

A solution for configuring an Infrastructure-as-a-Service

Citation for published version (APA):
Putra, K. A. R. (2022). A solution for configuring an Infrastructure-as-a-Service. Technische Universiteit
Eindhoven.

Document status and date:
Published: 03/10/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/38b7b15f-97d5-4ebd-a0b0-ffd15647860a

EngD SOFTWARE TECHNOLOGY

EngD THESIS REPORT

A Solution For Configuring An
Infrastructure-as-a-Service

Komang Aditya Respa Putra
October/2022
Department of Mathematics & Computer Science

A Solution for Configuring

an Infrastructure-as-a-Service

Komang Aditya Respa Putra

October 2022

Eindhoven University of Technology

Stan Ackermans Institiute – Software Technology

EngD Report: 2022/076

Confidentiality Status:

Not Confidential

Partners

Steering

Group

ir. H.T.G. Weffers, EngD

ir. E. Algra, PDEng

Date October 2022

Composition of the Thesis Evaluation Committee:

Chair: Dr. T. Ozcelebi

Members ir. H.T.G. Weffers, EngD

 ir. E. Algra, PDEng

 T. Molina, MSc

The design that is described in this report has been carried out in accordance

with the rules of the TU/e Code of Scientific Conduct.

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 5.072, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31 402743908

Partnership This project was supported by Eindhoven University of Technology and

ThermoFisher Scientific.

Published by Eindhoven University of Technology

Stan Ackermans Institiute

EngD-report 2022/076

Preferred

reference

A solution for configuring an Infrastructure-as-a-Service. Eindhoven University of

Technology, EngD Report 2022/076, October 2022

Abstract ThermoFisher Scientific is well-known as a high-tech Microscope producer with

numerous customers around the world. One of the high-end Microscopes is

Electron Microscope (EM). To enable the advanced feature of the EM,

ThermoFisher Scientific built an Infrastructure-as-a-Service solution for its

customers called Software Delivery Platform (SDP). Configuring this solution

brought additional challenges to the ThermoFisher Scientific engineers due to the

highly configurable infrastructure that is depending on its customer needs. This

report describes a project to design and implement a solution for configuring the

Infrastructure-as-a-Service called SDP Configuration Application (SCA). The

report elaborates on the analysis of the problem and the domain to understand the

context of the project. It also describes the system’s architecture, design, and

implementation. In addition, the project management and risk analysis are

explained. The system is implemented and validated by the relevant stakeholders

to make sure that the proposed solution brings an added value in the context of the

SDP configuration.

Keywords EngD, Software Technology, Infrastructure-as-a-Service, Infrastructure-as-code,

Configuration, Graphical User Interface, Application Development

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the Eindhoven University

of Technology or ThermoFisher Scientific. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the Eindhoven

University of Technology or ThermoFisher Scientific and shall not be used for

advertising or product endorsement purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within

this report is accurate and up to date, Eindhoven University of Technology makes

no warranty, representation or undertaking whether expressed or implied, nor does

it assume any legal liability, whether direct or indirect, or responsibility for the

accuracy, completeness, or usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service

marks of their respective owners. We use these names without any particular

endorsement or with the intent to infringe the copyright of the respective owners.

Copyright Copyright © 2022. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced,

modified, or redistributed in any form or by any means, electronic or mechanical,

including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the Eindhoven University of

Technology and ThermoFisher Scientific.

Eindhoven University of Technology

i

A solution for configuring an Infrastructure-as-a-Service

Foreword
The MSD business of ThermoFisher Scientific (formerly known as FEI) has traditionally been a global

leader in the innovation of electron microscopes (EM). Software has played an increasing role in the

delivery of the innovations, yet mainly focused on the instruments themselves.

The new area the company is moving towards is to deliver solutions that support the workflow of the

customer using various instruments, covering data management as well as data post-processing. In order

to be successful, we need the ability to deliver (pure) software solutions as managed service, interfacing

with customer infrastructure, and due to the nature of the customer and instruments, deployed and

managed within the premises of the customer. Our Software Delivery Platform (SDP) infrastructure

services the needs of the on-premise software as a service delivery with local tools and automation. The

current configuration management interface of this infrastructure is limited in its usage: it is user-

unfriendly and requires an IT skillset, whereas easy-to-use, intuitive and foolproof solution is needed

that can be used by lesser trained IT service engineers also.

Respa has done a great job in filling this gap. He mastered the current state of the SDP configuration

mechanism quickly and familiarized himself with the functions and limitations of the current system.

He defined, designed, and implemented a nice GUI-based application that meets the new demands.

His solid structured way of working in all parts of the project (requirements definition, architecture and

design choices, implementation, verification, and validation) contributed to the very usable result

delivered in a timely manner, whilst making friends in the organization along the way.

It was my pleasure to coach Respa in his project, and I enjoyed the weekly moments of reflection and

feedback. Looking forward to a continued working relationship as Respa accepted a permanent position

within the SDP team.

Project Mentor

Egbert Algra, MSc, PDEng

October 2022

Eindhoven University of Technology

ii

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

iii

A solution for configuring an Infrastructure-as-a-Service

Preface
The Engineering Doctorate (EngD)1 in Software Technology (ST) is a two-year traineeship post-master

program at Eindhoven University of Technology. EngD focuses on a technological designer to prepare

the trainees to become proficient in a software engineering field by participating in several workshops,

such as software architecture, system design, and project management. In the second year, several

projects are proposed and executed by a trainee in ten months.

This document is a technical report of A Solution for Configuring an Infrastructure-as-a-Service project

executed by Komang Aditya Respa Putra as part of the ten-month EngD in Software Technology

graduation project. The purpose of the project was to design and implement a solution that bridges the

gap between a highly configurable infrastructure with an easy-to-use application that provides the

overview, transparency, and guided configuration management to the lesser experienced Service

Engineers in ThermoFisher Scientific.

The content of the report covers the analysis of the problem and the domain technology, elaborates on

the system architecture and design, explains the implementation, presents the verification and validation

strategy, and summarizes the outcome of the project.

Komang Aditya Respa Putra

October 2022

1 The former name is Professional Doctorate in Engineering (PDEng)

Eindhoven University of Technology

iv

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

v

A solution for configuring an Infrastructure-as-a-Service

Acknowledgements
EngD is a two-year post-master program that gave me a great opportunity to grow as a software

designer. In the last ten months, I had carried out a challenging yet enjoyable project in the R&D group

at ThermoFisher Scientific.

I would like to express my sincere gratitude to my project supervisor Egbert Algra on behalf of

ThermoFisher Scientific and Harold Weffers on behalf of the Eindhoven University of Technology,

who supported and guided me throughout the project. The knowledge I learned in terms of project

management, software architecture, and software design during the project would be a great foundation

for me to grow my career in the coming years.

Thanks to the SDP team who worked closely with me, Giovanni de Almeida Calheiros, Gang Chen,

Tarkan Akcay, Tor Halsan, Olufemi S. Adeyemi, and other people that I might forget to mention for

their effort in providing me with very important information so that I could understand the domain.

Also, for always providing answers to my questions that were essential to tackle the challenges I faced.

During the project, we collaborated with colleagues from the Service Organisation. I would like to thank

Jordy Plug, Kieran Ham, Gabriel Lee, and Ataur Rahman for their time and effort in supporting this

project. Also, for the valuable feedback and suggestion they provided during the project.

I also would like to thank Yanja Dajsuren and Désirée van Oorschot for their guidance in the past two

years during the EngD Software Technology (ST) program. Also, thank to my colleagues from the

EngD ST 2020 generation for the fun and exciting moment during the workshops and training projects

we worked on together during the program.

Finally, I extend gratitude to my beloved wife, Renisa Suryahadikusumah, for her love and support.

Also, deep gratitude to my parents I Nyoman Sukerta and Sri Wachjuni, and my family in Indonesia for

their generous support.

Komang Aditya Respa Putra

October 2022

Eindhoven University of Technology

vi

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

vii

A solution for configuring an Infrastructure-as-a-Service

Executive Summary
ThermoFisher Scientific is the major company in serving science. ThermoFisher Scientific products,

such as the Electron Microscope (EM) enable various research in many different domains. During the

COVID-19 pandemic, ThermoFisher Scientific’s products, such as the EMs, had a critical role in

supporting the scientists in analyzing the virus and leading to vaccine discovery.

The EMs can magnify the sample at a nanoscopic scale into a high-resolution image. During the process,

it creates a large amount of data that require powerful computing resource and needs a massive storage

capacity to store the generated data. To solve the issue, ThermoFisher Scientific built an IT solution

called Data Management Platform (DMP). As part of the DMP solution, ThermoFisher Scientific

developed the Software Delivery Platform (SDP), which is an Infrastructure-as-a-Service (IaaS) to

provide an environment that hosts the application suites supporting the EM running seamlessly.

Currently, SDP is configured using a set of scripts built in a Command Line Interface (CLI) application

to guide the engineers during the installation process. However, due to the limitation of a CLI-based

application, interacting with the SDP configurator was considered challenging. The project aims to

design and implement a visual interface for the SDP configurator, so that opens the opportunity for the

lesser experienced engineer to interact with the SDP configurator more easily.

During the project, we designed and implemented the SDP Configurator Application (SCA) to provide

an easy-to-use guided step with a Graphical User Interface (GUI) to help the Service Engineer. We built

SCA as a web-based application. SCA’s main features are setting up an initial configuration, updating

the existing configuration, visualizing an existing configuration, and providing an easy-to-use

deployment template for typical configuration types. Additionally, we developed the configurator GUI

in a wizard step that could guide the user and increase the usability of the configurator. The

infrastructure visualization page provides information on how the current infrastructure is configured.

It helps the users understand the current setting when updating the configuration.

The project fulfilled the gap between the highly configurable infrastructure and an application that

provides an overview, validation mechanism, transparency, and an easy-to-use GUI. It opened the

opportunity for the lesser experienced engineers to interact with the configuration management tool.

For future work, we recommend integrating the SCA with the current SDP installation workflow by

migrating the process from using a CLI-based application into the SCA. In addition, features such as

monitoring the execution process of applying the configuration to the infrastructure can also be part of

SCA.

Eindhoven University of Technology

viii

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

ix

A solution for configuring an Infrastructure-as-a-Service

Table of Contents

Foreword ... i

Preface ... iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures ... xiii

List of Tables ... xv

Abbreviations .. xvii

Glossary ... xvii

1. Introduction ... 1

1.1. Context ... 1

1.2. Outline .. 2

2. Stakeholder Analysis ... 3

3. Problem Analysis ... 5

3.1. Background .. 5

3.2. Problem Statements .. 7

3.3. Project Scope .. 7

3.4. Domain Analysis .. 7

3.4.1. Containerization .. 8

3.4.2. IT Automation with Ansible ... 9

3.4.3. The Existing SDP Configurator .. 11

3.4.4. SDP Deployment Type ... 13

4. Requirements Elicitation ... 15

4.1. Requirement Overview ... 15

4.2. Functional Requirements .. 16

4.3. Non-functional Requirements .. 17

5. Software Architecture and Design ... 19

5.1. 4+1 Architectural View .. 19

5.2. Use case .. 20

5.3. Logical View .. 21

Eindhoven University of Technology

x

A solution for configuring an Infrastructure-as-a-Service

5.3.1. The Entrypoint .. 22

5.3.2. The Domain Controller ... 22

5.3.3. The Domain Model ... 23

5.3.4. The Repository .. 23

5.3.5. Component Interaction .. 24

5.4. Process View .. 25

5.4.1. Accessing SCA Web Page .. 25

5.4.2. Submitting and Saving the Form Data .. 25

5.4.3. Establishing Connection to an ESXi Server .. 26

5.4.4. Accessing VMWare Instance Using SSH ... 27

5.5. Development View ... 28

5.6. Physical View ... 29

6. Implementation .. 31

6.1. Overview .. 31

6.2. User Interface (UI) Mockups .. 31

6.3. SCA Implemented Functionalities ... 32

6.3.1. Configuring SDP for Fresh Install .. 33

6.3.2. Updating an Existing Configuration ... 34

6.3.3. Visualizing Ansible Inventory .. 35

6.3.4. Configuring Additional Devices ... 36

6.4. Third-Party Components .. 37

6.5. Continues Integration (CI) .. 37

6.6. SCA Docker Container ... 38

7. Verification and Validation .. 41

7.1. Static Analysis .. 41

7.2. Unit Testing .. 41

7.3. Functional testing ... 42

7.3.1. Setup Cypress .. 42

7.3.2. Running Cypress ... 43

7.4. Test Automation ... 44

7.5. Stakeholder Validation ... 45

8. Project Management ... 47

8.1. Way of Working ... 47

8.1.1. Scrum Artefact .. 47

8.1.2. Scrum Events .. 47

8.2. Work Breakdown Structure .. 49

Eindhoven University of Technology

xi

A solution for configuring an Infrastructure-as-a-Service

8.3. Milestone Trend Analysis ... 50

8.4. Infrastructure Plan .. 51

8.5. Risk Management ... 51

9. Conclusions ... 53

9.1. Summary .. 53

9.2. Recommendation and Future Work .. 53

9.2.1. Integration ... 53

9.2.2. Ansible Playbook Execution ... 53

Bibliography .. 55

Appendix A SDP Delivery Process .. 57

Appendix B Functional Requirement ... 58

Appendix C Non-Functional Requirements ... 61

Appendix D Comparative Study .. 62

Appendix E Risk Register .. 64

Appendix F Detailed Use Cases ... 66

Appendix G Ansible Inventory Structure ... 68

About the Author .. 69

Eindhoven University of Technology

xii

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

xiii

A solution for configuring an Infrastructure-as-a-Service

List of Figures

Figure 1. SARS-CoV-2 virus magnified using ThermoFisher Scientific Cryo-EM [3] 1
Figure 2. Relationship of the EM, DMP, and SDP. .. 5
Figure 3. DSE and FSE scope in configuring DMP and SDP .. 6
Figure 4. High-level flow diagram of SDP installation .. 8
Figure 5. Comparing containers and virtual machines [8] .. 9
Figure 6. Configuring multiple environments using Ansible [10] .. 9
Figure 7. Example of IP address configuration using BASH prompt dialog .. 10
Figure 8. SDP Ansible inventory structure snippet ... 11
Figure 9. Software Delivery Platform (SDP) domain model .. 12
Figure 10. SDP infrastructure layer .. 13
Figure 11. Requirement overview ... 15
Figure 12. Functional requirements with a must-have priority ... 16
Figure 13. Non-functional requirements of the system ... 17
Figure 14. Use case diagram of the system ... 20
Figure 15. Logical view in the layered architecture viewpoint ... 21
Figure 16. A high-level overview of the interaction between the Entrypoint, the Domain, and the

