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It is widely believed that the emergence of slow glassy dynamics is encoded in a material’s
microstructure. First-principles theory [mode-coupling theory (MCT)] is able to predict the dramatic
slowdown of the dynamics from only static two-point correlations as input, yet it cannot capture all of the
observed dynamical behavior. Here we go beyond two-point spatial correlation functions by extending
MCT systematically to include higher-order static and dynamic correlations. We demonstrate that only
adding the static triplet direct correlations already qualitatively changes the predicted glass-transition
diagram of binary hard spheres and silica. Moreover, we find a nontrivial competition between static triplet
correlations that work to stabilize the glass state and dynamic higher-order correlations that destabilize it
for both materials. We conclude that the conventionally neglected static triplet direct correlations as well as
higher-order dynamic correlations are, in fact, non-negligible in both fragile and strong glassformers.
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Introduction.—Almost any material can be supercooled
or compressed from the liquid to the glass state. During this
process, the relaxation dynamics slows down dramatically,
while the disordered microstructure undergoes only small
changes. This apparent disconnect between structure and
dynamics underlies much of the complexity of the glass
transition [1–3].
Among the key challenges in tackling the glass transition

is the dearth of first-principles theories. Arguably the
dominant first-principles theory, mode-coupling theory
(MCT) [4–8], does a good job of predicting the increase
in structural relaxation time for the first 4–5 decades and
indeed can be accurately fitted to experimental [9] and
simulation [10] data of fragile glassformers in this regime.
However, at deeper supercooling, the power-law increase in
relaxation time predicted by MCT leads to a total dynami-
cal arrest at state points where experiments and computer
simulations still exhibit relaxation [11–13]. Moreover, this
power law is completely incompatible with the Arrhenius
behavior of strong glassformers [14], even at relatively high
temperatures. MCT nonetheless predicts qualitatively reli-
able state diagrams for both fragile and strong glass-
formers [15,16].
The static structure factor (i.e., two-point density corre-

lations) is normally assumed to be a sufficient representa-
tion of the structure to describe a system with pairwise
interactions [17], as used in the usual implementation of

MCT. However, it has been shown both experimentally and
numerically [12,18–20] that, upon supercooling, higher-
order structural motifs change markedly (much more than
two-point correlations). Moreover, machine-learning meth-
ods identify subtle structural changes [21–24] and con-
figurational entropy drops approaching dynamical arrest
[25–27]. Accompanying these subtle changes of structure,
it is recognized that higher-order dynamical correlations
implicit in so-called cooperatively rearranging regions may
enable relaxation at supercoolings past the critical volume
fraction φMCT (or critical temperature TMCT) at which MCT
predicts the dynamical divergence [3,28]. Given the clear
failure of standard MCT to predict dynamical behavior at
deep supercooling and these observations of higher-order
correlations, there is a clear need to develop a first-
principles theory that captures such correlations in a
consistent and systematic manner.
The first such attempt to go beyond the two-body level

within MCT is to consider static triplet correlations cð3Þ,
with cð3Þ calculated either from simulations [29,30] or
theories such as density functional theory [17,31]. In the
1980s, Barrat et al. [32] concluded that φMCT for Percus-
Yevick hard spheres only quantitatively changes from 0.516
to 0.512 by supplementing MCT with cð3Þ. Later, Sciortino
and Kob [30] found that, for both the van Beest-Kramer-van
Santen (BKS) model of silica and the Kob-Andersen binary
Lennard-Jones model, the inclusion of triplet correlations
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improves the prediction of the nonergodicity parameters; the
improvement is particularly significant for the former, but at
a TMCT that is further removed from the simulated glass-
transition temperature. Recently, Ayadim et al. [33] dis-
covered that cð3Þ also quantitatively affects the location of
the MCT glass-transition line and the nonergodicity param-
eter for hard-core particles with short-ranged interactions.
These findings hint that many-body correlations such as cð3Þ

could be important for the glassy dynamics of even simple
glassformers, but the precise importance and role of such
correlations remains ambiguous.
Recently, generalized mode-coupling theory (GMCT)

has been developed as a systematic extension of MCT
that adds in higher-order dynamic and static correlations
[34–38]. Under certain conditions, the hierarchical GMCT
framework is even able to account for relaxation behaviors
other than the unrealistic power law noted above [39]. So
far, within GMCT, only multipoint dynamic correlation
functions have been incorporated, leading to quantitatively
improved critical point predictions with respect to MCT
for fragile glassformers. This suggests an improved ability
of GMCT to amplify small differences in static structure
factors [34–37,40–43]. However, it remains unclear how
the combination of both structural and dynamic higher-
order correlations affects the glassy dynamics from a first-
principles perspective.
Here we make a first step toward a full many-body, first-

