

Transformational Nonblocking Verification

Citation for published version (APA):
Thuijsman, S., Reniers, M., & Cai, K. (2022). Transformational Nonblocking Verification. IFAC-PapersOnLine,
55(28), 256-263. https://doi.org/10.1016/j.ifacol.2022.10.351

Document license:
CC BY-NC-ND

DOI:
10.1016/j.ifacol.2022.10.351

Document status and date:
Published: 01/09/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1016/j.ifacol.2022.10.351
https://doi.org/10.1016/j.ifacol.2022.10.351
https://research.tue.nl/en/publications/d33c0fac-b40f-4154-9e0a-cf61c9801305

IFAC PapersOnLine 55-28 (2022) 256–263

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.10.351

10.1016/j.ifacol.2022.10.351 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

 Sander Thuijsman et al. / IFAC PapersOnLine 55-28 (2022) 256–263 257

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

Transformational Nonblocking Verification �

Sander Thuijsman ∗ Michel Reniers ∗ Kai Cai ∗∗

∗ Eindhoven University of Technology, Eindhoven, The Netherlands
(e-mail: {s.b.thuijsman, m.a.reniers}@tue.nl)

∗∗ Osaka Metropolitan University, Osaka, Japan
(e-mail: cai@omu.ac.jp)

Abstract: Nonblocking verification can be applied to evaluate the behavior of discrete event
systems. Performing nonblocking verification can be computationally costly. In this work, we
consider discrete event systems that evolve over time. We study how to reuse results from a
previous nonblocking verification, to more efficiently perform nonblocking verification when the
system is adapted. We call this approach transformational nonblocking verification, and present
an algorithm for the method. The efficiency of the method is evaluated by applying an academic
and an industrial use case.

Keywords: Formal verification, discrete event systems, system evolution, nonblocking

1. INTRODUCTION

Supervisory control theory, as introduced by Ramadge
and Wonham (1987, 1989), is a model-based approach
to control discrete event (dynamic) systems. Typically
cyber physical systems are modeled, where the physical
system consists out of actuators and sensors. A supervisory
controller can enable or disable particular events to occur
in the actuators to steer the system. When the supervisory
controller receives an event from a sensor, its state is
updated which may then result in a new control command.
These cyber physical discrete event systems are often
safety-critical. Therefore, correct functioning of the system
is vital. In order to guarantee correct behavior, model
checking can be performed. Model checking is a formal
verification technique to establish behavioral properties
on the basis of a suitable model of a system through
systematic inspection of all states in the model (Baier and
Katoen (2008)).

In this paper, we focus on verification of the nonblocking
property (Ramadge and Wonham (1989)) in discrete event
systems. Nonblockingness indicates that the system can
always progress to some marked state. The marking of
states is chosen by the modeler, and typically indicates a
situation where the system is stable or has progressed in
some sense. Verification of nonblockingness is common in
the supervisory control framework. A method to obtain
a (nonblocking) supervisory controller is to apply super-
visory controller synthesis and algorithmically compute
the supervisor based on an uncontrolled system formula-
tion and a set of formalized requirements (Ramadge and
Wonham (1989)). Supervisory controller synthesis may
require considerable computational effort because it suf-
fers from state space explosion. Technically, all possible
combinations of states of components in the system must

� Research leading to these results has received funding from the EU
ECSEL Joint Undertaking under grant agreement no 826452 (project
Arrowhead Tools) and from the partners national programs/funding
authorities.

be taken into account. Therefore, adding a small compo-
nent to the model might induce a large increase to the
total system state space. A common way of mitigating
state space explosion is by applying modular supervisory
controller synthesis techniques, that split the problem into
multiple sub-problems. Some popular methods are modu-
lar (Ramadge and Wonham (1989)), decentralized (Rudie
and Wonham (1992)), hierarchical (Zhong and Wonham
(1990)), compositional (Flordal et al. (2007)), coordinated
(Komenda et al. (2012), distributed (Su et al. (2010)), and
multilevel supervisory control (Komenda et al. (2016)).
Unfortunately, for these methods often nonblockingness of
the synchronous controlled system cannot be guaranteed
(or only under certain conditions). In such a circumstance,
one may choose to apply nonblocking verification. Unfor-
tunately, system-wide verification of nonblockingness also
suffers from state space explosion.

Cyber physical systems generally evolve over time. Lehman
(1996) has defined the laws of software evolution, these
describe what changes typically occur during a software’s
lifetime. The laws themselves have evolved over the years,
but the law of continuing change has consistently been
a part of them. This law states that a controller must
continually be adapted, otherwise it becomes progressively
less satisfactory. Frequent modifications of the supervisory
control of an industrial system are also observed in the
use case we study in this paper, based on van der Schriek
(2018).

In case nonblocking verification (NBV) is performed for a
particular system, its outcome is not valid anymore once
this system is adapted. In this paper, we investigate how
to reduce the computational cost of NBV in the case of
an evolving system. We assume a base model, on which
NBV is already performed. After NBV on the base model,
the base model is adapted such that a variant model is
created. The goal is to use the verification result of the
base system, to more efficiently perform NBV for the
variant model. We call this transformational nonblocking
verification (TNBV).

1.1 Related work

The idea we present here originates from the transfor-
mational supervisor synthesis framework introduced in
Thuijsman and Reniers (2020, 2022), where the result of
the synthesis of a base system and the difference between
the base and variant system (defined in a so-called model
delta) are used to more efficiently compute the supervisor
for the variant system.

For related work in the area of model checking, where
information of previous verification runs is reused in new
verifications, an overview of regression verification is given
in Beyer and Wendler (2013). Conditional model checking
(Beyer et al. (2012)) is used to reuse partial verification
results when an earlier verification run did not verify the
complete system. A condition can be input to direct the
verifier to the parts of the program that still need to
be verified. Some approaches reuse witnesses, that are
counterexamples provided by the verifier, to reverify if the
result of the model checker is still correct when the system
is adapted (Henzinger et al. (2003)). Other approaches
use auxiliary information from a previous verification, for
instance reuse of abstractions that have been applied is
discussed in Beyer et al. (2013). In Yang et al. (2009) state
mappings are generated to aid identification of states of
interest in new verifications. One or more of the following
aspects generally contrast our work to existing work: We
use state sets to pass information between the verifications,
we do not create any additional data structures specifically
for usage in some next computation (i.e., the state sets
we store always need to be computed for verification), we
provide a theoretical bound where the transformational
approach is always equal or less costly than the conven-
tional approach, and our approach is specifically designed
for verification of nonblockingness.

There is related work that studies efficient formal verifi-
cation without considering system evolution. For instance,
symbolic model checking (Clarke et al. (1996)) using bi-
nary decision diagrams where explicit enumeration of the
state space is avoided. In compositional verification (Graf
and Steffen (1990)), and the hierarchical approaches of
Leduc et al. (2005) and Feng and Wonham (2008), the sys-
tem is abstracted or divided before or during verification to
reduce state space sizes but still give the same verification
result. In Mohajerani et al. (2015) a compositional verifi-
cation approach is introduced that is specifically tailored
to nonblocking verification. We deliberately do not apply
symbolic or abstraction methods, in order to prevent this
work becoming too convoluted. In the future, we believe
synergistic verification methods may be developed using
notions from transformational, symbolic, abstracted, and
other efficient approaches.

