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We give a brief introduction to Hamiltonian optics and Lie algebraic methods. We use these methods to describe
the operators governing light propagation, refraction, and reflection in phase space. The method offers a system-
atic way to find aberration coefficients of any order for arbitrary rotationally symmetric optical systems. The coeffi-
cients from the Lie method are linked to the Seidel aberration coefficients. Furthermore, the property of summing
individual surface contributions is preserved by the Lie algebraic theory. Two examples are given to validate the pro-
posed methodology with good results. ©2022Optica PublishingGroup

https://doi.org/10.1364/JOSAA.465900

1. INTRODUCTION

The calculation of Seidel aberrations of rotationally symmetric
optical systems is well known in the optical design literature
[1–3]. Seidel sums provide a clear insight into the contribution
of each optical surface of the analyzed system to the third order
transverse ray aberrations at the image plane. Some recently
published methods determine aberration coefficients numeri-
cally in terms of ray data in pupil coordinates [4,5] or in phase
space [6]. Alternatively, differences in optical path lengths can
be measured via ray tracing [7] or the use of total aberration
formulas [2,8] from which values of Zernike aberrations can
be deduced. Most methods derive closed form expressions for
aberration coefficients utilizing the expansion of ray-tracing
equations [9–11] or of optical path length differences between
the principal and a marginal ray [1–3].

In this paper, we aim to derive closed form expressions of the
Seidel aberration coefficients using the Lie algebraic method.
To this purpose, we present a concise introduction to the Lie
algebraic method, pioneered and developed mainly by Dragt
and Wolf [12–16], applied to geometrical optics. We also link
this formulation to the widely known Seidel coefficients. In
[15], a first step towards the classification of optical elements
using the Lie method has been made.

We introduce the concept of a fundamental optical map in
the framework of the Lie method. The map is composed of
propagation from an intermediate object plane, refraction or
reflection by a surface, and subsequent propagation to an inter-
mediate image plane. We determine operators that approximate
the analytic ray-tracing maps analogously to first order matrix
formulation [1,2,17]. Additional operators that also take higher
order phenomena into consideration will be calculated. The

Table 1. Correspondence between Matrix Formalism
and the Lie Algebraic Method

a

Matrix (First Order)
Lie

(First Order)
Lie

(Third Order)

Ray
propagation

(
I2×2

d
n I2×2

O2×2 I2×2

)
exp(−d [h2, ·])

(49)
exp(−d [h4, ·])

(49)

Refraction

(
I2×2 O2×2

2β(n − n′)I2×2 I2×2

)
exp([g 2, ·])

(55)
exp([g 4, ·])

(57), (60)
aThe third column contains maps that correspond to third order ray optics.

description of these maps will be discussed in the following
sections, but to give the reader an idea, we refer to Table 1 to
show the relations between the matrix method and the Lie maps.
In Table 1, the matrix in the first column and the Lie map in the
second column are equivalent. The map in the third column is
an extension to higher order optics.

Additionally, by considering rotationally symmetric optical
systems as a concatenation of fundamental optical elements, we
will reduce the analysis of the complete system to the determina-
tion of the sole fundamental map, thus significantly simplifying
the treatment of arbitrary rotationally symmetric systems.

The Lie approach provides a mathematical theory that
enables us to systematically compute aberration coefficients
of rotationally symmetric systems and link them to the well-
known Seidel coefficients. It will be shown how the property
of summing up individual surface contributions to the Seidel
coefficients, as in traditional optical design theory [1,2], is a
direct consequence of the presented mathematical framework.

In Sections 2 and 3, a brief description of geometrical optics
and the Lie algebraic approach will be given. In Section 4, the
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reader will find the methodology necessary to formulate propa-
gation, refraction, and reflection within the context of the Lie
algebraic method. The description of the fundamental element
can be found in Section 5. An optical system can then be viewed
as the concatenation of multiple optical elements as described in
Section 6. The link between the Lie framework and the Seidel
coefficients is presented in Section 7. Two examples to validate
the presented method will be shown in Section 8 with very
satisfactory results. Section 9 offers concluding observations and
an outlook to future applications to off-axis systems.

2. CLASSICAL FORMULATION OF
GEOMETRICAL OPTICS IN PHASE SPACE

In this section, we will summarize the classical theory of geo-
metrical optics describing light propagation, refraction, and
reflection. These results are what we aim to reproduce in
Sections 4 and 5 with the use of Lie algebraic tools.

First, we describe free propagation of a light ray. Consider
a general ray in three-dimensional space with coordinates
(q1, q2, z) and let s represent the arc length along said ray. We
can then describe the ray path using z as the propagation param-
eter for q1(z) and q2(z). The z axis will also be called the optical
axis. Let P i and P f be the initial and final points, respectively, of
a ray pathC; then its optical path length is defined as

OPL=
∫
C

n(q, z)ds =
∫ zf

zi
n(q, z)

√
1+ |q̇|2dz, (1)

where q = (q1, q2), P i
= P i(q(zi), zi), P f

= P f(q(zf), zf),
and n(q, z) is the refractive index of the medium through which
the ray propagates. Fermat’s principle tells us that the ray path is
a stationary point of Eq. (1) [18]. As such, the ray path satisfies
the Euler–Lagrange equations [18]

∂L
∂q
−

d

dz
∂L
∂ q̇
= 0, (2a)

with the LagrangianL given by

L(q, q̇, z)= n(q, z)
√

1+ |q̇|2. (2b)

The canonical conjugates of q̇, also called momenta, read

p=
∂L
∂ q̇
= n(q, z)

q̇√
1+ |q̇|2

. (3)

The conjugates p= (p1, p2) are the projections of the unit
direction vector of the ray onto a plane z= const., e.g., z= 0,
times the refractive index. The Hamiltonian H is defined in
terms ofL by the relation

H(q, p, z)= p·q̇ −L(q, q̇, z), (4)

where q̇ is expressed in terms of q, p, z through a Legendre
transformation [18].

Combining the Lagrangian system Eq. (2) with the definition
of p and H in Eq. (3) and Eq. (4), respectively, we obtain

q̇ =
∂H
∂ p

, ṗ=−
∂H
∂q
, (5a)

where the Hamiltonian H is given by

H(q, p, z)=−
√

n(q, z)2 − | p|2. (5b)

A ray is completely defined by its position and direction coor-
dinates along the z axis. Hence, its initial values (q i, pi) at
the plane z= zi are related to its final coordinates at the plane
z= zf by following the trajectory (q(z), p(z), z) governed by
the Hamiltonian system Eq. (5). From now on, we will refer
to q, p as phase space variables. Let pz be the z component
of the unit direction vector along the ray, multiplied by the
refractive index n. In an optical medium, it holds true that
n(q(z), z)= |( p(z), pz(z))|. As such, pz can be defined as

pz =

√
n(q, z)2 − | p|2, (6)

and by substitution into Eq. (5b), we get H =−pz. We consider
propagation in only the positive z direction, since we assume
rays to be traveling only forward. Furthermore, note that if the
Hamiltonian is independent of z, then it is constant and thus
also pz is.

Next, we continue this section with the refraction of rays,
where we will consider the refractive index to be constant within
each respective medium. To this purpose, we introduce two
quantities that are conserved at refraction: the position coor-
dinates q̄ of the point of impact of the ray with the refracting
surface and the tangential momentum p̄ at this point. We
denote with the unprimed values (q, p) the phase space coor-
dinates of the incoming ray, with (q̄, p̄) the conserved ray
quantities at the refracting interface and with (q′, p′) the phase
space coordinates of the outgoing ray.

