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Foreword

The request TomTom made to the PDEng, now EngD, trainee was very broad "Safety and Security by
Design in architecture of automotive software systems". Dan was not daunted by the broad scope and
in our first talks expressed an interest in the wonderful world of automotive.

That interest did not wane during his traineeship. We decided that he would focus on safety and how
this could fit in with the way of working of TomTom. For this he needed an example project, small
enough to fit a one-man team and big enough to be relevant. We ended up with the feature "blind spot
detection in lane level navigation".

Dan quickly found his way in the TomTom organization and contacted safety experts, development
teams and other people to support him in his efforts. He managed to show how safety could be
included in the TomTom way of working and help pave the way for TomTom to better understand the
impact of (not doing) safety. I was impressed by the ease with which he contacted relevant people and
how he managed to get their support, especially since most of us were working remotely.

Dan’s work brought the TomTom organization one step closer to informed decision-making regarding
safety. A job well done.

Ir. Guus Holshuijsen
Solution Architect - TomTom

October 2022
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Preface

This document is the final report of the “Safety by Design in Architecture of Automotive Systems”
project, executed by Dan-Cristian Chirascu, as the graduation project of the Engineering Doctorate
(EngD) program in Software Technology. EngD is a two-year doctorate-level program provided by
the Eindhoven University of Technology under the banner of 4TU.School for Technological Design,
Stan Ackermans Institute.

The project was carried out in collaboration with TomTom to investigate the methods of integrating
safety design practices in the creation of automotive software products. The project goal was achieved
by exploring and understanding safety design practices followed by applying them on a proof-of-
concept system.

The current work is organized as follows:

• Chapter 1 summarizes the automotive industry context, defines the problem statement and lists
the research questions.

• Chapter 2 describes the prior work used to answer the research questions, understand automo-
tive safety design practices and apply them to a proof-of-concept system.

• Chapter 3 introduces the reader to the ISO26262 safety design theory concerning software sys-
tems.

• Chapter 4 documents the application of the safety design theory on a proof-of-concept system.
The static code analysis of existing product code of TomTom is also documented here.

• Chapter 5 provides an analysis of the costs and benefits of safety design on the software creation
process.

• Chapter 6 summarizes the results and conclusions and recommends future work.

Dan-Cristian Chirascu

October 2022
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1 Introduction

1.1 The Software-Defined Vehicle

Demand for services such as in-vehicle infotainment, autonomous driving, and electrification is in-
creasing the software reliance of vehicles [15]. As a consequence, in-vehicle applications are becom-
ing more complex. To support this trend, computationally stronger Domain Control Units (DCUs) are
replacing the less powerful Electronic Control Units (ECUs) [14]. Automotive electronics developers
expect that, by 2030, vehicle electronic architectures will be more centralized, with DCUs taking over
the applications currently supported by multiple ECUs [23], [14]. Figure 1.1 shows the projected
evolution of automotive electronic architecture. From bottom to top these are:

• The 3rd generation relies heavily on application specific ECUs. Each function, such as parking
assistance, has a dedicated ECU.

• The 4th introduces DCUs supporting all functions of a given domain. A DCU can for instance
cover Advanced Driver Assistance Systems (ADAS) functions, such as parking assistance and
blind-spot detection. The DCU processing architecture is more powerful and less application
specific, which allows for higher software flexibility and complexity [4]. This automotive ar-
chitecture is also exemplified in Figure 1.2 left side.

• The 5th generation is the most centralized, as ECU functionality is completely taken over by
DCUs communicating directly with sensors and actuators. Another variant of highly-centralized
architecture is shown in Figure 1.2, where DCUs are merged in one single High-Performance
Computing (HPC) platform capable of handling applications from multiple domains.

The increase in computation power allows executing desktop programs or smartphone applications
on vehicle hardware, giving birth to the software-defined vehicle. These new processing capabilities
enable software companies to launch their products in the automotive space [19]. A category of
software that is being integrated in vehicles is that of navigation applications. Access to the in-vehicle
network allows navigation systems to communicate with sensors and provide high-accuracy guidance.
They can assist the driver with lane-level route information, reporting on the local traffic situation.
The automotive and software industry expects future vehicles to provide real-time lane-level guidance
including information on vehicles in close proximity.

1.2 TomTom Lane-Level Guidance

TomTom is a geolocation and driving assistance software company that seeks to add lane-level guid-
ance to its range of features. One product that provides high accuracy navigation is the IndiGo digital

Safety-by-Design in Architecture of Automotive Software Systems 1
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Figure 1.1: Centralization Trend of Automotive Architecture 1 [14]

Figure 1.2: Centralization Trend of Automotive Architecture 2 [23]
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Figure 1.3: Concept of future vehicle navigation on TomTom IndiGO platform [1]

cockpit [21]. This is a software platform that allows automotive and commercial software compa-
nies to deploy and maintain their services on an out-of-the-box In-Vehicle Infotainment (IVI) sys-
tem. The platform provides a large collection of reusable commercial grade applications and services
specifically designed for in-vehicle use. This allows for developing and maintaining software on a
smartphone-like platform, but with access to Advanced Driver Assistance Systems (ADAS), sensors,
and other vehicle data. The holistic interface provides the driver access to all the features in a safe and
non-distracting way.

Figure 1.3 shows a concept of the IndiGO platform, where the cluster display behind the wheel pro-
vides lane-level guidance, while the center-stack display on the right shows road-level navigation
similar to that of current navigation applications.

1.3 Designing with Safety in Mind

Lane-level navigation applications, while providing the driver with useful real-time traffic information
and accurate route guidance, raise safety concerns, as malfunctions can cause the driver to make
hazardous maneuvers. Sensor faults and obstructions, as well as data loss or corruption due to software
errors, can lead to misguiding the driver and thus to accidents. Figure 1.4 shows an IndiGo platform
concept where a nearby vehicle is displayed on the cluster screen. The interface uses a more alarming
color, to signal the user that they should be careful when switching lanes, to avoid a collision. Should
such a system fail, in the case of a careless driver not checking adjacent lanes before turning, the
chance of potentially fatal accidents increases.

To function safely, high-accuracy navigation systems must prevent or mitigate malfunctions and safely
handle environment situations that limit functionality. For these reasons, TomTom lane-level guidance
features must be designed and implemented with safety in mind. Furthermore, safety should be part
of development from its beginning, and not done as an afterthought. Treating safety as an afterthought
causes additional delays and cost, not to mention endangering the driver and the environment around
the vehicle.

Safety-by-Design in Architecture of Automotive Software Systems 3
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Figure 1.4: Informing driver of nearby vehicle [1]

1.4 Safety Levels

Before defining the project goal and diving into the subject matter, the current work defines the concept
of Automotive Safety Integrity Level (ASIL), which is used extensively in the next chapters. ASIL
is a safety-criticality classification scheme used in the automotive industry, that helps understand the
risk and effect of a vehicle function failing. The ASIL level reflects the risk, with A being the lowest
and D the highest. While no safety design is required for QM functions, safety-by-design principles
help increase software product quality.

The exact method for determining the ASIL of a function and its supporting system is discussed in
Chapter 3. Figure 1.5 shows the ASIL levels of various vehicle functions. The ASIL C-D range is
typically assigned to functions that affect vehicle maneuvers and passenger safety, while A-B covers
functions that pertain to lighting or infotainment systems.

1.5 Project Goals

To understand the methods and impact of safety design on TomTom products, the current project
develops a proof-of-concept system following state-of-the art automotive safety standards. In realizing
this goal, the project achieves the following sequence of objectives:

1. Introduction to the safety design process according to state-of-the-art standards, adapted for use
in TomTom.

2. Development of a proof-of-concept system, following the safety process introduced in Objective
1.

3. Documentation of the proof-of-concept improvements resulting from the addition of safety in
the software development process.

4 Safety-by-Design in Architecture of Automotive Software Systems



Eindhoven University of Technology

Figure 1.5: Example ASIL classifications [5]

4. Discussion of the value and cost of safety-by-design, in terms of technical and business-level
benefits, as well as additional time and resources needed.

The insights gained from pursuing the above goal are listed below:

• Software functional-safety is a straightforward and relatively easy to understand process.

• Safety-by-design for software companies is likely to provide benefits exceeding the costs, in
terms of technical and business value added.
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2 Functional Safety Standards

The current study relies heavily on the ISO 26262 [13] standard, the state of the art functional safety
standard for automotive systems. It is used extensively by the automotive industry and its suppli-
ers [18]. It is based on the IEC 61508 [9] functional safety standard for Electrical/Electronic (E/E)
systems. The ISO 26262 standard consists of twelve parts listed below and shown in Figure 2.1:

• Part 1 defines the vocabulary used in the rest of the standard.

• Part 2 addresses the management of functional safety in terms of staff required, planning, and
development procedures.

• Part 3 describes the functional safety concept design phase, where the requirements for prevent-
ing dangerous failure effects are derived.

• Part 4 describes the system-level safety design phase, where the safety mechanisms necessary
to satisfy the requirements of the previous phase are derived.

• Parts 5 and 6 describe the hardware and software-level safety design phases respectively. The
focus of these is in specifying implementation and verification techniques that ensure correct
functioning of hardware and software components.

• Part 7 covers the release of the system for production.

• Part 8 specifies supporting processes such as configuration, change and documentation manage-
ment, as well as interfacing with and integration of non- ISO26262-developed applications.

