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Abstract — This article reviews the current state-of-the-art
of active-integrated antennas co-designed with power amplifiers
(PAs). Three strategies to improve output power and power-added
efficiency are described using examples, namely direct matching
between PA and antenna, tuning of harmonic reflections in the
antenna, and in-antenna power combining from multiple PAs. An
outlook is given on the challenges to be faced in the application
of these strategies in wide-scanning phased arrays.
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I. INTRODUCTION

The pursuit of improved performance in wireless
communication and sensing devices and the increasing
constraint of limited bandwidth availability in the radio
frequency (RF) spectrum are pushing developments towards
the millimeter-wave (mm-wave) band between 30 and
300 GHz. In automotive radars for example, the 77 GHz
band has enabled better accuracy and resolution performance
with smaller devices compared to the narrower 24 GHz
band [1]. Moreover, a trend can be seen towards sensing
devices operating in the D-band beyond 100 GHz, where even
wider bandwidths and smaller device sizes can be achieved [2].

The high path losses at mm-wave frequencies impose
high effective isotropic radiated power (EIRP) requirements
on transmitting wireless systems, leading to a demand for both
high antenna gain and transmitted power. As the dimensions
of radiating elements scale with the wavelength, a high-gain
steerable array can be realized within a relatively small size.
However, the dimensions of mm-wave chips and commercial
surface-mounted chip packages may not scale equally, leading
to a tight area budget for array elements. Furthermore, the
achievable performance of power amplifiers (PAs) degrades
at increasing frequencies, and material losses increase. RF
power losses due to mismatches, interconnects and matching
networks can be considered expensive: for high-power radars,
power-budget critical satellite payloads, or mass-produced base
stations, a few percents increase in power-added efficiency
(PAE) can result in a significant reduction of total energy cost,
relaxed cooling requirement and increased system lifespan.

This paper provides an overview of active integrated
antennas (AIAs) co-designed with PAs in order to optimize
output power, efficiency, and device footprint. A distinction
is made between three co-design strategies, namely direct

matching, harmonic tuning, and power combining. Each
strategy is discussed in a separate section in this overview. Key
performance indicators from published examples, including
RF output power and peak PAE at the PA-AIA interface, are
summarized and listed. Most of the open literature deals with
standalone antennas and relatively simple amplifiers with few
transistors. As novel contribution, in this paper we will discuss
the challenges posed by PA-antenna co-design for phased array
environments, where aspects such as mutual coupling as a
function of scanning play an important role.

II. DIRECT MATCHING

High-power PAs generally require relatively small load
resistances at the transistor drain reference plane, whilst
most antennas are designed to have higher impedances [3].
Conventionally, PAs are designed with input and output
matching circuits to achieve a standardized 50 Ω interface
impedances throughout their operating bandwidth. This
ensures a degree of modularity and re-usability of PA designs
with a wide range of antenna designs, and vice versa. However,
when regarding the PA and antenna as one integrated system,
this would result in two back-to-back matching networks as
depicted in Fig. 1a. This is a sub-optimal solution in terms of
compactness and power losses.

Transforming the antenna impedance ZA to the optimal
PA load impedance ZL could also be achieved directly by a
single matching network as in Fig. 1b, resulting in a smaller
overall design. As the substrate and ohmic losses in a matching
network can be directly linked to its size, this could also
lead to lower overall power losses [4]. However, a larger
single impedance transformation may limit the transmission
bandwidth compared to two smaller transforms.

In Fig. 1c, a direct match between a co-designed PA
and antenna is depicted. In this case, the antenna itself is
designed to an input impedance corresponding to the desired
ZL. Examples of two different direct-matching strategies are
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Fig. 1. Schematics of (a) conventional matching with a 50 Ω interface, (b) a
single matching network and (c) direct matching between PA and antenna.



Table 1. Examples of direct-matched ([6]-[9]), harmonic-tuned ([10]-[15]), and power-combining ([16]-[21]) AIAs from literature.

Source Antenna design f [GHz] ZA1(/ZA2/ZA3) [Ω] PA class/type [5] Pout [dBm] PAEpk [%] BW [%]
[6] Small patch 0.9 2.8+j0.7 Class A / SOI LDMOS 27.5→31 33→45 1.1
[7] Small loop 30 5+j500 Class A / GaN HEMT 30 15 -
[8] Slot 20 17+j46 - / GaN HEMT 24.7 34.8 1.5

[9] Series-fed patches with
PAs in between 5 99-j65 Class A / HJ-FET ≈ 2 19 2

[10] Rectangular patch
shorted at center 2.48 14-j30 / ≈ 0+j30 Class AB/F / GaAs FET 31.6 48→55 -

[11] Slot with L/C stub 5.4 18.4-j17.5 / 8.5 /800 Class B/F / GaAs FET 26.8→27 64→67.5 9.5