When compared to other ray quantities in geometrical optics,
we have that the momenta p and p′ are related to the incoming
and outgoing ray angles, respectively. In fact,

| p| = n sin θ and pz = n cos θ, (7)

where θ is the angle between the incoming ray and the optical
axis. In Eq. (7), we find the relation between phase space coordi-
nates and the more traditionally used ray angles for rotationally
symmetric optical systems. Similarly, q and q′ track the position
of the ray along the optical axis, and q̄ is the incidence point of
the ray at the optical surface. Information about other optical
quantities as, for instance, incidence angles of rays on the sur-
face can be deduced from the phase space coordinates we just
introduced.

The position coordinates q are measured by
(back)propagating the ray onto the so-called standard screen
defined by z= 0 (see Fig. 1). Let z= ζ(q) be the refracting
surface, then the conservation of the point of impact is described
through ray propagation:

q + ζ(q̄)
p
pz
= q̄ = q′ + ζ(q̄)

p′

p ′z
. (8)

This is the solution to the Hamiltonian system Eq. (5)
in a medium of constant refractive index subject to
q(0)= q, p(0)= p.

Note that the standard screen can be placed at any distance
from the optical surface. However, the assumption that the
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Fig. 1. Refraction at the surface z= ζ(q), where n′ > n. Position
coordinates are projected along the ray onto the standard screen z= 0.
Intermediate object and image planes are displayed.

standard screen and the surface both intersect at q = 0 simplifies
the expressions in Eq. (8). Equation (8) states that by propa-
gating from the standard screen to the surface in object space,
or by propagating from the standard screen to the surface in
image space, we reach the same point of impact (q̄, ζ(q̄)) at the
surface.

Conservation of tangential momentum can be described
through the following cross product between the surface
normal, to be taken opposite to the incoming rays, and the
ray direction coordinates. Let ∇ζ(q̄) be the gradient of our
refracting surface at the point of impact; then(

∇ζ(q̄)
−1

)
×

(
p
pz

)
=

(
∇ζ(q̄)
−1

)
×

(
p′

p ′z

)
. (9)

Equation (9) is the vectorial form of Snell’s Law. The first two
components give

p+∇ζ(q̄)pz = p̄= p′ +∇ζ(q̄)p ′z. (10)

With the results in Eqs. (8) and (10), we can define the root
transformationRn;ζ that acts upon the incident ray coordinates
for a medium with refractive index n and gives us the conserved
quantities (q̄, p̄) at the interface z= ζ(q) [14,16]:

Rn;ζ q = q̄ = q + ζ(q̄)
p√

n2 − | p|2
, (11a)

Rn;ζ p= p̄= p+∇ζ(q̄)
√

n2 − | p|2. (11b)

Note that these definitions are implicit, because the expression
for q̄ is dependent on q̄ itself. Once the position coordinate of
the point of impact is known, then the expression for p̄ can be
computed explicitly. The root transformation Rn′;ζ is defined
analogously to Eq. (11), but has the refracted phase space coor-
dinates (q′, p′) and the refractive index n′ as arguments [see
Eqs. (8) and (10)]. In this formulation, we can summarize the
conservation at the point of impact as

Rn;ζ

(
q

p

)
=

(
q̄

p̄

)
=Rn′;ζ

(
q′

p′

)
. (12)

The inverse transformation ofRn′;ζ is derived from Eqs. (8) and
(10) by bringing to the other side the necessary terms and reads

R−1
n′;ζ q̄ = q′ = q̄ − ζ(q̄)

p′√
n′2 − | p′|2

, (13a)

R−1
n′;ζ p̄= p′ = p̄−∇ζ(q̄)

√
n′2 − | p′|2. (13b)

This is again defined implicitly, since the expression for p′

is dependent on p′ itself. We are interested in the refraction
mapping Sn,n′;ζ between the incoming and outgoing phase
space coordinates after refraction by the surface z= ζ(q) at
the standard screen. This is achieved by combining the root
transformations in Eq. (11) and their inverses in Eq. (13) into
[13,14,19]

Sn,n′;ζ =R−1
n′;ζ ◦Rn;ζ . (14)

At this point, we assume that the surface intersects the stand-
ard screen at the origin, i.e., ζ(0)= 0, and that the surface is
tangential to the standard screen at the origin, i.e., ∇ζ(0)= 0.
The first assumption is without any loss of generality since the
root transformations can be reformulated according to the posi-
tion of the standard screen, which can therefore be moved freely
along the z axis. The second assumption limits the possible
surface representations to functions with no first order terms in
their Taylor expansion at q = 0. The motivation behind these
assumptions will become apparent in the following sections,
but the first immediate consequence is that the origin of phase
space is mapped onto itself by Sn,n′;ζ , i.e., if q = 0= p, then
q′ = 0= p′.

The implicit form of the root transformations makes it nec-
essary to compute them recursively up to the desired order of
accuracy. We start with a fixed point iteration using q̄ = q as
our first guess. Solving Eq. (11a) iteratively allows us to find
an expansion for q̄ up to the desired order. Substituting this
result into Eq. (11b) gives us an expansion for p̄. We then pro-
ceed similarly to derive expansions of q′, p′ in terms of q̄, p̄
using Eq. (13). Combining these results yields an expansion
of the outgoing ray coordinates in terms of the incoming ones
up to the desired order of accuracy. A rotationally symmetric
refracting surface can be described by

z= ζ(q)= β|q|2 + δ(|q|2)2 + · · · . (15)

Here, β is half the curvature. If we consider the surface descrip-
tion in Eq. (15), then the third order expansion of Sn,n′;ζ in
Eq. (14) applied to the phase space variables of an incoming ray
reads

q′ = q + β
(

1

n
−

1

n′

)
|q|2 p+ 2β2

(
1−

n
n′

)
|q|2q,

(16a)

p′ = p+ 2β(n − n′)q − β
(

1

n
−

1

n′

)
| p|2q

+ 2β2

(
1−

n′

n

)
|q|2 p− 4β2

(
1−

n
n′

)
( p · q)q

+ 4(n − n′)
(
δ + β3 n − n′

n′

)
|q|2q,

(16b)
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and is in agreement with [13,16]. The linear part of Eq. (16)
describes refraction within the limits of Gaussian optics [17].
We will refer to the linear components of propagation and
refraction as the Gaussian part of said mappings.

To illustrate the procedure, we will show the first steps
necessary to derive the expressions in Eq. (16). We start by
solving Eq. (11) up to third order using the surface expansion
in Eq. (15). As previously noted, Eq. (11a) is implicit. The first
order guess of the iterative process reads q̄ = q +O(2), where
O(2) stands for terms of order two or higher in q, p. The second
step therefore is to use the intermediate result q̄ = q +O(2) in
Eq. (11a) and to expand the square root:

q̄ = q + ζ(q +O(2))
p√

n2 − | p|2

= q + (β|q +O(2)|2 +O(4))
(

p
n
+
| p|2

2n3
p+O(5)

)

= q +
β

n
|q|2 p+O(4).

(17)

Substituting Eq. (17) into Eq. (11b) gives, up to third order,

p̄= p+ 2βnq + 2β2
|q|2 p−

β

n
| p|2q + 4nδ|q|2q +O(5).

(18)
Performing similar computations for Eq. (13) and combining
them with the results in Eqs. (17) and (18) will result, up to third
order, in the expressions given in Eq. (16).

