the 30th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, 2022. To appear.

[39] Bram Custers, Wouter Meulemans, Bettina Speckmann, and Kevin Verbeek.
Coordinated schematization for visualizing mobility patterns on networks.
In Proceedings of the 11th International Conference on Geographic Information
Science (GIScience 2021), LIPIcs, 2021. doi: 10.4230/LIPIcs.GIScience.
2021.II.7.

[40] Bram Custers, Wouter Meulemans, Bettina Speckmann, and Kevin Verbeek.
Route reconstruction from tra�c �ow via representative trajectories. In
Proceedings of the 29th ACM SIGSPATIAL International Conference on Ad-
vances in Geographic Information Systems, pages 41–52, 2021. doi: 10.1145/
3474717.3483650.

[41] Mark de Berg, Frank van der Stappen, Jules Vleugels, and Matthew Katz.
Realistic input models for geometric algorithms. Algorithmica, 34(1):81–97,
2002. doi: 10.1007/s00453-002-0961-x.

[42] Daniel Delling, Andreas Gemsa, Martin Nöllenburg, Thomas Pajor, and Ig-
naz Rutter. On d-regular schematization of embedded paths. Computational
Geometry, 47(3):381–406, 2014. doi: 10.1016/j.comgeo.2013.10.002.

[43] Thomas van Dijk, Arthur van Goethem, Jan-Henrik Haunert, Wouter Meule-
mans, and Bettina Speckmann. Map schematization with circular arcs. In
Proceedings of the International Conference on Geographic Information Sci-
ence (GIScience 2014), volume 8728 of LNISA, pages 1–17. Springer, 2014.
doi: 10.1007/978-3-319-11593-1_1.

[44] Somayeh Dodge, Robert Weibel, and Anna-Katharina Lautenschütz. To-
wards a taxonomy of movement patterns. Information visualization, 7(3-
4):240–252, 2008. doi: 10.1057/PALGRAVE.IVS.9500182.

181

https://doi.org/10.1145/3452378
https://doi.org/10.1145/3452378
https://doi.org/10.1145/3452378
https://doi.org/10.1145/3452378
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.7
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.7
https://doi.org/10.1145/3474717.3483650
https://doi.org/10.1145/3474717.3483650
https://doi.org/10.1007/s00453-002-0961-x
https://doi.org/10.1016/j.comgeo.2013.10.002
https://doi.org/10.1007/978-3-319-11593-1_1
https://doi.org/10.1057/PALGRAVE.IVS.9500182


Bibliography

[45] Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the
fréchet distance for realistic curves in near linear time. Discrete & Computa-
tional Geometry, 48(1):94–127, 2012. doi: 10.1007/s00454-012-9402-z.

[46] Matt Duckham, Marc van Kreveld, Ross Purves, Bettina Speckmann, Yagu-
ang Tao, Kevin Verbeek, and Jo Wood. Modeling checkpoint-based move-
ment with the earth mover’s distance. In Jennifer A. Miller, David O’Sullivan,
and Nancy Wiegand, editors, Geographic Information Science, pages 225–239,
Cham. Springer International Publishing, 2016. isbn: 978-3-319-45738-3. doi:
10.1007/978-3-319-45738-3_15.

[47] Laura Eboli, Gabriella Mazzulla, and Giuseppe Pungillo. Combining speed
and acceleration to de�ne car users’ safe or unsafe driving behaviour. Trans-
portation Research Part C: Emerging Technologies, 68:113–125, 2016. doi: 10.
1016/j.trc.2016.04.002.

[48] Herbert Edelsbrunner, Leonidas Guibas, and Jorge Stol�. Optimal point loca-
tion in a monotone subdivision. SIAM Journal on Computing, 15(2):317–340,
1986. doi: 10.1137/0215023.

[49] Regina Estkowski and Joseph Mitchell. Simplifying a polygonal subdivision
while keeping it simple. In Proceedings of the 17th annual Symposium on
Computational Geometry (SoCG 2001), pages 40–49, 2001. doi: 10.1145/
378583.378612.

[50] Martin Fink, Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Ju-
lian Schuhmann, and Alexander Wol�. Drawing metro maps using bézier
curves. In Proceedings of the International Symposium on Graph Drawing (GD
2012), pages 463–474. Springer, 2012. doi: 10.1007/978-3-642-36763-
2_41.

[51] Marco Fiore, Panagiota Katsikouli, Elli Zavou, Mathieu Cunche, Françoise
Fessant, Dominique Le Hello, Ulrich Aivodji, Baptiste Olivier, Tony Quertier,
and Razvan Stanica. Privacy in trajectory micro-data publishing: a survey.
Transactions on Data Privacy, 13:91–149, 2020. url: http://www.tdp.cat/
issues16/tdp.a363a19.pdf.

[52] Steven Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica,
2(1-4):153, 1987. doi: 10.1007/BF01840357.

[53] Michael Garey, David Johnson, Gary Miller, and Christos Papadimitriou.
The complexity of coloring circular arcs and chords. SIAM Journal on Alge-
braic Discrete Methods, 1(2):216–227, 1980. doi: 10.1137/0601025.

