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Abstract—Driven by the energy transition, the electricity
generated by photovoltaic panels connected by customers behind-
the-meter is annually increasing. This is expected to lead to
congestion of medium to low voltage (MV/LV) transformers
because the related capacity is unable to be reinforced fast enough
to accommodate all these PV panels. Based on medium-term load
forecasts of an MV/LV transformer with an annual increasing
capacity of installed PV panels behind-the-meter, active power
curtailment (APC) necessary to prevent congestion and related
compensation costs to owners of these PV panels is forecasted.
First, a month-ahead load forecast of the studied MV/LV trans-
former with an annual increasing capacity of installed PV panels
behind-the-meter is performed multiple times based on weather
conditions measured during the same month but in previous
years. Second, each of these month-ahead load forecasts is used to
forecast the related APC and compensation costs. Subsequently,
the distribution in forecasted APC and compensation costs due to
annual variation of weather conditions over a month is analyzed.
In addition, APC duration curves are calculated for all these
forecasts to analyze the distribution of the amount and duration
of alternative solutions, such as demand-side management to
reduce necessary APC and the local mismatch between supply
and demand.

Index Terms—active power curtailment, behind-the-meter PV
generation, medium-term, net load forecasting, supervised ma-
chine learning

I. INTRODUCTION

Driven by the energy transition to reduce the number of car-
bon emissions, the share of electricity generated by renewable
energy sources (RES) is increasing. The introduction of RES
has changed the traditional top-down oriented way of operat-
ing, where generators are connected to transmission networks
and delivered to customers through distribution networks. The
electricity generation can be controlled to balance supply and
demand. However, due to the intermittent properties of many
RES, such as photovoltaic (PV) panels, electricity generation
can not be controlled. Additionally, many PV panels are con-
nected to distribution networks unlike traditional generators
typically connected to transmission networks. Consequently,
this may lead to congestion and voltage violations in dis-
tribution networks when electricity generated by solar PV
exceeds demand [1]. Active power curtailment (APC) of PV
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panels during periods of peak generation is widely studied to
prevent these issues, which is increasingly applied in practice
in different countries already [2].

Many real-time applications of APC to prevent voltage
violations in distribution networks have been proposed, as
extensively reviewed in [3], [4]. In addition, [2], [5] also
describe studies that aim to apply APC for congestion man-
agement. However, APC is usually considered to be a loss
given that PV panels are not generating electricity at their full
potential, which is therefore aimed to be minimized [2]. Many
studies have also proposed mechanisms to fairly compensate
owners of PV panels being curtailed, see for example [6],
[7]. However, proposed methodologies so far are unable to
forecast APC in advance and only load profiles including
the application of APC are known afterward. References [8],
[9] propose new methodologies to overcome this issue. Both
methodologies enable the estimation of electricity that would
have been generated without APC afterward. Based on the
difference between measured load profiles with APC and the
estimated load profile which would have been without APC,
the APC is estimated to compensate owners of PV panels.

Being limited to estimating APC afterward has several
disadvantages. First of all, responsible distribution system
operators (DSOs) are unable to indicate expected costs due
to the application of APC beforehand. As a consequence,
applicability for network planning is limited and comparing
the costs and benefits of APC with other solutions aiming
to prevent related network congestion or voltage violations
is not possible. Secondly, being able to evaluate APC to
prevent congestion beforehand enables studying alternative
solutions, such as demand-side management (DSM) to reduce
necessary APC. To reflect on APC beforehand, the current
development of the advanced metering infrastructure enables
DSOs to measure loads of assets in distribution networks,
such as medium to low voltage (MV/LV) transformers and
low-voltage (LV) feeders. Together with the development of
machine learning (ML), these measured load profiles can be
used to forecast the need for APC to prevent congestion of
assets in distribution networks due to the annually increasing
capacity of installed PV panels behind-the-meter (BTM). As
discussed in [10], most studies focus on short-term or long-
term forecasting. Short-term forecasts up to a week ahead