In the case of a reflecting surface, similar calculations can be
performed. The corresponding reflection relations read [14]

q + ζ(q̄)
p√

n2 − | p|2
= q̄ = q′ − ζ(q̄)

p′√
n2 − | p′|2

,

p+∇ζ(q̄)
√

n2 − | p|2 = p̄= p′ −∇ζ(q̄)
√

n2 − | p′|2.
(19)

We notice that Eq. (19) considers a backpropagation of the
reflected ray compared to Eq. (11). Following the steps pre-
sented in the case of refraction, expressions similar to Eq. (16)
can be calculated. A way to promptly derive the reflection expan-
sion from Eq. (16) is to substitute n′ =−n in Eq. (16) [19], but
we encourage the reader to perform the calculations themselves
to get better acquainted with the procedure. We will focus on the
treatment of refractive optics, but each step made using Eq. (11)
can be applied analogously to Eq. (19).

3. LIE ALGEBRAIC TOOLS

This section serves as a brief introduction to the theory of
Lie algebraic tools needed to describe light propagation and
refraction introduced in Section 2. We first define the Poisson
bracket and the Lie algebra structure it generates for functions
in phase space. Next, the concepts of Lie operators and Lie
transformations are explained. Important results connecting
Lie transformations and symplectic mappings are presented

together with some essential tools for the treatment of Lie trans-
formation products. From this section onward, all functions
in phase space are assumed to be sufficiently smooth for any
differentiation they might be subjected to.

The Poisson bracket is an operator [·, ·] that maps any pair of
functions f , g in (q, p) to a single function of (q, p), denoted
by [ f , g ]:

[ f , g ] :=
2∑

i=1

(
∂ f
∂qi

∂g
∂ pi
−
∂ f
∂ pi

∂g
∂qi

)
=
∂ f
∂q

·
∂g
∂ p
−
∂ f
∂ p

·
∂g
∂q

.

(20)
The above definition of the Poisson bracket implies that
[qi , p j ] = δij. The Poisson bracket has the following properties:

[α f + βg , h] = α[ f , h] + β[g , h] (linear in first component),
(21a)

[ f , αg + βh] = α[ f , g ] + β[ f , h] (linear in second component),
(21b)

[ f , f ] = 0 (alternating), (21c)

[ f , [g , h]] + [g , [h, f ]] + [h, [ f , g ]] = 0 (Jacobi identity).
(21d)

As a consequence of Eq. (21c), the Poisson bracket is also anti-
symmetric, i.e., [ f , g ] =−[g , f ]. Thus, the Poisson bracket
turns the space of functions defined in phase space into Lie
algebra [20].

Propagation and refraction as described in Section 2 are
transformations of phase space variables. Let us therefore
establish some mathematical concepts about these transfor-
mations. The transformation to new phase space variables
(q, p) 7→ (Q(q, p), P(q, p)) is said to be a canonical
transformation, if it satisfies [12,14]

[Qi , Q j ] = [qi , q j ] = 0

[Pi , P j ] = [pi , p j ] = 0

[Qi , P j ] = [qi , p j ] = δij. (22)

Consequently, the value of Poisson brackets is preserved under
canonical transformations [21]. We now collect the two sets
of variables qi , pi and Qi , Pi into a single set of four variables
w1, . . . , w4 and W1, . . . ,W4, respectively, where

w= (q1, q2, p1, p2)
T , W= (Q1, Q2, P1, P2)

T . (23)

Using the notation of Eq. (23), the rules in Eq. (22) can be sum-
marized by

[wi , w j ] = J ij, where J =
(

O2×2 I2×2

−I2×2 O2×2

)
. (24)

The Poisson bracket operation Eq. (20) in terms of w can be rep-
resented as

[ f , g ] =
4∑

k,l=1

∂ f
∂wk

Jkl
∂g
∂wl
=

(
∂ f
∂w

)T

J
∂g
∂w

. (25)
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Let us consider a canonical transformation w 7→W(w), which
therefore satisfies Eq. (22). Combining the relations in Eq. (24)
with the just introduced representation of the Poisson bracket in
Eq. (25) yields

J ij = [Wi ,W j ] =

4∑
k,l=1

∂Wi

∂wk
Jkl
∂W j

∂wl
. (26)

Let M be the Jacobian matrix of the transformation from w to
W, i.e.,

Mik(w)=
∂Wi

∂wk
, (27)

then according to Eq. (26), the following must hold:

M J MT
= J . (28)

The relation in Eq. (28) means that the matrix M belongs to
the symplectic group in four dimensions [12], which implies
that the phase space transformation is volume preserving.
Accordingly, the necessary and sufficient condition for a
transformation to be canonical is for its Jacobian matrix to
be symplectic, and a canonical transformation is therefore often
called a symplectic map.

Let f and g be two functions in phase space. We define
the linear Lie operator [ f , ·] associated with f acting on g as
follows:

[ f , ·]g = [ f , g ].

For instance, we have that [q1, ·] = ∂/∂ p1. If the argument of
[ f , ·] is a vector-valued function g , then it acts component-
wise on g . We now introduce the main Lie algebraic tool used
in this work: the Lie transformation. The Lie transforma-
tion exp([ f , ·]) associated with f and generated by [ f , ·] is
defined as

exp([ f , ·])=
∞∑

k=0

[ f , ·]k

k!
. (29)

The powers in Eq. (29) follow the recursive definition

[ f , ·]0 = I , [ f , ·]k = [ f , [ f , ·]k−1
], k = 1, 2, . . . .

It can be proven that the Lie transformation associated with a
function f (q, p) in phase space has the following properties for
any differentiable functions g , h in phase space [14]:

exp([ f , ·])[g , h] = [exp([ f , ·])g , exp([ f , ·])h],

(Conservation of Poisson bracket), (30a)

exp([ f , ·])g (q, p)= g (exp([ f , ·])q, exp([ f , ·]) p).

(Action on function arguments). (30b)

The motivation for introducing Lie transformations becomes
clear with the following two theorems by Dragt and Finn [12],
which are pivotal for the discussion to follow. They will allow
us to establish a direct link between symplectic maps and their
representation as Lie transformations. The first theorem ([12],
Theorem 1) gives us a result regarding maps derived from Lie
transformations for a given f of the form

Wi = exp([ f , ·])wi . (31)

Provided the series in Eq. (31) converges, the resulting map
is symplectic [12]. In fact, using property Eq. (30a) of Lie
transformations and their definition in Eq. (29), we have

[Wi ,W j ] = [exp([ f , ·])wi , exp([ f , ·])w j ]

= exp([ f , ·])[wi , w j ]

= exp([ f , ·])J ij

= J ij, (32)

since [ f , ·]k J ij = 0 for any k 6= 0. The result in Eq. (32) states
that maps of the form Eq. (31) are symplectic. Conversely,
the second theorem ([12], Theorem 2) gives us a sufficient
condition for representing symplectic maps in terms of Lie
transformations. Suppose that each component of a symplectic
map w 7→W(w) allows for a representation as

Wi =
∑
|σ |>0

ai (σ )w
σ , (33)

whereσ denotes a 4-tuple of exponents inN, and

|σ | =

4∑
k=1

σk, wσ =w
σ1
1 w

σ2
2 w

σ3
3 w

σ4
4 . (34)

Then, Wi can be represented as an infinite product of Lie trans-
formations:

Wi = (exp([g 2, ·]) exp([g 3, ·]) · · · )wi , (35)

where the generators g 2, g 3, etc., are homogeneous polyno-
mials in the variables wi of degree 2,3, etc. Here, we omit the
concatenation symbol ◦, as it is clear from the context that
we are concatenating operators. Recall that a homogeneous
polynomial pm(w) of degree m satisfies the following condition:

pm(λw)= λ
m pm(w) (36)

for every λ ∈R. Note that the symplectic map described
in Eq. (33) maps the origin of phase space onto itself,
i.e., W(0)= 0. The core information to be taken from these
two theorems is that any analytic symplectic map of the form
Eq. (33) can be represented as an infinite product of Lie trans-
formations with homogeneous polynomials as generators and
that the truncated product is still a symplectic map, since it is a
product of symplectic maps [12].

