

Parameterized Algorithms for Finding Large Sparse
Subgraphs
Citation for published version (APA):
Donkers, H. T. (2022). Parameterized Algorithms for Finding Large Sparse Subgraphs: Kernelization and
Beyond. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Eindhoven
University of Technology.

Document status and date:
Published: 14/09/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/520a22f4-8bab-49c9-8abd-501cc59f97b7

Parameterized Algorithms
for Finding Large Sparse Subgraphs

Kernelization and Beyond

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties, in het
openbaar te verdedigen op woensdag 14 september 2022 om 16:00 uur

door

Hubertus Thilman Donkers

geboren te Vlissingen

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van
de promotiecommissie is als volgt:

Voorzitter: prof.dr. J.J. Lukkien

Promotor: prof.dr. M.T. de Berg

Copromotor: dr. B.M.P. Jansen

Leden: prof.dr. H.L. Bodlaender (Universiteit Utrecht)

dr.hab. M. Pilipczuk (University of Warsaw)

prof.dr. F.C.R. Spieksma

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd
in overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Copyright c© 2022 Huib Donkers

Art attribution

All artwork is created by Huib Donkers. Some are derived from existing artwork.

The image on page iv is based on the photograph Morning Storm II by Malcolm Bawn.
Lighthouses can guide sailors to safety and warn them of danger. They can be the first
sign of coming home. The lighthouse in the image symbolizes the help, guidance, and
sense of home that I received from the people around me.

The image on page 0 depicts the start of a short game of chess. It relates to the example of
assigning chess sets to chess players that I use in the introduction to explain the Vertex
Cover problem.

The image on page 10 is based on a still frame from the video series Rebuilding Tally Ho
by Leo Sampson Goolden. The workshop with tools and a partially built hull relates to
the contents of the Chapter Preliminaries in which I describe the basic framework and
a number of tools on which this thesis relies.

The image on page 22 shows a coastal town with a docked boat. An outerplanar graph
can be seen as a road network (without over- or underpasses) where each node is reachable
by boat, i.e., they are all adjacent to a single body of water which represents the outer
face. The town in the image represents a vertex of such an outerplanar graph.

The image on page 78 displays a Greek temple housing an oracle. A Turing kernelization
algorithm transforms a single large problem instance into multiple smaller ones which
can be solved by an external algorithm. In the analysis we assume the small instances
are solved in constant time by a hypothetical algorithm referred to as an oracle.

The image on page 110 and on the cover is based on a photograph from freepik.com. The
concept of an antler decomposition as introduced in Chapter 5 of this thesis is named
after the large acyclic structures attached to a stag’s head.

The image on page 150 is based on a photograph from pixabay.com. It displays a secluded
tree in the literal sense.

The image on page 176 is a drawing of the sailing yacht De Verrassing as it sets course
to unknown destinations at dusk, the end of the day and the end of this thesis.

Printed by Ipskamp Printing, Enschede.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-5550-5

Acknowledgements

This thesis is the result of five years of work. But time hasn’t been the only
ingredient. This thesis wouldn’t have been as it is today without the people that
helped and supported me along the way.

First and foremost my supervisor Bart. We worked together on a research
project before I started my PhD and I knew I would be in good hands when I
asked for you to be my PhD supervisor. Thank you for the help and guidance, our
weekly meetings, and for making sure I actually finish things from time to time,
rather than endlessly improving them.

Secondly my promotor Mark, thank you for being available for any questions I
had and for your suggestions for my thesis. Many thanks also to the other members
of my committee, Hans, Marcin, and Frits for reviewing my thesis. In general
I want to thank the algorithms community for their (anonymous) constructive
feedback on my papers and for sharing ideas and pleasant conversations during
workshops, conferences, and summer schools. In particular I would like to thank
my co-authors Jari and Michał, I enjoyed working with you.

Luckily the past five years didn’t consist only of research. Being among my col-
leagues made for a pleasant atmosphere that allowed for serious research as well as
fun. I want to thank my office mates from before the pandemic, Max, Max, Thom
and later Dani, Bram, and Aleksandr, for the laughs and jokes and for watering
the plants1. Thank you Jari and Shivesh, my new office mates after the pandemic,
for brushing up my geography and other trivia. Also thanks to my remote office
mates, Michał and Ben, who completed our small FPT research group. Thank
you for the interesting, fun, and eventually explosive weekly meetings.

Of course all my other colleagues from the ALGA group played a major role in
making my time at the university enjoyable as well, with our daily lunches, occa-
sional boulder or board game nights, and other activities. Thank you Agnes, Alek-
sandar, Andrés, Arpan, Arthur, Astrid, Bettina, Hans, Henk, Ignaz, Irene, Irina,
Jules, Kevin, Kevin, Leonidas, Leonie, Leyla, Marcel, Martijn, Max, Mehran,
Meivan, Morteza, Nathan, Pantea, Quirijn, Sándor, Sudeshna, Tim, Tom, Willem,
and Wouter.