principles treatment of glassy systems by including both
static three-body terms and dynamic many-body terms into
the GMCT framework. Our method is quite general and
can readily be extended to include static four-body and
still higher-order terms [44]. We consider two model
glassformers from different fragility classes: one is a binary
hard sphere mixture (BHS) with a range of size ratios
0.5 ≤ δ ≤ 0.8, and the other is the strong BKS model of
silica [45]. We find that cð3Þ has a non-negligible effect,
both quantitatively and qualitatively, on the prediction of
the liquid-glass transition even for BHS with small size
disparities. Furthermore, the GMCT level of the multipoint
dynamic correlation functions also qualitatively changes
the diagrams of BHS and significantly improves the
prediction of relaxation times for SiO2, indicating that
both static and dynamic multipoint density correlations
play a significant and nontrivial role in both glassformers.
An implication of our Letter is that the reasonable pre-
dictions of MCT for state diagrams and nonergodicity
parameters [6], based solely on two-point correlations,
could essentially be regarded as a coincidence or a
cancellation of errors.
First-principles theory.—We first briefly introduce the

GMCT framework. The central dynamic objects
for a multicomponent glassy system consisting of N p
particles and M species are the multicomponent

2n-point density correlation functions Fð2nÞ
fαig;fβigðfkig; tÞ ¼

hρα1−k1ð0Þρ
α2
−k2ð0Þ � � � ρ

αn
−knð0Þρ

β1
k1
ðtÞρβ2k2ðtÞ � � � ρ

βn
kn
ðtÞi, where

ραkðtÞ ¼
PN α

iα¼1 e
ik·riα ðtÞ=

ffiffiffiffiffiffiffiffi
N p

q
is a density mode for species

α ∈ f1; 2;…;Mg at wave vector k and time t, the angular
brackets denote an ensemble average, riαðtÞ is the position
of particle iα of species α at time t, andN α is the number of
particles of type α with

P
M
α¼1 N α ¼ N p. The label n ∈

f1; 2;…;∞g is the level of the GMCT hierarchy; when

n ¼ 1, Fð2Þ
α;βðk; tÞ is the partial intermediate scattering

function. These dynamic equations have been derived from
repeated application of the Mori-Zwanzig approach, where
we have neglected the off-diagonal correlations [36,37].
The hierarchical equations forFð2nÞ

fαig;fβigðfkig; tÞ read [37]
F̈ð2nÞ
fαig;fβigðtÞþFð2nÞ

fαig;fγigðtÞðSð2nÞÞ−1fγig;fθigJ
ð2nÞ
fθig;fβig

þ
Z

t

0

dτ _Fð2nÞ
fαig;fγigðt−τÞðJð2nÞÞ−1fγig;fθigK

ð2nÞ
fθig;fβigðτÞ¼0; ð1Þ

where the arguments fkig and the summation over indices of
species are omitted for simplicity. Sð2nÞfαig;fβigðfkigÞ≡
Fð2nÞ
fαig;fβigðfkig; t ¼ 0Þ is the 2n-point static density correla-

tion function describing themicrostructure of the systemand
Jð2nÞfαig;fβigðfkigÞ ¼ hðd=dtÞ½ρα1−k1…ραn−kn �ðd=dtÞ½ρ

β1
k1
…ρβnkn �i is

the general static current-current matrix. Both of them
contain only even-order density modes, which can be
approximated using Gaussian factorization, and hence they
only depend on the two-point static density correlations
Sð2Þα;βðkÞ [37]. The key unknown part of Eq. (1) is the memory

kernel Kð2nÞ, which GMCT hierarchically expands as a
linear combination of the next-level correlators Fð2ðnþ1ÞÞ
[34,36–38]. That is,

Kð2nÞ
fαig;fβigðfkig;tÞ¼

ρ

16π3
X

μν
μ0ν0

Xn

j¼1

Z

dq
kBT
mαj

Vμ0ν0αjðq;kj−qÞ

×Vμνβjðq;kj−qÞkBT
mβj

×Fð2ðnþ1ÞÞ
μ0;ν0;fαig=αj;μ;ν;fβig=βjðq;kj−q;fkig=kj;tÞ;

ð2Þ
where T is the temperature and mα is the mass of particle
species α. The subscript fxig=xj is a list x1; x2;…; xn with
the specific element xj removed.
The static vertices, which represent the coupling strength

between different wave vectors, are given by [30,37]

