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Abstract

This paper considers the scheduling of electric vehicles in a public transit system. Our main

innovation is that we take into account that charging stations have limited capacity, while

also considering partial charging. To solve the problem, we expand a connection-based net-

work in order to track the state of charge of vehicles and model recharging actions. We then

formulate the electric vehicle scheduling problem as a path-based binary program, whose

linear relaxation we solve using column generation. We find integer feasible solutions using

two heuristics: price-and-branch and truncated column generation, including acceleration

strategies. We test the approach using data of the concession Gooi en Vechtstreek in the

Netherlands, containing up to 816 trips. The truncated column generation outperforms the

other heuristic, and solves the entire concession within 28 hours of computation time with

an optimality gap less than 3.5 percent.

Keywords: Electric Vehicles, Bus Scheduling, Column Generation, Discretization.
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1 Introduction

The benefits of electric buses are undisputed: replacing conventional combustion engine buses

by electric buses drastically reduces noise, pollution and greenhouse gas emissions. For these

reasons, many public transit operators have started electrifying their fleets. However, the intro-

duction of electric buses introduces new complexities in the transit planning chain, since limited

battery capacity requires electric buses to recharge during the day. In order to prevent buses

from depleting their batteries while minimizing operating costs and energy consumption, it is

crucial to time these recharging actions carefully, establishing a clear need for solution methods

that incorporate charging to support bus companies in these decisions.

Naturally, the demand for algorithmic support for the planning of electric buses has spurred

the interest in the Electric Vehicle Scheduling Problem (E-VSP), which is the problem of con-

structing feasible electric bus duties to cover a set of timetabled trips. A recent survey on electric

bus planning and scheduling identified over 20 papers on (variants of) the E-VSP, primarily from

the last three years (Perumal, Lusby, & Larsen, 2022). The innovation of our paper is that we

propose a solution approach that is capable of solving large instances of the E-VSP while con-

sidering both the capacity of charging stations and partial (non-linear) charging, bridging the

gap between theory and practice.

A number of other papers on the E-VSP consider charging station capacity (J. Q. Li, 2014;

L. Li, Lo, & Xiao, 2019; Rinaldi, Picarelli, D’Ariano, & Viti, 2020; Tang, Lin, & He, 2019; Wu,

Lin, Liu, & Jin, 2022). However, these papers either consider battery swapping or another form

of constant-time charging. Another stream of literature considers partial charging (X. Li et al.,

2020; Olsen & Kliewer, 2020; Van Aken & Hiemstra, 2020; Van Kooten Niekerk, Van den Akker,

& Hoogeveen, 2017; Wen, Linde, Ropke, Mirchandani, & Larsen, 2016). Literature on the E-

VSP with both partial charging and capacitated charging stations is scarce (Janovec & Koháni,

2019; Posthoorn, 2016; Zhang, Wang, & Qu, 2021). Janovec and Koháni (2019) only consider

relatively small instances. Posthoorn (2016) tests the proposed approach on larger (single-depot)

instances, but does not report optimality gaps or computation times. Zhang et al. (2021) solve

2



medium-sized instances up to an optimality gap of 1%, but consider only a single depot that also

serves as the charging station. Conversely, in this paper, we find provably high-quality solutions

for large instances with up to 816 trips of a rich variant of the E-VSP with partial charging,

multiple capacitated charging stations, multiple depots and multiple vehicle types.

Our solution approach is based on a discretization of the battery energy levels, which we

combine with a connection-based network with nodes representing trips and charging actions.

Every path in the resulting so-called primal network represents a feasible bus duty, respecting

both the compatibility of trips and the battery capacity. Note that the converse is not true:

there may exist feasible vehicle duties that are not represented in the primal network, because

we connect nodes using a conservative rounding scheme to ensure feasibility. However, we are

able to use a relatively fine discretization, achieving a good trade-off between solution time and

solution quality. In addition, although we do not consider this in our numerical experiments,

the proposed discretization scheme perfectly lends itself to non-linear charging functions and is

therefore widely applicable.

Using the developed network structure, we formulate the problem as a path-based binary

program with side constraints, whose linear relaxation can be solved with column generation.

Due to the construction of the network, the pricing problem corresponds to a standard shortest

path problem. To find integer solutions, we consider two heuristics: price-and-branch and

truncated column generation. In price-and-branch, only the linear relaxation is solved using

column generation, after which all generated paths are fed to a commercial MIP solver that

optimizes over this given subset of all paths. Truncated column generation can be viewed

as a diving heuristic in the branch-and-bound tree, where all nodes are solved using column

generation: paths are fixed iteratively until the solution is integer feasible. We also develop

acceleration strategies to reduce the computation time of the heuristics.

In general, a disadvantage of optimization models based on discretization is that the obtained

dual bound is only valid for the discretized representation of the problem, and is therefore not a

true bound of the underlying problem. Inspired by Boland, Hewitt, Marshall, and Savelsbergh
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(2017), we propose to find true lower bounds for the E-VSP by solving a linear relaxation on a

dual network, containing the same nodes as the primal network, but where nodes are connected

using an optimistic rounding scheme. Every feasible vehicle duty corresponds to a path in this

modified network, such that this procedure yields a lower bound that is valid irrespective of

the discretization. Note that where Boland et al. (2017) apply this principle to time-discretized

networks, we apply it to a network that is discretized in two dimensions: time and the battery

energy levels.

We test our approach using real-life timetable data from the bus concession Gooi en Vecht-

streek in the Netherlands, which consists of 816 trips connecting five medium-sized cities south-

east of Amsterdam. We also generate smaller instances by taking (random) subsets of all trips.

On the smaller instances, truncated column generation achieves an optimality gap smaller than

1.5%, outperforming price-and-branch. When paired with a dedicated acceleration strategy, we

are able to solve the entire concession using truncated column generation up to an optimality gap

of 3.4%. We also perform a sensitivity analysis, which shows that our level of discretization is

adequate: using finer discretizations leads to a significant increase in computation time, without

resulting in a significant decrease in costs.

The remainder of this paper is organized as follows: Section 2 gives a detailed description of

the problem considered in this paper. Thereafter, Section 3 discusses literature related to this

research. In Section 4, we present our solution approach, discussing both the network structure

and the column generation based heuristics. In Section 5, we present numerical results, including

sensitivity analyses. Lastly, we conclude in Section 6.

2 Problem Description

The problem that we consider in this paper is a multi-depot vehicle scheduling problem that

includes range constraints of the vehicles in a heterogeneous vehicle fleet, capacitated charging

stations and partial charging. In this section, we discuss these elements in more detail.

The core of the considered problem is the classical (multi-depot) vehicle scheduling problem
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(MD-)VSP (Bunte & Kliewer, 2009). Here, the input is a set of timetabled trips, which should

all be performed by a single vehicle. Every trip has fixed starting and ending locations, as well

as fixed starting and ending times. A pair of trips (a, b) is called compatible if their starting

and ending times and locations are such that trip b can be performed after trip a, potentially

after an empty or deadhead trip between the ending location of a and the starting location of b.

Every vehicle should be assigned a feasible duty, starting at (one of) the depot(s), performing a

sequence of compatible trips, and returning to the (same) depot.

The problem considered in this paper is an extension of the MD-VSP with range constraints,

(partial) recharging and capacitated charging stations. We assume that every electric vehicle

is fully charged at the beginning of the day and that the energy consumption of every trip is

known. Evidently, vehicles can only operate as long as their state of charge (SoC) is strictly

positive. Charging actions may be scheduled at specified charging stations with given capacities.

We do not require that every charging action fully recharges a vehicle’s battery, i.e. we allow

for partial charging. The duration of a charging activity correlates positively with the increase

in the SoC, according to a known charging function. The capacity of charging stations implies

that only a limited number of charging actions can be scheduled simultaneously at each charging

station. In addition, we also consider a heterogeneous fleet, where the battery limit, charging

function, and the energy consumption rate are allowed to differ per type of vehicle. Finally, we

assume that the objective is to minimize the Total Costs of Ownership, including both fixed

costs (investment costs for each vehicle) and operational costs (variable costs per kilometer to

account for crew, energy consumption and maintenance).

3 Literature Review

For a general review on electric vehicle scheduling and related problems, we refer to Perumal

et al. (2022). Here, we limit ourselves to discussing research on electric vehicle scheduling that

considers the capacity of charging stations and/or partial charging. An overview of the included

features in the discussed literature is presented in Table 3.1.
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Table 3.1: Overview of included aspects in papers on the E-VSP. Abbrevations: CG=Column
Generation (incl. branch-and-price and CG-based heuristics), MIP=Mixed Integer Program-
ming, MH=Metaheuristic.
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J. Q. Li (2014) 3 CG 947

Posthoorn (2016) 3 3 CG 709

Wen et al. (2016) 3 3 MH 500

Van Kooten Niekerk et al. (2017) 3 CG 543

Janovec and Koháni (2019) 3 3 MIP 160

L. Li et al. (2019) 3 3 3 MIP 288

Tang et al. (2019) 3 CG 96

X. Li et al. (2020) 3 3 MH 867

Olsen and Kliewer (2020) 3 3 MH 10,710

Rinaldi et al. (2020) 3 3 MIP 1008

Van Aken and Hiemstra (2020) 3 3 3 CG 1,200

Zhang et al. (2021) 3 3 CG 160

Wu et al. (2022) 3 3 CG 400

This paper 3 3 3 3 CG 816

3.1 Capacitated Charging Stations

J. Q. Li (2014) studies the E-VSP with battery swapping (or equivalently, fast-charging), taking

the capacity of the charging station into account. In this setting, charging a vehicle takes a

constant time. To solve the problem, the author develops exact and heuristic algorithms based

on column generation. L. Li et al. (2019) deals with scheduling a mixed fleet of electric and

conventional buses. It is assumed that full energy is restored after each refueling, which takes

a constant time of 30 minutes, i.e. partial charging is not considered. The authors formulate

the problem as a mixed-integer programming (MIP) model and solve instances with 288 trips

and two depots using a commercial solver. Tang et al. (2019) investigate the scheduling of

electric buses in a stochastic setting, where the aim is to find schedules robust against varying

traffic conditions. The authors include charging station capacity, but only consider fast charging.

