EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

An Event-Driven Recurrent Spiking Neural Network
Architecture for Efficient Inference on FPGA

Citation for published version (APA):

Sankaran, A., Detterer, P., Kannan, K., Alachiotis, N., & Corradi, F. (2022). An Event-Driven Recurrent Spiking
Neural Network Architecture for Efficient Inference on FPGA. In ICONS '22: Proceedings of the International
Conference on Neuromorphic Systems 2022 (pp. 1-8). Article 12 (ACM International Conference Proceeding
Series). Association for Computing Machinery, Inc. https://doi.org/10.1145/3546790.3546802

DOI:
10.1145/3546790.3546802

Document status and date:
Published: 27/07/2022

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1145/3546790.3546802
https://doi.org/10.1145/3546790.3546802
https://research.tue.nl/en/publications/c851f8b1-cbeb-488a-9f8b-1b5478358f21

An Event-driven Recurrent Spiking Neural Network
Architecture for Efficient Inference on FPGA

Anand Sankaran
a.sankaran@student.utwente.nl
UT-EEMCS & IMEC
Eindhoven, The Netherlands

Nikolaos Alachiotis
n.alachiotis@utwente.nl
UT-EEMCS
Twente, The Netherlands

ABSTRACT

Spiking Neural Network (SNN) architectures are promising candi-
dates for executing machine intelligence at the edge while meeting
strict energy and cost reduction constraints in several application
areas. To this end, we propose a new digital architecture compatible
with Recurrent Spiking Neural Networks (RSNNs) trained using the
PyTorch framework and Back-Propagation-Through-Time (BPTT)
for optimizing the weights and the neuron’s parameters. Our archi-
tecture offers high software-to-hardware fidelity, providing high
accuracy and a low number of spikes, and it targets efficient and
low-cost implementations in Field Programmable Gate Arrays (FP-
GAs). We introduce a new time-discretization technique that uses
request-acknowledge cycles between layers to allow the layer’s
time execution to depend only upon the number of spikes. As a
result, we achieve between 1.7x and 30x lower resource utilization
and between 11x and 61x fewer spikes per inference than previous
SNN implementations in FPGAs that rely on on-chip memory to
store spike-time information and weight values. We demonstrate
our approach using two benchmarks: MNIST digit recognition and
a realistic radar and image sensory fusion for cropland classifica-
tions. Our results demonstrate that we can exploit the trade-off
between accuracy, latency, and resource utilization at design time.
Moreover, the use of low-cost FPGA platforms enables the deploy-
ment of several applications by satisfying the strict constraints of
edge machine learning devices.

CCS CONCEPTS

« Computer systems organization — Neural networks.

KEYWORDS
spiking neural networks, FPGA, embedded hardware

ACM Reference Format:
Anand Sankaran, Paul Detterer, Kalpana Kannan, Nikolaos Alachiotis, and Fed-
erico Corradi. 2022. An Event-driven Recurrent Spiking Neural Network

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICONS 2022, July 27-29, 2022, Knoxville, TN, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9789-6/22/07.
https://doi.org/10.1145/3546790.3546802

Paul Detterer
p-detterer@imec.nl
IMEC
Eindhoven, The Netherlands

Kalpana Kannan
kalpana.kannan@imec.nl
IMEC
Eindhoven, The Netherlands

Federico Corradi
f.corradi@tue.nl
TU/e & IMEC
Eindhoven, The Netherlands

Architecture for Efficient Inference on FPGA. In International Conference on
Neuromorphic Systems (ICONS 2022), July 27-29, 2022, Knoxville, TN, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3546790.3546802

1 INTRODUCTION

Spiking neural networks (SNNs) are efficient computational mod-
els that enable neural-inspired processing at the edge. SNNs are
inspired by principles of biological systems as potentially more
powerful processing models, as they replicate the neurons’ effi-
ciency and ability to deal with temporal streams of information in
novel non-von-Neumann computer architectures. These architec-
tures span from fully custom application-specific integrated circuits
(ASICs) in mixed-signal design [1] to fully digital processors [2-4].
While ASICs offer high performance and power efficiency, they
are fixed at fabrication. Thus, they do not provide a similar level
of programmability as Field-Programmable Gate Arrays (FPGAs).
Recent theoretical advances showed that SNNs perform comparably
to classical artificial neural networks (ANNs) by exploiting new
supervising training strategies [5, 6].

However, deploying SNN models in resource-constrained devices
requires that the hardware executes these models with high fidelity
with respect to their mathematical abstraction while meeting the
tight constraints of edge devices. Furthermore, the hardware should
be sufficiently flexible to accommodate possible model changes.

Previous work has proposed to realize programmable spiking
neural network architectures in FPGA, implementing large-scale
bio-realistic models for neuroscientific and neurocomputational
modeling. Some works implement conductance-based neuron mod-
els [7, 8], while others implement the leaky-integrate-and-fire (LIF)
neuron model for both neuroscientific simulations [9] and fast and
efficient inference [10-13]. A limitation of the previous architec-
tures is the use of mean rate models, which require computing the
average of the firing activities of neurons over several spikes to
obtain an accurate estimate of the represented real value.

In this work, we propose an event-driven architecture compatible
with models where the spike activity is limited during training,
offering low-computational requirements and fast inference [6].

We present the first digital RSNN architecture compatible with
a software-supervised training strategy that exploits surrogate gra-
dient and Back-Propagation-Through-Time (BPTT) for inference
in FPGA hardware. Furthermore, our digital architecture achieves

https://orcid.org/0000-0001-8162-3792
https://orcid.org/0000-0002-5868-8077
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3546790.3546802
https://doi.org/10.1145/3546790.3546802

ICONS 2022, July 27-29, 2022, Knoxville, TN, USA

100% accuracy for the timing of every single spike against the soft-
ware model while allowing us to exploit the trade-off between
execution speed and resource utilization.

