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Abstract—Variational Message Passing facilitates automated
variational inference in factorized probabilistic models where
connected factors are conjugate pairs. Conjugate-computation
Variational Inference (CVI) extends the applicability of VMP to
models comprising both conjugate and non-conjugate factors.
CVI makes use of a gradient that is estimated by Monte
Carlo (MC) sampling, which potentially leads to substantial
computational load. As a result, for models that feature a large
number of non-conjugate pairs, CVI-based inference may not
scale well to larger model sizes. In this paper, we propose a
Gaussian Process-enhanced CVI approach, called GP-CVI, to
amortize the computational costs caused by the MC sampling
procedures in CVI. Specifically, we train a Gaussian process
regression (GPR) model based on a set of incoming outgoing
message pairs that were generated by CVI. In operation, we use
the “cheaper” GPR model to produce outgoing messages and
resort to the more accurate but expensive CVI message only if
the variance of the outgoing message exceeds a threshold. By
experimental validation, we show that GP-CVI gradually uses
more fast memory-based update rule computations, and less
sampling-based update rule computations. As a result, GP-CVI
speeds up CVI with a controllable effect on the accuracy of the
inference procedure.

Index Terms—Conjugate-computation Variational Inference,
Gaussian Process Regression, Variational Inference, Variational
Message Passing

I. INTRODUCTION

Bayesian inference has long been known as one of the
pillars for the development of machine learning. In most
practical problems, we rarely use exact Bayesian inference
due to intractable computations over latent variables, but rather
resort to variational inference [1], [2]. The variational method
transforms an inference task to a Free Energy minimization
problem. If a model is represented by a factor graph, then
variational inference can be interpreted as a message passing
procedure called Variational Message Passing (VMP) [3]. In
principle, VMP applies to models comprising conjugate factors
from the Exponential Family distributions, since in this case
the variational posteriors can be cheaply computed in closed-
form. For models with non-conjugate factor pairs, VMP does
not yield closed-form update rules.

In order to extend the applicability of VMP to mod-
els consisting of non-conjugate factors, [4] introduced a
novel stochastic approximation method called Conjugate-
Computation Variational Inference (CVI). This method applies
a stochastic mirror-descent method in mean-parameter space
to the non-conjugate factors, so that each gradient step can be

carried out by conjugate computations. As a result, CVI ob-
tains closed-form variational posteriors as in VMP. However,
the gradient in the gradient step of CVI is estimated by Monte
Carlo sampling, which is computationally expensive and may
result in long inference duration.

Inspired by [5], in this paper we amortize the computational
cost of the Monte Carlo sampling phase in CVI by proposing
a Gaussian Process-based enhancement to CVI, called GP-
CVI. The idea is that we train a Gaussian process regression
(GPR) model to learn the mapping from incoming messages to
the corresponding outgoing messages, where the training data
is supplied by usage of CVI. In operation, the GPR model
is used to predict the outgoing message. If the uncertainty
of the outgoing message is greater than a (user-selected)
threshold value, then the sampling-based update rule of CVI is
recruited to estimate the outgoing message. Moreover, the CVI
message is used to update the GPR model. As a consequence,
the GP-CVI method will over time use more fast memory-
based update rules (by the GPR model) and fewer expensive
sampling-based update rules (by CVI).

II. BACKGROUND

In variational inference, we approximate the exact posterior
by solving an optimization problem [2]. Specifically, given a
generative model p(y, z), where y are the observed variables
and z = (z1, . . . , zM )

T are the latent variables, the variational
posterior q∗(z) ≈ p(z|y) is found by minimizing Free Energy
(an upper bound on negative log-evidence) [6]

q∗ = arg min
q

∫
z

q(z) log
q(z)

p(y, z)
dz︸ ︷︷ ︸

Free Energy F [q]

. (1)

A common constraint to facilitate the minimization process
is the mean-field factorization q(z) =

∏M
k=1 qk(zk). This

assumption leads to the following relationships [7]

∀k : q∗k(zk) ∝ exp
(
Eq∗\k [log p(y, z)]

)
, (2)

where Eq\k [.] refers to the expectation with respect to all fac-
tors of q(z) excluding qk(zk). In a factor graph representation
of p(y, z), (2) can be iteratively solved by Variational Message
Passing (VMP) [3]. In this paper, we employ the Forney-style
factor graph (FFG) representation for models [8] . An FFG is
composed of nodes and edges that represent the factors and