182

https://doi.org/10.1007/s00454-012-9402-z
https://doi.org/10.1007/978-3-319-45738-3_15
https://doi.org/10.1016/j.trc.2016.04.002
https://doi.org/10.1016/j.trc.2016.04.002
https://doi.org/10.1137/0215023
https://doi.org/10.1145/378583.378612
https://doi.org/10.1145/378583.378612
https://doi.org/10.1007/978-3-642-36763-2_41
https://doi.org/10.1007/978-3-642-36763-2_41
http://www.tdp.cat/issues16/tdp.a363a19.pdf
http://www.tdp.cat/issues16/tdp.a363a19.pdf
https://doi.org/10.1007/BF01840357
https://doi.org/10.1137/0601025


Bibliography

[54] Yong Ge, Hui Xiong, Zhi-hua Zhou, Hasan Ozdemir, Jannite Yu, and Kuo
Chu Lee. Top-eye: top-k evolving trajectory outlier detection. In Proceed-
ings of the 19th ACM International Conference on Information and Knowledge
Management, pages 1733–1736, 2010. doi: 10.1145/1871437.1871716.

[55] Arthur van Goethem, Wouter Meulemans, Andreas Reimer, Herman Ha-
verkort, and Bettina Speckmann. Topologically safe curved schematisation.
The Cartographic Journal, 50(3):276–285, 2013. doi: 10.1179/1743277413Y.
0000000066.

[56] Chong Yang Goh, Justin Dauwels, Nikola Mitrovic, Muhammad Tayyab Asif,
Ali Oran, and Patrick Jaillet. Online map-matching based on hidden Markov
model for real-time tra�c sensing applications. In Proc. 15th Int. IEEE Conf.
on Intelligent Transportation Systems, pages 776–781, 2012. doi: 10.1109/
ITSC.2012.6338627.

[57] Manish Gupta, Jing Gao, Charu C Aggarwal, and Jiawei Han. Outlier detec-
tion for temporal data: a survey. IEEE Transactions on Knowledge and Data
Engineering, 26(9):2250–2267, 2014. doi: 10.1109/TKDE.2013.184.

[58] Ulrike Hahn, James Close, and Markus Graf. Transformation direction in�u-
ences shape-similarity judgments. Psychological science, 20(4):447–454, 2009.
doi: 10.1111/j.1467-9280.2009.02310.x.

[59] Binh Han, Ling Liu, and Edward Omiecinski. Neat: road network aware
trajectory clustering. In Proceedings of the 32nd IEEE International Conference
on Distributed Computing Systems (ICDCS 2012), pages 142–151. IEEE, 2012.
doi: 10.1109/ICDCS.2012.31.

[60] Jean-Francois Hangouet. Computation of the Hausdor� distance between
plane vector polylines. In AUTOCARTO-CONFERENCE, pages 1–10, 1995.

[61] Tzvika Hartman, Avinatan Hassidim, Haim Kaplan, Danny Raz, and Michal
Segalov. How to split a �ow? In 2012 Proceedings IEEE INFOCOM, pages 828–
836. IEEE, 2012. doi: 10.1109/INFCOM.2012.6195830.

[62] Jan-Henrik Haunert and Benedikt Budig. An algorithm for map matching
given incomplete road data. In Proceedings of the 20th ACM SIGSPATIAL
International Conference on Advances in Geoegraphic Information Systems,
pages 510–513, 2012. doi: 10.1145/2424321.2424402.

[63] Jan-Henrik Haunert, Alexander Wol�, et al. Optimal simpli�cation of build-
ing ground plans. In Proceedings of 21st International Society for Photogram-
metry and Remote Sensing Congress (ISPRS 2008), pages 372–378, 2008.

183

https://doi.org/10.1145/1871437.1871716
https://doi.org/10.1179/1743277413Y.0000000066
https://doi.org/10.1179/1743277413Y.0000000066
https://doi.org/10.1109/ITSC.2012.6338627
https://doi.org/10.1109/ITSC.2012.6338627
https://doi.org/10.1109/TKDE.2013.184
https://doi.org/10.1111/j.1467-9280.2009.02310.x
https://doi.org/10.1109/ICDCS.2012.31
https://doi.org/10.1109/INFCOM.2012.6195830
https://doi.org/10.1145/2424321.2424402


Bibliography

[64] Victoria Hodge and Jim Austin. A survey of outlier detection methodologies.
Arti�cial Intelligence Review, 22(2):85–126, 2004. doi: 10.1023/B:AIRE.
0000045502.10941.a9.

[65] Yu-Ling Hsueh and Ho-Chian Chen. Map matching for low-sampling-rate
GPS trajectories by exploring real-time moving directions. Information Sci-
ences, 433:55–69, 2018. doi: 10.1016/j.ins.2017.12.031.

[66] Zhenfeng Huang, Shaojie Qiao, Nan Han, Chang-an Yuan, Xuejiang Song,
and Yueqiang Xiao. Survey on vehicle map matching techniques. CAAI
Transactions on Intelligence Technology, 6(1):55–71, 2021. doi: 10.1049/
cit2.12030.

[67] Hiroshi Imai and Masao Iri. Computational-geometric methods for polyg-
onal approximations of a curve. Computer Vision, Graphics, and Image Pro-
cessing, 36(1):31–41, 1986. doi: 10.1016/S0734-189X(86)80027-5.

