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a b s t r a c t 

Background and Objectives: Automatic vessel segmentation in ultrasound is challenging due to the qual- 

ity of the ultrasound images, which is affected by attenuation, high level of speckle noise and acoustic 

shadowing. Recently, deep convolutional neural networks are increasing in popularity due to their great 

performance on image segmentation problems, including vessel segmentation. Traditionally, large labeled 

datasets are required to train a network that achieves high performance, and is able to generalize well to 

different orientations, transducers and ultrasound scanners. However, these large datasets are rare, given 

that it is challenging and time-consuming to acquire and manually annotate in-vivo data. 

Methods: In this work, we present a model-based, unsupervised domain adaptation method that consists 

of two stages. In the first stage, the network is trained on simulated ultrasound images, which have an 

accurate ground truth. In the second stage, the network continues training on in-vivo data in an unsu- 

pervised way, therefore not requiring the data to be labelled. Rather than using an adversarial neural 

network, prior knowledge on the elliptical shape of the segmentation mask is used to detect unexpected 

outputs. 

Results: The segmentation performance was quantified using manually segmented images as ground 

truth. Due to the proposed domain adaptation method, the median Dice similarity coefficient increased 

from 0 to 0.951, outperforming a domain adversarial neural network (median Dice 0.922) and a state-of- 

the-art Star-Kalman algorithm that was specifically designed for this dataset (median Dice 0.942). 

Conclusions: The results show that it is feasible to first train a neural network on simulated data, and 

then apply model-based domain adaptation to further improve segmentation performance by training 

on unlabeled in-vivo data. This overcomes the limitation of conventional deep learning approaches to 

require large amounts of manually labeled in-vivo data. Since the proposed domain adaptation method 

only requires prior knowledge on the shape of the segmentation mask, performance can be explored in 

various domains and applications in future research. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Ultrasound imaging is a noninvasive, safe and inexpensive 

maging modality that is commonly used to evaluate the cardio- 

ascular system [1] . In particular, the common carotid artery (CCA), 

hich provides blood to the neck and head, is one of the major ar- 

eries that is easily accessible by ultrasound. Accurately segment- 
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ng the artery in ultrasound images is required for purposes such 

s the assessment of risk for stroke due to atherosclerotic plaques 

2–6] , diameter estimation [7,8] and image-guided therapy [9] . 

Another application of vessel segmentation is Doppler angle es- 

imation in cross-sectional ultrasound acquisitions, which is re- 

uired for angle-corrected velocity estimates. By assuming that the 

essel has a circular cross-section, as is common for major arteries 

uch as the CCA [10] , the flow can be calculated if the vessel di-

meter and average blood velocity are known. Doppler ultrasound 

s used to estimate velocity, where the velocity of red blood cells, 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.cmpb.2022.107037
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.107037&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:l.a.e.m.v.knippenberg@tue.nl
https://doi.org/10.1016/j.cmpb.2022.107037
http://creativecommons.org/licenses/by/4.0/


L. van Knippenberg, R.J.G. van Sloun, M. Mischi et al. Computer Methods and Programs in Biomedicine 225 (2022) 107037 

Fig. 1. The intersection between a cylinder and a plane is an ellipse, which can be 

represented using five parameters: The position of the center point of the ellipse 

(x c , y c ) , the semi-major axis a , the semi-minor axis b and the rotation of the ellipse 

β . 
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 , is proportional to the Doppler frequency: 

 = 

c f d 
2 cos (α) f 0 

, (1) 

ith c being the speed of sound in tissue, f d the Doppler frequency 

hift, α the Doppler angle (angle between the insonifying beam 

nd blood flow direction) and f 0 the transmit frequency. Previously 

t was shown that cross-sectional Doppler results in accurate veloc- 

ty estimates, without requiring a specific probe orientation [11] . In 

his case, the intersection of the ultrasound plane and the cylindri- 

al vessel results in an ellipse, of which the parameters are used 

o estimate the Doppler angle: 

os ( ̂  α) = cos ( arcsin (b/a )) cos (β) , (2) 

here a and b are the semi-major and semi minor axis of the el- 

ipse, respectively, and β is the rotation of the ellipse as depicted 

n Fig. 1 . As a result, a proper vessel segmentation will result in

n accurate Doppler angle estimate and therefore a more accurate 

elocity estimate. Note that the sensitivity of the Doppler angle es- 

imate depends strongly on the probe orientation with respect to 

he vessel, and the ratio b/a and ellipse orientation β that result 

rom that. 

However, vessel segmentation in ultrasound images is a chal- 

enging problem due to the quality of the images, which is affected 

y attenuation, high level of speckle noise, and acoustic shadowing. 

n addition, the image strongly depends on the ultrasound scan- 

er and the settings chosen by the operator (e.g. gain and focus 

epth). Moreover, the arterial wall contains three distinct separate 

ayers, namely, intima, media and adventitia [12] . The outer bound- 

ry (media-adventitia) results in a strong echo, in contrast to the 

ntima-media boundary that generates a weaker echo. Depending 

n the imaging orientation, the latter boundary will not always be 

isible. Manual segmentation requires substantial experience, is la- 

or intensive and is prone to variability and operator dependency. 

utomatic segmentation methods that use conventional signal pro- 

essing techniques are mostly based on edge detection, the Hough 

ransform, active contours or a combination of these, as is summa- 

ized in multiple review papers [1,13,14] . 

Given that ideally the vessel interior appears as black on the B- 

ode image and the vessel wall appears as bright white, the vessel 

all can be identified through edge detection. When imaging the 

essel cross-sectionally, a seed point is selected within the vessel, 

rom which a number of spokes are drawn (representing a star- 

hape) [15] . Along each spoke, an edge detector results in a single 

oint on the vessel wall. These detected edges are then connected 

o identify the vessel wall. This method can be extended to detect 
2 
dges using a scale-space representation [11] or include a Kalman 

lter to track the ellipse parameters over time (Star-Kalman algo- 

ithm) [5,16] . The segmentation accuracy for such a Star-algorithm 

s then mainly determined by the implemented edge detector and 

hosen seed point. 

