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Improved state estimation by non-causal state observer
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State estimation is essential for tracking conditions which can not be directly measured by sensors or are too noisy.
The aim of this paper is to present an approach to mitigate the phase delay without compromising the noise sensitivity,
by using accessible future data. Such use of future data can be possible in cases like Iterative Learning Control, where
full data of the previous trial is acquired beforehand. The effectiveness of the presented approach is verified through
LTI motion systems with 1) plant model error and 2) input disturbance, successfully showing the state estimation im-
provement from both time and frequency domain. The proposed non-causal approach improves the trade-offs between
the phase delay of the estimation and the noise resistance of the state observer.
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1. Introduction

Moore’s Law has been a driving force for the development
of the industry, contributing for the rise of our standards of
living (1). This also means the demand of accuracy and speed
of controlling machines are growing exponentially. To an-
swer this problem, various solutions are considered. For ex-
ample, using light weight and cheap non-metal materials in
the machines to increase the productivity of the manufactur-
ing (2). However, in order to effectively implement such ma-
terials, consideration of the flexible mode is inevitable. Cur-
rent methods using Feed-back (FB) and Feed-forward (FF)
control are still powerful, but since FF is vulnerable to plant
model error and FB is subject to fundamental performance
limitations such as analytic and interpolation constraints, per-
fect tracking is far from realized.

Iterative Learning Control (ILC), which is a method that
“learns” from previous trials, have started to catch attention.
Due to ILC’s batch-wise data processing, a non-causal filter,
such as an stable inversion of a non-minimum phase system,
is constructible. This means that against a repetitive task, an
accurate and faster control than FB and FF can be accom-
plished (3). One problem of ILC is that, making an accurate
inversion of a system with a discretization zero close to the
stability limit, causes an oscillation to the control input, re-
sulting to a poor inter-sample behavior. To address this be-
havior, an approach focusing on controlling not only the out-
put, but the entire state variables of the plant, called State-
Tracking ILC has been proposed (4).
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Fig. 1: The feedback system considered for state estimation.

Although State-Tracking ILC can achieve improved inter-
sample behavior, the tracking performance depends on the es-
timated plant state by the implemented state observer, which
has the fundamental trade-offs between the bandwidth and
measurement noise sensitivity. The aim of this paper is to
present an effectiveness of a non-causal state observer that
utilizes the future signal from the past iteration by assuming
repetitiveness. The non-causal state observer enables the im-
proved state estimation accuracy without changing the band-
width.

The outline of this paper is as follows. In Section 2, the
control diagram is presented and the objective of state esti-
mation is formulated. The core idea of the approach to uti-
lize future data for the non-causal state observer is presented
in Section 3. The strength of the approach are demonstrated
by application to a simple Linear Time-Invariant (LTI) sys-
tem simulation in Section 4. Section 5 concludes this paper.

2. Problem Formulation

In this section, the state estimation problem is formulated.
A tracking control configuration shown in Fig.1 is considered
to evaluate the state estimation error of state observers. With
G being a continuous-time LTI SISO system, S being a sam-
pler, andH being a zero-order hold, Kd is a digital controller.
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Âd
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Fig. 3: An augmented full-order state observer estimating in-
put disturbance.

r, u, y, and d each represent the reference trajectory, control
input, output, and input disturbance, respectively.

When d = 0 and G is given by the minimal realization

ẋ(t) = Acx(t) +Bcu(t) (1a)
y(t) = Ccx(t) (1b)

a full-order state observer (Fig.2) can be constructed at sam-
pling time δ as following

x̂[k + 1] = Adx[k] +Bdu[k] +L(y[k] − ŷ[k]) (2a)
ŷ[k] = Cdx[k] (2b)

with

Ad = eAcδ, Bd =

∫ δ
0

eAcτBcdτ, Cd = Cc. (2c)

x, x̂, ŷ, and L denote state variable, state variable estima-
tion, output estimation, and an observer gain matrix, respec-
tively. L can be determined through a Discrete-time Alge-
braic Riccati Equation (5) for minimizing the cost function
J =

∫ ∞
0 (x(t)⊤Qx(t) + u(t)⊤Ru(t))dt with Q and R being a

weight decided by the designer.
When an input disturbance d is present, assuming that d is

a step disturbance (i.e. d[k + 1] = d[k]), an augmented full-
order state observer with a disturbance estimation (Fig.3) can
be constructed at sampling time δ as following[
x̂[k + 1]
d̂[k + 1]