Thus, the main contributions of this work are the following:
i) We present a fully digital, event-driven architecture with discrete
time-steps that achieves 100% accuracy between software simula-
tions and hardware models.
ii) We propose a simplified leaky-integrate-and-fire neuron model
that is compatible with discrete-time synchronization strategies
and does not require additional memory for storing spike-time in-
formation.
iii) We introduce a synchronization scheme that uses an external
request signal among neurons and layer operations. As a result,
the execution speed solely depends on the number of events in
the network without requiring the storage of time information in
memory.
iv) We efficiently utilize the hardware resources while exploiting
the trade-offs among accuracy, latency, memory, and energy for
two use cases (MNIST benchmark and radar-images sensory fusion
for cropland classification).

2 BACKGROUND

SNN s are composed of spiking neurons that mimic biological neu-
ral networks more closely than traditional analog neural networks
(ANN). An essential concept in SNN models is the use of time. Spik-
ing neurons store the weighted history of the synaptic inputs into
their membrane potential and only communicate with a pulse when
the membrane potential passes a threshold value. Furthermore,
ANNSs exploit point neuron models as rectified linear units (ReLU)
and sigmoid neurons, whereas spiking neurons communicate em-
ploying binary pulses (i.e., action potentials or spikes). Several
neuron models have been proposed, the Izhikevich [14], the Leaky-
Integrate-and-Fire-Neuron (LIF)[15], the Adaptive Leaky-Integrate-
and-Fire-Neuron (ALIF) [16], the FitzZHugh-Nagumo [17], and more
biologically detailed models like the Axon-Hillock model [18]. Nev-
ertheless, to obtain a compact model better suited for digital hard-
ware, it is often required to simplify the neuron model and include
fewer biological details. The LIF model is commonly employed as a
good compromise between realistic behaviors and the simplicity of
the implementation, both in hardware and software models.

Several implementations of SNNs on FPGA have been proposed
recently. The optimization of various architectures usually targets
specific performance gains (latency, energy, power, throughput, or
a combination of those) and, in some cases, application-dependent.
Different neuron models are used, and some architectures focus
on bio-realistic implementations. Some notable ones are listed in
Table 1. In contrast to other designs, our architecture focuses on
executing RSNNs with single spike time precision for obtaining high
software-to-hardware fidelity, thus allowing efficient and accurate
inference as proposed by Yin et al. [6].

3 GENERAL SYSTEM DESIGN
3.1 Event-driven Architecture

Our architecture targets the implementation of neural networks
organized in layers of spiking neurons. Figure 1 depicts a block

Anand Sankaran, Paul Detterer, Kalpana Kannan, Nikolaos Alachiotis, and Federico Corradi

diagram of the proposed architecture, showing a three layers im-
plementation. The architecture supports fully connected layers
with and without full recurrent connectivity. When a neuron emits
spikes, the spike is delivered to all the neurons in the next layer and
every neuron within the same layer. Each layer contains an input
queue that stores the incoming spikes from the previous layer and
the recurrent activity. Also, each layer requires a weight memory
for storing the synaptic weight values.

The SNN architecture is described at the register-transfer level
(RTL). It is highly parameterized and allows the creation of different
design points using a configuration file. At the architectural level, it
is possible to select the number of neurons per layer, the number of
layers, the type of connectivity between layers and within a layer
(i.e., fully connected and recurrently connected), and the depth of
the queues. Furthermore, at the neuron level, it is possible to define
the bit-width of the neuron’s accumulator (membrane voltage), the
synaptic weight resolution (bit-width), and the refractory period.
Since FPGAs can be reprogrammed to efficiently implement a cus-
tom computer architecture, we decided to leverage the sparsity of
network connections during synthesis and not implement synaptic
connections with zero weights. By defining the weights as constant
values in the RTL description, the FPGA synthesis and subsequent
place-and-route optimizations leverage the sparsity of connections
as weights of zero value will not consume any resources, and the
hardware resources that store weights with the same numerical
value will be shared among several neurons. If the application re-
quires weights that can be changed without FPGA reprogramming,
we also provide efficient memory mapping techniques in section 4.2.
The mapping technique includes a set of parameters that make it
easy to use on-chip memories, such as Block RAM (BRAM) and
Ultra RAMs.

Figure 1 also shows the internal organization of the RSNN sub-
modules. The layer module contains the following submodules: the
request controller, the input spike queue, the weight controller, the
weight memory, the neuron wrapper, and the output spike buffer. In
the request controller, a finite state machine controls the operations
within a layer module and its interface at the input and output
sides. The input spike queue acts as a buffer to store the incoming
spikes. It contains separate queues for forward spikes (i.e., incoming
from the previous layer) and recurrent spikes (from the same layer).
The weight controller fetches the right weights from the weight
memory by decoding the memory address depending on the source
address of the input spikes. The neuron cluster contains an array
of simple LIF neurons, described in section 4.1. Finally, the output
spike buffer communicates the output spikes to the input spike
queue of the next layer. The network communicates by employing
spikes both at the input and output interfaces. The spikes are rep-
resented through the address of the spiking origin. The behavior
of the output layer can be monitored in two ways; each spike is
streamed through a buffer. Additionally, it is possible to monitor
the membrane potential of each neuron within the output layer.