Fig. 1: An FFG representation of an edge zk with two
factors pA and pB in the model p(y, z). −→µ (zk) and ←−µ (zk)
are forward and backward VMP messages, respectively, and
qk(zk) is a marginal of the variational posterior q(z). The
VMP computations for −→µ (zk), ←−µ (zk) and qk are given by
(3a), (3b) and (3c).

variables respectively. An edge connects to a node only if the
variable of that edge is the argument of the factor of that node,
see Fig. 1 as an example. For a more detailed description of
FFGs, we refer to [8].

Consider Fig. 1 as a sub-graph of the FFG for p(y, z) at
the edge zk. The VMP update rules for forward and backward
messages −→µ (zk),←−µ (zk) and marginal qk(zk) were derived in
[9] as
−→µ (zk) ∝ exp

(
Eq1,...,qk−1

[log pA(z1, . . . , zk)]
)

(3a)
←−µ (zk) ∝ exp

(
Eqk+1,...,qM [log pB(zk, . . . , zM )]

)
(3b)

qk(zk) ∝ −→µ (zk)←−µ (zk) . (3c)

Equation (3c) can be carried out with simple computations
if the factors pA and pB are conjugate pairs drawn from the
exponential family (EF). Recall that a distribution in EF has
the form [7]

p(x;η) = h(x)g(η) exp
(
ηTu(x)

)
, (4)

where η are the natural parameters, u(x) are the sufficient
statistics, h(x) is the base measure, and g(η) can be inter-
preted as a normalizing factor. The superscript T denotes the
transposition of matrices and vectors.

If pA and pB are a conjugate pair from EF, then the
messages −→µ (zk) and ←−µ (zk) also have the EF form with the
same sufficient statistics, i.e.,

−→µ (zk) ∝ exp
(
ηT−→µ u(zk)

)
, (5)

←−µ (zk) ∝ exp
(
ηT←−µ u(zk)

)
, (6)

and the multiplication in (3c) results to the sum of the natural
parameters in the exponent

qk(zk) ∝ exp
[
(η−→µ + η←−µ )Tu(zk)

]
. (7)

This type of computation is referred to as a conjugate com-
putation and, by exploiting (7), VMP can efficiently update
variational posteriors in closed-form. However, for models
where −→µ (zk) and ←−µ (zk) either come from non-conjugate
factors or one of the messages is intractable, VMP loses the
convenient solution (7).

To cope with these kind of models, [4] introduced
Conjugate-computation Variational Inference (CVI), which

employs a stochastic mirror descent method in the mean
parameter space so that each gradient step can be carried out
by the conjugate computation. CVI only applies stochastic
computation to the non-conjugate factors and keeps using
VMP for the conjugate part of the models. These features
of CVI allows approximation of the non-conjugate (or in-
tractable) messages by conjugate ones so the closed-form
solution (7) can be obtained. More specifically, let us assume
that ←−µ (zk) is intractable while −→µ (zk) still keeps the form
(5). Then ←−µ (zk) can be approximated by a “CVI message”
←−m(zk), defined as

←−m(zk) ∝ exp
(
η̃T←−mu(zk)

)
. (8)

Clearly, estimating ←−m(zk) amounts to estimating the natural
parameter η̃←−m . By employing Algorithm 2 in [4], η̃←−m can be
estimated by

η̃←−m,t+1 = (1− ρt)η̃←−m,t
+ ρt∇̃µk

Eqk,...,qM [log pB ]|µk=µk,t
, (9)

where t is the iteration index, µk = Eqk [u(zk)] is called the
mean parameter, ρ is the step size, and ∇̃ refers to the gradient,
estimated by a Monte-Carlo method. After estimating η̃←−m,t+1,
qk(zk) can be updated in closed-form by

qk,t+1(zk) ∝ exp
[
(η−→µ + η̃←−m,t+1)Tu(zk)

]
. (10)

(9) and (10) then repeat until reaching a convergence criterion.
As a notational convention, we will denote the final value of
η̃←−m by η̃∗←−m .