[68] Hiroshi Imai and Masao Iri. Polygonal approximations of a curve - formu-
lations and algorithms. Computational Morphology:71–86, 1988. doi: 10 .
1016/B978-0-444-70467-2.50011-4.

[69] Muhammad Usman Iqbal and Samsung Lim. Privacy implications of auto-
mated GPS tracking and pro�ling. IEEE Technology and Society Magazine,
29(2):39–46, 2010. doi: 10.1109/MTS.2010.937031.

[70] George R Jagadeesh and Thambipillai Srikanthan. Online map-matching
of noisy and sparse location data with hidden markov and route choice
models. IEEE Transactions on Intelligent Transportation Systems, 18(9):2423–
2434, 2017. doi: 10.1109/TITS.2017.2647967.

[71] Dongmin Kim, Suvrit Sra, and Inderjit S Dhillon. Tackling box-constrained
optimization via a new projected quasi-newton approach. SIAM Journal on
Scienti�c Computing, 32(6):3548–3563, 2010. doi: 10.1137/08073812X.

[72] Kyle Kloster, Philipp Kuinke, Michael P O’Brien, Felix Reidl, Fernando
Sánchez Villaamil, Blair D Sullivan, and Andrew van der Poel. A practical
FPT algorithm for �ow decomposition and transcript assembly. In Pro-
ceedings of the 20th Workshop on Algorithm Engineering and Experiments
(ALENEX 2018), pages 75–86. SIAM, 2018. doi: 10.1137/1.9781611975055.
7.

[73] Menno-Jan Kraak. The space-time cube revisited from a geovisualization
perspective. In Proceedings of the 21st International Cartographic Confer-
ence, pages 1988–1996, 2003. url: https : / / www . icaci . org / files /
documents/ICC_proceedings/ICC2003/Papers/255.pdf.

184

https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://doi.org/10.1016/j.ins.2017.12.031
https://doi.org/10.1049/cit2.12030
https://doi.org/10.1049/cit2.12030
https://doi.org/10.1016/S0734-189X(86)80027-5
https://doi.org/10.1016/B978-0-444-70467-2.50011-4
https://doi.org/10.1016/B978-0-444-70467-2.50011-4
https://doi.org/10.1109/MTS.2010.937031
https://doi.org/10.1109/TITS.2017.2647967
https://doi.org/10.1137/08073812X
https://doi.org/10.1137/1.9781611975055.7
https://doi.org/10.1137/1.9781611975055.7
https://www.icaci.org/files/documents/ICC_proceedings/ICC2003/Papers/255.pdf
https://www.icaci.org/files/documents/ICC_proceedings/ICC2003/Papers/255.pdf


Bibliography

[74] John Krumm, Julie Letchner, and Eric Horvitz. Map matching with travel
time constraints. In SAE World Congress, pages 16–19, 2007. doi: 10.4271/
2007-01-1102.

[75] Bart Kuijpers, Harvey J Miller, and Walied Othman. Kinetic prisms: incor-
porating acceleration limits into space–time prisms. International Journal
of Geographical Information Science, 31(11):2164–2194, 2017. doi: 10.1080/
13658816.2017.1356462.

[76] Lars Kulik, Matt Duckham, and Max Egenhofer. Ontology-driven map gen-
eralization. Journal of Visual Languages & Computing, 16(3):245–267, 2005.
doi: 10.1016/j.jvlc.2005.02.001.

[77] Ove Lampe and Helwig Hauser. Interactive visualization of streaming data
with kernel density estimation. In Proceedings of the 2011 IEEE Paci�c Visual-
ization Symposium (PACIFICVIS 2011), pages 171–178, 2011. doi: 10.1109/
PACIFICVIS.2011.5742387.

[78] Jae-Gil Lee, Jiawei Han, and Xiaolei Li. Trajectory outlier detection: a
partition-and-detect framework. In Proceedings of the 24th International
Conference on Data Engineering, pages 140–149, 2008. doi: 10.1109/ICDE.
2008.4497422.

[79] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a
partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD
Conference on Management of Data, pages 593–604, 2007. doi: 10.1145/
1247480.1247546.

[80] Wang-Chien Lee and John Krumm. Trajectory preprocessing. In Y. Zheng
and X. Zhou, editors, Computing with spatial trajectories, pages 3–33.
Springer, 2011. doi: 10.1007/978-1-4614-1629-6_1.

[81] Xiaolei Li, Jiawei Han, Sangkyum Kim, and Hector Gonzalez. Roam: rule-
and motif-based anomaly detection in massive moving object data sets.
In Proceedings of the 2007 SIAM International Conference on Data Mining,
pages 273–284, 2007. doi: 10.1137/1.9781611972771.25.

[82] Maarten Lö�er and Wouter Meulemans. Discretized approaches to schema-
tization. In Proceedings of the 29th Canadian Conference on Computational
Geometry (CCCG 2017), pages 220–225, 2017.

[83] Jed A Long. Kinematic interpolation of movement data. International Journal
of Geographical Information Science, 30(5):854–868, 2016. doi: 10.1080/
13658816.2015.1081909.

