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ABSTRACT 

A study of Intrinsic Thermo-Acoustic (ITA) instability behavior of flames anchored to a burner deck 

is performed by introducing a mapping between the Flame Transfer Function, FTF(s), defined in the 

complex (Laplace) domain and the experimentally measured Flame Frequency Response, FFR(iω). 

The conventional approach requires a system identification procedure to obtain the FTF(s) from the 

measured FFR(iω). Next, root-finding techniques are applied to define the complex eigenfrequencies. 

The common practice is to fit the FTF(s) by a rational function that may lead to artifacts like spurious 

poles and zeros. The purpose of the present work is to establish instability criteria which are directly 

applicable in the frequency domain. The particular case is considered where the acoustic boundary 

conditions at both sides of the flame are anechoic. Therefore, the pure ITA mode is treated. First, the 

causality of the measured FFR(iω) is checked. Then, the criteria of the ITA mode instability applica-

ble to the FFR(iω) phase and magnitude, are derived. Causality properties are used to find the un-

stable frequency, growth rate, and even the maximum possible value of the linear growth rate. In 

addition, a procedure is explained to reconstruct the flame transfer function in the complex plane s 

from the measured flame frequency response which could be an alternative method to study the FTF 

behavior in the complex domain instead of its estimation with a rational function. 

1. INTRODUCTION 

Modeling the (in-)stability of thermo-acoustic systems within the network modeling approach re-

quires an analysis in the complex (Laplace) domain. This means that for all elements of the model, 

including a burner with flame, the descriptions should be obtained in terms of functions of complex 

frequency (𝑠 = 𝜎 + 𝑖𝜔). However, with current technologies, it is only possible to measure the Flame 

Frequency Response (𝐹𝐹𝑅𝑖𝜔) as a function of linear/circular frequency 𝜔. Therefore, a system iden-

tification procedure is required to obtain the Flame Transfer Function in the complex plane, 𝐹𝑇𝐹𝑠. 

Several studies have been conducted to model 𝐹𝑇𝐹𝑠 from the measured 𝐹𝐹𝑅𝑖𝜔 [1,2]. In addition, a 

few studies, such as in [3], have tried to find a relationship between the flame transfer function in the 
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complex domain and the flame frequency response. Attempts to develop alternative approaches when 

the instability criteria are directly based on the analysis of the flame frequency response are still 

limited. For example, the Nyquist criterion is based on the Argument principal and is a well-known 

technique in Control Theory that is also commonly used in the analysis of thermo-acoustic systems. 

The Nyquist plot (the polar plot of the frequency response) is used to find the differences of the 

number of poles and zeros of the system in the right half plane (RHP) of the complex domain. This 

technique makes it possible to resolve the dilemma of (in-)stability of the system. However, this 

approach does not provide direct information about the unstable frequencies and growth rates. In a 

pioneer work Kopitz and Polifke proposed an approach how to estimate the unstable frequency and 

growth rate directly from the polar plot of the Open-Loop system Transfer Function (OLTF) without 

solving the dispersion relation [4]. The goal of this work is to further extend this methodology to 

provide insight into system design techniques to ensure the operational stability of an appliance. 

2. FORMULATION 

There is a large group of burners in which the heat release rate is particularly and exclusively sensitive 

to velocity perturbations on the upstream side of the flame. Thermo-acoustic characteristics of these 

compact velocity-sensitive flames can be described with the definition of their 𝐹𝑇𝐹𝑠. In literature like 

[4–6], it has been shown that the Flame Transfer Matrix (𝐹𝑇𝑀), which describes the linear relation-

ship between the acoustic pressure and velocity fluctuations at the upstream of the burner/flame 

(𝑝𝑢𝑝
′ , 𝑢𝑢𝑝

′ ) and at the downstream of it (𝑝𝑑𝑛
′ , 𝑢𝑑𝑛

′ ) is linearly related to the burner with flame transfer 

function and in the limit of zero mean flow Mach number the link is the following: 

ቊ
𝑝𝑑𝑛

′

𝑢𝑑𝑛
′ ቋ = ൤

1 0
0 1 + 𝜃 𝐹𝑇𝐹𝑠

൨ ቊ
𝑝𝑢𝑝

′

𝑢𝑢𝑝
′ ቋ, (1) 

where 𝜃 = (𝑇𝑑𝑛
തതതതത 𝑇𝑢𝑝

തതതതൗ ) − 1 is the temperature ratio; 𝑇𝑢𝑝
തതതത, 𝑇𝑑𝑛

തതതതത being the mean temperature at the up-

stream and downstream sides of the flame. In terms of Riemann invariants (𝑓, 𝑔), defined as 