Usage of the Monte Carlo method in (9) may lead to a
computational cost issue for CVI, especially when a large
number of samples are required and we need many iterations to
reach convergence η̃∗←−m . This is the motivation for the Gaussian
process-enhanced CVI approach in the next section.

III. GAUSSIAN PROCESS-CVI
In this section, we present the Gaussian Process-CVI (GP-

CVI) approach in which we use Gaussian Process Regression
(GPR) to estimate the CVI message η̃∗←−m . More specifically, we
assume η̃←−m ∈ RD follows a zero-mean multivariate Gaussian
Process (GP)

η̃←−m ∼ GP(0,K(x,x′)), (11)

where x denotes the input of the GP, and K(x,x′) ∈ RD×D is
the covariance matrix. From (9), we recognize that the input x
comprises the information of q(zk), . . . , q(zM ), namely their
natural parameters ηk, . . . ,ηM . Thus, we define x to be a
vector obtained by vertically stacking ηk, . . . ,ηM . In order
to define the covariance matrix, we employ the intrinsic co-
regionalization model (ICM) [10], [11]

K(x,x′) = C k(x,x′), (12)

where C ∈ RD×D is called the co-regionalization matrix, and
k(x,x′) ∈ R is a kernel. For simplicity, we assign C to an
identity matrix and k(x,x′) to a squared-exponential kernel

k(x,x′) = σ2
f exp

(
− (x− x′)TΛ−2(x− x′)

2

)
, (13)



where σ2
f is the function variance, Λ = diag(l) for l being a

vector of length scales. σ2
f and l are hyper-parameters of the

GP, and we denote them collectively by θ.
Consider again the generative model p(y, z) with N ob-

servations y1, . . . , yN . First, we perform CVI on the first N1

observations and collect all results η̃∗←−m to generate a training
set D = {xi, η̃∗←−m,i}

N1
i=1. Then, we use D to optimize the hyper-

parameters of the GP. Specifically, we minimize the negative
log-evidence

L(D) = − log p(D)

=
1

2
η̄TK−1η̄ +

1

2
log |K|+ N1D

2
log 2π , (14)

where η̄ ∈ RDN1 is the vector in which vectors {η̃∗←−m,i}
N1
i=1

are stacked vertically, and K ∈ RDN1×DN1 is the covariance
matrix corresponding to the input matrix X = (x1, . . . ,xN1

)

K = K(X,X) = C ⊗ k(X,X), (15)

where k(X,X) ∈ RN1×N1 is the matrix whose entries are
calculated by (13), and ⊗ denotes the Kronecker product.
Since the partial derivatives of (14) with respect to θ are
analytically computable [12], (14) can be minimized by a
gradient-based method. For a fast training process, in this
paper we use stochastic gradient descent [13], where D is
split into mini-batches b and gradient descent is applied to
each batch

θt+1 = θt − ρ∇θ Lb(D)|θ=θt . (16)

After the initial training phase, the GPR model takes over
to directly predict η̃∗←−m for the next observations (starting from
yN1+1). Let x+ be a new input, then the natural parameters
of the CVI message get computed by [11], [12]

η̃+
←−m = KT

+K(X,X)−1η̄ , (17)

Σ++ = K++ −KT
+K(X,X)−1K+ , (18)

where η̃+
←−m is the predictive value, Σ++ ∈ RD×D is the

predictive covariance matrix, K+ = K(X,x+) ∈ RDN1×D

is defined as in (15), and K++ = K(x+,x+) ∈ RD×D is
defined as in (12). The uncertainty of the prediction is on
the main diagonal of Σ++, and for convenience we denote
them collectively by σ2

++. GP-CVI comes also with a user-
selectable uncertainty threshold σ2

Thres. If σ2
++ ≥ σ2

Thres, then
we switch back to using CVI to estimate η̃∗←−m and we add the
result to the training set D for the GPR. This process gets
repeated until we have collected a certain number Nnew of
new data examples, after which we update the GPR models
by stochastic gradient descent and the updated GPR models
are used for the next observations. The GP-CVI method is
summarized in pseudo-code in Algorithm 1.

IV. EXPERIMENTAL VALIDATION

In this section, we demonstrate how CVI-based inference
can be executed faster by GP amortization. The experiment
is based on inferring the hidden states of a Poisson Linear
Dynamical System (PLDS) [14] that models a Covid data set.