185

https://doi.org/10.4271/2007-01-1102
https://doi.org/10.4271/2007-01-1102
https://doi.org/10.1080/13658816.2017.1356462
https://doi.org/10.1080/13658816.2017.1356462
https://doi.org/10.1016/j.jvlc.2005.02.001
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1109/PACIFICVIS.2011.5742387
https://doi.org/10.1109/ICDE.2008.4497422
https://doi.org/10.1109/ICDE.2008.4497422
https://doi.org/10.1145/1247480.1247546
https://doi.org/10.1145/1247480.1247546
https://doi.org/10.1007/978-1-4614-1629-6_1
https://doi.org/10.1137/1.9781611972771.25
https://doi.org/10.1080/13658816.2015.1081909
https://doi.org/10.1080/13658816.2015.1081909


Bibliography

[84] Yin Lou, Chengyang Zhang, Yu Zheng, Xing Xie, Wei Wang, and Yan Huang.
Map-matching for low-sampling-rate GPS trajectories. In Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, pages 352–361, 2009. doi: 10.1145/1653771.
1653820.

[85] Rupak Majumdar and Vinayak Prabhu. Computing the skorokhod distance
between polygonal traces. In Proceedings of the 18th International Conference
on Hybrid Systems: Computation and Control, pages 199–208, 2015. doi: 10.
1145/2728606.2728618.

[86] Shigeru Masuyama, Toshihide Ibaraki, and Toshiharu Hasegawa. The com-
putational complexity of the m-center problems on the plane. IEICE TRANS-
ACTIONS (1976-1990), 64(2):57–64, 1981.

[87] Wouter Meulemans. Similarity Measures and Algorithms for Cartographic
Schematization. PhD thesis, TU Eindhoven, 2014.

[88] Wouter Meulemans, André van Renssen, and Bettina Speckmann. Area-
preserving subdivision schematization. In Proceedings of the International
Conference on Geographic Information Science (GIScience 2010), volume 6292
of LNISA, pages 160–174. Springer, 2010. doi: 10.1007/978-3-642-15300-
6_12.

[89] Harvey J Miller. Time geography and space-time prism. International ency-
clopedia of geography: People, the earth, environment and technology, 1, 2017.
doi: 10.1002/9781118786352.wbieg0431.

[90] Esther Moet, Marc van Kreveld, and Frank van der Stappen. On realistic
terrains. Computational Geometry, 41(1-2):48–67, 2008. doi: 10.1016/j.
comgeo.2007.10.008.

[91] Mohamed Mokbel, Louai Alarabi, Jie Bao, Ahmed Eldawy, Amr Magdy, Mo-
hamed Sarwat, Ethan Waytas, and Steven Yackel. Mntg: an extensible web-
based tra�c generator. In Proceedings of the 9th International Symposium on
Spatial and Temporal Databases (SSTD 2013), pages 38–55, Munich, Germany.
Springer, Springer, 2013. doi: 10.1007/978-3-642-40235-7_3.

[92] Marcello Montanino and Vincenzo Punzo. Trajectory data reconstruction
and simulation-based validation against macroscopic tra�c patterns. Trans-
portation Research Part B: Methodological, 80:82–106, 2015. doi: 10.1016/j.
trb.2015.06.010.

186

https://doi.org/10.1145/1653771.1653820
https://doi.org/10.1145/1653771.1653820
https://doi.org/10.1145/2728606.2728618
https://doi.org/10.1145/2728606.2728618
https://doi.org/10.1007/978-3-642-15300-6_12
https://doi.org/10.1007/978-3-642-15300-6_12
https://doi.org/10.1002/9781118786352.wbieg0431
https://doi.org/10.1016/j.comgeo.2007.10.008
https://doi.org/10.1016/j.comgeo.2007.10.008
https://doi.org/10.1007/978-3-642-40235-7_3
https://doi.org/10.1016/j.trb.2015.06.010
https://doi.org/10.1016/j.trb.2015.06.010


Bibliography

[93] Abhinandan Nath and Erin Taylor. K-Median clustering under discrete
Fréchet and Hausdor� distances. arXiv, 2020. url: https://arxiv.org/
pdf/2004.00722.pdf.

[94] Paul Newson and John Krumm. Hidden markov map matching through
noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems, pages 336–
343, 2009. doi: 10.1145/1653771.1653818.

[95] Jürg Nievergelt and Edward M Reingold. Binary search trees of bounded bal-
ance. SIAM Journal on Computing, 2(1):33–43, 1973. doi: 10.1145/800152.
804906.

[96] Martin Nollenburg and Alexander Wol�. Drawing and labeling high-quality
metro maps by mixed-integer programming. IEEE Transactions on Visualiza-
tion and Computer Graphics, 17(5):626–641, 2010. doi: 10.1109/TVCG.2010.
81.

[97] OpenStreetMap contributors. Planet dump retrieved from osm.org. https:
//www.openstreetmap.org, 2020.

[98] Takayuki Osogami and Rudy Raymond. Map matching with inverse rein-
forcement learning. In Proceedings of the 23rd International Joint Conference
on Arti�cial Intelligence (IJCAI 2013), pages 2547–2553, 2013.

[99] Mark H Overmars and Jan van Leeuwen. Worst-case optimal insertion and
deletion methods for decomposable searching problems. Information Process-
ing Letters, 12(4):168–173, 1981. doi: 10.1016/0020-0190(81)90093-4.

[100] Vincenzo Punzo, Maria Teresa Borzacchiello, and Biagio Ciu�o. On the as-
sessment of vehicle trajectory data accuracy and application to the Next
Generation SIMulation (NGSIM) program data. Transportation Research Part
C: Emerging Technologies, 19(6):1243–1262, 2011. doi: 10.1016/j.trc.
2010.12.007.