• Part 9 describes guidelines for ASIL decomposition and safety analyses needed to derive the
safety-mechanisms introduced in Part 4.

• Part 10 contains additional explanations and diagrams that help better understand the concepts
and guidelines of the other parts.

• Part 11 gives very detailed help on the use of semiconductors and microcontrollers in safety-
related systems.

• Finally, Part 12 has been added as an adaptation of the standard for motorcycles.

This work focuses mainly on Parts 3, 4 and 6, as they are most relevant for understanding safety
design of software systems. Chapter 3 describes the processes specified in these parts in a clear and
accessible way, to facilitate the reader’s understanding of the standard. Saberi et al. [18] specifies the
safety design artifacts and flow of Part 3 using UML, making the standard more understandable and
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Figure 2.1: Structure of the ISO26262 standard [17]

interoperable with generic system design. The work of [18] is used in describing Part 3. In addition,
the current study applies the theory described in the standard on the design and implementation pro-
cess of a proof-of-concept system. This is done to concretely illustrate the application of the safety
design process and the added value it provides, as opposed to ignoring safety in design.

In addition to the ISO 26262 standard, the current work makes use of the set of AUTOSAR guidelines
for software implemented in the C++14 language, specified in [2]. AUTOSAR is a global partner-
ship of over 300 automotive companies aiming to establish a standardized software framework for
intelligent mobility [3]. The standards provided by the organization help increase the safety of soft-
ware systems. The AUTOSAR document [2] provides mappings from its C++14 guidelines to the
ISO26262 Part 6 rules for safe software implementation. This allows safety engineers to know which
set of AUTOSAR C++14 guidelines are relevant for complying with the ISO 26262 standard.

Section 4.4.2 documents the outcome of checking the code used to implement the proof-of-concept
against the AUTOSAR guidelines. The chapter reports how many issues occur and which are the most
prevalent, along with examples of these.
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3 Functional Safety Theory

This chapter introduces the reader to Parts 3, 4 and 6 of the ISO26262 standard. These describe the
concept, system-level and software-level phases respectively.

3.1 Concept Phase

3.1.1 Introduction

The concept phase helps the safety engineer know the requirements necessary for the system to be
considered safe. Further design decisions must take these requirements into consideration, making
the concept phase a necessary first step in the safety design process. To help clarify the exact outcome
of the concept phase, the artifacts obtained at the end of the phase are defined below:

1. The requirements necessary for the system to be considered safe, expressed as:

• Safety goals, which specify the top-level safe behavior of the system.

• Functional Safety Requirements (FSRs), which are derived from the safety goals and spec-
ify the system functions necessary for the goals to be realized.

2. The Automotive Safety Integrity Level (ASIL) of the system. This is one of four levels (A, B,
C and D) used to specify the necessary safety measures for preventing or mitigating a sys-
tem’s failures. Level A requires the least stringent safety measures, while D requires the most
stringent.

To help understand the notions introduced above, a theoretical vehicle detection system is considered,
with the following safety goal: The system shall correctly represent a nearby vehicle within n mil-
liseconds of receiving a "vehicle detected" signal. Example FSRs specifying how the system achieves
the safety goal behavior are:

1. The system shall verify that no vehicle detection data is lost until the corresponding vehicle
representation is displayed.

2. In case data is found to be missing, the system shall warn the vehicle detection failure.

3. The system shall verify that the vehicle data is processed and rendered within n milliseconds.
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Figure 3.1: Concept Phase Sub-Phases

3.1.2 Concept Phase Flow

In order to obtain the safety goals and FSRs, the safety engineer needs to first know the system-level
functions. No detailed system design is required. The concept phase consists of three sub-phases,
which are described in Part 3 of the ISO26262 standard. The sub-phases are represented in Figure 3.1
and described below:

1. The first step is known as the item definition. The standard uses the term item to designate a
system or system-of-systems that fulfills a function or part of a function at the vehicle level.
The knowledge required at this step is the following:

• Definition of the system-level functions. This can be obtained via requirements specifi-
cation or simply drawing the "black-box" view of the system and brainstorming on the
inputs, functions and outputs.

• Definition of the system operating modes. For this, knowledge of the functional states of
the system must be known and defined.

• Definition of the system operational situations. These are the scenarios that can occur
during a vehicle’s life. They pertain to external factors such as weather, lighting and
traffic conditions. These can be of course reduced to conditions considered relevant as the
full set of operational situations is virtually infinite.

2. The second step is known as the Hazard Analysis and Risk Assesment (HARA). It helps de-
termine the ASIL level of the system-level functions and the safety goals needed to achieve
functional safety. The steps of a HARA are as follows:

• The HARA starts with listing of the possible malfunctioning behaviors of the system
functions and the hazards these can cause.

• The next step is obtaining the possible hazardous events, by combining the hazards with
the possible operational situations in which they can occur and the operating modes of the
system. Each combination forms a hazardous event. The hazardous events are scored in
terms of severity, exposure, and controllability. The total score obtained for these three
metrics determines the ASIL level of the function for which the failure has been analyzed.
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Figure 3.2: Functional Safety Static Model

• The last step of the HARA is formulating the safety goals necessary to prevent the haz-
ardous effects of malfunctions. These inherit the ASIL level of their associated functions.

3. Once the safety goals are known, the last step is formulating the functional safety requirements.
These form what the standard defines as the functional safety concept. The functional safety
requirements can then be merged with the functional requirements, in order to be used as input
in the system-level safety design phase.

Figure 3.2 illustrates in detail the artifacts obtained while performing Steps 1 through 3, and maps
them to their respective steps using the same colors as in Figure 3.1. Figure 3.3 models the flow of
the steps using the same color mapping. Following this process, the functional safety concept for the
proof-of-concept system is obtained in Section 4.2.

3.2 System-level Phase

3.2.1 Introduction

The system-level phase helps the safety engineer in making design decisions that satisfy the concept
phase FSRs. To help understand the exact outcome of this phase, the concrete artifacts obtained at its
end are defined below:
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Figure 3.3: Functional Safety Flow Model

1. Safety mechanisms that realize the failure prevention or mitigation specified in the FSRs. The
safety mechanisms are determined via a process called safety analysis.

2. Technical Safety Requirements (TSRs) that specify the safety mechanisms.

3. Specification of the tests required to ensure that the failure mechanism works correctly.

Continuing with the vehicle detection system example, the following theoretical safety mechanisms
are given as examples:

• Data and timestamp checking mechanism that checks whether data is lost, or is rendered too
late. In case of either type of failure, the user is warned of the issue and reminded to use
necessary driving precautions such as checking rear-view mirrors.

• One or more redundant data channels with a switch that forwards the data arriving fastest. The
switch also serves to check if there is data available on at least one channel within the scheduled
time slot. In case of data unavailability, the same warning is given as for the data and timestamp
checking mechanism.

3.2.2 System-level Phase Flow

The system-level phase is addressed in Part 4 of the ISO26262 standard. While it does not enforce
a particular safety analysis method, the standard requires that the employed method identifies and
removes internal and external sources of failure. Where this is not possible, the failure effects are to
be prevented or mitigated.

Two of the most common safety analysis methods are the Fault Tree Analysis (FTA) and the Failure
Mode and Effect Analysis (FMEA):

• The FTA is a safety design method that helps list and visually represent possible component-
level faults that can contribute to system-level malfunctions. A tree-like graph is derived based
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on logically connecting system level failure events with component level faults using logical
gates. For a more detailed description of the FTA, see [7].

• The FMEA, in addition to listing system failures and their component-level causes, helps spec-
ify and prioritize sources of failure and the actions needed to mitigate or prevent failure effects.
While not using an easily readable tree-like graph, the FMEA better documents the effects of
failures on the user, the occurrence probability of the listed failures, and the chance of them
being detected during testing. This input is then used to list the design changes or tests needed
to satisfy the functional safety requirements.

3.2.3 FMEA Description

The current work makes use of the FMEA method, as it results in better documented failure causes
and actions necessary to improve safety. For this reason, this subsection describes this safety anal-
ysis method as performed in this work. An application of FMEA on the proof-of-concept system is
described in Section 4.3 and Appendix B.

FMEA is done in multiple cycles of analysis, targeting failure modes at various abstraction levels.
The first cycle is done at system level, followed by another cycle at component-level. Further cycles
can follow as needed, analyzing failure modes of sub-components. Each cycle has 9 steps, as follows:

1. Listing of functions: This step consists of listing the system or component-level functions, de-
pending on the cycle. The system-level listing of functions is identical to the intended function
formulation step of Section 3.1.2, which can be re-used. Component-level functions may be
more technical as they describe the roles of the software components in realizing higher-level
functions.

2. Listing of potential failure modes: This step consists of brainstorming on the potential failure
modes of the intended functions. This step is similar to the malfunction listing of the HARA
in Section 3.1.2. The difference is that FMEA requires a precise technical description of the
failure, so the necessary safety mechanisms and tests can be determined to ensure the risk of
failure is within acceptable bounds.

3. Specifying failure mode effects: In this step, the FMEA requires specifying the effects of the
failure modes listed in the previous step. This is similar to the specification of hazards caused by
malfunctioning behavior of Section 3.1.2. Once again, a more detailed description is necessary
to help in determining the right safety mechanisms and tests.