Repository. .. 24
Figure 17. Process view accessing the webpage ... 25
Figure 18. Process view submitting the form ... 26
Figure 19. The Sequence diagram of accessing the ESXi server from the SCA 27
Figure 20. The Sequence diagram of accessing the k8s-ansible node server from the SCA 27
Figure 21. Development view diagram ... 28
Figure 22. Physical view deployment diagram ... 29
Figure 23. SCA UI mockups with Figma ... 31
Figure 24. Worker form UI mockup ... 32
Figure 25. Worker configuration page mockup and actual UI implementation 33
Figure 26. Wizard step form ... 34
Figure 27. SCA home page for update .. 34
Figure 28. Inventory visualization in table view ... 35
Figure 29. Inventory visualization in a tree view .. 35
Figure 30. SCA quick action menu ... 36
Figure 31. NVME configuration for workers ... 36
Figure 32. SCA continuous integration activity diagram .. 38
Figure 33. High-level overview on how SCA is being part of the SDP ISO file release 39
Figure 34. Unit test scenarios implemented in Pytest ... 42
Figure 35. Example of test scenario written in Cucumber Gherkin syntax .. 43
Figure 36. Cypress running in an interactive mode .. 43
Figure 37. Cypress running in a headless mode .. 44
Figure 38. Pipeline stages on Gitlab CI/CD .. 44
Figure 39. The detailed overview of the functional testing stage ... 45
Figure 40. Work Breakdown Structure ... 49
Figure 41. Milestone Trend Analysis. TR stands for Technical Report and UC stands for Use Case .. 50
Figure 42. Activity diagram of SDP delivery process .. 57

Eindhoven University of Technology

xiv

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

xv

A solution for configuring an Infrastructure-as-a-Service

List of Tables

Table 1. Stakeholders in ThermoFisher Scientific .. 3
Table 2. MosCow prioritization .. 16
Table 3. The component description ... 21
Table 4. Python libraries used in the project ... 37
Table 5. Verifiable artifacts and the test strategy .. 41
Table 6. Summary of the survey result ... 46
Table 7. Risk Register ... 51
Table 8. Functional requirements of the project ... 58
Table 9. Non-functional requirement of the project .. 61
Table 10. Application platform comparative study ... 62
Table 11. Web-based application framework comparative study ... 63
Table 12. Risk register of the project .. 64
Table 13. Detailed use cases of the project ... 66

Eindhoven University of Technology

xvi

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

xvii

A solution for configuring an Infrastructure-as-a-Service

Abbreviations
TU/e Eindhoven University of Technology

EngD Engineering Doctorate

PDEng Professional Doctorate in Engineering (former name of EngD)

ST Software Technology

DSE Digital Service Engineer

FSE Field Service Engineer

SE Service Engineer

GTS Global Technical Support

DMP Data Management Platform

SDP Software Delivery Platform

IaaS Infrastructure-as-a-Service

SCA SDP Configurator Application

EM Electron Microscope

TEM Transmission Electron Microscope

SEM Scanning Electron Microscope

CLI Command Line Interface

GUI Graphical User Interface

MTA Milestone Trend Analysis

WBS Work Breakdown Structure

Glossary
Gitlab CI/CD A tool for software development using the continuous methodologies

Ansible An open-source IT automation tool that automates infrastructure configuration

VMWare ESXi An enterprise-class, type-1 hypervisor developed by VMware

VMNIC A real physical interface on an ESXi host

Eindhoven University of Technology

1

A solution for configuring an Infrastructure-as-a-Service

1. Introduction

1.1. Context

ThermoFisher Scientific is well-known as the world leader in serving science. The mission is to make

the world healthier, cleaner, and safer. In ThermoFisher Scientific, there are various products and

services that enable their customers to push science and technology a step beyond [1].

One of the prestigious products of ThermoFisher Scientific that enable its customer to explore many

different domains of research is the Electron Microscope (EM). ThermoFisher Scientific produces

several variants of EMs, for instance, Transmission Electron Microscope (TEM), Scanning Electron

Microscope (SEM), and Cryogenic Electron Microscope (Cryo-EM) [2]. These types of EM are widely

used in life science, material science, and semiconductor market segments.

Figure 1. SARS-CoV-2 virus magnified using ThermoFisher Scientific Cryo-EM [3]

During the COVID-19 pandemic, scientists used Electron Microscope to analyze the SARS-CoV-2

virus spike structure. The spike structure information is essential to speed up the decision-making in

selecting antibodies that eventually can help in drug discovery pipelines. Figure 1 shows the

magnification of the SARS-CoV-2 virus using Cryo-EM that produced by ThermoFisher Scientific.

The EMs can magnify the sample up to 1/10,000,000,000 of a meter resolution. This operation creates

a large amount of data due to rendering such a high-resolution image. The data is then processed and

converted into images that scientists can analyze. This process requires a considerable computing

resource and massive storage capacity. To facilitate this scenario, ThermoFisher Scientific developed

an IT solution called Data Management Platform (DMP). DMP enables ThermoFisher Scientific’s

customers to operate the EMs seamlessly by providing the required resources including high-capacity

storage and high-speed computing power.

ThermoFisher Scientific aims to provide a seamless experience to its customer while using the EMs.

ThermoFisher Scientific achieved this by providing various application software suites based on the

type of EM its customer used. To provide an environment for hosting the application suites in the IT

solution or DMP, ThermoFisher Scientific built the Software Delivery Platform (SDP). SDP is an

Infrastructure-as-a-Service (IaaS) [4] that offers the capability to scale up and down the infrastructure

resources, for instance, GPU, CPU, RAM, and storage. SDP performs tasks from the very beginning of

configuring the platform to installing service tools, orchestrating the services, and monitoring the

Eindhoven University of Technology

2

A solution for configuring an Infrastructure-as-a-Service

resources. Currently, SDP is deployed using a set of scripts built in a Command Line Interface (CLI)

application to guide the engineers during the installation process. Due to the absence of a graphical

interface, interacting with the SDP tool is less interactive and error-prone since it does not have a

validation mechanism.

This project is entitled “A solution for configuring an Infrastructure-as-a-Service.” It aims to extend the

capabilities of the current SDP installer by providing an overview, transparency, and guided

configuration management that brings a possibility for lesser experienced engineers to interact with the

SDP configuration. This system is called SDP Configurator Application (SCA).

1.2. Outline

Chapter 2 describes the stakeholders, the tools used for communication, and the frequency of the

communication with the stakeholders. Chapter 3 provides information about the problems in more detail

and the domain analysis to understand the current situation. Chapter 4 is the requirement elicitation; the

functional and non-functional requirements are described in this chapter. Chapter 5 illustrates the SCA

software architecture and design. Chapter 6 explains the implementation of SCA. Chapter 7 describes

the verification and validation. Chapter 0 gives an overview of how this project was managed. Finally,

in Chapter 0 the conclusion including the summary and future works are mentioned.

Eindhoven University of Technology

3

A solution for configuring an Infrastructure-as-a-Service

2. Stakeholder Analysis

Stakeholder analysis is a process to identify the stakeholders and their interests in the project. Based on

the interview with the stakeholders in ThermoFisher Scientific, we identified that the potential user of

the SCA was the Field Service Engineer (FSE). FSE team was part of the Service Organization. FSE

was responsible for configuring the EM’s component and the hardware-related setup. However, FSE

was not reachable by us. Therefore, the FSE was represented by the Service Organization in general.

We contacted four people from this team as the representative of the potential users listed in Table 1.

The SCA was intended to extend the capability of the current SDP installer. As a result, the project

activity was mainly conducted within the SDP team. The team also acted as the domain expert who

provided the domain knowledge about SDP and the necessary information during the project.

To summarize, there are two groups of ThermoFisher Scientific stakeholders: the SDP team and the

Service Organization. The SDP team was most interested in the technology investigation and the

product solution that should be easy to maintain, extend, and integrate into the SDP release cycle. On

the other hand, the Service Organization team is concerned about the prototype that should be easy to

use with a GUI so that broaden the opportunity for the lesser experienced Service Engineer to be able

to configure the SDP.

Table 1. Stakeholders in ThermoFisher Scientific

Name Role in the project Interest
Communication

channel
Frequency

Egbert Algra • Company supervisor

• Architect in the SDP team

• Architecture

• Technology investigation

• Product solution

• Final presentation/demo

• In person

• MS Teams

• Weekly

• Monthly

Giovanni D.A

Calheiros

Domain expert of the SDP

team

• Software design

• Technology investigation

• Product solution

• Final presentation/demo

• In person

• MS Teams

• Daily

• Monthly

• Ad-hoc

Tor Halsan Domain expert of the SDP

team

• Software design

• Product solution

• Final presentation/demo

MS Teams Monthly

Gang Chen Domain expert of the system

integration and automation

of the SDP team

• System integration

• Final presentation/demo

MS Teams Monthly

Tarkan Akcay • Domain expert of the SDP

team

• SDP team leader

• Product solution

• Final presentation/demo

MS Teams • Monthly

• Ad-hoc

Jordy Plug • Digital Service Engineer

(DSE)

• SCA’s potential user
• Product solution

• Final presentation/demo
MS Teams

• Monthly

• Ad-hoc
Kieran Ham • Global Technical Support

(GTS)

Eindhoven University of Technology

4

A solution for configuring an Infrastructure-as-a-Service

Name Role in the project Interest
Communication

channel
Frequency

• SCA’s potential user

Ataur Rahman • Service Operation

• SCA’s potential user

Gabriel Lee • Digital Service Engineer

(DSE)

• SCA’s potential user

Eindhoven University of Technology

5

A solution for configuring an Infrastructure-as-a-Service

3. Problem Analysis

This chapter provides information on the problem analysis and domain analysis of this project. Section

3.1 describes the background of the problem in detail. Next, Section 3.2 shows the problem statement

we addressed in this project. Section 3.3 explains the scope of the project. Finally, Section 3.4 elaborates

on the domain analysis process to get an overview of the current situation and technology used within

the SDP team.

3.1. Background

DMP which was built by the ThermoFisher Scientific R&D team provides the required resources to

support the EM’s workflow applications running seamlessly. As part of the DMP solution, an SDP was

built containing multiple layers of technology to host the applications. Figure 2 depicts the relation

between the EM, DMP, and SDP. When ThermoFisher Scientific’s customers purchase an EM, it will

equip with a DMP. Then, the SDP is configured on the DMP to provide the environment to run software

and application suites. We discuss the detail of SDP later in this chapter.

Figure 2. Relationship of the EM, DMP, and SDP.

ThermoFisher Scientific’s engineers from the Service Organization are responsible to configures the

EM’s components and the DMP on the customer site. There are two types of Service Engineer to handle

this task: Field Service Engineer (FSE) and Digital Service Engineer (DSE). FSE’s main task is

configuring the hardware-related setup such as the EM’s component and DMP server box including its

basic network configuration. Once the DMP is configured and connected to the network, then the SDP

installation process is carried out by the DSE. DSEs typically support through a remote VPN

connection. However, in some customers, such as the semiconductor industry, direct inbound and

outbound connections are prohibited. As a result, the DMP is completely in an air-gapped situation.

Figure 3 illustrates the scope of the FSE and DSE when configuring DMP and SDP on the

semiconductor customer site.

