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Unifying Model-Based and Neural Network Feedforward:
Physics-Guided Neural Networks with Linear Autoregressive Dynamics

Johan Kon1, Dennis Bruijnen2, Jeroen van de Wijdeven3, Marcel Heertjes1,3, and Tom Oomen1,4

Abstract— Unknown nonlinear dynamics often limit the
tracking performance of feedforward control. The aim of
this paper is to develop a feedforward control framework
that can compensate these unknown nonlinear dynamics using
universal function approximators. The feedforward controller
is parametrized as a parallel combination of a physics-based
model and a neural network, where both share the same linear
autoregressive (AR) dynamics. This parametrization allows
for efficient output-error optimization through Sanathanan-
Koerner (SK) iterations. Within each SK-iteration, the output of
the neural network is penalized in the subspace of the physics-
based model through orthogonal projection-based regulariza-
tion, such that the neural network captures only the unmodelled
dynamics, resulting in interpretable models.

I. INTRODUCTION

Feedforward control can significantly increase the per-
formance of dynamic systems [1], [2], e.g., positioning
accuracy in motion systems. In feedforward control, the
key requirements are high tracking performance and task
flexibility [3], i.e., a small tracking error for a variety of
references. Additionally, it is often desired that the feedfor-
ward controller is interpretable [4], and that its parameters
can be efficiently learned given a training dataset.

Feedforward controllers based on physical models are
highly flexible and interpretable by design [5]. For example,
the dynamics can be parametrized as a rational transfer
function [6] These parametrizations allow for efficient
optimization [7] and can be interpreted through frequency-
domain tools, e.g., Bode diagrams. Extensions include static
friction [8] and position-varying compliance feedforward
[9], as well as methods to compensate for nonminimum-
phase zero dynamics [10]. However, these physics-based
parametrizations often have limited performance in the pres-
ence of unknown, typically nonlinear dynamics [11], [12].

On the other hand, feedforward signals that compensate
all reproducible dynamics, i.e., achieve tracking performance
up to the noise level of the system, can be generated
through learning control methods such as iterative learning
control (ILC) [13]. Yet, these approaches lack task flexibility,
necessitating the use of, e.g., basis functions [11], and do not
result in interpretable feedforward signals.

To go beyond the trade-off between performance and
task flexibility, universal function approximators such as
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neural networks have been used as flexible feedforward
parametrizations [14], overcoming the performance de-
crease of physics-based parametrizations in the context of
unmodelled dynamics. Examples include nonlinear auto-
regressive exogenous (NARX) and nonlinear finite impulse
response (NFIR) parametrizations [15], [16], and long short-
term memory neural networks [12]. As a downside, these
parametrizations are not interpretable, and learning their pa-
rameters is computationally challenging. Additionally, these
universal approximators lack the ability to extrapolate [4],
deteriorating task flexibility outside the training regime.

Physics-guided neural networks (PGNNs) [17], [18] are
a combined model-approximator parametrization and aim to
reconcile the interpretability and task flexibility of model-
based approaches with the performance of universal func-
tion approximators. Physics-guided parametrizations indeed
significantly improve performance over model-based feedfor-
ward alternatives [19]. Interpretability is obtained through ex-
plicitly separating the neural network and model contribution
by imposing orthogonality [20]. Even so, the performance of
these PGNNs is limited as they do not contain AR dynamics
and thus cannot compensate for zero dynamics of the system.

Although major steps have been taken to improve the
flexibility of data-driven feedforward control while maintain-
ing interpretability, at present these are limited by existing
classes of PGNNs that can only handle overly simplified
system dynamics. The aim of this paper, therefore, is to
develop a class of PGNNs for feedforward control that
can compensate zero dynamics. The main contribution is a
PGNN feedforward control framework with AR dynamics,
in which the model is interpretable and the neural network
learns only unmodelled dynamics. This is achieved through
the following subcontributions:
C1) A physics-guided feedforward parametrization with

shared linear autoregressive dynamics (Section II).
C2) An efficient output-error optimization algorithm based

on SK-iterations [7] (Section III and V).
C3) An orthogonal projection-based regularizer promoting

orthogonality of the model and neural network, ensuring
interpretability of the model (Section IV).