are too short to reflect on the impact of increasing installed
PV capacity. Long-term forecasts up to many years ahead
are generally focused on the impact on a specific day with
peak generation without reflecting on the varying impact due
to seasonal differences. Therefore, [10] proposed a medium-
term forecasting (MTF) methodology to study this varying
impact of an increasing installed PV capacity due to seasonal
differences. However, PV panels are typically installed by end-
customers on rooftops BTM. As a consequence, only net loads
of MV/LV transformers are measured, which is the sum of all
load profiles and generated electricity by connected PV panels
BTM. Therefore, [10] described a methodology to improve the
MTF of an MV/LV transformer loading when the capacity of
PV panels installed BTM is rapidly increasing without having
to disaggregate the net load into load and generation profiles
first. However, it does not consider the forecast of APC and
related compensation costs to owners of these PV panels based
on this MTF of the MV/LV transformer loading.

This study applies a month-ahead MTF of APC necessary
to prevent congestion of an MV/LV transformer due to an
increasing capacity of PV panels based on the MTF of
an MV/LV transformer loading proposed in [10]. The main
contributions of the proposed methodology are

• to forecast the total amount of APC and related compen-
sation costs a month-ahead to prevent congestion of an
MV/LV transformer caused by an increasing capacity of
installed PV panels BTM

• to forecast the amount and duration of required APC a
month-ahead

• to enable evaluation of the impact of annually varying
weather conditions on the distribution of the forecast of
APC using historical weather data

II. METHODOLOGY

This paper proposes a two-step approach to forecast the
APC a month-ahead aiming to prevent congestion of MV/LV
transformers due to an annual increasing capacity of installed
PV panels BTM. An overview of the proposed methodology
is shown in Fig. 1. The first step performs an MTF of the net
load of an MV/LV transformer using a supervised machine
learning model. The second step applies the MTF of the net
load to forecast congestion and related APC. Based on the
APC forecasts, related compensation costs for owners of BTM
PV panels connected to the MV/LV transformer are estimated
assuming that they receive equal compensation for every kWh
of electricity being curtailed which they otherwise would have
received through feed-in tariffs.

A. Load Profile Generator

To perform the proposed methodology described in Fig. 1,
first the net load of the studied MV/LV transformer is synthe-
sized for a residential neighborhood. Individual load profiles
of households Lh(t) are first synthesized using the load profile
generator. Load profile generator is a modeling tool, which
enables the generation of household load profiles for customers
with different types of load profiles [11].

B. Solar PV Generation
To calculate the net load profile Nh [kW] of a household

with installed PV panels BTM, the synthesized load profile
of a household Lh(t) is summed with a synthesized generation
GPV,h(t) [kW] profile according to:

Nh(t) = Lh(t) + GPV,h(t). (1)

These generation profiles of PV panels are synthesized as
described in Ref. [10] using local measured temperature [°C]
and irradiation [W/m2] [12]. To represent the increasing capac-
ity of installed PV panels BTM, these synthesized generation
profiles are not summed with load profiles of all households
simultaneously, but every year, the number of households
to which generation profiles are added increases. Thereby,
a varying installed capacity of PV panels per household is
applied between 5.5 kWp and 6.7 kWp in steps of 0.3 kWp.
Finally, synthesized net load profiles of all households H are
summed to synthesize the net load of the MV/LV transformer
Tnet(t) [kW] at each timestep t according to:

Tnet(t) =
H∑

h=1

Nh(t). (2)

C. Medium-term Forecast
Once the net load of the MV/LV transformer is synthesized

as described in sections II-B and II-C, the net load of the
MV/LV transformer is decomposed into daily Td(t), weekly
Tw(t) and yearly Ty(t) stationary time series and one residual
non-stationary time series Tr(t) according to:

Tnet(t) = Td(t) + Tw(t) + Ty(t) + Tr(t). (3)

All these decomposed time series are first separately forecasted
a month-ahead. Subsequently, the net load of the MV/LV
transformer is forecasted a month-ahead by summation of all
stationary and non-stationary time series [10], [13].

