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Fast kinetic simulator for relativistic matter

V. E. Ambruş    1,2, L. Bazzanini    3, A. Gabbana    4, D. Simeoni    3,5,6  , S. Succi7,8 
and R. Tripiccione    3

Relativistic kinetic theory is ubiquitous to several fields of modern physics, 
finding application at large scales in systems in astrophysical contexts, all 
of the way down to subnuclear scales and into the realm of quark–gluon 
plasmas. This motivates the quest for powerful and efficient computational 
methods that are able to accurately study fluid dynamics in the relativistic 
regime as well as the transition to beyond hydrodynamics—in principle all of 
the way down to ballistic regimes. We present a family of relativistic lattice 
kinetic schemes for the efficient simulation of relativistic flows in both 
strongly (fluid) and weakly (rarefied gas) interacting regimes. The method 
can deal with both massless and massive particles, thereby encompassing 
ultra- and mildly relativistic regimes alike. The computational performance 
of the method for the simulation of relativistic flows across the 
aforementioned regimes is discussed in detail, along with prospects of 
future applications.

Relativistic fluid dynamics deals with the study of the motion of par-
ticles traveling close to the speed of light, as is typically the case in 
plasma physics, astrophysics and cosmology1. In recent years, experi-
mental data from high-energy particles colliders such as the Relativistic 
Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) have 
provided clear-cut evidence that the exotic state of matter known as 
quark–gluon plasma (QGP) also behaves like a low-viscosity relativis-
tic fluid2. Further evidence started to emerge that electron fluids in 
exotic two-dimensional materials such as graphene are also described 
by relativistic hydrodynamics3. More generally, in light of the anti-de 
Sitter-conformal field theory duality4, relativistic hydrodynamics has 
acquired a very distinct role as a low-energy effective field theory at 
the cross-road between high-energy physics, gravity and quantum 
condensed matter5–7.

The physics of fluids—classical, quantum and relativistic 
alike—is characterized by the subtle competition between mecha-
nisms that promote equilibrium (collisions) and mechanisms that 
sustain the opposite tendency (transport): in Boltzmann's momen-
tous words, "the ever-shifting battle" between equilibrium and  
non-equilibrium8.

In relativistic fluids, the above competition is controlled by two 
dimensionless groups: the relativistic coldness ζ = mc2/kBT, which is 
ratio of the particle's rest energy to its thermal energy; and the Knudsen 
number, Kn = λ/ℓ. Here m is the mass of the particle, c the speed of light, 
T the temperature, kB is the Boltzmann constant, λ the mean free path 
and ℓ is a characteristic macro scale.

The relativistic coldness scales like the inverse temperature, hence 
it takes large values in the non-relativistic regime, in which kinetic 
energy is small compared with the rest energy. It also scales linearly with 
the particle mass, which means that high values of coldness correspond 
with heavy particles, pointing again to the non-relativistic regime. 
Importantly, the relativistic coldness is an equilibrium property.

The Knudsen number, on the other hand, measures the departure 
from (local) equilibrium due to the spatial inhomogeneities that drive 
transport phenomena and dissipation. As the mean free path scales 
like the inverse density, so does the Knudsen number, which takes up 
substantial values in the rarefied gas regime, where the hydrodynamic 
description no longer holds.

In broad strokes the (ζ − Kn) plane can be split into four quadrants:
	1.	 Relativistic fluids (ζ < 1, Kn < 0.01);
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appropriately truncated and discretized to recover the dynamics at the 
hydro level. This operation leads to an evolution equation for the prob-
ability density function of particle position and momentum, whose 
moments deliver the sought-after expressions for the hydrodynamic 
fields. In particular, the key ingredient to the simulation of weakly 
interacting regimes is represented by a controlled discretization of 
the momentum space, which is based on the product of two high-order 
quadrature rules that discretize the various components of momen-
tum: a Gauss–Laguerre rule of order N + 1 is employed for the energy 
component, whereas quadrature rules of order K for the integration 
of functions on the sphere35 are considered for the remaining momen-
tum components. The orders N + 1 and K of the quadratures employed 
lead to a number of Npop discrete momenta. We refer the reader to the 
Methods for the complete details on the definition of the algorithm, 
whereas in the following we focus on a few examples of applications 
and benchmarks that highlight the enhanced accuracy of the current 
scheme in rarefied conditions.

Shock waves in QGP
We start by considering the relativistic Riemann problem—a commonly 
adopted numerical benchmark in which a tube filled with gas is, ini-
tially, at two different states on each side of a membrane placed at 
x = 0—characterized by the particle number density n, temperature T 
and four-velocity along the x-axis Ux:

(n,T,Ux) = {
(nL,TL,0) x < 0

(nR,TR,0) x > 0
, (1)

where the subscripts L and R represent initial conditions on each side of 
the membrane. Once the membrane is removed, the system develops 
one-dimensional shock/rarefaction waves that travel along the x-axis. 
We use the following initial conditions36

{
nL = 13.575 fm−3, TL = 400MeV

nR = 1.65 fm−3, TR = 200MeV
. (2)

	2.	 Non-relativistic fluids (ζ > 1, Kn < 0.01);
	3.	 Relativistic gases (ζ < 1, Kn > 0.01);
	4.	 Non-relativistic gases (ζ > 1, Kn > 0.01);

The four quadrants above encompass a broad class of vastly dif-
ferent states of matter from (1) QGP to (2) Bose–Einstein condensates, 
and (3) relativistic and (4) classical astrophysical systems.

Clearly no single numerical method can work seamlessly across 
such a broad variety of systems; there is a typical separation between 
fluid-dynamic methods based on the discretization of the fluid equa-
tions9–17 and kinetic methods (mostly Monte Carlo) for the Boltzmann 
equation18–23.

Although lattice kinetic methods such as the lattice Boltzmann 
method24 offer a potential bridge between these two main families, 
so far they have been confined to the relativistic fluid sector25–27 
and successfully applied to a number of relativistic hydrodynamic 
problems in QGP28,29, electron transport in graphene30 and also 
cosmic neutrino transport31. A similar approach has been directed 
to the study of ultra-relativistic gases in (3 + 1)32 as well as (2 + 1)- 
dimensions33,34.

In this paper we extend the lattice kinetic approach to higher-
order discrete velocity sets that allow one to handle finite values of the 
Knudsen number. This approach applies to both massive and massless 
particles, thereby extending the range of applicability of the method 
along both directions in the (ζ − Kn) parameter plane. As a result, the 
method in this work is expected to offer a useful complement to cur-
rent QGP codes in assisting the experimental activity of the existing 
collaborations at the RHIC and LHC.