1.2 Structure

In Section 2 we discuss preliminaries on automata and
reachability searches. An NBV and a TNBV algorithm are
introduced and discussed in Section 3. Some experiments
to evaluate the efficiency of the methods are discussed in
Section 4. Finally, conclusions are provided in Section 5.

2. PRELIMINARIES

We consider finite state automaton A defined as a 5-tuple:
A = (X,Σ, T,X0, Xm), where X is the finite set of states,
of which X0 ⊆ X is the set of initial states and Xm ⊆ X
is the set of marked states. Σ is the finite set of events.
T is the finite set of transitions, a transition is a triple:
(xor , σ, xtar) ∈ X × Σ × X, specifying a transition from
origin state xor to target state xtar over event σ.

A state is coreachable if from it a sequence of transi-
tions can be followed that leads to a marked state. A
state is reachable if from some initial state a sequence of
transitions can be followed that leads to that state. For
computation of coreachable and reachable states we can
use breadth-first search reachability algorithms provided
in Algorithms 1 and 2, taken from Kleinberg and Tardos
(2005) and adapted in Thuijsman and Reniers (2022).
The coreachable states Xcr can be computed through a
Backward Reachability Search (BRS) from the marked
states: Xcr = BRS(X,Σ, T,Xm). The reachable states Xr

can be computed through a Forward Reachability Search
(FRS) from the initial states: Xr = FRS(X,Σ, T,X0). An
automaton is called (co-)reachable if all its states can be
defined as such. An automaton for which all reachable
states are coreachable is called nonblocking, i.e.,Xr ⊆ Xcr.
The introduced reachability algorithms are used in the
NBV algorithms that are discussed next. They have linear
complexity: O(|T |) (Kleinberg and Tardos (2005)).

Algorithm 1 Backward Reachability Search BRS

Input: State set X, alphabet Σ, finite set of transitions
T , starting set Xα

Output: State set Xω in X from which a sequence of
transitions in T exists through states in X, using
events in Σ, to a state in Xα ∩X

1: Tp = T ∩ (X \Xα)× Σ×X
2: Xω = Xα ∩X
3: currentLayer = Xα ∩X
4: while currentLayer �= ∅
5: nextLayer = ∅
6: for all x ∈ currentLayer do
7: for all (xor , σ, x) ∈ Tp do
8: if xor �∈ Xω
9: Xω = Xω ∪ {xor}

10: nextLayer = nextLayer ∪{xor}
11: end if
12: end for
13: end for
14: currentLayer = nextLayer
15: end while
16: return Xω

Algorithm 2 Forward Reachability Search FRS

Input: State set X, alphabet Σ, finite set of transitions
T , starting set Xα

Output: State set Xω in X to which a sequence of
transitions in T exists through states in X, using
events in Σ, from a state in Xα ∩X

1: TR = {(xtar , σ, xor)|(xor , σ, xtar) ∈ T}
2: Xω =BRS(X,Σ, TR, Xα)
3: return Xω

258 Sander Thuijsman et al. / IFAC PapersOnLine 55-28 (2022) 256–263

3. TRANSFORMATIONAL NONBLOCKING
VERIFICATION

In this section we assume NBV is first applied to base
model A. We store information, specifically sets of states,
of this base verification. A variant model A′ is given. The
goal is to use the information of the NBV of base model
A to perform efficient NBV for variant model A′, instead
of performing a whole new verification afresh.

Note that for our method any pair of well-defined au-
tomata is permissible as base and variant model, i.e.,
there are no restrictions on (the difference between) the
automata. The method also permits non-deterministic au-
tomata.

In this work we assume that one may sometimes know
(before any verification) for certain that an automaton is
reachable. For instance, this may be the case when syn-
chronous composition (Cassandras and Lafortune (2008))
is performed to obtain a single automaton from a network
of automata, for which many algorithms in practice will
yield a reachable automaton by construction. If it is known
beforehand that an automaton is reachable, some steps in
NBV may be skipped. In the algorithms we present, we
use a Boolean reachable that is true when it is known
beforehand that the input automaton is reachable. Our
algorithms are also applicable to automata that are not
reachable, or for which the reachability is unknown. In
that case, the Boolean reachable is set to false.

In this section we first introduce a basic NBV algorithm.
Then, we introduce the TNBV algorithm. Next, some
statements on computational cost of the algorithms are
given. Finally some examples of the functioning of the
algorithms are provided.

3.1 Nonblocking verification algorithm

We use Example 1 to introduce the concepts and algo-
rithms.
Example 1. Let us consider automaton A given in Fig.
1. States are represented by circles. Initial states have a
dangling incoming arrow. Marked states have a double
circle representation. Transitions are shown by arrows
between states, with the event label displayed next to
them.

We observe that states {x0, x1, x3, x4, x5, x6} are reachable
and states {x0, x3, x6} are coreachable. Since there are
reachable states that are not coreachable, automaton A
is blocking. �

The basic NBV algorithm given in Algorithm 3 can be
used to determine nonblockingness of an automaton. In

x0

x1

x2

x3

x4

x5

x6
a

b b

d

a

a

c

Fig. 1. Automaton Example 1: A

Algorithm 3 Nonblocking verification NBV

Input: Automaton A = (X,Σ, T,X0, Xm), Boolean
reachable

Output: Boolean result, nonblocking states N , reachable
states Q

1: if not reachable then
2: Q ← FRS(X,Σ, T,X0)
3: (X,Σ, T,X0, Xm) ← restrict(A,Q)
4: else
5: Q ← X
6: end if
7: N ← BRS(Q,Σ, T,Xm)
8: return (N = Q,N,Q)

Algorithm 4 Restrict automaton restrict

Input: Automaton A = (X,Σ, T,X0, Xm), states Q
Output: Restricted automaton A′

1: return (X ∩Q,Σ, T ∩ (Q×Σ×Q), X0 ∩Q,Xm ∩Q)

case automaton A is not (known to be) reachable, first
the reachable states Q are computed in line 2. Then,
using the restrict function provided in Algorithm 4, the
automaton is reduced to its maximal reachable part. For
automaton A of Example 1, this would result in state
x2 and transition (x2, a, x5) being pruned away. For the
reachable automaton, the set of nonblocking states N is
computed that represents all states from which a marked
state can be reached. The algorithm returns true as a result
when N = Q, otherwise it will return result false. Next to
the result, NBV outputs the state sets N and Q, which we
will use later in our transformational approach.

3.2 Transformational nonblocking verification algorithm

In this section we discuss a TNBV algorithm that com-
putes the nonblocking result based on the output of a
previous NBV. We illustrate the idea using Example 2.
We discuss conceptually how a modification can influence
nonblockingness, and then present the TNBV algorithm
based on those concepts.
Example 2. Let us consider variant automaton A′ in Fig.
2. We observe that automaton A′ is obtained by making
a modification to automaton A of Example 1, transition
(x4, c, x6) is added.

First, we evaluate how the addition of this transition might
have influenced the reachability of states. We know that
the origin and target state of this transition were already
reachable. Therefore, all states that are reachable from
these states were already evaluated in the NBV of base
automaton A, so there are no new reachable states in A′.
Also, the addition of a transition cannot lead states that

x0

x1

x2

x3

x4

x5

x6
a

b b

d

a

a

c

c

Fig. 2. Automaton Example 2: A′

 Sander Thuijsman et al. / IFAC PapersOnLine 55-28 (2022) 256–263 259

3. TRANSFORMATIONAL NONBLOCKING
VERIFICATION

In this section we assume NBV is first applied to base
model A. We store information, specifically sets of states,
of this base verification. A variant model A′ is given. The
goal is to use the information of the NBV of base model
A to perform efficient NBV for variant model A′, instead
of performing a whole new verification afresh.