Vαβμðq; k − qÞ ¼ ρk2xμc
ð3Þ
αβμðq; k − qÞ

þ ðk − qÞ · kcð2Þβμ ðjk − qjÞδαμ
þ q · kcð2Þαμ ðqÞδβμ; ð3Þ
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where xμ ¼ N μ=N p is the number concentration of species

μ, cð2Þαβ ðqÞ is the (doublet) direct correlation function

connecting to Sð2Þ via the Ornstein-Zernike equation

[17,46] and cð3Þαβμðq; k − qÞ is the triplet direct correlation
function [30,46].
It is clear now that the inputs to the GMCT framework

are only Sð2Þ and cð3Þ, with the latter only appearing in the
vertices. To numerically solve the GMCT equations, we
follow previous work [36–38] and apply a self-consistent
closure for the multipoint dynamic density correlations
at the highest level N, such that Fð2NÞðtÞ ≈ Fð2ÞðtÞ×
Fð2½N−1�ÞðtÞ (see Supplemental Material [47]). In the follo-
wing, we report how the inclusion of cð3Þ and the level N
affect the liquid-glass transition for BHS and SiO2, as well
as the predicted fragility of the latter. As inputs, we take Sð2Þ

and cð3Þ from Rosenfeld’s fundamental measure theory
[44,57] for BHS and from molecular dynamics simulations
for SiO2 (see Supplemental Material [47] for details).
Glass-transition diagrams.—We first focus on BHS to

discuss the role of the GMCT closure level N. Figures 1(a)
and 1(b) show the GMCT-predicted liquid–glass-transition
diagrams for several values of the particle size ratio
δ ¼ dB=dA, where dA and dB denote the particle diameters
of the larger and smaller species, respectively. Increasing N
generally leads to higher critical packing fractions, both
with and without cð3Þ, which is consistent with GMCT
predictions for monodisperse hard spheres [34,35,40] and
sticky hard spheres [42], as well as in better quantitative
agreement with the critical points φc > 0.58 reported in
experiments and simulations [58–60]. Therefore, regardless

of cð3Þ, including higher-level dynamic density correlations
effectively stabilizes the liquid state.
Let us check more carefully the effect of N for different

size ratios. In standard MCT, i.e., for N ¼ 2 and neglecting
cð3Þ, two opposite effects are observed at different size
disparities [15,61]. Specifically, at a small size disparity
such as δ ¼ 0.8 [open circles in Fig. 1(a)], the critical
packing fraction is slightly smaller than the monodisperse
case (filled circle at xB ¼ 0). However, for a large size
disparity such as δ ¼ 0.5 [upward-pointing triangles in
Fig. 1(a)], the mixing of the two species leads to higher
critical packing fractions. This latter effect is known as
entropically induced plasticization and can be attributed to
the depletion attraction [59,61]. By increasing N and
neglecting cð3Þ, we see that the plasticization effect com-
pletely disappears and all curves, in fact, show an inverse-
plasticization trend. Contrasting this with the results for
small size disparities (δ ¼ 0.8), where the inverse plasti-
cization does not change much as N increases, we can
conclude that the effect of N depends on the size ratio and
becomes more pronounced for large size disparities.
Interestingly, when we include cð3Þ, the inverse-

plasticization effect for N ¼ 3 and N ¼ 4 without cð3Þ is
inverted again for xB ≲ 0.7, as can be seen in Fig. 1(b).
Notice that, even for MCT (N ¼ 2), adding cð3Þ qualita-
tively changes the transition curve at small size disparities
such as δ ¼ 0.8. Therefore, the triplet direct correlation
functions cð3Þ greatly affect the state diagrams in a non-
trivial way.
To delineate the specific effect of cð3Þ on the glass-