3.2 Event-driven Time Discretization

Importantly, and in contrast to previous SNN digital architectures
in FPGA [10, 13], our architecture does not require a timer module
since our simplified neuron model does not rely on time-dependent

An Event-driven Recurrent Spiking Neural Network Architecture for Efficient Inference on FPGA

ICONS 2022, July 27-29, 2022, Knoxville, TN, USA

Name Neuron Model Driven Network Topology Algorithm
Bluehive [22] Izhikevich Time-driven Feed-forward and Recurrent Mean-rate
FDF [23] Conductance Time-driven Feed-forward Mean-rate
n-Minitaur [24] LIF Event-driven Feed-forward Mean-rate
Pani [9] Izhikevich Time-driven Recurrent Mean-rate
Tsinghua [12] LIF Hybrid (time and event) Feed-forward Mean-rate
Gyro [13] LIF Event-driven Feed-forward and Recurrent Mean-rate
Irmak et al. [25] | LIF and ReLU | Hybrid (time and event) CNN, MLP and SNN ANN and Mean-rate
This work Simplified LIF Event-Driven Feed Forward and Recurrent | Single spike control (BPTT)
Table 1: Spiking neural networks on FPGA.
(REQ R c | £ ¢ P I|" c . REQ
le—— ACK <+—) q P E—
Registers or . I
Spikes Address
DMA _b} ,—L —
Valid Inpur Spike Queue Input Spike Queue <y Inpurt Spike Queue hER
. Weight | | e Con = Weight e Com = Weight || —— k4
AXI Memory Weight Controller = Mermory Weight Controller z N Weight Controller z <
Interface Signals & Timing Neuron Wrapper G Neuron Wrapper & Neuron Wrapper
Spike Address ¢ 150 > 16 » XHX * * *
vae _JL L Output Spike =’ Output Spike st Ourpur Spike P> Spikes Address
REQ n q Queune —,7 Queue _‘— | Quene : » Valid
ACK —n— Membrane
Potentials

Figure 1: Block diagram of an instance of a recurrent spiking neural network of three layers.

operations. Instead, the membrane potential update and the voltage
decay operations are executed on-demand only upon the arrival of
input spikes. In addition, each evaluation of the neuron membrane
potential against the threshold is solely based on the request signal
propagated locally between layers, which provides synchroniza-
tion. This mechanism serves to synchronize the evaluation of the
membrane potentials against the threshold for all the neurons in a
layer, only at designated times (i.e., upon request). It ensures that
the neuron’s evaluation happens only after receiving the full input
sequence, enabling time discretization. This mechanism is crucial
for high fidelity between software and hardware, as each spike
will virtually reach the neuron’s membrane potential within the
same time window:. It is important to note that the synchronization
signal does not need to be triggered at fixed intervals. The request
controller uses a four-phase handshake mechanism, common in
neuromorphic architectures.

4 DESIGN OF FPGA SYSTEM
4.1 Neuron Model

The neuron model is a low-complexity digital version of the LIF
model [15]. The membrane potential is updated upon the arrival of
a spike. However, the evaluation of the membrane potential against
the threshold value is carried out upon the arrival of a request
signal (REQ in Fig. 1 and in Fig. 2). The request signal is shared

among all neurons in a single layer. The membrane potential is in-
creased or decreased with a step of size equal to the synaptic weight
value, i.e., W¥. Since the emission of spikes happens only upon
the request signal, the update algorithms do not require storing
the time information, as time is divided into discrete steps (i.e., a
sequence of request signals). Furthermore, since the request signal
is shared between all neurons in the same layer, the neurons in a
layer emit spikes simultaneously. This allows to quickly estimate
the maximum spike burst size, equal to the number of neurons in
a layer, with the buffer queues sizes for the worst-case scenario.
Additionally, the membrane potential is not allowed to go negative.
It will remain to zero upon the arrival of excessive inhibitory in-
puts. The neuron only performs computation (i.e., the integration
of synaptic input) upon the arrival of spikes, and it implements the
leakage operation only upon the arrival of the request signal. The
decay of membrane voltage is implemented using a shift register,
which calculates a programmable, but fixed decay before evalua-
tion against the threshold value. No dynamic calculation is needed
since this is a fixed decay and not a time-dependent value. Decay
of the neuron voltage can be enabled or disabled at design time.
Decay is not calculated for every input spike but is calculated once
per request cycle. The neuron model also uses a fixed refractory,
calculated using digital counters based on the number of request
cycles. Significantly, sparse spike activity results in faster execution.

ICONS 2022, July 27-29, 2022, Knoxville, TN, USA

The execution time depends on the number of spikes in the layer’s
queue.

Until the request signal is received, the neuron only performs
membrane voltage updates on incoming spikes. The time period
between two requests is a discrete chunk of time, and all the input
spikes inside that period are accumulated until a request is received.
Upon receiving the request, the membrane voltage is compared
against the threshold value. An output spike is produced depending
on the result. Figure 3 shows the neuron block diagram, and Figure 2
shows the behavior of the neuron. The membrane potential can
overshoot the threshold. However, when a REQ signal reaches the
neuron, a spike is emitted, and the membrane potential is reset to
the resting value (in fig. 2 Vres = 0).

4.2 Weight Memory Mapping

Weight memory mapping is a key feature of the proposed architec-
ture since weight storage and on-chip memory access directly affect
the latency of the system and memory bandwidth. Every weight-
memory module stores a weight matrix representing interlayer and
recurrent connections.