We conclude this section with some results that are neces-
sary for the derivations in the sections to follow. The first is the
Baker–Campbell–Hausdorff (BCH) formula [12]. Given two
functions g and f , the function k satisfying

exp([k, ·])= exp([g , ·]) exp([ f , ·]) (37a)

is given by

k = g + f + [g , f ]/2+ ([g , [g , f ]] + [ f , [ f , g ]])/12+ · · · .
(37b)

If f and g commute, i.e., [ f , g ] = 0, then we have that

exp([g , ·]) exp([ f , ·])= exp([g + f , ·]). (38)
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Note that the Lie transformation associated with a constant gen-
erates only the identity operator. Thus, the inverse of a Lie trans-
formation follows from Eq. (38):

exp(−[ f , ·]) exp([ f , ·])= exp([ f , ·]) exp(−[ f , ·])= I .
(39)

From Eq. (39), we deduce that

exp ([ f , ·])−1
= exp(−[ f , ·]). (40)

The second Lie algebraic tool of relevance is the following result,
which will facilitate considerably the treatment of products of
Lie transformations. Theorem 3 of Dragt and Finn [12] states
that for any two Lie operators [ f , ·] and [g , ·], we have that

exp([ f , ·]) exp([g , ·]) exp(−[ f , ·])= exp([k, ·]),

k = exp([ f , ·])g . (41)

This implies that whenever we have three Lie transformations
as on the left-hand side of Eq. (41), it is then possible to exactly
compute their concatenation without the need of the BCH
formula.

Lastly, we make a remark about the order of approxima-
tion that we will consider in this work. All the expansions of
phase space variables will be performed up to third order terms,
i.e., |σ | ≤ 3 in Eq. (34). This decision imposes some restrictions
on the degree of the generators g 2, g 3, . . . of the Lie transfor-
mations in Eq. (44). All stems from the observation that if we
consider the space Pm spanned by monomials of degree m ≥ 1,
then for f ∈Pm and g ∈Pn , we have that

[ f , g ] ∈Pm+n−2. (42)

As such, if we decide to consider polynomial expansions in phase
space only up to third order, then we can restrict the degree of
homogeneous polynomials in Eq. (35) to four. Any Lie trans-
formation whose associated polynomial is of a degree higher
than four will generate terms of orders higher than three and
can therefore be neglected. As another consequence of property
Eq. (42), Lie transformations associated with homogeneous
polynomials of second degree do not change the degree of their
arguments. In fact, f ∈P2 means that m = 2, and therefore, for
any g ∈Pn , we have [ f , g ] ∈Pn . Thus, Lie transformations
with second degree generators can be represented by linear trans-
formations when applied to phase space variables, i.e., n = 1.
We will refer to these Lie transformations as the Gaussian part of
the mapping.

4. LIE ALGEBRAIC FORMULATION OF
GEOMETRICAL OPTICS IN PHASE SPACE

Using the results in Section 3, we will describe how to formulate
the propagation and refraction shown in Section 2 in terms of
Lie transformations. All the results that follow are calculated up
to third order terms in the phase space variable expansions for
rotationally symmetric optical systems.

We start by proving that the Hamiltonian defined in Eq. (5b)
is the generator of the solution of free propagation in a medium
of constant refractive index. First, note that the Hamiltonian
system Eq. (5a) can be represented in terms of Poisson brackets:

q̇ =−[H, q], ṗ=−[H, p]. (43)

Using the notation of Eq. (23), we can use the even more com-
pact representation

ẇ=−[H,w]. (44)

Consider the Taylor expansion of w at the final image screen
z= zf:

w(zf)=w(zi)+

∞∑
m=1

1

m!
(zf
− zi)m

dmw

dzm

∣∣∣∣
z=zi

. (45)

We know from Eq. (44) that

dw

dz
=−[H, ·]w,

d2w

dz2
=−[H, ·]

dw

dz
= (−[H, ·])2w,

. . . ,

dmw

dzm
= (−[H, ·])mw. (46)

Upon substitution of Eq. (46) into the Taylor expansion
Eq. (45), we get the series representation of a Lie transformation
as in Eq. (29) with the Hamiltonian H as the generator. This
means that the mapping M, such that w(zf)=M(w(zi)) and
which is a solution to Eq. (44), is defined as

M= exp(−(zf
− zi)[H, ·]). (47)

Given the result of Eq. (47), we have that free propagation
from a standard screen at z= zi to a standard screen at z= zf is
described by

exp(−(zf
− zi)[H, ·])q = q + (zf

− zi)
p√

n2 − | p|2
, (48a)

exp(−(zf
− zi)[H, ·]) p= p. (48b)

The solution in Eq. (48) is in agreement with Eq. (8). Note that
the Hamiltonian can be expanded as follows:

−H =
√

n2 − | p|2 = n −
| p|2

2n
−
(| p|2)2

8n3
− · · ·

=−h0 − h2( p)− h4( p)− · · · . (49)

Thus, the transit through a slab of thickness d made of a homo-
geneous medium with refractive index n can alternatively be
written as an infinite product of Lie transformations:

M= exp
(

d
[√

n2 − | p|2, ·
])

= exp(−d/(2n)[| p|2, ·]) exp(−d/(8n3)[(| p|2)2, ·]) · · ·

= exp(−d [h2, ·]) exp(−d [h4, ·]) · · · .
(50)

The identity in Eq. (50) holds because the generators in the sole
variable | p|2, present in the expansion Eq. (49), commute by the
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property Eq. (21c), and therefore the BCH formula Eq. (37) is
significantly simplified [see Eq. (38)]. The term h0 clearly does
not generate any Lie transformation other than identity.

Lastly, recall that by the argument following from Eq. (42),
the linear part of the mapping M is entirely generated by h2.
The linear, or Gaussian, part of the mapping therefore reads

MG = exp(−d [h2, ·]). (51)

Evaluating the map in Eq. (51) gives

exp(−d [h2, ·])w=

(
I2×2

d
n I2×2

O2×2 I2×2

)
w, (52)

which is equal to the propagation matrix in the conventional
matrix formulation of Gaussian optics [17]. In fact, the tradi-
tional matrix formulation uses position coordinates and ray
angles times the refractive index to trace the rays. Since the
momenta p are the sines of the ray angles times the refractive
index, momenta and the angles themselves times refractive
index are equal in the setting of Gaussian optics, i.e., first order
expansions where sin θ ≈ θ .

