

Outpatient Monitoring Kit for Clinical Research

Citation for published version (APA):
Arora, A. (2022). Outpatient Monitoring Kit for Clinical Research. Technische Universiteit Eindhoven.

Document status and date:
Published: 05/10/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/5e32633b-6157-4cad-8721-14ed5978422d

EngD SOFTWARE TECHNOLOGY

EngD THESIS REPORT

Outpatient Monitoring Kit for Clinical Research

Akash Arora
October/2022
Department of Mathematics & Computer Science

Outpatient Monitoring Kit for Clinical Research

Akash Arora

October 2022

Eindhoven University of Technology

Stan Ackermans Institute – Software Technology

EngD Report: 2022/071

Confidentiality Status: Public

Partners

Koninklijke Philips N.V. Eindhoven University of Technology

Steering

Group

Ir. Paul Dillen

Dr. Yanja Dajsuren, EngD

Dr. Renata Medeiros de Carvalho

Date October 2022

Composition of the Thesis Evaluation Committee:

Chair: Dr.ir. T.A.C. Willemse

Members: Ir. P. Dillen

Ir. B. Golsteijn, EngD

Dr. Y. Dajsuren, EngD

Dr. R.M. de Carvalho

Dr. K. Huizing

The design that is described in this report has been carried out in accordance

with the rules of the TU/e Code of Scientific Conduct.

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 5.080A, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31 402743908

Partnership This project was supported by Eindhoven University of Technology and

Koninklijke Philips N.V..

Published by Eindhoven University of Technology

Stan Ackermans Institute

EngD-report 2022/071

Preferred

reference

Outpatient monitoring kit for clinical research. Eindhoven University of

Technology, EngD Report 2022/071, October 2022

Abstract Currently, the cumbersome and resource-intensive process of conducting

clinical research is creating significant burden for hospitals. They need to

allocate staff, maintain files for each subject, schedule meetings, and track

feedback. Philips does not have a solution to provide their customers with

an environment to facilitate clinical research or where they can evaluate

clinical algorithms. The algorithms are proprietary to Philips and pose a

security risk of reverse engineering even when just a software executable is

revealed. This report describes a cutting-edge system developed by Philips

that reshapes the clinical research domain, providing customers with an

evaluation solution that is second to none. The system provides an easy way

to track subjects and to collect and monitor their health data, manage

wearable devices, and enable data visualization on the collected data. The

system comprises wearable devices, a Linux communications hub, and a

cloud-based infrastructure, which includes a visualization portal, a service

that processes algorithms in the cloud, and a service that stores large

quantities of metric data. We recommend testing the system in a real clinical

research study and improving it accordingly where necessary.

Keywords Outpatient monitoring, data visualization, clinical research, wearable de-

vices, analytics as a service, microservices

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service

by trade name, trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the

Eindhoven University of Technology or Koninklijke Philips N.V. The

views and opinions of authors expressed herein do not necessarily state or

reflect those of the Eindhoven University of Technology or Koninklijke

Philips N.V. and shall not be used for advertising or product endorsement

purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained

within this report is accurate and up to date, Eindhoven University of Tech-

nology makes no warranty, representation or undertaking whether ex-

pressed or implied, nor does it assume any legal liability, whether direct or

indirect, or responsibility for the accuracy, completeness, or usefulness of

any information.

Trademarks Product and company names mentioned herein may be trademarks and/or

service marks of their respective owners. We use these names without any

particular endorsement or with the intent to infringe the copyright of the

respective owners.

Copyright Copyright © 2022. Eindhoven University of Technology. All rights re-

served.

 No part of the material protected by this copyright notice may be repro-

duced, modified, or redistributed in any form or by any means, electronic

or mechanical, including photocopying, recording, or by any information

storage or retrieval system, without the prior written permission of the Eind-

hoven University of Technology and Koninklijke Philips N.V.

Eindhoven University of Technology

i

Foreword
May I invite you on a virtual journey. Imagine a world in which people can keep doing what

matters most to them also when they get ill and need care. Grandparents spending time with

their grandchildren at home. Children playing with their friends. Parents expecting a baby.

Only having to go to the hospital when there is a real need and going home again exactly when

possible – not earlier, not later.

This promise is enabled by remotely monitoring patients (their heart, respiration, activity,

sleep…: today’s list is already endless) unobtrusively and privately by wearable devices and

cloud technology and are only ‘bothered’ when really needed. And not only will remote mon-

itoring yield increased quality of life for patients; it will also ease the often-stressful lives of

caregivers, improve medical treatments, and reduce costs of our ever-growing healthcare de-

mand.

Akash can be proud to have contributed significantly to this fulfilling vision during his 10

months EngD assignment at Philips Research.

Before remote monitoring products can be used by patients, they first need to be developed and

thoroughly tested. For this, a remote monitoring kit is under development at Philips, allowing

to remotely collect data from patients in clinical studies. Scientists can use the data to develop

screening, diagnosis, or treatment applications. And other companies can evaluate Philips tech-

nology for their own products. As part of the ‘Patience’ subsidy project, Akash has greatly

contributed to the development of the user interface of the remote monitoring kit, making it

easy to use and tailored to its job, with a great and beautiful result.

In the development team, Akash was a kind of ‘quiet force’, soft spoken and often working

silently. It sometimes made me ask if everything was fine, but with that simple question, Akash

would produce solid, well-structured, and convincing work products: figures, documents, and

software, radiating ‘don’t you worry, it is all handled’. All in a dependable manner, both tech-

nically and timewise, and meanwhile eager to learn and grow. I am confident he will gradually

step up more into the spotlight.

Eindhoven University of Technology

ii

We are grateful for all of Akash’s dedication, persistence, and drive for quality, which eventu-

ally will make a difference to people’s lives. I wish Akash all the best for his further career and

do hope that our paths will cross again. Shukria!

Paul Dillen

October 2022

Eindhoven University of Technology

iii

Preface

This report summarizes the project carried out by Akash Arora, as the graduation project of

Engineering Doctorate (EngD) program in Software Technology at Technische Universiteit

Eindhoven (TU/e). The project duration was ten months and was conducted at Philips, Eind-

hoven. The project was supervised by Paul Dillen, at Philips Research, Yanja Dajsuren and

Renata Medeiros de Carvalho at TU/e.

The project is aimed to develop a better solution for clinical research in conjunction to catering

the solution to Philips’ technology evaluation and licensing use case. This was achieved by

developing the Studykit system. The system caters to clinical study workflow and thus reduces

the workload on the hospitals, while providing the customers of Philips with a technology eval-

uation environment.

This report summarizes the clinical workflow, Philips’ business case, requirements, architec-

ture, design, implementation, verification, and validation of the system. Chapter 1 and 2 lays

down the context, domain, and problem analysis. Chapter 3 to 7 cover the requirements, archi-

tecture, design, implementation and verification and validation of the system. Chapter 8 covers

the project management aspect of this project.

Akash Arora

October 2022

Eindhoven University of Technology

iv

Eindhoven University of Technology

v

Acknowledgements
Prima facie, I would like to thank all my supervisors, mentors, and the people I collaborated

with during the term of this project.

Firstly, I want to express my sincere gratitude to Paul Dillen, from Philips, for giving me this

opportunity to be a part of such an immense project. You have guided me every step of the

way, neglected my mistakes and always kept me positive. I really think I couldn’t have gotten

a better company supervisor than you.

Secondly, I want to thank my TU/e supervisors Yanja Dajsuren and Renata Medeiros de Car-

valho, for their insightful comments and questions. As busy as a bee you were, you still made

time for me and gave the support and guidance that was needed for this project.

I would also like to thank Martijn van Welie, Reinder Haakma, Dave Boshoven, Carlijn Ver-

nooij, Bram Hoendervangers, Gertjan Maas, from Philips, whom I worked alongside during

the term of this project.

I am also grateful to the committee members, Bart Golsteijn, Kees Huizing, and Tim Willemse

for participating in my thesis defense, taking the time to read through every detail and evaluat-

ing me on my work.

October 2022

Eindhoven University of Technology

vi

Eindhoven University of Technology

vii

Executive Summary
Philips is a global leader in personal health, connected care, and diagnosis and treatment.

Philips' healthcare devices work with other software and hardware products to create a com-

plete set of products. Many hospitals worldwide use Philips products to provide the best

healthcare for patients. A lot of companies apply Philips' technology in their products as well.

In the absence of a smart monitoring kit, which would benefit the patients as well as the hospi-

tals, Philips is set on a mission to develop an outpatient monitoring kit for clinical research.

Currently, some problems of the current way of working for clinical research are:

• It is error prone

• It is dependent on patient feedback

• It is difficult to maintain

• It is time consuming for the hospital staff

The project goal is to develop the Studykit that enables healthcare to track patients, regardless

of whether they are bed-ridden or ambulatory, i.e., outside the hospital, living day-to-day life.

The Studykit system includes multiple types of wearable devices, a Linux communications

hub, and a cloud-based app. The wearable devices will be able to monitor patients with the help

of the Linux machine. The cloud-based app will enable healthcare professionals to track pa-

tients.

This report presents the process and approaches taken to handle the issues of clinical research,

such as data collection and feedback management, with the help of Studykit system. The

Studykit system automates the process of collecting feedback and maintaining the data, elimi-

nating errors, and reducing valuable time spent while collecting and maintaining the feedback.

We recommend testing the system in a real clinical research study and improving it accordingly

where necessary.