Notation and Definitions: All systems are discrete-time
with sample time Ts. The sets Z>0, R≥0 represent the set
of positive integers and non-negative real numbers. For the
signal u with length N , u(k) ∈ R represents the signal at
time index k = Z[1,N ], whereas u =

[
u(1) . . . u(N)

]T ∈
RN is its finite-time vector representation. The set R[q−1] is
the set of polynomials in q−1 with real coefficients, with
q−1u(k) = u(k − 1). Id(·) represents the identity operator.
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Fig. 1. Feedforward setup with input f , dynamic system J , reference r,
and error e (left). The input f is parametrized as the output of a reference
dependent filter Fθ,ϕ (right).

II. PROBLEM FORMULATION

In this section, first the problem of feedforward control for
dynamic systems is introduced. Second, the physics-guided
feedforward parametrization consisting of a physics-based
model and neural network with shared linear AR dynamics
is defined. Lastly, the learning problem is formulated.

A. Feedforward Setup and Physics-Guided Parametrization
The goal of feedforward control, see Fig. 1, is to generate

input f(k) ∈ R to the discrete-time system J such that its
output y(k) ∈ R equals the desired output r(k) ∈ R, i.e.,

e(k) = r(k)−y(k) = r(k)−J (f(k)) = 0 ∀k ∈ Z>0, (1)

with e(k) ∈ R the tracking error. The system J can represent
a feedback-controlled or open-loop system.

To obtain both high performance and task flexibility, the
input signal f is parametrized as the output of a feedfor-
ward controller acting on reference r. More specifically, the
feedforward controller Fθ,ϕ is a parallel combination of a
physics-based model Mθ that is linear in its parameters (LIP)
θ, and universal approximator Cϕ with parameters ϕ.

Definition 1 (Model class) The model Mθ : r(k) → fM(k)
satisfies the ordinary difference equation

fM(k) +

Nb∑
i=1

biq
−ifM(k) =

Na∑
i=1

aigi (ψi(r(k))) , (2)

with ψi ∈ R[q−1] and static nonlinearities gi : R → R,
both user-defined functions, and parameters θ = {ai}Na

i=1 ∪
{bi}Nb

i=1, ai, bi ∈ R.

Examples that can be encapsulated by this model class
are, i.a., the class of rational transfer functions for gi = Id
and ψi = q−i, and trigonometric nonlinearities resulting first-
principles modelling, such as aigi(ψi(r(k)) = mgl cos(ϕ)
for an inverse pendulum.

Definition 2 (Approximator class) The approximator Cϕ :
r(k) → fC(k) satisfies the ordinary difference equation

fC(k) +

Nb∑
i=1

biq
−ifC(k) = gϕ(r(k)), (3)

where gϕ(r(k)) is the output of a neural network given by

hl(r(k)) =
[
r(k), . . . , r(k − q)

]T
if l = 0

hl(r(k)) = σ
(
W l−1hl−1(k) + cl

)
if l = 1, . . . , L

gϕ(r(k)) =W lhl(r(k)) if l = L, (4)

with W l ∈ RNl×Nl−1 the weights and cl ∈ RNl the biases
of layer l with nl neurons, σ(· ) an element-wise activation
function, and parameter set ϕ = {W l, cl}L−1

l=0 ∪ {WL}.

∑Na

i=1 aigy(ψi(r))
1

B(q−1)

1
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fM
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Fig. 2. Feedforward filter Fθ,ϕ as the parallel combination of model Mθ

and approximator Cϕ sharing AR dynamics B(q−1) = 1 +
∑Nb

i=1 biq
−i,

in this example with 2 hidden layers of 3 neurons and no skip connections.

The network gϕ(·) acts on a past window of references
r(k), and is here represented by a fully connected multilayer
perceptron without skip connections, see Cϕ in Fig. 2. It can
be replaced by any network with a directed acyclic graph
structure, e.g., residual neural networks [21], including user-
defined input transformations and a bias in the final layer.

Since Mθ and Cϕ share the same linear AR dynamics
f(k) +

∑Nb

i=1 biq
−if(k), the parallel combination Fθ,ϕ, see

Fig. 2, also has these linear AR dynamics, as defined next.