𝑓 ≝
1

2
ቀ

𝑝

𝜌0𝑐
+ 𝑢ቁ , 𝑔 ≝

1

2
ቀ

𝑝

𝜌0𝑐
− 𝑢ቁ and shown in Figure 1, the fluctuations of pressure and velocity can be 

written as 

൜
(𝑓2 + 𝑔2) = 𝜀(𝑓1 + 𝑔1)

𝑓2 − 𝑔2 = (1 + 𝜃 𝐹𝑇𝐹𝑠) (𝑓1 − 𝑔1)
, (2) 

where  𝜀 =
𝜌𝑢𝑝𝑐𝑢𝑝

𝜌𝑑𝑛𝑐𝑑𝑛
 is the jump in characteristic acoustic impedance across the flame. 

 
Figure 1: Generic representation of thermo-acoustic of a combustion system. 

2.1. Thermo-acoustic system matrix 

Riemann invariants at the upstream and downstream sides of the flame are related with the reflection 

coefficients at both sides, i.e., 𝑅up = 𝑓1 𝑔1Τ , 𝑅dn = 𝑔2 𝑓2Τ . Therefore, by substituting 𝑓1  and 𝑔2  in 

Equation 2, one can derive the full system matrix expression of a thermo-acoustic system as follows: 

ቈ
൫1 + 𝑅up)𝜀 −(1 + 𝑅dn)

൫1 + 𝜃 𝐹𝑇𝐹𝑠)(𝑅up − 1൯ (𝑅dn − 1)
቉ ൜

𝑔1

𝑓2
ൠ = ൜

0

0
ൠ. (3) 



 
For 1 + 𝜃 𝐹𝑇𝐹𝑠 ≠ 0, the eigenvalues of the system will be obtained from the dispersion relation, i.e., 

the requirement that the determinant of the thermo-acoustic system matrix equals zero. The dispersion 

relation of the thermo-acoustic system is given by 

Ψ 𝜀 + 1 + 𝜃 𝐹𝑇𝐹𝑠0
= 0, 

(4) 

where Ψ =
(1+𝑅𝑢𝑝൯

൫1−𝑅𝑢𝑝)

(1−𝑅𝑑𝑛)

(1+𝑅𝑑𝑛)
 is a function which incorporates information about acoustics of the termi-

nations with respect to the burner element. For the case of 1 + 𝜃 𝐹𝑇𝐹𝑠 = 0, Equation 4 cannot be 

used, and one can use only 
1

𝜃
+ 𝐹𝑇𝐹𝑠 = 0. 

2.2. Intrinsic Thermo-Acoustic (ITA) instability equation 

To elucidate features of purely intrinsic thermo-acoustic system modes, one should apply anechoic 

terminations at both sides of the flame in Equations 3 and 4, i.e., 𝑅up = 0, 𝑅dn = 0. Therefore, 

Ψ = 1 and Equation 4 reduces to so called the “intrinsic instability equation” [4,7] 

𝑛0 + 𝐹𝑇𝐹𝑠0
= 0, (5) 

where 𝑛0 is a real positive number which depends on 𝜀 and 𝜃 as 𝑛0 = ቚ
𝜀+1

𝜃
ቚ. By applying the two 

equations 𝑐2 = 𝛾𝑅𝑇 and 𝑃 = 𝜌𝑅𝑇 for the perfect (ideal) gas with considering constant pressure be-

fore and after the compact thin flame, one can derive the value of 𝑛0 as 𝑛0 ≅ ට
𝑇ത𝑑𝑛

𝑇ത𝑢𝑝
+ 1

𝑇ത𝑑𝑛

𝑇ത𝑢𝑝
− 1൘ . The 

case 1 𝜃ൗ + 𝐹𝑇𝐹𝑠 = 0 is similar to the intrinsic mode and it can be treated with the same strategy ex-

pressed below. If the flame transfer function in the complex domain, 𝐹𝑇𝐹𝑠, is known, then the roots 

of Equation 5, 𝑠0 , are found when the ห𝐹𝑇𝐹𝑠0
ห = 𝑛0  and ∠𝐹𝑇𝐹𝑠0

= 𝜋, 3𝜋, …  which needs to be 

searched in the complex plane. In most cases, flame transfer functions are complicated functions, 

therefore the roots cannot be found analytically, except for the case of simple models. In most cases, 

the analytical form of the flame transfer function in the complex domain is unknown, as only the 

flame frequency response (𝐹𝐹𝑅𝑖𝜔) can be measured. Therefore, to determine the intrinsic mode of 

the system, two approaches can be considered. The first one consists of modeling the flame transfer 

function in Laplace domain guessing a form of its functional dependence and then solving Equation 

5 as in [6]. The second approach includes finding special criteria of presents of unstable roots based 

directly on the analysis of the measured flame frequency response in the frequency domain as in [4]. 