We now turn our attention to the refraction mapping
described in Eq. (16). The optical surface is given by Eq. (15),
where terms of order higher than four will not influence the
third order aberrations. Thus we consider only

z= ζ(q)= β|q|2 + δ(|q|2)2. (53)

(
qg4
(q, p)

pg4
(q, p)

)
= exp([g 4, ·])

(
q
p

)
=

(
q
p

)
+

(
[g 4, q]
[g 4, p]

)
+O(w5)

=

(
q − 4A| p|2 p− B(2( p · q) p+ | p|2q)− 2C( p · q)q − 2D|q|2 p− E |q|2q
p+ B | p|2 p+ 2C( p · q) p+ 2D| p|2q + E (2( p · q)q + |q|2 p)+ 4F |q|2q

)
+O(w5), (58)

The root transformations Rn;ζ ,Rn′;ζ are canonical as long as
the considered ray lies in the Descartes sphere | p|2 < n2 and
intersects the surface [13,14,16]. Consequently, their inverses
are canonical too. Thus, the refraction mapping Sn,n′;ζ is
canonical since it is a composition of canonical operators
[13,14]. Furthermore, under the appropriate conditions on
the surface, i.e., ζ(0)= 0, ∇ζ(0)= 0, the phase space origin
is mapped onto itself. As such, the results of Eq. (35) can be
applied [15]. It is now a matter of finding the appropriate homo-
geneous polynomials that generate the mapping. We can already
make a few statements. Since in this paper we will restrict our-
selves to the treatment of third order aberrations by considering
only third order expansion terms, any Lie transformations gen-
erated by homogeneous polynomials of degree five or higher can
be neglected. Additionally, we will consider rotationally sym-
metric systems. This implies that the polynomials themselves
can depend only on the variables | p|2, |q|2, p · q, and p× q
[14,15,22]. Since p× q is a preserved quantity in rotationally
symmetric systems, we will omit it. As such, refraction can be
associated only with polynomials of even degree, and we will
now search for the two polynomials g 2, g 4 such that the product
of the associated Lie transformations applied to our initial phase
space variables reproduces the results in Eq. (16) up to third
order, i.e.,

w′ = exp([g 2, ·]) exp([g 4, ·])w+O(w5), (54)

wherew5 is defined according to Eq. (34), and the O terms are
to be considered in each component of the vector w′. It can be
verified [13,15,16] that Gaussian refraction is associated with

g 2(q, p)= β(n − n′)|q|2, (55)

where 2β is the curvature of the surface at the origin [see
Eq. (53)]. The corresponding linear transformation modifies
the initial variables according to

exp([g 2, ·])

(
q
p

)
=

(
I2×2 O2×2

2β(n − n′)I2×2 I2×2

)(
q
p

)

=

(
q

p+ 2β(n − n′)q

)
, (56)

which corresponds to the Gaussian part in Eq. (16) and also to
the conventional matrix formulation of refraction in Gaussian
optics [17].

Next, let us consider the third order transverse ray aberrations
as being associated with a fourth degree polynomial g 4(q, p) of
the general form

g 4(q, p)= A(| p|2)2 + B( p · q)| p|2 +C( p · q)2

+ D| p|2|q|2 + E ( p · q)|q|2 + F (|q|2)2. (57)

The generated transformation up to third order reads

where we need only the first two terms of the exponential series
of g 4 and use that [g 4, q] =−∂g 4/∂ p, [g 4, p] = ∂g 4/∂q. In
fact, any subsequent term is of order greater than three and can
be omitted. We now concatenate the two transformations in
Eq. (54) to find

exp([g 2, ·]) exp([g 4, ·])

(
q
p

)

= exp([g 2, ·])

(
qg4
(q, p)

pg4
(q, p)

)

=

(
qg4
(exp([g 2, ·])q, exp([g 2, ·]) p)

pg4
(exp([g 2, ·])q, exp([g 2, ·]) p)

)

=

(
q′

p′

)
. (59)

Here we used the property of “jumping into arguments” of
Lie transformations described in Eq. (30b). Thus, the opera-
tions in Eq. (59) tell us to substitute q→ exp([g 2, ·])q = q
and p→ exp([g 2, ·]) p= p+ 2β(n − n′)q into Eq. (58).
Comparing the resulting polynomials with the expressions in
Eq. (16), we get the following results for coefficients A, . . . , F
in Eq. (57), which are consistent with [13,16]:
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A= 0, B = 0, C = 0,

D=
β

2

(
1

n′
−

1

n

)
, E = 2β2

(
1−

n′

n

)
,

F = δ(n − n′)− 2β3 (n − n′)2

n
. (60)

We have now fully determined the generators of free propaga-
tion in a homogeneous medium [see Eqs. (49) and (50)] and
refraction by a rotationally symmetric surface [see Eqs. (54),
(55), (57), and (60)]. The coefficients of the generating poly-
nomials are completely defined by the geometric parameters
of the underlying system. Before concluding this section, note
that in Eq. (58), the coefficient F of g 4 is the only one that does
not influence the final position coordinates, and A does not
influence the final direction coordinates.

5. FUNDAMENTAL REFRACTOR ELEMENT

With the description of free propagation and refraction up to
third order, we now aim to describe what may be the most fun-
damental refractive optical element: a single refractive surface.
The resulting map M will be split into a Gaussian and a higher
order part. Once we have developed the treatment for one sur-
face, the extension to rotationally symmetric refractive optical
systems will be straightforward.

We split refraction through an optical interface into three
steps: propagation from the object to the interface, refraction
at the interface, and propagation of the refracted ray to the
image plane (see Fig. 1). The object and image distances will be
denoted by s o and s i, respectively, and they satisfy the Gaussian
imaging condition [17]

n
s o
+

n′

s i
=

n′ − n
R

, (61)

where R = (2β)−1 is the radius of curvature of the interface.
By combining the results in Eqs. (49), (50), (55), and (60), the
symplectic mapping M with generators up to fourth degree for
a single refracting optical element reads

M= exp
(
−

s o

2n
[| p|2, ·]

)
exp

(
−

s o

8n3
[(| p|2)2, ·]

)
︸ ︷︷ ︸

propagation from object plane

× exp(β(n − n′)[|q|2, ·]) exp([g 4, ·])︸ ︷︷ ︸
refraction

× exp
(
−

s i

2n′
[| p|2, ·]

)
exp

(
−

s i

8n′3
[(| p|2)2, ·]

)
︸ ︷︷ ︸

propagation to image plane

,

(62)

where g 4 is completely defined by the coefficients in Eq. (60).
Using Lie algebra techniques described in Section 3, it is possible
to express Eq. (62) in the product form

M≈MG exp([t4, ·]), (63)

where MG contains all information regarding the Gaussian

approximation, and t4 contains all the higher order aberra-

tion information of the complete fundamental element (up to

third order transverse ray aberrations). Generators of degree

five or higher are omitted, since their action on the arguments

generates terms of order four or higher.

By considering only the contributions of the Gaussian part

MG in Eq. (63), we recover the traditional matrix formulation

for refraction of rays at an interface [17], where

MG = exp
(
−

s o

2n
[| p|2, ·]

)
exp(β(n − n′)[|q|2, ·])

× exp
(
−

s i

2n′
[| p|2, ·]

)
. (64)

Since matrices do not commute and do not “jump into argu-

ments” like Lie transformations, their order needs to be inverted

compared to the associated Lie transformations’ product. Using

the matrix representations given in Eqs. (52) and (56), we

rewrite the operator in Eq. (64) as

MG =

(
I2×2

s i
n′ I2×2

O2×2 I2×2

)(
I2×2 O2×2

2β(n − n′)I2×2 I2×2

)

×

(
I2×2

s o
n I2×2

O2×2 I2×2

)
. (65)

Let us introduce the dioptric power of a surfaceD= (n′ − n)/R

and magnification m =−ns i/(n′s o), and recall that 2β = 1/R ,

where R is the radius of curvature of the surface [17]. Then the

Gaussian imaging condition Eq. (61) turns Eq. (65) into

MG =

(
−

ns i
n′s o

I2×2 O2×2

−DI2×2 −
n′s o
ns i

I2×2

)
=

(
mI2×2 O2×2

−DI2×2
1
m I2×2

)
.