Eindhoven University of Technology

viii

Eindhoven University of Technology

ix

Table of Contents

Foreword .. i

Preface ... iii

Acknowledgements .. v

Executive Summary ... vii

Table of Contents .. ix

List of Figures ... xiii

List of Tables .. xv

1. Introduction .. 1

2. Domain and Problem Analysis ... 3

2.1 Clinical research .. 3

2.2 Philips’ business case – Technology Licensing .. 5

2.3 Problem Definition ... 6

2.4 Goal .. 7

2.5 Scope ... 8

3. Requirements Elicitation ... 9

3.1 Introduction .. 9

3.2 General requirements ... 9

3.3 Functional requirements... 10

3.4 Non-functional Requirements ... 11

4. System Architecture ... 13

4.1 4 + 1 Architecture Model ... 15

Eindhoven University of Technology

x

4.1.1. Logical View ... 15

4.1.2. Process View ... 18

4.1.3. Development View .. 20

4.1.4. Physical View .. 21

4.1.5. Use Case Scenarios ... 22

5. System Design ... 27

5.1 Design choices .. 27

5.2 Benchmark of different time-series databases .. 29

6. Implementation .. 33

6.1 Introduction .. 33

6.2 Studykit Portal .. 33

6.3 MSX .. 35

6.4 Work Orchestration .. 36

6.5 Studykit Store .. 39

6.6 Logging and Monitoring ... 40

7. Verification & Validation .. 43

7.1 Verification ... 43

7.2 Validation ... 47

7.3 Security Checks... 47

7.4 Clean Code ... 48

7.5 Code Coverage ... 49

8. Project Management .. 51

8.1 Project Organization .. 51

8.2 Project Milestones .. 52

8.3 Risk Analysis ... 53

Eindhoven University of Technology

xi

9. Conclusions ... 55

9.1 Results ... 55

9.2 Recommendations and future work .. 56

10. Project Retrospective ... 57

10.1 Reflection ... 57

Glossary .. 59

References ... 61

Appendix A. .. 63

About the Author ... 65

Eindhoven University of Technology

xii

Eindhoven University of Technology

xiii

List of Figures

Figure 1 - Clinical workflow relationship between Philips and a hospital (observation study) 4

Figure 2 – Algorithms under the Biosensing technology .. 5

Figure 3 - Workflow between Philips and third-party companies ... 6

Figure 4 - MoSCoW acronym [2] .. 9

Figure 5 – High-level architecture ... 13

Figure 6 - Class Diagram describing the different use cases of the Studykit system 15

Figure 7 - Entity Relationship diagram of Studykit Store ... 17

Figure 8 - System Activity Diagram .. 18

Figure 9 - Sequence diagram - Metric export .. 19

Figure 10 - Component Diagram of the system ... 20

Figure 11 - Deployment Diagram of the system ... 21

Figure 12 - Use Case: CRUD study and subject .. 22

Figure 13 - Use case: Import and Export metric data .. 24

Figure 14 - Use case: Visualize subject metric data .. 25

Figure 15 – Studykit Portal .. 33

Figure 16 - State management for Server-side data ... 34

Figure 17 - DAG .. 37

Figure 18 - Cron Syntax [6] ... 37

Figure 19 - Work Orchestration ... 38

Figure 20 - Studykit Store Container Diagram .. 39

Figure 21 - Kibana log ... 40

Figure 22 - Grafana dashboard .. 41

Figure 23 – Black Duck security analysis of Studykit Store ... 47

Figure 24 - SonarQube Analysis of Studykit Client .. 48

Figure 25 - Code Coverage: Studykit Portal .. 49

Figure 26 - Value stream structure ... 51

Figure 27 - Project timeline ... 52

Eindhoven University of Technology

xv

List of Tables

Table 1 - General requirements .. 9

Table 2 - Studykit Portal - Functional requirements .. 10

Table 3 - Studykit Store - Functional requirements ... 11

Table 4 - Analytics Engine - Functional requirements .. 11

Table 5 - Non-Functional requirement .. 12

Table 6 - Timeseries database performance evaluation – ingestion .. 29

Table 7 - Timeseries database performance evaluation - read ... 30

Table 8 - Timeseries database evaluation – multiple factors ... 31

Table 9 - Verification - General requirements ... 43

Table 10 - Verification – Studykit Portal – Functional requirements 44

Table 11 - Verification - Studykit Store - Functional requirements .. 45

Table 12 - Verification - Analytics Engine - Functional requirements 45

Table 13 - Verification - Non-functional requirements ... 46

Table 14 - Project Milestones .. 52

Table 15 - Risk assessment .. 53

Table 16 - Stakeholder list - Philips ... 63

Table 17 - Stakeholder list - Hospital .. 64

Table 18 - Stakeholder list - TU/e .. 64

Eindhoven University of Technology

xvi

Eindhoven University of Technology

1

1.Introduction
The importance of remote monitoring of patients has increased significantly in the past two

years because of the COVID-19 pandemic. Patients were quarantined at home, but there was

no way of detecting if their health was improving or deteriorating. With the advent of remote

monitoring, patients can be monitored from the comfort and safety of their own home, allowing

them to take more control of their health and wellbeing, while healthcare providers can track

and intervene whenever necessary. Remote monitoring has many advantages over in-person

monitoring, including the ability to track multiple patients simultaneously and make precise

decisions over a patient’s health.

Philips is developing a patient-centric holistic suite of products where the data is collected

irrespective of the device or system and stored in a unified central repository. Furthermore, any

algorithm or system can use the data from this central repository to enhance the assistance

towards the patient. This patient-centric, holistic suite of products will help to improve the

patient experience by allowing for a more seamless flow of information between devices and

systems.

Currently, an outpatient monitoring kit is already under development at Philips. The kit com-

prises a wearable device, a communications hub, and cloud-based software. As a first step, this

kit is being developed for clinical research to gauge patient responses and monitor outcomes.

This iterative approach serves as a proof-of-concept and lays the groundwork for future en-

hancements that will make the kit more user-friendly and efficient.

This report consists of ten chapters. The next chapter discusses the domain and problem anal-

ysis. Chapter 4 and 5 discuss the architecture and design of the system based on the require-

ments gathered in Chapter 3. Implementation details are discussed in Chapter 6, followed by

verification and validation of the system in Chapter 7. Chapter 8 discusses the project manage-

ment of this project over the ten-month period. Chapter 9 discusses the results of this project

followed by recommendations for future work. Finally, Chapter 10 provides a project’s reflec-

tion from the author’s perspective.

Eindhoven University of Technology

3

2.Domain and Problem Analysis
To understand the problem, it is essential to evaluate the clinical workflow and Philips' business

case for licensing technology. Section 2.1 describes clinical research and the workflow that is

carried out between Philips and a hospital that conducts clinical research. Section 2.2 describes

Philip’s technology licensing workflow that enables them to work with different companies.

Subsequently, problem definition, goal and scope are discussed between Section 2.3, 2.4 and

2.5 respectively.

2.1 Clinical research

Clinical research is a branch of healthcare science that determines the safety and effectiveness

of medications, devices, diagnostic products, and treatment regimens intended for human use

[1]. Clinical research is usually carried out by a hospital or a collaboration between hospitals

or in collaboration with a clinical research institute. Clinical research is of two kinds, observa-

tional and interventional (clinical trials).

In an observational study, a group of people are observed when they are either ambulatory or

bed-ridden in a hospital. The aim of an observational study is to observe patients and track

health outcomes over time rather than test potential treatments. The treatment towards the

group of people does not change based on the observation.

Interventional studies or clinical trials, on the other hand, aim to find or validate a new potential

drug, medical device, or procedure. An interventional study is usually carried out in different

phases of varying group sizes.

Eindhoven University of Technology

4

Figure 1 - Clinical workflow relationship between Philips and a hospital (observation study)

From Figure 1, we can understand the relationship between Philips and a hospital conducting

clinical research (observational). Philips provides the software and hardware infrastructure nec-

essary to conduct observational research. The software infrastructure includes a portal where

users are monitored. The hardware infrastructure includes wearable devices such as Philips

Data Logger (PDL), Philips Health Band (PHB), and Philips Healthdot.

Due to privacy and regulatory issues, careful management of personal information is required.

Careful management usually entails providing access to personal information by certain staff

members of Philips and only when necessary. Hence, hospitals use a code for each subject.

Since the algorithms require certain attributes (such as height, weight, age, and the wearing

position of the device) of a particular subject, written consent by the subject is required before-

hand. The consent allows access to the subject’s characteristics.

After the hospital has registered devices to subjects and associated the subjects with the rele-

vant study, progress can be monitored. At the end of a study, Philips performs an analysis on

the collected data. Subsequently, the analysis as well as the collected data is handed over to the

hospitals. In certain cases, dependent upon the agreement and consent of the participants of the

study, Philips can also retain the data for future use.

Eindhoven University of Technology

5

2.2 Philips’ business case – Technology Licensing

Over the years, Philips has constantly upgraded their Biosensing technology application, com-

prising of algorithms to deliver the most accurate output/derived metrics. These algorithms are

either incorporated into wearable devices and process the measurements directly or they are

handled by an external system.

Figure 2 – Algorithms under the Biosensing technology

As shown in Figure 2, algorithms are responsible for generating the output/derived metrics

from the input/raw metrics. We provide an example to visualize how raw metrics from a wear-

able device such as PDL, Healthdot, or PHB, are used to generate over ten different derived

metrics. Devices such as PHB and Philips Healthdot run on-board algorithms that yield derived

metrics and discards the raw metrics. The PDL is currently the only device that does not ag-

gregate raw metrics over time. The algorithms are designed to deliver the same result for the

given input even when the data is aggregated.