Note that for our method any pair of well-defined au-
tomata is permissible as base and variant model, i.e.,
there are no restrictions on (the difference between) the
automata. The method also permits non-deterministic au-
tomata.

In this work we assume that one may sometimes know
(before any verification) for certain that an automaton is
reachable. For instance, this may be the case when syn-
chronous composition (Cassandras and Lafortune (2008))
is performed to obtain a single automaton from a network
of automata, for which many algorithms in practice will
yield a reachable automaton by construction. If it is known
beforehand that an automaton is reachable, some steps in
NBV may be skipped. In the algorithms we present, we
use a Boolean reachable that is true when it is known
beforehand that the input automaton is reachable. Our
algorithms are also applicable to automata that are not
reachable, or for which the reachability is unknown. In
that case, the Boolean reachable is set to false.

In this section we first introduce a basic NBV algorithm.
Then, we introduce the TNBV algorithm. Next, some
statements on computational cost of the algorithms are
given. Finally some examples of the functioning of the
algorithms are provided.

3.1 Nonblocking verification algorithm

We use Example 1 to introduce the concepts and algo-
rithms.
Example 1. Let us consider automaton A given in Fig.
1. States are represented by circles. Initial states have a
dangling incoming arrow. Marked states have a double
circle representation. Transitions are shown by arrows
between states, with the event label displayed next to
them.

We observe that states {x0, x1, x3, x4, x5, x6} are reachable
and states {x0, x3, x6} are coreachable. Since there are
reachable states that are not coreachable, automaton A
is blocking. �

The basic NBV algorithm given in Algorithm 3 can be
used to determine nonblockingness of an automaton. In

x0

x1

x2

x3

x4

x5

x6
a

b b

d

a

a

c

Fig. 1. Automaton Example 1: A

Algorithm 3 Nonblocking verification NBV

Input: Automaton A = (X,Σ, T,X0, Xm), Boolean
reachable

Output: Boolean result, nonblocking states N , reachable
states Q

1: if not reachable then
2: Q ← FRS(X,Σ, T,X0)
3: (X,Σ, T,X0, Xm) ← restrict(A,Q)
4: else
5: Q ← X
6: end if
7: N ← BRS(Q,Σ, T,Xm)
8: return (N = Q,N,Q)

Algorithm 4 Restrict automaton restrict

Input: Automaton A = (X,Σ, T,X0, Xm), states Q
Output: Restricted automaton A′

1: return (X ∩Q,Σ, T ∩ (Q×Σ×Q), X0 ∩Q,Xm ∩Q)

case automaton A is not (known to be) reachable, first
the reachable states Q are computed in line 2. Then,
using the restrict function provided in Algorithm 4, the
automaton is reduced to its maximal reachable part. For
automaton A of Example 1, this would result in state
x2 and transition (x2, a, x5) being pruned away. For the
reachable automaton, the set of nonblocking states N is
computed that represents all states from which a marked
state can be reached. The algorithm returns true as a result
when N = Q, otherwise it will return result false. Next to
the result, NBV outputs the state sets N and Q, which we
will use later in our transformational approach.

3.2 Transformational nonblocking verification algorithm

In this section we discuss a TNBV algorithm that com-
putes the nonblocking result based on the output of a
previous NBV. We illustrate the idea using Example 2.
We discuss conceptually how a modification can influence
nonblockingness, and then present the TNBV algorithm
based on those concepts.
Example 2. Let us consider variant automaton A′ in Fig.
2. We observe that automaton A′ is obtained by making
a modification to automaton A of Example 1, transition
(x4, c, x6) is added.

First, we evaluate how the addition of this transition might
have influenced the reachability of states. We know that
the origin and target state of this transition were already
reachable. Therefore, all states that are reachable from
these states were already evaluated in the NBV of base
automaton A, so there are no new reachable states in A′.
Also, the addition of a transition cannot lead states that

x0

x1

x2

x3

x4

x5

x6
a

b b

d

a

a

c

c

Fig. 2. Automaton Example 2: A′

were reachable before to become unreachable. Therefore,
without any further analysis, we can state that the set of
reachable states of A′ are the same as those of A.

Second, we evaluate how the addition of this transition
might have influenced the coreachability of states. The ori-
gin state, x4, of the added transition was not coreachable
in A, while the target state, x6, was coreachable. Because
x4 now has a path to a coreachable state, it is now coreach-
able in the variant automaton. In turn, more states that
were non-coreachable before may now be coreachable in
the variant automaton. Therefore, we can perform a BRS
for the variant automaton to find all coreachable states.
In this search, we do not have to evaluate transitions
between states that were already coreachable in the base
automaton, because we know they will still be coreachable.
In the end, the set of coreachable states is not the same as
the set of reachable states, and A′ is therefore blocking. �

In Algorithm 5, a TNBV algorithm is provided. As input it
requires a base automaton, the nonblocking states of the
base automaton, a variant automaton, and the Boolean
reachable variable for the variant automaton. It will output
the nonblocking result of the variant automaton, as well
as its nonblocking states and reachable states.

Algorithm 5 follows the same structure as Algorithm 3:
First, if the (variant) automaton is not reachable, it is
restricted to its reachable part. For the remaining reach-
able automaton, the coreachable states are computed. If
all reachable states are coreachable, the automaton is non-
blocking. In contrast to NBV, TNBV uses the reachable
and nonblocking state sets from a previous NBV to more
efficiently compute the reachable and nonblocking state
sets for the variant automaton.

Let us first consider the case that the variant automaton
A′ is reachable, i.e., reachable=true. As a result of the
if-statement, lines 2-12 are not performed. Since A′ is
reachable, Q′ = X ′.

In line 16, the base automaton is restricted to only the
reachable part. For the remaining lines in the algorithm,
we can reason on a base and variant automaton that are
reachable.

In line 17, the added and removed transitions and the
states for which the marked property is added or removed
are computed.

In lines 18-23 the algorithm computes the set of states
that are nonblocking for the variant automaton and that
also were nonblocking in the base automaton. States that
were nonblocking might become blocking because of states
with removed marked property, or removed transitions.
A state set Xa is computed that contains all states with
removed marked property (these are always in N since
marked states are always nonblocking in the (reachable)
base model), and all states in N from which a transition
is removed that leads to some state in N . If there are
no states in Xa, we know that all previously nonblocking
states are still nonblocking for the variant model. If there
are states in Xa, we perform a BRS over the state space
spanned by N from the marked states X ′

m to find all
nonblocking states in N . When during this BRS all states
in Xa are found, we do not have to finish the search; we

Algorithm 5 Transformational nonblocking verification
TNBV

Input: Base automaton A = (X,Σ, T,X0, Xm), non-
blocking states N , reachable states Q, variant automa-
ton A′ = (X ′,Σ′, T ′, X ′

0, X
′
m), Boolean reachable

Output: Boolean result, nonblocking statesN ′, reachable
states Q′ of variant model

1: if not reachable then
2: T+ ← T ′ \T, T− ← T \T ′, X+

0 ← X ′
0 \X0, X

−
0 ←

X0 \X ′
0

3: Xb ← (X−
0 ∩ Q) ∪ {xtar ∈ Q|∃xor ∈ Q, σ ∈ Σ :