Algorithm 1 Pseudo-code for GP-CVI.
Input:

x
∆
= (ηTk , . . . ,η

T
M )T : natural parameters of incoming

messages q(zk), . . . , q(zM );
N : observation length;
N1: number of observations for the GP training phase;
Nnew: number of new observations for the GP updating
phase;
σ2

Thres: uncertainty threshold;
θ: initial values of GP hyper-parameters.

Output:
η̃∗←−m : Natural parameter of the CVI message ←−m(zk).

1: Set i = 1
2: while i ≤ N1 do
3: Compute η̃∗←−m at yi by (9);
4: end while
5: Create the set D = {xi, η̃∗←−m,i}

N1
i=1 ;

6: Optimize θ from D, using (16);
7: Set j = N1 + 1 ;
8: while j ≤ N do
9: Compute η̃∗←−m and Σ++ at yj by (17) and (18);

10: Get σ2
++ from diag(Σ++)

11: if σ2
++ ≥ σ2

Thres. then
12: Compute η̃∗←−m by (9);
13: Add η̃∗←−m to D ;
14: if added Nnew points then
15: Update θ by (16)
16: end if
17: end if
18: j = j + 1 ;
19: end while

The Covid data set is the number of positive tests per day in
the Noord-Brabant province in the Netherlands recorded from
June 1st, 2020 to June 13th, 2021 by the National Institute for
Public Health and the Environment (RIVM)1. There are 378
Covid data points in total, see Fig. 2.

The PLDS model is given by

p(y1:T , z1:T ) = p(z1)p(y1|z1)

T∏
t=2

p(yt|zt)p(zt|zt−1) (19)

p(z1) = N (z1; 0,Σ) (initial state), (20)
p(yt|zt) = Pois(yt; exp(Bzt)) (likelihood), (21)

p(zt|zt−1) = N (zt; Azt−1,Σ) (state transition), (22)

where y1:T
∆
= (y1, . . . , yT ), with T = 378, denotes the

observations (i.e. the number of positive tests per day), and
zt = [xt, vt]

T is a 2-dimensional hidden state. In (19),

B =
[
1 0

]
, A =

[
1 1
0 1

]
, and Σ =

[
1 0
0 1

]
. The factor graph

of (19) is shown in Fig. 3, in which pA represents p(zt|zt−1),
and pB represents p(yt|zt).

1The data was downloaded from the RIVM website at
https://data.rivm.nl/covid-19/COVID-19 uitgevoerde testen.csv.

https://data.rivm.nl/covid-19/COVID-19_uitgevoerde_testen.csv


Fig. 2: Number of Covid-19 positive tests per day in the
Noord-Brabant province, the Netherlands, recorded by RIVM
in the period from June 1st, 2020 (represented by the index 0
on the x-axis) to June 13th, 2021 (represented by last index
on the x-axis).

Fig. 3: The factor graph of the state space model (19) with
message passing procedure. The red messages refer to the
filtering stage, while the blue ones refer to the smoothing stage.
The green message ←−m(z′′t ) is the CVI message.

In order to infer the hidden state zt, we approximate the pos-
terior p(zt|y1:T ) with q(zt) by passing messages on the factor
graph in Fig. 3. Since the likelihood node is not conjugate to
the Gaussian distribution, we use GP-CVI2 to approximate
the message←−µ (z′′t ) from the node pB to the equality node by
a message ←−m(z′′t ) within Gaussian distribution family. The
inputs to the Gaussian process in GP-CVI are the natural
parameters of −→µ (z′′t ) and yt. In the inference stage, we
employ a Rauch–Tung–Striebel [15] smoothing approach: we
first perform filtering with a full forward pass (red messages)
on the graph and run smoothing with a backward pass (blue
messages) afterwards. The forward messages in the filtering
stage are calculated by

−→µ (zt) =

∫
−→µ (z′t−1)pA(zt−1, zt)dzt−1, (23a)

−→µ (z′′t ) = −→µ (zt), (23b)
−→µ (z′t) ∝ −→µ (z′′t )←−m(z′′t ) . (23c)

Once filtering has finished, we update the marginals by the

2The code to reproduce our experiments can be found at
https://github.com/HoangMHNguyen/Gaussian-Process-based-CVI.

following backward pass:

←−µ (z′t) =

∫
←−µ (zt+1)pA(zt, zt+1)dzt+1 (24a)

q(zt) ∝ −→µ (z′t)
←−µ (z′t) (24b)

←−µ (zt) = q(zt) . (24c)

We employ the AdaMax optimizer [16] with a step size
ρt = 0.4 in (9) for the gradient step in CVI. The setting of
Gaussian Process Regression (GPR) is summarized in Table I.