(66)

The matrix in Eq. (66) represents the traditional matrix formu-

lation of Gaussian optics [17].
To group the Gaussian parts together, we have to apply some

manipulations to the original mapping M. We use the result of
Eq. (40) to insert identity operators. Thus, we “create” triplets
that enable the use of Eq. (41). We simplify the notation by
substituting the generators of propagation to the object plane
−s o[h2, ·], −s o[h4, ·], the generators of refraction [g 2, ·],
[g 4, ·], and the generators of propagation to the image plane
−s i[h ′2, ·],−s i[h ′4, ·]. Here, the subscript represents the degree
of the respective homogeneous polynomial, and the h ′ polyno-
mials take into consideration the image space refractive index n′

[cf. Eq. (49)]. We rewrite Eq. (62) as
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M= exp(−s o[h2, ·]) exp(−s o[h4, ·]) exp([g 2, ·]) exp([g 4, ·])

× exp(−s i[h ′2, ·]) exp(−s i[h ′4, ·])

= exp(−s o[h2, ·]) exp([g 2, ·]) exp(−s i[h ′2, ·])

× exp(s i[h ′2, ·]) exp(−[g 2, ·]) exp(−s o[h4, ·])

× exp([g 2, ·]) exp([g 4, ·]) exp(−s i[h ′2, ·]) exp(−s i[h ′4, ·])

=MG

× exp(s i[h ′2, ·]) exp(−[g 2, ·]) exp(−s o[h4, ·])

× exp([g 2, ·]) exp([g 4, ·])

× exp(−s i[h ′2, ·]) exp(−s i[h ′4, ·]).
(67)

We rewrite the mapping in Eq. (67) and insert one
more time an identity operator of the form I =
exp(−s i[h ′2, ·]) exp(s i[h ′2, ·]):

M=MG

× exp(s i[h ′2, ·]) exp(−[g 2, ·]) exp(−s o[h4, ·])

× exp([g 2, ·]) exp(−s i[h ′2, ·])

× exp(s i[h ′2, ·]) exp([g 4, ·]) exp(−s i[h ′2, ·])

× exp(−s i[h ′4, ·]). (68)

In Eq. (68), there are multiple instances in which we can apply
the result given in Eq. (41): twice in the second and third line
and once in the fourth one. This leads to

M=MG exp(−s o[h̃4, ·]) exp([g̃ 4, ·]) exp(−s i[h ′4, ·]),
(69)

where h̃4 and g̃ 4 are given by

h̃4 =−s o exp
(
s i[h ′2, ·]

)
exp(−[g 2, ·])h4,

g̃ 4 = exp(s i[h ′2, ·])g 4. (70)

Recall that Lie transformations associated with homogeneous
polynomials of second degree do not change the degree of their
arguments, and hence, h̃4, g̃ 4 are of degree four. The last nec-
essary step to derive the desired expression Eq. (63) is to apply
the BCH formula Eq. (37) to combine the three fourth degree
Lie transformations into one. This step is straightforward, since
Poisson brackets between fourth degree generators are generat-
ing homogeneous polynomials of degree six or higher and can
therefore be neglected; see the discussion at the end of Section 3.
It follows from Eq. (69), that we can write t4 in Eq. (63) as

t4 =−s oh̃4 + g̃ 4 − s ih ′4. (71)

After explicitly performing the computations given in Eqs. (70)
and (71), we denote with A∗, . . . , F ∗ the coefficients of t4,
analogous to the representation of g 4 in Eq. (57), and find



A∗ =− s o
8n3 m4

+
s 2
i

n′2
D−

s 3
i

n′3
E +

s 4
i

n′4
F − s i

8n′3
,

B∗ =− s oD
2n3 m3

− 2 s i
n′ D+ 3

s 2
i

n′2
E − 4

s 3
i

n′3
F ,

C∗ =− s oD2

2n3 m2
− 2 s i

n′ E + 4
s 2
i

n′2
F ,

D∗ =− s oD2

4n3 m2
+ D− s i

n′ E + 2
s 2
i

n′2
F ,

E ∗ =− s oD3

2n3 m + E − 4 s i
n′ F ,

F ∗ =− s oD4

8n3 + F ,

(72)

where D, E , F are defined in Eq. (60). It is now possible
to represent our fundamental element in the form Eq. (63)
with the Gaussian part described by Eq. (64), or equivalently
Eq. (66), and the fourth degree polynomial defined by its
coefficients in Eq. (72).

We conclude this section with a brief comment about higher
order aberrations. The methods described in Sections 4 and
5 allow for further investigation of the aberrations of optical
interfaces. The derivation of generating polynomials of order
six and higher, which correspond to transverse ray aberrations
of order five and higher, follows the same steps as described so
far. It needs to be noted that the composition of operators via the
BCH formula becomes increasingly more complicated as lower
order aberrations compose into higher order contributions in
addition to the intrinsic aberrations of the surface. For instance,
composing the generators of third order aberrations will lead to
additional contributions to the generators of fifth order aberra-
tions. The necessary machinery needed for these computations
is, however, already contained in the mathematical framework
of the Lie algebraic method.

6. OPTICAL SYSTEMS

With the results of Section 5, it is possible to concatenate multi-
ple fundamental elements into a complete optical system. The
necessary tools have already been presented and used in the
previous sections.

A rotationally symmetric refractive optical system is simply a
composition of fundamental elements as described in Section 5.
We therefore consider an optical system with k interfaces. Each
interface can be described in up to fourth order terms by its coef-
ficientsβ j , δ j , j = 1, . . . , k according to

z= ζ j (q)= β j |q|2 + δ j (|q|2)2, j = 1, . . . , k. (73)

With the surface Eq. (73) at the vertex of each surface, we can
determine the paraxial quantities. At each interface j , the
Gaussian imaging conditions are satisfied:

n j

s o, j
+

n j+1

s i, j
=

n j+1 − n j

R j
. (74)

In Eq. (74), it holds that 2β j = R−1
j . The additional quantities

necessary for the calculations are

m j =−
n j s i, j

n j+1s o, j
, s o, j+1 = d j − s i, j , D j =

n j+1 − n j

R j
,

(75)
where m j is the magnification of the optical surface j , D j its
dioptric power, c j = 1/R j its curvature, and d j the distance
between interface j and interface j + 1 along the optical axis.
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As previously shown, we can derive a symplectic mapping
that describes ray propagation up to operators generated by
fourth degree polynomials. We divide the contribution of each
interface j into a second degree, MG j , and fourth degree,
exp([σ j , ·]), contribution. Here, σ j is a fourth degree polyno-
mial whose coefficients are completely defined by the geometry
of the interface j and the system according to Eq. (72). Let us
denote with M the symplectic map describing ray propagation
through our optical system up to fourth order; then we have

M=MG1 exp([σ1, ·])MG2 exp([σ2, ·]) · · ·MGk−1

× exp([σk−1, ·])MGk exp([σk, ·]). (76)

Similar to previous discussions, we want all second degree com-
ponents, which describe the paraxial regime, to be grouped
together. We introduce the notation

MG1→ j =MG1 · · ·MG j , j = 2, . . . , k. (77)

The operator describing the Gaussian propagation of the com-
plete system will be denoted by MG1→k . Using the notation
introduced in Eq. (77), the following holds true:

M=MG1→k (MG2→k )
−1 exp([σ1, ·])MG2→k (MG3→k )

−1

× exp([σ2, ·])MG3→k (MG4→k )
−1

× exp([σ3, ·]) · · ·MGk exp([σk, ·]).
(78)

The mappings in Eqs. (76) and (78) are equivalent, but in
Eq. (78), it is possible to apply multiple times the identity given
in Eq. (41). We defineσ ∗j such that

exp([σ ∗j , ·])= (MG j+1→k )
−1

× exp([σ j , ·])MG j+1→k j = 1, . . . , k − 1.
(79)