To accurately forecast the net load of the studied MV/LV
transformer Tnet(t), [10] showed that the forecasting algorithm
of the non-stationary time series Tr(t) does not require the
exact generation profiles of all connected PV panels BTM.
Important is an estimation of generation profiles using the
installed capacity of PV panels BTM. In addition, the proposed
forecasting algorithm requires the same category of weather-
related features, which are temperature, global irradiation, sun-
shine, and rain duration. However, these features are unknown
a month-ahead as well. Therefore, the forecasting algorithm
applies historical weather data measured during the same
period of the forecast as shown in Fig. 1.

D. Active Power Curtailment Forecast
Based on the net load forecast Tnet(t)′, the congestion C(t)

[kW] of the MV/LV transformer is calculated according to:

C(t) = Tnet(t)′ − CapT , (4)

in case when:
Tnet(t)′ > CapT , (5)

where CapT [kW] is the capacity limit of the studied MV/LV
transformer.
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Fig. 1: Proposed methodology to forecast the APC and its related costs.

The amount of APC A(t) [kW] to avoid congestion of an
MV/LV transformer is equal to C(t). In addition, the relative
APC Arel(t) [%] is calculated to enable efficient comparison
between MV/LV transformers with different capacities using:

Arel(t) =
A(t)
CapT

· 100. (6)

Based on the net load exceeding the transformer capacity,
it is calculated how much electrical energy must be curtailed
Ecurt [kWh] during each forecasting period to avoid congestion
according to:

Ecurt =

I∑
i=1

A(t) · T, (7)

where I represents the total number of time intervals t within
each forecasting period and T [min.] represents the duration of
each individual time interval t. Finally, the curtailed amount
of electrical energy, Ecurt is used to estimate the related com-
pensation costs c [e] during each forecasting period according
to:

c = Ecurt · α, (8)

where α [e/kWh] is average unit-price per kWh of electrical
energy during the period of forecast.

E. Error evaluation

First of all, the limit of the forecasting algorithm is calcu-
lated if the actual weather data of 2020 are applied using the
normalized root mean squared error (NRMSE) according to:

NRMSE [%] =

√
1
T

∑T
i=1(Tnet(t)′ − Tnet(t))2

Tmax − Tmin
, (9)

where Tmax and Tmin represent maximum -and minimum values
of the synthesized net load during the period of forecast
[14]. However, analyzing results if historical weather data are
applied using commonly applied point-wise error metrics, such
as the NRMSE may reflect upon the accuracy of MTFs
incorrectly. Point-wise error metrics only take into account the
difference between the forecast value and actual value at the
same time step to determine the error. Due to annual variation
of weather, the forecast algorithm may forecast the size and
duration of generation peaks of the profile given the applied
historical weather data accurate, but the timing on days during

the forecasting period may be different. As a consequence,
point-wise error metrics penalize the accuracy of the forecast
twice. Therefore, an MTF using historical weather data which
forecasts the size and duration of generation peaks of a profile
consistently too low may result in a lower forecast error using
point-wise error metrics compared with an MTF that is able
to forecast the size and duration of generation peaks of the
profile better, but on different days during the forecast period
[15]. Therefore, a boxplot for each month is used to calculate
the distribution of the total forecasted amount of curtailed
energy Ecurt and related compensation costs c compared with
the actual calculated curtailed energy Ecurt and compensation
costs c using equations (6) and (7). Next to the forecast of the
total amount of APC and related compensation costs, duration
curves are calculated for A(t) and Arel(t) to gain insight into
the distribution of amount and duration of APC. These APC
duration curves are calculated by sorting all forecasts of A(t)
and Arel(t) from chronological order into descending order.

III. IMPLEMENTATION AND VALIDATION OF THE
PROPOSED MODEL

The implemented forecasting algorithm is described in
detail in [10]. The supervised learning model based on an
extreme gradient boosting algorithm is used to forecast the
non-stationary time series, while an autoregression model is
used to forecast the stationary time series with a training set
of two years and a forecast period of a month.

A. Load Profile Generator

For this study, load profiles of twenty households are syn-
thesized from 01-03-2018 until 31-08-2020 with a 15-minute
time resolution using load profile generator. Load profiles from
five different groups of households are synthesized to represent
a variety of different end-customers. From each group of
households, four load profiles are randomly generated. The
first group represents a household with two children and
one parent working, the second group a household with two
children and both parents working, the third group a household
with a couple without children, the fourth group a household
with one single adult, and the last group a household with a
retired couple [11].