Definition 3 The feedforward controller Fθ,ϕ : r(k) → f(k)
is given by

Fθ,ϕ(r(k)) = Mθ(r(k)) + Cϕ(r(k)), (5)

such that it satisfies

(1 +

Nb∑
i=1

biq
−i)︸ ︷︷ ︸

B(q)

f(k) =

Na∑
i=1

aigi(ψi(r(k)))︸ ︷︷ ︸
A(r(k))

+gϕ(r(k)). (6)

The parametrization Fθ,ϕ has nonlinear exogenous dynam-
ics A(r(k)) + gϕ(r(k)) and linear AR dynamics B(q)f(k).
Therefore, Fθ,ϕ is less complex than a NARX parametriza-
tion [12] with nonlinear AR dynamics, but it can capture a
relevant class of physical systems with linear zero dynamics,
as shown in Section VI, which cannot be captured by NFIR
[20] or rational transfer function [11] parametrizations. In
addition, the linear AR dynamics allow for linear stability
analysis and inversion tools [22], and for efficient output-
error (OE) minimization through SK-iterations [7].

To learn parameters θ, ϕ, a dataset D = {r(k), f̂(k)}Nk=1

is assumed to be available with reference r(k) and the
corresponding input f̂ , such that r(k) = J (f̂(k)). This input
f̂ can be obtained by, e.g., ILC.

B. Problem Formulation
The aim of this paper is to learn parameters θ, ϕ of Fθ,ϕ

in (6) based on dataset D, such that f(k) = f̂(k), implying
e(k) = 0 ∀k ∈ Z>0. This includes

1) an output error (OE) criterion that can be efficiently
solved through SK-iterations because of the shared
linear AR dynamics B(q)f ,

2) regularizing this OE criterion with an orthogonal
projection-based regularizer to promote unique coeffi-
cients θ, resulting in interpretable models, and

3) illustrating the approach on a two-mass-damper-spring
system with Stribeck-like friction characteristics.



III. SK ITERATIONS FOR OUTPUT ERROR MINIMIZATION

In this section, an output error criterion is introduced to
be minimized by the learned parameters θ, ϕ of Fθ,ϕ in (6)
(contribution C2). This criterion can be seen as a sequence
of weighted least-squares problems, known a SK-iterations.

The OE criterion directly penalizes deviations of f(k)
from f̂(k) to ensure that f(k) = f̂(k), as defined next.

Definition 4 Given feedforward parametrization (6) and
dataset D, the OE criterion JOE ∈ R≥0 is given by

JOE =

N∑
k=1

(
f̂(k)− 1

B(q)
(A(r(k)) + gϕ(r(k)))

)2

, (7)

in which (B(q))−1(·) represents a filtering operation.

Criterion (7) is linear in the parameters a of the exogenous
dynamics, but nonlinear in the parameters b of the AR
dynamics. As a result, (7) is nonconvex in b.

This nonconvexity in b can also be regarded as an a priori
unknown weighting function of a least-squares problem.
More specifically, (7) can be written as

JOE =
N∑

k=1

(
1

B(q) (B(q)f̂(k)−A(r(k))− gϕ(r(k)))
)2

. (8)

Criterion JOE in (8) is still nonlinear in parameters b due to
the filtering term (B(q))−1, but is linear in b in the term
B(q)f̂(k). Thus, given the weighting function (B(q))−1,
the problem is linear in θ = col(a, b). This motivates the
following optimization algorithm for JOE .

Algorithm 5 (SK-iterations for OE optimization)
Given parametrization (6) with parameters a, b, ϕ, and

dataset D, set j = 1 and initialize a0, b0, ϕ0 according to
some strategy (e.g., a0, b0 as the best linear approximation,
and ϕ0 through Glorot initialization [23]). Then, iterate:

(1) Given Bj−1(q), determine aj , bj , ϕj as

aj , bj , ϕj = arg min
a,b,ϕ

Jj
OE , (9)

with Jj
OE ∈ R≥0 given by

Jj
OE =

N∑
k=1

(
1

Bj−1(q)

(
B(q)f̂(k)

−A(r(k))− gϕ(r(k))))
2
.

(10)

(2) Set j = j+1 and go back to (1) until convergence, e.g.,
until aj = aj−1, bj = bj−1, ϕj = ϕj−1.

The minimization (10) can be carried out through standard
optimizers by differentiating through (Bj−1(q))−1.

In (10) and Algorithm 5, (B(q))−1 is interpreted as an a
priori unknown weighting function that is iteratively adjusted
over the iterations. Through iterating over j, it is aimed
to recover (8) when Bj−1(q) = Bj(q). Despite the lack
of theoretical convergence guarantees and the nonconvexity
of (7), practical use of this SK algorithm has shown good
convergence properties [11], [24].