]
=

[
Ad −Bd
O 1

] [
x̂[k]
d̂[k]

]
+

[
Bd
0

]
u[k] +

[
L1
L2

]
(y[k] − ŷ[k])

(3a)

ŷ[k] = Cdx[k] (3b)

t

0 Nk

Forward estimation (ordinary kalman filter) x̂f [k]

Backward estimation x̂b[k]

Smoothed estimation x̂m[k]

Covariance Matrix Pf [k]

Covariance Matrix Pm[k]

Covariance Matrix Pb[k]

Fig. 4: Basic concept of Fixed-Interval Smoothing. By com-
bining x̂ f and x̂b, a smoothed estimate x̂m is achieved.
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Fig. 5: Plant models used for the simulation.

with d̂ being the input disturbance estimation. Observer gain[
L1 L2

]⊤
can be determined through a Discrete-time Al-

gebraic Riccati Equation for minimizing the cost function
J =

∫ ∞
0 ([x(t)⊤ d(t)]Q[x(t)⊤ d(t)]⊤ + u(t)⊤Ru(t))dt with Q

and R being a weight decided by the designer.
The aim of this paper is to investigate whether the pro-

posed non-causal state observer can yield a better estimation
x̂, d̂ than the conventional observer.

3. Conceptual Idea

In this section, the conceptual idea of the non-causal state
observer is presented.

The non-causal state observer is based on a Kalman
Smoothing method called Fixed-Interval Smoothing. Fixed-
Interval Smoothing is a state estimation which can be made
when all of the input data is provided beforehand (6) (7). The ba-
sic concept of Fixed-Interval Smooting is shown in Fig.4. By
combining the forward estimation x̂ f and backward estima-
tion x̂b, a smoothed estimation x̂m is obtained. The smooth-
ing is done by following Eq.4.

x̂m = αx̂ f + (I −α)x̂b (4a)

Pm =
[
(P f )−1 + (Pb)−1

]−1
(4b)

α = Pb(P f + Pb)−1 (4c)

P f , Pb, and Pm are the covariance matrix of the forward,
backward, and smoothed estimation, respectively. Further in-
formation of Fixed-Interval Smoothing can be found in liter-
ature (6) (7).

One problem with Fixed-Interval Smoothing is that in Lin-
ear Time-Variant systems, backward estimation x̂b is unreli-
able when k is close to N. Therefore, in this paper we apply
an approach used in stable inversion (8) to obtain a more reli-
able x̂b.
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Fig. 6: Simulation results for Case 1. True state ( ), state
estimation using conventional observers ( ), and state esti-
mation using proposed non-causal observers ( ) are shown.
Results from (b) show that steady state estimation error can
be mitigated by the proposed method.
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Fig. 7: Euclidean Norm of State Estimation Error for Case1.
For both x1 ( ) and x2 ( ), state estimation by the non-
causal observer performs with a lower state estimation error.

Stable inversion is one of the methods used to obtain an in-
version of a proper system H, even when it contains unstable
zeros. Other approximate inversion methods such as NPZ-
Ignore (9), ZPETC (10), ZMETC (11) are known as well, but one
important characteristic of stable inversion is that, with an
assumption of an infinite preactuation time, it has zero mag-
nitude and zero phase error. This preactuation occurs due to
calculating the unstable poles of H−1 backwards in time. We
will be applying this calculation for our non-causal state ob-
server, see (8) for further details.

The non-causal state observer is constructed as follow-
ing. For forward estimation x̂ f , we use aposteriori estima-
tion converted from ordinary state observer’s apriori estima-
tion. As explained in Section 2, ordinary state observers are
formed by deciding a weight Q and R, yielding an observer
gain L calculated from a unique stabilizing solution of the
Discrete-time Algebraic Riccati Equation. The backward es-
timation x̂b, is provided below. Using the same Q and R,
an unique anti-stabilizing solution of the Discrete-time Al-
gebraic Riccati Equation can yield an observer gain L′. Di-
rectly using this L′ will end up being unstable. However,
using the backward calculating techniques in stable inver-
sion, we will be able to obtain a stable state estimation with
a preacuation. We will combine x̂ f with x̂b to construct a
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(a) Frequency characteristic of u (input)→ x̂1 (position estimation).
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(b) Frequency characteristic of u (input)→ x̂2 (velocity estimation).