4. Scoring failure mode effect severity: The FMEA then requires scoring of the failure mode effects
severity. This project uses the criteria of Appendix B, Table B.1.

5. Specifying potential cause(s) of failure modes: This step consists of describing the precise tech-
nical causes of the failure modes. These can be attributed to sub-component malfunctions and
addressed in the next cycle(s).

6. Scoring failure mode occurrence: The FMEA then requires scoring of the failure mode occur-
rence, understood as the combination of factors affecting the chance of a failure event. These
are:

(a) Clear understanding of the requirements and technology used.
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(b) Experience with the given requirements, technology, design, and customer.

(c) Degree to which failure prevention methods are present and documented.

The occurrence level is the summed scoring of the above factors, plus one. The scoring is done
according to the criteria of Appendix B, Table B.2.

7. Scoring failure mode detection: The final scoring is for failure mode cause detection, under-
stood as the chance of the failure mode being detected through testing. This project uses the
detection scoring criteria of Appendix B, Table B.3.

8. Calculation of Risk Priority Number (RPN): The FMEA calculates the RPN as the product of
the severity, occurrence and detection scores. The purpose of the RPN is to prioritize failure
modes, so its exact value matters less than the resulting prioritization of issues to be solved by
safety mechanisms and tests.

9. Listing of actions to be taken to reduce the RPN below acceptable limit: The final step of an
FMEA cycle is brainstorming on actions that reduce the RPN below a given threshold. The
actions can be either design of a safety mechanism, or testing practices that help reduce the
chance of failure below an acceptable level. Testing is at least required to ensure good function-
ing of the safety mechanism, as there may not be a second mechanism that mitigates or prevents
malfunction.

Once the system cycle is completed, the component and sub-component cycles will make the system-
level failure mode causes more specific, as these are traced back to their relevant system parts. The
FMEA is complete once the engineering team is satisfied with both of the following:

• Sufficient failure modes are brainstormed, depending on system scope and target safety level.

• The failure modes are mitigated or prevented by the safety mechanisms specified in Step 9.
Where this is not possible, testing is planned to ensure the function or safety mechanism behaves
as specified.

Cycles can of course be repeated as needed, such as when there are design changes, added functions,
or new failure modes are determined for existing functions.

3.3 Software-level Safety Phase

The purpose of the software-level safety phase is to ensure that appropriate software design, imple-
mentation, and verification principles are followed, given the system ASIL level. ISO26262 Part 6
addresses software-level safety and specifies guidelines on the following Topics:

1. Software safety requirements.

2. Software architectural design.

3. Software implementation.

4. Software unit and integration testing.
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The specific guidelines for each topic are listed in Appendix C Section C.1. No example or flow de-
scription is given for software-level safety, as the standard only specifies rules on the topics above and
no process for software safety is documented. The rules, alongside general software implementation
practices, suffice in generating safe software.

3.3.1 Software Implementation Safety

The current work covers only application of rules for Topic 3: software implementation. Verifying that
these rules are met is done via static code analysis, which is the practice of identifying safety issues
in the code during its development, and before its deployment and execution. It ensures that the code
statements are unlikely to lead to any unexpected behavior when the executable is built with multiple
compilers or run on multiple execution environments. One code statement may execute differently
when any of these are changed. To avoid such errors, static code analysis tools scan the code and
checks for compliance with software implementation guidelines.

In addition to static code analysis, testing of the code is also covered in ISO26262:6. Also known
as dynamic code analysis, testing ensures the code behaves as expected during its execution. The
current work does not cover testing as most of the ASIL A-B required testing is already done within
TomTom. The standard requires 100% branch coverage and the company already practices testing
with 80% branch coverage.

Section 4.4 covers an application of software safety on the proof-of-concept and provides examples
of static code analysis execution and output.
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4 Functional Safety Application

4.1 Blind-Spot Highlighting Use Case

To design the proof-of-concept system, the definition of a use-case is needed for understanding which
function the system realizes. Figure 4.1 shows the use cases considered, which are described below:

Figure 4.1: Navigation System Use Cases

• Display Nearby Vehicles: The system displays nearby vehicles as the one shown in the IndiGo
example of Figure 1.4.

• Highlight occupied blind-spot area: The system displays a red-colored highlighting when a
vehicle is detected in the left or right blind-spot. A possible realization of the use-case is
shown in Figure 4.2, where a TomTom simulation displays red highlighting of a vehicle in
the blind-spot. The IndiGo example of Figure 1.4 displays red-colored highlighting when there
are vehicles both in the blind-spot and on the side of the driver’s car. This use-case however
considers the blind-spot angle only.

• Display Lane-Level Route: The system displays the lane-level route as a curved carpet in front
of the car. The carpet serves to guide with lane-switching maneuvers. Figures 1.3 and 1.4
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Figure 4.2: TomTom Blind-Spot Highlighting Simulation

illustrate the carpet in white in front of the driver’s car.

• Display Local Traffic Warnings: The system displays warnings related to local traffic, such as
traffic jams. The TomTom simulation of Figure 4.3 shows a traffic warning on the planned
route. The IndiGo example in Figure 1.4 also shows a traffic warning in the upper-right corner.

Figure 4.3: TomTom Traffic Warning Simulation

The current work addresses blind-spot highlighting, as it is considered the simplest use case involving
safe driving assistance. Life-threatening accidents can occur in the event of a system malfunction
and a careless driver at the wheel, which makes the need for safety design easy to understand. Once
the use case is determined, the safety design of the system on a functional level can begin. This is
documented in the next section.

4.2 Deriving the Functional Safety Concept

4.2.1 Item Definition

To help define the system functions, the blind-spot highlighting system is represented using the "black-
box" view, shown in Figure 4.4. The system receives sensor data and uses it to create render data,
which is passed on to a display, where the blind-spot areas are highlighted accordingly.
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Figure 4.4: Blind-Spot Highlighting: Black-Box View

Intended Functions

Following the concept phase flow, the system intended functions are listed. The system however has
only one intended function, specified below:

Intended Function 1: Highlight a blind-spot area whenever the input data reports the area as occu-
pied.

The function is sufficient for describing the functionality realized by the blind-spot highlighting sys-
tem. The function is specified in the functional requirements listed in Table 4.1.

Table 4.1: Functional Requirements

 

Id Short 
Description 

Description Rationale 

LLG-
BLSP-
FR01 

Read blind-spot 
sensor data. 

Whenever the vehicle provides the 
system with blind-spot data, the 
system shall convert it to data that 
can be rendered. 

To highlight occupied 
blind-spot areas, the 
system must be able 
to read the blind-spot 
data. 

LLG-
BLSP-
FR02 

Highlight 
occupied blind-
spot area. 

When the system reads that a 
blind-spot area is occupied, the 
system shall render it as occupied. 

The cluster navigation 
system must inform 
the driver of occupied 
lanes.  

LLG-
BLSP-
FR03 

Stop 
highlighting 
when blind-spot 
area no longer 
occupied. 

When the system reads that a 
blind-spot area is not occupied and 
if the area is highlighted, the 
system shall render it as not 
occupied. 

The cluster navigation 
system must inform 
the driver of occupied 
lanes.  

Operating Modes and Operational Situations

The only operating mode considered is the system being on and performing intended function 1. The
operational situations considered abstract from environment conditions such as lighting or weather,
which influence visibility. They are reduced to the actions that the driver can make, as these are
ultimately the main causes of hazardous situations. Thus the operation situations are summarized to a
careful driver operating the vehicle versus a clumsy driver doing so.
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4.2.2 Hazards Formulation

Once the system is defined at a functional level, the next step is documenting possible hazards caused
by malfunctions. The technique used to identify hazards is the Hazard and Operability Analysis (HA-
ZOP) [10], which uses keywords that help spot deviations from intended design [11]. The resulting
hazards are summarized in Table 4.2. The full HAZOP process is described in Appendix A Section
A.1.

Table 4.2: Hazards resulting from malfunctions of the Blind-Spot Highlighting System

Function Hazard ID Hazard Description

Highlight a blind-spot
area whenever the in-
put blind-spot data re-
ports it as occupied

LLG-BLSP-H01 System shows vehicle in blind-spot when there is
none.

LLG-BLSP-H02 System shows no vehicle in blind-spot area when
there is one.

LLG-BLSP-H03 System shows wrong blind-spot area as occupied.
LLG-BLSP-H04 System shows vehicle entered blind-spot too late.
LLG-BLSP-H05 System shows vehicle left blind-spot too late.

4.2.3 HARA

Once the hazards have been identified, the HARA can be performed to obtain the ASIL levels of
system-level functions and safety goals that increase safety in case of hazardous events. For brevity,
this section contains a summarized version of the HARA done for the blind-spot highlighting system,
shown in Figure 4.3 . The full table can be found in Appendix A Section A.2. In this case, the safety
goals can be combined in one safety goal, which inherits the highest ASIL level among the former.
The combined safety goal is shown in Table 4.3, using the following abbreviations:

• SG ID - Safety Goal ID.

• CSG - Combined Safety Goal, which the safety goal of the respective row is combined into.

4.2.4 Functional Safety Requirements

Finally, the FSRs that satisfy the safety goals are formulated. These inherit the highest ASIL of the
safety goals they address. The FSRs are listed in Table 4.4, using the following abbreviations:

• FSR ID - Functional Safety Requirement ID.