Using branch-and-price, problem instances with up to 96 trips are solved, both in static and in

dynamic fashion. Rinaldi et al. (2020) propose a MIP model to schedule a mixed-fleet of electric

and diesel buses, assuming fast-charging. The authors also develop an ad-hoc decomposition

scheme, which is tested on instances with up to 1008 trips. Wu et al. (2022) propose a branch-
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and-price scheme to solve the E-VSP with capacitated charging stations, minimizing both costs

and the overall peak load on the energy grid. The authors use the epsilon-constraint method

to find (approximate) Pareto-efficient solutions with respect to the two objectives for instances

with up to 400 trips.

3.2 Partial Charging

Wen et al. (2016) develop a MIP model and an Adaptive Large Neighborhood Search heuristic

to solve the E-VSP with partial charging. The MIP can solve instances with 30 trips, and the

heuristic with up to 500 trips. Olsen and Kliewer (2020) extend this heuristic to allow for non-

linear charging processes and analyze the impact of assuming a constant charging time and/or

a linear charging process on large instances with thousands of trips. An alternative heuristic

approach is taken by X. Li et al. (2020), who develop an adaptive genetic algorithm, which is

used to solve instances with up to 867 trips. Van Kooten Niekerk et al. (2017) present two MIP

models for the E-VSP with partial charging. The first model assumes a linear charging process,

so that the SoC can be tracked with continuous variables. In the second model this assumption

is relaxed, which requires the SoC to be discretized. The authors apply column generation

based heuristics to solve instances with 543 trips using the second model. The first model is

only solvable for small instances. A similar discretization approach is taken by Van Aken and

Hiemstra (2020), who, besides partial charging, also consider multiple depots and bus types,

and are able to solve instances containing up to 1,200 trips.

3.3 Capacitated Charging Stations and Partial Charging

Posthoorn (2016) considers the E-VSP with partial charging and a single charging station with

a limited capacity. The author discretizes the SoC and solves the linear relaxation using column

generation. Subsequently, the generated paths are included in a MIP to find integer solutions.

The approach is applied to instances with up to 709 trips. The discretization is relatively coarse

and no gaps or computation times are reported. Janovec and Koháni (2019) develop an arc-
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based MIP formulation for the E-VSP with partial charging and capacitated charging stations.

The authors consider instances with up to 160 trips with nine buses and three to six chargers.

Furthermore, for all instances, the results with electric buses are the same as with diesel buses,

which suggests that the range and charging capacity constraints may not be restrictive. Zhang

et al. (2021) study electric vehicle scheduling with partial (non-linear) charging from a single

terminal, which also serves as the (capacitated) charging station. In addition, the authors also

consider the impact of the schedule on battery-aging. Instances with up to 160 trips are solved

using a branch-and-price algorithm.

4 Methodology

In order to solve the E-VSP, we first formulate the problem as a set covering problem with ad-

ditional constraints. We then develop a column generation algorithm to solve its LP-relaxation.

Finally, we present two heuristics, based on column generation, to obtain feasible solutions.

4.1 Mathematical Formulation

Our mathematical formulation is based on the set-partitioning model for the VSP as explained

by Bunte and Kliewer (2009). In this formulation, the columns correspond to feasible vehicle

duties, also called paths, which are sequences of compatible trips. Given that we consider

electric vehicles, these paths include recharging actions as well. In our formulation, we consider

set covering instead of set partitioning, since the set covering formulation is claimed to be

numerically more stable (Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance, 1998). Hence,

each trip should be serviced by at least one, instead of precisely one vehicle. Without loss

of generality, a double trip can be deleted from a vehicle duty without increasing the costs,

and therefore an optimal solution to the set covering formulation is also optimal for the set

partitioning formulation.

Moreover, since we solve the E-VSP, charging activities should be taken into account. Similar

to J. Q. Li (2014), we discretize the time horizon into time blocks B with a fixed length l. These
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time blocks are created to track the availability of charging stations over time and to incorporate

the limited capacity of the charging stations. We assume that a vehicle occupies the charging

station either during the entire block, or not at all in this block. Let tb represent the starting

time of time block b ∈ B. A time block b ∈ B represents the time interval [tb, tb + l).

We can now formulate the E-VSP. The set T represents all trips that should be serviced, while

the set R contains all charging stations. The parameter Mr denotes the capacity of charging

station r ∈ R. We define the set P containing all possible paths. A path p ∈ P encodes a

feasible vehicle duty in which trips to service and charging actions are included. We define a

binary decision variable xp that indicates whether path p ∈ P is selected in the solution. The

parameter cp represents the costs of path p ∈ P, and each coefficient ai,p is 1 if trip i ∈ T is

included in path p ∈ P, and 0 otherwise. Similarly, the coefficient ur,b,p is 1 if charging station

r ∈ R is visited during time block b ∈ B in path p ∈ P. We use the following formulation for

the E-VSP:

min
∑
p∈P

cpxp, (1)

s.t.
∑
p∈P

ai,pxp ≥ 1 ∀ i ∈ T , (2)

∑
p∈P

ur,b,pxp ≤Mr ∀ r ∈ R, b ∈ B, (3)

xp ∈ {0, 1} ∀p ∈ P. (4)

The Objective (1) minimizes the total costs. Constraint (2) guarantees that each trip i ∈ T is

executed by at least one vehicle. Constraint (3) is added to ensure that the capacity of each

charging station r ∈ R is not exceeded in any of the time blocks b ∈ B. Lastly, Constraint (4)

provides the range of the decision variables.
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4.2 Column Generation Algorithm

Since the path-based formulation (1)-(4) has exponentially many variables, we develop two

heuristics that are based on column generation. In column generation, a solution to a linear

program, called the master problem (MP), is found by iteratively solving a restricted master

problem (RMP) and a pricing problem. In short, the MP is the LP-relaxation of the set covering

model (1)-(4). The RMP is similar to the MP but uses only a subset of paths, denoted by P ′.

Before the start of the column generation process, the set P ′ is initialized with paths that allow

a feasible solution to the RMP. Afterward, in every iteration, the RMP is solved and the values

of the dual variables are used as input for the pricing problem. The pricing problem searches for

new paths with negative reduced costs, since these can improve the objective value. The path

with the most negative reduced costs is added to the set P ′ used in the RMP. If the pricing

problem cannot provide a path with negative reduced costs, the MP is solved to optimality

and the column generation process is terminated. For a more detailed explanation of column

generation, we refer to Desrosiers and Lübbecke (2005).

In the remainder of this section, we discuss the pricing problem of the column generation

approach for the E-VSP in detail. Additionally, we discuss how the set P ′ is initialized. We then

discuss how lower bounds on the optimal solution value can be obtained. Finally, we develop

two column generation based heuristics that are used to obtain a feasible solution for the E-VSP.

4.2.1 Pricing Problem

In every iteration, the pricing problem searches for new variables with negative reduced costs

based on the current values of the duals. From the RMP, we obtain optimal values for the dual

variables σi for all trips i ∈ T and γr,b for all charging stations r ∈ R and time blocks b ∈ B.

Using this dual information from the RMP, the reduced costs corresponding to path p can be

calculated as follows:

RC(xp) = cp −
∑
i∈T

ai,pσi −
∑
r∈R

∑
b∈B

ur,b,pγr,b. (5)
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The aim of the pricing problem is to find the variable corresponding to a path with the lowest

reduced costs. In order to find the path p ∈ P with the lowest reduced cost, we solve a shortest

path problem in a suitably chosen network, which we now describe in full detail.

Network Structure We construct a connection-based network which allows to create feasible

vehicle duties. In particular, we create a separate network for each combination of a vehicle type

and depot, as proposed by Gintner, Kliewer, and Suhl (2005). This allows us to ensure that

each vehicle starts and ends at the same depot and to incorporate different characteristics for

each vehicle type. We define K as the set of networks that are created. The aim is to find a

vehicle duty with lowest reduced costs in each network k ∈ K separately.

We now describe the construction of the network Gk(N k,Ak) for a given combination k ∈ K

of a vehicle type and a depot. We take the SoC of the vehicle into account by discretizing the

possible SoC values and tracking the SoC of the vehicle along the path. Thus, the nodes in this

network represent the depot, combinations of trips and SoC values, or combinations of charging

stations, time blocks, and SoC values. Each compatible connection is explicitly modeled using

a conservative rounding scheme for the SoC values. This ensures that all paths in the network

correspond to a feasible vehicle duty. Therefore, we refer to this network as the primal network.