Transmission Electron Microscope (TEM)

Software Delivery Platform (SDP)

is running on the DMP

Data Management Platform (DMP)

Eindhoven University of Technology

6

A solution for configuring an Infrastructure-as-a-Service

Figure 3. DSE and FSE scope in configuring DMP and SDP

In the situation illustrated in Figure 3, currently, there are two options to tackle this scenario:

1. DSEs visit the customer site to configure the SDP on-site. This increased the service cost due

to the travel and accommodation expenses.

2. DSEs support the FSEs through a phone call to guide them in configuring the SDP. This

approach was considered inconvenient since it was risky of mistakes and could raise errors.

SDP is configured using a CLI-based application. CLI is a text interface that is navigated by typing

commands at prompts, instead of using the mouse through the visual interface. A CLI only uses the

keyboard to navigate and perform actions. It does not have a GUI for the user to interact with like a

typical desktop-based application [5].

ThermoFisher Scientific offers a managed service for its EM solutions to support ThermoFisher

Scientific’s customers conducting their research. After delivering and configuring the EM and DMP on

its customer site, the process is not considered complete. Instead, ThermoFisher Scientific continuously

support its customer by providing a regular update, for instance, the new version of SDP is released

every three months.

From ThermoFisher Scientific’s customer perspective, it is also possible for them to request support to

reconfigure the SDP as needed. The common update such as changing the IP address or configuring

additional storage that can be attached to the DMP server box as needed. The update is usually handled

by the DSE. However, similar to the situation illustrated earlier in the semiconductor customer, the FSE

could also be responsible for this task.

In summary, configuring such a complex on-premises cloud infrastructure has its own challenges. The

FSE who are responsible for configuring the hardware-related component of the EMs and the DMP

were less experienced to work with CLI. Therefore, they need to communicate with the DSEs, who

supports them remotely. However, the current approach is considered inefficient because it could cause

delays since there are multiple escalations in supporting the customer.

Eindhoven University of Technology

7

A solution for configuring an Infrastructure-as-a-Service

In the long term, as the number of ThermoFisher Scientific’s customers grows, the transition from a

CLI-based into a visual-based configurator could also open the opportunity for lesser experienced

Service Engineers to interact with the SDP configuration. As a result, the services offered by

ThermoFisher Scientific to its customer become more reliable and faster.

3.2. Problem Statements

Based on the background information we concluded that interacting with the SDP configuration is

technically too difficult for the lesser experienced Service Engineer. The features that could guide the

Service Engineers to prevent mistakes are missing, for instance, the form validation, wizard form

navigation, and overview of the configuration result. In addition, extending the configuration with

additional configuration items is considerably challenging. The R&D engineers need to develop a script

to modify the Ansible inventory file to update or add the configuration items, which is considered

inconvenient by the stakeholders.

3.3. Project Scope

The project’s goal was to design and implement a system with a GUI that can be used to configure the

Infrastructure-as-a-Service (IaaS) solution. The IaaS is built by the ThermoFisfher Scientific R&D

team, known as SDP. The system must produce the configuration output that the format and structure

must be compatible with the one produced by the existing CLI-based application. As a result, the visual

configurator can be integrated with the current SDP release cycle.

3.4. Domain Analysis

The EM’s component and the DMP are configured by the FSE on the customer site. After the FSEs

configure the Microscope components and the basic network configuration of the DMP, DSE continues

the setup. The SDP is usually configured remotely by the DSE or can also be on-site, depending on the

customer network policy.

The software packages required to configure SDP are encapsulated in an ISO file. There are two ISO

files, the first ISO file contains the Operating System installer, and the second ISO file contains the

SDP-related packages. When the EM and DMP are shipped to the customer, the Service Engineers need

to bring these ISO files to be able to configure SDP. Figure 4 shows the high-level flow of the SDP

installation. The process starts when the DSEs have access to the DMP. Then, the DSEs mount two ISO

files containing the necessary software packages required to install the SDP. Once the SDP ISO file is

mounted, the DSEs then execute the initial setup script to start the configuration process. After that, the

DSEs need to fill in the configuration item through the prompt dialog. These steps (Steps 5 and 6 in

Figure 4) are the scope of the project. The complete step of this process can be accessed in Appendix

A.

Eindhoven University of Technology

8

A solution for configuring an Infrastructure-as-a-Service

Figure 4. High-level flow diagram of SDP installation

SDP uses Ansible [6] technology to set up multiple nodes in the infrastructur. A detailed reasoning and

the comparative study of this decision are reported in [7].

To understand the current system so that we could achieve the goals of this project, we conducted further

analysis on the following topics:

1. Containerization

2. IT Automation with Ansible

3. Current SDP Configurator

4. SDP deployment type

3.4.1. Containerization

Virtualization is the closest analogy we could use to understand containerization. A virtual machine is

an abstraction of the physical hardware. VMWare and VirtualBox are examples of tools to run several

virtual machines in a single physical server. Unlike virtual machines, container is an abstraction of the

application layer that packaged the source code and its dependency together [8]. The package is called

a container image. One of the examples of containerization technology is Docker. We also adopted

Docker to containerize the project. Figure 5 illustrates the differences between containers and virtual

machines.

Eindhoven University of Technology

9

A solution for configuring an Infrastructure-as-a-Service

Figure 5. Comparing containers and virtual machines [8]

3.4.2. IT Automation with Ansible

Ansible is an open-source IT automation tool that automates provisioning, configuration management,

application deployment, orchestration, and many other manual IT processes [9]. We can use Ansible to

automate various tasks such as installing software, automating daily tasks, and provisioning

infrastructure. Ansible works by sending a set of instructions that usually have been executed manually

to the target hosts using the Secure Shell (SSH) protocol.

Figure 6. Configuring multiple environments using Ansible [10]

Figure 6 illustrates how Ansible applies an infrastructure configuration to multiple hosts. Ansible

provides a mechanism to group a list of nodes we want to configure called an inventory. In addition,

the list of instructions is also grouped in a file known as a playbook. In the remaining paragraph of this

section, we describe in detail about the Ansible inventory and Ansible playbook.

Ansible Inventory

Ansible works against multiple nodes or hosts through an SSH connection unlike any other tool, which

is typically using agent software installed on each node. Ansible groups the list of nodes in a file known

Containers Virtual Machines

Eindhoven University of Technology

10

A solution for configuring an Infrastructure-as-a-Service

as inventory [6]. A list of nodes is specified in the inventory including its configuration property such

as the IP address, MAC address, memory, and storage size.

Ansible supports several file formats for its inventory file. The common formats are INI, YAML, and

JSON. In the context of this project, we focused on analyzing the inventory in JSON format since it is

used by ThermoFisher Scientific.

Currently, ThermoFisher Scientific uses a CLI application to construct the inventory. Figure 7 shows

the example of the SDP installer interface in a Bourne Again Shell (BASH).

Figure 7. Example of IP address configuration using BASH prompt dialog

To complete the inventory structure construction, the Service Engineers need to fill in the necessary

information into the BASH prompt dialog. Figure 8 shows the output of the Ansible inventory

constructed using the CLI application. The complete example of the Ansible inventory can be found in

Appendix G. The content of the Ansible inventory file in Appendix G was altered due to confidentiality

information. However, the structure of the inventory file is maintained. The inventory structure was

useful to get an overview of the target output of the SCA. In addition, the inventory structure influenced

the design of the SCA which is explained in the later chapter of this document.

Eindhoven University of Technology

11

A solution for configuring an Infrastructure-as-a-Service

Figure 8. SDP Ansible inventory structure snippet

Ansible Playbook

In the earlier section, we discussed an Ansible inventory, which is the list of hosts or nodes Ansible

configured. Once the inventory is defined, we can use the Ansible playbook to execute a set of

instructions to the corresponding nodes. This set of instructions is stored in an Ansible playbook also

known as a blueprint of the automation task [11]. Ansible playbooks are prewritten by the developers

and they can be executed with limited or no human involvement. As mentioned earlier that

ThermoFisher Scientific adopted Ansible technology to automate the IT infrastructure configuration

with the SDP. However, the implementation detail of the Ansible playbook is not in the scope of this

project but is useful to understand the SDP as a whole system.

3.4.3. The Existing SDP Configurator

SDP was built by adopting Ansible technology to orchestrate the IT infrastructure, such as defining the

number of hosts, configuring the network, installing service tools, and deploying the applications suites.

In Section 3.4.2 we explain the Ansible inventory and its structure. In Addition, we showed an example

of the current prompt dialog to configure the IP address of a node. In this section, we analyzed further

the most important component of the current CLI-based SDP configurator. Figure 9 describes the

component of the SDP configurator in the form of a domain model.

Eindhoven University of Technology

12

A solution for configuring an Infrastructure-as-a-Service

Figure 9. Software Delivery Platform (SDP) domain model

For the readability of the diagram, we only illustrated the most relevant component of the SDP

configurator. As shown in Figure 9, several components extend the SDP configurator, namely General,

VMWare, Ansible, Master, Storage, Worker, Windows, and Gateways. Each of those components is

responsible for configuring the corresponding node. For instance, the Worker component is containing

the script used to configure the worker nodes. The configuration of the workers such as the number of

the worker node, the network configuration of each node, and the storage. In addition, each component

uses UI.bash and Log.bash to construct the prompt dialog on the Command Line Interface and save the

logs of the configurator respectively.

The current SDP provides the installation forms using prompt dialog. The users could follow the

installation step and fill in the necessary information accordingly. However, with the limitation of the

BASH prompt dialog, some essential features are missing, such as there is no overview of how many

steps are required to complete the installation, navigating between the step is not possible, and the

summary of the installation result is limited. However, the business logic was already in place whereas

also needed to consider whether the component that was written in BASH script can be reuse or

completely re-write it into a new technology during the implementation of the prototype.

The current SDP configurator guides the Service Engineer in such a way as to complete the Ansible

inventory construction. Starts from the basic or general configuration, then the VMWare, and continued

with the Ansible and so on. At the end of the process, the SDP configurator exports the Ansible

inventory in a JSON format. Figure 10 shows a visual representation of the inventory file produced by

the CLI-based SDP configurator.

Eindhoven University of Technology

13

A solution for configuring an Infrastructure-as-a-Service

Figure 10. SDP infrastructure layer

3.4.4. SDP Deployment Type

For different Microscopes, the ThermoFisher Scientific engineers have to set up a different

configuration. The ThermoFisher Scientific engineers can select this configuration as a deployment

type. By selecting the right deployment type, the engineers only need to fill in any custom configuration;

the rest is already provided in the deployment template. This template provides the default values.

Therefore, the value may be changed depending on the needs.

Currently, the SDP configuration supports seven different deployment types: Advanced,

CoreImageFacilities, FleetManager, HeliosISS, Lifescience, MetriosML, and SDB. The deployment

types are defined based on what application is deployed on the cluster. The architect of the SDP

application team decides how many resources they need to have these applications running correctly on

the cluster. After that, the SDP infrastructure team creates the deployment template with the default

values in it, for instance, the number of Kubernetes workers, the number of Graphical Processing Unit

(GPU) available, and the number of ESXi servers.

SDP configurator scope

VMWare nodes configured

using SDP configurator

VMWare ESXi

Eindhoven University of Technology

14

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

15

A solution for configuring an Infrastructure-as-a-Service

4. Requirements Elicitation

This chapter explains the functional and non-functional requirements of the system. Section 4.1

describes the requirement overview. Section 4.2 provides an overview of the system's functional

requirements and how it is developed and prioritized. Finally, Section 4.3 shows the non-functional

requirements of the system.

4.1. Requirement Overview

Figure 11. Requirement overview

There are two categories of requirements for this project. The functional requirement is related to the

functionality that needs to be developed. The non-functional requirement is the requirement that defines

the system attributes. It also directs the design criteria of the system to satisfy these non-functional

requirements.

The following techniques were used to acquire requirements:

• Brainstorming

• Stakeholder interview

• Comparative study

• Prototyping

The brainstorming session was held during the initial stage of the project. We conducted the

brainstorming session starting by analyzing the problem and the possible solution to solve the problem.

We came up with several functional requirements at the end of the session as listed in the next section.

We also interviewed the relevant stakeholders to understand their needs. To choose the possible

technology to develop the prototype, we compared several technologies. The comparative study result

can be found in Appendix D. In addition, to understand whether a certain technology could help in

delivering the solution of this project, we developed a prototype to show and discuss with the

stakeholders the candidate technology in action.

Eindhoven University of Technology

16

A solution for configuring an Infrastructure-as-a-Service

We used MosCow prioritization to set the priority of the requirements [12]. Table 2 describes the list of

priorities we used in this project.

Table 2. MosCow prioritization

Must have Non-negotiable product needs that are mandatory for the team

Should have Important initiative that are not vital, but add significant value

Could have Nice to have initiative that will have a small impact if left out

Will not have Initiative that are not the priority for this specific time frame

4.2. Functional Requirements

Figure 12 illustrates the functional requirements with a must priority based on MosCow requirements

prioritization. For the readability of this report, we only show the must-have requirement in the figure.