Alternatively, the Hough transform can be used to automatically 

etect mathematically defined shapes such as straight lines in lon- 

itudinal imaging and circles in transverse imaging [17] . The out- 

ut of the Hough transform can also be used to initialize a snake 

o further improve the segmentation result [18] , where the basic 

oncept is to fit a contour to local image information, such as gra- 

ient. Typically, such parametric active contours are implemented 

y finding the contour that minimizes the sum of an internal en- 

rgy (quantifying the continuity and smoothness of the contour) 

nd external energy that attracts the contour to edges in the im- 

ge [2,6,19–23] . As a result, these methods have the drawback that 

hey require careful initialization and often require extensive tun- 

ng of parameters for convergence. Moreover, the snake may show 

eaking (contour bleeding) due to shadows or apparent gaps in the 

essel wall. Also, due to the iterative nature of these algorithms, 

hey are difficult to implement in real-time. 

On the other hand, deep convolutional neural networks (CNNs) 

ave shown great performance on image segmentation problems, 

ncluding vessel segmentation [24–31] . In particular the U-net ar- 

hitecture [32] is commonly used in medical image analysis as it is 

ast and can precisely segment images in all major image modal- 

ties using a scarce amount of training data [33] . However, these 

orks all use a supervised approach that requires extensive labeled 

atasets to successfully train a network that generalizes well. The 

roblem here is that collecting and annotating datasets is an ex- 

ensive and time-consuming process, and sufficient training data 

ay not always be available. As a result, these networks often do 

ot generalize well to novel datasets, for example captured using a 

ifferent ultrasound scanner and settings. 

Domain adaptation aims to solve this problem in which a model 

rained on a source distribution is used in the context of a differ- 

nt (but related) target distribution. One possible method to realize 

his is the use of an adversarial network, which discriminates be- 

ween the source and target domain during training [34,35] . Dur- 

ng training the aim is to maximize the loss of this domain classi- 

er, such that the final classification decisions are made based on 

eatures that are both discriminative and invariant to the change of 

omains. However, this ”minimax” approach is often unstable and 

herefore hard to train optimally. 

In this work, we propose an unsupervised domain adaptation 

ethod that is based on three main contributions. First, a modified 

-net architecture is described that includes model-based process- 

ng and can be trained end-to-end. In this case, the model-based 

rocessing consists of morphological closing, region splitting, con- 

ected component analysis, edge detection and a least-squares el- 

ipse fit. Second, we describe how an a priori known shape can 

e used to detect unexpected outputs in a model-based approach, 

ather than relying on a second (adversarial) neural network to dis- 

riminate outputs. Third, we demonstrate good performance of a 

odel trained using the proposed unsupervised domain adaptation 

ethod on a challenging in-vivo dataset. This paper is structured as 

ollows: The network architecture and training process is described 

n Section 2 . The data that was used in this work is presented in

ection 3 . The results are reported in Section IV and further dis- 

ussed in Section 5 . Finally, conclusions are drawn in Section 6 . 

. Materials and methods 

In this section, we describe the network architecture and train- 

ng process. 
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Fig. 2. Demonstration of the model-based processing steps that are appended to the final layer of the U-net architecture. The processing steps consists of thresholding 

probabilities (0.5), morphologically closing with a circular element, region splitting, connected components analysis, edge detection and ellipse fitting, resulting in an elliptical 

mask. 
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.1. Network architecture 

In this work, the basis of the network is a standard U-net ar- 

hitecture [32] , consisting of a contracting path to capture context 

nd a symmetric expanding path that enables precise localization. 

he input to the network is a B-mode image sized 256x256 pixels 

nd the output of the U-net (after thresholding the probabilities) 

s a binary image, where for each pixel it is indicated whether that 

ixel belongs to the CCA (1) or not (0). From this semantic seg- 

entation we then estimate the vessel diameter and Doppler an- 

le. The prior knowledge that the prediction should be elliptical 

s included in the network by appending several basic image pro- 

essing steps to the final layer of the network (output 1, ˆ Y 1 ), as is

ummarized in Fig. 2 . 

First, the probabilities are thresholded (0.5) to obtain a binary 

mage, after which a morphological closing operation with a cir- 

ular element (R = 8 pixels) is used to fill gaps in the U-net pre-

iction. Next, a region splitting algorithm is applied that detects 

hether a connected component contains more than one ellipse 

enter. If this is the case, the connected component is split into 

wo regions. This procedure is further explained in Section II.B. 

hen connected-components analysis is used to identify the region 

n the binary image that most likely corresponds to the CCA. For 

his purpose, prior information on the expected size of the region 

s used (approximately 30 0 0 pixels). Note that the expected size 

s based on the expected cross-sectional area as well as the pixel 

ize, meaning that the size of the region (in pixels) also depends 

n the ultrasound settings. The remaining regions are discarded 

nd a Sobel operator is used to find the edges of the selected 

onnected-component (a normalized threshold of 0.90 was used to 

etermine the final edge). Alternatively, the find-boundaries func- 

ion from scikit-image can be used to identify the edge of the con- 

ected component directly. Lastly, an ellipse is fit to the detected 

dge points using a direct least squares approach. More specifically, 

ote that an ellipse is a special case of a general conic that can be

escribed by an implicit second order polynomial: 

 ( θ, X ) = θ · X 

= Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 , 

hich has to satisfy the constraint B 2 − 4 AC < 0 to be an el-

ipse. Here, θ = [ A, B, C, D, E, F ] T are the ellipse parameters and X =
 x 2 , xy, y 2 , x, y, 1] are the coordinates of the points on this ellipse.

ow, given N edge points x i = [ x i , y i ] , the ellipse that best fits these

oints minimizes the sum of pointwise distances. As the euclidean 

istance is difficult to evaluate, typically the algebraic distance, 

 ( θ, x i ) , is used instead. As a result, the optimization problem re-

uces to: 

in 

θ

∑ N 

i =0 
F ( θ, x i ) . (3) 

To prevent the trivial solution A = B = C = D = E = F = 0 , the

llipse parameters are normalized with respect to F by setting 
3 
 = 1 as described in [36] . Lastly, to improve numerical stability of 

he ellipse fitting method, the mean of the data is removed before 

tting such that it is centered on the origin. 