Eindhoven University of Technology

6

Figure 3 - Workflow between Philips and third-party companies

Philips licenses these wearable devices as well as the algorithms to other companies (custom-

ers) who want to use this technology. As shown in Figure 3, we visualize the interaction be-

tween the Intellectual Property & Standards (IP&S) department of Philips and their customers.

The IP&S department is responsible for licensing the products at Philips.

IP&S provides the hardware and software infrastructure to their customers. Customers can now

use their existing dataset and import the data into the system or test the wearable device and

extract raw metrics from the device and upload them. Depending on the device, typically a

Universal Serial Bus (USB) interface is required for extracting the raw metrics from the device.

Now, the customers can evaluate the performance of the algorithms. If they see any anomaly

with the metrics, they report it back to IP&S. IP&S investigates the problem, fixes it, and de-

livers a new version of the algorithm.

2.3 Problem Definition

Based on the domain analysis, the following challenges are identified:

• The current technology at Philips is not equipped to handle an influx of devices and is

not able to manage thousands of devices effectively.

• The technology currently used at Philips is not extendable and is not designed to be

compatible with different devices. Systems such as the Philips Actigraphy Server Sys-

tem (PASS), are created for a singular purpose and singular device, such as the PHB.

There is no one-size-fits-all solution that can be used for different devices.

Eindhoven University of Technology

7

• The process of either embedding algorithms inside the wearable devices or providing a

software application to process these algorithms possesses a security threat to the Intel-

lectual Property of Philips.

• As algorithms are updated and changed over time, it becomes increasingly difficult to

manage versions among different clients.

• Systems, such as PASS, do not allow users to visualize data.

• Systems such as Healthdot system and PASS do not let users export data from the User

Interface.

• Devices do not record raw metrics. Artificial Intelligence (AI) is the future and having

the raw metrics as the input will be more beneficial for both the patients as well as

Philips.

• Currently, there is no effective way of storing time-series based high-volume data at

Philips.

• Currently, there is no safe way for IP&S to provide an evaluation environment to their

customers without revealing licensed software.

2.4 Goal

The primary goal of the project is to develop a system that reshapes clinical workflow as well

as providing the technology licensing customers with an evaluation environment. The goal of

the project is to develop a system that enables hospitals to track patients and their data, manage

wearable devices, and enable data visualization on the collected data. The system should also

be able to provide an environment for customers of Philips to evaluate the Philips-licensed

algorithms in a controlled way.

To achieve this goal, an outpatient monitoring kit is already under development at Philips. The

architecture of the proposed solution and how it integrates with this kit is detailed under Chap-

ter 4. This kit comprises a wearable device such as a PDL, a communications hub that is based

on Linux called MSX (internal name), and cloud-based software. Cloud-based software

includes a Studykit Store (based on a time-series database), an analytics engine (based on

Apache Airflow), a Clinical Data Repository (CDR) framework, and Studykit Portal. The CDR

will interact with the Fast Healthcare Interoperability Resources (FHIR) store, which stores

information related to a study, subjects, and devices. A backend Application Programming

Eindhoven University of Technology

8

Interface (API) microservice manages the interaction between CDR, the analytics engine, and

Studykit Store.

The design of Studykit Portal allows for ease of use, management of studies, subjects, and

devices with visual data representations for each subject. The portal also has an interface for

importing and exporting data and managing algorithm versions for each study. The backend

microservice API forms an abstraction layer, hiding all other systems connected to it. The

Studykit Store is based on a time-series database, which can effectively store a high volume of

data. The analytics engine uses Apache airflow to run algorithms in the cloud. The combination

of all these systems along with the MSX hub deals with scalability and extendibility concerns

of the existing technology.

2.5 Scope

Within the scope of this project, we aim to develop the Studykit infrastructure with the follow-

ing objectives:

• Gather requirements for the system

• Develop domain models based on requirements

• Develop a Portal with the following features:

o ability to visualize data

o ability to manage studies and subjects

o ability to manage algorithms and different versions

o ability to Import and Export metrics

• Develop a Backend API with the following features:

o develop APIs which can communicate with different services.

o validate the security tokens with each call and prevent un-authorized access.

• Develop Studykit Store with the following features:

o handle different metric formats

o allow for traceability for origin of the metric

o handle high volume data

• Verify and validate the solution

Eindhoven University of Technology

9

3.Requirements Elicitation

3.1 Introduction

This chapter discusses the requirements of the Studykit system, based on the stakeholder anal-

ysis and scope of the project. The requirements are prioritized using MoSCoW prioritization

method. The acronym represents four categories as shown in Figure 4.

Figure 4 - MoSCoW acronym [2]

3.2 General requirements

The generic characteristics and actions of the system are presented in Table 1 and are referred

to as the General System Requirements.

Table 1 - General requirements

Requirement Id Priority Requirement

GR01 Must The portal should be accessible with any modern browser

(i.e., support for ECMAScript v6).

GR02 Must The portal should be able to visualize metric data.

GR03 Must The portal shall be deployable on Philips’ network.

Eindhoven University of Technology

10

GR04 Must The system shall use Philips’ IT-approved tools and tech-

nologies.

GR05 Must The database should normalize the data before storing.

GR06 Must The algorithms should run independently for each subject

of a study.

GR07 Must The system should store patient/subject information using

FHIR.

GR07 Must The system should provide a logging and monitoring

mechanism.

GR08 Won’t

have

The system should be able to live stream data and show

visualization.

3.3 Functional requirements

The system’s behavior is defined and described by the functional requirements. Functional re-

quirement for each microservice is categorized as following:

Table 2 - Studykit Portal - Functional requirements

Requirement Id Priority Requirement

FR01 Must The portal shall allow the user to import Wearable Sensing

Technologies (WeST) data metric files.

FR02 Must The portal shall allow the user to export WeST data metric

files.

FR03 Must The portal shall allow the user to select a particular date

for data visualization.

FR04 Must The portal shall allow the user to have a high-level view if

the data is present for a particular subject or not.

FR05 Must The portal shall allow the user to select multiple metrics

for visualization.

FR06 Must The portal shall inform the user if the visualization data is

aggregated

Eindhoven University of Technology

11

FR07 Should The portal shall inform the user regarding the state of al-

gorithm processing after successful import.

Table 3 - Studykit Store - Functional requirements

Requirement Id Priority Requirement

FR08 Must The store shall parse different metric data files based on

their specification when importing.

FR09 Must The store shall construct different metric data files based

on their specification when exporting.

FR10 Must The store shall selectively map out of range data into their

valid range.

FR11 Must The store shall track the source information of each metric.

FR12 Must The store shall be able to parse metric files irrespective of

the white space character (i.e., tab or spaces)

Table 4 - Analytics Engine - Functional requirements

Requirement Id Priority Requirement

FR13 Must The engine shall provide an API interface for Apache air-

flow

FR14 Must The engine shall store configurations for each subject and

study

FR15 Won’t have The engine shall support live streaming and processing of

metric data.

FR16 Should The engine API shall provide progress update on the algo-

rithm state post data manual import.

3.4 Non-functional Requirements

A non-functional requirement (NFR) is a requirement that defines criteria rather than specific

behaviors that may be used to assess how well a system performs. Non-functional requirements

define how a system is supposed to be, in contrast to functional requirements, which specify

what a system is supposed to do. For example, an NFR might state that the system must be able

Eindhoven University of Technology

12

to handle 100 calls per hour, while a functional requirement might state that the system must

be able to process 10 calls per minute. Table 5 shows the non-functional requirements of the

system.

Table 5 - Non-Functional requirement

Requirement Id Priority Aspect Description

NFR01 Must Security The system shall authenticate and authorize

user and each request using Philips’ Iden-

tity Access Management (IAM) Client.

NFR02 Must Privacy The system shall be deployed as per re-

gional privacy laws.

NFR03 Should Accessibility

and Usability

The system shall adhere to Philips’ digital

Design Language System (dDLS) specifi-

cation for the user interface.

NFR04 Should Compliance The system shall adhere to all compliances

of the respective country, where it is de-

ployed.

NFR05 Should Maintainability Each microservice of the system should be

developed with the best practices so, it can

be maintained easily over the lifetime of the

system.

NFR06 Should Extensibility Each microservice of the system should be

modular such that it can be extended in the

future without any architectural changes.

Eindhoven University of Technology

13

4.System Architecture
System architecture is the structural design of the entire system. It is the foundation of the entire

system. An architecture of the Studykit system is modeled based on the functional and non-

functional requirements mentioned in Chapter 4. This chapter discusses system architecture

using the 4 + 1 architecture view model by Philip Kruchten [3]. The architecture view model

uses the logical view, process view, deployment view, and physical view with the context of

use case scenarios to describe the rationale for each decision.

Figure 5 – High-level architecture

The Figure 5 illustrates the different components of the system and how they interact with each

other. Different components of the system are:

• PDL: For the Minimum Viable Product (MVP) the system primarily uses the PDL as

the wearable technology to test the automatic data transfer in the system. The system is

still extendable to other wearable devices as well, Philips' wearable devices as well as

selected third-party devices.

• MSX: The MSX is a communications hub based on Linux. It is responsible for collect-

ing data from wearable devices and converting it to WeST specific data files. It uses

Bluetooth technology to communicate with the wearable devices.