The complete functional requirements can be found in Appendix B.

Figure 12. Functional requirements with a must-have priority

Eindhoven University of Technology

17

A solution for configuring an Infrastructure-as-a-Service

4.3. Non-functional Requirements

Figure 13 illustrates the non-functional requirements of the system. Prioritization of the non-functional

requirements also follows the MosCow prioritization. The title of the red box is the category of the

requirements. The detailed list of the non-functional requirements can be found in Appendix C.

Figure 13. Non-functional requirements of the system

Eindhoven University of Technology

18

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

19

A solution for configuring an Infrastructure-as-a-Service

5. Software Architecture and Design

This chapter describes the four different views and the use cases of the project based on the 4+1

architectural concept introduced by Phillipe Kruchten [13]. The detailed explanation of each view is

provided in each section of this chapter.

5.1. 4+1 Architectural View

To describe the architecture of the system, it is helpful to look at the best practices and industry

standards. The well-known and widely used architectural view is the 4+1 view model introduced by

Phillipe Kruchten [13]. The 4+1 architecture has multiple views to address separately the concerns of

the various stakeholders: end-user, developers, and system engineers. The main goal of the 4+1

architectural concept is to easily illustrate the system in four different views to several stakeholders,

which hold different roles in the company. Therefore, adopting the 4+1 architectural view in this project

was useful to show the different perspectives on describing the system.

The 4+1 architecture consists of four different views, which are:

• Logical view – shows the component (object) of the system as well as the interaction. In the

UML diagram, this view can be illustrated using a class diagram or object diagram.

• Process view – shows the processes of the system. This view can be illustrated using an activity

diagram.

• Development view – provides building block views of the system and describes the static

organization of the system modules. UML component and package diagram can be used to

illustrate this view.

• Physical view – shows the installation, configuration, and deployment of the system. A UML

deployment diagram can be used to illustrate this view.

The one from 4+1 architecture is Scenario. The Scenario is the use cases that are supported by the

system, which becomes the fifth view.

Eindhoven University of Technology

20

A solution for configuring an Infrastructure-as-a-Service

5.2. Use case

Figure 14 illustrates the use cases of the system. Detailed information on each use case can be found in

Appendix F. The detailed information includes:

• Actors

• Pre-condition

• Basic flow

• Post-condition

• Alternative flow

There are two actors mentioned in the diagram in Figure 14. The Service Engineer, the end-user of

SCA, has three use cases: clean install SDP, update SDP configuration, and visualize the configured

infrastructure from the specification in the generated inventory. The second actor is the Research and

Development (R&D) Engineer who can access all features of SCA.

Figure 14. Use case diagram of the system

Eindhoven University of Technology

21

A solution for configuring an Infrastructure-as-a-Service

5.3. Logical View

We developed the project in the modular structure to satisfy the NF-01 – Maintainability of the non-

functional requirement of the project. Figure 15 illustrates the high-level logical view of the SCA from

the layered architecture viewpoint. The system’s main components are the presentation layer, the

business logic layer, and the persistent layer. The dependency happened from the upper layer down to

the lower layer as shown the Figure 15.

Figure 15. Logical view in the layered architecture viewpoint

Table 3 contains the explanation of each component depicted in Figure 15. The information in the

table is helpful to understand the description and the functionality of each element of the diagram. The

detailed interaction between components is explained in the upcoming section.

Table 3. The component description

Component Layer Description Functionality

Entrypoint Presentation layer The entry point was developed using the

Flask web application framework. The

Entrypoint controller is responsible for

handling the HTTP endpoint while the

Forms are used to dynamically structure

the HTML form and its validation.

• Providing the UI of the

application

• HTTP endpoints

• Generating form and

validation

Domain

controller

Domain layer The domain controller or usually

mention as the service layer contains the

business logic of the application. The

main operations are stored in the Service

Python module while some common

operations are stored in the Utils Python

module.

• Instantiating the model

• Retrieving data from the

entrypoint

• Loading, Aggregating, and

saving data to the targetted

file format

• Establishing a connection to

an external server

Eindhoven University of Technology

22

A solution for configuring an Infrastructure-as-a-Service

Domain

model

Domain layer The domain models hold the structure of

the data. The Nodes represent the

domain object that is mentioned in the

Ansible inventory structure (See

Appendix G), such as the VMWare,

Ansible, Master, Worker, Gateways, and

Windows nodes.

There is also a Deployment Template

model that contains the predefined value

loaded from the template file.

• Structuring the data

• Acting as the Data Transfer

Object (DTO) of the system

Repository Persistent layer It is specifically designed to handle data-

related operations, for instance getting

and saving data to the data source.

The JSON Repository is responsible for

handling JSON data format. However,

the Fake Repository is used for testing

purposes so that we could test the system

without actually saving the JSON data

into a file.

• Reading data from the data

source

• Saving data to the targeted

file format

5.3.1. The Entrypoint

The Entrypoint provides direct services to the users to interact with the system. The SCA’s entry point

was built in a web-based application using the Flask framework. In Flask, there are three important

components to explain. First, the HTTP endpoints that handle HTTP requests were handled in the

controllers. This controller was different from the controller in the Domain layer. The controller in the

Entrypoint handles the GET and POST HTTP methods. It passes the data to the lower layer of the

system, which was the Domain layer for further operations such as aggregating and saving to the data

source. The next component is the Forms component. The Forms component was used to dynamically

structure the HTML form including its validation. With the Forms component, we could define the

attribute of the form such as the form name, label, placeholder, default value, and the data type we

wanted to validate. The Forms component could specify the validation for several criteria, such as

IPAddress, MACAddress, InputRequired, StringInput, and IntegerInput.

5.3.2. The Domain Controller

The Domain controller is the component that handles the behavior or the business logic of SCA. The

business logic for each configuration item was implemented in a separate module. We used the Python

module for VMWare, Ansible, Master, Workers, Gateways, Storage, Kubernetes, and Windows to

organize the code. We separated them in such a way as to increase the maintainability and the separation

of concerns of each module, which was also mentioned in the non-functional requirement of this project.

Eindhoven University of Technology

23

A solution for configuring an Infrastructure-as-a-Service

5.3.3. The Domain Model

The domain model represents the entity we need to configure, such as the VMWare, Ansible, Master,

Workers, Gateways, Storage, and Windows nodes. We used inheritance by having a parent class called

Node. In the Node class, we specified the common behavior that its subclasses could use. These

behaviors are the to_inventory() method used to export the object into JSON that comply the Ansible

inventory structure. In addition, the Node class has a method called from_inventory() to convert the data

retrieved from the Ansible inventory into a Python object. We used the Pydantic library to simplify the

conversion process from JSON format to Python object and vice versa. There was also a need to name

the field with the less technical terms (aliases) in the deployment template. These two feature is offered

by Pydantic out-of-the-box, so that function such as mapping the classes’ field and the deployment

template’s attribute is no longer required.

5.3.4. The Repository

The repository is the component we used to save and load the data from the JSON file. We saved the

data to the JSON file directly instead of to a database. In Section 3.4 we explained that the format used

for the Ansible inventory as well as the output of the SCA is a JSON formatted file. Therefore, removing

the database from the design was essential to avoid unnecessary dependency.

We implemented the repository in two different classes. Firstly, the JSONRepository was developed to

handle the JSON formatted data source. The operation includes reading and writing the data to

inventory.json. Secondly, the FakeRepository was implemented for testing purposes. When we tested

the code using the JSONRepository, we learned that there were some aspects to consider, such as

removing the generated inventory after the testing or making sure that the inventory file did not exist

which might affect the test. Using the FakeRepository, we no longer needed to check the state of the

inventory.json file beforehand. Thus, we could test the behavior of the code without actually reading or

writing the inventory file to the file system.

Eindhoven University of Technology

24

A solution for configuring an Infrastructure-as-a-Service

5.3.5. Component Interaction

Figure 16 shows how each component of the system interacts whenever there is a request from the user

while accessing the web page. The process starts when the entry point receives a request from the user.

The entry point controllers pass the request to the service to get the data. In the services, it instantiates

the domain model class and uses the repository to read data from the data sources such as an existing

Ansible inventory file or template data when instantiating the model. The instantiated domain model is

then called a Data Transfer Object (DTO) and the service returns it to the entry point controller. The

entry point controllers use the DTO to inject data when creating the Forms and finally show the

predefined form to the user on the web-based GUI.

Figure 16. A high-level overview of the interaction between the Entrypoint, the Domain, and the

Repository.

Eindhoven University of Technology

25

A solution for configuring an Infrastructure-as-a-Service

5.4. Process View

In the Process view, we explain several processes that are conducted by the users, such as accessing the

SCA web page and submitting, validating, and saving the form data into the Ansible inventory file.

There are also processes that happen in the background, for instance, the processes of SCA accessing

an ESXi server and an instance of the VMWare.

5.4.1. Accessing SCA Web Page

Figure 17 illustrates the flow of accessing the SCA webpage. There are three actors shown in the activity

diagrams. These actors are the user, the Presentation layer, and the Domain layer. The process starts

when the users open a web browser and access the SCA webpage. The SCA Presentation layer initializes

the form when the browser hits the endpoints. The Flask controller initializes the form and invokes the

service in the Domain layer to load the existing data from the inventory. After that, the service checks

whether the existing inventory file exists. If the inventory does not yet exist, the data is loaded from the

default value and the template. The controller continues the form construction by populating the return

value from the service. Finally, the controller renders the HTML template as an HTTP response to

complete the process.

Figure 17. Process view accessing the webpage

5.4.2. Submitting and Saving the Form Data

Figure 18 illustrates the process of submitting the Form. Similarly, there are three actors in this process:

the user, the Presentation layer, and the Domain layer. The starting point of this process is when the

users hit submit button. This action then triggers the POST endpoint in the Presentation layer to validate

the Form. Form validation logic was defined in the corresponding Form classes. The submitted Form is

validated based on the validation criteria, for instance, InputRequired, IPAddress, MACAddress,

Password, String, and Integer. Whenever the validation returns success, the data is parsed and saved

into the JSON file; the controller sends a redirect response with a success message. On the contrary, the

controller renders the same Form but includes the error messages on each failing field.

Eindhoven University of Technology

26

A solution for configuring an Infrastructure-as-a-Service

Figure 18. Process view submitting the form

5.4.3. Establishing Connection to an ESXi Server

The SCA needs to access external sources to get the data. The data are the MAC addresses of one of

the VMWare instances, the hardware model of the ESXi server, and the available Drive Identifier of

the ESXi server. To illustrate this scenario, Figure 19 provides information on accessing the ESXi to

acquire hardware model data to provide the default value for the VMNIC (see the Glossary) for the

configuration.

We leveraged the Pyvmomi library to establish a connection to an ESXi server through Python code.

The process starts when the users access the VMWare configuration page on the SCA. Then, the users

are required to fill in the ESXi hostname, username, and password as part of the configuration item.

After that, the SCA retrieves the information through the HTTP handler in the Entrypoint and calls the

get_vmnic() method in the service, and passes the hostname, username, and password as parameters.

Once a connection is established, we could get data from the ESXi, for instance, the hardware model

and the available drives. In this case, we needed to know the hardware model of the ESXi server and

use the hardware model to get the VMNIC in the prepared configuration file. The configuration file

contains a mapping between the hardware model and the default VMNIC that is used for the VMWare

configuration.

Eindhoven University of Technology

27

A solution for configuring an Infrastructure-as-a-Service

Figure 19. The Sequence diagram of accessing the ESXi server from the SCA

5.4.4. Accessing VMWare Instance Using SSH

Another process that requires and external sources is acquiring the MAC addresses of the Ansible node

as shown in Figure 20. Ansible node is a VMWare instance that is pre-configured by the SDP as the

host of the SDP configurator.

Whenever the users open the Ansible configuration page on SCA, the users are supposed to see two

MAC addresses on the dropdown menu. These MAC addresses were not generated but should be

acquired from the Ansible node using an SSH connection. After the entry point’s controller receives the

GET request, the get_mac_addresses() function is triggered to access the Ansible node and get the MAC

Addresses of that node. We used the Paramiko library to implement the SSH connection mechanism

because it offers a high-level implementation of establishing an SSH connection that is ready and easy

to use in the SCA source code. The detailed sequence of this process can be observed in Figure 20.

Figure 20. The Sequence diagram of accessing the k8s-ansible node server from the SCA

Eindhoven University of Technology

28

A solution for configuring an Infrastructure-as-a-Service

5.5. Development View

Figure 21 describes the component organization of the SCA. On the client side, the users could access

the SCA from any browser such as Chrome, Firefox, or Edge. On the server side, the components are

organized into different groups of components.

Figure 21. Development view diagram

The Flask application acted as the entry point of the system. We have the Web Server Gateway Interface

(WSGI) using the Waitress Python library. This component keeps the SCA web application running.

The presentation layer contains the HTML and static files such as JavaScript and CSS files. The next

component is the HTTP layer, which contains several endpoints of the Flask application. The endpoints

support GET and POST HTTP methods. Lastly, we used the Forms component to generate the HTML

form input. The library used to create the Form component is Flask-WTF.