However, as a consequence, some feasible vehicle duties cannot be represented as a path in our

network. we introduce the concept of a dual network and this network can generate true lower

bounds in Section 4.2.3. Furthermore, we study the impact of the discretization on the solution

values in Section 5.4.2.

Nodes In each network Gk, we include a source node and sink node, denoted as dσk and

dτk, respectively, that correspond to the depot. We include nodes for the timetabled trips in

combination with discretized SoC values similar to Van Kooten Niekerk et al. (2017), to keep

track of the SoC of vehicles along their path. Mathematically, let T k and Sk be the sets of trips

and all possible SoC values for network k, respectively. Since we discretize the SoC, Sk has a

finite number of elements. Let smin
k represent the minimum allowed SoC value. For trip i, we

11



define the set Ski that includes all SoC values s ∈ Sk that are at least smin
k plus the SoC required

for executing trip i, represented by fi. This results in the node set

N trip
k = {(i, s)|i ∈ T k, s ∈ Ski }.

For each node, the value s represents the SoC of the vehicle at the moment it departs from the

start location of trip i, hence at the beginning of trip i.

Additionally, to be able to model charging activities, we use copies of charging actions in

combination with possible SoC values as nodes. We mean by charging action the charging of

a vehicle at a charging station within a specific time block b ∈ B. Let the set Rk correspond

to all charging stations suitable for network k. As the SoC value at a specific node influences

the compatibility to other nodes in the network, we combine these nodes with discretized SoC

values. We include nodes per charging action for each possible value of the SoC s ∈ Sk that

a vehicle has at the beginning of the charging action for all charging nodes. Since this SoC

value represents the SoC before the charging, we disregard the nodes for a fully charged SoC,

represented by sfull, since this value cannot be increased during a charging action. Thus, the

nodes created for the charging actions can be summarized in the set

N charge
k = {(r, b, s)|r ∈ Rk, b ∈ B, s ∈ Sk \ {sfull}}.

In conclusion, the nodes in network k are represented by the node set

N k = {dσk , dτk} ∪ N
trip
k ∪N charge

k .

For the remainder of this paper, we call node n a trip node if n ∈ N trip
k and a charging node if

n ∈ N charge
k in a particular network k ∈ K.

Arcs The set of arcs Ak represent connections between nodes in the network. Because the

time horizon and SoC values are discretized, a rounding scheme is needed. For bus companies,
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it is important that an electric bus is always capable of finishing its duty and, thus, running out

of battery must be prevented. Additionally, a bus arriving too early is preferred over that bus

arriving too late. For these reasons, we apply a conservative rounding scheme. In particular,

charging actions begin at the earliest in the first time interval b ∈ B that starts after the arrival of

the vehicle. The vehicle idles in between its arrival and the start of the time block. Additionally,

we round down the actual SoC value of a vehicle to the nearest SoC value s ∈ Sk, which results

in an underestimated SoC value. Consequently, it can occur that some feasible vehicle duties

are excluded. However, the final schedule obtained using this conservative rounding scheme will

certainly be feasible in practice.

Below, we briefly explain which arcs are created in network k. Here, we let F soc(·) be

a function that returns the nearest SoC value s ∈ Sk smaller than the SoC input. A more

thorough description is provided in Appendix A.

• Given that vehicles leave the depot fully charged, we only include arcs from the source

node dσk to trip nodes. For these arcs, we take the SoC usage required for the deadheading

trip from the depot to the start location of the corresponding trip into account, as well as

a maximum deadheading time, if applicable.

• For trip nodes n = (i, s), we include outgoing arcs to the sink node, to other trip nodes,

and to charging nodes. An outgoing arc to the sink node is included if the node’s SoC

value is sufficient to execute the trip and then directly return to the depot. An outgoing

arc to another trip node v is present if the trips are compatible and the SoC value s is

sufficient to execute both trips, as well as the deadheading and idling between the trips,

if applicable. Similarly, there is an outgoing arc from a trip node to a charging action v if

the maximum deadheading and idling SoC usage and time are respected. For arcs towards

a trip or charging node v, the SoC value s′ of v must satisfy

s′ = F soc(s− fi − τ soc
(n,v)),
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where τ soc
(n,v) represents the SoC required for the potential deadheading and idling between

nodes n and v, if applicable.

• For charging nodes n = (r, b, s), we include arcs to the sink node, to trip nodes, and to other

charging nodes. We denote the amount of SoC recharged in node n by s+n . An outgoing arc

to the sink node is included if the node’s SoC value after recharging is sufficient to return

to the depot, while this is not the case without recharging s+n . If it would be possible

to return to the depot without the recharging of node n, vehicles could either return to

the depot without recharging at all, or with a shorter recharging time. Outgoing arcs

to trip nodes v are present if the vehicle can arrive timely at the start location of the

trip. Moreover, the SoC value s′ of the trip node must equal s′ = F soc(s + s+n − τ soc
(n,v)).

Finally, an outgoing arc from one charging node to another is included if the corresponding

charging stations coincide, the second charging node directly follows the first one in time,

and s′ = F soc(s+ s+n ) > s.

Arc Costs The costs of a path p ∈ P can be distributed over the arcs. Each arc (n, v) ∈ Ak

contains operational costs per driven kilometer and crew costs for deadheading and idling. These

general costs for arcs are represented by carc
(n,v). Arcs coming from the source node (n = dσk)

additionally include the investment costs corresponding to the vehicle of network k, represented

by cinvest
k . Each arc that reaches a trip node includes operational costs per driven kilometer

and the crew costs of the corresponding trip. Similarly, each arc that reaches a charging node,

includes the operational costs of the corresponding charging action. Each arc that reaches a

charging node coming from a trip node, includes an additional fixed penalty term cstart, which

can be interpreted as starting costs for a charging activity. This penalty term should be small

relative to the investment costs.

The reduced costs of a path p ∈ P can be distributed over the arcs as well. Besides the primal

costs that are described above, we subtract the dual costs σi for all trip nodes v = (i, s) ∈ N trip
k

from the arc costs of all arcs (n, v) towards v, and we subtract the dual costs γr,b for all charging
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nodes v = (r, b, s) ∈ N charge
k from the arc costs of all arcs (n, v).

Example An example of a resulting network is given in Figure 4.1. Here, we have two trips

i and j that can be serviced by the vehicle type under consideration and a charging station r1

that is available during two time blocks b1 and b2 between the end of trip i and the start of trip

j. Both trips start at the depot. Trip i and j reduce the SoC by 40% and 80%, respectively.

Trip i ends at a location from which the SoC is reduced by 20% to return to the depot. Trip j

ends at the depot. Charging station r1 is located at the end location of trip i and can increase

the SoC in one time block with 20%, independently of the SoC value at the beginning of the

charging action. We use SoC values between 0% to 100% in steps of 20%. Observe that some of

the nodes and arcs cannot be included in a path that starts and ends at the depot. These nodes

and arcs are depicted in a lighter color. In a preprocessing step, we remove these node and arcs

from the network.
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Figure 4.1: Network including all nodes and arcs before the preprocessing. The nodes and arcs
with reduced opacity are not connected to the source node and/or sink node, and are removed
in a preprocessing step.

4.2.2 Initialization

To initialize the column generation algorithm, we construct a feasible solution by including a

separate path for each trip in P ′. In our test instances, this solution is always feasible and no
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charging is necessary. In general, one can also avoid having to find a set of feasible paths for the

initialization by using dummy variables in the trip covering constraints.

4.2.3 Lower bounds

The column generation algorithm terminates if paths with negative reduced costs can no longer

be found. In that case, the MP has been solved to optimality, given the set P of columns under

consideration. A lower bound on the MP’s solution value can be obtained in each iteration of

the column generation algorithm, if a value κ can be found that satisfies

κ ≥
∑
p∈P

xp

for all optimal solutions of the MP. In that case, the value zRMP + κc is a lower bound on the

optimal solution value of the MP, where c is the lowest reduced costs over all paths p ∈ P and

zRMP is the optimal solution value of the RMP (see Desrosiers and Lübbecke (2005)).

As stated before, because of the conservative rounding scheme, there might be feasible vehicle

duties that cannot be represented as a path in the networks defined above. Hence, the lower

bound on the MP does not necessarily correspond to a true lower bound of the original problem.

To obtain a true lower bound, we construct an auxiliary dual network that has the same

nodes as the primal network, but where nodes are connected using an optimistic rounding scheme

instead. Such a scheme rounds SoC values up and allows to start charging in the last time block

before the vehicle arrives at a charging station. It should be noted that not all paths in the

dual network correspond to feasible vehicle duties. Any lower bound on the MP’s solution value

formulated on the dual network corresponds to a lower bound that is valid irrespective of the

used discretization. We compute such a lower bound as a separate step from finding feasible

solutions.
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4.2.4 Obtaining Integral Solutions

We now discuss two heuristics to find integral solutions for the E-VSP. In both cases, we first

obtain a solution to the master problem by using column generation.