Results
Model overview
In this work we introduce an extension to a numerical method—the 
relativistic lattice Boltzmann method (RLBM), originally designed for 
the study of relativistic fluids—that is capable of accurately solving the 
relativistic Boltzmann equation in the relaxation-time approximation 
(RTA) for a broad set of kinematic regimes.

The key insight into the development of lattice Boltzmann 
methods is the realization that the Boltzmann transport equation 
(in this case expressed in the language of special relativity) can be 
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Fig. 1 | Riemann problem for an ultra-relativistic gas of particles for 
various viscous regimes. We show the macroscopic velocity profile β = Ux/U0 
at t = 3.2 fm/c (1 fm/c ≈ 3.3 × 10−24 s), comparing the results of the RLBM 

against analytical solutions and BAMPS results. a, RLBM developed for the 
hydrodynamic regime36. b, The high-order RLBM scheme described in this work.
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In simulations we keep the ratio between the shear viscos-
ity (η) and the entropy density (s) fixed to a constant value. For 
η we use the analytic expressions that result from a first-order 
Chapman–Enskog expansion37, whereas the entropy density is  
given by

s = n (ζK3(ζ)
K2(ζ)

− ln ( n
neq )) , (3)

with neq representing the equilibrium density at vanishing chemical 
potential,

neq = g T3

2π2 ζ
2K2(ζ); (4)

where g = 16 is the degeneracy factor of gluons and Ki(ζ) the modified 
Bessel function of second kind of order i.

For reference, in Fig. 1a we reproduced the results presented in 
Fig. 1 in the work by Gabbana et al.36 showing the profile of the mac-
roscopic velocity β = Ux/U0 for a gas of massless particles in different 
kinematic regimes. The two limiting cases—corresponding to the invis-
cid (η/s → 0) and ballistic (η/s → ∞) regimes—admit analytical solutions, 
whereas, for intermediate regimes, we compare the results against a 
Boltzmann approach to multi-parton scatterings (BAMPS)19, which 
solves the Boltzmann equation using Monte Carlo. The on-lattice RLBM 
model reproduces the solution both in the inviscid and hydrodynamic 
regimes (η/s = 0.1). On the other hand, for larger values of η/s, as we 
move beyond the hydrodynamic regime the macroscopic velocity 
develops artifacts that become most apparent in the ballistic limit. 
In Fig. 1b we show that it is possible to improve the accuracy even in 
rarefied conditions by employing high-order off-lattice quadratures32. 
Here we have used a radial quadrature of order N = 3 and an angular 
quadrature of order K = 15 with Npop = 480 discrete components (see 
Methods for details). We remark that the off-lattice model preserves 
the same level of accuracy of the on-lattice scheme also in the hydro-
dynamic regimes.

We now turn to the analysis of a relativistic gas of massive particles; 
we consider once again the initial conditions given in equation (2),  
with m = (0, 0.8, 2, 4) GeV. In simulations we normalize quantities with 

respect to TL and nL (see equation (1)); the above values thus correspond 
to ζ = (0, 2, 5, 10).

In Fig. 2a we compare the results obtained in the free-streaming 
regime (corresponding to η/s → ∞) against analytical solutions, again 
finding a satisfactory match between the two.

One important remark is that, as the rest mass m of the gas 
increases, we need to employ a higher-order radial quadrature to match 
the same level of accuracy achieved in the massless case. This is shown 
in Fig. 2b, in which we compare the results at ζ = 10, obtained by fixing 
the angular quadrature at K = 19 and increasing the radial quadrature 
from N = 3 (which is the value used for the massless case) up to N = 9. 
The results show the improvements achieved by increasing the degree 
of accuracy of the radial quadrature.

We now further investigate how the accuracy of the method 
depends on the degree of K and N by studying the Riemann problem 
at different Knudsen numbers and relativistic coldnesses.

We use the same initial conditions given by equation (2). To assess 
the rarefied regime, we make use of the numerical Knudsen number, 
defined as follows:

Kn = τ⟨v⟩
L , (5)

where L defines the spatial resolution chosen for the grid, τ is the relaxa-
tion time and 〈v〉 is a relative mean velocity (taken as c for simplicity). 
We consider a grid of L = 1,600 points representing a physical domain of 
6.4 fm. As a reference, we take the results of high-resolution RLBM simu-
lations in terms of both grid and momentum discretization, namely, 
L = 6,400, N = 9 and K = 31.

We define the L2 relative error with respect to the temperature 
field as

ϵ = ||T − Thr||2
||Thr||2

, (6)

where hr refers to high-resolution simulations.
In Fig. 3a we plot this observable versus K. All simulations run at 

a fixed order of the radial quadrature (N = 3) and different values of 
relativistic coldness (ζ = 0 and ζ = 5).
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Fig. 2 | Riemann problem for a relativistic gas of particles in the free-
streaming regime at different values of m corresponding to ζ. Relativistic 
shock waves for a relativistic gas of particles in the free-streaming. We show the 
macroscopic velocity profile β = Ux/U0 at t = 3 fm/c, comparing the results of the 

RLBM against analytic solutions. The values of m = (0, 0.8, 2, 4) GeV correspond 
to ζ = (0, 2, 5, 10). a, Results using quadrature rules with N = 3, K = 19 for ζ = (0, 2), 
and N = 9, K = 19 for ζ = (5, 10). b, Effect of increasing the radial quadrature for 
ζ = 10.
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We can observe the effect of increasing the order of the angular 
quadrature K by keeping the radial quadrature fixed at N = 3. We notice 
that, as Kn increases, a higher order leads to substantial gains; this 
effect is more pronounced in the massless case. We also observe that, 
in the hydrodynamic regime, the accuracy is not affected by the degree 
of the quadrature.

In Fig. 3b we consider the effect of varying the degree of N while 
keeping the angular quadrature fixed at K = 13. We observe that in the 
massless case the error does not depend on the radial quadrature, 
regardless of the value of Kn. On the other hand, at ζ = 5 it is necessary 
to increase the radial quadrature up to N = 9 before saturating the error.

The intuition behind these results is as follows: as massless par-
ticles all travel at the speed of light, their discretized components 
necessarily lie on the surface of a sphere in momentum space. As a 

result, increasing K offers a better approximation of momentum space. 
On the other hand, massive particles cover a finite range of velocities, 
thus requiring tuning of both the radial and the angular components 
(see the Methods for more details).