For completeness, the conversion from the parameters in the 

onic equation (A, B, C, D, E) to the standard ellipse parameters 

x 0 , y 0 , a, b, β) are given in the Appendix. These ellipse parame-

ers are the second output of the network ( ̂  Y 2 ) and are then used 

o generate a mask that corresponds to the interior of the ellipse, 

hich is the final output of the network ( ̂  Y 3 ). 

It can now be appreciated that the difference between the orig- 

nal output of the U-net ( ̂  Y 1 ) and the output of the fitted ellipse

ask ( ̂  Y 3 ) can be used to quantify how elliptical the original pre- 

iction is, without requiring labels or human supervision. Ideally, 

he original output is a perfect ellipse, such that ˆ Y 1 = 

ˆ Y 3 , and the 

ifference is zero. Therefore, by minimizing this difference, the 

etwork learns to predict a single, completely filled ellipse, which 

hould correspond to the common carotid artery. 

.2. Region splitting 

One of the challenges in segmenting the CCA is the neighboring 

ugular vein, which can also show strong edges. As a result, the 

etwork may show activations in both, the artery and the vein, 

hich can result in a single, large connected region as shown in 

ig. 3 (c). The ellipse that is fit to this connected region there- 

ore does not correspond well to the CCA. To prevent this, a re- 

ion splitting algorithm inspired from [37] was implemented that 

ims to detect whether a connected component contains multiple 

llipse centers, and splits the region in two if this is the case. First, 

n Fig. 3 (a), a Sobel edge detector is used to identify the edges

n the binary image. Next, in Fig. 3 (b), the distance transform is 

sed to calculate the distance from each pixel to the closest edge. 

 template is defined in Fig. 3 (d) that corresponds to the distance 

ransform of a circle. Assuming that vessels can be approximated 

y an ellipse, the distance map will show high correlation with the 

ircular template in the vessel centers as shown in Fig. 3 (e). A cor-

elation threshold of 0.6 seemed to give reasonable results in most 

ases. Finally, if a connected component contains multiple centers, 

he region is split at its narrowest point along the line connecting 

he two centers, such that one region corresponds to the CCA and 

ne region to the jugular vein ( Fig. 3 (f)). 

.3. Labeled data - supervised training 

The modified U-net described above was implemented in Ten- 

orflow (v2.7) and can be trained end-to-end. To learn initial fea- 

ures that can be used to detect the CCA, the network is first 

rained in a supervised way on (mainly) simulated data, of which 

he data acquisition process is detailed in Section IV. Rather than 

raining only towards the vessel mask using the standard binary 

ross-entropy loss, knowledge about the elliptical appearance of 

he vessel is included in training as well by using a custom loss 
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Fig. 3. An example where a connected component consists of two overlapping ellipses (c), which is split in two regions (f). The algorithm steps are edge detection (a), 

distance transform (b), correlation (e) with a template corresponding to the distance transform of a circle (d) and splitting the region at its narrowest point along the line 

connecting the two centers (f). 
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unction. The loss function used in this work combines the binary 

ross-entropy (BCE) loss in 

ˆ Y 1 , Hausdorff distance loss in 

ˆ Y 2 and 

oft Dice loss in 

ˆ Y 3 , which are detailed below. 

First, a low BCE loss indicates that the network can determine 

ith high certainty whether pixels belong to the CCA or not, and 

s therefore affected by the overall (global) segmentation perfor- 

ance. In contrast, the Hausdorff distance, d H , is defined as the 

aximal shortest distance between two contours, and is therefore 

olely determined by the largest error. Lastly, the Dice similarity 

oefficient (DSC) measures the similarity between the interior of 

he fitted ellipse ( ̂  Y 3 ) and reference mask, enforcing elliptical pre- 

ictions. More specifically, the DSC can be expressed in terms of 

ixel-based true positives (TP), false positives (FP) and false nega- 

ives (FN): 

SC = 

2 T P 

2 T P + F P + F N 

. (4) 

n case of a perfect segmentation, there are no false positives or 

alse negatives and the DSC reduces to one. The soft Dice loss func- 

ion therefore aims to minimize 1 − DSC. 

Alternatively, the mean squared error (MSE) of the five ellipse 

arameters can be used to quantify how accurate the ellipse fit 

s. The effect of removing various elements from this custom loss 

unction, as well as including the MSE, was measured in an ab- 

ation study. The various selected combinations are shown in the 

rst column of Table 2 . 

In addition to the losses defined above, the accuracy (number 

f correctly classified pixels divided by the total number of pixels) 

s also measured of outputs ˆ Y 1 and 

ˆ Y 3 , as well as the error in the

oppler angle estimation, computed from (2) . 
4

The network is trained for 20,0 0 0 epochs using a learning rate 

f 10 −3 , where the weights that result in the best Doppler angle 

stimate are saved during training. 

.4. Unlabeled data - Unsupervised training 

After learning initial features from (mainly) simulated data, un- 

atisfactory performance is still expected when the network is ap- 

lied to unseen, in-vivo data. To adapt to this new domain, we use 

he prior knowledge on the shape of the prediction to continue 

raining using an unsupervised approach. For this purpose, mixed 

atches are used consisting of labeled images that were used dur- 

ng the supervised learning stage and unlabeled in-vivo data. The 

ew objective then is to minimize the loss of the labeled images 

BCE) while at the same time minimizing the difference between 

he raw prediction ( ̂  Y 1 ) and corresponding ellipse fit ( ̂  Y 3 ) for the 

nlabeled images. Here, the difference is again quantified using 

he DSC, which in this case does not require labeled data. As a re- 

ult, the network will still activate on the initially learned features 

edges), while at the same time enforcing consistent, elliptical pre- 

ictions on in-vivo data. 