Figure 4 (left) shows an example 4X 2 network, i.e., 4 pre-synaptic
and 2 post-synaptic neurons, and two alternative weight-mapping
patterns. The postsynaptic neurons have both forward and recur-
rent connections. Every column of weights in the weight mapping
patterns shown in Figure 4(right) is stored in a dedicated memory
module, thereby allowing to read an entire row in a single clock
cycle. For the first mapping pattern, when a neuron in the visible
layer spikes, all neurons in the hidden layer are updated, and the
corresponding weights are fetched from the same memory row in
one clock cycle. When a neuron in the hidden layer spikes, the
weights for the two postsynaptic neurons are read in a single clock
cycle. This results in a throughput of two neuron updates every 6
clock cycles for both forward and recurrent spikes, or two neuron
updates every 4 clock cycles for a feed-forward network since only
one weight is read per clock cycle. For the second mapping pattern,
when a neuron in the visible layer spikes, the two corresponding
weights are read from one row in one clock cycle. When a neuron
in the hidden layer spikes, the weights for the two neurons are read
in a single clock cycle, and the resulting throughput is two neuron
updates per 3 clock cycles for both forward and recurrent spikes, or
two neuron updates per 2 clock cycles for a feed-forward network
since two weights are read per clock cycle.

We provide a generic parameter-based description of the weight-
mapping scheme below. For storing the weight matrices between V
visible neurons and H hidden neurons, the memory is visualized as
a three-dimensional block with x, Y, and Z coordinates as depicted
in Figure 4 (right). Here, X represents the bit width of a single
weight, Y represents the number of weights in a single memory
row (total memory width), and Z represents the number of distinct
memory modules. The memory width is described in terms of the
number of weights.

When visualized in a three-dimensional manner, as shown in
Figure 4 (right), the highlighted block with dimensions X7, Y1, X1,
contains the set of H weights corresponding to a single visible
neuron V. The volume of this block is the number of hidden neurons
H, X1 X Y1 X Z; = H. This block is repeated X, times in the X

Anand Sankaran, Paul Detterer, Kalpana Kannan, Nikolaos Alachiotis, and Federico Corradi

dimension, Y, times in the Y dimension, and Z; times in the Z
dimension for the entire forward weight matrices between the
2 layers. The number of block instances is equal to the number
of visible neurons since there is a single block for each forward
spiking neuron. To update a set of hidden neurons upon spiking of
a forward neuron, X; by Y; weights are read from Z; memories.

The recurrent connections are stored with an offset in the Y
dimension. A block for a single recurrent spiking neuron is struc-
turally the same as for a forward spiking neuron (represented by
X1,Y1,Z1) and is repeated X3 times in the X dimension, Y>_r times
in the Y dimension, and X»_r times in the X dimension. The values
Ys_r and Xy_r are derived from the previous parameters, where
Y,_r is the minimum of Y; and Z; X X1, while Z»_r is the maximum
of Y1 and Z;. Increasing the Z parameter requires more distinct
memories and allows more weights to be read in parallel in a single
clock cycle, effectively increasing the memory bandwidth. To up-
date a set of hidden neurons upon spiking of a hidden neuron X;
by Y; weights are read from Z; memories. The parameters X, and
Zy, indicate how many weights are read in a clock cycle, thereby
allowing X, X Z, neurons to be updated per clock cycle (X, X Z,
is the neuron cluster size C).

4.3 Finite State Machine / Request Controller

The finite state machine controls the internal functioning of the
layer and communication to the next layer by scheduling and trig-
gering the sub-block operations. It manages the interlayer commu-
nication based on its internal state, state of the queues, network
input signals, or output signals of other layers. The state machine
contains five states: idle, process, communicate, acknowledge, and
finish. Each state and its function, along with control signals, are as
follows. In the idle state, the layer is ready to receive input spikes
from the network input or the previous layer. The incoming spikes
are stored in the spike queue. Upon request from the network input
or previous layer, the finite state machine switches from idle to pro-
cess state. In the process state, the neuron spikes are processed, and
the membrane voltage is accumulated for each of the input spikes.
The spikes in the queue received before the request signal are pro-
cessed until both the recurrent queue and forward spike queue
are empty. The spikes received after receiving a request signal are
not processed until the next request is received and are buffered
in the queue until then. Once the input spike queues are emptied
and neuron voltages updated, the finite state machine switches to
communicate state, and the threshold evaluation of the LIF neurons
is triggered. The neuron membrane voltage is evaluated against
the threshold voltage and generates an output spike depending on
whether it is above the threshold voltage or not. If a neuron spikes,
the output spike is stored in the output spike queue. The finite
state machine switches into the acknowledge state after storing
all resulting spikes in the output spike queue. In the acknowledge
state, the layer sends the output spikes out. This conveys that data
processing is complete to the input side, thereby completing the
request-acknowledge 4-phase handshake. The output spikes are
sent as a burst of spikes to the output or next layer and to the
recurrent spike queue within the same layer. In the finish state, the
request signal for the next layer is set as high, which triggers the
next layer into the same state transitions through which it processes

An Event-driven Recurrent Spiking Neural Network Architecture for Efficient Inference on FPGA

GO0 . (il nae

ICONS 2022, July 27-29, 2022, Knoxville, TN, USA

T00 . 808 ne L]

Clk |] r;lf;a&::ya Decay
Reset | | | | - E -
Vith | W
REQ — Spike if
Spike_in |- NONNNNOONN OOO0O0 0 OONOOO00OO00O0000000 Spikein > JMTEOL] > Swike out
NN G000 0u0D D080 0D a0 d00U0a s s 0880000 ~
Weight—» +
L — L
N I
Spike_out 1 il

Figure 2: Neuron behavioral simulation. The neuron evaluates the membrane po-
tential against the threshold only upon the arrival of the request signal.