Bjorken attractor
The results presented in the previous section have been obtained from 
simulations utilizing a uniform Cartesian grid; however, the method 
can be extended to curvilinear coordinates as well32,38, which represent 
the most natural choice for a variety of relativistic flow problems. In this 
section we focus on such a case, namely, the Bjorken model39, which is par-
ticularly relevant to QGP experiments. Indeed, the existence of Bjorken 
attractors40 and the details of their structure have received considerable 
attention in recent years because they provide valuable information on 
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Fig. 3 | Discretization error versus the radial/angular quadrature at different 
Kn and for different values of the relativistic coldness. The relative error ϵ 
(equation (6)) is normalized with respect to its asymptotic value ϵ0. a, The effect 
of increasing the degree of the angular quadrature while keeping the radial 

quadrature fixed at N = 3. Here ϵ0 = ϵ(K = 19). b, The effect of increasing the degree 
of the radial quadrature while keeping the angular quadrature fixed at K = 13. 
Here ϵ0 = ϵ(K = 9).
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the initial conditions right after the collisions, the onset of fluid-dynamic 
behavior and the material properties of the QGP state of matter (see 
the recent review by Soloviev41). The evolution of the system at very 
early times (pre-equilibrium phase) along the attractor allows one to 
estimate the work performed by the QGP against longitudinal expan-
sion, which leads to the overall cooling of the fireball42. Moreover, the 
entropy production in this pre-equilibrium phase can have an effect on 
the overall particle yields43. Another effect of the pre-equilibrium stage 
is related to the inhomogeneous cooling of the initial state, which leads 
to modifications to the eccentricity of the transverse profile and of the 
subsequent build-up of elliptic flow that is characterized by v2 (ref. 44).

Next we focus on the early time dynamics of the fireball induced by 
the rapid longitudinal expansion, which is well described by Bjorken’s 
approximation of longitudinal boost-invariance. For simplicity, we 
consider the flow of an ideal gas of massless particles, with an ideal 
equation of state ϵ = 3P, and at constant η/s.

Neglecting the dynamics in the transverse plane, the velocity 
profile satisfying boost-invariance along the z-direction is

Uα∂α =
1
τ (t∂t + z∂z) = ∂τ, (7)

where Uα is the macroscopic four-velocity and τ = √t2 − z2  is the  
Bjorken time. We employ Bjorken coordinates (τ, x, y, ηs), where 
ηs = atanh(z/t) is the space–time rapidity (we use the subscript s to dis-
tinguish this from the shear viscosity η) and introduce the following 
observable:

χ = PL
PT

= P + 𝜋𝜋d

P − 1
2

𝜋𝜋d

, (8)

which represents the ratio between the longitudinal and  
transverse pressures, with 𝜋𝜋d =

2
3
(PL − PT) being a component of the 

(dissipative) shear-stress tensor, not to be confused with π ≃ 3.14 (see 
Methods for details). The initial state is prepared at vanishing chemical 
potential, such that n0 ≡ n(τ0) = gT3

0/𝜋𝜋
2. Moreover, we enforce a con-

stant ratio between the shear viscosity and the entropy density, which 
in turn fixes the relaxation time to

τR =
5η/s
T (1 + 3

4 ln τ4/3P
τ4/30 P0

) . (9)

To describe the evolution of χ, it is convenient to employ the scaling 
variable w̃ defined via the following parametrization45–47

w̃ = 5τ
4𝜋𝜋τR

. (10)

In Fig. 4 we present numerical results for the evolution of χ cor-
responding to two sets of 4 × 4 simulations: one set of results for RLBM 
and another for hydro. The BAMPS results taken from the work by 
Ambruş et al.48 are also shown for a subset of curves. The initial time 
and temperature are set to τ0 = 0.2 fm/c and T0 = 0.5 GeV, respectively; 
η/s takes the values 5, 1, 0.2 and 0.05, which leads to four different values 
of w̃0. For each value of η/s, four initial values of χ0 are considered: 1, 
0.75, 0.5 and 0.25.

The RTA and hydro attractor curves are shown in Fig. 4. The analyti-
cal approximation for the RTA attractor49 almost completely overlaps 
with our numerical solution. The approach to the attractor can be clearly 
seen for both RLBM and hydro, and, most notably, these attractors differ 
when w̃ ≲ 1. In particular, it can be seen that the attractor solution for 
hydro gives χ < 0, which corresponds to a non-physical negative longi-
tudinal pressure at small w̃. The agreement between hydro and RTA is 
restored when w̃ ≳ 1, both at the level of the attractor solutions and of 

the dynamics of the approach to the attractor. BAMPS results are in 
agreement with the RLBM solution throughout the entire flow regime.

Anisotropic vortical flow
Recent measurements made by the RHIC Solenoidal Tracker at the level 
of the decay products of the Λ hyperons revealed that the QGP formed 
during heavy-ion collisions acquires a global polarization50,51. Possible 
mechanisms leading to the polarization of the QGP constituents are 
the quantum chiral magnetic and chiral vortical effects52,53 (see also 
the work by Ambruş and Chernodub54 for an interplay between chiral 
and helical55 vortical effects). Taken together, these effects can explain 
the global polarization of the Λ hyperons by means of a non-vanishing 
magnetic field or vorticity on the freeze-out hypersurface. Although 
the relevance of the chiral magnetic effect strongly depends on the 
lifetime of the magnetic field in the QGP fireball, vorticity is expected to 
be long-lived, decaying only due to dissipation caused by shear. Studies 
have estimated the vorticity to have a sizeable magnitude at freeze-
out56. The polarization induced by vorticity can be estimated using the 
Wigner function formalism57. Modeling the dynamics of vorticity using 
hydrodynamics gives a match with the experimental data for the global 
polarization58 (that is, along the total angular momentum vector Jsys).

In this section we show an example application of our scheme, 
which aims to simulate the dynamics of an initial vortex configuration 
in the more simplistic set-up that ignores the longitudinal expansion 
(this was addressed in the frame of the Bjorken model in the 'Bjorken 
attractor' section above).

We consider an ultra-relativistic gas in a cubic grid of side 20 fm, 
with open boundary conditions. Following past works59,60, we initialize 
the density and temperature fields with an asymmetric Gaussian shape:

T = Tb + T0g(x, y, z),

n = nb + n0g(x, y, z),

g(x, y, z) = exp (− x2

2σ2x
− y2

2σ2y
− z2

2σ2z
) .