Note that the soft Dice loss can also be small if the number 

f activated pixels is low. In that case, the majority of the pixels 

ill be classified as true positives even though the prediction does 

ot agree well with the actual CCA segmentation. To prevent this, 

n addition to the labeled BCE loss and unlabeled soft Dice loss, 

 penalty is included for unfeasible, small ellipses. This exponen- 

ial loss function depends on the number of activated pixels in the 

tted elliptical mask ( N) and therefore promotes region growing 
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Table 1 

Data augmentation parameters. 

Augmentation step Probability Description 

Flip image 0.5 Flips the image (left-right) 

Crop image 0.25 Remove outer pixels (0–30 pixels per side) and resize to original size 

Adjust brightness 0.5 Reduce or increase brightness through PIL.ImageEnhance.Brightness() (factor between 0.2 and 1.8) 

Gaussian noise 0.1 Add Gaussian noise with zero mean and a variance between 1 and 6% of the maximal pixel value 

Speckle noise 0.1 Add speckle (multiplicative) noise with a variance between 0.1 and 0.5 

Remove pixels 0.1 Randomly set between 0 and 80% of the image pixels to zero 

Gaussian blur 0.05 Apply a Gaussian blur filter with a variance between 1 and 3 

Table 2 

Network performance on the test set of the labeled (mainly simulated) data using various combinations of loss functions during supervised train- 

ing, consisting of binary cross-entropy loss (BCE), Hausdorff distance loss (HD), mean-squared error (MSE) and Dice similarity coefficient (DSC) 

loss. 

ˆ Y 1 : Raw U-net output ˆ Y 2 : Ellipse parameters ˆ Y 3 : Interior of fit ellipse 

Loss function BCE loss Accuracy (%) d H (px) MSE RMSE Doppler angle ( ◦) DSC Accuracy 

1. BCE 0.0038 99 . 84 ± 0 . 20 1 . 18 ± 1 . 84 5 . 13 ± 28 . 51 1 . 67 ± 3 . 29 0 . 988 ± 0 . 014 99 . 85 ± 0 . 24 

2. BCE + HD 0.0039 99 . 84 ± 0 . 18 1 . 18 ± 1 . 27 4 . 29 ± 24 . 03 1 . 45 ± 2 . 79 0 . 988 ± 0 . 012 99 . 85 ± 0 . 17 

3. BCE + MSE 0.0037 99 . 85 ± 0 . 15 1 . 16 ± 1 . 08 4 . 33 ± 25 . 46 1 . 44 ± 2 . 73 0 . 988 ± 0 . 010 99 . 86 ± 0 . 14 

4. BCE + DSC 0.0035 99 . 86 ± 0 . 11 1 . 09 ± 0 . 69 2 . 86 ± 15 . 98 1 . 44 ± 2 . 65 0 . 989 ± 0 . 009 99 . 87 ± 0 . 10 

5. BCE + HD + DSC 0 . 0034 99 . 86 ± 0 . 10 1 . 11 ± 0 . 68 3 . 66 ± 21 . 48 1 . 45 ± 2 . 87 0 . 989 ± 0 . 009 99 . 86 ± 0 . 10 

Fig. 4. Overview of the proposed unsupervised domain adaptation method showing images from the training set. First, a network is trained on labeled simulated data 

(source domain) using conventional supervised learning. Then the network is applied to unlabeled in-vivo data (target domain). By minimizing the difference between the 

output of the network, ˆ Y 1 , and the fitted ellipse, ˆ Y 3 , (i.e. maximizing the DSC) the network learns to predict a single, consistent ellipse that agrees with the previously learned 

features (edges). 
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ntil the predicted region has a reasonable size (at least 10 0 0 pix- 

ls). Note that this penalty term only has the intended effect if the 

CA is actually visible in all training images. The total loss function 

herefore is: 

 total = L BCE (Y 1 , ˆ Y 1 ) + L DSC ( ̂  Y 1 , ˆ Y 3 ) + f (N) , (5)

here f (N) is an exponential function. This iterative training pro- 

ess is illustrated in Fig. 4 . The model is trained for 50 0 0 epochs

sing early stopping with a patience of 200 epochs and a learn- 

ng rate of 10 −5 , where the total validation loss as defined in (5) is

onitored for checkpointing and saving the optimal weights dur- 

ng training. Manually labeled data is used to quantify the per- 

ormance gain in the DSC and Hausdorff distance due to domain 

daptation. Statistical significance of the results is calculated using 

he one-sample Student t -test ( p < . 05 ). 

.5. Adversarial neural network 

Lastly, results are compared to a more conventional domain 

daptation approach as described in [34] , where an adversarial 
5 
eural network is used to predict from image features to which 

omain (source or target domain) a presented image belongs. By 

aximizing the binary cross-entropy loss for this second net- 

ork, features that are present in images from both domains (i.e. 

omain-invariant features) are promoted. At the same time, the 

im is to minimize the label prediction loss on the labeled images 

uch that the extracted features result in overall good prediction 

erformance on the source domain. 

For this purpose, the U-net is modified to include the adver- 

arial neural network. Rather than connecting the adversarial net- 

ork to the feature extraction layer after the encoder-part of the 

etwork, the layer is connected to the output layer of the U-net. 

s a result, the adversarial network can detect unexpected out- 

uts directly in the output layer, similar to the proposed domain 

daptation method. The adversarial network consists of a gradient 

eversal layer that allows us to maximize instead of minimize the 

oss of the domain estimator, three convolutional layers, a global 

ax pooling layer and an output layer containing the probability 

hat an image belongs to each domain (2 nodes). The network was 

rained for 50 0 0 epochs using a learning rate of 10 −4 . 
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Fig. 5. Example images from both datasets (training set). (a): The labeled dataset 

consists of 20 0 0 simulated ultrasound images (top row), noisy ellipses (center row) 

and very few (5% of the total dataset) in-vitro and in-vivo ultrasound images ac- 

quired using a Philips EPIQ 7G (bottom row). (b): The unlabeled dataset consists of 

in-vivo ultrasound images acquired using a MyLabOne Vascular Ultrasound system. 
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. Data acquisition 

As described above, two separate datasets are used during this 

ork, where one dataset consists of mainly simulated images of 

hich we have an accurate ground truth mask, and one dataset 

onsists of only unlabeled in-vivo images. 