Memory
Width
—_—
‘A Memol}s/’
-
717
5 —
L ’“
B) 1 A-1 A-2 Y1
B-1B-2 A-1 A-2 B-1B-2 Y2
C-1C-2 C-1C-2 D-1D-2
D-1D-2 1-1 1-2 2-1 2-2
Memory
(3 2 1-1 1-2 Depth
D 2-12-2
Rl
D
- S Z2
X2

Figure 4: Left: A sample network of two layers and two
weight mapping patterns. Right: 3-dimensional visualiza-
tion of memory

the input spikes received from the current layer. Upon receiving an
acknowledge signal from the next layer or output, the finite state
machine switches back to the idle state to reset its control signals.
This completes the request-acknowledge handshakes on both the
layer’s input and output sides.

4.4 Hierarchy/Structure

The spike queue receives two streams of spikes, one for forward
spikes from the previous layer and one for recurrent spikes from
the same layer. Each stream is separately stored using a First In,
First Out (FIFO) buffer. The input queues are emptied based on
triggers from the state machine. The recurrent spikes are processed
first, followed by the spikes in the forward spike queue. The state
machine schedules the reading of the spike. The input of the recur-
rent spike queue is an internal signal. The output from the neuron
wrapper is sent to both the output of the layer and to the recurrent
queue. The maximum length of the queues is also parameterized
and, therefore, it is user-controllable.

Figure 3: Simplified neuron’s block
diagram.

The weight controller fetches weights from memory depending
on the spike source address. The spike source address and spike
direction (recurrent or forward) are latched from the spike queue
in the initial state. The memory address for the required weights
is derived from the source address by the address decoder. The
state machine latches the spike source address and the direction
to the address decoder, and it generates the memory addresses
for forwarding and recurrent weights. The weight control module
fetches the weights as vectors and then provides the weights to the
neurons for spike processing.

The neuron wrapper consists of the simplified LIF spiking neu-
rons and a parallel to serial converter to buffer and serialize the
output spikes. Neurons operations are executed in parallel. The
output spikes from a layer are serialized into a single stream of
spike source addresses. An N-bit parallel-in serial-out shift register
serializes the output, where N is the total number of neurons in
the layer. It takes in the output spikes from N neurons as an N bit
vector. For every neuron that spiked, an output spike is generated
as the address of the neuron that spiked. The output spikes are
sent out one per clock cycle. The maximum number of spikes that
can originate from a layer is the total number of neurons for every
request signal since each neuron is evaluated against the threshold
only once per request. This is advantageous as it eliminates the
need to multiplex the output spikes between neuron clusters.

The input spikes of a layer are a combination of a valid binary
signal and a source address of the input neuron. Source address
conveys which input neuron spiked, and the valid signal signals at
the receiver the readiness of the address. Additionally, each layer
has a request signal that is used to generate discrete time steps (the
acknowledge-request cycles). The activity of the output layer can
be observed in three ways. Firstly, as a stream of sequential output
spikes encoded with the source addresses of the active neurons,
secondly, as a parallel bus with the bit positions representing the ad-
dress (i.e., a compressed spike map). Thirdly, it is possible to output
the membrane potential of neurons at each request acknowledge
cycle. Since the threshold evaluation of every neuron happens in
parallel, the output spikes are sent out at the same instant and can
be observed as a burst of output spikes.

ICONS 2022, July 27-29, 2022, Knoxville, TN, USA

RECURRENT NEURONS = 0; NET: 112x128x10

OUTPUT NEURONS

y

target: label/prediction 2/2

INPUT NEURONS
(4*28=112 sliding window)

o

2

60

NEURON ID

M LA T TR

80

@ ok w N = O

TIMESTEP

REQ-ACK CYCLE

100 TIMESTEP

120

.

o
@

—— TIMESTEP =—>

Figure 5: Network activity for the SRNNs classifying a
stream of spikes (black pixels) representing an MNIST digit.
A whole digit is provided in seven timesteps (i.e., req-ack cy-
cles, from 0 to 6). The output neuron corresponding to the
input class is the most active, showing correct inference.

5 EXPERIMENTAL RESULTS

5.1 Recurrent Spiking Neural Networks for
Classification

5.1.1 MNIST handwritten digit dataset. To demonstrate the appli-
cation of the digital SNN architecture, we trained a spiking neural
network to classify handwritten digits. We used the PyTorch frame-
work and implemented a detailed model of our simplified digital
LIF neuron model. We performed quantization and scaling to make
the training compatible with the integer precision of our RSNN
hardware!. Additionally, we trained the RSNN using surrogate
gradient and BPTT to achieve high accuracy and high activation
sparsity as in [6]. The input to the RSNN is a binary stream of spikes
that matches handwritten digits, as shown in Figure 5. Several net-
works with a different number of layers and input sizes have been
trained. We used three input dimensions, a single row of input per
request-acknowledge cycle (28 input at each timestep, see Figure 5),
with four rows of input spikes for each request-acknowledge cycle
(28 X 4 = 112 inputs neurons), and with 14 rows of input spikes
for each request-acknowledge cycle (28 X 14 = 392 neurons). The
accuracy and the effect of the quantization can be seen in Figure 6.
We used quantization-aware training to four bits, and less than
4-bit weights significantly deteriorate accuracy.