IV. ORTHOGONAL PROJECTION-BASED REGULARIZER

Since all iterations of Algorithm 5 for optimizing JOE in
(7) are the same up to the weighting (Bj−1(q))−1, the first
iteration J1

OE is analyzed for the simplified setting in which
only the last layer of gϕ in (4) is optimized. The optimum
corresponding to this simplified problem is often non-unique
due to the universal approximator characteristics of gϕ. In
this paper, an orthogonal projection-based regularization is
used to ensure that the optimum for the model coefficients
θ is unique (contribution C3). This non-uniqueness directly
applies to the full case (7).

A. Non-Uniqueness of First SK Iteration
If only the last layer of gϕ in (4) is optimized, gϕ is

also LIP, such that the first SK-iteration can be written as
a convex least-squares problem. The solution to this least-
squares problem is often non-unique due to the universal
approximation characteristics of gϕ. More specifically, con-
sider criterion J1

OE in (10) with B0(q) = 1 defined below.

Definition 6 Given feedforward parametrization (6) and
dataset D, J1

OE with B0(q) = 1 is given by

J1
OE =

N∑
k=1

(
B(q)f̂(k)−A(r(k))− gϕ(r(k))

)2

. (11)

Remark 7 This criterion can be recognized as the equation
error corresponding to feedforward parametrization (6).

Consider now the case in which all hidden layers of gϕ in
(4) are fixed, and only the output layer is optimized, i.e.,

gϕ(r(k)) = hL(r(k))TϕT , (12)

with ϕ = WL ∈ R1×Nϕ . For this setting, the approximator
is also LIP, which allows to rewrite criterion (11) as follows.

Lemma 8 Given an approximator structure (12), J1
OE in

(11) can be represented as

J1
OE = ∥f̂ −Mθ −H(r)TϕT ∥22, (13)

where θ =
[
aT bT

]
and M =

[
R −F̂

]
with

f̂ =
[
f̂(1) f̂(2) . . . f̂(N)

]T ∈ RN

F̂ =
[
q−1f̂ q−2f̂ . . . q−Nb f̂

]
∈ RN×Nb

R =
[
g1(ψ1(r)) . . . gNa(ψNa(r))

]
∈ RN×Na (14)

H(r) =
[
hL(r(1)) . . . hL(r(N))

]
∈ RNϕ×N ,

in which ψi(r) =
[
(ψi(r))(1) . . . (ψi(r))(N)

]T ∈ RN

and gi applies elementwise.

Criterion (13) is a standard least-squares problem for
which the solution is given by the pseudoinverse.

Lemma 9 Given
[
M H(r)T

]
∈ RN×Nθ+Nϕ , the mini-

mizer θ∗, ϕ∗ of J1
OE in (13) is given by

θ∗, ϕ∗ = argmin
θ,ϕ

J1
OE =

[
M H(r)T

]+
f̂ +

[
vθ
vϕ

]
, (15)

for any v =
[
vTθ vTϕ

]T ∈ RNθ+Nϕ such that v ∈
ker

[
M H(r)T

]
, where (·)+ represents the pseudoinverse.



Even though
[
M H(r)T

]
is tall, i.e., N > Nθ + Nϕ,

ker
[
M H(r)T

]
can be non-empty by two mechanisms. Be-

fore discussing these mechanisms, the following is assumed.

Assumption 10 For tall M ∈ RN×Nθ , rank M = Nθ.

This assumption corresponds to a persistence of exci-
tation condition for the model parametrization (2). For
gi(·) = Id(·), i.e., for rational model parametrizations, this
is equivalent to a non-zero spectrum of r at Nθ points [25].
Assumption 10 now allows for the following lemma.

Lemma 11 ker
[
M H(r)T

]
is nonempty if and only if one

of the following conditions is satisfied.
P1) There exists vϕ for which H(r)T vϕ = 0, and[

0 vTϕ
]T ∈ ker

[
M H(r)T

]
.

P2) There exists a column Mi ∈ im H(r)T . Consequently,
there exists a v such that

[
M H(r)T

]
v = 0.