(11)

Here Tb = 80 MeV and nb = 10−3 fm−3 are background values for tem-
perature and density, respectively, whereas T0 = 200 MeV and 
n0 = 4 × 10−3 fm−3. We choose the width of the Gaussian bell, along the 
x, y, z direction as σx = 1 fm, σy = 2.6 fm and σz = 2 fm, respectively. The 
initial velocity field is chosen as follows:

Ux/U0 = − y

√x2+y2
tanh (√

x2+y2

r0
) ,

Uy/U0 =
x

√x2+y2
tanh (√

x2+y2

r0
) ,

Uz/U0 = 0

(12)

where r0 = 6 fm. We apply a cut-off radius of R = 3 fm in the z = 0 plane, 
outside of which the velocity field is set to zero.

The central ellipsoid represents the QGP formed in the collision 
between heavy nuclei. The highly compressed bulk of the system 
rotates and expands—cooling down in the process. At a later stage, 
the fireball further expands and cools down so that the system exits 
the hydrodynamic regime and enters a weakly interacting rarefied 
regime known as freeze-out.

The freeze-out regime is classified in terms of η/s, which, in QGP, 
is found to reach the theoretical lower bound of 1/4π (ref. 61). To char-
acterize this effect, we have parametrized η/s as a function of the local 
temperature by using the following expression62,63:

η/s =
⎧
⎨
⎩

0.681 − 0.0594 ( T
TR
) − 0.544( T

TR
)
2

T < TR

1
4𝜋𝜋

T ≥ TR

(13)
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where TR = 175 MeV. In Fig. 5a we show the results of the simulation at 
t = 4fm/c, which were obtained using a high-order off-lattice scheme 
(N = 3, K = 15) (Fig. 5b) and an on-grid scheme (Fig. 5c).

Figure 5c shows that the interaction between QGP and the rarefied 
background gives origin to artifacts (scars in the (x/ℓ, y/ℓ) ≈ (±0.5, 0) 
region and a general irregularity in the contour lines) not observed in 
the model in this work.

The comparison shows that the high-order method allows one to 
cure the artifacts clearly visible in Fig. 5c, in particular at the boundaries 
of the fireball where the fluid starts to interact with the rarefied region.

Performance data
In this section we give a short overview of the performances of  
the numerical model. The algorithm in this work has been imple-
mented for the benchmark described in the anisotropic vortical flow  
section on a single V100-GPU machine using double-precision arith-
metics and standard practice optimizations64,65, delivering about  
60 million lattice updates per second (MLUPS) on a 1283 cubic grid with 
Npop = 128 discrete velocities. This means that the state of the system 
is advanced over 30 time-steps in a second wall-clock GPU time. For a 
computational box 10 fm in side, this corresponds to a lattice spacing 
of about 0.1 fm and a time-step of about 0.1 fm/c. The performance 
of our code is comparable with that of the GPU implementation of an 
ideal hydro code14 while giving access to off-equilibrium dynamics 
such as dissipation.

Notably, as shown in Fig. 6, the performance scales linearly with 
the inverse number of components used in the discretization of the 
momentum space 1/Npop, falling to about 20 MLUPS for Npop = 480. This 
is an important result as it shows that the code suffers no extra perfor-
mance penalty in going from the hydro to the quasi-ballistic regime.

As a result, a simulation spanning one million time-steps (105 fm/c) 
completes in roughly 3 × 104 s, that is, about half of a day. As already 
observed, our method seamlessly describes both hydrodynamic 
and quasi-ballistic regimes, it can efficiently simulate the long-term 
evolution of laboratory QGP well into the freeze-out regime and  
possibly beyond.

Indeed, with suitable coupling to Monte Carlo schemes, by sam-
pling particle positions and momenta from the RLBM solution66, it 
may also be possible to describe the rehadronization stage, in which 
quarks bind back into hadrons20,22,67–69. Our scheme can be expected 
to be between one and two orders of magnitude faster than Monte 

Carlo-based implementations such as BAMPS19,23,48,70, which suffer 
from statistical noise.

From a mid-term perspective, one may realistically project the 
current data to large-scale massive parallel GPU architectures such 
as the Nvidia A100 series. For instance, recent work on multiphase 
non-relativistic fluids shows that classical lattice Boltzmann schemes 
with 27 discrete populations can attain up to 100 GLUPS on grids with 
several billion grid points, using large clusters with hundreds Nvidia 
A100 GPUs71,72.

Based on the linear dependence of the GPU performance on the 
inverse number of populations, one can estimate about 20/5 GLUPS for 
the case of 100/400 discrete velocities. The same ballpark estimate is 
obtained by upscaling the current 60 MLUPS to 6 GLUPS on a hundred-
GPUs cluster. This means several updates per second for grids with 
one billion grid points, hence enabling the direct simulation of QGP 
over three decades in space and twice as many in time, within a few 
days wall-clock time.

Discussion
In this work we have introduced a lattice kinetic scheme that extends the 
range of applicability of RLBM to a wider range of kinetic parameters, 
allowing for the simulation of relativistic gases of massive particles in 
rarefied conditions.

This paves the way to the systematic study of heavy-ion collisions 
observables such as the pT dependence of the flow harmonics vn(pT)73 
or hadron polarization58 within kinetic theory. Extending the current 
scheme to non-ideal fluids can be performed along already discussed 
lines29, allowing phenomena related to the quantum chromodynamics 
phase transition to be explored through large-scale simulations74–76.

Although a fair comparison between RLBM and Monte Carlo 
approaches is somehow ill-posed because the latter can handle non-
equilibrium effects in full, for systems in which the RTA applies, RLBM 
can be expected to offer speed increases of one or two orders of mag-
nitude over Monte Carlo methods.

We now point out two limitations of the lattice Boltzmann 
approach, which are related to the extreme cases of the perfect fluid and 
of the free-streaming regime. Due to its kinetic nature, our approach 
can model the ideal fluid only asymptotically by decreasing the relaxa-
tion time τ. The limit τ → 0 becomes expensive in our implementation, 
which treats the collision term explicitly and therefore the time-step 
is restricted to satisfy δt < τ. For flows in which viscous effects are 

0.01 0.1 1 10
∼

0

0.25

0.5

0.75

1

χ

0.05

0.2

1.0

η/s = 5.0

(τ0 = 0.2 fm)
(T0 = 0.5 GeV)
(µ0 = 0)

RLBM

Hydro

BAMPS

RTA attractor

Hydro attractor

Approximation49

ω

Fig. 4 | Evolution of the pressure anisotropy χ with respect to the scaling variable at initial conditions τ0 = 0.2 fm/c and T0 = 0.5 GeV, and various values of η/s. 
Bjorken flow attractor for pressure anisotropy χ = PL/PT; w̃ is defined in equation (10).