(Truncated) Price-and-Branch Our first heuristic solves the MP, and then applies a com-

mercial solver to the binary program (1)-(4) using all columns in P ′. Such a heuristic has been

referred to as a restricted master heuristic or price-and-branch (Sadykov, Vanderbeck, Pessoa,

Tahiri, & Uchoa, 2019). For this heuristic, we can either solve the MP to optimality, or termi-

nate the column generation algorithm before an optimal solution to the MP has been obtained.

In the latter case, we prevent the infamous tail-off effect of column generation. We terminate

the column generation process if the objective value of the RMP has not improved sufficiently

relative to the objective value of a fixed number of iterations earlier. Let the parameters Zmin

and I represent the minimum percentage of improvement considered as sufficient and the num-

ber of iterations, respectively. Several existing papers use this method to early stop a column

generation process (see e.g. Gamache, Soumis, Marquis, & Desrosiers, 1999; Wang, Zhou, &

Yue, 2019). After the column generation process is terminated, we solve the binary program as

in the price-and-branch heuristic. If the column generation process is terminated early, we refer

to this heuristic as truncated price-and-branch.

Truncated Column Generation Our second heuristic is comparable to the truncated col-

umn generation as proposed by Pepin, Desaulniers, Hertz, and Huisman (2009) to solve the

MD-VSP. In this heuristic, a column generation phase and a fixing phase are executed itera-

tively. Specific path variables in the fractional solution are fixed to one after early termination of

the column generation phase. Afterward, the column-generation phase re-starts. This iterative

process is repeated until the obtained solution is integral. This is in contrast to the first proposed

heuristic that applies a commercial solver after the column generation process to obtain an inte-

ger solution. We use the same stopping criterion for each column generation process as for the

truncated price-and-branch using the predefined parameters Zmin and I. This early termination
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differs from Pepin et al. (2009) since we look at a relative difference, whereas Pepin et al. (2009)

use an absolute difference. We use a relative difference to be able to apply a similar method to

instances of varying sizes. After termination of each column generation phase, all path variables

xp in the set P ′ that have a solution value larger than a predefined threshold θ and that are no

initial path are set to one in the RMP if the solution is fractional. If no such paths exist, we

fix the path with the maximum value that is not an initial path. Then, we resolve the RMP

and start the column generation process again. Each time the column generation process is

restarted, at least I iterations should be executed before we early terminate the process. These

steps are repeated until an integral solution is obtained.

To reduce the network size during the column generation process, we can extend the trun-

cated column generation heuristic by executing an additional operation each time paths are

fixed. This additional step aims to lower the computation time for solving the pricing problem.

In this operation, certain nodes and their adjacent arcs are removed from the pricing networks.

Firstly, the nodes corresponding to all trips included in the paths that are fixed are removed.

Choosing new paths that also contain these trips results in executing trips more than once. It

is unlikely that this gives an optimal solution. Hence, it is reasonable to delete these nodes

and their adjacent arcs. Secondly, the nodes corresponding to each combination of a charging

station and time block that reached the capacity of the charging station due to fixed paths can

be deleted. Since the capacity constraints of these charging station and time block combinations

are binding, newly added paths that include a charging action for such a combination can never

be part of the solution. Lastly, the preprocessing step is repeated. In this step, all nodes that

are unreachable from the source or cannot reach the sink are removed. If all nodes as described

above and their adjacent arcs are deleted, the network size shrinks once paths are fixed. A po-

tential disadvantage of the node removal is that the quality of the solution might decrease since

the search region for new paths shrinks each time paths are fixed due to the network reduction.

Note that this only holds true if the optimal solution contains empty trips, which is rare in

practice.
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5 Results

We now study the performance of our heuristics using a real-world data set. First, we describe

the data set and explain how we derive instances of varying size from it. To evaluate the

performances of the heuristics, we compare the heuristics by using fixed parameter values on

some smaller instances. Thereafter, we tune the parameters of the best-performing heuristic on

the smaller instances. Lastly, we solve the larger instances.

The heuristics are implemented in Python 3.7 including the CPLEX solver version 12.10.0.

We use a MacBook Pro with a 1.4 GHz Quad-Core Intel Core i5 processor and 8 GB RAM.

5.1 Case

We now describe the data set used for the evaluation of our methodology. The E-VSP requires

input on the timetabled trips, the depots, the charging locations, and the bus types. We use

data on the timetable of the bus concession of Gooi en Vechtstreek provided by Lynxx to test

our proposed heuristics. The data set is used to create several instances with a varying number

of trips.

The bus concession of Gooi en Vechtstreek covers the public bus transit in Bussum, Hilver-

sum, Huizen, Naarden, and Weesp (OV in Nederland, 2021). These cities are all located in the

eastern part of the province of Noord-Holland. We consider the timetable of December the 3rd,

2019. In total, 816 trips are scheduled that day. The information regarding the trips comes from

a General Transit Feed Specification (GTFS) data set. GTFS includes information about the

public transit trips and corresponding geographic information.

The trips in this data set can be divided in several clusters. The city lines contain only

stops that are located in Hilversum. The trips from the city lines are on average shorter than

the trips from the Rnet line, which contains trips between Amsterdam and Hilversum. Trips

corresponding to the regional lines depart from various places. The rush hour lines and school

lines contain 27 and 3 trips, respectively. These lines are only used at specific times.

When viewing the number of trips operated simultaneously during the day, two peak mo-
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Table 5.1: Bus characteristics of two bus types that are used in the case to provide a bus schedule
for the concession of Gooi en Vechtstreek

Characteristics Type 1 Type 2
Battery Capacity (kWh) 155 210

Consumption Rate (kWh/km) 1.3 1.4
Idling Consumption Rate (kWh/s) 0.00167 0.00167

Charging Rate (kWh/s) 0.0639 0.0889
Investment Costs (e ) 50,000 52,500

Operational Costs (e /km) 1.0 1.05

ments occur. After the start of the service day, we see an increasing number of trips until a peak

in the morning around 08:00. Afterward, the number of trips decreases, stabilizes, and increases

again after approximately 15:00. The evening peak lasts until approximately 18:30. Thereafter,

the number of trips decreases. The maximum number of trips that should be serviced simulta-

neously is 53. This means that at least 53 buses are required for the bus schedule of the entire

concession.

The data set includes two depots, three charging stations, and two bus types. Both depots

have a large capacity. Two of the charging stations are located close to the depots, and have a

capacity of five and two buses, respectively. The third charging station has a capacity of two

buses.

Finally, we consider two different bus types. Information about the bus types regarding their

battery capacities, consumption and charging rates, and costs is given in Table 5.1. We translate

the battery capacity to a value of 100% for the SoC level. Then, we convert the information

that is given in kWh in Table 5.1 to SoC values in proportion to the battery capacity. In this

case, we assume both bus types can be located at both depots, can operate all trips and can

charge at every charging station.

5.2 Parameter Settings and Instances

We now first describe the parameter settings for our heuristics. Then, we use the data set

described in Section 5.1 to create instances with varying numbers of trips.
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5.2.1 Parameter Settings

We initially fix the discretization of the possible SoC values and the length of the time blocks.

These fixed parameter values are used to compare the heuristics. In Section 5.4, we study the

impact of coarser and finer discretizations. The discretization influences the number of nodes

and arcs in the pricing networks. We use the same discretization for all networks.

To compare the heuristics, we use 27 possible SoC values, ranging from 22% to 100% in steps

of 3%. We start from 22% to incorporate a minimum value for the SoC. Furthermore, we choose

5 minutes as the length of time blocks. We assume that the charging rate is independent of the

SoC value at the beginning of the charging action, as it is often assumed in literature (see e.g.

Van Kooten Niekerk et al., 2017). Note that this could be easily adjusted because of the way

we construct the network.

When creating the network for each instance, we set the maximum deadhead time to 1 hour.

The maximum time allowed for idling is set to 8 hours between trips and to 3 hours if a bus

goes to or comes from a charging station. We determine the deadhead distance and times using

The Open Source Routing Machine (OSRM). In the data set that we consider, all deadhead

times are less than 1 hour. Moreover, we use energy costs of €0.1361 per kWh and crew costs

of €0.67 per minute, similar to Van Aken and Hiemstra (2020). We use €10 as starting costs

of a charging activity. Other cost parameters are given in Table 5.1

5.2.2 Instances

Several instances are used for the computational results. First, we create relatively smaller

instances by picking random subsets of the set of all trips. Secondly, we use the clusters as

described in Section 5.1 to create different instances. Characteristics of the instances are shown

in Table 5.2. Here, Trips is the number of trips in the instance, TH is the length of the time

horizon, and Nodes and Arcs represent the total number of nodes and arcs in the four networks,

respectively. The time horizon, used for the charging nodes, depends on the length of the service

for the considered trips. For each instance, we let the time horizon begin at the start of the
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hour of the first trip that departs and end at the end of the hour of the last trip that finishes.

Instance A represents 50 trips randomly chosen from all morning trips, containing all trips that

finish before noon. Instance B represents 100 trips randomly chosen from all trips. Instances 1

to 5 are combinations of the clusters.