The mappingM can therefore be rewritten as

M=MG1→k exp([σ ∗1 , ·]) exp([σ ∗2 , ·]) · · · exp([σ ∗k−1, ·])

× exp([σk, ·]).
(80)

A computationally convenient procedure to compute σ ∗j is to
consider thatMG j+1→k can be treated as both a Lie transforma-
tion and a matrix—beware of the inversion of concatenation
order when composing the matrices instead of the Lie trans-
formations. Applying the result in Eq. (41) to the definition in
Eq. (79) gives

σ ∗j = (MG j+1→k )
−1σ j . (81)

The function σ j is a fourth degree homogeneous polynomial
in q and p, i.e., σ j (q, p). Using the property of “jumping into
arguments” in Eq. (30b), we rewrite Eq. (81) as

σ ∗j (q, p)= σ j ((MG j+1→k )
−1q, (MG j+1→k )

−1 p). (82)

The action of (MG j+1→k )
−1 on the phase space variables in

Eq. (82) can be described via the associated matrix, and finding

the coefficients of σ ∗j (q, p) reduces to expanding and grouping
terms on the right-hand side of Eq. (82). All the σ ∗j and σk are
homogeneous polynomials of fourth degree since the Gaussian
parts of the mapping do not change the degree of their argu-
ments. We claim that these fourth degree polynomials contain
the necessary information regarding the Seidel sums, as will be
proven in the coming section, and therefore, the expressions in
Eqs. (79) and (80) tell us that the aberrations of each fundamen-
tal element are propagated through the system via the Gaussian
mappings of the subsequent elements.

We conclude this section by stating that the symplectic map
M given in Eq. (80) can be approximated up to fourth degree
generators by

M≈MG1→k exp([τ, ·]). (83)

With the BCH formula Eq. (37) and the fact that higher degree
polynomials can be neglected, we get

τ =

k−1∑
j=1

σ ∗j + σk . (84)

A physical interpretation as to why the form in Eq. (83)
might be desirable is that the Gaussian part MG1→k acts first
on both the phase space coordinates and subsequently also
on the Lie transformations by the “jumping into arguments”
property. At this point, we are left with a mapping defined on
the Gaussian image space variables, which applies aberrations
to these coordinates. To summarize, we first propagate through
the complete system to the Gaussian image space via MG1→k

and then aberrate. Since aberrations are traditionally given with
respect to Gaussian coordinates [1,2], the ordering in Eq. (83)
comes naturally.

7. LIE TRANSFORMATIONS AND SEIDEL SUMS

The performance of an optical system is often investigated
by computing its Seidel coefficients [1,2]. These coefficients
completely describe the third order transverse ray aberrations
of monochromatic light through a rotationally symmetric
refractive system [1,2]. In this section, we will show the rela-
tion between the coefficients of the fourth degree polynomial
τ derived in Eq. (84) and the Seidel aberration coefficients.
Furthermore, it will be shown how the property of summing
Seidel contributions over all interfaces is a direct consequence of
the described mathematical framework.

We start by recalling, that the wavefront aberration expansion
is traditionally given in exit pupil and Gaussian image position
coordinates [1,2]. Transverse ray aberration in the Lie approach
is instead given in terms of the Gaussian phase space coordi-
nates. We therefore need to be able to express the Gaussian
momentum coordinates in terms of the exit pupil coordinates
q′ and the Gaussian image position coordinates qG. Up to first
order, we can express the Gaussian momentum coordinate pG as
follows:

pG =
n
RS
(qG − q′). (85)

Here, n and RS refer to the refractive index and exit pupil dis-
tance with respect to the last image plane, respectively. This
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means that n = nk+1. Similar to [23], we consider aberra-
tions to be departures from the ideal Gaussian image point.
As such, third order aberrations are the difference at the ideal
image plane between the third order position coordinates
q(3) =MG1→k exp([τ, ·])q and the Gaussian position coordi-
nates qG =MG1→k q. The full third order aberration expansion
reads

1q(3) = exp([τ(qG, pG), ·])qG − qG +O(w5)

= [τ, qG] +O(w5)

=−4Aτ | pG|
2 pG − Bτ (2( pG · qG) pG + | pG|

2qG)

− 2Cτ ( pG · qG)qG − 2Dτ |qG|
2 pG − Eτ |qG|

2qG +O(w5),

(86)

where Aτ , . . . , Eτ are the coefficients of τ as defined in Eq. (84).
As in Eq. (58), we notice that Fτ does not influence the position
coordinates. Substituting the identity Eq. (85) into Eq. (86) will
yield an expression dependent on exit pupil and Gaussian image
coordinates that is derived from the Lie approach:

1q(3) =
(

4
n3

R3
S

Aτ

)
|q ′|2q ′ +

(
−8

n3

R3
S

Aτ − 2
n2

R2
S

Bτ

)
(q ′ · qG)q

′

+

(
4

n3

R3
S

Aτ + 2
n2

R2
S

Bτ + 2
n
RS

Dτ

)
|qG|

2q ′

+

(
−4

n3

R3
S

Aτ −
n2

R2
S

Bτ

)
|q ′|2qG

+

(
8

n3

R3
S

Aτ + 4
n2

R2
S

Bτ + 2
n
RS

Cτ

)
(q ′ · qG)qG

+

(
−4

n3

R3
S

Aτ − 3
n2

R2
S

Bτ − 2
n
RS

Cτ − 2
n
RS

Dτ − E τ

)
× |qG|

2qG.
(87)

To connect the Lie algebraic approach with the theory of
Seidel sums, we express third order aberrations in terms of the
Seidel aberration coefficients. Following [1,2], we write the
fourth order expansion of the wavefront in terms of Seidel sums
SI, . . . , SV as

W(ρ̂, ϕ; η̂)=
1

8
SIρ̂

4
+

1

2
SIIη̂ρ̂

3 cos ϕ +
1

2
SIIIη̂

2ρ̂2 cos2 ϕ

+
1

4
(SIII + SIV)η̂

2ρ̂2
+

1

2
SVη̂

3ρ̂ cos ϕ,

(88)

where ρ̂ = (x 2
+ y 2)/ρmax are the normalized pupil coor-

dinates, η̂= η/ηmax is the normalized image height, and
ρ̂ cos ϕ = y/ρmax. Here, η is the image height, and ηmax is the
maximum image height. Last, ρmax is the exit pupil radius.
It is possible to relate wavefront aberrations to transverse ray
aberrations [1,2] through

1q =−
RS

n
∇(x ,y )W, (89)

where ∇(x ,y ) represents the gradient in the (x , y ) coordinates,
and RS is the radius of the reference sphere, or equivalently, the

exit pupil distance with respect to the last image plane. If we
substitute Eq. (88) into Eq. (89), we have up to third order

1q(3) =−
RS

n

[
1

2

SI

ρ4
max
(x 2
+ y 2)

(
x
y

)
+

1

2

SII

ρ3
maxηmax

(
(x 2
+ y 2)

(
0
η

)
+ 2yη

(
x
y

))
+

SIII

ρ2
maxη

2
max

yη
(

0
η

)
+

1

2

SIII + SIV

ρ2
maxη

2
max

η2

(
x
y

)
+

1

2

SV

ρmaxη3
max
η2

(
0
η

)]
.