The Service Layer is the business logic of the SCA. The behaviors, including instantiating the model,

updating the model instance attribute, and exporting the model into JSON, are stored in the Service

layer. Additionally, SCA requires establishing a remote connection to remote hosts. This connection is

used to acquire data during the SDP configuration process.

In conclusion, separating the entry point, business logic, and domain model improved the system’s

maintainability, separation of concern, modularity, and extensibility.

Eindhoven University of Technology

29

A solution for configuring an Infrastructure-as-a-Service

5.6. Physical View

Figure 22 shows the Physical view of SCA using the UML Deployment diagram. There are two devices

required to deploy SCA. The first device is the Client PC. We tested SCA using three browsers, namely

Chrome, Firefox, and Edge. The second one is the ESXi server. There are several instances inside this

ESXi server running, including the Ansible node where the SCA is running as a Docker container.

Docker is the only requirement needed to run an SCA. Additionally, we needed to ensure that the SCA

container runs with an appropriate network configuration and that the volume is correctly bound.

Figure 22. Physical view deployment diagram

Eindhoven University of Technology

30

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

31

A solution for configuring an Infrastructure-as-a-Service

6. Implementation

This chapter describes detailed information on SCA implementation. Section 6.1 describes the overview

of the implementation of the system. Section 6.2 provides information on how we developed the User

Interface (UI) mockups. Section 6.3 explains the SCA’s features in detail. Section 6.4 provides

information about the third-party component we used in the project. Section 6.5 illustrate the test

automation and continuous integration setup of this project. Finally, Section 6.6 depicts the process of

containerization of the solution.

6.1. Overview

The existing configurator was built in BASH scripts and executed as a CLI-based application. The logic

of certain processes was defined in the scripts. Within the ThermoFisher SDP team, there was also a

need to migrate from the procedural approach given the nature of a CLI-based application into an object-

oriented way of structuring the logic of the configurator. Therefore, according to the architectural

decision that we leveraged Python with Flask framework to develop the SCA, we re-wrote the logic

that was written in a BASH script into Python code with an object-oriented approach. As a result, the

code became easier to read, maintain, and extend due to the flexibility offered by Python with an object-

oriented approach, such as modular, simpler, and minimal compared to the BASH script.

6.2. User Interface (UI) Mockups

To align with the user’s expectations, we developed the mockups using Figma. Figma is a web-based

application that can be used collaboratively and interactively to develop UI mockups [14]. In Figma,

we can develop mockups with some behavior, such as navigating to other pages when the users click a

button. Thereby, we can communicate with the end users more effectively by having mockups.

Figure 23 depicts the UI mockups used to present the idea of the SCA to the end-users.

Figure 23. SCA UI mockups with Figma

Eindhoven University of Technology

32

A solution for configuring an Infrastructure-as-a-Service

Figure 24 is one example of the form UI mockup. The UI mockup illustrates how the worker page

would be implemented for the end users. This approach was very effective in gaining feedback from

the end users.

Figure 24. Worker form UI mockup

6.3. SCA Implemented Functionalities

In this section, several features of SCA are explained. Based on the use case diagram in Section 5.2, the

Service Engineers have several use cases, which lead to the design decision during the project. The

SCA consists of the following features:

1. Configuring SDP for fresh install

2. Updating an existing configuration

3. Visualizing the inventory

4. Configuring additional devices (NVMe)

Based on the mockups developed in Figma (see Section 6.2), we implemented the HTML and CSS code

to accommodate the agreed mockups. Figure 25 shows the example of the comparison between the

mockup developed in Figma and the actual UI implementation.

Eindhoven University of Technology

33

A solution for configuring an Infrastructure-as-a-Service

Figure 25. Worker configuration page mockup and actual UI implementation

6.3.1. Configuring SDP for Fresh Install

The initial configuration in the SDP CLI-based application was carried out in a guided step BASH

prompt dialog. The users can follow the step and fill in the necessary information during the process.

However, users cannot go back to the previous step to change the value whenever an invalid value is

filled in. Also, the input value is not validated, which could lead to unintended behavior from the system

whenever an invalid value is provided.

SCA was developed in a way to satisfy this requirement. The easy-to-use keyword was the primary

purpose of this initiative. Therefore, we developed SCA, especially for the Initial SDP

Configuration feature in a wizard step GUI. Navigating back and forth through the wizard form became

an easy task. In addition, we added a validation mechanism to prevent invalid input from the users.

Figure 26 depicts the wizard step GUI of SCA.

The Mockup The Implemented UI

Eindhoven University of Technology

34

A solution for configuring an Infrastructure-as-a-Service

Figure 26. Wizard step form

6.3.2. Updating an Existing Configuration

In SCA, the user can reopen the existing Ansible inventory file to modify the configuration value, such

as the internal IP Address for the worker node, GPU memory, and storage size. This feature was also

developed in a wizard form similar to the initial install feature. Figure 27 shows the home page if an

existing Ansible inventory file exists. The user then can choose either to update or to create a new

Ansible inventory from the menu.

Figure 27. SCA home page for update

Step-1 Step-2

Remaining steps

Eindhoven University of Technology

35

A solution for configuring an Infrastructure-as-a-Service

6.3.3. Visualizing Ansible Inventory

SCA presents the generated Ansible inventory file on the visualization page once the wizard step form

reaches the last step. The goal of the visualization page is to illustrate the generated Ansible inventory

file. This file was used to configure the infrastructure by executing the Ansible Playbook [15]. We

developed two visualization options. One is in a table view as shown in Figure 28. The other one is in

a tree view as depicted in Figure 29.

Figure 28. Inventory visualization in table view

Figure 29. Inventory visualization in a tree view

Eindhoven University of Technology

36

A solution for configuring an Infrastructure-as-a-Service

6.3.4. Configuring Additional Devices

SCA has additional features grouped in the Quick Action menu. This menu provides a particular use

case that is frequently conducted by the Service Engineer, such as configuring Non-Volatile Memory

Express (NVMe) storage for worker and storage nodes and updating the IP addresses of the gateway

and storage nodes. As discussed with the stakeholders, a more specific use case might be added to the

quick action menu to help the Service Engineer easily navigate to support the customer. Figure 30

illustrates the SCA quick action menu.

Figure 30. SCA quick action menu

Figure 31 shows the NVMe storage configuration for the worker nodes. This form can be accessed

through the quick action menu on the SCA home page.

Figure 31. NVME configuration for workers

Eindhoven University of Technology

37

A solution for configuring an Infrastructure-as-a-Service

6.4. Third-Party Components

The project was developed using the Python programming language. We structured the project in such

a way as to improve the modularity of the system. The logical representation of the system can be found

in Chapter 5 (Software Architecture and Design).

Flask is a microframework with a minimal library needed to build a web application. Therefore, we

needed to install additional libraries to satisfy this project's requirements and use cases. Table 4 provides

information about the additional library of this project.

Table 4. Python libraries used in the project

Library Name Description

Flask-WTF Simple integration of Flask and WTForms. This library is used to generate the

HTML form dynamically [16].

Pydantic Pydantic offers data validation and setting management for the domain model.

Pydantic also has some features specific to this project, such as export to JSON,

field aliases, and field validation [17].

Pylint Pylint is a static code analyzer. ThermoFisher Scientific requires any software

developed in Python to convey the flake8 code style. Therefore, Pylint is one

of the best choices [18].

Toolz Toolz is a set of utility functions for iterators, functions, and dictionaries. We

used Toolz library to make a query from a dictionary datatype. Toolz is a

powerful utility library to support this functionality of the SCA [19].

Pyvmomi Pyvmomi is the Python SDK for the VMware vSphere API that allows to

manage ESX, ESXi, and vCenter. The SCA used Pyvmomi to acquire

information from the ESXi, such as the hardware model and the available

storage Drive ID [20].

Paramiko Paramiko library enables SSH calls from the SCA Python code. SSH is used to

establish a connection to the remote host, such as the k8s-ansible VMWare

instance to acquire the available MAC addresses [21].

6.5. Continues Integration (CI)

We employed Gitlab development infrastructure for source code repository, configuration management,

and test automation. We developed scripts that will get triggered to build and tests the code

automatically when the code is pushed to Gitlab. This practice is known as Continuous Integration (CI)

[22]. The process starts when the developers push the code to the repository. This action triggers the

prepared scripts, such as building the docker image and running a set of test scenarios. The automation

jobs were divided into stages: static analysis, unit testing, and functional testing. We considered

separating the stages because we have a different strategies to test the code on a different level.

Whenever the tests are completed, the SCA Docker image is then published to the ThermoFisher

Scientific Docker image artifactory. However, if the job failed due to an unsuccessful test, the developer

was notified through email. The flow of this process is illustrated in Figure 32.

Eindhoven University of Technology

38

A solution for configuring an Infrastructure-as-a-Service

Figure 32. SCA continuous integration activity diagram

6.6. SCA Docker Container

During the SCA development process, it was required to run SCA in several environments, for instance,

the developer’s local computer and testing environment during the CI process on Gitlab. However,

several dependencies were required to install before we were able to run SCA. Dealing with this

situation, we chose Docker technology to pack the SCA and its libraries. The application’s code and

dependency/library are packed into a standard Docker image format [23]. This Docker image is

executable into a Docker container, which is lightweight and self-contained that preserves everything

needed to run the application, including libraries, system tools, code, and runtime. Since all

requirements needed to run SCA are packaged together, we could run the SCA in any environment

regardless of the installed library or tools in that environment.

We used Docker to package the SCA’s code and dependency into a Docker image. The SCA Docker

image is built in the CI pipeline and then pushed to the ThermoFisher Scientific image registry. In

addition, we used Docker to run the functional testing and the VCenter Simulator (VCSim) to simulate

the ESXi server. During testing, SCA is tested against this simulator to avoid external dependency, such

as connecting to an external server.

Eindhoven University of Technology

39

A solution for configuring an Infrastructure-as-a-Service

Figure 33. High-level overview on how SCA is being part of the SDP ISO file release

Figure 33 shows the process of how SCA will be added to the SDP ISO file during the SDP build

process. This process illustrates the power of Docker for shipping the SCA with less additional library

needed.

When the SDP build job is triggered, it starts the process such as pulling the necessary packages and

packing them into the ISO file (steps 1 and 2 in Figure 33). This build process also pulls the SCA image

stored in the ThermoFisher Scientific image registry that was built and published during the SCA’s CI

process (see Section 6.5). Then, the software packages including the SCA docker image are packed into

an SDP ISO file (step 3 Figure 33).

Up to this step, the SCA is part of the SDP bundled in the ISO file. We could technically run SCA as a

Docker container once the Docker daemon is installed. The next step is when the Service Engineers

start the SDP installation using the SDP ISO file. The script will push the SCA image from the ISO file

into the SDP image registry (steps 4 and 5 in Figure 33). Then, by having the SCA image in the SDP

image registry, it can be run as a docker container to continue the process of generating inventory (step

6 in Figure 33).

1 2 3 4 5 6

Eindhoven University of Technology

40

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

41

A solution for configuring an Infrastructure-as-a-Service

7. Verification and Validation

Verification is a process of evaluating a system or component to determine whether the software

satisfies the defined requirements [24]. In this project, we verified and validated the different levels of

deliverables with different strategies. Table 5 provides information on a different levels of the artifacts

and the strategies we used to perform the tests.

Table 5. Verifiable artifacts and the test strategy

Artifacts Testing Strategy

Source code Static analysis using Flake8 for checking the code base against standard

Python coding style (PEP8) [25] [26].

Functions and classes Unit test using Pytest library [27].

System functionalities Functional test using Cypress with Cucumber plugin [28] [29].

Business requirements Live demonstration with the stakeholders during weekly and monthly

progress meetings. The received feedback was added to the next

development cycle.

7.1. Static Analysis

Static analysis is a way to validate the source code whether it complies with the standard coding pattern

of a certain programming language. In this project, we used Python programming language and

leveraged PEP8 [26] as a standard reference. Our goal in conducting static analysis was to analyze the

code so that we could detect vulnerabilities, detect bugs in the early stages, improve the code quality,

and improve the consistency of the code.

We investigated several libraries as a candidate technology during the project, for instance, Pylint,

Flake8, Black, and Mypy. Based on the discussion with the SDP team, ThermoFisher Scientific uses

Flake8 as the standard library used specifically for the Python project, which is also adopted in this

project.

We added a static analysis stage in our CI pipeline to make sure the code satisfied the company Python

code styling standard before proceeding to the further step. We explain the test automation and CI

pipeline in Section 7.4 of this chapter.

7.2. Unit Testing

Unit testing is a way to validate the smallest piece of the system. In the context of this project, we used

a unit testing strategy to test the functions and classes. As mentioned in Chapter 6 (Implementation),

we implemented the project in a modular structure such as separating the HTTP layer with Flask and

the service layer. This approach made the testing part easier since the code was isolated based on its

main behavior, for instance, there is a separate module to handle the VMWare configuration and Storage

configuration.