• SG ID - ID of the Safety Goal supported by the respective FSR.
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Table 4.3: Safety Goals and ASIL levels

SG ID ASIL Safety Goal 
Description 

Target 
Hazard(s) 

CSG Rationale 

LLG-
BLSP-
SG04 

B Ensure blind-spot 
area is highlighted 
with acceptable 
maximum latency 
after a vehicle is 
detected in that area. 

LLG-
BLSP-H04 

LLG-
BLSP-
CSG01 

Summarized to safety goal about 
output being correct and on-time. 

Exceeding maximum latency is a 
subset of not arriving on time. 

LLG-
BLSP-
SG03 

B Ensure the correct 
blind-spot area is 
highlighted when the 
vehicle enters that 
area. 

LLG-
BLSP-H03 

LLG-
BLSP-
CSG01 

Summarized to safety goal about 
output being correct and on-time. 

Wrong blind-spot area is a subset 
of incorrect output. 

LLG-
BLSP-
SG02 

B Ensure blind-spot 
area is always 
highlighted when 
there is a vehicle in 
that area.  

LLG-
BLSP-H02 

LLG-
BLSP-
CSG01 

Summarized to safety goal about 
output being correct and on-time. 

False negative is a subset of 
incorrect output. 

LLG-
BLSP-
SG01 

QM Ensure blind-spot 
area is never 
highlighted if there is 
no vehicle in that 
area. 

LLG-
BLSP-H01 

LLG-
BLSP-
CSG01 

Summarized to safety goal about 
output being correct and on-time. 

False positive is a subset of 
incorrect output. 

 

 

CSG ID ASIL Combined Safety Goal Description Note 

LLG-BLSP-
CSG01 

B Ensure blind-spot areas are highlighted 
correctly and within a given FTTI. 

FTTI is an input parameter to 
the safety mechanism. 

 

Table 4.4: Proof-of-concept FSRs

FSR ID FSR Description SG ID ASIL 

LLG-BLSP-
FSR01 

The system shall verify that no blind-spot data is lost until 
displayed. 

LLG-BLSP-
CSG01 

B 

LLG-BLSP-
FSR02 

The system shall verify that the blind-spot data values are 
within given boundaries. 

LLG-BLSP-
CSG01 

B 

LLG-BLSP-
FSR03 

The system shall verify that the blind-spot data is read, 
processed and rendered within a given FTTI. 

LLG-BLSP-
CSG01 

B 
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4.3 Deriving Safety Mechanisms and Tests

After determining the safety goals and FSRs, the current work introduces the design of the blind-spot
highlighting system. This design is subjected to an FMEA safety analysis. The result is a new design
with the necessary safety mechanisms is place.

4.3.1 System Design

The initial design of the system is shown in Figure 4.5. The reading, processing, and rendering of
the blind-spot sensor data is allocated to three software components respectively: data input, data
processing, and renderer. The data source and display are input and output systems outside of the
design scope. The segmented shapes preceding the data processing and renderer components represent
data buffers, in case they receive data at a faster rate they can process. The initial design does not detail
the communication protocols or data format, which are detailed in the software safety phase.

Figure 4.5: Initial System Design

4.3.2 FMEA

Once the initial design is obtained, the safety analysis for deriving the safety mechanisms can be
performed. For brevity, this section summarizes both the system and component-level FMEAs to the
list of identified failures and safety mechanisms that mitigate them. The full FMEA can be found in
appendix B, Section B.2.

Figure 4.6 shows the post-FMEA design, featuring the added safety mechanism. The changes to the
initial design are summarized below:

• The data input and data processing components check if the input data cannot be read or if
the data received is erroneous. In either case, the renderer is signaled to provide the display
with error warning render data. The display then warns the user that the blind-spot highlighting
system cannot be relied upon and the driver should be cautious.

• Communication between components is done through reliable mechanisms that prevent data
loss.

• All components generate timestamp upon start of their respective data handling. Each times-
tamp is associated with the data for which it is generated. Components check if time difference
between generated timestamps and previous component timestamps exceeds FTTI.
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Figure 4.6: Post-FMEA System Design

4.4 Software-level Safety Application

This section describes the proof-of-concept system implementation and static code analysis.

4.4.1 Proof-of-Concept Implementation

The aim of the proof-of-concept is to simulate an actual blind-spot highlighting system that reads
vehicle sensor data and displays the corresponding traffic situation on the cluster display. The current
implementation simulates this functionality by reading files containing manually generated sensor
data, processing it, and displaying the corresponding image in a browser.

Proof-of-Concept Components

Figure 4.7: Post-FMEA System Design

Figure 4.7 illustrates the implementation of the proof-of-concept system. The data source and display
components of Figure 4.6 are replaced with the Canplayer and Web Browser components respectively.
The list below explains the implementation of each component:

1. Canplayer: Reads the manually generated sensor data from CAN log files and makes it available
to a specified CAN socket. This function, also known as replaying CAN data, is realized by
the already existing canplayer software tool, which is part of the can-utils toolset [8] The tool
replays the contents of CAN log files to simulate vehicles entering and leaving the left and right
blind-spot areas.

2. Data Input: Uses the Linux socketCAN library to read the data provided by Canplayer and
passes it on to the Data Processing component through shared memory. During the Data Input

Safety-by-Design in Architecture of Automotive Software Systems 23



Eindhoven University of Technology

phase, the CAN frame ID, DLC and DATA fields are read and stored in a can_frame object. Ex-
tracting the meaningful information from the can_frame is done in the Data Processing phase.

3. Data Processing: Reads the data provided by the Data Input component and extracts the mean-
ingful information from the can ID, DLC and DATA fields, using it to determine blind-spot
status and errors. The component then forwards the blind-spot and error data to the Renderer
via TCP loopback.

4. Renderer: Uses the data provided by the Data Processing component to render HTML code
visualizing the blind-spot detection situation and system error status. The data is transformed
to HTML using the Wt [6] library.

5. Web Browser: The cluster display is simulated by using a web-browser to visualize the html
data provided by the Renderer.

Proof-of-Concept Simulated Display

To visually observe the blind-spot highlighting function, the proof-of-concept displays the sensor data
both in text and as images simulating a cluster display. Figures 4.8 to 4.12 show the browser display
of the blind-spot highlighting simulation. On the left side, the display shows a text output that reports
the status of the blindspot sensors. STATUS_LBSS and STATUS_RBSS are names assigned to the CAN
frames reporting the blind-spot sensor detection status, for the left and right sensor respectively. The
right side shows a representation of the driver’s vehicle and vehicles present in the blind-spots when
these are detected.

The log files read by the canplayer follow the CAN specification of a TomTom Jeep Renegade and
can be found in Appendix D. One log file contains data simulating an error-free scenario and another
contains erroneous CAN frames. The simulated scenarios are the following:

• Error-free scenario: no data errors are detected. The scenario simulates the driver vehicle being
overtaken from different sides as follows:

1. The scenario starts with an initial state with no vehicles overtaking. This is shown by the
Nothing in Blind-Spot message under STATUS_LBSS and STATUS_RBSS simultaneously.
This state is captured in Figure 4.8.

2. The next state simulates a vehicle overtaking on the left side. This is shown by the Object
in Blind-Spot LEFT message under STATUS_LBSS. This state is captured in Figure 4.9.

3. The left-side vehicle then finishes overtaking and thus no objects are detected in any blind-
spot.

4. A vehicle then overtakes on the right side, shown by the Object in Blind-Spot RIGHT
message under STATUS_RBSS. This state is captured in Figure 4.10.

5. The right-side vehicle then finishes overtaking and thus no objects are detected in any
blind-spot.

6. Two vehicle then overtake on both the left and right sides, shown by the corresponding
messages. This state is captured in Figure 4.11.

• Error-prone scenario: simulates the same sequence of events as the error-free scenario, with
errors inserted between Steps 1 and 2. The errors displayed are the following:
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Figure 4.8: Proof-of-concept simulation - no objects in blind-spots

1. ERROR_ID_UNKNOWN, indicating that the CAN frame ID is not recognized.

2. ERROR_DATA_EXCEEDS_LENGTH indicating that a frame has been read with a known
ID however, the data size is larger than the DLC value.

3. ERROR_DATA_MISSING indicating that a frame has been read with a known ID, however
the data size is smaller than the DLC value.

Figure 4.12 shows the state reached after one frame with unknown ID.

4.4.2 Static Code Analysis

To analyze the effects of coding guidelines enforcement, the code is initially implemented in the
C++14 language without considering any safe coding practices.

The current work uses Coverity [20] to scan the code and determine its compliance with ISO26262:6
software implementation guidelines, which can be found in Appendix C, Table C.1. The guidelines are
not language specific and can manifest in different code statements depending on the programming
language used. The AUTOSAR C++14 ruleset [2] provides the necessary input for the Coverity
scanner to recognize when the proof-of-concept code violates any implementation rules of Appendix
C, Table C.1.

The proof-of-concept contains 3925 lines of C++ code, excepting the third party libraries. The Cover-
ity scanner provided the following results:

• 1863 total issues. These are the sum total of issues raised by Coverity for the 3925 lines of
code. They include both ISO26262:6 relevant and non-relevant issues.
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Figure 4.9: Proof-of-concept simulation - object in left blind-spot

Figure 4.10: Proof-of-concept simulation - object in right blind-spot
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Figure 4.11: Proof-of-concept simulation - object in left and right blind-spots

Figure 4.12: Proof-of-concept simulation - example errors
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• 490 ISO26262:6 relevant issues, that the AUTOSAR C++14 document maps to the functional
safety standard guidelines.