B. Solar PV Generation

The generation profile of each household is synthesized with
the measured temperature [°C] and irradiation [W/m2] at the
weather station located in Arcen, the Netherlands from 01-
01-2018 until 31-08-2020 [12]. To avoid that all households
are synthesized with exactly the same generation profile, the
constant temperature parameter is varied in a range from
[0.023, 0.038] together with the installed capacity as explained
in section II-C [16].

C. Medium-term Forecast

To forecast the non-stationary time series Tr(t), the forecast-
ing algorithm applied the measured temperature [°C], global
irradiation [W/m2], sunshine [min./hour] and rain duration
[min./hour] from 01-01-2018 until one day before the month
to forecast starts. Typically, weather data measured at a station
nearby is strongly correlated with unknown local weather
conditions on the location of the studied MV/LV transformer,
but it does not match exactly. Therefore, generation pro-
files applied as features for the forecasting algorithm are
synthesized with the measured temperature [°C] and global
irradiation [W/m2] at another weather station nearby located in
Volkel, the Netherlands [12]. The PV generation is estimated
using the same calculations as described in section II -
C. The weather-related and PV-related features used by the
forecasting algorithm are historical weather data from 2008
until 2017 during the same period of the forecast, assuming
actual weather data a month-ahead is unknown at the moment
of forecasting. Additionally, analyzing the impact of annual
varying weather conditions over the period to forecast provides
more insight into possible variations in generation peaks.
For each month-ahead forecast, the maximum and minimum
amount of estimated PV generation that occurred before 2008
is applied to the forecast as well. The forecasting algorithm
also forecasts Tr(t) with the actual weather-related features
from 2020 to indicate the limit of the forecast. Altogether,
each month from March until August is forecasted 13 times
using different measured weather data.

D. Active Power Curtailment

Based on the 13 forecasts for each month from March
until August, the values of A(t) and Ecurt are calculated using
equations (4)-(6). The capacity CapT of the studied MV/LV
transformer is 55 kW. To calculate related compensation costs
c, the average price-unit α is estimated at 0.22 e/kWh for
this study, based on the average price of electrical energy per
kWh from March until August from 2018 until 2020 for end-
customers in the Netherlands [17].

E. Error evaluation

After all the forecasts are performed, the related NRMSE
is calculated using (9) in the case when the forecast is carried
out with the actual weather data of 2020. For the forecasts
based on the historical weather data, the described boxplots
and duration curves as described in section II.E are calculated
for each month from March until August.

TABLE I: Calculated NRMSE for each month-ahead net load forecast
from March until August 2020.

Month NRMSE [%]
March 4.56
April 4.07
May 4.49
Jun 4.68
Jul 4.70
Aug 5.20

IV. RESULTS AND DISCUSSION

A. Medium-term Forecast

The synthesized net load of the MV/LV transformer, the
month-ahead net load forecast, curtailed net load forecast and
the capacity limit are shown in Fig. 2. The synthesized net load
used as the training set is shown in Fig. 2.A. The synthesized
net load, the month-ahead net load forecast, the curtailed net
load forecast, and the capacity limit of the MV/LV transformer
during the subsequent period are shown in Fig. 2.B. The
synthesized net load in Fig. 2 clearly indicates the expected
seasonal pattern of electricity generation by PV panels, which
is annually increasing due to the increasing installed capacity
of PV panels BTM. Relatively small generation peaks causing
congestion appear in 2019 from April until August, while
significantly larger generation peaks causing congestion appear
from March until September in 2020. The results shown in
Fig. 2.C and 2.D show the same profiles, but for the months
of March and June specifically. The shown results in Fig. 2
applied the actual weather conditions of 2020 as features
to the forecasting algorithm. Fig. 2.C and 2.D also show
that the forecast follows the size and duration of generation
peaks rather accurately. However, the forecasting algorithm
tends to underestimate the size of daily generation peaks,
especially during March and April when the average electricity
generation is increasing. Thereby, it has difficulty to forecast
irregularly occurring large generation peaks, because there are
also fewer similar generation peaks in the training set. Using
(9), the NRMSE of each month-ahead net load forecast is
shown in Table I, which varies from 4.07 % until 5.2 %.