[101] Mohammed A Quddus, Washington Y Ochieng, and Robert B Noland. Cur-
rent map-matching algorithms for transport applications: state-of-the art
and future research directions. Transportation Research Part C: Emerging
Technologies, 15(5):312–328, 2007. doi: 10.1016/j.trc.2007.05.002.

[102] Ahmed El-Rabbany. Introduction to GPS: the global positioning system. Artech
house, 2002.

187

https://arxiv.org/pdf/2004.00722.pdf
https://arxiv.org/pdf/2004.00722.pdf
https://doi.org/10.1145/1653771.1653818
https://doi.org/10.1145/800152.804906
https://doi.org/10.1145/800152.804906
https://doi.org/10.1109/TVCG.2010.81
https://doi.org/10.1109/TVCG.2010.81
 https://www.openstreetmap.org 
 https://www.openstreetmap.org 
https://doi.org/10.1016/0020-0190(81)90093-4
https://doi.org/10.1016/j.trc.2010.12.007
https://doi.org/10.1016/j.trc.2010.12.007
https://doi.org/10.1016/j.trc.2007.05.002


Bibliography

[103] Kotagiri Ramamohanarao, Hairuo Xie, Lars Kulik, Shanika Karunasekera,
Egemen Tanin, Rui Zhang, and Eman Bin Khunayn. Smarts: scalable mi-
croscopic adaptive road tra�c simulator. ACM Transactions on Intelligent
Systems and Technology (TIST), 8(2):1–22, 2016. doi: 10.1145/2898363.

[104] Roeland Scheepens, Niels Willems, Huub van de Wetering, and Jarke Van
Wijk. Interactive visualization of multivariate trajectory data with density
maps. In Proceedings of the 2011 IEEE Paci�c Visualization Symposium (PACI-
FICVIS 2011), pages 147–154, 2011. doi: 10 . 1109 / PACIFICVIS . 2011 .
5742384.

[105] Mohammad Sharif and Ali Alesheikh. Context-aware movement analytics:
implications, taxonomy, and design framework. Wiley Interdisciplinary Re-
views: Data mining and knowledge discovery, 8(1):e1233, 2018. doi: 10.1002/
widm.1233.

[106] Martin Skutella. An introduction to network �ows over time. In Research
Trends in Combinatorial Optimization: Bonn 2008. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2009, pages 451–482. isbn: 978-3-540-76796-1. doi:
10.1007/978-3-540-76796-1_21.

[107] Roniel de Sousa, Azzedine Boukerche, and Antonio Loureiro. Vehicle trajec-
tory similarity: models, methods, and applications. ACM Computing Surveys
(CSUR), 53(5):1–32, 2020. doi: 10.1145/3406096.

[108] Radan Šuba, Martijn Meijers, and Peter Van Oosterom. Continuous road
network generalization throughout all scales. ISPRS International Journal of
Geo-Information, 5(8):145, 2016. doi: 10.3390/ijgi5080145.

[109] Robert Thomson. The ’stroke’ concept in geographic network generalization
and analysis. In Progress in Spatial Data Handling, pages 681–697. Springer,
2006. doi: 10.1007/3-540-35589-8_43.

[110] Christian Tominski, Heidrun Schumann, Gennady Andrienko, and Natalia
Andrienko. Stacking-based visualization of trajectory attribute data. IEEE
Transactions on visualization and Computer Graphics, 18(12):2565–2574, 2012.
doi: 10.1109/TVCG.2012.265.

[111] Mees van de Kerkhof, Irina Kostitsyna, Maarten Lö�er, Majid Mirzanezhad,
and Carola Wenk. Global curve simpli�cation. In Proceedings of the 27th
Annual European Symposium on Algorithms (ESA 2019), LIPIcs, page 67, 2019.
doi: 10.4230/lipics.esa.2019.67.

188

https://doi.org/10.1145/2898363
https://doi.org/10.1109/PACIFICVIS.2011.5742384
https://doi.org/10.1109/PACIFICVIS.2011.5742384
https://doi.org/10.1002/widm.1233
https://doi.org/10.1002/widm.1233
https://doi.org/10.1007/978-3-540-76796-1_21
https://doi.org/10.1145/3406096
https://doi.org/10.3390/ijgi5080145
https://doi.org/10.1007/3-540-35589-8_43
https://doi.org/10.1109/TVCG.2012.265
https://doi.org/10.4230/lipics.esa.2019.67


Bibliography

[112] Mees van de Kerkhof, Irina Kostitsyna, Marc van Kreveld, Maarten Lö�er,
and Tim Ophelders. Route-preserving road network generalization. In Pro-
ceedings of the 28th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pages 381–384, 2020. doi: 10.1145/
3397536.3422234.

[113] Stef van den Elzen and Jarke van Wijk. Multivariate network exploration
and presentation: from detail to overview via selections and aggregations.
IEEE Transactions on Visualization and Computer Graphics, 20(12):2310–2319,
2014. doi: 10.1109/TVCG.2014.2346441.