[12] Dielectric resonator
with triple slot feed 14.25 25+j125 / - - / - - - 5

[13] Square patch with
diagonal slots 2.4 47.5-j119 / 0.8-j10.7

/ 295-j119 Class B/F / SiGe NPN 11.6→12 62→67 -

[14] L-shaped microstrip 2.4 22.4+j1.9 / 0.3+j19.4 Class B/F / - - 62 -

[15] Triple slot 3.5 12.9-j6.9 / 1.4-j16
/ 1011-j204 Class F / GaN HEMT 37.1→38.1 52→65.9 7

[16] Diff patch 2.5 - Push-Pull / MESFET 25 55 -
[17] Proximity-fed Diff patch 2.64 - Diff / GaAs PHEMT ≈ 22 29 -
[18] 2×2 Diff patch array 45 50 Diff / 45-nm SOI ≈ 28 13.5 ≈ 7
[19] On-chip slot with 4 feeds 59 13 (feed), 52 (PA) Diff / 45-nm SOI 27.9 23.4 8.5
[20] Dual-feed loop 28 46 Outphasing / 45-nm SOI 17.1 56 (ηD) -

[21] Patch above 4-port slot 3.5 7.5-j21.1 (main)
39.4+j3.3 (auxiliary) Doherty / GaN HEMT 42.8 61 7

Legend: Center frequency: f Antenna impedance at nth harmonic: ZAn Differential: Diff PA output power:∗ Pout

Drain efficiency:∗ ηD -10 dB input-reflection bandwidth:∗ BW Peak PAE:∗ PAEpk
∗: At ZL=ZA interface (Fig.1c)

listed as [6]–[9] in Table 1. If reported, the improvement with
respect to a 50 Ω reference design is indicated by an arrow.

In [6] and [7], electrically small antenna designs are used to
achieve very low input impedances and compact form factors.
However, in this case there exists a severe trade-off between
optimal impedance matching and radiation efficiency [3].
Moreover, electrically small antennas are inherently limited
in bandwidth due to the inverse Chu-limit of quality factor.

In [8], a slot antenna was presented that was excited
by a bondwire directly connected to the transistor drain.
In [9], the radiating elements were also connected directly
to the transistor terminals. The equivalent L-C circuit model
of a microstrip patch antenna was used as input and output
matching networks for a scaleable linear array of AIAs and
PAs. Each patch antenna radiates 73% of the input power, and
transfers the remaining power to the next PA.

III. HARMONIC TUNING

The PAE of a class AB or class B PA can be optimized
with open or short terminations of the second and third
harmonic components at the transistor output, resulting in
class F operation. Although the required harmonic tuning
network leads to a somewhat larger and more lossy PA output
stage, this downside is often outweighed by the PAE increase.

In [10]–[15] listed in Table 1, several harmonics-tuned
AIA designs are presented which allow the removal of
such a harmonic tuning network. Not only may this result
in a reduction of overall size and losses, it also limits
undesired out-of-band radiation. In most designs, the second
harmonic and third harmonic load impedances are tuned to
an approximate short and approximate open at the transistor
reference plane, respectively. A direct impedance match at the
fundamental frequency is applied in [11], [14] and [15]. The
patch antenna designs presented in [10] and [13] achieve this

by blocking the harmonic surface current paths with shorting
vias and slots, respectively. In [11], [12] and [15], tuning stubs
or slots are used to achieve the desired harmonic termination.
The resulting maximum PAE values (PAEpk) exceed 60% in
most designs, and improvements of up to 14 percentage points
are reported compared to reference designs.

Most harmonics-tuning AIAs listed in Table 1 are
sub-10 GHz designs, bar the theoretic study on a Ku-band
dielectric resonator in [12] where only the second harmonic
was examined. Accurate phase tuning is required for effective
harmonic termination, which increases in challenge as the
wavelength decreases. For harmonic tuning to be successful
at mm-wave frequencies, the span between transistor drain
and antenna interface should be as small as possible and
well-modeled in simulations.

IV. POWER COMBINING

Although high-performance III-V semiconductor
technologies such as Gallium Nitride (GaN) can achieve
much higher power at mm-wave than more conventional
silicon-based transistors, the single-transistor power limit
remains insufficient for many mm-wave applications. Instead,
high-power PAs achieve Watt-level output powers through
on-chip or on-board power combining networks as depicted in
Fig. 2a [22]. The number of output-stage transistors is limited
by practical factors including heat dissipation, die size and
combining network losses.

Combining network losses are avoided when combining
power from various radiating elements in the air (Fig. 2b),
although this results in a directional antenna where power
can be considered ‘lost’ to undesired directions as side-lobes.
For situations where a more omnidirectional antenna is
required, or in the case of a single array element, combining
losses can be avoided by using the antenna itself as power
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Fig. 2. Schematics of (a) a power combining network, (b) over-the-air
combining from multiple radiators and (c) a multi-feed / differential antenna.

combiner. As illustrated in Fig 2c, such an antenna can be
differential-fed, multi-feed, or a combination of both. Note that
this section focuses on integrated PAs and antennas: dedicated
power-combining systems such as presented in [23] and [24]
are not discussed further for the sake of brevity.