During the project, we used the Pytest library for unit testing. We decided to use Pytest because it is a

mature testing framework with good documentation. We considered writing tests in Pytest was also

Eindhoven University of Technology

42

A solution for configuring an Infrastructure-as-a-Service

relatively simpler because it follows a functional programming style. We developed several test

scenarios associated to its module as shown in Figure 34.

Figure 34. Unit test scenarios implemented in Pytest

The test is fully automated once we pushed the code to the Gitlab repository, we configured a set of

scripts executed by the Gitlab runner in the gitlab-ci.yaml file. The explanation about the test automation

is in Section 7.4.

7.3. Functional testing

The goal of the project is to create a visual interface for the less-trained engineer to interact with the

SDP installation. We wanted to verify each User Interface (UI) and its functionality; we developed

several functional test scenarios to make sure the functionality of SCA works as intended. For

automated functional testing, we adopted the Cypress UI technology as the SDP team already has good

experience with the technology. We explained how we set up and run Cypress in the following section.

7.3.1. Setup Cypress

Cypress is an open-source UI testing framework. The unique characteristic of Cypress was that we were

able to have a plugin called Cucumber. Cucumber is a syntax library so we were able to use Gherkin

syntax for writing the test. Based on [30], writing tests is considered an expensive activity in terms of

time and effort. However, after configuring the test with Cucumber using the Gherkin syntax, we could

reduce the complexity of defining the test scenario. Figure 35 shows how we specify the test in Gherkin

syntax of the Cucumber library.

Eindhoven University of Technology

43

A solution for configuring an Infrastructure-as-a-Service

Figure 35. Example of test scenario written in Cucumber Gherkin syntax

In Cypress, we separated the test as a Feature. A Feature contains one or multiple Scenarios. In the

Scenarios, we defined the step to test the functionality of the application. For instance, there was a

scenario to test the worker configuration. When the test was executed, it actually accessed the SCA’s

worker configuration page, filled in the necessary information for the worker, and submitted the data

into the inventory file. This process’s steps were defined in the test scenario and fully automated with

no or limited human involvement.

7.3.2. Running Cypress

Cypress can be executed either with the Cypress web portal or headless run for automation purposes.

When running Cypress in headless mode, it runs the test scenario in the background and only shows the

result as standard output on the CLI. For local testing purposes, meaning that the Cypress was executed

on the developer’s local PC, we used the Cypress web portal. The Graphical User Interface of Cypress

is shown in Figure 36.

Figure 36. Cypress running in an interactive mode

Eindhoven University of Technology

44

A solution for configuring an Infrastructure-as-a-Service

For automation purposes, we run Cypress in a headless mode in the Gitlab CI. If we run Cypress in

headless mode, Cypress only exports the test result as standard output on the console. Figure 37

shows how Cypress runs in a headless mode.

Figure 37. Cypress running in a headless mode

7.4. Test Automation

Testing is considered a very expensive process and consumes one-third to one-half of the cost of a

project [30]. Also, the source code was continuously changed during the project and needed to be

verified over time. To tackle these concerns, we configured a test automation pipeline using Gitlab

CI/CD. In Figure 38, we set up three stages in the Gitlab CI/CD pipeline based on the testing strategies

we implemented.

Figure 38. Pipeline stages on Gitlab CI/CD

The overview of the CI pipeline is described in Section 6.5. In Figure Figure 39, we described the detail

of the functional testing stage. Whenever the static analysis and unit testing had been passed, the next

step was executing the functional testing. In the functional testing stage, we built the Docker images:

The VCSim Docker image, which is the VCenter/ESXi simulator, the SCA Docker image, and the

Eindhoven University of Technology

45

A solution for configuring an Infrastructure-as-a-Service

Cypress Docker image. Technically we could execute the Cypress test without building the image.

However, we decided to build the Docker image because we wanted to avoid unnecessary dependency

that might cause problems when executing the pipeline.

Once we have the Docker images, first we run the container of the VCSim, the SCA, and the Cypress.

The Cypress container executed the test against the running SCA container through HTTP on port 5000.

There was also a test scenario where the SCA was required to access data to the ESXi, here we used the

simulator so that the SCA container had no dependency on an external ESXi server but the simulator.

Figure 39. The detailed overview of the functional testing stage

7.5. Stakeholder Validation

We utilize weekly meetings and monthly meetings with the stakeholders to inform the progress of the

project. During the meeting, we also had demo sessions with the stakeholders to show the latest version

of the prototype. Thus, the SCA was validated continuously, and the received feedback was added to

the next development cycle. Apart from the live demo during meeting, we deployed the SCA in the

development and testing environment and shared the access to the users. Therefore, the users had more

flexibility to interact with the SCA. They accessed and explore the features to see how the SCA could

fulfill their needs and provided a valuable feedback to improve the SCA.

Lastly, we conducted a final check with the users, which is the Service Organization team. During the

session, we demonstrated the latest version of the SCA and continued with exploratory testing

conducted by the users to validate the features implemented in SCA against the requirements and the

user’s expectations. We provided a survey to the users to see their opinion about the prototype. The

result of the survey is described in Table 6. The score ranges from one to five with the higher score

showing a better result. The score indicates how confident the users are in terms of easy-to-use,

usability, and the UI layout of the SCA.

Eindhoven University of Technology

46

A solution for configuring an Infrastructure-as-a-Service

Table 6. Summary of the survey result

Name Easy-to-use

(1 - 5)

Usability

(1-5)

UI Layout

(1 – 5)

Overall Experience

1 Kieran

Ham

5 4 5 Very positive, it's a big improvement for somebody

who is not as familiar with terminal.

2 Ataur

Rahman

5 5 5 Easy to use and navigate. The visualization at the end

is nice and also provides capability to edit the whole

configuration if needed.

3 Gabriel

Lee

5 5 5 easy to use and good to have additional feature for

specific modification items, things like...modifying

customer IP...etc.

4 Jordy Plug 4 5 5 Good and smooth experience. Easy to understand and

work with.

From the survey result we concluded that the SCA was able to solve the problem that occurs due to the

limitation of a CLI-based application. The SCA provides features that the users can confidently operate

to configure the SDP. The SCA was implemented with a clear and simple UI layout, and considered

easy to operate by the lesser experience engineers that were not familiar working with CLI-based

application.

Eindhoven University of Technology

47

A solution for configuring an Infrastructure-as-a-Service

8.Project Management

8.1. Way of Working

The project was conducted in ten months, from January to October 2022. We divided the project period

into four phases: Planning and Familiarization, Design and Implementation I, Design and

Implementation II, and Finalization.

The project was managed using the Scrum approach, the progress of reaching the goal constantly relies

on feedback. In addition to the Scrum process, we scheduled weekly progress and retrospective meeting

with the company supervisor to keep track of project progress in a short-term period. Additionally, we

conducted two regular meetings every month. The first one was held with the Project Steering Group

(PSG) member, which discussed the high-level plan and progress of the project. The other one was a

monthly progress meeting with the stakeholders including the potential user from the Service

Organization. Nevertheless, to maintain the collaboration with the SDP team, we planned an ad-hoc

meeting when needed.

The artifacts and the events of Scrum are mentioned in the next sub-section.

8.1.1. Scrum Artefact

• User story was used to define every requirement.

• All user stories were kept in the backlogs.

• Each user story was estimated using story points based on its difficulty.

• Each sprint had sprint goals and define during the sprint planning.

• Each user story had a proper, clean, clear, and concise description.

8.1.2. Scrum Events

• The project was executed in sprints, each lasting two weeks, consisting of ten working days.

• Sprint planning was conducted prior to starting each sprint.

• The story point of the user story was estimated during the sprint planning.

• The priority of the user story was estimated during the spring planning.

• The goals of the sprint, if applicable, also the deliverables of the sprint were defined during

the sprint planning.

• Progress report with company supervisor was conducted in a regular weekly meeting.

• Progress report with stakeholders was conducted in a regular monthly meeting.

Eindhoven University of Technology

48

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

49

A solution for configuring an Infrastructure-as-a-Service

8.2. Work Breakdown Structure

To help the planning process, we structured the deliverable description from the higher to the lower level in the Work Breakdown Structure (WBS). Figure 40

shows the WBS used during the project to provide the detailed deliverable items of each deliverable category.

Figure 40. Work Breakdown Structure

Eindhoven University of Technology

50

A solution for configuring an Infrastructure-as-a-Service

8.3. Milestone Trend Analysis

We listed the deliverable in the Work Breakdown Structure to provide a better insight into what we were planning to deliver. However, to understand the

timeline on when a certain deliverable needed to be delivered, we were using Milestone Trend Analysis (MTA). MTA is a method to keep track of milestones

weekly. With MTA, we could detect a potential delay that might affect the progress of the project. Figure 41 shows the MTA used in this project.

Figure 41. Milestone Trend Analysis. TR stands for Technical Report and UC stands for Use Case

0

5

10

15

20

25

30

35

40

45

P
LA

N
N

ED
 T

IM
E

(W
EE

K
S)

ACTUAL TIME (WEEKS)

Project management plan Final report [TR] First draft [TR]
System Architecture and Design[TR] Implementation Section [TR] Verification & validation Section [TR]
Conclusion Section [TR] SCA prototype version 1 (UC-1, UC4) SCA - Initial SDP configuration
SCA - Deployment type management SCA prototype version 2 (UC-2, UC-3, UC4) SCA - Update/upgrade Infrastructure configuration
SCA - Infrastructure configuration visualization Analysis reviewed Stakeholder analysis reviewed
Problem analysis reviewed Domain analysis reviewed Requirement analysis reviewed
Use cases reviewed System architecture Logical view
Process view Development view Physical view
Final documentation Deliverables

Eindhoven University of Technology

51

A solution for configuring an Infrastructure-as-a-Service

8.4. Infrastructure Plan

During the project, ThermoFisher Scientific provided environments to support the project, such as a

Gitlab repository, Development server, and Docker image registry. There were also several tools we

used to manage the project, for instance, Confluence, Jira, MS Teams, and MS OneDrive.

All the project-related documents were stored in Confluence in the ThermoFisher Scientific server. The

infrastructure used for this project is the following:

• Confluence was used to store the project documentation.

• Jira was used to monitor the SCRUM board and maintain backlog, which is hosted in

ThermoFisher Scientific sever.

• MS Teams was used to communicate with the stakeholders and the coaches of this project.

• MS OneDrive was used to store the project artifact such as documents, presentation files, and

notes. Some important documents were also stored/linked to Confluence page.

• VMware ESXi was used for the development and testing environment.

The tools used to execute this project are:

• WSL2 was a Linux environment hosted on the local computer.

• Visual studio code was used to write the code of the chosen programming language.

• Gitlab was used to store the codebase.

• Gitlab CI/CD was used to make the automation pipeline.

• Docker was used as a local isolated environment to run the app in the development mode.

8.5. Risk Management

We keep track of the potential risk in a risk register. Table 7 shows an example of how we structured

the risk register in a table format. The ID column is the risk identifier. The Category field contains the

category of the risk, for instance, Domain knowledge means that the risk is related to understanding the

domain knowledge of the system. The Risk column describes the detailed description of the risk.

Columns L, I, and P are Likelihood, Impact, and Priority respectively. The value of columns L and I

range from 1 to 5 which indicate the severity of a risk. The higher the number the more priority the risk

had. To calculate the priority score, we multiplied the Likelihood and the Impact. We used color-coded

ranging from green, yellow, and red to easily notice the highest priority risk.

We discussed the newly identified risk and the mitigation plan during the PSG meeting to gain feedback.

The complete list of risk registers can be found in Appendix E.

Table 7. Risk Register

ID Category Status Risk L I P Mitigation

R1 Domain

knowledge

Mitigated A steep learning

curve of the

current system

4 4 16 • Define the system of interest

• Define the system boundary

• Set priority

Eindhoven University of Technology

52

A solution for configuring an Infrastructure-as-a-Service

Eindhoven University of Technology

53

A solution for configuring an Infrastructure-as-a-Service

9.Conclusions

9.1. Summary

ThermoFisher Scientific is shifting into a managed services business model. When the customer

purchased an EM, ThermoFisher Scientific continuously provides services to maintain the EM and its

software up and running. With an Infrastructure-as-a-Service named SDP, ThermoFisher provides

highly-configurable yet adjustable services according to the customers’ needs. The SDP helps

ThermoFisher Scientific delivers the related software to its customer seamlessly. Currently, the Service

Engineers configure the SDP on the customer site using a CLI-based application. Based on the

explanation in Chapter 3 – Problem Analysis, we concluded that there is a need to visualize the SDP

configurator so that broadens the opportunity for the lesser experienced Service Engineers to configure

the SDP.

We investigated several technologies to develop the system. The decision upon this investigation was

also reviewed together with the SDP team. The comparative study result can be found in Appendix D.