Figure 5 shows an RSNN of three layers of neurons. The input
layer contains 112 neurons, representing four-row of the binary
MNIST input digits. The second layer contains 128 neurons which
receive 112 inputs and are fully recurrently connected. The first
layer is fully connected to the second layer, which contains 10 out-
put neurons whose activity reflects the output classification. In one

!code will be made available in Github

Anand Sankaran, Paul Detterer, Kalpana Kannan, Nikolaos Alachiotis, and Federico Corradi

10

ot
@

g
o

—e— RSNN 28x64x32
RSNN 112x128x32
+— RSNN 112x256x32
—e— RSNN 112x512x32
+— RSNN 392x512x32
—e— RSNN 392x1024x10

accuracy
o
=

=}
N

0.0

2 3 4 5 6 7 8 9
n-bits

Figure 6: MNIST accuracy in function of weight-bit resolu-
tion and network size.

request-acknowledge cycle, the inputs from 112 neurons represent
four rows of the handwritten digit. Figure 5 shows the spiking of
the network. The most active neuron in the output layer represents
the digit classification. Increasing the number of parallel pixels pre-
sented at the input makes it possible to process the full picture in
fewer time steps. This comes at the cost of more hardware memory
for the input layer. Nevertheless, the time steps required to perform
a classification are reduced. In addition, a larger input size also re-
duces the number of spikes required to perform a full inference, as
neurons are only allowed to spike only once per time step. Finally,
in Table 2 we show an exploration of input size (28,112,392) versus
accuracy and resources.

5.1.2 Sensory Fusion of Radar Data and Images for Remote Sensing.
We used a publicly available dataset from a real remote sensing
application that requires the classification of fused optical and radar
data [20]. The dataset contains many features acquired from an
optical camera on the RapidEye satellite and radar-based informa-
tion collected by the Uninhabited Aerial Vehicle Synthetic Aperture
Radar (UAVSAR) system over the agricultural region near Winnipeg,
Manitoba, Canada in 2012. The dataset contains 2x49 radar features
and 2x38 polarimetric radar features. The dataset contains seven
crop types: corn, peas, canola, soybeans, oats, wheat, and broadleaf.
Class distribution in the cropland dataset is highly unbalanced and
it is as follows: corn 12,02%, peas 1,10%, canola 23,22%, soybeans
22,73%, oats 14,46%, wheat 26,12%, and broadleaf 0,35%. [21] (see
Fig. 7). The dataset contains 174 features per pixel. However, after
a feature correlation analysis as proposed in [21], we filtered 72
features as they show high correlations (> 0.95) with other features.
The resulting number of optical-radar features is 102 per pixel.
In addition, the dataset has been split into 80% training and 20%
testing, maintaining the same class distribution as in the dataset.
We used 260667 pixels for training and 65167 pixels for testing.
As for the MNIST use case, we trained an RSNN with 102 inputs
(i.e., one inference for each pixel) and 600 hidden neurons with 8
output neurons, one for each output class. The input pixel value
is fed with a 6-bit intensity representation to the first layer of 600
hidden spiking before providing the first request (REQ) signal. This
allows encoding input values at a higher resolution than binary
by repeating the input spikes multiple times before proving a REQ
signal.

The network configuration is 17-600-8 with a clock frequency of
250 MHz on the Zynq UltraScale+ MPSoC ZCU104 evaluation board

An Event-driven Recurrent Spiking Neural Network Architecture for Efficient Inference on FPGA

[CIwheat [canola W

[soybeans []Oats

[[corn Wl peas
[Broadleaf

Figure 7: Dataset of radar and image data used for pixel-wise
classification [20].

for the cropland classification test case. A network of 600-8 neurons
was implemented for this classification. It uses 17 inputs in six-
time steps to provide a full image for classification. The parameters
X1, Y1, 21 for weight memory mapping are 1-20-30 for the first layer.
The throughput for each layer is calculated and gives a total of
8.14 GSOPS. Since we trained the network with sparse recurrent
connectivity, we exploited weight placement during synthesis for
both the MNIST and cropland applications. This resulted in the
use of LUTs and BRAMs due to the optimization procedure. The
resource utilization for a fully connected layer is quadratically
proportional to the number of neurons in a layer. However, this can
be limited if training results in sparse connectivity. We achieved
weight sparsity by simply removing some of the connections during
training. The 17-600-8 network required 54,516 LUTs, 21,756 FFs
and 312 BRAMs. We achieved an accuracy of 95% with a 4-bits
synaptic weight resolution.

5.2 Resource utilization and accuracy

We measure resource utilization in FPGA in terms of the Lookup
Tables (LUTs), Flip-Flops (FF), and BRAMs used. Table 2 shows
resource utilization for the implementation of several networks of
different sizes in the case of MNIST classification. The table shows
how the accuracy varies according to the size of the network. The
resource utilization here does not include the external registers,
resets, or the AXI interface logic.

HLUTs mFFs mBRAMs

99,3 4340

L
c
9
B g 14y
£ X
I3 Q
2%
S g 93,5
83
5 C
3 < 37k 38k 10k
2
iy 20k 17k 17k
e 8k 4k 11ks) 10
06 Beakge Skgo .-kus ez8 St 12
o 3 0 3 0 o o
oS S 2 L 3 S %
ol & g P o ¢ N
o b v v Y WV e
<8 K S S S &
i
¥

Network Configuration

Figure 8: Resource utilization for different network sizes.
The accuracy increases for larger networks.

The resource utilization is directly proportional to the number
of neurons in a network, which can be observed in Figure 8. More

ICONS 2022, July 27-29, 2022, Knoxville, TN, USA

neurons require more configurable logic for implementation, and
the synaptic memory takes up most resources. All networks were
implemented with 4-bit-weight resolution. Figure 6 shows a plot
of accuracy against different weight bit resolutions for the same
network size. A relatively low bit resolution of 4 bits is not a limit-
ing factor in achieving high accuracy. But a sufficient number of
neurons in the hidden layers are significant for reducing the error
rate for low weight bit resolution.