The case P1 corresponds to overparametrization of gϕ,
and only results in non-unique approximator coefficients
ϕ, which do not need to be interpretable, and is thus of
no concern. In the case of P2, gϕ can represent (parts
of) the model due to its universal function approximator
characteristicswhich can be present in practice [20]. In this
case, the model coefficients θ are not unique.

B. Orthogonal Decomposition
An explicit expression describing the subspace in which θ

is non-unique is obtained through splitting the criterion (13)
into orthogonal subspaces, which are chosen as the model
output space im M , and its orthogonal complement.

More specifically, given that M has full rank, it can be
factorized through a singular value decomposition (SVD).

Lemma 12 M ∈ RN×Nθ , N > Nθ, can be factorized as

M =
[
U1 U2

] [Σ
0

]
V T , (16)

with U1 ∈ RN×Nθ , U2 ∈ RN×N−Nθ , V ∈ RNθ×Nθ unitary
matrices such that UT

1 U1 = INθ
, UT

1 U2 = 0, U1U
T
1 +

U2U
T
2 = IN , and Σ ∈ RNθ×Nθ = diag(σ1, . . . , σNθ

) with
σi > 0 [26].

Consequently, the model response Mθ can be written as

Mθ = U1ΣV
T θ, (17)

in which U1 is a basis for the output space of M , and
U2 its orthogonal complement. This explicit basis allows to
decouple criterion (13) into orthogonal subspaces.

Theorem 13 Given factorization (16), J1
OE in (13) can be

written as

J1
OE =

∥∥∥∥∥
[
UT
1 f̂

UT
2 f̂

]
−
[
ΣV T UT

1 H(r)T

0 UT
2 H(r)T

] [
θ
ϕT

]∥∥∥∥∥
2

2

. (18)

This decoupling can be interpreted as projection into the
model coefficient space and into its orthogonal complement.
The entry UT

1 H(r)TϕT represents the contribution of the
approximator expressed in the coordinates of model coeffi-
cients. Theorem 13 allows for the following result.

Corollary 14 Given (15), if a vector v =
[
vTθ vTϕ

]T
exists

such that
[
M H(r)T

]
v = 0, then v satisfies[

ΣV T UT
1 H(r)T

0 UT
2 H(r)T

] [
vθ
vϕ

]
=

[
0
0

]
, (19)

such that H(r)T vϕ ∈ ker UT
2 = (im U2)

⊥ = im U1, and

vθ = −(ΣV T )−1UT
1 H(r)T vϕ = −M+H(r)T vϕ. (20)

The case where H(r)T vϕ = 0 for vϕ ̸= 0 corresponds to
P1 of Lemma 11. In contrast, H(r)T vϕ ̸= 0 and H(r)T vϕ ∈
im U1 corresponds to P2, i.e., there exists a linear subspace
in which both the model M and approximator H(r)T can
capture the same effects. Corollary 14 expresses the relation
between vθ and vϕ for any v in this subspace, describing the
directions in which θ is non-unique.

C. Orthogonal Projection-Based Regularizer

To obtain unique model coefficients θ, J1
OE in (13) is

regularized with an orthogonal projection-based regulariza-
tion that penalizes the approximator output H(r)TϕT in the
subspace of the model Mθ. This orthogonal projection-based
cost function for J1

OE where gϕ is LIP is defined next.

Definition 15 Given dataset D and J1
OE in (13), the criterion

J1
OE,P ∈ R≥0 is defined as

J1
OE,P = ∥f̂ −Mθ −H(r)TϕT ∥22 + λR(ϕ), (21)

in which R(ϕ) ∈ R≥0 is given by

R(ϕ) = ∥(ΣV T )−1UT
1 H(r)TϕT ∥22. (22)

The regularizer R(ϕ) penalizes the scaled approximator
output H(r)TϕT in im M = im U1 through UT

1 H(r)TϕT .
Through the scaling (ΣV T )−1, R(ϕ) directly regularizes for
vθ = 0, see (20). The structure of (22) allows for splitting
(21) into orthogonal subspaces as formalized next.

Theorem 16 Given factorization (16), J1
OE,P in (21) can be

written as

J1
OE,P =

∥∥∥∥∥∥
UT

1 f̂

UT
2 f̂
0

−

ΣV T UT
1 H(r)T

0 UT
2 H(r)T

0
√
λ(ΣV T )−1UT

1 H(r)T

[ θ
ϕT

]∥∥∥∥∥∥
2

2

.