Table 5.2: Characteristics of the instances

Instance Trips used Trips (#) TH (h) Nodes (#) Arcs (#)
A Random Morning Trips 50 61 13, 6911 224, 8731

B Random Trips 100 201 68, 3451 1, 229, 0691

1 City line 119 19 70, 507 2, 084, 615

2 Rnet line 185 21 74, 671 1, 339, 960

3 City & Rnet lines 304 21 86, 846 3, 800, 870

4
Rush hour- & School-
& Regional Lines

512 21 103, 134 9, 170, 356

5 All bus lines 816 21 125, 344 15, 589, 878
1 Average outcome of ten instances

In general, the number of nodes and arcs increases if the number of trips increases. However,

we see that instance 1 contains more arcs in the final networks than instance 2. This can be

explained by the fact that instance 1 includes the shorter City line trips, in contrast to the

Rnet line trips that have a longer average duration in instance 2. This results in fewer arcs for

instance 2 than for instance 1, since fewer trip pairs are compatible.

5.3 Comparison Heuristics

We now compare the performance of the heuristics we propose in Section 4.2.4. We first state

the parameter values we use. Second, we show the computational results of the comparison.

5.3.1 Heuristic Parameters

For the truncated price-and-branch and the truncated column generation heuristics, we stop the

column generation process if there is no improvement of at least 0.01% (Zmin = 0.01) within 30

iterations (I = 30). We use a larger number of iterations than Pepin et al. (2009) to prevent early

termination due to degeneracy. Additionally, since we use a relative decrease and the objective

value is large at the beginning of the algorithm, a larger value of I prevents the algorithm from

terminating too soon. The variables with a value higher than 0.70 are fixed in the truncated
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column generation heuristic (θ = 0.70), similar to Pepin et al. (2009). For the (truncated)

price-and-branch heuristic, we set a time limit of 1 hour for CPLEX for solving the BP.

5.3.2 Results

In this section, we test the proposed heuristics on the smaller instances A, B, 1, 2, and 3. For

instances A and B, the results are averaged over 10 randomly generated instances. The required

time and final solution values of the heuristics are presented in Table 5.3. For all heuristics,

Time is the total time needed for the heuristic to obtain a final integer solution, including the

time needed to solve the BP for the (truncated) price-and-branch heuristic. Sol is the objective

value of the final integer solution of the E-VSP, and G is a bound on the optimality gap. The

bounds on the optimality gap of all heuristics are computed using a lower bound that is obtained

using an optimistic rounding scheme, as explained in Section 4.2.3. The values of these lower

bounds and more detailed results can be found in Appendix B.

Table 5.3: A comparison of the required time and final solution of the three proposed heuristics

Price-and-Branch Truncated Price-and-Branch Truncated Column Generation
(Zmin = 0.01, I = 30) (Zmin = 0.01, I = 30, θ = 0.70)

Instance Time (s) Sol G (%) Time (s) Sol G (%) Time (s) Sol G (%)
A 351 744,8281 0.8691 261 744,8961 0.8781 371 744,8381 0.8701

B 1,4361 569,5031 0.1491 4511 602,4771 6.1651 9621 569,6141 0.1671

1 9,504 304,320 19.901 792 304, 320 19.901 1, 977 254, 525 0.282
2 6,1632 1,153,2372 6.0272 4,3942 1,319,1572 21.2812 2, 274 1, 102, 030 1.319
3 22,2042 1,549,9542 20.2782 6,6032 1,773,3272 37.6122 10, 134 1, 299, 192 0.818

1 Average outcome of ten instances
2 BP not solved to optimality due to reached time limit

Table 5.3 shows that all three heuristics obtain a high-quality solution for the A-instances.

Both the price-and-branch and the truncated column generation heuristic provide a good solution

to the B-instances as well. For the larger instances 1, 2, and 3, we see that the truncated column

generation outperforms the other two heuristics based on solution quality.

The price-and-branch heuristic requires more than twice as much computation time as the

truncated column generation for instances 2 and 3. Note that for instances 2 and 3, the time

limit for solving the BP is reached for both the price-and-branch and the truncated price-and-

branch heuristic. The price-and-branch heuristic also requires most time for Instance 1 and
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the B-instances. Despite its longer computation time, the price-and-branch heuristic provides

a poor optimality gap bound of about 20% for instance 1. The truncated price-and-branch

heuristic is the fastest for all instances except instance 2. However, the truncated price-and-

branch heuristic results in the solution with the highest costs for all instances and has a poor

optimality gap bound (> 19%) for the larger instances.

The required time can be partly explained by the number of iterations needed in the column

generation process of all heuristics. We present in Table 5.4 the required number of iterations

and the average time for solving the pricing problem and RMP per iteration. Here, It is the

number of required iterations during the column generation process, PP is the average time of

solving the pricing problem per iteration, and RMP is the average time of solving the RMP per

iteration.

Table 5.4: The number of iterations and the average time per iteration for solving the pricing
problem and the RMP of the three proposed heuristics

Price-and-Branch Truncated Price-and-Branch Truncated Column Generation
(Zmin = 0.01, I = 30) (Zmin = 0.01, I = 30, θ = 0.70)

Instance It (#) PP (s) RMP (s) It (#) PP (s) RMP (s) It (#) PP (s) RMP (s)
A 1541 0.221 0.0041 1141 0.221 0.0041 1691 0.221 0.0041

B 1,0761 1.241 0.0111 2581 1.251 0.0101 7671 1.261 0.0101

1 2, 947 2.12 0.016 369 2.13 0.010 936 2.11 0.011
2 1, 835 1.37 0.015 580 1.33 0.013 1, 673 1.35 0.014
3 4, 601 3.97 0.056 754 3.95 0.016 2, 657 3.81 0.021

1 Average outcome of ten instances

As expected, the price-and-branch heuristic requires more iterations than the truncated

price-and-branch heuristic due to the early stopping criterion of the truncated price-and-branch

heuristic. Similarly, the truncated column generation heuristic requires more iterations than the

truncated price-and-branch heuristic, since the truncated column generation heuristic continues

the column generation process after the root node has been explored, in contrast to the truncated

price-and-branch. We observe that the pricing problem dominates the computation time per

iteration, and that the average time to solve one pricing problem is highly similar for the three

heuristics. Thus, the computation time is determined mainly by the number of iterations.

Based on the above-described results and the trade-off between computation time and solu-

tion quality, we conclude that the truncated column generation heuristic is the best-performing
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heuristic. Hence, we continue with the truncated column generation heuristic in the remainder

of this section.

5.4 Parameter tuning

In this section, we perform a parameter tuning to study the influence of the chosen parameter

values for the truncated column generation heuristic, using the three smallest instances (A, B,

and 1). In contrast to the previous section, we now consider a single instance A and B. First, we

solve the instances using different values for the parameters of the truncated column generation

heuristic to test their influence on the solution quality. Afterward, we solve the instances using

various discretizations for the underlying network to test how this impacts the final solution.

5.4.1 Heuristic Parameters

We test how the quality of the solution changes if other parameters are used for the truncated

column generation heuristic. We fix the discretization and use possible SoC values in steps of 3%

between 22% and 100% and time blocks of 5 minutes, similar to Section 5.3. We test different

values for the minimum relative improvement (Zmin), the number of iterations (I), and the

threshold for fixing variables (θ) used in the truncated column generation heuristic. Note that

the minimum allowed value for θ is 0.5. Smaller values could lead to violations of the capacity

constraints.

The results for Instance 1 are presented in Table 5.5. Here, Time is the total computation

time of the heuristic, It is the number of iterations, and PP and RMP are the average times

per iteration to solve the pricing problem and the RMP, respectively. Sol, G, and B are the

objective value, a bound on the optimality gap, and the number of buses of the final integer

solution, respectively. For instance A and B, we obtained highly similar results for all settings.

For this reason, we have reported the results for these instances in the appendix.

Table 5.5 demonstrates that using a value for I of 15 results in a worse solution than using

larger values for I (30, 50, or 90). This can partly be explained by the occurrence of degeneracy,
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Table 5.5: Results of the truncated column generation heuristic for differing parameters consid-
ering the minimum required relative improvement, the number of iterations, and the threshold
as used in the fixing step

Instance 1 (LB = 253, 809.6)
Zmin(%) I θ Time (s) It (#) PP (s) RMP (s) Sol G (%) B (#)
0.010 30 0.7 1, 977 936 2.11 0.011 254, 525 0.282 5

0.010 15 0.7 44 21 2.20 0.008 304, 320 19.901 6

0.010 50 0.7 3, 309 1, 514 2.17 0.012 254, 327 0.204 5

0.010 90 0.7 4, 234 1, 942 2.16 0.013 254, 250 0.173 5

0.005 30 0.7 3, 359 1, 554 2.15 0.013 254, 287 0.188 5

0.050 30 0.7 1, 912 897 2.13 0.011 254, 661 0.335 5

0.500 30 0.7 1, 854 890 2.08 0.010 304, 737 20.065 6

0.010 30 0.5 1, 978 936 2.11 0.011 254, 525 0.282 5

0.010 30 0.9 1, 960 936 2.09 0.011 254, 525 0.282 5

which results in the objective value not improving for several iterations. This causes the column

generation process to be stopped too early if I is small. In general, increasing I results in a better

solution. However, it also increases the number of required iterations and, as a consequence, the

required computation time.

Decreasing the value of Zmin to 0.005 while keeping I and θ constant results in slightly better

solutions compared to using Zmin = 0.01. However, more iterations are executed, which again

increases the computation time. Increasing Zmin from 0.01 to 0.05 or 0.5 results in a lower

computation time, but also in an increased solution value.