Figures 4.13 and 4.14 show the Coverity reports for total and ISO26262:6-relevant issues respectively:

• Figure 4.13 shows a screenshot of the Coverity interface, listing the 1863 total issues. An
example of a non-relevant issue is the one selected in the Figure. The selected issue pertains to
the AUTOSAR C++14 M7-3-1 rule, which has no mapping to the requirements of ISO26262:6
listed in Table C.1. Rule M7-3-1 is listed in the AUTOSAR standard as: The global namespace
shall only contain main, namespace declaration and extern "C" declarations. In the particular
case of the proof-of-concept code, function unpack_left_shift_u8 is found to be in the
global namespace, which triggers reporting of the issue.

• Figure 4.14 shows a screenshot of Coverity listing the 490 relevant issues. An example of a
relevant issue is the one selected in the Figure. It pertains to the AUTOSAR C++14 A4-7-1
rule, which maps to the ISO26262:6 requirement for use of defensive implementation tech-
niques. The standard assigns the requirement to ASIL C, however the mapped AUTOSAR rule
is deemed important due to potential change of an integer value. Rule A4-7-1 is defined as An
integer expression shall not lead to data loss. The assignment of the returned value of the read
function, which is a 64-bit signed long, to a 32-bit signed int variable, may cause data loss and
thus nbytes triggers reporting of the issue.

The static code analysis concludes the application of the ISO26262 parts 3, 4 and 6 standard on the
design and implementation of the blind-spot highlighting proof-of-concept system. Chapter 5 goes on
to analyze the impact of the functional safety process on TomTom automotive software development.

Figure 4.13: Proof-of-concept simulation - example errors
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Figure 4.14: Proof-of-concept simulation - example errors
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5 Benefits and Estimated Cost of Functional Safety

5.1 Benefits of Functional Safety

This section discusses the advantages the functional safety process for automotive software. The
benefits of the concept, system and software phases are discussed individually, followed by the value
added by the entire safety-by-design process. The current work argues that the benefits of each phase
and the overall process generally outweigh the costs, therefore safety-by-design must be seriously
considered when software companies enter the automotive space.

5.1.1 Functional Safety Concept Phase Benefits

The functional safety concept determines if and why a system’s functions are safety related. Deriving
the ASIL of a function first of all helps software companies decide whether to develop the function in
the first place. A company can opt for the non-safety-compliant version of a function or system, with
the risk of the product not being as easy to market as one designed for its respective ASIL. Should
the company choose to design a safety-compliant product, the functional safety concept provides the
goals and requirements to be achieved for compliance.

While deriving the safety goals and FSRs can take longer, understanding whether a function is safety-
related or not, and even obtaining its ASIL can be done relatively quickly. The safety engineer needs to
think about a function on a high-level, along with a possible worst-case combination of malfunctions,
operating modes, and operational situations, to determine if the system is in the ASIL A-B range.
Once that is determined the company can decide on pursuing development of the function or system.
The current work argues that the benefits of safety-by-design generally outweigh the cost. This is
discussed in detail in Section 5.1.4.

Figure 5.1 summarizes the benefits of the functional safety concept, which are detailed in the list
below:

1. Benefit 1: Can be performed early, quickly and with low-cost. The HARA can answer whether
a system is in the ASIL A-B category once a worst-case scenario malfunction is determined. It
does not require technical system knowledge or human resources apart from the safety engineer
and a system designer.

2. Benefit 2: As soon as the the ASIL is determined, the company can decide whether to proceed
with safe system design or not.

3. Benefit 3: Provides context for further design. Should the company opt for a safe system design,
the ASIL level will determine if the software is to be run in ASIL-compliant operating system
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Figure 5.1: Benefits of safety concept

and hardware. Furthermore, as the safety mechanisms for ASIL A-B require failure-state data
from sensors, the software company can already assume that data is provided by the vehicle.

5.1.2 System-level Safety Benefits

The system-level safety phase determines the system, component and sub-component vulnerabilities
of the system that may cause malfunctioning behavior. In addition from defining the safety mecha-
nism, the engineering team must also think of the following system aspects:

• How errors in the input data can lead to malfunctioning behavior.

• How the execution environment affects functionality and real-time behavior.

• How the communication protocols and operating systems affect data availability, integrity and
real-time behavior.

• How software components can malfunction.

• How safety-mechanisms can malfunction.

The list is derived from the safety analysis performed on the proof-of-concept system. Analysis on
more complex systems will likely lead to additional aspects. Figure 5.2 shows the benefits of the
system-level safety phase, which are listed below:

1. Benefit 1: Safety analysis helps eliminate technical debt. Given the extensive scope of the
system analysis, technical debt is likely to be significantly reduced or at least documented.
For example, an FMEA will recursively analyse failure modes and effects, starting from the
system-level, going down to component and sub-component levels. This generates discussion
of the technical details of the system, and reporting what improvements can be done in terms of
development, knowledge of requirements and technology, experience and testing.
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Figure 5.2: Benefits of system safety

2. Benefit 2: Improves design skills and knowledge of the system. Due to the extensive scope
of the analysis, the engineering team brainstorms about all the aspects listed above, and likely
more. Thus engineers will learn from each other on multiple aspects of the system.

3. Benefit 3: Drastically reduces the risk of a costly re-design. Re-design can lead to costs exceed-
ing that of safety-by-design, which would have provided a safe and higher-quality faster. Figure
5.3 illustrates the additional cost incurred after an ASIL B redesign of the TomTom Autostream
system [22], which provides high-definition map data to the vehicle for autonomous driving.
The redesign has been estimated to add an additional cost of 31.5% more than what the cost
would have been if safety-by-design was opted for.

5.1.3 Software-level Safety Benefits

The software safety phase ensures that the code used to implement the system behaves as expected,
regardless of the development, deployment and conditions under which it is run.

Configuration work is required to enable static code analysis in combination with the various build
environments used by software teams. Tools such as Coverity can be configured to provide real-time
analysis via integrated development environment (IDE) extensions. While the process of configuration
can be quite lucrative, once done, the cost of software safety reaches its minimum. As a result, the
company also gains understanding of its configuration practices and build environments. An example
outcome of configuration optimization are ready-made and documented project configurations. These
can be used depending on the required build environment, having static code analysis tools available
to support the software safety process.

Figure 5.4 shows the benefits of the software safety process, which are detailed in the list below:

1. Benefit 1: Errors are avoided with minimal cost. Static code analysis signals the errors that
may occur before the code is deployed and executed. These can thus be resolved in the earliest
software implementation phase.

2. Benefit 2: Resilience against development and deployment environment change. The code is
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Figure 5.3: Cost of TomTom software redesign
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Figure 5.4: Benefits of software safety

more likely to behave as expected when built with different compilers or deployed on different
operating systems or hardware architectures.

3. Benefit 3: Throughput increases with time. As the company optimizes configuration of software
tools and engineers learn safety programming practices, the time spent altering the code to
satisfy software-safety guidelines is reduced.

4. Benefit 4: Improves programming knowledge. As exemplified in Figures 4.13 and 4.14, the
issues reported help understand the inner-working and non-obvious effects of the lines of code
used. Extensive side-effects and less known behavior is covered by the code analysis rules, thus
the lessons that can be learned are also extensive.

5. Benefit 5: Testing effort will likely not be significantly larger than that of existing practices. In
the case of TomTom, testing branch-coverage must increase from 80% to 100%, which does not
affect the existing configuration and testing process, but only the coverage.

5.1.4 Benefits of Safety-by-Design

In addition to the technical quality and safety added by the three phases of safety-by-design, the
overall process provides advantages on the business-level. The current work asserts that companies
must seriously and rationally consider safety-by-design in its software product development. The
access to large sectors of the automotive market depend on a software company’s willingness to be
ASIL compliant. Furthermore, the current work argues that the business and technical benefits of
safety outweigh the costs.
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Figure 5.5: Benefits of safety-by-design

Figure 5.5 shows the business-level benefits of the safety-by-design process, which are detailed in the
list below:

1. Benefit 1: Higher-quality and safer product. This is a technical as well as a business benefit.
Higher-quality products lead to higher customer satisfaction, thus improves customer’s confi-
dence that the company will provide good services.

2. Benefit 2: Out-of-the box ASIL product. Car manufacturers or other customers may require
that a product be developed at a certain ASIL. Employing safety-by-design from the start will
prevent redesign, the customer having to wait or possibly walking away.

3. Benefit 3: Greater access to automotive customers. Having ASIL-ready products enable soft-
ware companies to more easily enter the automotive market, where safety and technical quality
requirements are more demanding. Should companies not consider safety-by-design, compa-
nies risk falling behind, if not completely being excluded from the automotive space.

4. Benefit 4: Possibility of diversifying in the automotive market. Along with access to the auto-
motive market comes the possibility of diversifying a company’s software products. As safety
processes are integrated in software design, the processes and expertise can be re-used to design
more products in the automotive space.

5. Benefit 5: Proof of safe design and implementation. Should there be a malfunction or accident,
the software company will have proof that the appropriate safety processes are present in the
development cycle. Vehicle callbacks or tragic accidents can severely impact a company’s
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reputation and finances. In April 2022, Mercedez-Benz USA recalled 126,443 vehicles [16]
due to a bad failure mechanism of the rearview camera software. The issue has been traced
back to a deviation in the development process of the software supplier.