transition curves, we plot the difference of the critical

FIG. 1. Liquid-to-glass state diagrams of binary hard spheres as predicted from GMCT (a) without cð3Þ and (b) with cð3Þ. The curves
represent the critical packing fractions φc as a function of the number concentration of the small species, xB ¼ N B=N p. Different
symbols correspond to different particle size ratios δ, and different colors correspond to different GMCT closure levels N. (c) The long-
time diffusion coefficient D from simulations at packing fraction φ ¼ 0.57. (d)–(f) The difference of the critical packing fractions
without and with cð3Þ, i.e., ΔφcðN; δ; xBÞ ¼ φcðN; δ; xB; without cð3ÞÞ − φcðN; δ; xB; with cð3ÞÞ, as a function of xB. The filled circles
indicate the results for one-component hard spheres. (g) Critical temperature Tc of SiO2 predicted from GMCT as a function of level N.
Squares and circles are with and without cð3Þ, respectively. The solid green line indicates the lowest temperature T ¼ 2750 K at which
the system can be equilibrated in simulation, and hence it is an upper bound of the glass-transition temperature.
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packing fractions without and with cð3Þ, Δφc¼
φcðwithoutcð3ÞÞ−φcðwithcð3ÞÞ, as shown in Figs. 1(d)–1(f).
All the differences are positive, which means that, contrary
to the role of increasing N, adding cð3Þ effectively stabilizes
the glass state. More surprisingly, both the shapes and the
magnitudes of the Δφc curves as a function of xB are
similar for all levels N. This may be attributed to the
fact that the shapes of the vertices, which contain cð3Þ,
remain qualitatively similar for different φ and N (see
Supplemental Material [47]). Moreover, for each level N,
the largest deviations from the single-component result
[ΔφcðxB ¼ 0Þ] are found for the smaller size ratios δ. These
results indicate that cð3Þ plays a larger role with increasing
size disparities, similar to the greater effect of level N for
large size disparities we discussed before.
To judge whether GMCT gives reasonably good pre-

dictions for BHS, we perform event-driven molecular
dynamics simulations at high packing fractions [62,63].
Since the shapes of the long-time diffusion coefficient D
curves as a function of xB do not qualitatively change when
φ ≥ 0.57 [63], we can regard the diffusion constants at φ ¼
0.57 as a semiquantitative indicator for the glass-transition
lines, as shown in Fig. 1(c). Qualitatively, MCTwithout cð3Þ
seems to perform best because both the plasticization effect
at small size ratios (0.5 ≤ δ ≤ 0.7) and the inverse-plasti-
cization effect at large size ratios (δ ¼ 0.8) are observed in
the simulations [58], whereas for larger N these two effects
are not captured simultaneously. However, if we look more
carefully at the location of the peak of D in Fig. 1(c), we
can see that, as δ is increased from 0.6 to 0.8, the location
of the peak decreases from ∼0.7 to ∼0.5. Without cð3Þ for
N ¼ 2 the location of the extremum is not seen to change
significantly, whereas incorporating cð3Þ for N ¼ 3 intro-
duces more variation in line with the simulations. Hence,
GMCT performs better than MCT at least for certain size
ratios. We expect that the good predictions from standard
MCT are coincidental, perhaps caused by a fortunate
cancellation of errors. We also recall that in the current
GMCT framework the multipoint (even-order) static den-
sity correlation functions are approximated using Gaussian
factorization, the off-diagonal dynamic correlators are
ignored [36,37], and the Sð2Þ and cð3Þ that we use here
might be slightly inaccurate compared to simulations
[31,44,57]. All of these aspects will affect the accuracy
of the state diagrams.
Now let us look at the critical temperature Tc of the

strong glassformer SiO2 predicted from GMCT. From
Fig. 1(g) we can see that, both with or without cð3Þ,
increasing the level N leads to lower critical temperatures,
approaching the glass-transition point. We point out that the
Tc at N ¼ 4 is even lower than the critical temperature
Tfit ¼ 3330 K obtained from the power-law fit of diffusion
coefficients or α-relaxation times [64,65], unambiguously
showing that GMCT is indeed able to go beyond the MCT

regime. However, for a given level N, the critical temper-
ature becomes higher when cð3Þ is included. Note that the
higher temperature of silica corresponds to the lower
packing fraction of hard spheres, hence the two competitive
effects–that including cð3Þ stabilizes the glass state, while
increasing N stabilizes the liquid state–are universal.
Nonergodicity parameters and fragility.—To further

study the roles of the dynamics-related N and the static-
related cð3Þ, we consider the nonergodicity parameters
(NEPs) at the critical points. Again, we first focus on
BHS. In Figs. 2(a) and 2(b), the normalized total NEPs are
shown for two different size ratios, δ ¼ 0.8 and δ ¼ 0.5, but
at the same packing contribution of the smaller species, i.e.,
x̂B ¼ φB=φ ¼ 0.15. It can be seen that, for both cases, and
both with or without cð3Þ, the NEPs increase as N increases,
concurrent with the N-dependent increase in the critical
packing fraction.
The effect of cð3Þ on the NEP is, however, more complex.