[114] Thomas van Dijk, Arthur van Goethem, Jan-Henrik Haunert, Wouter Meule-
mans, and Bettina Speckmann. Map schematization with circular arcs. In
Proceedings of the International Conference on Geographic Information Science
(GIScience 2014), pages 1–17, 2014. doi: 10.1007/978-3-319-11593-1_1.

[115] Arthur van Goethem, Wouter Meulemans, Andreas Reimer, Herman Ha-
verkort, and Bettina Speckmann. Topologically safe curved schematization.
The Cartographic Journal, 50(3):276–285, 2013. doi: 10.1179/1743277413y.
0000000066.

[116] Marc van Kreveld. Smooth generalization for continuous zooming. In Pro-
ceedings of the 20th International Cartography Conference, pages 2180–2185,
2001. url: https://icaci.org/files/documents/ICC_proceedings/
ICC2001/icc2001/file/f13042.pdf.

[117] Peter van Oosterom. Variable-scale topological data structures suitable for
progressive data transfer: the gap-face tree and gap-edge forest.Cartography
and Geographic Information Science, 32(4):331–346, 2005. doi: 10.1559/
152304005775194782.

[118] Benedicte Vatinlen, Fabrice Chauvet, Philippe Chrétienne, and Philippe Ma-
hey. Simple bounds and greedy algorithms for decomposing a �ow into a
minimal set of paths. European Journal of Operational Research, 185(3):1390–
1401, 2008. doi: 10.1016/j.ejor.2006.05.043.

[119] László A Végh. A strongly polynomial algorithm for a class of minimum-cost
�ow problems with separable convex objectives. SIAM Journal on Comput-
ing, 45(5):1729–1761, 2016. doi: 10.1137/140978296.

[120] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Discovering sim-
ilar multidimensional trajectories. In Proceedings of the 18th International
Conference on Data Engineering, pages 673–684, 2002. doi: 10.1109/ICDE.
2002.994784.

189

https://doi.org/10.1145/3397536.3422234
https://doi.org/10.1145/3397536.3422234
https://doi.org/10.1109/TVCG.2014.2346441
https://doi.org/10.1007/978-3-319-11593-1_1
https://doi.org/10.1179/1743277413y.0000000066
https://doi.org/10.1179/1743277413y.0000000066
https://icaci.org/files/documents/ICC_proceedings/ICC2001/icc2001/file/f13042.pdf
https://icaci.org/files/documents/ICC_proceedings/ICC2001/icc2001/file/f13042.pdf
https://doi.org/10.1559/152304005775194782
https://doi.org/10.1559/152304005775194782
https://doi.org/10.1016/j.ejor.2006.05.043
https://doi.org/10.1137/140978296
https://doi.org/10.1109/ICDE.2002.994784
https://doi.org/10.1109/ICDE.2002.994784


Bibliography

[121] Roy Weiss and Robert Weibel. Road network selection for small-scale maps
using an improved centrality-based algorithm. Journal of Spatial Information
Science, 2014(9):71–99, 2014. url: https://josis.org/index.php/josis/
article/view/53/53.

[122] Carola Wenk, Randall Salas, and Dieter Pfoser. Addressing the need for map-
matching speed: localizing global curve-matching algorithms. In Proceedings
of the 18th International Conference on Scienti�c and Statistical DatabaseMan-
agement (SSDBM 2006), pages 379–388, 2006. doi: 10.1109/SSDBM.2006.
11.

[123] Niels Willems, Huub van de Wetering, and Jarke van Wijk. Visualization
of vessel movements. In Computer Graphics Forum, volume 28 of number 3,
pages 959–966. Wiley Online Library, 2009. doi: 10.1111/j.1467-8659.
2009.01440.x.

[124] Alexander Wol�. Drawing subway maps: a survey. Informatik-Forschung
und Entwicklung, 22(1):23–44, 2007. doi: 10.1007/s00450-007-0036-y.

[125] Jung-Im Won, Sang-Wook Kim, Ji-Haeng Baek, and Junghoon Lee. Trajec-
tory clustering in road network environment. In Proceedings of the IEEE
Symposium on Computational Intelligence and Data Mining (CIDM 2009),
pages 299–305. IEEE, 2009. doi: 10.1109/CIDM.2009.4938663.

[126] Jo Wood, Jason Dykes, and Aidan Slingsby. Visualisation of origins, desti-
nations and �ows with OD maps. The Cartographic Journal, 47(2):117–129,
2010. doi: 10.1179/000870410X12658023467367.

[127] Hsiang-Yun Wu, Benjamin Niedermann, Shigeo Takahashi, and Martin Nöl-
lenburg. A survey on computing schematic network maps: the challenge to
interactivity. In Proceedings of the 2nd Schematic Mapping Workshop, 2019.

[128] Hsiang-Yun Wu, Benjamin Niedermann, Shigeo Takahashi, Maxwell Ro-
berts, and Martin Nöllenburg. A survey on transit map layout–from design,
machine, and human perspectives. In Proceedings of the Computer Graphics
Forum, volume 39 of number 3, pages 619–646. Wiley Online Library, 2020.
doi: 10.1111/cgf.14030.

[129] Yajie Yan, Kyle Sykes, Erin Chambers, David Letscher, and Tao Ju. Erosion
thickness on medial axes of 3d shapes. ACM Transactions on Graphics (TOG),
35(4):1–12, 2016. doi: 10.1145/2897824.2925938.