The usage of different values for θ does not always result in a difference in the final solutions.

This holds if none of the path variables are above the threshold of 0.7 when the early stopping

criterion is met. In this case, the path variable with the maximum value is fixed. This is

confirmed by the results for varying values of θ: all values we have tested result in the same

solution.

5.4.2 Discretization

As introduced in Section 3, finding a balance between better solutions versus computational

tractability plays a crucial role when determining the best discretization (Boland, Hewitt, Mar-

shall, & Savelsbergh, 2019). We now study the impact of the discretization on the performance

of the heuristic. In these tests, the heuristic parameters are kept constant with Zmin = 0.01,
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I = 30, and θ = 0.70, similarly as in Section 5.3. Table 5.6 presents the results of the experi-

ments. We test different values for the length of the time blocks (TB) and the step size of the

SoC values (Steps). Range represents the interval of the possible SoC values.

Table 5.6: Results of the truncated column generation heuristic for different discretization levels.

Instance A (LB = 653, 319.3)
TB (min) Steps (%) Range Time (s) It (#) PP (s) RMP (s) Sol G (%) B (#)

5 3 22-100 45 181 0.25 0.004 655, 957 0.404 13

2 3 22-100 125 205 0.61 0.006 655, 986 0.408 13

10 3 22-100 25 210 0.12 0.003 705, 972 8.059 14

30 3 22-100 8 206 0.04 0.002 658, 618 0.811 13

1 1 22-100 931 213 4.44 0.012 655, 901 0.395 13

5 1 22-100 168 236 0.71 0.004 655, 928 0.399 13

5 6 22-100 25 191 0.12 0.004 655, 991 0.409 13

5 10 20-100 14 191 0.07 0.003 703, 452 7.674 14

5 20 20-100 3 120 0.02 0.003 1, 236, 037 89.193 24

Instance B (LB = 559, 350.2)
TB (min) Steps (%) Range Time (s) It (#) PP (s) RMP (s) Sol G (%) B (#)

5 3 22-100 850 700 1.21 0.010 559, 863 0.092 11

2 3 22-100 2, 301 801 2.87 0.017 560, 079 0.130 11

10 3 22-100 470 762 0.61 0.007 560, 371 0.183 11

30 3 22-100 165 796 0.20 0.004 564, 990 1.008 11

5 1 22-100 3, 320 766 4.37 0.011 559, 776 0.076 11

5 6 22-100 366 707 0.51 0.009 560, 107 0.135 11

5 10 20-100 220 801 0.26 0.009 562, 810 0.619 11

5 20 20-100 24 283 0.08 0.008 2, 623, 753 369.072 51

Instance 1 (LB = 253, 809.6)
TB (min) Steps (%) Range Time (s) It (#) PP (s) RMP (s) Sol G (%) B (#)

5 3 22-100 1, 977 936 2.11 0.011 254, 525 0.282 5

2 3 22-100 3, 941 1, 175 3.32 0.018 254, 555 0.294 5

10 3 22-100 45 37 1.25 0.009 304, 725 20.060 6

30 3 22-100 616 1, 143 0.53 0.007 304, 639 20.027 6

5 1 22-100 8, 444 1, 078 7.85 0.012 254, 459 0.256 5

5 6 22-100 34 37 0.93 0.008 304, 670 20.039 6

5 10 20-100 18 37 0.50 0.008 304, 991 20.165 6

5 20 20-100 76 458 0.16 0.009 2, 003, 821 689.498 40

First, note that time blocks of 5 minutes and a SoC step size of 3% results in small optimality

gaps of 0.40%, 0.09% and 0.28% for instance A, B and 1, respectively. Since these gaps are

obtained using a lower bound that does not depend on the used discretization, only relatively

small improvements are theoretically possible if one uses a finer discretization. Indeed, we find

that choosing a different length of the time blocks than 5 minutes while keeping the possible

SoC step size constant at 3%, does rarely result in a better solution. Using time blocks of 2

minutes instead of 5 minutes even worsens the solution quality, despite requiring more iterations

and increasing the computation time. This could be explained by the amount of charging
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in the considered time block and the conservative rounding. In 5 minutes, the buses charge

approximately 12.5%. In 2 minutes, the increase in SoC is roughly 5%. Using a step size of

3%, the amount that is discarded due to rounding between two consecutive charging actions

is approximately 0.5% versus 2%, for time blocks of 5 versus 2 minutes, respectively. Hence,

using time blocks of 2 minutes might result in a stronger underestimation of the SoC. This

demonstrates the interplay between the discretization of time and that of the SoC values. In

particular, it is not guaranteed that using a finer time discretization results in a better solution.

The usage of a finer time discretization does result in a longer computation time, though.

An increased computation time can also be observed for time blocks of 1 minute and steps

of 1% for the possible SoC values for instance A. The cost decrease is negligible, but the compu-

tation time is increased by a factor 20. To avoid computation times that are prohibitively long,

the experiments with time blocks of 1 minute and steps of 1% for the possible SoC values are

not executed for instances B and 1.

Table 5.6 also shows the influence of choosing different step sizes than 3% for the SoC values

for a time block length of 5 minutes. For instances A, B, and 1, choosing a step size of 1%

results in bus schedules with slightly better solution values, for example due to fewer scheduled

charging actions. However, this also approximately triples the average time needed to solve the

pricing problem per iteration. This increases the required computation time significantly.

For instances A and B, a slightly worse solution is obtained by using a step size of 6% instead

of 3%. Using a step size of 6% roughly halves the time needed to solve the pricing problem per

iteration. This causes a significant reduction in the required computation time. We note that a

step size of 6% results in the same amount of SoC discarded between two consecutive charging

actions as a step size of 3%. Using a step size of 10% causes a solution that requires one more

bus for instance A.

For all instances, using a step size of 20% results in a solution that requires significantly more

buses. This can be explained by the fact that both buses can increase their SoC by approximately

12.5% during a charging action of 5 minutes. Thus, in this setting, charging actions do actually
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not result in an increase in the SoC using this network structure. Hence, choosing a step size for

the possible SoC values larger than the amount of SoC increase after charging one time block

results in solutions with high costs and requiring more buses.

To conclude, using time blocks of 5 minutes in combination with a step size of 3% gives

the best solutions compared to using different lengths of the time blocks. In general, using a

step size of 1% results in slightly better solutions than using 3%, but also increases the required

computation time. On the other hand, enlarging the step size to 6% shortens the average time

to solve the pricing problem per iteration. However, it also can slightly worsen the solution

value.

5.5 Larger Instances

In this section, we solve the two larger instances. First, we use instance 4 and the results of

Section 5.4 to compare different discretized values for this larger instance using the truncated

column generation heuristic. Additionally, we also test the truncated column generation with

node removal heuristic. Afterward, we solve the whole concession using the insights obtained

for instance 4.

5.5.1 Instance 4

In this section, we solve instance 4 using various techniques. We do not deviate from the used

parameter values in Section 5.3 for the truncated column generation heuristic. Hence, we use

Zmin = 0.01, I = 30, and θ = 0.70. Using these parameter settings, we obtained good solutions

for instances A, B, 1, 2, and 3 as shown in Section 5.3. All achieved optimality gap bounds are

less than 1.5%.

For the discretized values, we solve instance 4 using time blocks of 5 minutes and a step size

of 3% between 22% and 100% for the SoC values. Based on the results in Section 5.4.2, the time

blocks of 5 minutes give the best solutions. Besides, we prefer using a step size of 3% because of

the lower computation times compared to a step size of 1%, despite the slightly worse solutions.
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Table 5.7: Results of the truncated column generation (with and without node removal) heuristic
for instance 4 using Zmin = 0.01, I = 30, θ = 0.70, TB = 5 min. and Range = 22-100. The
lower bound for this instance equals 1,528,574.

Steps (%) Node Removal Time (h) It (#) PP (s) RMP (s) Sol G (%) B (#)
3 No 26.00 9,348 9.87 0.13 1,598,917 4.60 31
6 No 10.66 8,555 4.35 0.12 1,622,100 6.12 31
3 Yes 13.83 8,100 5.96 0.13 1,543,099 0.95 30
6 Yes 7.20 9,472 2.56 0.13 1,573,957 2.97 30

To obtain a solution in less time, we also solve instance 4 using a step size of 6% instead

of 3% for the possible SoC values. Doing so leads to smaller networks, and allows the pricing

problem to be solved faster. Additionally, we test the node removal heuristic to further reduce

the average time needed to solve the pricing problem. This extension removes specific nodes

and arcs during the column generation process each time paths are fixed.

The results are presented in Table 5.7. We use the same abbreviations as in Table 5.5. We

observe that the truncated column generation heuristic using a step size of 3% requires 26 hours

of computation time to solve instance 4. A large part of this computation time is needed to solve

the pricing problem, which takes on average 9.87 seconds per iteration. This can be explained

by the large number of nodes and arcs in the corresponding network (see Table 5.2).

Using a step size of 6%, the time needed to solve the pricing problem is significantly reduced

to 4.35 seconds on average. This is more than two times faster than solving the pricing problem

using a step size of 3%. However, we also see an increase in the solution value of €23,183, which

is an increase of 1.45%. The total time needed for the column generation process is decreased

to less than 11 hours.