As a result, we designed and implemented a web-based application called SDP Configurator

Application (SCA). The features of SCA (see Chapter 6 – Implementation), allow the users to configure

SDP, which is a highly-configurable Infrastructure-as-a-Service for a fresh install, update/upgrade the

existing configuration, visualize the existing configuration, and allow the system to pre-defined the

value in a deployment template. These features fulfilled the stakeholders’ needs based on the use cases

that are explained in Section 5.2 – Use Cases.

To make sure that we verify the system against the software development standard and satisfied the

NFR-3 – Testability, we implemented automatic testing explained in Chapter 7 – Verification and

Validation. In addition, we deployed the SCA on the ThermoFisher Scientific environment and shared

the access with the potential users. The users investigated and explored the features offered by the SCA.

In addition, the users provided positive feedback through the prepared survey that the delivered

prototype was easy-to-use and guided the lesser experienced engineer to configure the SDP.

9.2. Recommendation and Future Work

The SDP Configurator Application (SCA) offers the visualization to configure the SDP. With respect

to improving the SCA, we recommend the following items to be considered in the future:

9.2.1. Integration

We implemented the SCA and its Continuous Integration pipeline. The stage in the pipeline includes

the static analysis, the unit testing, the functional testing, and the building and publishing the docker

image to ThermoFisher Scientific’s Docker image registry. However, Continuous Deployment is not

implemented in this project. Therefore, we recommend integrating the SCA with the SDP release

mechanism so that the SCA can be accessible by the Service Engineers on the customer site.

9.2.2. Ansible Playbook Execution

The Service Engineers can use the SCA to configure the SDP by generating the Ansible inventory file.

However, the installation of the configured item is conducted by executing the Ansible playbook (see

Eindhoven University of Technology

54

A solution for configuring an Infrastructure-as-a-Service

Section 3.4 – Domain Analysis). This process is carried out by executing the command on the CLI

application. Therefore, there is a manual step to switch from the web browser to the CLI-based

application to apply the configuration. We recommend adding a feature to execute and monitor the

Ansible playbook execution so that the installation of the SDP can be monitored through the SCA in a

web browser.

Eindhoven University of Technology

55

A solution for configuring an Infrastructure-as-a-Service

Bibliography

[1] Thermofisher Scientific, "Thermofisher Scientific - Brands.," [Online]. Available:

https://www.thermofisher.com/nl/en/home/brands.html. [Accessed 02 March 2022].

[2] V. A. Pezeshkian, "Designing a Solution for monitoring and managing multi-cloud on-premise

deployments," Eindhoven University of Technology, 2020.

[3] ThermoFisher Scientific, "High-throughput cryo-EM epitope mapping of SARSCoV-2 spike

protein antibodies using EPU Multigrid," [Online]. Available:

https://assets.thermofisher.com/TFS-Assets/MSD/Reference-Materials/cryo-em-epitope-

mapping-wp0031.pdf. [Accessed 24 August 2022].

[4] J. M. Tomasz, "Chapter 1 - Introducing Oracle Cloud Infrastructure," in Practical Oracle Cloud

Infrastructure : infrastructure as a service, autonomous database, managed Kubernetes, and

serverless, Berkeley, CA, Apress L.P, 2020, p. 27.

[5] A. S., "That! Company," [Online]. Available: https://www.thatcompany.com/why-is-knowing-

the-command-line-important. [Accessed 01 August 2022].

[6] Red Hat Ansible, "Ansible Documentation," [Online]. Available:

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html. [Accessed 01

September 2022].

[7] G. d. A. Calheiros, "Designing an infrastructure for On-Premise Software Deployment,"

Eindhoven University of Technology, Eindhoven, 2019.

[8] Docker Inc., "Docker," [Online]. Available: https://www.docker.com/resources/what-container/.

[Accessed 01 September 2022].

[9] Red Hat, Inc., "What is Ansible?," 2022. [Online]. Available:

https://www.redhat.com/en/technologies/management/ansible/what-is-ansible. [Accessed 01

August 2022].

[10] IBM, "End-to-End Application Provisioning with Ansible and Terraform," [Online]. Available:

https://www.ibm.com/cloud/blog/end-to-end-application-provisioning-with-ansible-and-

terraform. [Accessed 01 September 2022].

[11] Red Hat, Inc, "What is an Ansible Playbook?," Redhat, 2022. [Online]. Available:

https://www.redhat.com/en/topics/automation/what-is-an-ansible-playbook. [Accessed 01

August 2022].

[12] ProductPlan, "Product Plan," 2022. [Online]. Available:

https://www.productplan.com/glossary/moscow-prioritization/. [Accessed 01 March 2022].

[13] P. B. Kruchten, "The 4+ 1 view model of architecture.," IEEE software 12.6, 1995.

[14] Figma, "Figma," [Online]. Available: https://www.figma.com/. [Accessed 01 March 2022].

[15] Red Hat, Inc., "What is Ansible Playbook?," 2022. [Online]. Available:

https://www.redhat.com/en/topics/automation/what-is-an-ansible-playbook. [Accessed 01

August 2022].

[16] WTForms, "Flask-WTF Documentation," [Online]. Available: https://flask-

wtf.readthedocs.io/en/1.0.x/. [Accessed 01 August 2022].

[17] Pydantic, "Pydantic Documentation," [Online]. Available: https://pydantic-docs.helpmanual.io/.

[Accessed 01 August 2022].

[18] Logilab, PyCQA and contributors, "Pylint Documentation," [Online]. Available:

https://pylint.pycqa.org/en/latest/. [Accessed 01 August 2022].

[19] M. Rocklin and J. Jacobsen, "Toolz Documentation," 2013. [Online]. Available:

https://toolz.readthedocs.io/en/latest/. [Accessed 01 August 2022].

[20] VMware, "Pyvmomi Documentation," [Online]. Available:

https://github.com/vmware/pyvmomi. [Accessed 01 August 2022].

Eindhoven University of Technology

56

A solution for configuring an Infrastructure-as-a-Service

[21] J. Forcier, "Paramiko Documentation," [Online]. Available: https://www.paramiko.org/.

[Accessed 01 August 2022].

[22] Gitlab , "Gitlab Docs," [Online]. Available:

https://docs.gitlab.com/ee/ci/introduction/index.html#continuous-integration. [Accessed 01

September 2022].

[23] Oracle Netherlands, "What is Docker?," 2022. [Online]. Available:

https://www.oracle.com/nl/cloud/cloud-native/container-registry/what-is-docker/. [Accessed 01

August 2022].

[24] IEEE, "Standard Glossary of Software Engineering Terminology," 2001.

[25] I. S. Cordasco, "Flake8 Documentation," 2016. [Online]. Available:

https://flake8.pycqa.org/en/latest/index.html. [Accessed 01 September 2022].

[26] G. van Rossum, B. Warsaw and N. Coghlan, "PEP 8 – Style Guide for Python Code," [Online].

Available: https://peps.python.org/pep-0008/. [Accessed 01 September 2022].

[27] Holger Krekel and pytest-dev team, "PyTest," 2015. [Online]. Available:

https://docs.pytest.org/en/7.1.x/. [Accessed 01 September 2022].

[28] Cypress.io, "JavaScript and End-to-End Testing Framework," [Online]. Available:

https://www.cypress.io/. [Accessed 01 September 2022].

[29] J. Amundsen, "Cypress Cucumber Preprocessor," [Online]. Available:

https://github.com/badeball/cypress-cucumber-preprocessor. [Accessed 01 September 2022].

[30] Y. Singh, Software Testing, Cambridge University Press, 2011.

[31] T. Preston and W. , "Toml Documentation," [Online]. Available: https://toml.io/en/. [Accessed

01 September 2022].

[32] H. Gao, "Desigining a Solution for Software Distribution towards Varying On-Premise

Deployments," Eindhoven University of Technology, Eindhoven, 2021.

[33] IBM, "ISO 9660 - IBM Documentation," [Online]. Available:

https://www.ibm.com/docs/en/i/7.2?topic=formats-iso-9660. [Accessed 01 August 2022].

[34] Teach-ICT, "Teach-ICT," [Online]. Available: https://www.teach-

ict.com/gcse_new/computer%20systems/user_interface/miniweb/pg3.htm. [Accessed 01 August

2022].

Eindhoven University of Technology

57

A solution for configuring an Infrastructure-as-a-Service

Appendix A SDP Delivery Process

Figure 42. Activity diagram of SDP delivery process

Eindhoven University of Technology

58

A solution for configuring an Infrastructure-as-a-Service

Appendix B Functional Requirement

Table 8. Functional requirements of the project

ID Status Description Priority Satisfy Rationale Notes Example

1 FR-1 Done The system must produce Ansible

inventory file using the existing

format

Must UC1,

UC2

In order to have similar

ansible inventory file and

keep the old mechanism as

an alternative process

• The SDP configuration

file creation is using GUI

• The system can be used as

an alternative of the

current mechanism

• The file should be ex-

actly the same as the

current sys-tem

2 FR-2 Done The system must visualize the

SDP configuration process in a

guided step GUI

Must UC1,

UC2

In order to prevent mis-

take caused by the wrong

input value. In addiction to

have an easy to use UI for

the less IT skilled people

It also should be able to go

back to previous step on the

wizard UI

• Wizard form

• Template with pre-

defined values

3 FR-3 Done The system must have an

interface to extend the SDP

configuration with all the

additional configuration item

Must UC2 In order to prevent mis-

take that caused by the

wrong input value

• The common use case is

adding cache

• when extending hardware,

the configurator should

help the users to

reconfigure the cluster

(adding GPU, adding

NVME)

• Update with a template

configuration

• Custom update

configuration

4 FR-4 Done The system must validate the

form input where feasible

Must UC1,

UC2

In order to minimize

mistake dur-ing the ansi-

ble inventory creation time

• There will be some

mandatory and optional

fields on the wizard form

N/A

Eindhoven University of Technology

59

A solution for configuring an Infrastructure-as-a-Service

• Using dropdown list, field

structure

• String structure e.g., IP

address, mac address,

hostname

5 FR-5 Done The system could show the

progress the SDP configuration

process in a progress/step bar

Could UC1,

UC2

In order to visualize how

many remains step during

configuration process

N/A • Percentage

• Step 0 out of n steps

• Progress bar

6 FR-6 Done The system could visualize the

cluster topology and its resources

when the configuration is finished

Could UC3 In order to show the

topology and the resources

of each node in the cluster

after the infrastructure is

configured

N/A • UI with layered

component

• Schema-liked UI

• Network-liked UI

7 FR-7 Partially

Implemented

The system shall generate the

configuration form dynamically

based on the template

(deployment type)

Should UC4 In order to have an easy to

use UI to extend the

configuration item based

on various deployment

templates now and in the

future

• We implemented the

behavior of the Worker

configuration page based

on the template

N/A

8 FR-8 Done The system must allow initial

configuration setup based on a

deployment template, containing

defaults and constraints for the

configuration

Must UC4 N/A N/A • Allow the user to

choose the deployment

template, which con-

tains the defaults

values for some of the

form input

9 FR-9 Done The system shall save work as a

draft when the user interrupted

the configuration process

Should UC1,

UC2

In order to save the in-

complete configuration so

• This also enable the user

to modify the

configuration

• save to a file

• save to a database

10 FR-10 Done The system shall have user

authentication/authorization

Should All use

cases

In order to secure and

prevent an unintended

access to the SDP configu-

rator app

 Username and password

for login

11 FR-11 Not

Implemented

The system could validate the

number of memory/storage from

the user against the hardware

capability

Won’t UC1,

UC2

To validate the user input

in real-time

• need to interact with the

machine/host to get the in-

formation

• this feature can be

expand into the other

aspect as well that

requires interaction

with the machine/host

Eindhoven University of Technology

60

A solution for configuring an Infrastructure-as-a-Service

12 FR-12 Done The system must be easy to

deploy and run on the existing

SDP base infrastructure Ansible

node with no or limited additional

modules required

Must All use

cases
• To minimize the

complexity by having

an isolated

environment for the

system

• Decouple from the rest

of the system

N/A • Run the SCA as a

docker container on

Ansible node

Eindhoven University of Technology

61

A solution for configuring an Infrastructure-as-a-Service

Appendix C Non-Functional Requirements

Table 9. Non-functional requirement of the project

ID Status Category Description Priority Notes

1 NF-1 Done Maintainability The component of the system must be decoupled and in a

modular structure

Must • After the project is finished, the system shall be

maintainable by the current SDP team

• Modular design, separation of concern, mean-

ingful abstraction

• Modular struc-ture can be implemented using

python package or flask blueprint

2 NF-2 Done Extensibility The system must be easy to extend, adding more features is

considered as a version update and the method should be

based on a well-defined proce-dure

Must For the requirement that could not be delivered in

this project, it should be added in the next version

3 NF-3 Done Testability The system shall be testable with an automatic testing

standard of the SDP team using Gitlab CI/CD

Should • Unit testing

• Consider automatic testing us-ing Cypress with

Gherkin syntax

4 NF-4 Done Maintainability The technology choices used to develop the system shall be

communicated and agreed with the SDP team

Should • Avoid a technology that give more work to the

team, it should be familiar and easy to use

5 NF-5 Done Deployment The system shall be deployable in an air-gapped environment

Should • Using manual dependency in-stallation (down-

load/install)

Eindhoven University of Technology

62

A solution for configuring an Infrastructure-as-a-Service

Appendix D Comparative Study

We utilized a comparative study method to decide on which platform the SCA was developed. There

are several needs we considered during the decision process, for instance, a need to run SCA in a limited

resource and network connection, a requirement to develop SCA to be easy-to-use, easy-to-access, and

easy-to-deploy, and the familiarity of the developers with the technology.