190

https://josis.org/index.php/josis/article/view/53/53
https://josis.org/index.php/josis/article/view/53/53
https://doi.org/10.1109/SSDBM.2006.11
https://doi.org/10.1109/SSDBM.2006.11
https://doi.org/10.1111/j.1467-8659.2009.01440.x
https://doi.org/10.1111/j.1467-8659.2009.01440.x
https://doi.org/10.1007/s00450-007-0036-y
https://doi.org/10.1109/CIDM.2009.4938663
https://doi.org/10.1179/000870410X12658023467367
https://doi.org/10.1111/cgf.14030
https://doi.org/10.1145/2897824.2925938


Bibliography

[130] Bisheng Yang, Xuechen Luan, and Qingquan Li. Generating hierarchical
strokes from urban street networks based on spatial pattern recognition.
International Journal of Geographical Information Science, 25(12):2025–2050,
2011. doi: 10.1080/13658816.2011.570270.

[131] Can Yang and Gyozo Gidofalvi. Fast map matching, an algorithm integrating
hidden markov model with precomputation. International Journal of Geo-
graphical Information Science, 32(3):547–570, 2018. doi: 10.1080/13658816.
2017.1400548.

[132] Yalong Yang, Tim Dwyer, Sarah Goodwin, and Kim Marriott. Many-to-many
geographically-embedded �ow visualisation: an evaluation. IEEE transac-
tions on visualization and computer graphics, 23(1):411–420, 2016. doi: 10.
1109/TVCG.2016.2598885.

[133] Jin Y Yen. Finding the k shortest loopless paths in a network. Management
Science, 17(11):712–716, 1971. doi: 10.1287/mnsc.17.11.712.

[134] Byoung-Kee Yi, Hosagrahar Jagadish, and Christos Faloutsos. E�cient re-
trieval of similar time sequences under time warping. In Proceedings 14th
International Conference on Data Engineering (ICDE 1998), pages 201–208.
IEEE, 1998. doi: 10.1109/ICDE.1998.655778.

[135] Wenhao Yu, Yifan Zhang, Tinghua Ai, Qingfeng Guan, Zhanlong Chen, and
Haixia Li. Road network generalization considering tra�c �ow patterns. In-
ternational Journal of Geographical Information Science, 34(1):119–149, 2020.
doi: 10.1080/13658816.2019.1650936.

[136] Guan Yuan, Penghui Sun, Jie Zhao, Daxing Li, and Canwei Wang. A review of
moving object trajectory clustering algorithms. Arti�cial Intelligence Review,
47(1):123–144, 2017. doi: 10.1007/s10462-016-9477-7.

[137] Guan Yuan, Penghui Sun, Jie Zhao, Daxing Li, and Canwei Wang. A review of
moving object trajectory clustering algorithms. Arti�cial Intelligence Review,
47(1):123–144, 2017. doi: 10.1007/s10462-016-9477-7.

[138] Guan Yuan, Shixiong Xia, Lei Zhang, Yong Zhou, and Cheng Ji. Trajec-
tory outlier detection algorithm based on structural features. Journal of
Computational Information Systems, 7(11):4137–4144, 2011. url: https :
//www.researchgate.net/profile/Zhou- Yong- 15/publication/
266603308 _ Trajectory _ Outlier _ Detection _ Algorithm _ Based _
on _ Structural _ Features / links / 5631921e08ae13bc6c35814c /
Trajectory-Outlier-Detection-Algorithm-Based-on-Structural-
Features.pdf.

191

https://doi.org/10.1080/13658816.2011.570270
https://doi.org/10.1080/13658816.2017.1400548
https://doi.org/10.1080/13658816.2017.1400548
https://doi.org/10.1109/TVCG.2016.2598885
https://doi.org/10.1109/TVCG.2016.2598885
https://doi.org/10.1287/mnsc.17.11.712
https://doi.org/10.1109/ICDE.1998.655778
https://doi.org/10.1080/13658816.2019.1650936
https://doi.org/10.1007/s10462-016-9477-7
https://doi.org/10.1007/s10462-016-9477-7
https://www.researchgate.net/profile/Zhou-Yong-15/publication/266603308_Trajectory_Outlier_Detection_Algorithm_Based_on_Structural_Features/links/5631921e08ae13bc6c35814c/Trajectory-Outlier-Detection-Algorithm-Based-on-Structural-Features.pdf
https://www.researchgate.net/profile/Zhou-Yong-15/publication/266603308_Trajectory_Outlier_Detection_Algorithm_Based_on_Structural_Features/links/5631921e08ae13bc6c35814c/Trajectory-Outlier-Detection-Algorithm-Based-on-Structural-Features.pdf
https://www.researchgate.net/profile/Zhou-Yong-15/publication/266603308_Trajectory_Outlier_Detection_Algorithm_Based_on_Structural_Features/links/5631921e08ae13bc6c35814c/Trajectory-Outlier-Detection-Algorithm-Based-on-Structural-Features.pdf
https://www.researchgate.net/profile/Zhou-Yong-15/publication/266603308_Trajectory_Outlier_Detection_Algorithm_Based_on_Structural_Features/links/5631921e08ae13bc6c35814c/Trajectory-Outlier-Detection-Algorithm-Based-on-Structural-Features.pdf
https://www.researchgate.net/profile/Zhou-Yong-15/publication/266603308_Trajectory_Outlier_Detection_Algorithm_Based_on_Structural_Features/links/5631921e08ae13bc6c35814c/Trajectory-Outlier-Detection-Algorithm-Based-on-Structural-Features.pdf
https://www.researchgate.net/profile/Zhou-Yong-15/publication/266603308_Trajectory_Outlier_Detection_Algorithm_Based_on_Structural_Features/links/5631921e08ae13bc6c35814c/Trajectory-Outlier-Detection-Algorithm-Based-on-Structural-Features.pdf


Bibliography

[139] Yu Zheng. Trajectory data mining: an overview. ACM Transactions on Intel-
ligent Systems and Technology, 6(3):29, 2015. doi: 10.1145/2743025.