(xor , σ, xtar) ∈ T−}
4: if Xb �= ∅ then
5: Q′ ← FRS(Q,Σ′, T ′, X ′

0): break after line 9 of BRS
when Xb ⊆ Xω, do Q′ ← Q

6: else
7: Q′ ← Q
8: end if
9: if T+∩(Q′×Σ′×(X ′\Q′)) �= ∅∨X+

0 ∩(X ′\Q′) �= ∅
then

10: Q′ ← FRS(X ′,Σ′, T ′, Q′ ∪X ′
0)

11: end if
12: (X ′,Σ′, T ′, X ′

0, X
′
m) ← restrict(A′, Q′)

13: else
14: Q′ ← X ′

15: end if
16: (X,Σ, T,X0, Xm) ← restrict(A,Q)
17: T+ ← T ′ \ T, T− ← T \ T ′, X+

m ← X ′
m \Xm, X−

m ←
Xm \X ′

m

18: Xa ← X−
m ∪ {xor ∈ N |∃xtar ∈ N, σ ∈ Σ :

(xor , σ, xtar) ∈ T−}
19: if Xa �= ∅ then
20: N ′ ← BRS(N,Σ′, T ′, X ′

m): break after line 9 of BRS
when Xa ⊆ Xω, do N ′ ← N

21: else
22: N ′ ← N
23: end if
24: if T+∩ ((X ′ \N ′)×Σ′×N ′) �= ∅∨X+

m∩ (X ′ \N ′) �= ∅
then

25: N ′ ← BRS(X ′,Σ′, T ′, N ′ ∪X ′
m)

26: end if
27: return (N ′ = Q′, N ′, Q′)

know that all states that were nonblocking in the base
model are nonblocking in the variant model. So each time
after line 9 in BRS we can check whether all states in Xa

have been found, if this is the case we break (terminate
BRS) and perform N ′ ← N . If not all states in Xa

are found, BRS will terminate as normal and return all
nonblocking states within the state space spanned by N .

Next, in line 24-26 the algorithm finds all states outside
N ′ that are nonblocking. If there are no added transitions
that have an origin state outside N ′ and a target state
within N ′, and there are no added marked states outside
N ′, it is not necessary to perform a new search as no
nonblocking states outside N ′ will exist. These states
would have already been found as nonblocking for the
base model. In case a new BRS is performed, it is already
initiated with N ′ in the initial state set. This part of the
state space is not searched again, because of the pruning
that is performed in line 1 of BRS.

Algorithm 5 returns true as a result when N ′ = Q′, other-
wise it will return result false. The algorithm also outputs
the state sets N ′ and Q′ as respectively the nonblocking
and reachable states of the variant automaton.

260 Sander Thuijsman et al. / IFAC PapersOnLine 55-28 (2022) 256–263

Let us now consider the case that the variant automaton
is not (known to be) reachable, i.e., reachable is false.

In lines 1-11 the reachable states of the variant automaton
are computed, based on modifications that were made from
A to A′. State set Xb contains all states in Q that are
states from which the initial property is removed, and all
states in Q to which a transition has been removed that
originates from a state in Q. An FRS is performed to find
all states in Q that are reachable in the variant automaton.
This FRS breaks when all states in Xb are found and
then Q′ ← Q is performed. Otherwise, FRS terminates as
normal. Next, in lines 9-11, the reachable states outside
Q′ are also found. They are only searched for when there
are added transitions from Q′ to a state outside Q′, or
if there is a state with added initial property outside Q′.
Otherwise, the search does not need to take place and Q′

remains unchanged.

After computing the reachable states Q′, both the base
and variant automaton are restricted to their reachable
part, and the algorithm continues as discussed.

Theorem 1 states that the result of TNBV and NBV are
the same.
Theorem 1. Given automata A and A′, NBV output
(result , N,Q) = NBV(A, reachable), and Booleans reachable
and reachable ′ that imply their respective automaton A
or A′ is reachable; then TNBV(A,N,Q,A′,reachable ′) =
NBV(A′,reachable ′).
Proof. Algorithm 5 terminates because the reachability
searches are known to terminate and there are no other
loops. It follows from the explanations above that the
result of Algorithms 3 and 5 is the same.

Example 3. Let us consider the case that a variant
automaton A′ in Fig. 3 is constructed. We assume that
without any computations it is known that A′ is reachable.
This could be the case when, e.g., the automaton is created
by performing a synchronous composition algorithm that
always yields a reachable automaton.

For TNBV, we use automaton A from Example 1 as the
base automaton. The algorithm can be performed with
reachable=true, so no FRS will be performed andQ′ ← X ′.
We note that after restricting the base automaton to its
reachable part, it is the same as the variant automaton.
Therefore, in relation to the restricted automaton, the
variant automaton has no added or removed transitions or
marked states. No BRS is performed and N ′ = N . Since
N ′ �= Q′, the variant automaton is blocking. �

3.3 Computational cost

The purpose of TNBV is to verify the nonblocking prop-
erty for some variant automaton when a (T)NBV has been
performed for some base automaton, with reduced com-
putational cost compared to NBV. Both NBV and TNBV
make calls to the BRS and/or FRS algorithms. Because
the BRS and FRS algorithms have linear complexity, NBV
and TNBV in turn also have linear complexity. However,
because TNBV performs these reachability searches over
smaller state spaces, or the searches terminate earlier, it
is still more computationally efficient than NBV. In this
section we discuss how the computational cost of TNBV is
always lower than (or at worst equal to) the cost of NBV.

x0

x1

x3

x4

x5

x6
a

b b

a

c

d

Fig. 3. Automaton Example 3: A′

We use the transition evaluation count θ from Thuijsman
and Reniers (2020) to express the computational cost for
performing (T)NBV. When performing (T)NBV, we start
with a count of θ = 0. Every time we reach line 8 in
Algorithm 1 (BRS), we increment θ by one. The total
count at the end of (T)NBV indicates the effort that is
spent searching the state space. Because NBV and TNBV
both consist of performing BRS (sometimes indirectly
through FRS), we can compare the computational costs
of the algorithms by comparing their transition evaluation
counts in BRS.
Example 4. We demonstrate the transition evaluation
count for the previous examples. For NBV of A in Example
1: θ = 8 (6 during FRS and 2 during BRS). For the TNBV
of A′ discussed in Example 2: θ = 2. If we were to perform
NBV for A′ of Example 2, then θ = 13. For TNBV of A′

discussed in Example 3: θ = 0. If we were to perform NBV
for A′ of Example 3, then θ = 8. �

In the following we show that the computational cost of
performing TNBV is lower or equal to the computational
cost of performing NBV.We denote A = (X,Σ, T,X0, Xm)
and A′ = (X ′,Σ′, T ′, X ′

0, X
′
m).

Essentially, both NBV and TNBV consist of two stages:
First an FRS stage and second a BRS stage. Let us discuss
the FRS stage first. If reachable′=true, then no transitions
are evaluated in the FRS stage for both NBV and TNBV.
If reachable′=false, then for FRS in NBV all transitions in
{(xor , σ, xtar) ∈ T ′|xor ∈ Q′ ∧ xtar ∈ Q′ ∧ xtar �∈ X ′

0 ∧
σ ∈ Σ′} are evaluated, where Q′ are all reachable states.