Process Parameter values

GPR
training

N1 = 25
σf = 2
l = (0.1, 0.2, 0.18, 0.26, 0.14, 0.09, 5)T

AdaMax: 1000 iterations, ρ = 10−4, batch size = 5

GPR
updating

σ2
Thres. = 0.8
Nnew = 50
AdaMax: 100 iterations, ρ = 10−4, batch size = 5

TABLE I: GP configuration for the validation experiment.

To compare the performance of CVI and GP-CVI, we record
the FE value and the inference time (in wall clock time) of
both methods. The results3 are given in Table II. In term of FE
minimization, both CVI and GP-CVI yield similar FE values,
implying that their results are nearly similar. To gain some
intuition for this results, we can examine Fig. 4a, which shows
the state xt estimated by both methods from t = 45 to t = 70.
The ribbon in the figure represents one standard deviation.
Despite the similarity in FE, GP-CVI has a noticeably shorter
inference time than CVI. To explain this difference, consider
Fig. 4b that displays the uncertainty in the prediction of GPR
in GP-CVI from t = 26 onward (since the first 25 time
steps are used for training, no uncertainty is recorded for this
period). By color coding, the figure also displays when GP-
CVI uses GPR and CVI. At the beginning of the experiment
there is little data for GPR so GP-CVI regularly uses CVI from
t = 100 to t = 150. Thereafter, GP-CVI steadily switches
to using Gaussian process regression (GPR) predominantly,
leading to a large decrease in inference time compared to CVI.
This decrease is also shown in Fig. 4b. We record the inference
time of both CVI and GP-CVI in three intervals split by two
fine-tuning points. We can see that GP-CVI gradually becomes
faster than CVI while not sacrificing FE performance.

CVI GP-CVI
minimized FE 2277.86 2277.97

execution time 691.38 s 270.21 s

TABLE II: Minimized FE and execution time for CVI vs GP-
CVI on the hidden state smoothing problem for model (19).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a new approach, called GP-
CVI, in which we extend CVI with Gaussian Process amor-

3We used the Julia programming language on an Intel Core i5 Processor
8250U (1.6GHz) with 8GB of RAM for all experiments.

https://github.com/HoangMHNguyen/Gaussian-Process-based-CVI


(a) State xt. (b) Predictive uncertainty of GPR prediction.

Fig. 4: (a) The inferred state xt by CVI and GP-CVI. The ribbon represents one standard deviation. (b) The uncertainty of
GPR prediction in GP-CVI recorded from the time step 26-th. The red region refers to the time steps at which GP-CVI uses
CVI to estimate xt, whereas the green region refers to GPR prediction. The two vertical dashed lines are the time steps where
we fine-tune GP component in the GP-CVI. The horizontal dashed line represents the threshold for the uncertainty. There are 3
intervals, and we record the inference time of both methods in each interval. We can observe that, over time, the green region
dominates the red region, indicating that GP-CVI calculates messages mostly by amortization using GPR.

tization to shorten the inference time for models with non-
conjugate factors. We train GPR models to predict intractable
messages (or CVI messages), instead of always using Monte
Carlo sampling as in CVI. Our experimental results illustrate
that GP-CVI gradually speeds up CVI while achieving similar
results.

There is room for future improvement in our work. As
we have seen in Table I, GP-CVI has plenty of hyper-
parameters to be defined, and it might require a lot of
time to tune those hyper-parameters. A possible solution is
applying transfer learning [17], i.e., using the same (optimized)
hyper-parameters for similar models. Another drawback of the
proposed method is that as GP-CVI progresses, the size of the
training set of GP increases and this makes the computation
of GP-CVI more complex. We can improve this feature by
upgrading to more advanced GP models [18] that limit the
dimension of the number of basis vectors. Extra work on these
drawbacks can help improve the applicability of our GP-CVI
method.
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