(23)

Theorem 16 shows that the regularizer (22) adds additional
rows to the decoupled optimization compared to (18) of
Theorem 13. These extra rows ensure that unique model
coefficients θ are recovered from J1

OE,P , as illustrated next.

Corollary 17 Given criterion J1
OE in (18) and J1

OE,P in
(23), nominal solution

[
M H(r)T

]+
f̂ := x∗, see Lemma

9, and any two vectors v1, v2 ∈ ker
[
M H(r)T

]
such that

v1 =
[
0 vTϕ

]T
and v2 =

[
vTθ vTϕ

]T
with vθ ̸= 0, then,

J1
OE(x

∗ + v1) = J1
OE(x

∗ + v2). (24)

In contrast, for J1
OE,P , it holds that

J1
OE,P (x

∗ + v1) < J1
OE,P (x

∗ + v2), (25)

such that θ∗ in argminθ,ϕ J
1
OE,P is unique.



Corollary 17 conveys that the orthogonal projection-based
regularizer (22) shrinks the non-unique directions vθ to the
zero vector: for any vector

[
vTθ vTϕ

]T ∈ ker
[
M H(r)T

]
,

the vθ component is regularized to 0, such that unique model
coefficients θ are recovered. Note that the contribution vϕ can
still be non-unique, i.e., P1 of Lemma 11.

Remark 18 Other regularization techniques,e.g., ℓ2, could
have also been employed to obtain unique θ in (18). How-
ever, R(ϕ) in (22) only penalizes outputs of gϕ that can
be captured by Mθ, whereas others also penalize outputs
that can only be captured by gϕ, resulting in performance
decrease.

This section has shown that the optimum of J1
OE in (11)

is non-unique already when only the last layer of gϕ in (4) is
optimized. Naturally, this problem persists if all layers of gϕ
are optimized, for which the linear subspace (20) becomes
a complex nonlinear manifold in RNθ+Nϕ . Also in this full
setting, R(ϕ) promotes unique θ for J1

OE . This regularization
is extended to subsequent SK-iterations in the next section.

V. ORTHOGONALITY AT EACH SK-ITERATION

In this section, the orthogonal projection-based regularizer
(22), is incorporated in the SK-iterations of Algorithm 5,
see Section III, resulting in an efficient solver for OE
minimization that promotes uniqueness of θ at each iteration.

This uniqueness is achieved through an iteration-varying
orthogonal projection-based regularizer. This regularizer is
obtained through constructing an orthogonal decomposition
of the weighted model response alike to Lemma 12. Then,
Jj
OE is regularized similarly to (21), such that it can be

decoupled like (23) at each iteration. Here, due to space
constraints, only the resulting algorithm is presented.

Algorithm 19 (SK-iterations for OE minimization with
orthogonal projection-based regularization)

Given parametrization (6) with parameters a, b, ϕ, and
dataset D, set j = 1 and initialize a0, b0, ϕ0. Then, iterate:
(1) Given Bj−1(q), calculate its convolution matrix

W j−1 such that the finite-time response y(k) =
(Bj−1(q))−1u(k) is given by y =W j−1u with

W j−1 =


h(0) h(−1) . . . h(1−N)
h(1) h(0) . . . h(2−N)

...
. . .

...
h(N − 1) h(N − 2) . . . h(0)

 ,

(26)
with h(k) the impulse response of (Bj−1(q))−1.

(2) Rewrite Jj
OE in (10) as a vector norm, i.e.,

Jj
OE = ∥W j−1

(
f̂ −Mθ − gϕ(r)

)
∥22. (27)

(3) Obtain the SVD of W j−1M as

W j−1M =
[
U j−1
1 U j−1

2

] [Σj−1

0

]
V j−1T . (28)

(4) Construct iteration-varying orthogonal projection-
based regularizer Rj−1(ϕ) as

Rj−1(ϕ) = ∥(Σj−1V j−1T )−1U j−1T

1 W j−1gϕ(r)∥22.
(29)

(5) Determine aj , bj , ϕj as

aj , bj , ϕj arg min
a,b,ϕ

= Jj
OE + λRj−1(ϕ). (30)

(6) Set j = j + 1 and go back to (1) until convergence.
In this regularized SK-algorithm, Rj−1(ϕ) directly pro-

motes uniqueness of θ at each iteration through optimizing
gϕ such that W j−1gϕ(r) /∈ im U j−1

1 , and consequently
W j−1Mθ captures all effects that can be encapsulated by
the model. Thus, heuristically, θ is unique at convergence,
resulting in unique model coefficients for (6).