Eindhoven University of Technology

14

• Studykit Portal: The portal is based on React JavaScript (JS) and Typescript and al-

lows the users of the system to interact with the system. The portal interacts with the

Studykit backend API to perform a lot of different tasks, such as retrieving data and

storing it, processing information, and interacting with specific microservices.

• Studykit Backend: The backend is the center core of the entire system. The Backend

handles all the API requests from different microservices. It is also responsible for prox-

ying the data files uploaded by the MSX to the Studykit Store.

• CDR-API and FHIR: CDR is Philips' internally developed technology that is de-

signed to efficiently manage and track patient data. Using FHIR, CDR stores data in a

standardized format that can be easily accessed and utilized by authorized personnel.

• Kibana: Kibana is an open-source technology that is used to maintain logs from dif-

ferent microservices.

• Grafana: Grafana is an open-source technology that allows users to create interactive

dashboards by connecting to different data sources. It is used for monitoring the work

orchestration carried out by Airflow and provides users with valuable insights into their

data.

• Analytics Engine API and Apache Airflow: Apache Airflow is a work orchestration

application that allows users to queue up different tasks and, based on resource availa-

bility, execute them. Analytics Engine API is a wrapper around Airflow which allows

other microservices to interact with it.

• Studykit Store API and TimeScale Database: TimeScale Database is a time-series

based database that can handle large volumes of data. The Studykit Store API is de-

signed to assist the TimeScale database in Create, Read, Update, and Delete (CRUD)

operations.

• GitHub for Algorithms: Although GitHub is a tool that enables version control of

codebases, it also can act as a store. Every new release of the algorithm can be tagged

and used directly from GitHub.

• Amazon Simple Storage Service (AWS S3): AWS S3 is used as a Binary Large Ob-

ject (BLOB) storage for the application that stores the various algorithm states. With

each run, the algorithm recalls the previous state before running and hence, it becomes

more accurate over time.

Eindhoven University of Technology

15

4.1 4 + 1 Architecture Model

4.1.1. Logical View

The logical view primarily describes the functional requirements of the system, i.e., what the

system should provide to its users. The system caters to two different use cases as discussed in

Chapter 2, i.e., Clinical Research, and Philips' business case for technology licensing and eval-

uation. Figure 6 shows how their relationships are mapped based on the requirements. Natu-

rally, the system had to be generic in approach and the weaker relationship of the IP&S use

case was implemented.

Figure 6 - Class Diagram describing the different use cases of the Studykit system

Figure 6 consists of the following classes:

• User: This varies based on the use case, can either be IP&S (and their customer) or

Hospital. The user can be assigned to multiple studies.

• Study: Every user is assigned to a study which consists of different subjects.

• Algorithm: The algorithms are assigned to each study and can vary based on the use

case. Sometimes, a customer may just want to verify the raw metrics and not utilize any

of the algorithms. In this instance, the customer would forego any of the benefits that

the algorithms provide. In the case of clinical research, at least one algorithm is utilized.

• Subject: Subject is a generic term used in this system. Not all participants in clinical

study are ill and might be participating for other reasons. (e.g., clinical research being

Eindhoven University of Technology

16

conducted on athletes). Hence, the term patients cannot be used. Also, IP&S customers

might be wearing the device themselves for testing purposes.

• Device: One or more devices can be assigned to a particular subject for clinical re-

search. In the case of Philip's evaluation case, a customer might not assign a device to

a particular subject. Just importing and exporting data rather than using a device can

achieve their use case. Hence, the metrics are tied to a subject and not to a device, but

a reference is maintained.

• Metrics: These are the raw and derived metrics of a particular subject during the study.

The Studykit Store design must cater for the centricity of the subjects. Figure 7 describes the

relationship between different entities. The Metadata entity is the single-entry point as it has

the primary key. All other entities except the DataSource entity depend on Metadata to provide

the correct relationship for association. The Metadata entity also has an external source foreign

key for "subjectId" from the FHIR database, but it is not represented as a foreign key in the

diagram since the relationship cannot be demonstrated. The DataSource entity is separated

from the metric relation because it is responsible for traceability. Each metric data has an origin,

which can be the device or the algorithm, and the DataSource tracks the origin with each entry.

Eindhoven University of Technology

17

Figure 7 - Entity Relationship diagram of Studykit Store

Eindhoven University of Technology

18

4.1.2. Process View

The process view is associated with the system's dynamic components and focuses on the sys-

tem's run-time behavior. It shows fundamental processes and how they interact.

Figure 8 - System Activity Diagram

Eindhoven University of Technology

19

As shown in Figure 8, the system activity diagram covers two important features: the MSX

upload process and user interaction with the system. The figure illustrates the interaction be-

tween different microservices to perform different tasks (requested by the client browser or

when MSX uploads data). All requests go through the Studykit backend because it is the only

open facade and thus acts as a proxy service for the entire system. The system is designed using

the API Gateway Design Pattern of Microservices architecture. The benefit of having this de-

sign pattern is to enable scalability of the system.

Figure 9 - Sequence diagram - Metric export

To visualize the use case of exporting metrics, we can refer to Figure 9. It shows how the

request originating from Studykit frontend to export metrics for certain format ids and a par-

ticular subject is proxied from the Studykit backend to the Studykit Store and its various com-

ponents.

Eindhoven University of Technology

20

The frontend handles user requests for different metrics that need to be exported. It translates

the name of the metric into a WeST-specified format ID and then requests the information from

the Studykit backend, which proxies the call to the Studykit Store. The Studykit backend only

verifies the security token and not the request. The Studykit Store API verifies the request and

assigns the appropriate service to handle the request (i.e., the WeST Exporter). The WeST

Exporter service of the Studykit Store subsequently requests data from the TimeScale DB. If

the database returns metadata records, the service then requests data for each metadata record.

Finally, it constructs a WeST file from the metric records and creates a zip file. If no metadata

is returned, the service still creates a zip file, but without any content. This is because the source

client is expecting a BLOB as a response.

4.1.3. Development View

The development view, also known as the implementation view, is concerned with software

management and portrays a system from the standpoint of a programmer. It uses the Unified

Modelling Language (UML) Component diagram to describe system components. Figure 10

shows different components of the entire system.

Figure 10 - Component Diagram of the system

Eindhoven University of Technology

21

4.1.4. Physical View

The physical view, also known as the deployment view, depicts the system from the perspective

of a system engineer. The physical layer is concerned with the structure of software compo-

nents as well as their physical connections.

Figure 11 - Deployment Diagram of the system

As shown in Figure 11, the entire system is deployed inside the Philips Network except for

MSX, which is at the subject's end. The Philips Network is essentially Philips' Health Suite

Digital Platform (HSDP). HSDP is Philips' solution designed for cloud infrastructure with ap-

propriate licenses and regulatory compliances for multiple regions. HSDP is a cutting-edge

deployment tool that's been deployed on AWS and supports most of the services offered by

AWS. HSDP is essentially a wrapper that lets users securely deploy services in the cloud, with

the added benefit of being able to do so in a repeatable, automated way.

Eindhoven University of Technology

22

4.1.5. Use Case Scenarios

The different views illustrate the system well, but they do not clarify how users will use it. Use

case diagrams add value to the different views by clarifying how users use the system and how

the system should behave.

Use case: CRUD study and subject

Figure 12 illustrates the use case for creating, updating, reading, and deleting a study and sub-

ject.

Figure 12 - Use Case: CRUD study and subject

Create, update, and delete study

1. When the user wishes to create, update, or delete a study, the request is sent to the

backend with appropriate headers and data.

2. The request is forwarded to the CDR store, where the Groups resource of FHIR makes

the appropriate changes.

3. The request is forwarded to Analytics Engine as well, where the changes to configura-

tions are reflected. Airflow works in the context of the study configuration.

Eindhoven University of Technology

23

Read study

1. When the user wishes to view the information of the study, the request is sent to the

backend with appropriate headers and data.

2. The request is forwarded to the CDR store, where it performs a lookup on the requested

group resource.

Create, update, and delete a subject of a study

1. When the user wishes to create, update, or delete a subject of a study, the request is

sent to the backend with appropriate headers and data.

2. The request is forwarded to the CDR store, where the Patient resource of FHIR makes

the appropriate changes. In the case of creating, a link is created with the Group re-

source.

3. The request is forwarded to Analytics Engine as well, where the changes to the config-

uration of that study are reflected.

Read subject

1. When the user wishes to view the information of a subject of a study, the request is

sent to the backend with appropriate headers and data.

2. The request is forwarded to the CDR store, where it performs a lookup on the requested

patient resource.

Eindhoven University of Technology

24

Use case: Import and Export metric data

Figure 13 illustrates the use case for importing and exporting metric data files.

Figure 13 - Use case: Import and Export metric data

Import metric data

1. When the user wishes to import metric data into the system, the user should select the

appropriate subject of the study.

2. The system accepts WeST file format for importing the data.

3. The files are proxied from the backend to the Studykit Store importer service.

Export metric data

1. When the user wishes to export metric data from the system, the user should select the

date of the data and the metrics.

2. The request is proxied from the backend to the Studykit Store exporter service.

3. If data exists for the selected date and metrics, a zip file is returned with all metric files.

4. If no data exists for the selected date and metrics, an empty zip file is returned.

Eindhoven University of Technology

25

Use case: Visualize subject metric data

Figure 14 illustrates the use case for visualizing subject metric data.

Figure 14 - Use case: Visualize subject metric data

1. When the user wishes to visualize metric data of a subject, the user should select the

date of the data and the metrics.