B. Active Power Curtailment

Fig. 3 shows a boxplot of the total amount of forecasted
APC and related compensation costs per month from March
until August if historical weather data are used as features
to forecast the net load. It also shows the total amount of
APC and related costs per month based on the synthesized net
load and the forecast in the case when the measured weather
data of 2020 are used. To indicate the impact of increasing
capacity of installed PV panels BTM, Fig. 3 also shows the
total amount of APC and related compensation costs based
on the synthesized net load of 2018 and 2019. Fig. 3 clearly
indicates the large error if APC is estimated based on the net
load of previous years and the increase of installed PV panels
BTM is neglected. The boxplots in Fig. 3 also indicate the
distribution of APC and related compensation costs per month
due to the impact of annual variation in weather conditions.
However, the actual amount of APC and compensation costs
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Fig. 3: Total forecasted APC per month using historical weather data
(boxplot) and the measured weather data from 2020 (orange). The
actual APC based on the synthesized MV/LV transformer loading in
2018 (purple), 2019 (blue) and 2020 (red/reference) are also shown.

does not fit within the boxplot every month. This supports the
observation of Fig. 2 that the forecasting algorithm tends to
underestimate generation peaks, especially during the period
when the average electricity generation is increasing and if
less frequently occurring large generation peaks are observed.

Based on all forecasts of the MV/LV transformer loading,
APC duration curves for each month from March until August
are calculated. Fig. 4 shows the APC duration curve of the
synthesized net load, the APC duration curve of the forecasted
net load using the actual weather of 2020 and the distribution
interval of all duration curves based on the forecasted net
loads using historical weather data. The distribution interval
is calculated using the minimum and maximum values at each
duration, which is caused by the annual variation in weather

conditions. Although Fig. 4 provides no direct insight into the
exact timing of required APC, APC duration curves support
analysis to study the amount and duration of DSM to reduce
the necessary application of APC.

The similarity between the forecast using the actual weather
conditions of 2020 and the synthesized net load reflects the
limit of the forecasting algorithm, which is the highest for
June and July. The forecasts for other months appear to be
consistently lower, which is expected based on the results
of Fig. 2. For April and May, the difference is rather small
for duration >50 hours, but the difference starts to increase
at shorter durations. However, the latter can be expected
which is also observed for all other months, although less
significant. If the duration decreases, the change that related
peak generations occur also decreases. As a consequence, the
change that a similar peak generation occurred in the training
set is lower and the forecasting algorithm has fewer data
available to train and predict such large generation peaks.
Generally, the steeper the slope gets for shorter durations, the
harder it becomes to accurately forecast.

Fig. 4 also indicates that the actual synthesized net load does
not fit within the distribution interval for all months. On the
one hand, this can be due to the tendency of the forecasting
algorithm to underestimate generation peaks. On the other
hand, monthly weather conditions are correlated with previous
years, but it is not limited to these weather conditions. Thus,
weather conditions from March until May may have enabled
a higher amount of electricity generation in 2020 compared
with previous years.
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Fig. 4: Monthly APC duration curves of the actual synthesized net load (green), predicted net load using actual weather data of 2020 (blue)
and historical weather data (red).

V. CONCLUSION

A methodology has been proposed to forecast APC and
compensation costs to prevent congestion of an MV/LV trans-
former caused by an increasing capacity of PV panels installed
BTM. Thereby, the impact of annual variation in weather
conditions on APC and compensation costs is included.

First, a supervised machine learning model was used to
forecast the net load of an MV/LV transformer. The limit
of this forecasting model indicated the accuracy given actual
weather conditions. Then, historical weather data during the
same period from previous years was used to analyze the
distribution of the sum of APC and related compensation costs
due to annual variation of weather conditions. Finally, APC
duration curves were calculated to analyze the distribution of
amount and duration of APC. These results can be applied to
analyze the amount and duration of DSM to reduce necessary
APC and the local mismatch between supply and demand.
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