6. Benefit 6: Low safety requirements. Commercial software companies entering the automotive
space will likely not develop ASIL C-D functions. Thus company processes can be optimized
for the lower cost ASIL A-B range.

5.2 Estimated Cost of Functional Safety

Finally, this section documents the costs of the safety-by-design process applied to the proof-of-
concept system. The functional safety concept is not considered in the cost analysis, as the current
work considers it the responsibility of the safety engineer and not of the development team. The con-
cept can be derived in parallel to the design phase of the system and so does not add up to the cost of
the product development. Additionally, testing has also not been factored in the cost estimation. In
the case of TomTom the additional testing cost estimated is of 25% of the existing effort, which is the
increase from 80% to 100% branch coverage.

The cost of the safety-by-design process is shown in Table 5.6 . The cost estimation is that the safety
processes highlighted in blue take up 32.69 % of the total cost, and 48.56% of the non-safety related
work. This is an estimation of an initial cost, which is expected to decrease to the cost estimated in
Table 5.7, where the cost of static code analysis is not considered. This optimized cost is obtainable
once real-time code analysis configured into the development environment. This is already available
and can be implemented as soon as the company is able. The optimized safety cost is of 16.66% of
the non-safety effort and thus 20% of the total work. The current work asserts that the optimized cost
is a more realistic expectation, as it can be reached through appropriate configuration and software
engineering practices, which is not difficult for sotware companies.

Should testing be factored in, the total cost for safety would not exceed 25% of the entire development
effort, as the extra testing work is increased by 25% at most. This cost is considered reasonable for
the many benefits of safety-by-design. The current work thus asserts that software companies must
seriously consider safety-by-design, as a way to increase product safety and quality, as well as gain
access and diversify into the automotive market.
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Figure 5.6: Cost of safety - Unoptimized Process

Figure 5.7: Cost of safety - Optimized Process
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6 Conclusion

6.1 Results Summary

The current work applies the functional safety practices of ISO26262 to the blind-spot highlighting
proof-of-concept system. The results obtained show that the advantages outweigh the costs when
ASIL A-B safety is integrated in the development of commercial software products. Not only does
safety allow a company to enter the automotive market, but provides numerous benefits in terms of
customer satisfaction, risk, accountability, and technical skill of employees.

The current work shows that, if a commercial software company plans to enter the automotive space,
it must seriously consider integrating safety in its software development processes. While immediate
integration is not expected, the company can experiment with safety-by-design. Trial runs can help
determine whether the advantages materialize, beyond the increase in software quality, which is an
immediate and certain effect.

The safety analysis on the proof-of-concept system shows that automotive functions that report blind-
spot presence are assigned ASIL-B. Should a HARA be performed on similar functions that provide
the driver with local traffic awareness, the same ASIL will be reached. The study proves that, if a
software company wishes to develop software for driver situational awareness, then it should adopt
ASIL-B safety practices to be functional safety compliant. Market surveys and automotive customer
inquiries can help the company find out how it should adapt for the future, using concrete feedback
from stakeholders in the company’s business space. Finally, the current work concludes that compa-
nies need safety-by-design for not only entering, but also thriving in the automotive space.

6.2 Future Work

The current work focuses on the technical aspects of ISO26262 functional safety and its impact on
software development. Thorough analysis of the business effects of safety, and of design practices that
fall outside of ISO26262 functional safety are in large part left out of scope. They represent a natural
continuation to the current work and are left for further study. The list below details on recommended
future work:

• Study on how safety impacts software company business processes: The current work focuses
on the impact of safety on product or project-level development. The thorough study of the
impact on company-wide processes and business is left as future work.

• Study of optimal configuration management and software engineering practices for software-
level safety: While the recurrent cost of safety is low, the initial changes may not be trivial,

Safety-by-Design in Architecture of Automotive Software Systems 39



Eindhoven University of Technology

Safety
Absence of

unreasonable risk.

Functional Safety (ISO26262)

Absence of unreasonable risk

caused by malfunctions.

Safety Of The Intended
Functionality (ISO21148)


Absence of unreasonable risk in
the absence of malfunction.

Safety-in-Use

Absence of unreasonable risk

due to human error.

System does not function
according to specification.

System functions but intended
functionality is not realized or

weakened.

Operating error,
misunderstanding, abuse.

Figure 6.1: Sub-domains of Safety

depending on the skill and resolve of company engineers. A study on the role and best-practice
for the safety engineer, software engineer and configuration manager can help companies un-
derstand the concrete changes necessary for aligning towards safety-by-design.

• Study of safety-by-design practices falling outside of ISO26262: Functional safety focuses on
mitigation and prevention of system malfunction effects. Situations may occur that do not
cause malfunctions, but prevent the system to realize its intended functionality. For example,
occlusions on vehicle cameras caused by the environment can prevent a system from providing
situational awareness, even though the system using the cameras works just fine. The system
may still work as per specification internally, however external factors or insufficient perfor-
mance can render the function impossible or reduce its effect. Such situations are addressed by
the ISO21448 standard [12], which focuses on Safety Of The Intended Functionality (SOTIF)
of road vehicles.

Additionally, system misuse, due to driver misunderstanding the system User Interface (UI),
can also lead to unsafe situations. More generally, safety-in-use and safe human-to-machine in-
teraction also represent an important safety domain, becoming more important with the increase
in vehicle intelligence and automation.

Figure 6.1 represents the three safety sub-domains functional safety, SOTIF and safety-in-use.
The technical and business-related aspects of SOTIF and Safety-in-Use are recommended as
future study, as they will take center stage in automotive engineering, alongside functional
safety.
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A Hazard Analysis and Risk Assesment

A.1 Hazard and Operability Study

Tables A.1 and A.2 list the hazards that may result from quantitative and real-time performance fail-
ures respectively.

A.2 Hazard Analysis and Risk Assesment

Tables A.3 to A.6 contain the tables for the HARA performed on the blind-spot highlighting system
function 1.
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Table A.1: HAZOP on quantitative failures

Failure Mode Possible Failure Possible Hazard
Unexpected False positive: blind-spot detection

state read as positive, when blind-spot
detection state is negative/none.

System shows vehicle in blind-spot
when there is none.

More (Magnitude)

If blind-spot area is boolean or numeric
then increase of actual value can result
in wrong blind-spot area.
If blinds-pot detection state is boolean,
then increase of actual value can result
in it being stuck at 1.

System shows vehicle in blind-spot
when there is none.
System shows wrong blind-spot area as
occupied.

Less (Magnitude)

If blind-spot area is boolean or numeric
then decrease of actual value can result
in wrong blind-spot area.
If blinds-pot detection state is boolean,
then decrease of actual value can result
in it being stuck at 0.

System shows no vehicle in blind-spot
area when there is one.
System shows wrong blind-spot area as
occupied.

Incorrect False negative: read as negative/none,
when blind-spot detection state is posi-
tive. Wrong blind-spot area.

System shows no vehicle in blind-spot
area when there is one.
System shows wrong blind-spot area as
occupied.

Reversed

Reading reversed data values. This can
result in:
If blind-spot area is boolean, then
wrong blind-spot area.
If blind-spot detection state is reversed,
then state becomes incorrect.

System shows vehicle in blind-spot
when there is none.
System shows no vehicle in blind-spot
area when there is one.
System shows wrong blind-spot area as
occupied.

Stuck at value The blind-spot detection state is always
read as the same value, even if correct
value changes.

System shows vehicle in blind-spot
when there is none.
System shows no vehicle in blind-spot
area when there is one.
System shows wrong blind-spot area as
occupied.

Incomplete Reading does not capture all necessary
data. Results in blind-spot data being
old or null.

System shows vehicle in blind-spot
when there is none.
System shows no vehicle in blind-spot
area when there is one.
System shows wrong blind-spot area as
occupied.

No No data is read. System shows no vehicle in blind-spot
area when there is one.
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Table A.2: HAZOP on real-time performance failures

Failure
Mode

Possible Failure Possible Hazard

Redundant The same blind-spot data val-
ues are read multiple times.

System shows vehicle in blind-spot when there is none.
System shows no vehicle in blind-spot area when there is
one.
System shows wrong blind-spot area as occupied.

More
(Rate)

The same blind-spot data val-
ues are read multiple times.

No hazard?
Values still get updated on time.

Less
(Rate)

Blind-spot data values are
read too infrequently.

System shows vehicle in blind-spot when there is none, due
to old value (very briefly, if at all).
System shows no vehicle in blind-spot area when there is
one, due to old value (very briefly, if at all).

Before Blind-spot data is read be-
fore the corresponding up-
date. Negative time offset.

System shows vehicle in blind-spot when there is none.
System shows no vehicle in blind-spot area when there is
one.
System shows vehicle entered blind-spot too late.
System shows vehicle left blind-spot too late.

After Blind-spot data is read af-
ter the corresponding update.
Positive time offset.

System shows vehicle in blind-spot when there is none.
System shows no vehicle in blind-spot area when there is
one.
System shows vehicle entered blind-spot too late.
System shows vehicle left blind-spot too late.

Early Blind-spot data read too early
(before update).