2. The request is proxied from the backend to the Studykit Store query service.

3. If data exists for the selected date and metrics, a JavaScript Object Notation (JSON)

response is sent with the data as well as the aggregation period. Large volumes of data

are practically impossible to visualize. Hence the Studykit Store automatically aggre-

gates the data.

4. If data does not exist for the selected data and metric, a JSON response is sent with no

data.

Eindhoven University of Technology

27

5.System Design

System design focuses on detailing the low-level design of the system based on the architecture

as described in Chapter 5 to satisfy the requirements mentioned in Chapter 4. In this chapter,

we discuss the design choices for different technologies used to develop the system.

5.1 Design choices

Technology Choice 1: React JS for frontend

Brief: JavaScript is currently the most popular choice for frontend development. It offers many

different frameworks and libraries for different solutions.

Rationale:

1. The team is quite familiar with React JS.

2. Offers one-way data binding, hence the UI components cannot change without updating

the state.

3. Uses a virtual Document Object Model (DOM) to manipulate the object model.

Discarded Choices:

1. Angular JS: Angular is another popular Single-Page Application (SPA) choice, but it

is important to note that it is a framework and not a library. Hence, it is built-in with a

lot of features (also called Batteries) which end up not being utilized. Also, it uses real

DOM to manipulate the object model, which is quite slower because of this feature, it

enables two-way data binding.

2. Vue JS: Vue has become quite popular in the recent years due to its simplicity. Alt-

hough Vue shares a lot of features with React, it does not support function declarative

style of programming, nor provides essential hooks out of the box.

Technology Choice 2: Node JS for different backend microservices

Brief: Currently the market has a lot of very good backend programming languages to offer,

both for lightweight and heavyweight use. It really comes down to how the system scales and

interacts with the underlying hardware to manage the core load efficiently.

Rationale:

Eindhoven University of Technology

28

1. Built-in cluster module which efficiently manages load across all CPU cores and ena-

bles scalability.

2. Node JS is built using an event-driven architecture and thus makes it easier to perform

synchronous operations.

3. Philips in-house technology, such as the IAM client, is built using Node JS and inte-

grates flawlessly with other node-based applications.

Discarded Choices:

1. Django: Django is a high-level Python Web framework that encourages rapid devel-

opment and clean, pragmatic design [4]. It is free and open source, has a thriving and

active community, great documentation, and many options for free and paid-for sup-

port. Unfortunately, there is no support for Philips' in-house technology.

2. Laravel: Even though Laravel is built using Hypertext Preprocessor (PHP), it is slower

than Node and Django. Over the years, PHP has developed quite a lot with the newer

PHP versions, but it still has an overhead regarding scalability. Additionally, it does not

have any support for Philips' in-house technology.

Technology Choice 3: TimeScale DB for high volume time-based data

Brief: The system initially used a SQL database using the Barista system at Philips, but it was

not suited to handling large data volumes. Some devices, such as a PDL, record raw metrics

every second. This implies that every second there are 41 data points for Photoplethysmogra-

phy (PPG) (1 for quality, 4 for Analog to Digital Converter (ADC) gain, 4 for LED power, and

32 for PPG) and 97 data points for Acceleration (1 for quality, 32 for x-axis, 32 for y-axis, and

32 for z-axis). Given the high volume of data being recorded every second, it is more suited

towards time-series databases.

Rationale:

1. Timescale DB is the first open-source time-series database that scales horizontally and

easily processes billions of data points per second while retaining full Structured Query

Language (SQL) functionality.

2. The software supports continuous aggregates, from Postgres materialized views, to re-

fresh the query automatically continually and incrementally in the background. The

computation is only performed on data that needs to be changed, which makes the pro-

cess more efficient.

Eindhoven University of Technology

29

3. TimeScale DB can easily store metadata in any format (even JSON). Also, TimeScale

DB supports Array as a valid data type to store data.

Discarded Choices:

1. Influx DB: Launched in 2013 — Influx DB is a quite popular time-series database

choice for many applications since it is schema-less. The downside of Influx DB is that

it is quite slow over historical data.

2. Amazon Web Services Timestream: Launched in 2020 by Amazon, it is relatively

new and not industry ready. It does not support individual updating or deleting of rows.

Also, time to ingest data is relatively higher than TimeScale DB and Influx DB.

5.2 Benchmark of different time-series databases

A benchmark was required to determine the optimum time-series database for the Studykit use

case. Multiple factors were considered to evaluate the different time-series databases, such as:

• Performance

• Schema structure

• Array support

• Binary support

• HSDP support

• Backup capabilities

• CRUD operations

Performance

To evaluate performance, a test was conducted where data for ten subjects were uploaded for

seven days. The ingestion time taken for this dataset is as follows:

Table 6 - Timeseries database performance evaluation – ingestion

Influx DB TimeScale DB AWS Timestream

8 hours 6 hours 17 hours

Subsequently, another evaluation was carried out to determine the read speed of the different

databases. The databases were also tested on their ability to aggregate data over time. The

results are as follows:

Eindhoven University of Technology

30

Table 7 - Timeseries database performance evaluation - read

Query Pe-

riod

Interval Itera-

tions

Influx DB

(seconds)

TimeScale

DB (sec-

onds)

AWS

Timestream

(seconds)

Get all ppg and

acc

30

mins

None 10 0.633739

0.15798

1.4799

Get all ppg and

acc

1 hour None 10 1.27104 0.314785 1.5255

Get all ppg and

acc

6

hours

None 1 7.71209 1.94029 3.74605

Get single met-

ric (acc)

5 mins Mean (inter-

val – 1 min)

20 0.017913 0.00101 0.184031

Get single met-

ric (ppg)

5 mins Mean (inter-

val – 1 min)

20 0.017066 0.00093 0.157554

Get single met-

ric (acc)

1 day Mean (inter-

val – 1 min)

20 2.74532 0.0294056 0.335798

Get single met-

ric (acc)

1 day Median (in-

terval – 1

min)

20 2.81018 0.0360835 0.30192

Get single met-

ric (acc)

7 days Mean (inter-

val – 5 min)

4 15.9272 0.0862099 0.938409

Get single met-

ric (acc)

7 days Median (in-

terval – 5

min)

4 16.0279 0.213224 1.08088

Get single met-

ric (acc)

7 days Mean (inter-

val – 1 day)

4 15.0114 0.0792669 0.922445

Get single met-

ric (acc)

7 days Median (in-

terval – 1

day)

4 15.3372 0.207651 0.983989

Eindhoven University of Technology

31

Other evaluations are listed as below:

Table 8 - Timeseries database evaluation – multiple factors

 Influx DB Timescale DB AWS Timestream

Schema Structure Schema less Schema based Schema less

Array Support No Yes Yes

Binary Support No Yes No

HSDP Support No No No

Backup capabilities Yes Yes No

CRUD operations All All No support for up-

date or delete of indi-

vidual records.

Eindhoven University of Technology

33

6.Implementation

6.1 Introduction

This chapter presents the implementation of various microservices of the system based on the

architecture and design as mentioned in chapter 5 and 6 respectively.

6.2 Studykit Portal

The portal uses technologies such as React JS and TypeScript and the design is based on the

dDLS from Philips. The dDLS is a complex specification that covers different web

components, color schemes, asset libraries, motion elements, etc. The dDLS also specifies the

margin and padding between different elements. Since, the UI components are common be-

tween different systems at Philips, it greatly reduces the learning curve. Figure 15 shows the

overview of the Studykit Portal designed using the dDLS.

Figure 15 – Studykit Portal

React JS is currently the most popular frontend library of choice for many companies. It allows

users to create User Interfaces by combining JS with Hyper Text Markup Language (HTML).

Eindhoven University of Technology

34

This process of combining JS with HTML is called JavaScript eXtensible markup lan-

guage (JSX). React is only concerned with state management and rendering that state to the

DOM.

Managing the state of a React JS application has been complex since its inception, and hence,

it has required an external library to manage the global state of the application. With the con-

tinuous development and improvement of React JS, it is no longer complex. But it does come

with its own caveats. The current way of dealing with the state can be expressed as:

• Application state - refers to the local state of the application, independent of the server

data.

• Server state - refers to the state of the server and is dependent on the data returned by

the server.

Studykit Portal maximizes both these aspects of state management. For server state manage-

ment, the portal uses Stale-While-Revalidating (SWR) library. SWR is an open-source library

by Vercel, which does the following tasks:

• fetches data from the server

• re-fetches data without re-rendering the application

• maintains the old cache of the fetched data

• automatically fetches data upon re-focusing on the application, after certain amount of

time defined by the user, and when the user reconnects to the internet.

Figure 16 - State management for Server-side data

Figure 16 shows the state management of the server state achieved using the SWR library.

Eindhoven University of Technology

35

For application state, the portal uses the new useContext hook provided out of the box by React

JS. The useContext hook uses the Provider and Consumer model to share the application state

between different components. Every component i.e., consumer that wishes to use the applica-

tion state should be wrapped inside the provider.

With these techniques, modern JS frameworks and libraries don't have the problem called "prop

drilling". Imagine a scenario where the parent component needs to pass some data (props) to a

child component four levels down. This process of passing down props is defined as prop drill-

ing. Communication between different components is made possible with the help of passing

props from one component to the other. Since the components are individual pieces of code

that can be used at multiple places in the application or inside another component, it leads to

non-modular code and, greatly reduces the maintainability of the code.