[140] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting
locations and travel sequences from GPS trajectories. In Proceedings of the
18th conference on World wide web (WWW 2009), pages 791–800, 2009. doi:
10.1145/1526709.1526816.

192

https://doi.org/10.1145/2743025
https://doi.org/10.1145/1526709.1526816


Chapter 8

Summary

Spatio-temporal trajectories are a ubiquitous source for analyzing patterns of mo-
bility of people and animals. They arise in �elds like tra�c management in cities
and the analysis of bird migrations. A vast body of research exists that provides
the tools and algorithms to analyse such trajectories. The major challenges when
working with these trajectories are to get clean, complete data and to visualize and
summarize the vast amount of data that is available. To address these challenges
in a meaningful way, we seek to provide algorithms that take into account the con-
text of the trajectories: the environment and setting in which the trajectories were
measured. In this thesis, we provide novel algorithms and approaches that take into
account the spatial environment, namely the road-network, for traces of vehicles
and considers the real-world physical context of trajectories.

In the context of detecting outliers in spatio-temporal trajectories, we introduce a
model that considers the consistency of the spatio-temporal data with physical re-
ality. We consider models where we bound the maximum speed of the entity that
underlies the measured trajectory and where we bound both the maximum speed and
acceleration. Using this approach, we can detect outlying measurements in the tra-
jectory, by considering the measurements that are not part of the largest consistent
subtrajectory to be outliers. This gives us a means to cleanup trajectories to be used
later in processing. For the speed-bounded model, we introduce e�cient algorithms
to compute them in both the 1D and 2D setting. For the acceleration-bounded model,
we derive an algorithm for 1D. The resulting algorithms are analyzed by employing
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8 Summary

a real-world data set, where we compare the resulting trajectories with results from
benchmark and state-of-the-art algorithms. Furthermore, we use our physics models
to tackle the problem of gap-�lling a trajectory.

Next, we consider the problem of reconstructing routes in a road network. By com-
bining di�erent sources of data that describe the tra�c situation in the network, we
can infer more information about the underlying tra�c that is represented by these
data sources. We are particularly interested in reconstructing routes from di�erent
data sources. We employ a set of GPS trajectories that we deem representative of
the tra�c and a set of checkpoint data: measurements of the tra�c volume at �xed
locations in the road network. The set of trajectories is a sample of the total traf-
�c in the network whereas the checkpoint data measures the total tra�c volume,
but does not provide information on routes. Thus, combining them can provide a
more complete picture of the routes of tra�c in the network. We reconstruct routes
from these data sources, such that the routes align with the representative trajec-
tories, while capturing as much of the checkpoint tra�c volume as possible. We
measure the alignment to the representative trajectories by employing a geometric
distance measure between reconstructed routes and representative trajectories. We
show that variants of this problem are NP-hard. Hence, we introduce a heuristic
approach for computing the reconstructed routes. We apply this to a real-world and
synthetic dataset and compare to baseline algorithms how well the routes align to
the checkpoint data and the representative trajectories.

With the cleaned up and reconstructed routes, we now consider the problem of
visualizing mobility patterns on road networks. We visualize a (large) set of spatio-
temporal trajectories in a summarized way, allowing us to easily see major patterns
in the data set. To this end, we apply schematization: the act of simplifying data for
visualization, where the summarizing power is favored over high-�delity reproduc-
tion of the data. To be able to see the relation between the original location of the
trajectories and the summarized patterns, we use the underlying road-network to
provide context for the visualization. We present a pipeline that coordinates schema-
tization between the road-network and the trajectory data set. This pipeline consists
of simple to grasp steps that modify the road network and set of trajectories simulta-
neously. Finally, we derive patterns from the trajectories in the low complexity road
network that we visualize in a metro map style on the schematized road-network.
We explore the result of this schematization on two di�erent real-world data sets,
which show that the approach seems promising for distinguishing di�erent patterns
of mobility.

Continuing on the schematization, we consider what makes a good distance measure
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that captures the intuition behind schematization. We restrict ourselves to orthogo-
nal polygons, in line with previous work on schematization of planar subdivisions
and road-networks. We investigate schematization under the homotopy area, a dis-
tance measure that captures topological changes between schematization input and
output. We present an algorithm to optimally compute schematizations under this
distance measure that runs in polynomial time. To improve upon this running time,
we consider a move-based model that captures salient aspects of the homotopy area.
We propose a greedy algorithm for this model based on previous work. We show
with careful geometric arguments that the result of this algorithm approximates the
optimal solution.
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