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 2 | October 2022 | 641–654 647

Article https://doi.org/10.1038/s43588-022-00333-x

negligible, directly solving the equations of ideal hydrodynamics as 
discussed by, for example, Gerhard et al.14 may be more computation-
ally efficient.

To model the free-streaming limit, the number Npop of discrete 
distributions must be increased, as can be seen in Fig. 3. As the run-
time increases with Npop (see Fig. 6), it is conceivable that flows that are 
predominantly in this regime may be more efficiently modeled using 
particle-based approaches such as BAMPS19.

The present results lay the ground to the computationally effi-
cient large-scale simulations of beyond-hydrodynamic regimes in the 
framework of QGP experiments. They may also find profitable use in 
the study of quasi-ballistic electron flows in graphene and possibly also 
for relativistic flows of astrophysical interest. Furthermore, the imple-
mentation of the Boltzmann–Vlasov equation for resistive relativistic 
magnetohydrodynamics77,78 is straightforward via the addition of the 
electromagnetic forcing term, and this in turn might unlock applica-
tions in the realm of plasma wakefield acceleration79.

Methods
In this section we provide full details on the definition of the RLBM, with 
particular emphasis posed on the momentum space discretization, 
which is crucial to support the simulation of dynamics at large values 
of Kn. We start by introducing the notation, with a brief introduction 
to the main elements of relativistic kinetic theory.

Relativistic kinetic theory
We consider a gas of particles with mass m in a (3 + 1) Minkowski space-
time, with metric ηαβ = diag(+, −, −, −). We adopt Einstein’s summation 
convention, with Greek indices running from 0 to 3, and Latin ones from 
1 to 3, respectively. We also use natural units: c = kB = ℏ = 1.

Our starting point in the development of the model is the relativ-
istic Boltzmann equation, in the single-relaxation time approximation 
of Anderson and Witting80,81

pα∂α f = −Uαpα
τ ( f − f eq) . (14)

This equation describes the evolution of the particle distribution func-
tion f(xα = (t, x), pα = (p0, p)), accounting for the number of particles per 
unit volume in the six-dimensional single-particle phase space d3xd3p, 
where x represents the space coordinate, t represents the time coordi-
nate, p is the particle momentum vector and p0 is the particle energy.

Uα is the macroscopic fluid velocity, τ is the (proper)-relaxation 
time and feq is the equilibrium distribution function:

f eq(pα,Uα,T) = (2π)−3g
exp ( p

αUα−μ
T

) + a
, (15)

where μ is the chemical potential, g is the number of degrees of free-
dom per constituent, and a is a parameter that selects between the 
Maxwell–Jüttner (a = 0), Fermi–Dirac (a = 1) and Bose–Einstein (a  = −1) 
distributions. From now on, we will be considering the Maxwell–Jüttner 
statistics (a = 0).

The chemical potential μ can be expressed in terms of the particle 
number density. For the Maxwell–Jüttner statistics, we have

g
(2𝜋𝜋)3

eμ/T = n
4𝜋𝜋T 3ζ 2K2(ζ)

, (16)

where n is the particle number density and Kν is the modified Bessel 
function of second kind of index ν.
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Fig. 5 | Simulation of a vortical flow using set initial conditions and a 
cubic domain of side ℓ = 20 fm. a, Three-dimensional visualization of the 
temperature field at t = 4 fm/c. Arrows represent the velocity vectors.  
b, Two-dimensional representation of the temperature field at t = 4 fm/c for 
the z = 0 plane, using a high-order RLBM. Gray colored lines represent the 

velocity streamlines, whereas the black dashed lines represent iso-contours of 
the temperature field. c, Same as b, but using a RLBM scheme restricted to the 
simulation of hydrodynamic regimes. The vortical flow is simulated using the 
initial conditions described in equations (11) and (12).
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The hydrodynamic fields are related to the lower-order moments 
of the distribution function, in particular, the first- and second-order 
moments, namely, the particle flow Nα and energy momentum tensor Tαβ,

Nα = ∫pαfd
3p
p0 , (17)

Tαβ = ∫pαpβfd
3p
p0 . (18)

The moments of the distribution can be put in relation to the macro-
scopic fields via the Landau–Lifschitz82 decomposition:

Nα = nUα − n
P + ϵ q

α, (19)

Tαβ = (P + ϵ + ϖ)UαUβ − (P + ϖ)ηαβ + 𝜋𝜋<αβ> ; (20)

where P(ϖ) is the hydrostatic (dynamic) pressure, qα the heat flux, ϵ the 
energy density and π<αβ> the pressure deviator. By computing the inte-
grals in equations (17) and (18) at equilibrium, and by matching them 
with the known expressions of the equilibrium moments Nα

eq and Tαβ
eq, 

one finds the following ideal equation of state:

ϵ = P (ζK3(ζ)
K2(ζ)

− 1) , P = nT, (21)

This reduces to the familiar expressions ϵ = 3P in the ultra-relativ-
istic case (ζ → 0) and ϵ = (3/2)P in the non-relativistic case (ζ → ∞), 
respectively.

RLBM
We start—after an adimensionalization of variables—by considering  
an N-truncated expansion of the Maxwell–Jüttner distribution  
(equation (34)) on a tensorial basis of rank k, J(k)(pμ):

f eq(pμ,Uμ,T) = ω(p0)
N
∑
k=0

a(k)(Uμ,T) ⊗ J(k)(pμ), (22)

where ⨂ represents full tensor contraction. These tensors J(k) are  
built as orthogonal polynomials in the variable pμ with respect 
to a weighting function ω(p0), by using a standard Gram–Schmidt  
procedure, and can be shown to satisfy the following orthonormality 
condition:

∫ω(p0)J(l)α (pμ)J(k)β (pμ)d
3p
p0 = δlkδαβ, (23)

where α = {α1, …, αl} and β = {β1, …, βk} are collective tensorial indices 
introduced for notational conciseness. A detailed discussion and 
derivation of this set of orthogonal polynomials can be found in the  
work by Gabbana and colleagues27. The expansion coefficients in  
equation (22) are defined as

a(k)(Uμ,T) = ∫ f eq(pμ,Uμ,T)J(k)(pμ)d
3p
p0 . (24)

The choice of the weight function ω(p0) is instrumental: by taking it 
as the equilibrium distribution in the rest frame, it is possible to estab-
lish a direct link between each coefficient a(k) and the corresponding 
kth moment of the distribution function.