Using the truncated column generation with node removal heuristic, we see a further decrease

in the average time needed to solve the pricing problem. Now, on average 5.96 and 2.56 seconds

are needed to solve the pricing problem per iteration, for steps of 3% and 6%, respectively. Thus,

the node removal heuristic significantly reduces the computation time. In particular, using steps

of 6%, the total computation time is reduced to 7 hours.

We also observe a decrease in the solution value if nodes are removed from the network. We

believe this is due to the heuristic nature of the solution method.
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5.5.2 Instance 5: The Entire Concession

Based on the results of Section 5.5.1, we use the truncated column generation with node removal

heuristic to solve the entire concession (instance 5) with 816 trips. For the heuristic parameters

we use Zmin = 0.01, I = 30, and θ = 0.70. For the underlying network, we use time blocks with

a length of 5 minutes and SoC values between 22% and 100% with a step size of 6%. This results

in a network containing in total 63,035 nodes and 7,487,553 arcs. Note that this is a significant

reduction compared to the number of nodes and arcs reported in Table 5.2.

Table 5.8: Results of the truncated column generation with node removal heuristic for instance 5
using Zmin = 0.01, I = 30, and θ = 0.70

TB (min) Steps (%) Range Time (h) It (#) PP (s) RMP (s) Sol LB G (%) B (#)
5 6 22-100 28.00 20,266 4.30 0.59 2,794,568 2,702,417 3.41 53

We present the results of solving the entire concession in Table 5.8. The truncated column

generation with node removal heuristic requires 28 hours to solve instance 5. The optimality gap

is below 3.5%. The optimal solution value of the RMP equals 2,755,589. Thus, roughly half of

the optimality gap can be explained by the discretization, and the other half by the heuristic to

obtain integer solutions. The feasible bus schedule requires 53 buses. This equals the minimum

number of buses required based on the number of trips that are serviced simultaneously as

explained in Section 5.1. In total, 824 trips are scheduled. This means that 8 trips are driven

‘empty’.

Below, we discuss a few characteristics of the bus duties that comprise the final solution.

Each bus charges around 2 hours on average during its duty. The average times of deadheading

and idling per bus duty are approximately 79 and 166 minutes, respectively. Due to the usage

of discretized SoC values in our methodology, the SoC is rounded down in the resulting bus

duties before a charging action or before servicing a trip. Per bus duty, the amount of SoC that

is discarded as a result adds up to 66 percentage points on average. If we track the SoC of the

bus duties without rounding down, we see that the average minimum real SoC value is 35.7%,

with an overall minimum of 27.5%. This is higher than the minimum allowed SoC value of 22%.

In contrast, if the SoC is rounded down, all bus duties reach the minimum allowed SoC value
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of 22% at some point in time. The higher actual minimum SoC values show that the resulting

bus duties are feasible, but possibly also suboptimal, since they do not exploit the entire range

of allowed SoC values in reality.

Figure 5.1: The occupation of the charging stations in the resulting bus schedule

An important aspect of a feasible bus schedule is that the capacities of the charging stations

are never exceeded. We illustrate the usage of the charging stations during the day in Figure 5.1.

Because we incorporated the charging capacities in our methodology, the capacities of the charg-

ing stations are never exceeded. This can be seen in Figure 5.1. Additionally, we see that the

charging stations are often fully occupied, especially after the morning peak and evening peak

hours. In contrast, during these peak moments, the number of buses that are charging is low.

6 Conclusion and Future Research

In this paper, we studied the Electric Vehicle Scheduling Problem considering both the capacity

of charging stations and partial charging. To solve the problem, we developed a network structure

in which every path represents a feasible duty, and presented two heuristics based on column

generation. Valid lower bounds were obtained by solving an auxiliary problem on a slightly

altered network.

Computational results based on a bus concession in the Netherlands showed that the trun-

cated column generation outperforms price-and-branch, achieving an optimality gap below 1.5%
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on the smaller instances. When applied in combination with the node removal heuristic to speed

up the pricing problem, truncated column generation solved the entire concession with 816 trips

to an optimality gap of 3.4%.

There are numerous promising directions for future research. It is likely that, in addition

to the node removal heuristic, the pricing problem can be sped up further by developing other

dedicated acceleration strategies. It would also be interesting to jointly optimize the vehicle

schedule with the driver schedule, as the possibility to coordinate charging actions and meal

breaks introduces interesting dynamics into the problem. Finally, our method to compute true

lower bounds irrespective of the discretization could serve as the starting point for a full-fledged

dynamic discretization discovery algorithm, potentially finding better solutions.
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A Detailed Description of Arcs

In this section, we provide a detailed description of the arcs that are present in the primal and

in the dual network.

Consider a given combination k ∈ K of a vehicle type and a depot. In the primal network,

we apply a conservative rounding scheme. Here, we define the function F soc(·) that returns the

largest SoC value s ∈ Sk smaller than or equal to the SoC input. In the dual network, we apply

an optimistic rounding scheme. There, the function F soc(·) is redefined and returns the smallest

SoC value s ∈ Sk that is larger than or equal to the SoC input.

The compatibility of two nodes n ∈ N k and v ∈ N k depends on several characteristics.

Recall that τ soc
(n,v) denotes the SoC required for deadheading and idling between nodes n and v.

Similarly, we define φtime
(n,v) and χ

time
(n,v) as the required deadheading and idling time between nodes

n and v, respectively. Moreover, let φmax
(n,v) and χmax

(n,v) denote the maximum allowed deadhead

and idle times between nodes n and v. These quantities depend on the combination n and v to

be able to impose different restrictions per location. The parameters bi and ei denote the begin

and end time of trip i ∈ T .

Below, we explain which arcs are created in network k while discussing the outgoing arcs

from the source node, the trip nodes, and the charging nodes separately. Accordingly, we define

the sets Adσk , Atripk , and Achargek . The complete set of arcs of network k is then given by

Ak = Adσk ∪ Atripk ∪Achargek .

Source Node First, we consider the source node dσk . By our assumption that vehicles leave

the depot fully charged, we do not include arcs that go from the source node to a charging

node. When creating outgoing arcs to trip nodes v ∈ N trip
k , we consider the required SoC usage

for the deadheading from the depot to the start location of the corresponding trip. An arc is

created if and only if the maximum deadhead time is not exceeded. Given that the vehicle can

depart from the depot such that it arrives precisely in time to operate the trip, idling need not
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be considered. We obtain the set

Adσk = {(n, v)|n = dσk , v = (i, s) ∈ N trip
k , s = F soc(sfull − τ soc

(n,v)), φ
time
(n,v) ≤ φ

max
(n,v)}.

Trip Node Next, we explain the outgoing arcs from trip nodes n ∈ N trip
k by considering

outgoing arcs to the sink node, other trip nodes, and charging nodes separately, defining the

sets Asink
tripk

, Atrip
tripk

, and Acharge
tripk

, respectively.

From trip node n = (i, s), an outgoing arc to the sink node is created if the corresponding

SoC value s suffices to return to the depot after performing the trip. Here, we consider the SoC

required for the trip, for the deadheading back to the depot, and take into account that the SoC

value should always stay above smin
k . This results in the set

Asink
tripk = {(n, v)|n = (i, s) ∈ N trip

k , v = dτk, s ≥ fi + τ soc
(n,v) + smin

k , φtime
(n,v) ≤ φ

max
(n,v)}.

Outgoing arcs from trip node n = (i, s) to other trip nodes v = (j, s′) ∈ N trip
k are only

possible if the two considered trips are compatible while not exceeding the maximum deadhead

and idle times. The idle time is defined as χtime
(n,v) = bj − ei − φtime

(n,v). We denote i � j for the

requirements φtime
(n,v) ≤ φmax

(n,v) and 0 ≤ χtime
(n,v) ≤ χmax

(n,v). Additionally, from the SoC s of trip node

n, the SoC required for the trip corresponding to node n and for the deadheading and idling

between the nodes is subtracted to determine the SoC s′ of the successor node v ∈ N trip
k . This

results in the set

Atrip
tripk

= {(n, v)|n = (i, s) ∈ N trip
k , v = (j, s′) ∈ N trip

k , i � j, s′ = F soc(s− fi − τ soc
(n,v))}.

A charging node v = (r, b, s′) ∈ N charge
k can directly succeed the trip node n if φtime

(n,v) ≤ φ
max
(n,v)

and 0 ≤ χtime
(n,v) ≤ χmax

(n,v), where we now compute the idle time as χtime
(n,v) = tb − ei − φtime

(n,v). Thus,

the begin time tb of time block b should be later than the end time of trip i plus the deadheading

time from the end location of trip i to the location of the charging station r. Additionally, the
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maximum allowed deadhead and idle time cannot be exceeded. For brevity, we denote these

requirements by i � (r, b). For the SoC value s′ of the charging node v, the required SoC for the

trip of node n as well as the SoC needed for the deadheading and idling from the end location

of the trip to the charging station is subtracted from the SoC value s belonging to node n. This

results in the arcs from the set

Acharge
tripk

= {(n, v)|n = (i, s) ∈ N trip
k , v = (r, b, s′) ∈ N charge

k , i � (r, b), s′ = F soc(s− fi − τ soc
(n,v))}.