This approach supposes using certain properties of causal functions.  

2.3. Causal function properties and Causality check 

It is known that the functions which describe input-to-output relations of physical systems should 

satisfy the requirement that they are causal in the sense that the future of the input signal cannot 

influence the past of the output signal. In stable physical systems, causality implies the condition of 

analyticity in the Right Half Plane (RHP) of the complex domain (𝑠 − 𝑝𝑙𝑎𝑛𝑒) and, conversely, ana-

lyticity in the RHP implies causality of the corresponding stable physical system [8]. An “analytic” 

function in the RHP implies that there is no pole in the RHP. Any mapping by an analytic function is 

conformal, i.e., it preserves local angles, at any point when it has a non-zero derivative [4].  

In case of applying the advances of causal systems to measured data, such as the measured flame 

frequency response 𝐹𝐹𝑅𝑖𝜔, one could first check the causality of the measured data. To do this, one 

can calculate the real part of a causal function from the imaginary part of the measured data using the 

Kramers-Kronig relations [9] and then compare the measured real part with the derived real part of 



 
this causal function and do the reverse for the imaginary part. The next option is to apply the Hilbert 

transform property to determine the causality of the system, as in [10]. However, a better method was 

developed by Barannyk et al. [11] as an SVD-based Fourier continuations algorithm to fit a Fourier 

series with a finite number (𝑀) of periodic and causal functions to the measured data. The goal is to 

construct an accurate Fourier series approximation of 𝐹𝐹𝑅𝑖𝜔 in a given frequency domain which is 

∁(𝐹𝐹𝑅)(𝑥𝑗) =  ෍ 𝛼𝑘 𝑒−
2𝜋𝑖

𝑏
 𝑘 𝑥𝑗

𝑀

𝑘=1

 , (6) 

where  𝑥𝑗 =
0.5

𝜔𝑚𝑎𝑥
𝜔𝑗 is the normalized discrete frequency in the frequency range of [0, 𝜔𝑚𝑎𝑥], 𝑏 is 

the period of the approximation, usually chosen as the length of the domain times two or four, and 

𝛼𝑘 coefficients which are generated by applying the truncated SVD method [11]. The order of the 

error between the measured data and the causal function would be a good indication for checking the 

causality of the given data. It is obvious that the error estimates should decrease as the number 𝑀 in-

creases. The method is accurate, reliable, and capable of detecting very small-localized causality vi-

olations with amplitudes close to machine precision. It has been successfully tested on several ana-

lytical functions and measured flame frequency responses. For instance, for a perforated burner deck 

with hole diameter of 2 mm and a pitch of 4.5 mm (D2P4.5), at 𝜑 = 0.8, V = 80 cm/s, the error 

between the measured 𝐹𝐹𝑅 and the closest causal function derived from a Fourier series of 𝑀 peri-

odic causal functions (varying from 100 to 500) is shown in Figure 2. 

    
Figure 2: (left) Measured 𝐹𝐹𝑅(𝑓) of the burner D2P4.5, (right) Error between 𝐹𝐹𝑅(𝑓) and the 

closest causal function derived from a Fourier series of 𝑀 periodic causal functions. 

2.4. Stability and instability criteria of ITA mode 

For a measured 𝐹𝐹𝑅, the number of unstable system modes of the intrinsic thermo-acoustic nature is 

equal to the number of times 𝐹𝐹𝑅𝑖𝜔 encircles the point (−𝑛0, 0) clockwise. Consequently, for the 

system to be intrinsically stable it is sufficient if for 𝐹𝐹𝑅𝑖𝜔, in the frequency range of 0 < 𝜔 < +∞ 

one of the following conditions is satisfied 

➢ the phase of 𝐹𝐹𝑅𝑖𝜔 does not cross −𝜋, i.e., −𝜋 < ∠𝐹𝐹𝑅𝑖𝜔 < 0, or 

➢ when the phase of 𝐹𝐹𝑅𝑖𝜔 crosses −𝜋, the real part of 𝐹𝐹𝑅𝑖𝜔 is less than 𝑛0, i.e., 

|ℜ(𝐹𝐹𝑅𝑖𝜔→−𝜋)| < 𝑛0. 