For either FRS call in TNBV, at most all transitions in
the previously mentioned set are evaluated, since all tran-
sitions with xtar ∈ X ′

0 are pruned away in line 1 of BRS,
and evaluating any transition with xtar �∈ Q′ is impossible,
since its evaluation would add it to Q′. Furthermore, no
transition is evaluated twice when computing Q′ through
FRS in TNBV. By construction of the reachability search
algorithm, no transition is evaluated twice during one call
to the algorithm, because the transitions of a state are
iterated only once.

Let us call the set of reachable states found in line
5 of TNBV Q′

1. At most, all transitions in T ′
1 =

{(xor , σ, xtar) ∈ T ′|xor ∈ Q′
1 ∧ xtar ∈ Q′

1 ∧ xtar �∈ X ′
0 ∧

σ ∈ Σ′} will have been evaluated. In the second FRS call
(line 10), all transitions in T ′

2 = {(xor , σ, xtar) ∈ T ′|xor ∈
Q′ ∧ xtar ∈ Q′ ∧ xtar �∈ (Q′

1 ∪X ′
0)∧ σ ∈ Σ′} are evaluated.

We note that T ′
1 ∩ T ′

2 = ∅, since in T1 all transitions have
xtar ∈ Q′

1, and in T2 all transitions have xtar �∈ Q′
1.

In conclusion, for the FRS stage there are no transitions
that are evaluated in TNBV that would not be evaluated
in NBV, and no transition is evaluated twice in TNBV.

 Sander Thuijsman et al. / IFAC PapersOnLine 55-28 (2022) 256–263 261

Let us now consider the case that the variant automaton
is not (known to be) reachable, i.e., reachable is false.

In lines 1-11 the reachable states of the variant automaton
are computed, based on modifications that were made from
A to A′. State set Xb contains all states in Q that are
states from which the initial property is removed, and all
states in Q to which a transition has been removed that
originates from a state in Q. An FRS is performed to find
all states in Q that are reachable in the variant automaton.
This FRS breaks when all states in Xb are found and
then Q′ ← Q is performed. Otherwise, FRS terminates as
normal. Next, in lines 9-11, the reachable states outside
Q′ are also found. They are only searched for when there
are added transitions from Q′ to a state outside Q′, or
if there is a state with added initial property outside Q′.
Otherwise, the search does not need to take place and Q′

remains unchanged.

After computing the reachable states Q′, both the base
and variant automaton are restricted to their reachable
part, and the algorithm continues as discussed.

Theorem 1 states that the result of TNBV and NBV are
the same.
Theorem 1. Given automata A and A′, NBV output
(result , N,Q) = NBV(A, reachable), and Booleans reachable
and reachable ′ that imply their respective automaton A
or A′ is reachable; then TNBV(A,N,Q,A′,reachable ′) =
NBV(A′,reachable ′).
Proof. Algorithm 5 terminates because the reachability
searches are known to terminate and there are no other
loops. It follows from the explanations above that the
result of Algorithms 3 and 5 is the same.

Example 3. Let us consider the case that a variant
automaton A′ in Fig. 3 is constructed. We assume that
without any computations it is known that A′ is reachable.
This could be the case when, e.g., the automaton is created
by performing a synchronous composition algorithm that
always yields a reachable automaton.

For TNBV, we use automaton A from Example 1 as the
base automaton. The algorithm can be performed with
reachable=true, so no FRS will be performed andQ′ ← X ′.
We note that after restricting the base automaton to its
reachable part, it is the same as the variant automaton.
Therefore, in relation to the restricted automaton, the
variant automaton has no added or removed transitions or
marked states. No BRS is performed and N ′ = N . Since
N ′ �= Q′, the variant automaton is blocking. �

3.3 Computational cost

The purpose of TNBV is to verify the nonblocking prop-
erty for some variant automaton when a (T)NBV has been
performed for some base automaton, with reduced com-
putational cost compared to NBV. Both NBV and TNBV
make calls to the BRS and/or FRS algorithms. Because
the BRS and FRS algorithms have linear complexity, NBV
and TNBV in turn also have linear complexity. However,
because TNBV performs these reachability searches over
smaller state spaces, or the searches terminate earlier, it
is still more computationally efficient than NBV. In this
section we discuss how the computational cost of TNBV is
always lower than (or at worst equal to) the cost of NBV.

x0

x1

x3

x4

x5

x6
a

b b

a

c

d

Fig. 3. Automaton Example 3: A′

We use the transition evaluation count θ from Thuijsman
and Reniers (2020) to express the computational cost for
performing (T)NBV. When performing (T)NBV, we start
with a count of θ = 0. Every time we reach line 8 in
Algorithm 1 (BRS), we increment θ by one. The total
count at the end of (T)NBV indicates the effort that is
spent searching the state space. Because NBV and TNBV
both consist of performing BRS (sometimes indirectly
through FRS), we can compare the computational costs
of the algorithms by comparing their transition evaluation
counts in BRS.
Example 4. We demonstrate the transition evaluation
count for the previous examples. For NBV of A in Example
1: θ = 8 (6 during FRS and 2 during BRS). For the TNBV
of A′ discussed in Example 2: θ = 2. If we were to perform
NBV for A′ of Example 2, then θ = 13. For TNBV of A′

discussed in Example 3: θ = 0. If we were to perform NBV
for A′ of Example 3, then θ = 8. �

In the following we show that the computational cost of
performing TNBV is lower or equal to the computational
cost of performing NBV.We denote A = (X,Σ, T,X0, Xm)
and A′ = (X ′,Σ′, T ′, X ′

0, X
′
m).

Essentially, both NBV and TNBV consist of two stages:
First an FRS stage and second a BRS stage. Let us discuss
the FRS stage first. If reachable′=true, then no transitions
are evaluated in the FRS stage for both NBV and TNBV.
If reachable′=false, then for FRS in NBV all transitions in
{(xor , σ, xtar) ∈ T ′|xor ∈ Q′ ∧ xtar ∈ Q′ ∧ xtar �∈ X ′

0 ∧
σ ∈ Σ′} are evaluated, where Q′ are all reachable states.

For either FRS call in TNBV, at most all transitions in
the previously mentioned set are evaluated, since all tran-
sitions with xtar ∈ X ′

0 are pruned away in line 1 of BRS,
and evaluating any transition with xtar �∈ Q′ is impossible,
since its evaluation would add it to Q′. Furthermore, no
transition is evaluated twice when computing Q′ through
FRS in TNBV. By construction of the reachability search
algorithm, no transition is evaluated twice during one call
to the algorithm, because the transitions of a state are
iterated only once.

Let us call the set of reachable states found in line
5 of TNBV Q′

1. At most, all transitions in T ′
1 =

{(xor , σ, xtar) ∈ T ′|xor ∈ Q′
1 ∧ xtar ∈ Q′

1 ∧ xtar �∈ X ′
0 ∧

σ ∈ Σ′} will have been evaluated. In the second FRS call
(line 10), all transitions in T ′

2 = {(xor , σ, xtar) ∈ T ′|xor ∈
Q′ ∧ xtar ∈ Q′ ∧ xtar �∈ (Q′

1 ∪X ′
0)∧ σ ∈ Σ′} are evaluated.

We note that T ′
1 ∩ T ′

2 = ∅, since in T1 all transitions have
xtar ∈ Q′

1, and in T2 all transitions have xtar �∈ Q′
1.

In conclusion, for the FRS stage there are no transitions
that are evaluated in TNBV that would not be evaluated
in NBV, and no transition is evaluated twice in TNBV.