6.3 MSX

The MSX is a powerful communications hub, built using a stable and secure Linux environ-

ment. It uses Bluetooth to connect wirelessly to the wearable device. It pairs automatically

when it encounters the PDL device. Upon pairing, it fetches the raw metrics from the device.

Subsequently, the MSX fetches the data from the device every minute after the initial fetch.

The received data is in binary format and it is the responsibility of the MSX to convert it to

WeST format files.

The files are uploaded to the cloud using the 4G data dongle attached to the MSX. To ensure

security at all levels, the MSX is equipped with a security token. This security token has access

to upload the files to the cloud only. Additionally, the MSX does not know which subject it

belongs to; thus, it only uploads the device identifier and the metric files. The device identifier

can either be a MAC address or a serial number.

Inside the cloud, the endpoint is pointing towards the backend service. This service looks up

the device identifier in the FHIR database using the Clinical Data Repository (CDR) interface.

CDR is another in-house technology from Philips, which was developed to efficiently and se-

curely use FHIR. As per the Device and Patient specification of FHIR, any device can be

Eindhoven University of Technology

36

associated with a particular subject. Making use of this association, the backend service per-

forms a global level look-up on all CDR instances to look for that device identifier.

Upon successful query, it forwards the raw metrics along with the newly retrieved subject id

to the Studykit Store. Studykit Store is another microservice application developed for this

project. It comprises a service layer on top of the TimeScale DB. The service layer enables

three top level functionalities are query, import, and export.

The backend service never interprets the files that are uploaded by the MSX. The purpose of

the backend service is to perform a look-up for subject identifier based on the received device

identifier. To maintain performance while importing, it uses the same upload stream as received

from the MSX and proxies it to the Studykit Store. The Studykit Store has a parser for the files.

The parser reads the metadata of each file to identify the metric type based on the format id

field. Based on the format id, it parses the files. The parser is thorough and individually checks

each data point.

6.4 Work Orchestration

The algorithms are the most crucial, integral, and important aspect of this entire system. They

reside under the Analytics Engine. The Analytics Engine consists of Apache Airflow and Node

JS-based service written on top of it to interact with the Airflow remotely via the Representa-

tional State Transfer (REST) API.

Apache Airflow is an open-source platform, written in Python, developed by AirBnb in 2014.

It solves the problem of hard-to-manage complex workflows. It allows easy management of

schedulable jobs with the ease of scalability and extensibility.

Eindhoven University of Technology

37

Figure 17 - DAG

A DAG (Directed Acyclic Graph) is the core concept of Airflow, collecting tasks together, or-

ganized with dependencies and relationships to say how they should run [5]. As seen in Figure

17, it dictates the order of how three tasks run. The directionality between the graphs describes

the dependency. These tasks can be scheduled to run periodically or once as per the user's con-

figuration. For periodic scheduling, Airflow uses the Linux cron command syntax. The syntax

for creating is illustrated by Figure 18.

Figure 18 - Cron Syntax [6]

The Node JS-based service is designed to cater to three solutions:

1. To maintain the algorithms, connections, and their states with the help of a database

2. To ensure other microservices can interact with airflow

3. To perform CRUD operations on the DAGs.

The Analytics Engine works in combination with the Studykit Store Amazon S3. The Studykit

Store is responsible for delivering the data for a particular subject for a given date and time,

whereas Amazon S3 is responsible for storing the state of the algorithms. Algorithms maintain

a state file, which allows the algorithm to become more accurate over time.

Eindhoven University of Technology

38

Figure 19 - Work Orchestration

Figure 19 shows the work orchestration broken down into three steps: Input, Run Task, and

Output. As shown, the process starts when the job is queued based on the cron specification

inside the Input Task. From the database using the Studykit API, the last known algorithm

run is fetched, and the new start date is calculated. If this is the first instance of the algorithm

run, then Study's start date is used as the start date. Then we query the Studykit Store based on

the start time and retrieve the data. The entire work orchestration process ends if no data is

returned by the Studykit Store. If Studykit Store returns the data, subsequently, it is uploaded

to an Amazon S3 bucket.

Inside Run Task, data along with the last state of the algorithm (if exists) is retrieved from S3.

Subsequently, the algorithm is downloaded from GitHub. GitHub is used as an external store

where the algorithms are maintained. It allows for maintaining the code history of the algo-

rithms and maintaining the versions of the algorithms. After the download is complete, the

algorithms run on the raw data that was downloaded. The execution is dependent upon the

manifest that is returned by the Studykit Store along with the data. The manifest includes

metadata from the algorithm as well as the personal attributes of the subject. If the run is not

Eindhoven University of Technology

39

successful, the work orchestration process exits with a failed status. If the algorithm runs suc-

cessfully, the derived metrics along with the new metrics states are uploaded to Amazon S3

bucket.

Finally, inside Output Task, the derived data is downloaded from the Amazon S3 bucket and

uploaded to Studykit Store. Subsequently, the last algorithm run date is updated using the

Studykit API and the work orchestration ends with a success state.

6.5 Studykit Store

The Studykit Store represents another crucial sub-system, which deals with the storing of met-

rics. The Studykit Store is the first ever solution at Philips, which is built using a time-series

based database. The nature of healthcare data is largely dependent upon time, and hence rela-

tional databases do not add a lot of benefit. TimeScale DB is built on top of Postgres SQL and

provides the functionalities of a relational database as well as a time-series database.

Figure 20 - Studykit Store Container Diagram

The Studykit Store also has an API layer, which allows other microservices to interact with the

database. Two different services, i.e., Import service and Export service, handle the parsing of

the data. The import service takes care of the files that are uploaded by MSX and Manual

Eindhoven University of Technology

40

Upload via the Studykit Portal. The export service takes care of allowing users to extract all or

selected data from the database into a downloadable file. Lastly, there is the Query service,

which allows for just reading of the data. The export service under the hood uses the query

service to retrieve data. Figure 20, outlines the entire structure in detail. Note, the Studykit

Portal and Analytics Engine do not directly communicate with the Studykit Store. This is just

for visual representation purposes.

6.6 Logging and Monitoring

All microservices log to allow for speedy debugging and to guarantee that any issues are im-

mediately detected and remedied. Tracing and managing server logs can be an incredibly tedi-

ous process, so we use an external system to ensure proper management and search indexing.

Elastic Search by Elastic enables us to track and visualize server logs in an efficient way. It

maintains logs from different sources, sorts them based on time, and allows for quick search

and analysis. Kibana is a User Interface by Elastic, which enables us to fully utilize the power

of Elastic Search. Both tools are open-source and have great community support as well. Figure

21 shows an example of Apache Airflow log.

Figure 21 - Kibana log

For monitoring the Airflow DAGs, another open-source technology is used, called Grafana.

Grafana allows you to query, visualize, alert on, and understand metrics no matter where they

Eindhoven University of Technology

41

are stored. Grafana lets the user connect data sources and create dashboards using the user

interface. It shares a lot of features with Kibana, but the key difference is that it does not rely

on Elastic Search under the hood. It is independent of the data source and can connect to any

relational or non-relational database.

To enable Grafana's connection with Airflow, another open-source tool called Prometheus is

used in conjunction with statsd_exporter. Prometheus is an open-source system monitoring and

alerting toolkit originally built at Soundcloud. Statsd_exporter, as the name implies, is a stats

exporter which runs as a daemon in the background. Airflow has built-in support for statsd_ex-

porter. Moreover, Prometheus also has support for statsd_exporter and hence, it pulls the data

and passes it to Grafana.

Figure 22, illustrates the stats of the development airflow cluster for the past one hour. Various

stats are shown, such as Scheduler heartbeat (fetched every 30 seconds), Dagbag size (total

number of DAGs), Zombie killed (a process is defined as zombie when it is terminated yet still

has record on the process table), total failed tasks, executor open slots (maximums DAGs that

can run at a given time).

Figure 22 - Grafana dashboard

Eindhoven University of Technology

43

7.Verification & Validation
This chapter discusses the verification and validation of the system developed. The difference

between the two terms is mostly brought about by the function of specifications. Verification

is the process of ensuring the software adheres to specifications, whereas validation is the pro-

cess of making sure the specification captures the customer's needs.

7.1 Verification

Verification of the system requirements along with their status (satisfied, not satisfied and par-

tial) is as follows:

Table 9 shows the verification status of general requirements.

Table 9 - Verification - General requirements

Requirement

Id

Priority Requirement Status

GR01 Must The portal should be accessible with any mod-

ern browser (i.e., support for ECMAScript v6).

Satisfied

GR02 Must The portal should be able to visualize metric

data.

Satisfied

GR03 Must The portal shall be deployable on Philips’ net-

work.

Satisfied

GR04 Must The system shall use Philips’ IT-approved

tools and technologies.

Partial

GR05 Must The database should normalize the data before

storing.

Satisfied

GR06 Must The algorithms should run independently for

each subject of a study.

Satisfied

GR07 Must The system should store patient/subject infor-

mation using FHIR.

Satisfied

Eindhoven University of Technology

44

GR07 Must The system should provide a logging and mon-

itoring mechanism.

Satisfied

GR08 Won’t

have

The system should be able to live stream data

and show visualization.

Not satisfied

Reason for partial satisfaction:

• GR04: Since Studykit is the first system at Philips, which uses TimeScale DB, it is

currently not listed under Philips’ IT approved tools and technologies. However, the

team is currently in the process of getting TimeScale DB approved.

Table 10, 11, and 12 show the status of functional requirements of different microservices.