We next define a quadrature rule satisfying the requirement of 
preserving all the moments of the distribution up to order N.  
The quadrature is obtained as product of Gaussian quadratures: we 
consider a radial quadrature of degree N, which consists of  
(N + 1) discrete components, and an angular quadrature of degree K, 
which consists of NK discrete components. This results in a set of 
Npop = NK(N + 1) discrete momenta {pμ

i } and corresponding weights {wi}, 
which allows one to define the discretized version of the equilibrium 
distribution
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f eqi = f eq(pμ
i ,U

μ,T) = wi

N
∑
k=0

a(k)(Uμ,T) ⋅ J(k)(pμ
i ). (25)

By construction, this recovers all of the moments of the distribution 
function in the continuum up to order N, and it follows that the integrals 
in equations (17) and (18) can be computed exactly (that is, equality 
holds) via discrete sums:

Nα =
Npop

∑
i

pα
i fi, Tαβ =

Npop

∑
i

pα
i p

β
i fi, (26)

where fi = fi(x, t) = f(pμ
i ,x, t). By combining the quadrature-based dis-

cretization of the momentum space with a forward-Euler discretization 
in time with time-step Δt, it is possible to derive the discrete relativistic 
lattice Boltzmann equation:

fi(x + viΔt, t + Δt) = fi(x, t) + Δt
pα
i Uα

p0
i τ

( f eqi − fi(x, t)), (27)

where vi = pi/p0
i  is the i-th discretized particle velocity.

We conclude this section with a quick summary of the algorithmic 
procedure needed to advance equation (27) over a single time step, 
based on the stream and collide paradigm.

Starting from a suitable initialization fi(t = 0), at each time step the 
discrete populations freely stream to the corresponding lattices sites:

f∗i (x, t) = fi(x − viΔt, t), (28)

This moves information from each lattice point at a distance Δix = viΔt. 
An interpolation is clearly required whenever x − Δix does not fall on 
a grid point, to infer the values of the populations at the nodes of the 
actual Cartesian grid, based on their off-lattice values. In this work we 
adopt a simple trilinear interpolation scheme:

fi(x − viΔt, t) = 1
ΔxΔyΔz

× { fi(x − rx − ry − rz, t) (Δt ||vix||) (Δt ||viy||) (Δt ||viz||) +

fi(x − ry − rz, t) (Δx − Δt ||vix||) (Δt ||viy||) (Δt ||viz||) +

fi(x − rx − rz, t) (Δt ||vix||) (Δy − Δt ||viy||) (Δt ||viz||) +

fi(x − rx − ry, t) (Δt ||vix||) (Δt ||viy||) (Δz − Δt ||viz||) +

fi(x − rx, t) (Δt ||vix||) (Δy − Δt ||viy||) (Δz − Δt ||viz||) +

fi(x − ry, t) (Δx − Δt ||vix||) (Δt ||viy||) (Δz − Δt ||viz||) +

fi(x − rz, t) (Δx − Δt ||vix||) (Δy − Δt ||viy||) (Δt ||viz||) +

fi(x, t) (Δx − Δt ||vix||) (Δy − Δt ||viy||) (Δz − Δt ||viz||)}

(29)

with

⎧⎪
⎨⎪
⎩

rx = sgn(vix)(Δx)x̂

ry = sgn(viy)(Δy)ŷ

rz = sgn(viz)(Δz)ẑ,

(30)

(vix, viy, viz) being the components of the velocity vectors in the stencil.
Next, the first- and second-order moments Nμ and Tμν are com-

puted using equation (26). The energy density ϵ, Uα and n are obtained 
by solving the following eigenvalue problem:

ϵUα = TαβUβ,

n = UαNα,
(31)

allowing the thermodynamic quantities μ and T to be recovered from 
equations (16) and (21).

At this stage, it is possible to compute the local equilibrium dis-
tribution (equation (25)), which is needed to apply the collisional 
operator:

fi(x, t + Δt) = f∗i (x, t) + Δt
pα
i Uα

p0
i τ

(f eqi − f∗i (x, t)). (32)

Momentum space discretization
In this section we present a detailed discussion of the momentum 
space discretization. We make use of off-lattice quadratures, which 
are developed as product of Gaussian quadratures32,34, offering the 
possibility of handling more complex equilibrium distribution func-
tions and, in turn, extending the applicability of the method to regimes 
beyond hydrodynamics.

We define a quadrature of order N as a quadrature having the 
property of preserving exactly (that is, equality holds when integrals 
are calculated with discrete summations) the first N moments of the 
particle distribution. Formally, this can be expressed by requiring that 
all the integrals in the form:

Iα1…αk = ∫ω(p0)pα1 ⋯pαk
d3p
p0

, (33)

must be exactly computed by the quadrature ∀k ≤ 2N.
As already stated, the weight function ω(p0) is proportional to 

the equilibrium distribution function computed in the rest frame 
(Uα = (c, 0, 0, 0))

ω(p0) = C exp (−p0

T ) , (34)

where C is a factor such that ω(p0) is normalized to unity.
By introducing the following change of variables

⎧
⎪⎪
⎨
⎪⎪
⎩

p0 = y +m

px = √y( y + 2m) sinθ cosφ

py = √y( y + 2m) sinθ sinφ

pz = √y( y + 2m) cosθ

, (35)

Equation (33) can be split into two parts

Iα1…αk = IR × IΩ, (36)

the angular part IΩ

IΩ = ∫(sinθ cosφ)kx (sinθ sinφ)ky (cosθ)kzdΩ, (37)

and the radial part IR

IR = ∫
+∞

0
W( y)Q( y)dy, (38)

where

k = k0 + kx + ky + kz = k0 + K (39)

W(y) = √y( y + 2m)ω( y +m) (40)

Q( y) = ( y +m)k0 ( y2 + 2my)
K
2 (41)

http://www.nature.com/natcomputsci


Nature Computational Science | Volume 2 | October 2022 | 641–654 650

Article https://doi.org/10.1038/s43588-022-00333-x

and all k0, kx, ky and kz account for the number of occurrences of the 
various degrees of freedom in Iα1…αk.