VI. SIMULATION EXAMPLE

In this section, feedforward parametrization (6) is vali-
dated on an example dynamic system that is contained in
this parametrization. It is shown that it outperforms the
feedforward class of rational transfer functions.

A. Example System

The dynamic system J : f(k) → y(k) is given by a
two-mass-spring-damper system, see Fig. 3, with a nonlinear
damper dNL connecting m1 to the fixed world. The non-
linear damper represents Stribeck-like friction characteristics
often found in stage systems for lithographic inspections
tools, for which a simple model is given by

dNL(δy(k)) = c1δy(k) +
c2 − c1

cosh (αδy(k))
δy(k), (31)

which is visualized in Fig. 4. The system parameters are
given by m1 = 1, m2 = 2, k1 = 1, k2 = 15000, d2 = 50,
c1 = 1, c2 = 20, α = 20, representing a stiff connection
between m1 and m2, resulting in a high-frequency flexible
mode.

For this system, a dataset of 9 references is generated
combined with the optimal input f̂ for each reference.

m1

y

m2

f

dNL

d2
k1

k2

Fig. 3. Two-mass-damper-spring system with nonlinear Stribeck-like
friction characteristics dNL.
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Fig. 4. Stribeck-like friction curve dNL(δy(k)) ( ) of example system
in Fig. 3 with c1 = 1, c2 = 20, α = 20, consisting of a linear ( ) and
nonlinear ( ) contribution.
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Fig. 5. The feedforward signal generated by the parallel parametrization
Fθ,ϕ ( ) is able to capture the optimal input f̂ ( ) for which e = 0 up
to approximation capabilities, resulting in ∥e∥22 = 0.0104. In contrast, the
feedforward signal generated by a rational transfer function ( ) is not able
to correctly capture the nonlinear effects, resulting in ∥e∥22 = 5.925 m2.

B. Performance Increase over Rational Basis Functions

Consider the following feedforward parametrizations.
1) A linear model Mθ in (2) with gi = Id, ψi(r(k)) =

q−i+1r(k) and Na = 10, Nb = 9, corresponding to a
10th order rational transfer function. Note that this is
an overparametrization of the linear part of Fig. 3.

2) A parallel parametrization Fθ,ϕ in (6) with gi = Id,
ψi(r(k)) = q−i+1r(k) and Na = 5, Nb = 2, and gϕ
with L = 3, N0 = 5, N1 = 10, N2 = 10, N3 = 1, i.e.,
the last 5 reference samples as input, 2 hidden layers
and 1 output layer, with 10 neurons in each hidden
layer. Note that this parametrization is able to capture
the dynamics up to the approximation capabilities of gϕ.

Parametrization 1) is optimized according to criterion JOE

in (7) through SK-iterations, see Algorithm 5, whereas
parametrization 2) is optimized with orthogonal projection-
based cost function, see Algorithm 19. Fig. 5 shows the opti-
mal input f̂ and the generated input f of above parametriza-
tions for a validation reference, resulting in errors ∥e∥22 =
5.925 m2 for the rational transfer function, and ∥e∥22 =
0.0104 m2 for Fθ,ϕ. This illustrates that Fθ,ϕ is able to effec-
tively capture the effect of the nonlinear damper dNL(δy(k)),
resulting in improved performance.

VII. CONCLUSION

This paper has developed a feedforward control frame-
work that enables superior performance over model-based
feedforward control, while maintaining interpretability and
task flexibility. The feedforward controller is parametrized
as a parallel combination of a physics-based model and
neural network, with shared autoregressive dynamics, exactly
encapsulating a class of nonlinear systems with linear zero
dynamics. The physics-based model and neural network
are optimized simultaneously according to an output-error
criterion using SK-iterations. At each SK-iteration, com-
plementarity of the physics-based model and neural net-
work is promoted through an iteration-dependent orthogonal
projection-based regularizer. This regularizer penalizes the
output of the neural network in the subspace of the model,

resulting in interpretable model coefficients. The superior
performance of the framework over a rational feedforward
parametrization is validated on a two-mass-damper-spring
system with nonlinear friction characteristics.
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