Table 10 - Verification – Studykit Portal – Functional requirements

Requirement

Id

Priority Requirement Status

FR01 Must The portal shall allow the user to import data met-

ric files.

Satisfied

FR02 Must The portal shall allow the user to export data met-

ric files.

Satisfied

FR03 Must The portal shall allow the user to select a particu-

lar date for data visualization.

Satisfied

FR04 Must The portal shall allow the user to have a high-level

view if the data is present for a particular subject

or not.

Satisfied

FR05 Must The portal shall allow the user to select multiple

metrics for visualization.

Satisfied

FR06 Must The portal shall inform the user if the visualiza-

tion data is aggregated.

Satisfied

FR07 Should The portal shall inform the user regarding the state

of algorithm processing after successful import.

Satisfied

Eindhoven University of Technology

45

Table 11 - Verification - Studykit Store - Functional requirements

Requirement

Id

Priority Requirement Status

FR08 Must The store shall parse different metric data files

based on their specification when importing.

Satisfied

FR09 Must The store shall construct different metric data files

based on their specification when exporting.

Satisfied

FR10 Must The store shall selectively map out of range data

into their valid range.

Satisfied

FR11 Must The store shall track the source information of

each metric.

Satisfied

FR12 Must The store shall be able to parse metric files irre-

spective of the white space character (i.e., tab or

spaces)

Satisfied

Table 12 - Verification - Analytics Engine - Functional requirements

Requirement

Id

Priority Requirement Status

FR13 Must The engine shall provide an API interface for

Apache airflow

Satisfied

FR14 Must The engine shall store configurations for each

subject and study

Satisfied

FR15 Could The engine shall support live streaming and pro-

cessing of metric data.

Satisfied

FR16 Should The engine API shall provide progress update on

the algorithm state post data manual import.

Satisfied

Eindhoven University of Technology

46

Table 13 shows the status of the non-functional requirements of the system.

Table 13 - Verification - Non-functional requirements

Requirement

Id

Priority Aspect Description Status

NFR01 Must Security The system shall authenticate and

authorize user and each request

using Philips’ Identity Access

Management (IAM) Client.

Satisfied

NFR02 Must Privacy The system shall be deployed as

per regional privacy laws.

Satisfied

NFR03 Should Accessibility

and Usability

The system shall adhere to

Philips’ dDLS specification for

the user interface.

Satisfied

NFR04 Should Compliance The system shall adhere to all

compliances of the respective

country, where it is deployed.

Satisfied

NFR05 Should Maintainabil-

ity

Each microservice of the system

should be developed with the best

practices so, it can be maintained

easily over the lifetime of the sys-

tem.

Satisfied

NFR06 Should Extensibility Each microservice of the system

should be modular such that it

can be extended in the future

without any architectural

changes.

Satisfied

Eindhoven University of Technology

47

7.2 Validation

Validation is the process of checking if the developed system satisfies the needs of the stake-

holders. The Studykit system was validated iteratively within the team during the development

phase. The system was also validated in collaboration with stakeholders, both internal, and ex-

ternal. A User Interface mockup of the Studykit portal was developed using a tool called

Sketch. The dDLS has a kit for Sketch, that allows the user to use the required building blocks.

The demo of the User Interface was given to the internal (IP&S) and external (contact people

at hospitals) stakeholders. Subsequently, feedback received from the stakeholders post the

demo was taken into consideration for taking the next steps. Naturally, not all the suggestions

are considered directly, because the aim of this project is to develop the MVP, and not the final

solution. The suggestions were not ignored but added to the backlog for future enhancements.

7.3 Security Checks

Philips uses a proprietary technology called Black Duck from Synopsys. Black Duck essen-

tially helps teams manage the security, quality, and license compliance risks that come from

the use of open source and third-party code in applications and containers [7].

Figure 23 – Black Duck security analysis of Studykit Store

Eindhoven University of Technology

48

Figure 23 shows the security analysis of the Studykit Store. As seen from the figure, even

though there is no security risk involved, there is still an operational risk. This is because, it

also analyzes the dependencies of the different libraries and when each of the dependencies

were last updated.

7.4 Clean Code

Philips uses an industry-leading open-source technology called SonarQube to maintain and

improve different applications and tools for clean code. SonarQube is a self-managed, auto-

matic code review tool that systematically helps you deliver Clean Code [8]. SonarQube and

Black Duck are a part of Studykit’s Continuous Integration and Continuous Deployment

(CI/CD) pipeline.

Figure 24 - SonarQube Analysis of Studykit Client

Figure 24 shows the SonarQube analysis of Studykit Client. As seen from the figure, it gives a

rating on bugs, vulnerabilities, security hotspots, debt, and code smells.

Eindhoven University of Technology

49

7.5 Code Coverage

Code coverage is a metric that reflects how thoroughly the program's source code has been

tested. The coverage tool generates a report, usually expressed in percentages, of all the files

of a given project. Code coverage is a good way to measure the quality and maturity of a pro-

ject's code and is essential for understanding the health of the project's code base. There is no

industry standard for the minimum percentage of coverage, but anything above 75 percent of

coverage is considered good. Figure 25 shows code coverage for the Studykit Portal, which

currently stands at 88.03 percent. Similarly, other microservices are tested and checked for

code coverage before deployment. Currently, the code coverage for Studykit Store and

Studykit Backend is at 68.9 and 70.9 percent respectively. However, we made sure that the

critical parts are covered.

Figure 25 - Code Coverage: Studykit Portal

Eindhoven University of Technology

51

8.Project Management
In this section, we describe how the system described in the previous chapters was managed.

This section describes the planning and execution of the entire project.

8.1 Project Organization

Philips uses the world-renowned Scaled Agile Framework (SAFe) to manage and promote ag-

ile practices at an enterprise scale [9]. SAFe is a unique tool that promotes alignment, collabo-

ration, and delivery across many agile teams. A Value Stream (VS) in SAFe represents the

series of steps that an organization uses to implement solutions that provide a continuous flow

of value to the customer/end-product.

Figure 26 - Value stream structure

Figure 26 shows the structure of the Ambulatory and Virtual Care VS. Studykit is a part of the

Analytics as a Service epic under the Ambulatory and Virtual Care VS. An epic represents a

series of user stories that share a border strategic objective. Each Epic under the VS follows

the iterative approach of development. The iteration is identified as a Program Increment (PI)

and is three months in duration. The PI is a key milestone in the process and sets the stage for

future development. A PI is further split into three sprints, which span for one month each.

Sprints ensure that the team is making progress towards a defined goal and that everyone is

staying on track. The work done during each sprint is shown by Figure 27.

Eindhoven University of Technology

52

Figure 27 - Project timeline

8.2 Project Milestones

This section describes the different milestones that contributed towards successfully delivering

the project. Table 14 shows the important milestones and the delivery date.

Table 14 - Project Milestones

Milestone Estimated Date

Time-series database comparison 24 February 2022

Studykit Store Implementation V1 30 March 2022

UI Mockup of Studykit Portal 29 April 2022

Studykit Portal Implementation V1 30 May 2022

Studykit Backend Implementation V1 18 June 2022

Studykit Portal Implementation V2 30 June 2022

Studykit Store Implementation V2 25 July 2022

Studykit Backend Implementation V2 30 July 2022

Studykit Portal Implementation V3 18 August 2022

Eindhoven University of Technology

53

8.3 Risk Analysis

This section describes the risks that were identified during the project. Table 15 represents the

different risks that were identified along with their likelihood, impact, and mitigation steps.

Table 15 - Risk assessment

Risk Likelihood Impact Mitigation

The trainee is ill for a

duration longer than 10

days

Medium High • Negotiate requirements.

• Add buffer period in project time-

line

Delay in progress with

respect to expected

timeline

Medium High • Work on documentation in the free

time.

• Implement small modules which

can be hot plugged into the system

later.

The trainee does not re-

ceive the tools on time

(e.g., Laptop)

High High • Gather the requirements

• Understand the domain

Lack of domain

knowledge

Medium Medium • Learn the required skill proac-

tively.

• Pair programming with other engi-

neers to speed up the process.

Unscheduled holidays

of other team members

Low Medium • Be independent enough to take

charge in their absence.

• If something is blocking, consult

other members for a possible solu-

tion.

Miscommunication

among the team mem-

bers

Medium High • Ask open questions to avoid doubts

• Whenever in doubt, feel free to

reach other members over MS

Teams when feasible

Eindhoven University of Technology

55

9.Conclusions
This chapter summarizes the project achievements and gives some recommendations for future

works.

9.1 Results

During this project, we developed the Studykit system that reshapes clinical research, while

also helping Philips and their customers. The system provides a testing playground for custom-

ers of Philips. It enables customers to explore different algorithms offered by Philips, while

abstracting the actual implementation of algorithms. The abstraction of algorithms ensures that

Philips can securely provide algorithms to their customers without having to worry about any

security issues. In clinical research, the system reduces the effort of collecting feedback, main-

taining files for different subjects, and managing data from different subjects.

The system also provides a manual way of importing and exporting the data that mitigates the

manual effort that was required with the Barista system. The introduction of the MSX hub

solves the problem of supporting multiple devices. The Studykit Store can handle large data

volumes while not compromising on sharding and compression. Moreover, the Studykit Store

also normalizes the imported data, ensuring the data always conforms to the WeST specifica-

tions.

Although this is still an MVP, it is a massive upgrade from the previous technology. The results

of this project show many improvements to the system currently in place and a potential way

for Philips to carry on in future development of tools concerning clinical research (e.g., the

Barista system took 15+ seconds to render a single visualization for a metric but the Studykit

system takes 4-5 seconds to render about 5 visualization metric graphs).