https://www.sciencedirect.com/topics/computer-science/clockwise-direction


 
Proof. Based on the Argument principal, if the polar plot of a function does not turn around the critical 

point, (−𝑛0, 0), then it signifies that the number of poles 𝑁𝑝 and zeros 𝑁𝑧 in the RHP is equal (or 

𝑁𝑝 > 𝑁𝑧). If the causality check shows that 𝐹𝐹𝑅𝑖𝜔 is an analytic function in the RHP, then it means 

that there is no RHP pole, therefore, 𝑁𝑧 = 0 means that the system is stable. 

2.5. The unstable intrinsic frequency, the growth rate and the bounds 

For causal systems, Kopitz and Polifke have shown in [4] that the frequency of an unstable mode 

(𝜔0) is approximately equal to the frequency where the distance between the critical point (−1 + 𝑖0) 

and the polar plot of the OLTF reaches a local minimum. The growth/decay rate is approximately 

equal to the minimum distance between the critical point and the OLTF image curve divided by the 

mapping scale factor. “The scaling factor can be determined by evaluating how an interval (𝜔0 −
∆𝜔 → 𝜔0 + ∆𝜔), is mapped to a segment 𝑇𝐹(𝜔0 − ∆𝜔) → 𝑇𝐹(𝜔0 + ∆𝜔) of the OLTF image curve. 

The scaling factor is then estimated as the arc length divided by 2∆𝜔 in the limit ∆𝜔 → 0” [4]. How-

ever, it would be more accurate to consider the scaling factor as the linear distance (not the arc length) 

between the points before and after the unstable frequency, since the linear distance (not the arc 

length) between the critical point and the OLTF plot is used: 
𝜎0

2∆𝜔
=

𝐴𝑟𝑐(𝑇𝐹(𝜔0)− point(−1))

𝐴𝑟𝑐(𝑇𝐹(𝜔2)−𝑇𝐹(𝜔1))
=

|𝑇𝐹(𝜔0)−point(−1)|

|𝑇𝐹(𝜔2)−𝑇𝐹(𝜔1)|
. 

Therefore, for the intrinsic instability, the assessment of the polar plot of the measured 𝐹𝐹𝑅(𝑓) can 

be used to determine the (in)stability, the frequency of unstable oscillation, and the oscillation linear 

growth rate.  

If the polar plot of the measured 𝐹𝐹𝑅𝑓 turns around the point (−𝑛0 + 𝑖0), then the system is unstable. 

A good approximation of the unstable frequency would be the frequency in the Lefthand side of this 

point at the 𝐹𝐹𝑅𝑓 polar plot, i.e., |ℜ(𝐹𝐹𝑅𝑓)| > 𝑛0, which has a minimum distance from this point. 

The distance divided by the scaling factor gives the positive growth rate, i.e.,  

𝜎0 =
2∆𝜔 ห𝐹𝐹𝑅𝑖𝜔0−𝑛0ห

ห𝐹𝐹𝑅𝑖(𝜔0+∆𝜔)−𝐹𝐹𝑅𝑖(𝜔0−∆𝜔)ห
 . (7) 

The maximum possible growth rate of the intrinsic thermo-acoustic system can be reached if the 

maximum value of the 𝐹𝐹𝑅𝑓 occurs in the −𝜋 phase. Then, the maximum growth rate would be 

 𝜎𝑚𝑎𝑥 =
2∆𝜔 ห𝑀𝑎𝑥(𝐹𝐹𝑅𝑖𝜔−𝜋)−𝑛0ห

ห𝐹𝐹𝑅𝑖(𝜔−𝜋+∆𝜔)−𝐹𝐹𝑅𝑖(𝜔−𝜋−∆𝜔)ห
 . (8) 

Also, the minimum possible positive growth rate of the intrinsic thermo-acoustic system can happen 

if the maximum value of the 𝐹𝐹𝑅𝑓 occurs at frequency where |ℜ(𝐹𝐹𝑅𝑓)| = 𝑛0. 