Therefore, the FRS stage of TNBV never has more tran-
sition evaluations than the FRS stage of NBV. The same
logic can be applied for the BRS stage. Hence, the compu-
tational cost (expressed in transition evaluation count) of
TNBV is always equal to or lower than the computational
cost of NBV, as is stated in Theorem 2.
Theorem 2. Given a base automaton A, its NBV output
(result , N,Q) = NBV(A, reachable), some variant automa-
ton A′, and a Boolean reachable ′ that implies A′ is reach-
able; the computational cost of TNBV(A,N,Q,A′, reach
able ′) is lower or equal to NBV(A′, reachable ′), i.e., the
transition evaluation count θ after performing TNBV is
equal to or lower than θ after performing NBV.

Proof. It follows from the explanations above that the
computational cost of TNBV is equal to or lower than
the computational cost of NBV.

The result that TNBV has equal or lower computational
cost to NBV is particularly notable, because for the similar
method in supervisor synthesis, the computational cost
of transformational supervisor synthesis may be much
higher than ‘ordinary’ supervisor synthesis (Thuijsman
and Reniers (2022)).

4. EXPERIMENTS

Even though we showed in the previous section that
the computational cost expressed in transition evaluation
count is always equal or lower for TNBV compared to
NBV, this does not mean that an implementation of the
TNBV algorithm is always more efficient than NBV be-
cause of practical reasons how the algorithms are imple-
mented. Therefore we present some experiments with wall-
clock time measurements to evaluate the benefit of the
approach we present in this paper.

For the experiments, a proof-of-concept implementation of
the above verification algorithms, and models of the case
studies we describe below, have been made in Matlab 1 .
Wall-clock time is used to represent the time effort of
performing verification. The experiments were performed
on an HP ZBook Studio G4 laptop, using an Intel i7
processor clocked at 2.8 GHz. Matlab used around 1 GB
of memory, regardless of the model size. Filesizes to store
the models ranged from a few KB to a few MB.

In Section 4.1 we consider the Transfer Line model as
an academic case study, and in Section 4.2 we consider
a Lithography Machine Wafer Logistics controller as an
industrial case study. These are the same case studies as
presented in Thuijsman and Reniers (2022).

The monolithic models that we use for these experiments
are obtained through synchronous composition of a net-
work of automata. In Thuijsman and Reniers (2022), a
sink-state was introduced in the model, which is not done
here as it is only required for supervisor synthesis and not
NBV. The monolithic models are computed in preparation
of the experiments. The preparatory computations are not
included in the computational effort measurements, be-
cause this matches the experiments to the monolithic level
discussed in the theoretical part, and because computing

1 The algorithms and models can be found here: https://github.
com/sbthuijsman/WODES_TNBV

x0 x1

start M1

stop M1

(a) M1

x0 x1

start M2

stop M2

(b) M2

x0 x1 x2 x3

stop M1,
reject

start M2

stop M1,
reject

start M2

stop M1,
reject

start M2

(c) B1

x0 x1

stop M2

start TU

(d) B2

x0 x1

start TU

accept, reject

(e) TU

Fig. 4. Transfer Line automata

the synchronous composition is required for both NBV and
TNBV discussed here.

The construction of A can be done by computing a
synchronous composition that also contains non-reachable
states. Practically however, often only the reachable part
of A is constructed. We consider both options in the case
studies below.

4.1 Transfer Line

We first consider the Transfer Line model from Wonham
and Cai (2019) as an academic case study. In this model,
products are being processed by two machines. Machine
M1 takes products from the environment, and processes
them. After processing, M1 places the product in buffer
B1, which can hold up to three products. Machine M2
takes products from B1, processes them, and places them
in buffer B2, which can hold only one product. Test unit
TU takes products from B2, and tests them. If the product
is accepted, it is released from the system. If the product
is rejected, it goes back to B1. Controllability of events is
irrelevant for the method and not taken into account. The
automata models are shown in Fig. 4. The synchronous
product over all automata is taken. The resulting base
automaton TL has 64 states and 168 transitions.

The model evolution cases we present are the same as
presented in Thuijsman and Reniers (2022). The following
five variant automata, TL′

1 to TL′
5, have been generated

by making adaptations to TL.

• TL′
1: Reduced capacity of B1 to two products:

state x3 of automaton B1 removed, and transitions
(x2, stop M1, x3), (x2, reject, x3), (x3, start M2, x2)
removed.

Table 1. Transfer Line experimental results

Evolution
Variant

model size
NBVr TNBVr |N ′|

|X′| |T ′| θ ms θ ms
TL to TL′

1 64 120 119 0.3 119 0.4 64
TL to TL′

2 96 268 267 0.6 84 0.5 96
TL to TL′

3 64 168 167 0.5 0 0.4 64
TL to TL′

4 64 184 183 0.5 0 0.4 64
TL to TL′

5 96 192 191 0.5 179 0.6 96

262 Sander Thuijsman et al. / IFAC PapersOnLine 55-28 (2022) 256–263

Table 2. Wafer logistics experimental results

Evolution

Complete Reachable
Variant
model
size

NBV TNBV
Variant
model
size

NBV TNBV

| −→′ | θ sec θ sec | −→′ | θ sec θ sec
B1-B2 1022004 991460 130 0 -100% 0 -100% 873516 118028 17 0 -100% 0 -100%
B2-B3 1133460 1101482 177 72096 -93% 26 -85% 968604 132972 22 13808 -90% 14 -36%
B3-B4 1082052 1050722 158 924650 -12% 116 -27% 924740 126072 19 126072 0% 3 -84%
B4-B5 1100484 1068850 162 0 -100% 0 -100% 940436 128504 20 0 -100% 0 -100%
B5-B6 1100484 1068850 162 753727 -29% 91 -44% 940436 128504 20 109964 -14% 3 -85%
B6-B7 1109124 1077346 163 759853 -29% 92 -44% 947796 129640 20 110882 -14% 2 -90%
B7-B8 1179092 1145451 185 814894 -29% 118 -36% 1007344 138200 23 118757 -14% 17 -26%
B8-B9 1082052 1050722 159 924650 -12% 116 -27% 924740 126072 19 126072 0% 3 -84%
B9-B10 1179092 1145451 186 54946 -95% 26 -86% 1007344 138200 23 7912 -94% 15 -35%
B10-B11 1244164 1208737 211 54304 -96% 29 -86% 1062724 146108 28 7260 -95% 17 -39%

• TL′
2: Increased capacity of B2 to two products:

added a state x2 and transitions (x1, stop M2, x2),
(x2, start TU, x1) to B2.

• TL′
3: B1 initially holds one product instead of zero:

removed initial property of state x0, and added initial
property to state x1 in automaton B1.

• TL′
4: TU may send the product to B2 upon comple-

tion: added event ‘retest’, added transition (x1, retest,
x2) to TU, and added transition (x0, retest, x1) to B2.

• TL′
5: Capacity of B1 and B2 is two products each:

removed state x3 and transitions (x2, stop M1, x3),
(x2, reject, x3), (x3, start M2, x2) from B1, state x2

and transitions (x1, stop M2, x2), (x2, start TU, x1)
are added to B2.

As the TNBV methods are on a monolithic state space,
the adaptations for the individual automata are converted
to adaptations on the synchronous state space for the
experiments, as discussed before. For the base and variant
models, all states constructed during the synchronous
composition are reachable. Therefore we only apply the
algorithms with reachable=true for this case study.