For δ ¼ 0.8, similar to the monodisperse case (see Fig. S4
[47]), adding cð3Þ decreases the NEP and hence the
relaxation dynamics becomes relatively faster. However,
for a small size ratio of δ ¼ 0.5, the opposite effect of cð3Þ

can be observed: when cð3Þ is included in the vertices, the

FIG. 2. Critical nonergodicity parameters predicted from
GMCT for different closure levels N. The normalized total

NEP Fc
total=Stotal for BHS where Fc

total ¼
P

αβ F
ð2Þc
α;β and Stotal ¼

P
αβ S

ð2Þ
α;β as a function of the wave number k for (a) δ ¼ 0.8, xB ¼

0.256 and (b) δ ¼ 0.5, xB ¼ 0.585. In both cases xB is chosen
such that the packing contribution of the small species is
x̂B ¼ φB=φ ¼ 0.15. (c) The Si-Si partial NEP Fc

SiSiðkÞ for
SiO2 at the critical points shown in Fig. 1(g) predicted from
GMCT. Green circles are simulation data from [30]. (d) The α-
relaxation time τα as a function of inverse temperature. τα is
determined from the partially intermediate scattering function
FSiSiðk ¼ 1.771 Å−1; ταÞ=SSiSiðk ¼ 1.771 Å−1Þ ¼ e−1. For bet-
ter comparison, we scaled the predicted relaxation times for each
level N with and without cð3Þ to make them coincide with the
simulated relaxation time at the highest temperature.
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NEP increases for a given level N. Note that the critical
packing fraction obtained with cð3Þ is always lower than the
one without cð3Þ, hence the effect of cð3Þ on the NEP is not
exactly the same as that on the critical packing fractions.
In fact, for a large size dispersity of δ ¼ 0.5, the effect of
cð3Þ becomes highly number-concentration dependent (see
Fig. S5 [47]). Therefore, consistent with our previous
observation that cð3Þ plays an increasingly important role
in the glass-transition diagrams at larger size disparities, we
find here that a larger size disparity even produces different
effects of cð3Þ on the NEP. This further confirms that cð3Þ is
non-negligible, especially for large size disparities.
Next we consider the NEP for silica. It is clear from

Fig. 2(c) that the effect of cð3Þ and N on the partial NEP is
similar to that on the BHS at a small size disparity δ ¼ 0.8.
This is reasonable because the effective size ratio of oxygen
and silicon is around 0.84 if we estimate their effective sizes
using the first peak position of the corresponding partial
radial distribution function [64]. We also note that, for a
given level N, adding cð3Þ always make the NEP closer to
the simulation results, which further indicates the important
role of cð3Þ.
To illustrate the important role of higher-order dynamic

correlations for the glassy dynamics, we finally plot the
relaxation times τα as a function of inverse temperature,
which reflects the fragility of the material, as shown in
Fig. 2(d). Contrary to the NEP, the relaxation times
predicted from MCT including cð3Þ deviate most from
simulation. The predicted curves substantially come closer
to the simulation data when N increases from 2 to 4.
Although, in principle, for any finite mean-field closure
level N, we can only obtain a power law of the relaxation
time near the critical point [41], here we see that GMCT
with increasing N is able to improve the shape of the curves
over a larger temperature window, i.e., provides a better
prediction of the fragility.
Conclusions.—In this Letter, we have made the first step

to incorporate both higher-order spatial and temporal
correlations into a coherent first-principles framework
for the glass transition. Our theory is able to pick up the
small structural changes encoded in static multipoint
correlation functions to generally improve predictions for
the glass transition.
We have demonstrated that static triplet correlations and

dynamic multipoint correlations greatly affect the glass
transition in a competitive manner for both fragile and
strong glassformers. It is well known that static triplet
correlations are important for strong glassformers, while
high-order dynamic correlations are vital for improving the
dynamics of fragile glassformers, but we have shown that
the reverse is also true, and hence both static and dynamic
many-body correlations are non-negligible in both fragile
and strong glassformers. We mention that the many-body
correlations in our theory, which are defined in Fourier

space, in principle, contain all information for the corre-
sponding many-body quantities in real space. Hence, one
could formally establish a relation with, e.g., locally
preferred structures [12,18–20] via a Fourier transform.
Our framework should therefore also be sensitive to small
structural changes in real space [21–24], but a full real-
space analysis is left for future work.
We hypothesize that using additional static higher-order

correlations and solving the GMCT equations up to higher
closure levels N should bring the predicted glass-transition
point and relaxation dynamics closer to the empirical data,
but full convergence is currently hampered by the high
computational cost associated with such calculations.
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