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Abstract—In this contribution we investigate the flexibility of
wide-scan focal plane array antennas at mmWave. Based on
measurement data, it is shown that highly directive beams can
be generated, as well as wide beams with increased transmission
power which are useful in stormy conditions where the rain atten-
uates the signal and the antenna tower twists and sways due to the
wind. In addition, it is shown that sum and difference beams can
be generated which can be used for radar sensing applications.
The directivity is between 31.4dBi and 37.2dBi depending on the
beam type, with a relative transmission power between 10.5dB
and 18.1dB, compared to the maximum transmission power of a
single antenna element.

I. INTRODUCTION

Wide-scan focal plane arrays (FPA’s) have been proposed
as a solution for the increased path loss and attenuation at
mmWave frequencies. FPA’s have several key benefits com-
pared to phased arrays. This includes an increase in directivity
due to the addition of the reflector, and a decrease of power
consumption due to the decreased number of antenna elements
that need to be active at a time. An example of a wide-scan
reflector that can be used to generate multiple simultaneous
beams is the parabolic toroid reflector. This reflector has been
demonstrated for the use of remote sensing [1], mobile access
[2] and point-to-multipoint communications [3]. This shows
the wide range of applications that can be targeted with FPA
antennas.

To show the flexibility of the system in more detail, we
take the setup from [3], where an 8x8 analog beamforming
array is placed in the focal plane of a parabolic toroid reflector
with point-to-multipoint communication as the intended appli-
cation. Here it was shown that the beam can be manipulated in
order to compensate for twisting and swaying of the antenna
tower by changing the excitation weights. In this contribution,
two additional applications are shortly discussed and the
associated beam shapes and weight distributions are given.

II. MODEL

The measurement setup used is shown in Fig. 1. The far-
fields resulting from the excitation of each antenna element
in the 8x8 array are measured at 25.9GHz. Based on this, a
total resulting field can be calculated in Matlab by changing
the excitation weights of each antenna element. We investi-
gate three situations; 1) Maximum ratio transmission (MRT)
beamforming. This is the same as conjugate beamforming,
and this serves as the reference for the other two cases. MRT
optimizes the power in the far-field in the intended direction

Figure 1: A picture of the wide-scan focal plane array system
in the near-field measurement facility.

with respect to the transmitted power PTx. 2) All-on scenario,
where antennas are turned on with the highest weight such
that a wide beam is generated. This increases PTx at the cost
of directivity. The effective isotropic radiated power (EIRP) is
increased. It is useful to overcome stormy conditions, where
the attenuation is increased due to rain, and simultaneously the
link is impacted by twist and sway of the antenna tower. 3)
To achieve monopulse radar operation, sum (Σ) and difference
(∆) beams need to be generated. As a proof of concept we
show that a ∆-beam can be generated by using MRT to form
two beams, towards −0.8◦ and 0.8◦ in azimuth, and then
exciting the array with the difference between the generated
weights. The Σ-beam is not shown here for the sake of brevity.

III. RESULTS

In Fig. 2 the resulting radiation patterns are shown for
each of the three cases with the associated amplitude and
phase settings. The settings are quantized to 8 bits, where
255 is the highest amplitude and phase setting. The estimated
directivities based on the method described in [3] are given
in Table I. The EIRP and PTx relative to the maximum
transmission power of a single element are also given. These
quantities are computed in the same way as in [3]. It can be
seen that the EIRP is increased in the all-on condition. The
∆-beam also shows a high EIRP, also due to an increase in
relative PTx.
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Figure 2: Beam shapes, gain, and phase settings of the considered scenarios. Upper row: MRT beam towards (0◦, 0◦) in az
and el. Middle row: all-on beam, where all antenna elements are turned on. Lower row: a ∆-beam, formed by exciting the
array with the difference of the MRT weights that form a beam towards ±0.8◦ in az.

Table I: Directivity, PTx and EIRP relative to the maximum
power of a single element for the three cases.

MRT All-on ∆-beam
Directivity (dBi) 37.2 31.4 34.7
Relative PTx (dB) 10.5 18.1 13.0
Relative EIRP (dB) 47.7 49.5 47.6

IV. CONCLUSION

In this contribution it is shown that wide-angle scanning
FPA antennas exhibit a high degree of reconfigurability due
to the ability to change the shape of the beams. We showed
that the beam shape can be adjusted to be wider and with a
higher transmission power which can be useful during stormy
conditions in a point-to-multipoint setup. Furthermore we can
also generate sum and difference beams that can be useful in
the field of radar sensing.
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