.1. Labeled data 

In contrast to in-vivo data, simulated data has the advantage 

hat it is easy to generate and has a known ground truth. The 

abeled dataset (20 0 0 images in total) therefore consists of three 

arts. The first part (950 images) are augmented ellipses, the sec- 

nd part (950 images) are simulated ultrasound images of a bright 

essel wall, and the final part (5% of the dataset) are in-vitro and 

n-vivo images (50 images each). The dataset is partitioned into a 

raining, validation and test set using a 60:20:20 split ratio. The 

imulation steps are detailed below. 

Ideally, the vessel wall appears as bright white on the B-mode 

mage due to the strong reflections and the vessel interior is black 

ue to the weak scattering of blood. To simulate this, first the 

llipse parameters (x 0 , y 0 , a, b, β) are randomly generated, within 

pecified bounds, such that the resulting ellipses are feasible and 

mostly) within the imaging plane. The normalized ellipse center 

s uniformly generated between 0.2 and 0.8 both in the lateral 

nd axial direction, the semi-major and semi-minor axis are be- 

ween 0.1 and 0.3, and the ellipse can have an arbitrary orientation 

 −90 ◦ < = β < = 90 ◦). These parameters are then used to generate

wo image masks, where one mask has a radius equal to b and the 

ther mask has a radius equal to b + d (where 2 < = d < = 5 pixels).

s a result, the difference between these two masks corresponds 

o the vessel wall and the interior of the vessel has a short axis 

ength equal to b. To make the segmentation problem more chal- 

enging (and more realistic), Gaussian and speckle (multiplicative) 

oise are added, random pixels are removed and the images are 

aussian blurred. 

Secondly, images are generated using a Verasonics (Verasonics 

nc. Kirkland, USA) plane wave imaging simulation, where scatter- 

rs in the vessel wall have a high reflectivity (1.0) and scatterers 

ithin the vessel have a low reflectivity (0.1). The number of plane 

aves, transmit frequency, central steering angle and angle com- 

ounding range are chosen randomly, resulting in a large variety 

f simulated ultrasound images. 

Lastly, in-vitro and in-vivo images acquired using a Philips EPIQ 

G ultrasound system (Philips, Eindhoven, NL) and L12-3 linear ul- 

rasound probe (frequency range 3–12 MHz) are included in the 

ataset, which were used in a previous validation study [11] . These 

mages were labeled manually and aim to facilitate the training 

rocess by ensuring that the network has a reasonable initial pre- 

iction on the unseen in-vivo data. Note that this data only rep- 

esents a small portion of the dataset (5%) and was acquired us- 

ng a different ultrasound system and transducer. The model that 

s trained on the full labeled dataset will be referred to as model 

. To evaluate the effect of including some labeled in-vivo images 

uring this supervised learning stage, the network is also trained 

n simulated data only, which will be referred to as model B. 

In all cases, both the vessel mask ( Y 1 and Y 3 ) and ellipse param-

ters ( Y 2 ) are saved. A selection of images from the labeled dataset

s shown in Fig. 5 (a). 

.2. Unlabeled data 

On the other hand, in-vivo data is more challenging to acquire 

ue to strict regulation. Moreover, labels are commonly obtained 

y manually segmenting the ultrasound images, which is time con- 

uming and introduces variability in the ground truth. In this work, 
6 
he ultrasound data from [5] is used, where a slow sweep across 

he subject’s neck was performed using a clinical MyLabOne Vas- 

ular Ultrasound system (Esaote Europe, Maastricht, NL) with a lin- 

ar probe SL3323 (fc = 7.5 MHz) to obtain a large variety of CCA 

mages. This study was approved by the ethics committee of the 

ocal hospital (Catharina Ziekenhuis Eindhoven, the Netherlands). 

s the difference between subsequent frames is small, the frames 

re subsampled by a factor five, resulting in a subset of 20 0 0 im-

ges from 67 acquisitions, of which some examples are shown in 

ig. 5 (b). Again, a split ratio of 60:20:20 was used to partition the 

ataset into a training, validation and test set, where it was en- 

ured that images from the same acquisition are only present in 

ne dataset (training, validation or test set). As a result, the perfor- 

ance on the test set reflects the generalizability of the network 

o other acquisitions or patients. 

.3. Data augmentation 

Online data augmentation is a commonly used technique to 

ynthetically increase the amount of training data and hence re- 

uce overfitting on models. A generic approach for augmenting im- 

ge data is to perform geometric augmentations such as cropping, 

eflecting, rotations and translating the image [38] . Note that we 

xcluded rotations and vertical flipping as ultrasound images are 

epth-dependent and subject to the position of the probe with re- 

pect to the vessel. In addition to these common affine transforma- 

ions, we included a small probability to modify the brightness, in- 

roduce noise (speckle and Gaussian), and/or apply Gaussian blur- 

ing. The probabilities and parameters used during augmentation 

re summarized in Table 1 . 