From the comparison shows in Table 10, we decided to adopt web-based platform for architectural

concern. There are three main criteria to decide this concern:

1. It should be easy to execute UNIX or SSH command.

2. It should allow to structure the code in a modular fashion.

3. It should be easy to develop the Graphical User Interface.

Table 10. Application platform comparative study

Criteria/Platform Desktop-based Web-based

Pre-requisite packages Light packages (e.g., Python,

GNOME GUI)

Web server required to run the app

GUI development Relatively complicated. for instance,

in GTK+, it’d dependent on the

standard widget gallery

Flexible to design the UI, various

template can be applied for the UI

Able to execute UNIX

command

Supported Supported (using Python subprocess

built-in package or PHP shell_exec()

built-in function)

Comply the System

Requirement

Difficult to implement FR-6

(Topology visualization)

Relatively easier to satisfy FR-6

(Topology visualization)

Installation or update Manually download and update Require manual process to update. It’s

not running in a central server but on

each SDP infrastructure.

Modularity Supported Supported

Performance Faster since it has direct access to the

host

Slower

Developer experience Low High

After the application platform had been decided. Then we needed to consider which framework is the

best fit with the objective of the project. The potential users of SCA are the Service Engineers (see

Chapter 2). The SCA will be deployed on a specific customer site and the user who access SCA will

be limited to the Service Engineer only. Therefore, the scalability and performance were considered

less important.

Eindhoven University of Technology

63

A solution for configuring an Infrastructure-as-a-Service

Table 11 shows the comparison between Flask framework and Laravel/Lumen framework to build the

web-based application. Based on the comparative study result, we concluded to use Flask framework

using Python programming language to build SCA because it has minimal prerequisite to run and

offers more library to support the system’s funcionality. SDP team engineers are also more familiar

with Python instead of PHP programming language.

Table 11. Web-based application framework comparative study

Criteria/Web-app Frameworks Python Microframework (Flask)
PHP Microframework from

Laravel (Lumen)

Deployment Python built-in HTTP server PHP built-in webserver

Pre-requisite Python3, Pip PHP7, Composer

Code structure Very minimal and flexible structure,

flexible to extend based on the needs

Fixed structure, default files

come with fresh installation

Modularization Flask Blueprint php artisan module

Interact with UNIX command Built-in subprocess library in

Python3

shell_exec() available in PHP

4, PHP 5, PHP 7, PHP 8

UI template management Jinja2 templating Laravel blade templating

Form validation Flask-wtforms Built-in request validation

library

SSH on the web SSH_Client from Paramiko library PECL ssh2 library

Caching Flask-Caching (supports: simple,

filesystem, redis, uwsgi, etc)

Two cache driver options

available in Lumen:

Memcache and Redis

Popularity index (programming

language and framework)

Python: Rank #1 on Feb 2022 on

TIOBE index

PHP: Rank #8 on Feb 2022 on

TIOBE index

Benchmark • request/sec = 21,782

• minimum latency = 284.3 ms

• maximum latency = 15,522.3 ms

• request/sec = 5,401

• minimum latency =

1326.7 ms

• maximum latency =

72,554.7 ms

Engineer perspective

Eindhoven University of Technology

64

A solution for configuring an Infrastructure-as-a-Service

Appendix E Risk Register

Table 12. Risk register of the project

ID Category Status Risk L I P Mitigation

R1 Communication Mitigated The progress of the project might not align

with stakeholders’ expectations

5 5 25 • Define the scope of the project

• Set a regular meeting with stakeholder to give an

update about the progress

R2 Domain

knowledge

Mitigated A steep learning curve of the current system 4 4 16 • Define the system of interest

• Define the system boundary

• Set priority

R3 Deployment Mitigated The system cannot be hosted on the Ansible

node

1 5 5 • Analyze the current configuration to understand

how Ansible node is configured

• Find possibilities on how to install the pre-requisite

for the GUI app on the Ansible node (e.g., install

Nginx or Docker at early step)

R4 Deployment Mitigated Due to an air-gapped environment, the pre-

requisite module might be not downloaded

3 4 12 • Simulate the local install dependency using wheel

(.whl) python package file

• Investigate containerization using docker as an

alternative

R5 Project progress Mitigated Delay on delivering the first prototype 3 4 12 • Focus on functionality

• Prioritize the core logic rather than UI styling

R6 Project Scope Mitigated The implementation may not satisfy the needs

because the scope is not clearly defined

3 5 15 • Conduct problem analysis and stakeholder analysis

to define the scope of the project

• Interview the stakeholder to understand their needs

R7 Integration Partially

Mitigated

SCA might not be able to run as part of the

SDP installation

1 5 5 • Integrate the SCA with the SDP release

mechanism, if possible, set up the CD pipeline

Eindhoven University of Technology

65

A solution for configuring an Infrastructure-as-a-Service

• Make sure the component of the system is

accessible in the SDP environment (e.g., running

as a Docker container)

R8 User experience Mitigated The system may not satisfy the end user needs

because it is too difficult to operate

3 4 12 • Discuss with the end users frequently to get input

• Propose mockup follow with a prototype to the end

users

• Deploy the prototype to the development server

and share the access to the users so that they can

interact with it

R9 Dependency Mitigated Python 3 may not be available on the host

where the SCA should be running

2 5 10 • Confirm with the team on when the Python3 is

released

• Consider running the SCA as a Docker container

R10 Delay Mitigated Front end styling requires much time that

might cause delay

2 5 10 • Contact the engineer who has frontend skills (may

contact from SPOT team who work in front-end)

• Use styling template

Eindhoven University of Technology

66

A solution for configuring an Infrastructure-as-a-Service

Appendix F Detailed Use Cases

Table 13. Detailed use cases of the project

ID Use cases Description

UC1 Clean install/configure SDP Actor: Service Engineer

Precondition: Ansible VMware instance is up and running.

Basic Flow:

1. Access the SDP configuration application from the

local web browser.

2. Input the customer’s provided information into the

guided configuration form.

3. Submit the configuration.

Post-condition: The Ansible inventory file is generated.

Alternative Flow:

1. Installation process is interupted.

2. The configuration values are saved.

3. Once the issue is solved, continue the process using the

saved configuration values.

UC2 Update/upgrade SDP

configuration

Actor: Service Engineer

Precondition: The infrastructure has additional capabilities or

new IP addresses for the nodes.

Basic Flow:

1. Access the SDP configuration application from the

local web browser.

2. Input the customer’s provided information into the

guided update/upgrade configuration form.

3. Submit the configuration.

Post-condition: The existing Ansible inventory is updated.

Alternative Flow:

1. Installation process is interrupted.

2. The configuration values are saved.

3. Once the issue is solved, continue the process using the

saved configuration values.

UC3 Visualize the configured

infrastructure

Actor: Service Engineer

Precondition: UC1

Eindhoven University of Technology

67

A solution for configuring an Infrastructure-as-a-Service

Basic Flow:

1. Access the SDP configuration application from the

local web browser.

2. At the SCA homepage, select the Inspect Inventory

menu to navigate to the visualization page.

3. The SCA shows the visualization page.

Post-condition: The current infrastructure configuration appears

on the SCA visualization page.

UC4 Initialize the configurator with

deployment template

Actor: SDP Team/DSE

Precondition: The deployment templates are saved with the

appropriate format (in TOML [31] format).

Basic Flow:

1. Open the SCA homepage.

2. Start the SDP configuration for fresh install or update.

3. Select the deployment templates from the dropdown

list.

4. Continue the configuration on the wizard step GUI of

SCA.

Post-condition:

• The list of deployment type is present during the

configuration process.

• The predefined value that configured in the templates

appears on the configuration field.

Eindhoven University of Technology

68

A solution for configuring an Infrastructure-as-a-Service

Appendix G Ansible Inventory Structure
{
 "all": {
 "vars": {
 "sdp_version": "2.9.0",
 "sdp_deploy_type": "lifescience",
 …
 },
 "children": {
 "vmware": {
 "hosts": {
 "esxi-1.dmp": {
 "attributes": "some_values"
 }
 }
 },
 "configuration": {
 "hosts": {
 "k8s-ansible-1.dmp": {
 "attributes": "some_values"
 }
 },
 "vars": {
 "attributes": "some_values"
 }
 },
 "masters": {
 "hosts": {
 "k8s-master-1.dmp": {
 "attributes": "some_values"
 }
 },
 "vars": {
 "attributes": "some_values"
 }
 },
 "storage": {
 "hosts": {
 "k8s-storage-1.dmp": {
 "attributes": "some_values"
 }
 },
 "vars": {
 "attributes": "some_values"
 }
 },
 "gateways": {
 "hosts": {
 "gw-1.dmp": {
 "attributes": "some_values"
 },
 "vars": {
 "attributes": "some_values"
 }
 },
 "workers": {
 "hosts": {
 "k8s-worker-1.dmp": {
 "attributes": "some_values"
 },
 "k8s-worker-2.dmp": {
 "attributes": "some_values"
 },
 "k8s-worker-3.dmp": {
 "attributes": "some_values"
 }
 },
 "vars": {
 "attributes": "some_values"
 }
 },
 "kubernetes": {
 "children": {
 "attributes": "some_values"
 }
 }
 }
 }
}

Eindhoven University of Technology

69

A solution for configuring an Infrastructure-as-a-Service

About the Author

K.A. Respa Putra received his bachelor’s degree in

Information System from Telkom University, Indonesia.

During his study, he joined the Programming and Database

(PRODASE) laboratory as a practicum assistant. In the

laboratory, he pioneered and developed an online practicum

system with his colleagues. In the last year of his study, he

received the Global Korea Scholarship (GKS) for the

undergraduate exchange student program at Kumoh Institute

of Technology in South Korea for one semester. After his

graduation, Respa worked at a state-owned electricity provider

company named Perusahaan Listrik Negara (PT PLN Persero)

in Jakarta, Indonesia. He worked there as an assistant analyst

of application development for five years. Respa is interested

in topics related to software architecture, software design, and

software development.

EngD SOFTWARE TECHNOLOGY

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl

	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Glossary
	1. Introduction
	1.1. Context
	1.2. Outline

	2. Stakeholder Analysis
	3. Problem Analysis
	3.1. Background
	3.2. Problem Statements
	3.3. Project Scope
	3.4. Domain Analysis
	3.4.1. Containerization
	3.4.2. IT Automation with Ansible
	3.4.3. The Existing SDP Configurator
	3.4.4. SDP Deployment Type

	4. Requirements Elicitation
	4.1. Requirement Overview
	4.2. Functional Requirements
	4.3. Non-functional Requirements

	5. Software Architecture and Design
	5.1. 4+1 Architectural View
	5.2. Use case
	5.3. Logical View
	5.3.1. The Entrypoint
	5.3.2. The Domain Controller
	5.3.3. The Domain Model
	5.3.4. The Repository
	5.3.5. Component Interaction

	5.4. Process View
	5.4.1. Accessing SCA Web Page
	5.4.2. Submitting and Saving the Form Data
	5.4.3. Establishing Connection to an ESXi Server
	5.4.4. Accessing VMWare Instance Using SSH

	5.5. Development View
	5.6. Physical View

	6. Implementation
	6.1. Overview
	6.2. User Interface (UI) Mockups
	6.3. SCA Implemented Functionalities
	6.3.1. Configuring SDP for Fresh Install
	6.3.2. Updating an Existing Configuration
	6.3.3. Visualizing Ansible Inventory
	6.3.4. Configuring Additional Devices

	6.4. Third-Party Components
	6.5. Continues Integration (CI)
	6.6. SCA Docker Container

	7. Verification and Validation
	7.1. Static Analysis
	7.2. Unit Testing
	7.3. Functional testing
	7.3.1. Setup Cypress
	7.3.2. Running Cypress

	7.4. Test Automation
	7.5. Stakeholder Validation

	8. Project Management
	8.1. Way of Working
	8.1.1. Scrum Artefact
	8.1.2. Scrum Events

	8.2. Work Breakdown Structure
	8.3. Milestone Trend Analysis
	8.4. Infrastructure Plan
	8.5. Risk Management

	9. Conclusions
	9.1. Summary
	9.2. Recommendation and Future Work
	9.2.1. Integration
	9.2.2. Ansible Playbook Execution

	Bibliography
	Appendix A SDP Delivery Process
	Appendix B Functional Requirement
	Appendix C Non-Functional Requirements
	Appendix D Comparative Study
	Appendix E Risk Register
	Appendix F Detailed Use Cases
	Appendix G Ansible Inventory Structure
	About the Author