System shows vehicle in blind-spot when there is none, due
to old value (very briefly, if at all).
System shows no vehicle in blind-spot area when there is
one, due to old value (very briefly, if at all).
System shows vehicle entered blind-spot too late.
System shows vehicle left blind-spot too late.

Late Blind-spot data read too late
(after update).

System shows vehicle entered blind-spot too late.
System shows vehicle left blind-spot too late.

Erratic Blind-spot data read at erratic
intervals. Reading frequency
not in sync with blind-spot
data update rate.

System shows vehicle in blind-spot when there is none.
System shows no vehicle in blind-spot area when there is
one.
System shows vehicle entered blind-spot too late.
System shows vehicle left blind-spot too late.

Intermittent Blind-spot data is not read
some times. Results in poten-
tially incorrect values.

System shows vehicle in blind-spot when there is none.
System shows no vehicle in blind-spot area when there is
one.
System shows vehicle entered blind-spot too late.
System shows vehicle left blind-spot too late.

Never Data is never read. System shows no vehicle in blind-spot area when there is
one.
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Table A.3: HARA
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Table A.4: HARA (continued)
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Table A.5: HARA (continued)
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Table A.6: HARA (continued)
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B Failure Modes and Effects Analysis

This appendix documents the FMEA scoring used, as well as the system and component-level FMEA
performed for the proof-of-concept system.

B.1 FMEA scoring

Tables B.1, B.2, and B.3 document the severity, occurrence and detection scoring used for the FMEA,
respectively.

B.2 System and Component-Level FMEA

Tables B.4 to B.7 document the system and component level FMEA respectively. They use the fol-
lowing abbreviations:

• FM - Failure Mode

• S - Severity Score

• OC - Occurrence Total Score

• RTC - Requirements / Technology Clear

• Exp - Experience

• PC - Prevention Control

• DT - Detection Score

• RPN - Risk Priority Number

Table B.4 does not have a Function column, as there is the only one considered is Intended Func-
tion 1: Render a blind-spot area highlighting whenever the input data reports the area as occupied,
determined in section 4.2.1.
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Table B.1: FMEA Severity Scoring

 

Failure mode Severity of Effect Typical TomTom Examples Rank 

Failure to meet 
safety and/or 
regulatory 
requirements 

Very high severity ranking when a 
potential failure mode affects safe 
vehicle operation and/or involves 
noncompliance with government 
regulation without warning 

- Injury to customer due to extensive 
radiation 
- Injury to customer due to fire 
- Injury to customer due to touching hot 
display surface 

10 

Very high severity ranking when a 
potential failure mode affects safe 
vehicle operation and/or involves 
noncompliance with government 
regulation with warning 

Despite visual warning, injury to customer 
due to touching hot display surface 9 

Loss or 
Degradation of 
Primary Function1 

Vehicle/item inoperable (loss of 
primary function) Empty vehicle battery 8 

Vehicle/item operable but at a 
reduced level of performance. 
Customer very dissatisfied. 

Driver not provided with a timely rear view 
camera image when leaving the parking lot 7 

Loss or 
Degradation of 
Secondary 
Function2 

Vehicle/item operable but 
comfort/convenience item(s) 
inoperable. Customer dissatisfied 

- TomTom device fails to switch on and 
start operating, due to e.g. high ambient 
temperature 
- TomTom device fails to stop operating 
and switch off 
- TomTom device not responding to 
external events 

6 

Vehicle/item operable but 
comfort/convenience item(s) operable 
at a reduced level of performance. 
Customer somewhat dissatisfied. 

- Driver not provided with vehicle guidance 
temporarily due to undetermined vehicle 
position when leaving a parking garage or 
ferry 
- Driver not provided with traffic aware 
vehicle guidance due to not receiving traffic 
information 

5 

Annoyance 

Fit & finish squeak & rattle item does 
not conform. Defect noticed by most 
customers (greater than 75%) 

Rattling noise due TomTom device SD card 
movements 4 

Fit & finish squeak & rattle item does 
not conform. Defect noticed by 50% 
of customers. 

SD card insertion/removal requires 
relatively high force 3 

Fit & finish squeak & rattle item does 
not conform. Defect noticed by 
discriminating customers (less than 
25%) 

Screen animation speed not fully 
deterministic due to varying TomTom 
device work load. 

2 

Failure without 
effect No discernible effect. - 1 
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Table B.2: FMEA Occurrence Scoring

 

Ranking 0 1 2 3 

Requirements 
/ Technology Fully clear Some minor 

aspects unclear 
Some major 
aspects unclear 

Undefined / 
unclear 

Experience 

Successful 
experience on all 
aspects  
(requirements, 
technology, 
design, 
customer) 

Successful 
experience on 
the key aspects  
(technology, 
design) 

Successful 
experience on 1 
key aspect  
(technology or 
design) 

No successful 
experience on 
the key aspects  
(technology, 
design) 

Prevention 
control 

Reviewed with 
specific check in 
root cause 

Reviewed No review 
No review, no 
document 
(design) 

Total 1 + SUM (Req./Technology + Experience + Prevention control) 
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Table B.3: FMEA Detection Scoring

 

Detection Likelihood of detection by 
design control TomTom design controls Rank 

Absolute 
uncertainty No design control No control in place 10 

Low Remote chance it will be 
detected 

Code reviews with no specific check 
on root cause 8 

Medium Low chance it will be detected 

-High level reviews on design and 
interface with no specific check on 
root cause 
- Manual tests like system test and 
functional test with no specific 
testcase on root cause 

6 

High Moderately high chance it will 
be detected 

- Automated tests like smoke test, 
software functional test and system 
test with no specific testcase on root 
cause 
- Manual tests like functional test 
and system test, with specific 
testcase on root cause 

4 

Very high Very high chance it will be 
detected 

- Automated tests like smoke test, 
functional test, and system test with 
specific testcase on root cause 
- High level reviews on design and 
interface with specific check on root 
cause 

2 

Almost certain Almost certain chance it will be 
detected Detection mechanism in design 1 
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Table B.4: System-level FMEA

FM Potential 
Effect(s) of 
Failure 

S Potential Cause(s) Of 
Failure 

Current design / process controls RPN Actions 

OC RTC Exp PC DT   

CAN 
data is 
lost by 
system. 

Blind-spot 
highlighting 
incorrect. 

9 System is unable to read 
the provided CAN data. 

Data is lost while 
communicated between 
software components. 

System software 
components lose the data. 

Buffer overflow. 

4 1 1 2 10 360 This requires design change, as a checker 
has to be implemented for single-fault 
tolerance: 

Check if values are within expected 
boundary (i.e boolean either 0 or 1). 
Assume expected boundaries are provided 
by OEM CAN Spec, or something similar. 

Check if frame is received within the 
expected time-slot. 

Check if frame is of the expected size. 

CAN 
data is 
altered 
erroneo
usly. 

Blind-spot 
highlighting 
incorrect. 

9 Software components alter 
data erroneously. 

4 1 1 2 10 360 

Render 
data is 
provide
d too 
late. 

Blind-spot 
highlighting 
shown too 
late. 

9 Software components 
execute too slowly. Inter-
component communication 
is too slow. 

4 1 1 2 10 360 
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Table B.5: Component-level FMEA

                Function Potential 
Failure Mode 

Potential Effect(s) 
of Failure 

S Potential Cause(s) Of 
Failure 

Current design / process controls RPN Actions 

OC RTC Exp PC DT   

Data Input receives data 
from Canplayer: 
 
- Signals indicating presence 
of object in blind-spot. 

- Signals indicating blind-
spot sensor fault state. 

Assumption: At this stage, 
there is no checking that 
involves data completeness 
or values. The task of 
the Data Input component is 
to simply read the data from 
the CAN socket, populate 
can_frame structs with the 
read data and provide them 
to Data Processing. 
 

Capturing 
data into 
can_frame 
struct fails, 
due to read 
error. 

Blind-spot 
highlighting not 
performed. 

9 Read error caused by 
CAN socket failure. 

4 1 1 2 10 360 The read error cannot be 
fixed as it pertains to bad 
input from external 
system. It needs to be 
signaled and system 
switched to safe state in 
case of repeated read 
errors. 

Tests shall be performed 
that the functions and 
checks generate the 
correct output and within 
FTTI. 

 

  

Check if there 
is an error 
when reading 
from CAN 
socket fails. 

 
9 Internal software error 

of the checker. 
4 1 1 2 10 360 

Data Processing receives 
data from Data Input. 

 

Assumption: Data 
Processing interprets the 
data field of the provided 
can_struct and performs 
checks for completeness and 
correctness. 
 

 

 

  

can_frame ID 
is unknown. 

Blind-spot 
highlighting may 
not be performed, 
or may be 
incorrect, if critical 
frame IDs are not 
recognized and the 
frames are ignored. 

9 Internal software 
errors or external 
factors causing 
alteration of ID value. 

4 1 1 2 10 360 Data Processing shall 
check if 

- ID is recognized. 

- Data size exceeds or is 
below DLC. 

- Data values are within 
expected bounds. 

- Data is received and 
processed within FTTI. 

If any of these checks fail 
than the errors will be 
logged, and the frame 

can_frame 
data field size 
does not 
match DLC. 

Blind-spot 
highlighting may 
not be performed, 
or may be 
incorrect, if data is 
missing or exceeds 
length. 