(90)

Our variables in the Lie approach are q′ = (x , y )T and
qG = (0, η)

T . We therefore rewrite Eq. (90) as

1q(3) =−
RS

n

[
1

2

SI

ρ4
max
|q′|2q′ +

1

2

SII

ρ3
maxηmax

×

(
|q′|2qG + 2(q′ · qG)q

′

)
+

SIII

ρ2
maxη

2
max
(q′ · qG)qG

+
1

2

SIII + SIV

ρ2
maxη

2
max
|qG|

2q′ +
1

2

SV

ρmaxη3
max
|qG|

2qG

]
.

(91)

Comparing each term in Eqs. (87) and (91) yields

−
RS
n

1
2

SI
ρ4

max
= 4 n3

R3
S

Aτ ,

−
RS
n

SII
ρ3

maxηmax
=−8 n3

R3
S

Aτ − 2 n2

R2
S

Bτ ,

−
RS
n

SIII
ρ2

maxη
2
max
= 8 n3

R3
S

Aτ + 4 n2

R2
S

Bτ + 2 n
RS

Cτ ,

−
RS
n

1
2

SIII+SIV
ρ2

maxη
2
max
= 4 n3

R3
S

Aτ + 2 n2

R2
S

Bτ + 2 n
RS

Dτ ,

−
RS
n

1
2

SV
ρmaxη

3
max
=−4 n3

R3
S

Aτ−3 n2

R2
S

Bτ−2 n
RS

Cτ−2 n
RS

Dτ−Eτ .

(92)
The system Eq. (92) gives the Seidel sums in terms of the coeffi-
cients of the generator τ in the Lie algebraic description.

An advantageous property of Seidel coefficients is that they
can be represented as sums of interface contributions [1,2]. It
is therefore possible to distinguish the effect of each surface on
the Seidel coefficient of the complete system and determine
which interfaces need to be modified to reduce the aberrations
of the complete system. Modifying one surface will then leave
the contribution of the others unchanged. By definition of τ in
Eq. (84), we can write

Fig. 2. Gaussian doublet (Fig. 8.11, [24]).
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Table 2. Comparison between Kidger ([24], p. 180) and the Lie Method for the Gaussian Doublet

SI SII SIII SIV SV

Surface 1 Kidger [24] 0.191312 0.007686 0.000309 0.000491 0.000032
Lie 0.191312 0.007687 0.000309 0.000491 0.000032

Surface 2 Kidger [24] 0.005631 −0.001252 0.000278 −0.000130 −0.000033
Lie 0.005631 −0.001252 0.000278 −0.000130 −0.000033

Surface 3 Kidger [24] −0.009703 −0.000634 −0.000041 0.000701 0.000043
Lie −0.009703 −0.000634 −0.000041 0.000701 0.000043

Surface 4 Kidger [24] −0.183099 −0.007941 −0.000344 −0.000902 −0.000054
Lie −0.183100 −0.007942 −0.000344 −0.000902 −0.000054

Total Kidger [24] 0.004140 −0.002141 0.000201 0.000160 −0.000012
Lie 0.004140 −0.002141 0.000201 0.000160 −0.000012

Aτ =
k−1∑
j=1

Aσ∗j + Aσk , (93)

and analogously to Eq. (93), we compute the other coefficients
Bτ , . . . , Fτ of the polynomial τ . The identities in Eq. (92)
give linear relations between the Seidel sums of the system
and the coefficients of the polynomial τ . This implies that if
we use the identities in Eq. (92) with the coefficients of σ ∗j or
σk , then we are actually computing the contributions of the
individual surfaces to the respective Seidel sum. The property
of adding interface contributions is therefore preserved by the
Lie approach purely by mathematical argumentation—mainly
the BCH formula applied in Eq. (84)—and without the need of
physical or geometric justifications (see [1,2]).

To summarize, to derive the Seidel sums and the surface
contributions of a rotationally symmetric optical system, it is
necessary to first determine all Gaussian quantities in Eq. (75)
of the system with the help of the Gaussian imaging conditions
in Eq. (74). It is then possible to compute the coefficients of the
fourth order generators for each interface using Eq. (72). Once
the system is described by its corresponding map as in Eq. (76),
we can proceed modifying it into Eq. (80). In this form, it is

Fig. 3. Ritchey–Chrétien telescope (Fig. 13.9, [24]).

possible to extract the third order aberration information of each
interface and of the complete system according to Eq. (92).

8. EXAMPLES

In this section, we compute the Seidel sums for two examples,
where we applied the results given in previous sections. The
geometric data of the optical systems and the respective Seidel
sums have been taken from [24].

As a first example of a fully refractive system, we take a
Gaussian doublet (see Fig. 2). The necessary information is
taken from [24], p. 180. To have all parameters for the expres-
sions in Eq. (92), we need to track the exit pupil quantities using
the Gaussian part of our mapping. The corresponding Seidel
sums given in [24] and the ones derived from the Lie algebraic
method are listed in Table 2.

The next example is a fully reflective system in the form of
a Ritchey–Chrétien telescope (see Fig. 3). The necessary geo-
metric information is taken from [24], p. 263. The procedure
to derive the necessary polynomial coefficients is the same as
described in Sections 4 and 5. The only change is that the root
transformations considered are those for reflection given in
Eq. (19). The corresponding Seidel sums given in [24] are com-
pared with the ones derived from the Lie algebraic method in
Table 3.

We have thus shown how we are able to replicate traditional
results often recovering all significant digits.

9. CONCLUSION

In the presented work, a new way of computing the Seidel
coefficients using the Lie algebraic theory has been presented.
We briefly introduced the topics of geometrical optics and the
Lie algebraic method. After showing how to reformulate the

Table 3. Comparison between Kidger ([24], p. 263) and the Lie Method for the Ritchey–Chrétien Telescope

SI SII SIII SIV SV

Surface 1 Kidger [24] −0.258533 −0.220745 0.017983 −0.017983 0.000000
Lie −0.258534 −0.220610 0.017961 −0.017961 0.000000

Surface 2 Kidger [24] 0.258574 0.220580 0.001553 0.041525 −0.002062
Lie 0.258574 0.220446 0.001552 0.041475 −0.002058

Total Kidger [24] 0.000040 −0.000164 0.019537 0.023542 −0.002062
Lie 0.000040 −0.000164 0.019513 0.023513 −0.002058
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geometrical optics results using Lie algebraic tools, we illustrated
how to combine the reformulation of propagation and refrac-
tion into arbitrary refractive optical systems with rotational
symmetry. The extension to reflective systems can be derived
by following the same steps as for refractive systems. The link
between the presented Lie framework and the Seidel coefficients
has been shown, and the property of adding surface contribu-
tions is preserved by the Lie algebraic method. The examples
given validate our results for refractive and reflective optical
systems with rotational symmetry showing good agreement
between our and existing results.

The Lie algebraic method offers a mathematical theory and a
systematic procedure to link the aberrations of an optical system
directly with the geometric parameters of the system itself. All
the necessary ray information, i.e., ray heights at interfaces or
image height, can be calculated using the Gaussian part of the
mapping. The resulting expressions are given explicitly and can
be extended to virtually any order of aberrations. The develop-
ment of a fundamental element makes it straightforward to treat
optical systems. In fact, most of the expensive algebraic compu-
tations are needed to determine the polynomials associated with
the operators. Once these polynomials have been found for the
fundamental element, describing an optical system is reduced to
concatenating and reordering operators. It is therefore possible
to gain additional insight into the interaction of geometries and
aberrations of arbitrary order in a closed form, without resorting
to ray tracing after each geometric variable change.

The presented methodology also allows to extend these
results to off-axis optical systems. The authors intend to apply
the Lie algebraic method to reflective systems with only one
plane-symmetry, thus allowing for the optical axis to bend. The
aim is to derive closed form aberration coefficients for off-axis
optical systems.
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