Table 1 lists a number of multi-feed AIA designs from
literature, numbered [16]–[21]. Most examples feature a
differential-fed antenna element, which is a relatively simple
solution to combine twice the number of driving transistors
compared to a similar single-ended design. The differential
patch antennas presented in [16] and [17] are excited by
one transistor per port, connected through inset-feedlines
and proximity-coupled lines respectively. In [18], over-the-air
combining of four differential-fed patch antennas, for a total
of eight PAs, is demonstrated.

Power combining networks scale the antenna impedance,
which may be detrimental to high-power mm-wave PAs
for which a low load impedance is desired. The slot
antenna presented in [19] features both multi-port feeding and
power-combining networks: each of the four 13 Ω antenna
inputs is fed by four PAs, leading to a perceived load
impedance of 52 Ω for each of the 16 PAs.

In [20] and [21], power-combining AIA designs are
presented for an outphasing and Doherty PA architecture,
respectively. Both types are designed to achieve a good
efficiency while operating linearly in back-off. A dual-feed
loop antenna has also been demonstrated in combination with
an outphasing amplifier in [25]. In the Doherty design, two
separate interface impedances must be realized: one for the
main and one for the auxilary amplifier.

V. OUTLOOK: PHASED ARRAY APPLICATIONS

All of the AIA designs discussed in this overview consist
of a single radiating element, with only the non-scanning patch
arrays from [9] and [18] as notable exceptions. In this section,
an brief outlook is given on the application challenges of direct
matching, harmonic tuning, and in-element power-combining
in beamsteering mm-wave phased arrays.

The limited bandwidths of the presented designs in Table 1
may be a severe downside for mm-wave communication
and sensing applications. This is especially true in scanning
arrays, where the active input impedance can vary significantly
with scan angle due to mutual coupling. This phenomenon
is illustrated in Fig. 3, where the scanning behavior of a
Ka-band stacked patch antenna is shown. Although the patch
is matched to around 50 Ω at all three depicted frequencies,
the active impedance variations when scanning up to 70°
from broadside change significantly with frequency. Moreover,
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Fig. 3. (a): CST model of a Ka-band stacked patch antenna in an infinite
array environment. (b-c): Simulated PAE circles of a reference Ka-band PA at
27.5, 29 and 31 GHz, with the active impedance of the stacked patch under
scanning conditions between 0o to 70o from broadside in the E- and H-planes.
The reference impedance is 50 Ω.

PA performance varies with frequency as well, as illustrated
by the PAE-contours of a reference GaN-based Ka-band PA.
The PA has been designed with 50 Ω impedance load (ZL

in Fig. 1) corresponding to the best compromise between
optimized output power and PAE. As a result the load value
for PAEpk is different than 50 Ω, and changes with frequency.
The contours in Fig. 3 show for which complex values of ZL

the PAE decreases to 5% and 10% from PAEpk. It appears
that with a 50 Ω load impedance in the considered frequency
band the PAE remains within the 5% variation. However, due
to the change in active antenna impedance while scanning, and
thus in the ZL seen by the PA, the PAE deteriorates rapidly as
in Fig. 3c. In [26], PAE variations of around ten percentage
points were also reported due to scanning. These variations
make efficient wide-band direct matching between a PA and
wide-scanning array element a non-trivial endeavor.

Power-combining array elements also present a number
of practical challenges to overcome, stemming from the
half-wavelength inter-element spacing requirement to avoid
grating lobes. At mm-wave frequencies, the element
dimensions may become too small to fit multiple PAs within
the unit cell. Moreover, placing PAs in a densely-spaced grid
could result in a significant thermal power dissipation in a
relatively small area, leading to stringent cooling requirements.
A sparse array configuration with fewer higher-powered
elements, leading to relaxed area and thermal constraints, could
be a promising option in such a case [27]. At sufficiently
high output powers, thermals may also constraint the radiating
element itself, leading to all-metal designs as presented in [28].

Similarly to the direct-matched and harmonics-tuning AIA
concepts, the performance of a power-combining antennas
may deteriorate due to scanning. The active impedances can
change differently for each port as reported in [28], which will
affect the element pattern and radiation efficiency. Whether this



imbalance could be compensated for through the amplitude and
phase at the ports, and whether antennas can be designed with
better robustness against this effect, are both interesting topics
for continued work.

VI. CONCLUSION

This contribution has provided on overview of AIA
design techniques including direct matching, antenna-based
harmonic tuning and antenna-based power combining based on
standalone radiators. Although each active-integration strategy
improves upon a given set of figures of merit such as
output power and PAE, there are still challenges to be
overcome for successful implementation of these strategies
in wide-scanning phased-array applications. The most notable
of these challenges is the robustness against a varying
active impedance under scanning conditions, which could be
addressed by investigating techniques aimed at reducing the
mutual coupling effect on the array impedance for large scan
angles. Moreover research should be pursued in finding the
best compromise for the (complex) impedance value at the
interface amplifier-antenna, in terms of both PAE and matching
for the considered scanning conditions.
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