For each of the variant automata, the number of states
and transitions are given in Table 1. For each variant
model, an NBV is performed in two ways. The first by
doing a completely new verification given in Algorithm
3 and the second by using the verification result of the
base automaton and applying TNBV (Algorithm 5). For
each verification, the computational cost is shown in
Table 1 by means of θ as well as measured runtime
shown in milliseconds. Percentage changes are shown that
compare the computational cost of TNBV to NBV for each
model. The runtime is the mean from 100 runs for each
verification. The runtimes and percentages are rounded to
the nearest integer.

We observe that all variant models are nonblocking, since
|X ′| = |N ′| for each model. For NBV, the computational
cost in θ can be lower than the number of transitions in
the model because of the pruning that occurs in line 1 of
Algorithm 1. In this case, for every variant model there was
a single transition from the marked state that was pruned
away. All other transitions were evaluated. We observe
that TNBV has a lower or equal computational cost in
θ than NBV, which was also expected from the theoretical
result. Because the runtimes are very low, conclusions
cannot be made based on the measured wall-clock time
for this case study.

4.2 Lithography Machine Wafer Logistics

Next we present an industrial case study. This case study is
performed using models from ASML. ASML is the world-
leading manufacturer of lithography machines, which are
used in the semiconductor industry to produce integrated
circuits. These circuits are printed on silicon wafers. The
movement of these wafers through the machine is called
the Wafer Logistics, which is studied in van der Sanden
et al. (2015) and van der Schriek (2018). van der Schriek
(2018) presents a study on how the components of the
Wafer Logistics controller evolve over time. In this study
equivalent automata models of the component controllers
are constructed. These automata models are constructed
for the variation points that the components evolved to.
We use these automata models here, to investigate the
efficiency of TNBV in this industrial setting.

‘Component B’ of van der Schriek (2018) is selected
to perform the experiments on, based on its large but
manageable state space size, the number of variation
points, and the variety of changes between the models.
The first 11 variation points of this model are taken, to
investigate 10 adaptations. Opposed to the Transfer Line
experiment, where each variant model was an adaptation
of the same base model, we now consider incremental
adaptations. So we start with the evolution from B1 to
B2, then from B2 to B3, from B3 to B4, and so on. The
same models are used in Thuijsman and Reniers (2022).

Unlike the Transfer Line model, for the models of Compo-
nent B not all states are reachable. Therefore we perform
two pairs of experiments, one for the complete model
containing unreachable states (i.e., reachable=false), and
one with only reachable states (reachable=true). The first
model, B1, of the complete system consists of 69 120 states
and 1 017 684 transitions. The model of the reachable sys-
tem is smaller: 59 184 states and 869 836 transitions.

The experimental results are summarized in Table 2. The
computational cost is displayed for NBV and TNBV for
both systems. Each runtime value is the mean over 10
verification runs and is rounded to the nearest second.
There is only a weak correlation between wall-clock time
and the computational cost in θ, due to other steps in
the computation such as pruning and finding adjacent
transitions for the states in the current layer. None of the
models were nonblocking.

NBV for the reachable wafer logistics model is quicker
than the complete model because the model is smaller,

 Sander Thuijsman et al. / IFAC PapersOnLine 55-28 (2022) 256–263 263

Table 2. Wafer logistics experimental results

Evolution

Complete Reachable
Variant
model
size

NBV TNBV
Variant
model
size

NBV TNBV

| −→′ | θ sec θ sec | −→′ | θ sec θ sec
B1-B2 1022004 991460 130 0 -100% 0 -100% 873516 118028 17 0 -100% 0 -100%
B2-B3 1133460 1101482 177 72096 -93% 26 -85% 968604 132972 22 13808 -90% 14 -36%
B3-B4 1082052 1050722 158 924650 -12% 116 -27% 924740 126072 19 126072 0% 3 -84%
B4-B5 1100484 1068850 162 0 -100% 0 -100% 940436 128504 20 0 -100% 0 -100%
B5-B6 1100484 1068850 162 753727 -29% 91 -44% 940436 128504 20 109964 -14% 3 -85%
B6-B7 1109124 1077346 163 759853 -29% 92 -44% 947796 129640 20 110882 -14% 2 -90%
B7-B8 1179092 1145451 185 814894 -29% 118 -36% 1007344 138200 23 118757 -14% 17 -26%
B8-B9 1082052 1050722 159 924650 -12% 116 -27% 924740 126072 19 126072 0% 3 -84%
B9-B10 1179092 1145451 186 54946 -95% 26 -86% 1007344 138200 23 7912 -94% 15 -35%
B10-B11 1244164 1208737 211 54304 -96% 29 -86% 1062724 146108 28 7260 -95% 17 -39%

• TL′
2: Increased capacity of B2 to two products:

added a state x2 and transitions (x1, stop M2, x2),
(x2, start TU, x1) to B2.

• TL′
3: B1 initially holds one product instead of zero:

removed initial property of state x0, and added initial
property to state x1 in automaton B1.

• TL′
4: TU may send the product to B2 upon comple-

tion: added event ‘retest’, added transition (x1, retest,
x2) to TU, and added transition (x0, retest, x1) to B2.

• TL′
5: Capacity of B1 and B2 is two products each:

removed state x3 and transitions (x2, stop M1, x3),
(x2, reject, x3), (x3, start M2, x2) from B1, state x2

and transitions (x1, stop M2, x2), (x2, start TU, x1)
are added to B2.

As the TNBV methods are on a monolithic state space,
the adaptations for the individual automata are converted
to adaptations on the synchronous state space for the
experiments, as discussed before. For the base and variant
models, all states constructed during the synchronous
composition are reachable. Therefore we only apply the
algorithms with reachable=true for this case study.

For each of the variant automata, the number of states
and transitions are given in Table 1. For each variant
model, an NBV is performed in two ways. The first by
doing a completely new verification given in Algorithm
3 and the second by using the verification result of the
base automaton and applying TNBV (Algorithm 5). For
each verification, the computational cost is shown in
Table 1 by means of θ as well as measured runtime
shown in milliseconds. Percentage changes are shown that
compare the computational cost of TNBV to NBV for each
model. The runtime is the mean from 100 runs for each
verification. The runtimes and percentages are rounded to
the nearest integer.

We observe that all variant models are nonblocking, since
|X ′| = |N ′| for each model. For NBV, the computational
cost in θ can be lower than the number of transitions in
the model because of the pruning that occurs in line 1 of
Algorithm 1. In this case, for every variant model there was
a single transition from the marked state that was pruned
away. All other transitions were evaluated. We observe
that TNBV has a lower or equal computational cost in
θ than NBV, which was also expected from the theoretical
result. Because the runtimes are very low, conclusions
cannot be made based on the measured wall-clock time
for this case study.

4.2 Lithography Machine Wafer Logistics

Next we present an industrial case study. This case study is
performed using models from ASML. ASML is the world-
leading manufacturer of lithography machines, which are
used in the semiconductor industry to produce integrated
circuits. These circuits are printed on silicon wafers. The
movement of these wafers through the machine is called
the Wafer Logistics, which is studied in van der Sanden
et al. (2015) and van der Schriek (2018). van der Schriek
(2018) presents a study on how the components of the
Wafer Logistics controller evolve over time. In this study
equivalent automata models of the component controllers
are constructed. These automata models are constructed
for the variation points that the components evolved to.
We use these automata models here, to investigate the
efficiency of TNBV in this industrial setting.