Eindhoven University of Technology

56

9.2 Recommendations and future work

Given the time constraint of the project, it was not possible to develop the ultimate solution

required for the market. Having achieved the MVP, here are some recommendation and future

work for this project:

• Live Streaming of data: Currently, the metrics are processed every hour even though

the MSX uploads the data every minute whenever there is data incoming. For an inter-

ventional study, it is required that the system scales up and supports live streaming and

processing of metrics.

• Medically checked and certified: Provided that the future scope of the system is also

to support interventional study. It is necessary to have the system medically checked

and certified for safety, privacy, robustness, downtime, etc.

• Machine Learning on data: The world is evolving and doing wonders with the help

of machine learning. With the Studykit system in place and having the ability to record

raw metrics, we believe Philips now has better opportunities for developing sensor tech-

nologies and algorithms with the help of machine learning.

Eindhoven University of Technology

57

10. Project Retrospective
This chapter concludes the report by providing a self-reflection on the project from the author’s

perspective.

10.1 Reflection

The past ten months working at Philips has been an absolute delight for me. I never thought I

would be working at a project that revolves around medical domain for my EngD thesis. I was

incredibly new to this domain and initially found it hard to cope with all the new technical

jargon and terms. The team really helped me get acquainted with the domain and guided me

through the entire process.

I developed and learnt a lot over the past ten months both personally and professionally. Look-

ing back to January when I started this project and seeing what I am today, there is no doubt I

personally see a big difference in myself. When you are studying at the University, you just

study about these new emerging technologies and get a gist of the idea, but never really imple-

ment anything at scale. I learnt a great deal about agile, microservices, production level code,

continuous integration, and deployment, and many more things including working in a team

driven by the same ambition.

To conclude, I will always remember this project and cherish it. This project has challenged

me in every way possible and broaden my skills. The project has made me confident about

learning and adapting to new technologies and situations irrespective of the domain. The pro-

ject also taught me how to deal with problems at a larger scale and what is the thought process

behind the rationale for different choices.

Eindhoven University of Technology

59

Glossary
ACC Acceleration

AI Artificial Intelligence

API Application Programming Interface

AWS Amazon Web Services

BLOB Binary Large Object

CDR Clinical Data Repository

CI/CD Continuous Integration / Continuous Deployment

CRUD Create, Read, Update and Delete

DAG Directed Acyclic Graph

DB Database

dDLS digital Design Language System

DOM Document Object Model

ECMA European Computer Manufactures Association

EngD Engineering Doctorate

FHIR Fast Healthcare Interoperability Resources

FR Functional Requirements

GR General Requirements

HSDP Health Suite Digital Platform

HTML Hyper Text Markup Language

IAM Identity Access Management

IP&S Intellectual Property & Standards

JS JavaScript

JSON JavaScript Object Notation

JSX JavaScript eXtensible markup language

MSX Internal name for Linux based communications hub

MVP Minimum Viable Product

NFR Non-Functional Requirements

PASS Philips Actigraphy Server System

PDL Philips Data Logger

PHB Philips Health Band

PHP Hypertext Preprocessor

Eindhoven University of Technology

60

PI Program Increment

PPG Photoplethysmography

REST Representational State Transfer

S3 Simple Storage Service

SAFe Scaled Agile Framework

SPA Single-Page Application

SQL Structured Query Language

SWR Stale-While-Revalidating

TS TypeScript

TU/e Technische Universiteit Eindhoven / Eindhoven University of Technology

UML Unified Modelling Language

USB Universal Serial Bus

WeST Wearable Sensing Technologies

Eindhoven University of Technology

61

References

[1] Wikipedia, "Clinical Research," [Online]. Available:

https://en.wikipedia.org/wiki/Clinical_research.

[2] P. Plan, "MoSCow Prioritization," [Online]. Available:

https://www.productplan.com/glossary/moscow-prioritization/.

[3] P. B. Kruchten, "The 4+1 View Model of architecture," IEEE Software, vol. 12, no. 6,

pp. 42-50, 11 1995.

[4] D. Project, "The web framework for perfectionists with deadlines | Django," [Online].

Available: https://www.djangoproject.com/.

[5] A. Airflow, "DAGs - Airflow Documentation," [Online]. Available:

https://airflow.apache.org/docs/apache-airflow/stable/concepts/dags.html.

[6] Cronhub, "Cron expression generator by Cronhub," [Online]. Available:

https://crontab.cronhub.io/.

[7] Synopsys, "Black Duck," [Online]. Available: https://www.synopsys.com/software-

integrity/security-testing/software-composition-analysis.html.

[8] SonarQube, "SonarQube Documentation," [Online]. Available:

https://docs.sonarqube.org/latest/.

[9] SAFe, "SAFe," [Online]. Available: https://www.scaledagileframework.com.

Eindhoven University of Technology

63

Appendix A.

In this section, the main participants concerned with this project are presented in three catego-

ries: Philips, TU/e, and Hospital. The following sections describe the name, role, and tasks of

each participant.

Philips

Table 16 - Stakeholder list - Philips

Name Role Tasks

Paul Dillen Philips supervisor and

Algorithms architect

• Ensure the project success adds value to

the Ambulatory and Virtual Care value

stream

• Review the final project report and

presentation

• Guiding the EngD trainee

Martijn van Welie Cloud architect • Guiding the EngD trainee with the rel-

evant cloud and technical knowledge

Dave Boshoven Embedded architect and

SCRUM master
• Guiding the EngD trainee with the rel-

evant embedded and technical

knowledge

• Guiding the EngD trainee with respect

to relevant tasks

Carlijn Vernooij Product Owner • Guiding the EngD trainee with appro-

priate medical domain knowledge

• Guiding the EngD trainee about spe-

cific requirements

• Review the final project report

Reinder Haakma Product Manager (for-

mer Product Owner of

Studykit)

• Ensure the project success adds value to

the Ambulatory and Virtual Care value

stream

Eindhoven University of Technology

64

• Guiding the EngD trainee with appro-

priate medical domain knowledge

• Guiding the EngD trainee about spe-

cific requirements

Bram

Hoendervangers

Engineer • Successfully delivering the compo-

nents of the project

• Guiding the EngD trainee with tech-

nical knowledge

Gertjan Maas Engineer

Hugo Barrote Contact person at Intel-

lectual Property &

Standards department

• Ensure the project success adds value to

the business.

• Providing relevant information to make

the problem statement clear.

Jimmy Huang

Hospital

Table 17 - Stakeholder list - Hospital

Name Role Tasks

Mayra Goevaerts Philips’ contact person at

Maxima Medisch Centrum
• Discuss merits and demerits of

PASS system

• Provide feedback on Studykit De-

sign

Arthur Bouwman Philips’ contact person at

Catharina Ziekenhuis
• Provide feedback on Studykit De-

sign Leon Montenij

TU/e

Table 18 - Stakeholder list - TU/e

Name Role Tasks

Yanja Dajsuren TU/e supervisor and EngD

ST program director
• Guiding the EngD trainee

• Evaluating the project based on

TU/e standards

• Review the final project report and

presentation

Renata Medeiros

de Carvalho

TU/e supervisor

Eindhoven University of Technology

65

About the Author

Akash Arora received his Bachelor's degree in Computer

Application from Guru Gobind Singh Indraprastha University,

India in 2016. Later he received a Master's degree in

ComputerApplications, specializing in Software Development

from Symbiosis International University, India in 2019. Akash

has also studied Cyber Security at Ritsumeikan University in

Japan during the Master's program for the summer of 2018 and

the entire research internship was sponsored by the Japanese

government. Akash has worked actively during this Bachelor's

and Master's program as a freelancer for start-ups as well as

multi-national companies, helping them with their tech stack.

Nowadays, his interests lie in Software Architecture & Design,

Entrepreneurship, and Cyber Security.

EngD SOFTWARE TECHNOLOGY

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl

	TUe_PDEng_ST_WalkingBridge_A4_covers
	Blank
	Akash Arora - Thesis
	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Domain and Problem Analysis
	2.1 Clinical research
	2.2 Philips’ business case – Technology Licensing
	2.3 Problem Definition
	2.4 Goal
	2.5 Scope

	3. Requirements Elicitation
	3.1 Introduction
	3.2 General requirements
	3.3 Functional requirements
	3.4 Non-functional Requirements

	4. System Architecture
	4.1 4 + 1 Architecture Model
	4.1.1. Logical View
	4.1.2. Process View
	4.1.3. Development View
	4.1.4. Physical View
	4.1.5. Use Case Scenarios
	Use case: CRUD study and subject

	5. System Design
	5.1 Design choices
	5.2 Benchmark of different time-series databases

	6. Implementation
	6.1 Introduction
	6.2 Studykit Portal
	6.3 MSX
	6.4 Work Orchestration
	6.5 Studykit Store
	6.6 Logging and Monitoring

	7. Verification & Validation
	7.1 Verification
	7.2 Validation
	7.3 Security Checks
	7.4 Clean Code
	7.5 Code Coverage

	8. Project Management
	8.1 Project Organization
	8.2 Project Milestones
	8.3 Risk Analysis

	9. Conclusions
	9.1 Results
	9.2 Recommendations and future work

	10. Project Retrospective
	10.1 Reflection

	Glossary
	References
	Appendix A.
	About the Author

	TUe_PDEng_ST_WalkingBridge_A4_covers