Radial discretization. We focus now on the discretization of the radial 
integrals. We consider IR with K as an even number, as, by symmetry, 
the angular integral IΩ cancels out for odd values of K.

From equation (41) we observe that in this case Q(y) is a polyno-
mial of degree k, and therefore it is possible to establish a Gauss-like 
quadrature rule to perform an exact integration of IR. To this aim we 
consider the following polynomial basis:

P0 = J(0),P1 = J(1)0 ,… ,P2N = J(2N)0…0 (42)

that constitutes an orthogonal basis with respect to the weight W(y) 
defined in equation (40); here the polynomials J(k) are the ones intro-
duced before in equation (22), and are taken with all indices equal to 
zero. By referring to the theory of Gaussian quadratures83, one can 
derive the Nth order radial quadrature rule in the following way:

abscissae yi ∶ roots ofPN+1( y), (43)

weightsw (y)
i ∶ ∫

+∞

0

W( y)PN+1( y)
( y − yi)P′N+1( yi)

dy. (44)

The corresponding values for the discrete energy, the absolute value 
of the momentum and velocity can be recovered from the discrete 
coordinate yi through equation (35).

For the special case m = 0 our procedure coincides with the gen-
eralized Gauss–Laguerre quadrature rule.

Angular discretization. Let us now turn to the discretization of the 
angular part; notice that the angular integral is independent on the 
mass of the particles. One has

IΩ = ∫(sinθ cosφ)kx (sinθ sinφ)ky (cosθ)kzdΩ. (45)

The integrand can be recasted into a sum of spherical harmonics Ymℓ (θ,φ) 
of maximum degree K. Therefore any spherical quadrature that inte-
grates exactly all spherical harmonics up to order ℓ = K is a proper 
candidate for our goal. We therefore shift the problem to the exact 
discrete computation of

∫Ym
ℓ (θ,φ)dΩ =

Npop

∑
q=1

wqYm
ℓ (θq,φq) , ∀ℓ ≤ K. (46)

Several different spherical quadrature rules are available in the 
literature (see Weih et al.31 for a few examples). In this work we adopt 
spherical design quadratures84, and in particular we use the sets of 
stencils already defined in the literature85.

Decoupling of the radial and angular quadratures. With the proce-
dures described in the previous sections, the nodes and weights of the 
whole stencil are expressed as

⎧
⎪
⎪
⎨
⎪
⎪
⎩

p0
ij = yi +m

px
ij = √yi( yi + 2m) sinθj cosφj

py
ij = √yi( yi + 2m) sinθj sinφj

pz
ij = √yi( yi + 2m) cosθj

, (47)

wij = w( y)
i w(θ,φ)

j ,
i = 1,… ,N + 1

j = 1,… ,NK
. (48)

The (minimum) number of discrete components required to imple-
ment the quadrature is then Npop = NK(N + 1). When working in the hydro-
dynamic regime, one is generally interested in defining the quadrature 
with the minimal number of discrete components, to minimize the 
computational cost of the numerical method.

On the other hand, when moving to regimes characterized by high 
values of Kn, stencils with more than the minimum amount of required 
discrete velocities are needed because, as the gas becomes more and 
more rarefied, even small errors in the velocities space become increas-
ingly detrimental to the numerical solution.

One way to achieve better solutions is therefore to increase the 
number of discrete velocities per energy shell, which, however, comes 
at an increased computational cost. Another possible action that 
enhances the solution is the decoupling of the radial and angular abscis-
sae; indeed, once we have accepted to work off-lattice and granted the 
required isotropy level for recovering the requested moments of the 
distributions, the restriction of using the same angular stencils for each 
energy shell p0

i  can be relaxed. In this way, one can enhance the  
isotropy of the stencil without having to increase the whole  
quadrature order.

In (2 + 1) dimensions this is easily achieved by rotating the  
sub-stencils related to different energy shells each with a  
different angle, in such a way that the discrete velocities cover the  
velocity space in the most homogeneous possible way. Further  
details can be found in the work by Bazzanini et al.34 for the (2 + 1) 
ultra-relativistic case.

In (3 + 1) dimensions the decoupling process is not trivial anymore, 
since we have a relative freedom in the specification of the rotations 
between the sub-stencils. In fact, having considered an initial velocity 
set, derived using one of the spherical design quadrature exposed 
above, then one has, for a radial quadrature of order N, N + 1 overlapped 
shells of vectors Gi belonging to the set G = ⋃N+1

i Gi.
Then one has to determine the set of angles {αi, γi}, with i = 1…N + 1, 

that defines the rotation matrix

R(αi, γi) =
⎛
⎜
⎜
⎝

cosαi cos γi − sinαi cosαi sin γi
sinαi cos γi cosαi sinαi sin γi
− sin γi 0 cos γi

⎞
⎟
⎟
⎠

. (49)

The stencil G′ is then defined as G′ = ⋃N+1
i R(αi, γi) ⋅ Gi.

There are several approaches with which one can find the different 
rotation matrices R(αi, γi). Here we adopt the following:

•	 Once a radial discretization order N is set, one obtains N + 1 
energy shells, and consequently N + 1 velocity subsets Gi, 
i = 1, … , N + 1.

•	 Depending on the value of N one adopts the following strategies: 

•	 When N + 1 = (4, 6, 8, 12, 20), we identify Platonic Solids with 
N + 1 vertexes. The rotation matrices R(αi, γi) are then the 
ones that map one vertex of the solid to its other vertexes.

•	 Instead, for generic values of N, the R(αi, γi) matrices are 
determined by solving the Thomson problem86, which is 
related to the minimization of electrostatic energy of elec-
trons constrained on the sphere. Indeed, by treating discrete 
velocities as electrons, one can determine the R(αi, γi) matri-
ces by iteratively joining the sub-stencils Gi and solving the 
associated Thomson problem for αi and γi.

Bjorken flow in curvilinear coordinates
In this section we provide the algorithmic details required for the 
solution of the Bjorken flow in curvilinear coordinates presented in 
the main text.