‘Component B’ of van der Schriek (2018) is selected
to perform the experiments on, based on its large but
manageable state space size, the number of variation
points, and the variety of changes between the models.
The first 11 variation points of this model are taken, to
investigate 10 adaptations. Opposed to the Transfer Line
experiment, where each variant model was an adaptation
of the same base model, we now consider incremental
adaptations. So we start with the evolution from B1 to
B2, then from B2 to B3, from B3 to B4, and so on. The
same models are used in Thuijsman and Reniers (2022).

Unlike the Transfer Line model, for the models of Compo-
nent B not all states are reachable. Therefore we perform
two pairs of experiments, one for the complete model
containing unreachable states (i.e., reachable=false), and
one with only reachable states (reachable=true). The first
model, B1, of the complete system consists of 69 120 states
and 1 017 684 transitions. The model of the reachable sys-
tem is smaller: 59 184 states and 869 836 transitions.

The experimental results are summarized in Table 2. The
computational cost is displayed for NBV and TNBV for
both systems. Each runtime value is the mean over 10
verification runs and is rounded to the nearest second.
There is only a weak correlation between wall-clock time
and the computational cost in θ, due to other steps in
the computation such as pruning and finding adjacent
transitions for the states in the current layer. None of the
models were nonblocking.

NBV for the reachable wafer logistics model is quicker
than the complete model because the model is smaller,

and the reachability search only needs to be performed
in backwards direction rather than both forwards and
backwards. For convenience, percentages are added to
Table 2 that compare the cost of TNBV to NBV for
the same model. We observe that for all models the
computational cost of TNBV is lower than or equal to
the computational cost of NBV. The efficiency is case
specific, TNBV had better reductions in computational
cost for some models than others. Regardless, TNBV is
more efficient than NBV for both measurement methods.

5. CONCLUSION

We present an algorithm for TNBV, that reuses the result
of a previous NBV to efficiently generate the nonblocking
result for a discrete event system every time it is adapted.
The algorithms are explained and examples are provided.
It is shown that the computational cost, expressed in
transition evaluation count, of TNBV is always equal to or
lower than the computational cost of NBV. The method is
evaluated by means of an academic and an industrial use
case. From the experiments, it is shown that the runtime
of TNBV is indeed lower than NBV.

This work is based on a basic NBV algorithm. At the
moment TNBV is likely less efficient than NBV methods
that use, e.g., abstractions or symbolic representations.
However, in the future NBV approaches may be inves-
tigated that use concepts from various methods, among
which the concepts of a transformational approach that
are introduced in this work.

REFERENCES

Baier, C. and Katoen, J. (2008). Principles of Model
Checking (Representation and Mind Series). The MIT
Press.

Beyer, D., Henzinger, T., Keremoglu, M., and Wendler, P.
(2012). Conditional model checking. In Proceedings of
the ACM International Symposium on the Foundations
of Software Engineering. ACM Press.

Beyer, D., Löwe, S., Novikov, E., Stahlbauer, A., and
Wendler, P. (2013). Precision reuse for efficient regres-
sion verification. In Proceedings of Joint Meeting on
Foundations of Software Engineering. ACM Press.

Beyer, D. and Wendler, P. (2013). Reuse of verification
results. In Model Checking Software, 1–17. Springer
Berlin Heidelberg.

Cassandras, C. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. Springer, Boston, MA, USA,
2nd edition.

Clarke, E., McMillan, K., Campos, S., and Hartonas-
Garmhausen, V. (1996). Symbolic model checking. In
Computer Aided Verification, 419–422. Springer Berlin
Heidelberg.

Feng, L. and Wonham, W. (2008). Supervisory control
architecture for discrete-event systems. IEEE Transac-
tions on Automatic Control, 53(6), 1449–1461.

Flordal, H., Malik, R., Fabian, M., and Åkesson, K. (2007).
Compositional synthesis of maximally permissive super-
visors using supervision equivalence. Journal of Discrete
Event Dynamic Systems, 17(4), 475–504.

Graf, S. and Steffen, B. (1990). Compositional mini-
mization of finite state systems. In Lecture Notes in
Computer Science, 186–196. Springer-Verlag.

Henzinger, T., Jhala, R., Majumdar, R., and Sanvido, M.
(2003). Extreme model checking. In Lecture Notes in
Computer Science, 332–358. Springer Berlin Heidelberg.

Kleinberg, J. and Tardos, E. (2005). Algorithm Design.
Addison-Wesley Longman Publishing Co., Inc., USA.

Komenda, J., Masopust, T., and van Schuppen, J. (2012).
Supervisory control synthesis of discrete-event systems
using a coordination scheme. Automatica, 48(2), 247–
254.

Komenda, J., Masopust, T., and van Schuppen, J. (2016).
Control of an engineering-structured multilevel discrete-
event system. In Workshop on Discrete Event Systems,
103–108.

Leduc, R., Brandin, B., Lawford, M., and Wonham, W.
(2005). Hierarchical interface-based supervisory control-
part I: serial case. IEEE Transactions on Automatic
Control, 50(9), 1322–1335.

Lehman, M. (1996). Laws of software evolution revisited.
In Software Process Technology, 108–124.

Mohajerani, S., Malik, R., and Fabian, M. (2015). A
framework for compositional nonblocking verification
of extended finite-state machines. Journal of Discrete
Event Dynamic Systems, 26(1), 33–84.

Ramadge, P. andWonham, W. (1987). Supervisory control
of a class of discrete event processes. SIAM Journal on
Control and Optimization, 25(1), 206–230.

Ramadge, P. and Wonham, W. (1989). The control of
discrete event systems. Proceedings of the IEEE, 77(1),
81–98.

Rudie, K. and Wonham, W. (1992). Think globally,
act locally: decentralized supervisory control. IEEE
Transactions on Automatic Control, 37(11), 1692–1708.

Su, R., van Schuppen, J., and Rooda, J. (2010). Aggrega-
tive synthesis of distributed supervisors based on au-
tomaton abstraction. IEEE Transactions on Automatic
Control, 55(7), 1627–1640.

Thuijsman, S. and Reniers, M. (2020). Transformational
supervisor synthesis for evolving systems. In Workshop
on Discrete Event Systems, 309–316.

Thuijsman, S. and Reniers, M. (2022). Transformational
supervisor synthesis for evolving systems. Discrete
Event Dynamic Systems, 32(2), 317–358.

van der Sanden, B., Reniers, M., Geilen, M., Basten,
T., Jacobs, J., Voeten, J., and Schiffelers, R. (2015).
Modular model-based supervisory controller design for
wafer logistics in lithography machines. In ACM/IEEE
Conference on Model Driven Engineering Languages
and Systems, 416–425.

van der Schriek, Y. (2018). Evaluation of supervisory
control theory based on requirement evolution of LOPW.
Master’s thesis, Eindhoven University of Technology,
Deptartment of Mechanical Engineering.

Wonham, W. and Cai, K. (2019). Supervisory Control of
Discrete-Event Systems. Springer, Cham.

Yang, G., Dwyer, M., and Rothermel, G. (2009). Regres-
sion model checking. In IEEE Conference on Software
Maintenance, 115–124.

Zhong, H. and Wonham, W. (1990). On the consistency of
hierarchical supervision in discrete-event systems. IEEE
Transactions on Automatic Control, 35(10), 1125–1134.