. Results 

.1. Supervised training 

The results of the supervised training stage using various loss 

unctions are given in Table 2 . The lowest binary cross-entropy 

oss is achieved when combining three loss function components 

binary cross-entropy loss, Hausdorff distance loss and soft Dice 

oss), which also results in the highest DSC (0.989). The root-mean- 

quare error in Doppler angle estimation is largest (1.67 ◦) when 

nly the binary cross-entropy loss is used during training, although 

he difference in accuracy and DSC is small compared to the best 

erforming model (0.02% and 0.001, respectively). These minor dif- 

erences between the different loss functions were found to be not 

tatistically significant ( p > . 05 ). When only training on simulated 
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Fig. 6. Example images from the test set that show the improvement due to unsupervised domain adaptation for the network that was originally trained on a dataset 

containing 5% labeled in-vitro and in-vivo data (model A, left column) and for the network that was originally only trained on simulated data (model B, second column). (a) 

and (c) show the raw predictions before domain adaptation, where the distribution of the Dice similarity coefficient (DSC) after ellipse fitting (following the steps from Fig. 2 ) 

is shown in (b) and (d). Domain adaptation improves the predictions as shown in (g) and (i), which is also apparent from the distributions in (h) and (j). For comparison, 

the predictions obtained when using a domain adversarial neural network (trained on the same data as model A) and of the Star-Kalman algorithm [5] are shown in (e) and 

(f), and (k) and (l), respectively. 
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Fig. 7. Visualization of how the segmentation map changes for one input image 

(from the training set) during training. The predicted segmentation is shown after 

10 (a), 100 (b) and 300 (c) epochs. 

n

b

p

F  

a

t

t

1

D

d

ata (model B), using the loss function consisting of three com- 

onents, the binary cross-entropy loss and error in Doppler angle 

re comparable to the performance of model A after 10,0 0 0 epochs 

0.0035 and 1.11 degrees, respectively). 

.2. Unsupervised training 

After the supervised learning stage, the performance of both 

odels is evaluated using a test set consisting of in-vivo data, 

hich was manually annotated by an expert. Note that this test 

et is therefore different from the test set from Table 2 , where the

est set consists of mainly simulated data. Examples of these pre- 

ictions are displayed in Fig. 6 (a) and (e), where the distribution 

f the DSC is shown in plots (b) and (f). The model that has seen

ome in-vivo data during the supervised training stage (model A) 

lready achieves a high DSC on most of the images (mean 0.877, 

edian 0.953), whereas the elliptical predictions of the model that 

as trained using only simulated data (model B) generally have a 

ow DSC (mean 0.173, median 0). 

The unsupervised training stage stopped after 717 epochs for 

odel A and after 387 epochs for model B. Fig. 7 shows the pre-

ictions of model B on an image from the training set at different 

oints in the training process. Initially, the network shows activa- 

ions in multiple image regions. Then the network predicts a sin- 

le ellipse that does not respect the vessel edges, and finally the 
7 
etwork predicts an elliptical vessel mask that agrees well to the 

oundaries of the vessel. 

For both models, the unsupervised domain adaptation has a 

ositive effect on the DSC, of which the predictions are shown in 

ig. 6 (c) and (g). The distribution of the DSC is shown in plots (d)

nd (h). For model A, the median DSC has increased from 0.953 

o 0.963, and the IQR decreased from 0.030 to 0.025. Moreover, 

he mean and median Hausdorff distance decreased from 17.1 to 

0.3 and 2.8 to 2.5 pixels, respectively. For model B, the median 

SC has increased from 0 to 0.951 with an IQR of 0.035 and me- 

ian Hausdorff distance of 3.1 pixels. After removing outliers (de- 
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Table 3 

Vessel segmentation performance of the network on the in-vivo test set before and after domain adaptation, compared to two reference methods. 

Performance is measured using the Dice similarity coefficient (DSC) and Hausdorff distance ( d H ) . 

Algorithm DSC (mean ± std) DSC (median ± IQR) d H (px) (mean ± std) d H (px) (median ± IQR) 

Model A: Before domain adaptation 0 . 877 ± 0 . 251 0 . 953 ± 0 . 030 17 . 1 ± 84 . 3 2 . 8 ± 2 . 2 

Model A: After domain adaptation 0 . 923 ± 0 . 183 0 . 963 ± 0 . 025 10 . 3 ± 38 . 9 2 . 5 ± 1 . 8 

Model B: Before domain adaptation 0 . 173 ± 0 . 326 0 ± 0 . 050 108 . 3 ± 71 . 4 109 . 4 ± 67 . 0 

Model B: After domain adaptation 0 . 890 ± 0 . 225 0 . 951 ± 0 . 035 14 . 1 ± 44 . 4 3 . 1 ± 2 . 1 

Reference: Star-Kalman + (active contour [5] ) 0 . 938 ± 0 . 034 0 . 942 ± 0 . 027 3 . 8 ± 3 . 7 3 . 3 ± 1 . 6 

Reference: Domain adversarial (neural network) 0 . 857 ± 0 . 190 0 . 922 ± 0 . 072 12 . 3 ± 34 . 2 3 . 8 ± 3 . 4 
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Fig. 8. Examples of images where the DSC is low. Main causes are a poor prediction 

before ellipse fit (a), a failed ellipse fit (e) while the prediction before ellipse fitting 

is reasonable (b), or the selection of the wrong connected component in the ellipse 

fitting process (f). 
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ned as predictions with DSC < 0 . 5 ), statistical significance is as-

essed by the Student t -test. The improvements compared to both 

eference methods in DSC for model A and B, as well as the im- 

rovement in Hausdorff distance for model A, are statistically sig- 

ificant ( p < . 05 ). These results are summarized in Table 3 , includ-

ng a comparison to the performance of the adversarial neural net- 

ork (median 0.922) and the Star-Kalman algorithm described in 

5] (median 0.942), of which the predictions and distributions are 

hown in Fig. 6 (i)-(j) and (k)-(l). 

To evaluate the sensitivity of the connected-components analy- 

is, both models were also trained for an expected region size of 

0 0 0, 40 0 0 and 60 0 0 pixels. The median DSC in all three cases

s 0.960 for Model A and 0.944, 0.949 and 0.949, respectively, for 

odel B. These differences are not statistically significant ( p > . 05 ).

. Discussion 

In this article, we proposed an unsupervised, model-based do- 

ain adaptation method that can be applied to segmentation 

roblems where prior knowledge on the shape of segmentation 

s available. In our case, it was assumed that the common carotid 

rtery has a circular cross-section, such that the intersection with 

he ultrasound plane is an ellipse. The parameters of this ellipse 

an be used to estimate the Doppler angle as in (2) to obtain 

ngle-corrected velocity estimates. The training process consists of 

wo stages, where we first train the network using a supervised 

pproach on labeled data from the source domain, after which we 

se the elliptical properties of the segmentation map to continue 

raining in an unsupervised way on unlabeled data from the target 

omain. 