Proof. From Equation 7, it is evident that for the 𝜎𝑚𝑖𝑛 = 0 it is needed to 𝐹𝐹𝑅𝑖𝜔0
= 𝑛0, and to obtain 

𝜎𝑚𝑎𝑥, 𝐹𝐹𝑅𝑖𝜔0
should be equal to 𝑀𝑎𝑥(𝐹𝐹𝑅𝑖𝜔). Therefore, 𝐹𝑇𝐹𝑠=𝜎0+𝑖𝜔0

 should also be the maximum 

of 𝑀𝑎𝑥(𝐹𝑇𝐹𝑠=𝜎0+𝑖𝜔) due to conformality. The local maximum of line 𝐹𝑇𝐹𝑠=𝜎0+𝑖𝜔 at 𝑠0 = 𝜎0 + 𝑖 𝜔0 

means that the polar plot of 𝐹𝑇𝐹𝑠 is normal to the real axis, i.e., ∠𝐹𝑇𝐹𝑠=𝜎0+𝑖𝜔0
= 𝜋/2 and the con-

formality says this should also be the case in the frequency response, i.e., ∠𝐹𝐹𝑅𝑖𝜔0=𝑖𝜔−𝜋
= 𝜋/2. 

To show the above statement in terms of a graphical fashion, three 𝐹𝐹𝑅𝑓 of the perforated burner 

D2P4.5 at three conditions of the equivalence ratio and the velocity are measured. The polar plots of 

them are shown in Figure 3. A pink color indicates the area where the unstable frequency (𝜔0) must 

be found for any of them. 



 
The maximum value of |𝐹𝐹𝑅𝑓| for these flame frequency responses are 1.03,1.17, and 1.53 respec-

tively. The maximum value of 𝐹𝐹𝑅3 is higher than 𝐹𝐹𝑅2, however, as can be seen in Figure 3, the 

angle ∠𝐹𝐹𝑅2 is higher than ∠𝐹𝐹𝑅3 at the unstable frequency (𝑠0 = 𝜎0 + 𝑖𝜔0) which is more im-

portant. Therefore, the value of the growth rate for the 𝐹𝐹𝑅2 is bigger than one for 𝐹𝐹𝑅3. 

Moreover, the  ∠𝐹𝐹𝑅2 ≈ 𝜋/2 therefore, the case of maximum possible linear grow rate of ITA mode 

is realized for this combustion conditions for the same maximum value of |ℜ(𝐹𝐹𝑅)|. 

 
Figure 3: Three Measured 𝐹𝐹𝑅(𝑓) of the burner D2P4.5 and the unstable frequency region. 

2.6. FTF reconstruction in the complex domain 

An alternative approach to extend the measured frequency response to the FTF plane by fitting it with 

a rational function can be considered. If the measured FFR is causal, then it is possible to reconstruct 

the FTF at least for 𝜎 > 0 from the measured 𝐹𝐹𝑅𝑖𝜔using the conformal mapping property of causal 

functions. The procedure could be as follows.  

1) Find the location of the unstable frequency 𝜔0 in the polar plot of 𝐹𝐹𝑅𝑖𝜔. 

2) Measure the angle of 𝐹𝐹𝑅𝑖𝜔0
and because of the conformality (between Figure 4a and Figure 4b) 

represent this angle as the angle of 𝐹𝑇𝐹𝑠0=𝜎0+𝑖𝜔0
at the point (−𝑛0 + 𝑖0), i.e., ∠𝐹𝑇𝐹𝑠=𝜎0+𝑖𝜔j

= α. 

Therefore, the first point (j) of FTF is reconstructed at the critical point with slope angle of α which 

is needed for finding the neighbor points. 

3) Calculate the growth rate from Equation 7. 

4) For each point (𝑗 + 1) after the critical point on the line 𝑠 = 𝜎0 + 𝑖𝜔, calculate the scaling factor  

based on 𝑟𝑗+1 = 𝜎0

ቚ𝐹𝐹𝑅𝑖(𝜔𝑗+1)−𝐹𝐹𝑅𝑖(𝜔𝑗)ቚ 

∆𝜔
 and then plot a circle with this radius and center of 

𝐹𝐹𝑅𝑖(𝜔𝑗+1). 

5) Find a point on this circle that has the same angle as ∠𝐹𝐹𝑅𝑠=𝑖𝜔j
. That point would be the next 

reconstructed point (j+1) of FTF on the line 𝑠 = 𝜎0 + 𝑖𝜔. 

6) Repeat this procedure for all points after and before the critical point on the line  𝑠 = 𝜎0 + 𝑖𝜔 as 

shown in Figure 4c. 