9 Internal software 
errors or external 
factors causing 
alteration of DLC 
value, as well as data 
value or size. 

4 1 1 2 10 360 
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Table B.6: Component-level FMEA (continued)

Data arrives 
too late. 

Blind-spot 
highlighting shown 
too late. 

9 Data delayed by 
(unreliable) 
communication 
method. 

Data Input takes too 
long. 

4 1 1 2 10 360 will not be used by 
the Renderer. If more 
than n (parameter) 
checks fail consecutively, 
the system shall switch to 
a safe state, until the 
errors no longer occur. 

Unreliable networks can 
be fixed by 

- Using the same 
execution environment 
for communication 
components, thus 
allowing for shared 
memory communication. 

- Using a more reliable 
communication protocol 
(ex. switch from UDP to 
TCP for proof-of-
concept) 

Tests shall be performed 
that the functions and 
checks generate the 
correct output and within 
FTTI. 

 

 

 

 

 

 

 

  

Data does not 
arrive. 

Blind-spot 
highlighting shown 
too late. 

9 Data lost  by 
(unreliable) 
communication 
method. 

4 1 1 2 10 360 

Buffer 
overflows. 

Blind-spot 
highlighting 
incorrect. 

9 Data Input is faster 
than Data Processing 
and buffer overflows 
or exceeds allocated 
memory. 

4 1 1 2 10 360 

Checking if 
ID is 
recognized 
fails 

Blind-spot 
highlighting is not 
performed or is 
incorrect. User is 
not warned that 
there is an error. 

9 Internal software error 
of the checker. 

4 1 1 2 10 360 

Checking if 
data is less 
than or 
exceeds DLC 
fails. 

Blind-spot 
highlighting is not 
performed or is 
incorrect. User is 
not warned that 
there is an error. 

9 Internal software error 
of the checker. 

4 1 1 2 10 360 

Checking if 
data is within 
bounds fails. 

Blind-spot 
highlighting is not 
performed or is 
incorrect. User is 
not warned that 
there is an error. 

9 Internal software error 
of the checker. 

4 1 1 2 10 360 
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Table B.7: Component-level FMEA (continued)

Checking if 
data arrives 
within FTTI 
fails. 

Blind-spot 
highlighting is not 
performed or is 
incorrect. User is 
not warned that 
there is an error. 

9 Internal software error 
of the checker. 

4 1 1 2 10 360 

Renderer receives data 
from Data Processing. 

 

Assumption: At this point 
data is complete and correct 
as per the checks done 
in Data Processing. 

Data arrives 
too late. 

Blind-spot 
highlighting shown 
too late. 

9 Data delayed by 
(unreliable) 
communication 
method. 

Data Processing is too 
slow. 

4 1 1 2 10 360 Unreliable networks can 
be fixed by 

- Using the same 
execution environment 
for communication 
components, thus 
allowing for shared 
memory communication. 

- Using a more reliable 
communication protocol 
(ex. switch from UDP to 
TCP for proof-of-
concept) 

Tests shall be performed 
that the functions 
generate the correct 
output and within FTTI. 

Data does not 
arrive. 

Blind-spot 
highlighting not 
performed. 

9 Data is lost by 
(unreliable) 
communication 
method. 

4 1 1 2 10 360 

Rendering is 
done too late. 

Blind-spot 
highlighting shown 
too late. 

9 Renderer or another 
preceding data 
processing phase is too 
slow. 

4 1 1 2 10 360 

Buffer 
overflows 
(processing 
too slow) 

Blind-spot 
highlighting 
incorrect. 

9 Renderer is slower 
than Data 
Processing and buffer 
overflows or exceeds 
available memory. 

4 1 1 2 10 360 
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C Software Safety Phase - Additional Material

C.1 ISO26262 Part 6 Guidelines

The specified software implementation guidelines, according to ASIL level, are the following:

Table C.1: ISO26262:6 Software Implementation Guidelines

ASIL Guidelines

A

- Enforcement of low complexity
- Use of language subsets
- Enforcement of strong typing
- Use of naming conventions
- One entry and one exit point in subprograms and functions
- Initialization of variables
- No multiple use of variable names
- No unconditional jumps

B

Same methods as for ASIL A, plus:
- Use of unambiguous graphical representation
- Use of style guides
- No dynamic objects or variables, or else online test during their creation
- Restricted use of pointers
- No implicit type conversions
- No hidden data flow or control flow

C+D

Same guideline as for ASIL B, plus:
- Use of defensive implementation techniques
- Use of well-trusted design principles
- Avoid global variables or else justify their usage
- No recursions

The software unit and integration testing guidelines are the following:

C.2 Coverity Results
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Table C.2: ISO26262:6 Software Testing Guidelines

ASIL Test Case Derivation Testing
A Analysis of requirements. Walk-through of the code, static code anal-

ysis, requirements-based testing, interface
testing, resource usage evaluation.

B Same methods as for ASIL A, plus equiva-
lence class and boundary class analysis.

Same methods as for ASIL A, where walk-
through is replaced by inspection.

C+D Same methods as for ASIL B. Same methods as for ASIL B, with the ad-
dition of fault injection testing, back-to-
back testing, data flow and control flow ver-
ification.
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D CAN Log Files

TODO explain

1 (1636965235.086000) slcan0 44a#00000000
2 (1636965235.087000) slcan0 44c#00000000
3

4 (1636965235.587000) slcan0 44a#00000100
5 (1636965235.588000) slcan0 44c#00000000
6

7 (1636965236.086000) slcan0 44a#00000000
8 (1636965236.087000) slcan0 44c#00000000
9

10 (1636965237.086000) slcan0 44a#00000000
11 (1636965237.087000) slcan0 44c#00000100
12

13 (1636965237.586000) slcan0 44a#00000000
14 (1636965237.587000) slcan0 44c#00000000
15

16 (1636965238.086000) slcan0 44a#00000000
17 (1636965238.087000) slcan0 44c#00000000
18

19 (1636965238.587000) slcan0 44a#00000100
20 (1636965238.588000) slcan0 44c#00000100
21

22 (1636965239.086000) slcan0 44a#00000000
23 (1636965239.087000) slcan0 44c#00000000

Listing D.1: CAN Log file - Error Free Scenario

1 (1636965234.589000) slcan0 44a#00000000
2 (1636965234.590000) slcan0 44c#00000000
3

4 (1636965235.086000) slcan0 44a#00000000
5 (1636965235.087000) slcan0 44c#00000000
6

7 (1636965237.588000) slcan0 305#0000
8

9 (1636965235.186000) slcan0 44a#1111111111111111
10 (1636965235.187000) slcan0 44c#1111111111111111
11

12 (1636965235.186000) slcan0 44a#00
13 (1636965235.187000) slcan0 44c#00
14

15 (1636965235.587000) slcan0 44a#00000100
16 (1636965235.588000) slcan0 44c#00000000
17

18 (1636965236.086000) slcan0 44a#00000000
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19 (1636965236.087000) slcan0 44c#00000000
20

21 (1636965236.587000) slcan0 44a#00000000
22 (1636965236.588000) slcan0 44c#00000000
23

24 (1636965237.086000) slcan0 44a#00000000
25 (1636965237.087000) slcan0 44c#00000100
26

27 (1636965237.586000) slcan0 44a#00000000
28 (1636965237.587000) slcan0 44c#00000000
29

30 (1636965238.086000) slcan0 44a#00000000
31 (1636965238.087000) slcan0 44c#00000000
32

33 (1636965238.587000) slcan0 44a#00000100
34 (1636965238.588000) slcan0 44c#00000100
35

36 (1636965239.086000) slcan0 44a#00000000
37 (1636965239.087000) slcan0 44c#00000000

Listing D.2: CAN Log file - Scenario with errors

62 Safety-by-Design in Architecture of Automotive Software Systems



EngD SOFTWARE TECHNOLOGY 

PO Box 513
5600 MB Eindhoven
The Netherlands
tue.nl


	Foreword
	Preface
	Acknowledgements
	List of tables
	List of figures
	Introduction
	The Software-Defined Vehicle
	TomTom Lane-Level Guidance
	Designing with Safety in Mind
	Safety Levels
	Project Goals

	Functional Safety Standards
	Functional Safety Theory
	Concept Phase
	Introduction
	Concept Phase Flow

	System-level Phase
	Introduction
	System-level Phase Flow
	FMEA Description

	Software-level Safety Phase
	Software Implementation Safety


	Functional Safety Application
	Blind-Spot Highlighting Use Case
	Deriving the Functional Safety Concept
	Item Definition
	Hazards Formulation
	HARA
	Functional Safety Requirements

	Deriving Safety Mechanisms and Tests
	System Design
	FMEA

	Software-level Safety Application
	Proof-of-Concept Implementation
	Static Code Analysis


	Benefits and Estimated Cost of Functional Safety
	Benefits of Functional Safety
	Functional Safety Concept Phase Benefits
	System-level Safety Benefits
	Software-level Safety Benefits
	Benefits of Safety-by-Design

	Estimated Cost of Functional Safety

	Conclusion
	Results Summary
	Future Work

	Hazard Analysis and Risk Assesment
	Hazard and Operability Study
	Hazard Analysis and Risk Assesment

	Failure Modes and Effects Analysis
	FMEA scoring
	System and Component-Level FMEA

	Software Safety Phase - Additional Material
	ISO26262 Part 6 Guidelines
	Coverity Results

	CAN Log Files