The proposed network architecture includes model-based pro- 

essing operations such as morphological closing, region splitting, 

onnected components analysis, edge detection and ellipse fitting 

hat are appended to the output layer of the network, while the 

etwork can still be trained end-to-end. As a result, additional loss 

unctions were used during the supervised training stage besides 

he traditional binary cross-entropy loss, based on the ellipse pa- 

ameters (Hausdorff distance and MSE) or ellipse interior (DSC). Al- 

hough the rate of convergence was similar for all loss functions, 

t was shown that a combination of three loss functions resulted 

n the highest DSC (0.9890) and lowest binary cross-entropy loss 

0.0034). However, the differences between various combinations 

f loss functions is small, not statistically significant, and the op- 

imal combination depends on the metric of interest. Due to lim- 

ted computational resources, only a subset of combinations was 

ested where each model was trained for 20,0 0 0 epochs. To obtain 

onclusive results, the ablation study should be extended and the 

umber of epochs should be increased to ensure that the loss has 

ully converged. 

To evaluate the effect of using labeled data from the target 

omain during the supervised training stage, two models were 

rained. Model A was trained on a dataset containing 1900 sim- 

lated images and 100 real ultrasound images (50 in-vitro images 

nd 50 in-vivo images), where it must be noted that this data was 
8 
cquired using a different ultrasound scanner and transducer than 

he data that was used in the unsupervised training stage. In con- 

rast, model B was trained on only simulated images. As a result, 

fter the supervised learning stage model A showed good perfor- 

ance on unseen in-vivo data (mean DSC of 0.877), whereas the 

llipse fit from model B was often empty or outside the CCA (mean 

SC of 0.173). 

From the distributions shown in Fig. 6 , it can be concluded 

hat some images are segmented poorly, resulting in a low DSC 

 < 0 . 50 ). The main causes of these outliers are a poor prediction

efore ellipse fitting, a failed ellipse fit, or selecting the wrong con- 

ected component. For example, for model B, 24 out of the 400 

redictions have a DSC < 0 . 50 , of which 8 have a poor prediction

efore ellipse fitting, 13 have a DSC of zero due to a failed ellipse

t, and 3 have a DSC of zero due to the selection of the wrong

onnected component in the ellipse fitting process. These exam- 

les are illustrated in Fig. 8 . The fact that the ellipse fit some- 

imes fails is concerning and most likely caused by instabilities in 

he region splitting algorithm (which is the most complex step of 

he ellipse fitting process). Ideally, this step can be skipped during 

nference, assuming that the network has successfully learned to 

egment the CCA. On the other hand, the selection of the wrong 

onnected component as in Fig. 8 (c) and (f) is a result of having

 fixed expected size for the CCA. Although it was shown that this 

arameter has a negligible effect on the median DSC when increas- 

ng the expected region size from 20 0 0 to 40 0 0 and 60 0 0 pixels, it

ould be better if this parameter can be learned from data and be 

hanged adaptively as the surface area can strongly vary between 

atasets. In particular, the area is affected by imaging settings such 

s maximum depth and imaging orientation (e.g. imaging longitu- 

inally results in a larger surface). Therefore, adaptively changing 

his parameter would benefit generalizability to a different or ex- 
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ended dataset. Nevertheless, these outliers have a large effect on 

he presented values for the mean and standard deviation. Given 

hat the distribution is highly non-normal due to these outliers, it 

s more appropriate to evaluate the median and interquartile range, 

ather than the mean and standard deviation. 

Due to the proposed unsupervised domain adaptation method, 

he performance of both models improved, obtaining a median DSC 

core of 0.963 and 0.951 for models A and B, respectively. The ef- 

ect of using real ultrasound images in 5% of the labeled dataset 

herefore results in a better performance before and after domain 

daptation. In addition, the training process of model A was more 

table, showing good convergence where a lower loss also resulted 

n a higher DSC. On the other hand, early stopping was used for 

odel B to prevent the model from obtaining a point where a 

ower loss was achieved whereas the DSC decreased. So although 

t is feasible to adapt a network that was trained on only simu- 

ated images to in-vivo data, it is recommended to include at least 

ome in-vivo data in the labeled dataset if available for training ro- 

ustness and improved performance. Alternatively, more realistic 

imulations can be used, where structures other than the CCA are 

ncluded as well. This would reduce the domain shift from simu- 

ated to in-vivo data. For this purpose, a generative adversarial net- 

ork (GAN) may be used, which is becoming more common and 

opular in medical image synthesis [39] . Synthetic data were gen- 

rated using the Verasonics simulator. However, several alternative 

imulators, such as Field II [40,41] and SIMUS [42] , are available 

hich are also suitable for the same purpose. 

The Star-Kalman algorithm combined with an active contour 

odel as presented in [5] achieved good segmentation results with 

 median DSC of 0.942, which is illustrated in Fig. 6 (k) and (l).

owever, it must be noted that the algorithm was carefully fine- 

uned specifically on this dataset. In addition, rather than analyz- 

ng images frame by frame, temporal information is included by 

racking the ellipse parameters over time. As a result, accurate seg- 

entations can be obtained on a poor image as long as the pre- 

eding images were of high quality. In contrast, the presented net- 

ork analyzed a random subset of the data presented in [5] frame- 

y-frame, not leveraging temporal information. Still, both models 

utperform the Star-Kalman algorithm, obtaining a higher median 

SC, without fine-tuning or human supervision. However, it must 

e noted that prior knowledge on the expected surface area of the 

ommon carotid artery (surface prior) was utilized in the selection 

f a connected component and to promote region growing during 

nsupervised training. 