In the dual network, we want to allow a vehicle to start charging immediately when arriving

at the charging station. For that reason, if 0 ≤ χtime
(n,v) < l, we add the amount of SoC that can

be charged during idling. In particular, the last requirement is replaced by s′ = F soc(s+ ŝ−fi−

τ soc
(n,v)), where ŝ is the amount of SoC that could be charged while the vehicle is idling, and where

F soc now uses an optimistic rounding scheme. In practice, this corresponds to the situation

where the vehicle starts charging during the time block before time block b, immediately after

arriving. The vehicle is considered not to occupy the charging station during this time block.

The union of the sets Asink
tripk

, Atrip
tripk

, and Acharge
tripk

provides the set Atripk that includes all

outgoing arcs from the trip nodes n ∈ N trip
k .

Charging Node Lastly, we discuss the outgoing arcs from each charging node n ∈ N charge
k by

again considering outgoing arcs to the sink node, trip nodes, and other charging nodes separately.

Recall that s+n represents the SoC increase during the charging action corresponding to charging

node n. The amount of increase depends on the length of the time block of charging node n and

the charging rate.

Since each vehicle can charge at its depot, an outgoing arc from charging node n to the sink

node is only created if the corresponding SoC value without the charging of node n is too low

for deadheading back to the depot, while it is high enough after the charging. Hence, returning

to the depot from a charging station is only possible if it is necessary to charge before returning
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to the depot. This results in the set

Asink
chargek = {(n, v)|n = (r, t, s) ∈ N charge

k , v = dτk, s < τ soc
(n,v) + smin

k ≤ s+ s+n , φ
time
(n,v) ≤ φ

max
(n,v)}.

A trip node v = (i, s′) ∈ N trip
k can directly succeed charging node n = (r, b, s) if φtime

(n,v) ≤ φ
max
(n,v)

and 0 ≤ χtime
(n,v) ≤ χmax

(n,v), where we compute the idle time as χtime
(n,v) = bi − tb − l − φtime

(n,v). Thus,

the begin time of the trip is later than the end time of the time block corresponding to node

n plus the required deadhead time, and the maximum allowed deadhead and idle times are not

exceeded. We denote these requirements by (r, b) � i. The SoC value s′ of the trip node v

should be equal to the highest possible SoC value smaller than the SoC value s of the charging

node n plus the increase due to the charging and minus the required SoC for the deadheading

and idling. This results in the set of outgoing arcs

Atrip
chargek

= {(n, v)|n = (r, b, s)∈N charge
k , v = (i, s′)∈N trip

k , (r, b) � i, s′ = F soc(s+ s+n − τ soc
(n,v))}.

In the dual network, the arc (n, v) is present if the vehicle can execute the trip by departing

during time block b, instead of at the end of time block b. In particular, 0 ≤ χtime
(n,v) is then

replaced by −l > χtime
(n,v). If χtime

(n,v) < 0, the vehicle charges only during the time it is actually

present at the charging station. Thus, s+n is then replaced by ŝ, where ŝ is the amount of SoC

that can be charged during the time l + χtime
(n,v).

We assume that a charging activity cannot be paused and cannot continue at a different loca-

tion. Accordingly, an outgoing arc from charging node n to another charging node v ∈ N charge
k

is created only if both nodes have the same charging station and the time block of charging node

v begins immediately when the time block of charging node n ends. Due to this, a charging

activity can take multiple time blocks, but it is not allowed for a vehicle to switch between differ-

ent charging stations or for the charging activity to contain a break. Additionally, an outgoing
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arc to charging node v is created only if the value of the SoC increases. This results in the set

Acharge
chargek

= {(n, v)|n = (r, b, s) ∈ N charge
k , v = (r′, b′, s′) ∈ N charge

k , n→ v, s′ = F soc(s+ s+n ) > s},

where n→ v denotes the requirements r = r′, tb′ = tb + l.

The union of the sets Asink
chargek

, Atrip
chargek

, and Acharge
chargek

provides the set Achargek including all

outgoing arcs from the charging nodes.

B Detailed Results Comparison Heuristics

Table B.1 presents the detailed results of the runs that are discussed in Section 5.3.2. We first

report the computation times. For the (truncated) price-and-branch heuristics, Time CG is the

time needed for the column generation process and Time BP is the time needed to solve the

binary program. For the truncated column generation, Time is the total time needed to solve

the instances. Moreover, It is the number of iterations of the column generation process, PP is

the average time for solving the pricing problem per iteration, and RMP is the average time for

solving the RMP per iteration. LB is a lower bound on the optimal solution value. Sol is the

objective value of the E-VSP corresponding to the final integer solution of the heuristic, G is

the optimality gap bound, and B is the number of buses used in the final bus schedule.

Table B.2 presents the results that are obtained for various heuristic parameter settings on

Instance A and Instance B, as discussed in Section 5.4.1 Here, Time is the total computation

time of the heuristic, It is the number of iterations, and PP and RMP are the average times

per iteration to solve the pricing problem and the RMP, respectively. Sol, G, and B are the

objective value, a bound on the optimality gap, and the number of buses of the final integer

solution, respectively.
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Table B.1: Detailed results of all three proposed heuristics

Price-and-Branch
Instance Time CG (s) Time BP(s) It (#) PP (s) RMP (s) LB Sol G (%) B (#)

A 35.201 0.021 154.401 0.221 0.0041 738,971.061 744,828.451 0.8691 14.801

B 1, 356.781 78.791 1, 076.101 1.241 0.0111 568, 726.211 569, 502.931 0.1491 11.201

1 6,346.01 3,158.03 2,947.00 2.12 0.016 253,809.57 304,320.39 19.901 6.00
2 2,555.74 3, 607.292 1,835.00 1.37 0.015 1,087,685.65 1,153,236.86 6.027 22.00
3 18,604.00 3, 600.102 4,601.00 3.97 0.056 1,288,645.26 1,549,954.37 20.278 30.00

Truncated Price-and-Branch (Zmin = 0.01, I = 30)
Instance Time CG (s) Time BP(s) It (#) PP (s) RMP (s) LB Sol G (%) B (#)

A 25.721 0.041 113.501 0.221 0.0041 738,971.061 744,895.651 0.8781 14.801

B 326.291 125.191 258.401 1.251 0.0101 568, 726.211 602, 477.381 6.1651 11.701

1 791.20 0.98 369.00 2.13 0.010 253,809.57 304,320.39 19.901 6.00
2 782.47 3, 611.402 580.00 1.33 0.013 1,087,685.65 1,319,156.97 21.281 25.00
3 2,998.59 3, 604.732 754.00 3.95 0.016 1,288,645.26 1,773,326.53 37.612 34.00

Truncated Column Generation (Zmin = 0.01, I = 30, θ = 0.70)
Instance Time (s) It (#) PP (s) RMP (s) LB Sol G (%) B (#)

A 37.331 168.901 0.221 0.0041 738,971.061 744,837.941 0.8701 14.801

B 962.001 766.901 1.261 0.0101 568, 726.211 569, 613.501 0.1671 11.201

1 1,976.95 936.00 2.11 0.011 253,809.57 254,524.52 0.282 5.00
2 2,273.95 1,673.00 1.35 0.014 1,087,685.65 1,102,030.14 1.319 21.00
3 10,134.22 2,657.00 3.81 0.021 1,288,645.26 1,299,191.73 0.818 25.00

1 Average outcome of 10 instances
2 BP not solved to optimality due to reached time limit

Table B.2: Results of the truncated column generation heuristic for differing parameters consid-
ering the minimum required relative improvement, the number of iterations, and the threshold
as used in the fixing step

Instance A (LB = 653, 319.3)
Zmin(%) I θ Time (s) It (#) PP (s) RMP (s) Sol G (%) B (#)
0.010 30 0.7 46 181 0.25 0.004 655, 957 0.404 13

0.010 15 0.7 53 215 0.25 0.004 656, 012 0.412 13

0.010 50 0.7 44 171 0.25 0.004 655, 941 0.401 13

0.010 90 0.7 47 186 0.25 0.004 655, 946 0.402 13

0.005 30 0.7 48 191 0.25 0.004 655, 947 0.402 13

0.050 30 0.7 55 221 0.25 0.004 655, 950 0.402 13

0.500 30 0.7 48 189 0.26 0.004 655, 961 0.404 13

0.010 30 0.5 42 162 0.25 0.004 655, 965 0.405 13

0.010 30 0.9 43 172 0.25 0.004 655, 941 0.401 13

Instance B (LB = 559, 350.2)
Zmin(%) I θ Time (s) It (#) PP (s) RMP (s) Sol G (%) B (#)
0.010 30 0.7 850 700 1.21 0.010 559, 863 0.091 11

0.010 15 0.7 612 513 1.20 0.009 560, 638 0.230 11

0.010 50 0.7 1, 199 975 1.22 0.010 559, 819 0.083 11

0.010 90 0.7 1, 570 1, 277 1.22 0.011 559, 635 0.051 11

0.005 30 0.7 1, 108 884 1.25 0.010 559, 775 0.076 11

0.050 30 0.7 495 416 1.20 0.009 560, 379 0.184 11

0.500 30 0.7 424 361 1.19 0.009 560, 350 0.178 11

0.010 30 0.5 1, 006 807 1.24 0.010 559, 852 0.089 11

0.010 30 0.9 893 700 1.38 0.010 559, 863 0.091 11
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