We consider Bjorken coordinates (τ, x, y, ηs) with Bjorken time 
τ = √t2 − z2, and space–time rapidity ηs = atanh(z/t). We consider a flow 
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described by boost-invariant velocity profile along the z-direction, 
neglecting the dynamics in the transverse plane:

Uα∂α =
1
τ (t∂t + z∂z) = ∂τ. (50)

Under these settings the first and second-order moments of the particle 
distribution function reduce to

Nα = (n,0,0,0) , Tαβ = diag(ϵ,PT,PT, τ−2PL). (51)

where PT and PL are the transversal and the longitudinal pressure, respec-
tively. Moreover, the diffusion current vanishes, while the pressure 
deviator πμν takes a diagonal form, πμν = diag(0, − πd/2, − πd/2, τ−2πd), 
with 𝜋𝜋d =

2
3
(PL − PT). The conservation equation ∇μNμ = 0 reduces to

τ∂(τn)
∂τ

= 0, (52a)

which has the obvious solution n = n0τ0/τ, with n0 being the particle 
number density at initial time τ0. The conservation equation for the 
energy momentum tensor, ∇μTμν = 0, reduces to

τ∂ϵ
∂τ

+ ϵ + P + 𝜋𝜋d = 0. (52b)

The evolution equation for πd depends on the employed theory. 
In the frame of the Israel–Stewart second-order hydrodynamics87,88, 
it reads89

τ∂𝜋𝜋d
∂τ

+ (λ + τ
τR
)𝜋𝜋 + 16

15 P = 0, (52c)

where λ = 38/21, and τR = 5η/4P is the Anderson–Witting relaxation 
time. As P and πd depend only on τ, equation (52) can be solved easily, 
for example, by using Runge–Kutta time stepping.

The evolution of πd can be obtained also from the kinetic equation 
by writing equation (14) with respect to the Bjorken coordinates, taking 
into account the degrees of freedom p  = pτ, vz = τpη/p and 
φ = arctan(py/px)42

(∂τ −
vz(1 − v2z )

τ ∂vz −
v2zp
τ ∂p) f = −

vμuμ

τR
(f − f eq), (53)

where vz = cosθ in the language of the momentum space discretization 
section. For simplicity, feq is taken as the Maxwell–Jüttner distribution 
given in equation (34), which reduces in the case of massless particles to

f eq = n
8πT3 exp (−pαUα

T ) . (54)

The distribution function is initialized using the Romatschke–Strick-
land distribution 90,91,

fRS =
geα0

(2π)3
exp [− 1

Λ0
√(p ⋅ u)2 + ξ0(p ⋅ ̂z)2] , (55)

where ̂zμ is the unit-vector along the rapidity coordinate and g = 16 is 
the number of gluonic degrees of freedom. The parameters α0, Λ0 and 
ξ0 can be used to set the initial values n0, P0 and χ0, as indicated in equa-
tions (11)–(13) by Ambruş and co-workers48 (see also the work by Strick-
land and Tantary45).

In solving equation (53), it is convenient to take advantage of the 
azimuthal symmetry of the set-up in both the coordinate and the 
momentum space, such that f becomes independent of φ. This is equiv-
alent to discretizing the azimuthal direction φ using just one point, 

taken as φ = 0 for definiteness. The vz and p degrees of freedom can be 
discretized using the Gauss–Legendre and Gauss–Laguerre quadrature 
rules of orders K and N + 1, respectively28,32. By this procedure, the 
discrete values vz;j (1 ≤ j ≤ K) and pk (1 ≤ k ≤ N + 1) are given by the roots 
of the Legendre and Laguerre polynomials PK(vz) and L(2)N+1(p), respec-
tively. As shown in a work by Ambruş and Blaga32, employing N = 1 fully 
recovers the dynamics of the macroscopic quantities n, PL and PT. The 
corresponding discrete values pk are p1 = 2T0 and p2 = 6T0, where T0 is 
taken as the initial temperature32. The total number of discrete momen-
tum vectors employed for the simulations presented in this section is 
thus 2K. The expansions of feq reads

f eq = n e−p/T0

8πT3
0

[1 + (1 − T
T0

) (3 − p
T0

)] . (56)

The analogous expression for fRS was presented by Ambruş and Guga–
Roşian38, however, we do not include it here as it is more complicated 
due to its explicit dependence on vz.

Introducing the populations fjk corresponding to the discrete 
values (vz;j, pk) of the momentum space degrees of freedom via

fjk = 2𝜋𝜋T3
0e

pk/T0wP
j w

L
k f(pk, vz;j,φ = 0), (57)

where wP
j  and wL

k are the Gauss–Legendre and Gauss–Laguerre quadra-
ture weights, respectively (wL

1 = 1.5 and wL
2 = 0.5 when N = 1), the quanti-

ties n, PL and PT are computed via

n =
K
∑
j=1

N+1
∑
k=1

fjk,

PL =
K
∑
j=1

N+1
∑
k=1

pkv2z;j fjk,

PT = 1
2

K
∑
j=1

N+1
∑
k=1

pk(1 − v2z; j)fjk.

(58)

The derivatives of f with respect to vz and p appearing in equation 
(53) can be computed via projection onto the Legendre and Laguerre 
polynomials, respectively leading to linear relations. In the former 
case, we have

[
∂[vz(1 − v2z )f ]

∂vz
]
jk
=

K
∑
j′=1

𝒦𝒦P
j, j′ fj′ ,k, (59)

where the kernel matrix 𝒦𝒦P
j, j′ depending only on K, can be pre-computed. 

The explicit expression of its elements has been given in equation (3.54) 
in the work by Ambruş and Blaga32.

For the derivative with respect to p, we can take advantage that 
N = 1 is fixed and write

[ 1
p2

∂( fp3)
∂p ]

j,1
= −[ 1

p2
∂( fp3)
∂p ]

j,2
= 1

2 fj1 +
3
2 fj2. (60)

Following the discretization of the momentum space, equations 
(59) and (60) can be employed to replace equation (53) by an ordinary 
differential equation for the evolution of fjk,

∂τ fjk = Ljk[τ, f ], (61)

where Ljk[τ, f] depends on all discrete populations fj′ ,k′ evaluated at time 
τ, as well as on τ. We employ the third-order Runge–Kutta algorithm to 
evolve the system from time τ to τ + δτ via two intermediate stages32,

f (1)jk (τ) = fjk(τ) + δτLjk[τ, f ],

f (2)jk (τ) = 3
4
fjk(τ) +

1
4
f (1)jk (τ) + 1

4
δτ Ljk[τ + δτ, f (1)],

fjk(τ + δτ) = 1
3
fjk(τ) +

2
3
f (2)jk (τ) + 2

3
δτLjk[τ + δτ/2, f (2)].

(62)
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Data availability
Source Data are provided with this paper.

Code availability
The code—as well as examples running the Riemann problem, data 
and scripts, to reproduce Figs. 1, 2 and 4—has been deposited to  
Code Ocean92.
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