Fig. 8: Frequency characteristics for Case 1. Results show
that non-causal observers ( ) achieve a closer characteristic
to the true state ( ) than the conventional observer ( ).

non-causal state observer with a smoothed estimation x̂m.

4. Simulation Results

4.1 Simulation Plant and Simulation Condition The
simplified models of the simulation plants are shown in
Fig.5. The linear motor provides actuation force (input u) and
moves the plant towards a predefined position trajectory. The
position of the plant (output or control target y) is measured
by a linear encoder.

In this paper we considered two situations.
First, we considered the most basic model without any dis-

turbance. However, if we use complete information of the
plant, the state observer will perfectly track the state vari-
ables. Therefore, we assumed a 10% gain error for the nomi-
nal plant model and constructed the state observer.

Second, we considered a model with an unknown input dis-
turbance. In this case, we assumed a zero-order disturbance
and constructed a state observer based on the assumption. For
simplicity, we did not assume any model error for the nomi-
nal plant model.

For both cases we set, the mass of the object to m = 1 kg,
spring constant to k = 10 N/m, and damper constant to
c = 1 Ns/m. The simulation starts at t0 = 0 s, and we as-
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Fig. 9: Simulation results for Case 2. Estimation result of
the disturbance shows that the proposed non-causal observer
( ) negates the phase error seen in the conventional observer
( ).
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Fig. 10: Euclidean Norm of State Estimation Error for Case2.
Decline of estimation error for disturbance ( ) can be seen
using the non-causal observer.

sumed y0 = 0 m, u0 = 0 N. Controllers were controlled at a
sampling time Ts = 0.01 s, and for case 2 a step disturbance
d = 9.8 N starting at t0 was assumed.

The transfer function from u to y, G can be calculated as

G(s) =
1

s2 + s + 10
(5)

the controllable canonical form being the following.[
Ac Bc

Cc

]
=

 0 1 0
−10 −1 1

1 0

 (6)

4.2 Case 1: Plant without an Input Disturbance
As previously explained, we assumed a 10% gain error for
this case, thus controllers and state observers will be con-
structed based on the nominal plant Gn = 0.9G.

We used a PID controller Kd = 529.34 z2−1.935z+0.9366
(z−1)(z−0.6736) , and

for the state observer we set Q = diag(1, 10), R = 0.1.
The result of the state estimation is shown in Fig.6a. Fig-

ure 6b shows the error of the state estimation, and from the
result it can be seen that the non-causal state observer was
able to negate the steady state error. The improvement can be
observed from the euclidean norm of state estimation error
shown in Fig.7 too.

Figure 8 is the frequency characteristic of u→ x̂. Compar-
ing both results to the true frequency characteristic u → x,
shows that non-causal state observers show a closer response
than the conventional method.

4.3 Case 2: Plant with an Input Disturbance Hav-
ing full knowledge of the plant G, we used a PID controller
Kd = 476.4 z2−1.935z+0.9366

(z−1)(z−0.6736) , and for the state observer we set
Q = diag(1, 10, 100), R = 0.1.

The result of the state estimation is shown in Fig.9a. For
simplicity, only the estimation of the disturbance is shown.
Figure 9b shows the error of the input disturbance estimation,
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Fig. 11: The error in frequency characteristic of d (actual
disturbance) → d̂ (estimated disturbance). In this figure the
difference from the most ideal characteristic (Gd→d̂ = 1) is
shown. The proposed non-causal observer ( ) achieves a
more desirable characteristic than the conventional observer
( ) especially in the low frequency range.

and from the result it can be seen that the non-causal state ob-
server was able to cancel the phase delay of the estimation.
The improvement can be observed from the euclidean norm
of disturbance estimation error shown in Fig.10 too.

Figure 11 shows the frequency characteristic of d → d̂.
It can be seen that the non-causal state observer is able
to achieve a more ideal characteristic than the conventional
method.

5. Conclusion
In this paper, a non-causal approach for state estimation

is presented. This approach aims to improve state estima-
tion by utilizing unused future data. It has been shown that
compared to ordinary state observers only using past data, the
proposed non-causal observer has improved estimation phase
delay with the same estimation bandwidth. Non-causal state
estimation is suitable for subjects such as ILC, where non-
causal filtering is applicable. For future work, approaches for
implementing it into ILC will be investigated.
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