5.3 Throughput

We define throughput as the number of synaptic operations per
second (SOPS). When a neuron generates an output spike to N
neurons, it causes N synaptic operations. The peak throughput
depends upon the weight mapping parameters and the clock fre-
quency. The weight mapping parameters define the memory size
and layer size. Upon receiving a forward input spike, the layer does
X1 X Z1 synaptic operations per clock cycle. The layer requires Y;
clock cycles plus one clock cycle overhead to update all neurons
in the layer. The peak throughput in synaptic operations per time
unit for a layer is calculated for every neuron in the layer, which
is X1 X Y1 X Z1. The total throughput is the peak throughput for
every individual layer added. The peak throughput of the RSNN
therefore is:

ZL: X1 XY1 X 27 (1)
1= telk X (Y1 + 1)’

where | indicates the hidden layers, L is the total number of hidden
layers, and X, Y1, Z; are the parameters of the respective layer.

Throughput is maximized by minimizing Y;. However, to maxi-
mize the utilization of the memory in terms of memory depth, it is
favorable to maximize Y; X Y3 to the maximum available memory
depth. So a trade-off can be made by minimizing Y; to increase the
throughput and increasing Y, proportionately to maximize the uti-
lization of memory in terms of depth. Throughput values calculated
for multiple networks of different sizes can be observed along with
the respective weight mapping parameters for 2 hidden layers in
Table 3.

6 CONCLUSIONS

We present a novel digital architecture for implementing RSNNs
with perfect software-to-hardware fidelity. Our results demonstrate
accurate inference and low spike activity. The architecture is fully
digital, and it is compatible with FPGA hardware. It offers adjustable
weight resolution, layers count, number of neurons, programmable
recurrent connectivity, and other parameters. Furthermore, we have
proposed a memory layout for on-chip memories (BRAM and Ul-
traRAM) that helps achieve desired peak throughput performances
at design time. We demonstrated two inference applications, the
handwritten digit (MNIST) and the sensory fusion task of images
and radar data for cropland classification. The presented architec-
ture enables network size, memory resources (weight resolution),
throughput, and accuracy trade-offs. In the MNIST benchmark, we
have set up several network configurations with different input
sizes. We demonstrated that we can exploit the recurrent connec-
tions to store information over previous time steps while still ac-
curately solving the task (see Table 2). However, with input layers

ICONS 2022, July 27-29, 2022, Knoxville, TN, USA

Anand Sankaran, Paul Detterer, Kalpana Kannan, Nikolaos Alachiotis, and Federico Corradi

Network #Neu | # LUT | # FF # BRAM | Accuracy | nbit | Spikes/Inf. | Resource Savings [x]
784-720-720-720-10 [13] | 2954 | 140,206 | 131,977 | 306 99.3% 6 4349 + 352 | 1(LUTs), 1(FFs), 1(BRAMs)

28-64-10 124 | 7559 |3604 |16 93.5% 4 395 + 38 18x(LUTs), 36x(FFs), 36x(BRAMs)
112-128-10 272 10,783 | 5,284 | 80 95.5% 4 227 + 44 18x(LUTs), 13x(FFs), 25x(BRAMs)
112-256-10 400 19537 | 9345 | 128 96.7% 4 232 + 38 10x(LUTs), 7x(FFs), 2.3x(BRAMs)
112-512-10 656 | 37,010 | 17,447 | 279 97.5% 4 247 + 55 3.7x(LUTS), 4x(FFs), 1.1x(BRAMs)
392-512-10 936 37,706 17,492 312 98.0% 4 89 + 48 3.7x(LUTs), 7.5x(FFs), 0.98x(BRAMs)
392-1024-10 1439 189,561 | 39,170 312 98.5% 4 71 £58 0.74x(LUTs), 3.3x(FFs), 0.98x(BRAMs)

Table 2: Resource utilization, accuracy, average spike per inference, and resource savings for MNIST handwritten classification

networks. Resource savings has been normalized to Gyro [13].

Network Parameters (X1, Y1, Z1) | Throughput (GSOPS)

28-64-32 1-16-4,1-8-4 1.83
112-128-32 1-32-4,1-8-4 1.85
112-256-32 1-64-4,1-8-4 1.87
112-512-32 1-64-8,1-8-4 2.85
392-512-32 1-64-8,1-8-4 2.85
392-1024-32 1-64-16,1-8-4 4.82

17-600-8 1-20-30,1-1-8 8.14

Table 3: Peak throughput for different network sizes and
weight mapping parameters.

of low neuron counts, it is required to provide more input data
chunks in sequence for presenting the whole input digit, trading off
accuracy and latency with FPGA resources. When fewer neurons
are at the input layer, the task becomes more challenging because
the network needs to remember the previous timesteps to make
the right decision via recurrent activity and neuronal dynamics,
resulting in more latency and spikes but requiring fewer FPGA
resources.

ACKNOWLEDGMENTS

This project received funding from the ECSEL Joint Undertaking
(JU) under grant agreement No. 826610. The JU receives support
from the European Union’s Horizon 2020 research and innovation
programme and Spain, Austria, Belgium, Czech Republic, France,
Italy, Latvia, and Netherlands.

REFERENCES

[1] Moradi S, Qiao N, Stefanini F and Indiveri G. "A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (DYNAPs)." IEEE transactions on biomedical circuits and systems,
2017, 12(1), pp.106-122.

[2] Davies M, Srinivasa N, Lin TH, Chinya G, Cao Y, Choday SH, Dimou G, Joshi
P, Imam N, Jain S and Liao Y. "Loihi: A neuromorphic manycore processor with
on-chip learning." IEEE Micro. 2018 Jan 16;38(1):82-99.

[3] Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam
N, Nakamura Y, Datta P, Nam GJ, Taba B. "Truenorth: Design and tool flow
of a 65 mw 1 million neuron programmable neurosynaptic chip." IEEE transac-
tions on computer-aided design of integrated circuits and systems. 2015 Aug
28;34(10):1537-57.