 
7) Subsequently, this procedure can be repeated for other fixed values of 𝜎, to reconstruct the polar 

plot of the line 𝐹𝑇𝐹𝑠=𝜎+𝑖𝜔. The results for 𝜎 > 0 could be plotted similar to Figure 4d.   

a) b)  

c) d)  

Figure 4: Conformal mapping between (a) s-plane and (b) polar plot of FTF. c) reconstruction 

one line of the FTF based on the conformality property of causal functions. d) FTF plane. 

 

4.    CONCLUSIONS 

In this work, an attempt is made to show that the flame frequency response (𝐹𝐹𝑅) is sufficient to 

study the dilemma of intrinsic thermo-acoustic (in-)stabilities without modeling the flame transfer 

function (𝐹𝑇𝐹𝑠) in the complex domain which may generate artificial poles and zeros. It is shown that 

the causality of the measured flame frequency response can be checked with a straightforward pro-

cedure to ensure that there is no unstable pole in the system (RHP pole) and one can use all properties 

of causal functions. The causality of such systems could help us to find the unstable frequency, growth 

rate, and even the maximum possible growth rate. A method is proposed how one can reconstruct the 

𝐹𝑇𝐹𝑠 in the RHP of the complex domain from the 𝐹𝐹𝑅 by using the conformality property of causal 

functions and geometrical reconstruction algorithm.  
 

5.    ACKNOWLEDGEMENTS 

The authors wish to thank the Netherlands Organization for Scientific Research (NWO) for the 
financial support under project STABLE (16315). 



 
 

6.    REFERENCES  

[1] W. Polifke, Black-box system identification for reduced order model construction, Ann. Nucl. 

Energy. 67 (2014) 109–128. https://doi.org/10.1016/j.anucene.2013.10.037. 

[2] T.M. Emmert, State Space Modeling of Thermoacoustic Systems with Application to Intrinsic 

Feedback, (2016). 

[3] A. Cuquel, Dynamics and nonlinear thermo-acoustic stability analysis of premixed conical 

flames, (2013). http://www.theses.fr/2013ECAP0037/document. 

[4] J. Kopitz, W. Polifke, CFD-based application of the Nyquist criterion to thermo-acoustic 

instabilities, J. Comput. Phys. 227 (2008) 6754–6778. 

https://doi.org/10.1016/j.jcp.2008.03.022. 

[5] B.B.H. Schuermans, W. Polifke, C.O. Paschereit, Modeling transfer matrices of premixed 

flames and comparison with experimental results, Proc. ASME Turbo Expo. 2 (1999). 

https://doi.org/10.1115/99-GT-132. 

[6] M. Hoeijmakers, Flame-acoustic coupling in combustion instabilities, Technische Universiteit 

Eindhoven, 2014. https://doi.org/10.6100/IR762773. 

[7] T. Emmert, S. Bomberg, W. Polifke, Intrinsic thermoacoustic instability of premixed flames, 

Combust. Flame. 162 (2015) 75–85. https://doi.org/10.1016/j.combustflame.2014.06.008. 

[8] Y. Fourès, I.E. Segal, Causality and analyticity, Trans. Am. Math. Soc. 78 (1955) 385–405. 

https://doi.org/10.1090/S0002-9947-1955-0069401-5. 

[9] J. Bechhoefer, Kramers–Kronig, Bode, and the meaning of zero, Am. J. Phys. 79 (2011) 1053–

1059. https://doi.org/10.1119/1.3614039. 

[10] L. Knockaert, T. Dhaene, Causality Determination and Time Delay Extraction by Means of 

the Eigenfunctions of the Hilbert Transform, in: 12th IEEE Work. Signal Propag. 

Interconnects, IEEE, 2008: pp. 1–4. https://doi.org/10.1109/SPI.2008.4558337 LK - 

https://tue.on.worldcat.org/oclc/4801497751. 

[11] L.L. Barannyk, H.A. Aboutaleb, A. Elshabini, Spectrally Accurate Causality Enforcement 

using SVD-based Fourier Continuations for High Speed Digital Interconnects, IEEE Trans. 

Components. 5 (2015) 991–1005. https://doi.org/10.1109/TCPMT.2015.2444388. 

[12] J.M. Figueroa-O’farrill, Complex Analysis, in: Math. Tech., 2004: pp. 73–184. 

[13] Complex integration, Hong Kong Univ. Sci. Technol. (n.d.). 

https://www.math.hkust.edu.hk/~maykwok/courses/ma304/06_07/Complex_4.pdf. 

 