The proposed method was also compared to a more conven- 

ional domain adaptation method, where an adversarial neural net- 

ork was trained that estimates to which domain (source or tar- 

et) a specific input image belongs. This architecture therefore 

ims to minimize the loss for the labeled data while simultane- 

usly maximizing the loss of the domain estimator. Ultimately, this 

dversarial network should result in indistinguishable outputs for 

mages from both domains. However, the median DSC in this case 

0.922) is lower than the DSC of the proposed method for both 

odels, while being trained on the full labeled dataset. In addi- 

ion, there is no suitable metric to monitor during training, given 

hat the loss consists of a term that is being minimized and a sec- 

nd term that is being maximized. Due to this limitation of the ad- 

ersarial network, we therefore directly monitored the DSC in this 

ase to save the optimal model weights that requires the labels to 

e known. 

The unsupervised training process is strongly based on the as- 

umption that the vessel has a circular cross-section, such that the 

ntersection with the ultrasound plane results in an ellipse. Al- 

hough this assumption is in general true for major arteries, it does 

imit the use cases. For example, veins may have an arbitrary cross- 

ectional shape, which is also affected by the pressure applied to 
9 
he transducer. In its current form, the framework therefore cannot 

e used to train a network that segments smaller (non-circular) ar- 

eries or even veins. Moreover, the current dataset does not include 

rteries with the presence of plaque, which would affect the shape 

f the interior of the vessel. As a result, it remains to be investi- 

ated how the network performs in these kind of images. 

A limitation in this study was that the ultrasound images from 

he unlabeled dataset were acquired in the transverse plane (i.e. 

erpendicular to the vessel), where the Doppler angle is close to 

0 ◦. Although this is good for segmentation purposes, velocity es- 

imation requires the Doppler angle to be smaller than 70 ◦. As the 

essel appears to be circular in these acquisitions, the ellipse pa- 

ameters are not well defined, in particular the tilt of the ellipse. 

s a result, the error in Doppler angle estimation will be large 

hen imaging around a Doppler angle of 90 ◦, which is why the 

SC and Hausdorff distance were used to quantify segmentation 

erformance. Ideally, a large in-vivo dataset consisting of cross- 

ectional Doppler ultrasound images would be used, such that the 

rror in Doppler angle can be quantified similar to the supervised 

raining stage. 

To have a consistent ground truth, the images were manually 

abelled at the media-adventitia boundary that results in a strong 

cho, in contrast to the intima-media boundary, which may not 

lways be visible in B-mode images. Given that common carotid 

rtery intima-media thickness ranges from 0.4 mm to 0.8 mm, 

hereas the lumen diameter ranges from 4.3 mm to 7.7 mm [43] , 

he choice for which boundary is used in segmentation is rele- 

ant and depends on the application. For Doppler angle estima- 

ion, it is essential that the fit ellipse represents the (assumed) cir- 

ular cross-section of the vessel wall, and therefore a well-defined 

oundary is preferred. The average velocity in this region can then 

e evaluated with Doppler ultrasound, resulting in an accurate 

ow estimate. 

As discussed above, several improvements can be made to this 

tudy. First, the model-based processing should be optimized for 

nference after training the network to prevent poorly fitted el- 

ipses or even a failed ellipse fit. Second, the labeled dataset can 

e extended with more realistic simulated ultrasound images to 

educe the domain shift to the unlabeled in-vivo dataset, further 

acilitating domain adaptation. Third, the unlabeled dataset should 

e replaced with ultrasound images where the image orientation 

s appropriate for cross-sectional Doppler imaging, such that the 

stimated Doppler angle can be used to angle-correct velocity esti- 

ates. Fourth, when analyzing ultrasound loops instead of individ- 

al frames, temporal information should be utilized, for example 

y tracking the ellipse parameters using a Kalman filter as done 

n [5] . Lastly, other applications for the proposed domain adapta- 

ion method may be explored, emphasizing that the method can 

e applied to any problem where prior knowledge on the shape 

f the segmentation map is known. Possible examples include fe- 

al head circumference estimation to assess fetal growth [44] and 

upil tracking to measure the movement of the eye [45] . Alterna- 

ively, instead of using a strong prior such as an ellipse, a more 

eneral (polynomial) curve fitting approach can be used to only 

nforce a smooth contour. 

. Conclusion 

The findings presented in this paper suggest that it is feasible 

o adapt a neural network trained on simulated images to segment 

he CCA in in-vivo ultrasound data without requiring labeled im- 

ges, overcoming one of the largest limitations in training a neural 

etwork. Prior knowledge on the shape of the segmentation mask 

s utilized by including model-based processing in the neural net- 

ork, which can then be used to train the network in an unsu- 

ervised way, outperforming a domain adversarial neural network 
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nd conventional signal processing methods. However, by includ- 

ng labeled in-vivo data in the supervised training stage, training 

tability is improved and segmentation performance can be further 

ncreased. Since the proposed domain adaptation method only re- 

uires prior knowledge on the shape of the segmentation mask, 

erformance can be explored in various domains and applications 

n future research. 
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ppendix 

The conversion from the parameters in the conic equa- 

ion (A, B, C, D, E) to the standard ellipse parameters (x 0 , y 0 , a, b, β)

re [46] : 

 0 = 

CD ′ − B ′ E′ 
B ′ 2 − 4 AC 

(6) 

 0 = 

AE′ − B ′ D ′ 
B ′ 2 − 4 AC 

(7) 

 = 

√ 

2(AE′ 2 + CD ′ 2 + B ′ 2 − 2 B ′ D ′ E′ − AC) 

(B ′ 2 − AC)( 
√ 

(A − C) 2 + 4 B ′ 2 − (A + C)) 
(8) 

 = 

√ 

2(AE′ 2 + CD ′ 2 + B ′ 2 − 2 B ′ D ′ E′ − AC) 

(B ′ 2 − AC)(−
√ 

(A − C) 2 + 4 B ′ 2 − (A + C)) 
(9) 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 for B = 0 and A < C 
π
2 

for B = 0 and A > C 
1 
2 

arccot ( A −C 
B 

) for B � = 0 and A < C 
π
2 

+ 

1 
2 

arccot ( A −C 
B 

) for B � = 0 and A > C 

(10) 

Here, the prime symbol denotes a division by two (e.g. B ′ = 

/ 2 ). 
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