[4] Mayr C, Hoppner S, Furber S. "SpiNNaker 2: A 10 Million Core Processor Sys-

tem for Brain Simulation and Machine Learning." In Communicating Process

Architectures 2017 & 2018 2019 (pp. 277-280). IOS Press.

Neftci EO, Mostafa H, Zenke F. "Surrogate gradient learning in spiking neural

networks: Bringing the power of gradient-based optimization to spiking neural

networks." IEEE Signal Processing Magazine. 2019 Nov 5;36(6):51-63.

&

[6] Yin B, Corradi F and Bohté SM. "Accurate and efficient time-domain classification
with adaptive spiking recurrent neural networks." Nat Mach Intell 3, 905-913
(2021). https://doi.org/10.1038/s42256-021-00397-w

[7] Smaragdos G, Isaza S, van Eijk MF, Sourdis I, Strydis C. "FPGA-based
biophysically-meaningful modeling of olivocerebellar neurons." In Proceedings
of the 2014 ACM/SIGDA international symposium on Field-programmable gate
arrays 2014 Feb 26 (pp. 89-98).

[8] Wang RM, Thakur CS, Van Schaik A. "An FPGA-based massively parallel neuro-

morphic cortex simulator.” Frontiers in neuroscience. 2018 Apr 10;12:213.

Pani D, Meloni P, Tuveri G, Palumbo F, Massobrio P, Raffo L. "An FPGA platform

for real-time simulation of spiking neuronal networks." Frontiers in neuroscience.

2017 Feb 28;11:90.

Neil D, Liu SC. "Minitaur, an event-driven FPGA-based spiking network accelera-

tor!" IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2014 Jan

9;22(12):2621-8.

Mostafa H, Pedroni BU, Sheik S, Cauwenberghs G. "Fast classification using

sparsely active spiking networks." In IEEE International Symposium on Circuits

and Systems (ISCAS) 2017 May 28 (pp. 1-4).

[12] Han J, Li Z, Zheng W, Zhang Y. "Hardware implementation of spiking neural

networks on FPGA." Tsinghua Science and Technology. 2020 Jan 13;25(4):479-86.

Corradi F, Adriaans G, and Stuijk S. "Gyro: A Digital Spiking Neural Network

Architecture for Multi-Sensory Data Analytics." In Proceedings of the 2021 Drone

Systems Engineering and Rapid Simulation and Performance Evaluation: Methods

and Tools Proceedings, pp. 9-15. 2021.

Izhikevich EM. "Simple model of spiking neurons." IEEE Transactions on neural

networks. 2003 Nov;14(6):1569-72.

Abbott LF. "Lapicque’s introduction of the integrate-and-fire model neuron

(1907)." Brain research bulletin. 1999 Nov 1;50(5-6):303-4.

Bellec G,Salaj D, Subramoney A, Legenstein R, and Maas W. "Long short-term

memory and learning-to-learn in networks of spiking neurons." In Advances in

neural information processing systems, v. 31. 2018.

Izhikevich EM, FitzHugh R. "Fitzhugh-nagumo model." Scholarpedia. 2006 Sep

23;1(9):1349.

[18] Danneville F, Loyez C, Carpentier K, Sourikopoulos I, Mercier E, Cappy A. "A

Sub-35 pW Axon-Hillock artificial neuron circuit." Solid-State Electronics. 2019

Mar 1;153:88-92.

Stuijt J, Sifalakis M, Yousefzadeh A, Corradi F. "pBrain: An event-driven and fully

synthesizable architecture for spiking neural networks." Frontiers in neuroscience.

2021 May 19;15:538.

Dataset available at UCI Machine Learning Repository. Query: "Crop mapping us-

ing fused optical-radar data set Data Set." https://archive.ics.uci.edu/ml/datasets/

Crop+mapping+using+fused+optical-radar+data+set

Khosravi I, Alavipanah SK. "A random forest-based framework for crop mapping

using temporal, spectral, textural and polarimetric observations." International

Journal of Remote Sensing. 2019 Sep 17;40(18):7221-51.

Moore SW, Fox PJ, Marsh SJ, Markettos AT, Mujumdar "A. Bluehive-a field-

programable custom computing machine for extreme-scale real-time neural net-

work simulation." In IEEE 20th International Symposium on Field-Programmable

Custom Computing Machines 2012 Apr 29 (pp. 133-140).

Wang R, Hamilton TJ, Tapson J, van Schaik A. "An FPGA design framework

for large-scale spiking neural networks." In IEEE International Symposium on

Circuits and Systems (ISCAS) 2014 Jun 1 (pp. 457-460).

[24] Kiselev I, Neil D, Liu SC. "Event-driven deep neural network hardware system
for sensor fusion." In IEEE International Symposium on Circuits and Systems
(ISCAS) 2016 May 22 (pp. 2495-2498).

[25] Irmak H, CorradiF, Detterer P, Alachiotis N, Ziener D. "A Dynamic Reconfigurable
Architecture for Hybrid Spiking and Convolutional FPGA-Based Neural Network
Designs." Journal of Low Power Electronics and Applications. 2021 Sep;11(3):32.

[

[10

[11

[13

[14

[15

(16

[17

[19

[20

[21

~
&,

[23

	Abstract
	1 Introduction
	2 Background
	3 General System Design
	3.1 Event-driven Architecture
	3.2 Event-driven Time Discretization

	4 Design of FPGA System
	4.1 Neuron Model
	4.2 Weight Memory Mapping
	4.3 Finite State Machine / Request Controller
	4.4 Hierarchy/Structure

	5 Experimental results
	5.1 Recurrent Spiking Neural Networks for Classification
	5.2 Resource utilization and accuracy
	5.3 Throughput

	6 Conclusions
	Acknowledgments
	References