1once a year, roughly

vi Acknowledgements

Beyond the academic world, I have been fortunate enough to be surrounded
by amazing people that have both supported me in my incomprehensible job as
well as distracted me from it. I want to thank my housemates, old and new, with
whom I enjoyed Christmas dinners, barbecues, boulder sessions, rollercoasters,
slacklining, and so much more. Then, the sailors that make up my sailing team(s)
and also the competition, thank you for keeping me sharp in the weekends and
sore on Mondays.

Thank you Astrid, for putting up with all my sailing activities and for occa-
sionally taking me away from them to places I hadn’t been before, thank you for
dealing with my annoying jokes2 and for making me laugh. You’re amazing.

Finally my family, my parents Barbara and Winfried, my brother Jan Maarten,
thank you for your support in my work, hobbies, and life in general.

2

Contents

Acknowledgements v

1 Introduction 1

2 Preliminaries 11
2.1 General notation . 11
2.2 Graph theory . 12

2.2.1 Structural graph properties 13
2.3 Hitting forbidden minors . 16
2.4 Algorithms and complexity . 17

3 A Kernel for Outerplanar Vertex Deletion 23
3.1 Introduction . 23
3.2 Preliminaries . 27
3.3 Splitting the graph into pieces . 32

3.3.1 The augmented modulator 32
3.3.2 The outerplanar decomposition 38
3.3.3 Reducing the size of the neighborhood 43

3.4 Compressing the outerplanar subgraphs 52
3.4.1 Reducing the number of biconnected components 52
3.4.2 Reducing a large biconnected component 56
3.4.3 Reducible structures in biconnected components 63

3.5 Wrapping up . 72
3.6 Conclusion . 75

4 A Turing Kernelization Dichotomy for Finding F-Minor Free
Graphs 79
4.1 Introduction . 79
4.2 Preliminaries . 82
4.3 Lower bound . 84

4.3.1 Properties of biconnected and robust subgraphs 84
4.3.2 Clause gadget construction 85

viii Contents

4.3.3 Reduction for connected graphs H 91
4.3.4 Reduction for families of disconnected graphs 94

4.4 A polynomial Turing kernelization 98
4.5 Conclusion . 108

5 Finding Antler Structures to Solve Feedback Vertex Set 111
5.1 Introduction . 111
5.2 Preliminaries . 116
5.3 Hardness results . 119

5.3.1 NP-hardness of finding 1-antlers 119
5.3.2 W[1]-hardness of finding bounded-width 1-antlers 121

5.4 Structural properties of antlers . 125
5.5 Finding antlers . 129

5.5.1 Finding feedback vertex cuts 129
5.5.2 Reducing feedback vertex cuts 132
5.5.3 Finding and removing antlers 137

5.6 Conclusion . 147

6 Finding Secluded Sparse Graphs 151
6.1 Introduction . 151
6.2 Framework for enumerating secluded trees 153
6.3 Enumerate large secluded supertrees 155

6.3.1 Subroutines for the algorithm 155
6.3.2 The algorithm . 158
6.3.3 Proof of correctness . 159
6.3.4 Runtime analysis . 170
6.3.5 Finding, enumerating, and counting large secluded trees . . 174

6.4 Conclusion . 175

7 Conclusion 177
7.1 Overview of results . 177
7.2 Future work . 178

Index of Definitions 183

Bibliography 187

Summary 199

Curriculum Vitae 201

Contents ix

1
Introduction

Even when a problem seems well-suited for a computer to solve, it may be very
difficult or impossible to do so efficiently. Consider for example the following
problem:

Imagine you run a chess club. The club has 17 members, 9 chess sets,
and a clubhouse. To stop the spread of a pandemic disease it is decided
that the clubhouse should no longer be used. Instead you wonder if
you can hand out the 9 chess sets to 9 chess players such that any time
two players want to play each other, at least one of them has a chess
set.

Of course, when we want all pairs of players to be able to play each other, there
can only be one player without a chess set, so we would require 16 sets. However
if we don’t need every two players to be able to play each other, but only a certain
list of pairs then it becomes less clear whether 9 chess sets are sufficient. Consider
as an example the situation described in Figure 1.1 and try to determine if 9 chess
sets is enough.

What you see in Figure 1.1 is a network or graph, with the stick figures as
vertices and the lines between them as edges. The problem of determining whether
we have enough chess sets is called Vertex Cover. We want to select a set of 9
vertices such that for every edge in the graph, at least one of its endpoints is
selected. You may have noticed that this is not an easy task. In fact, this is one of
the classical NP-hard problems, which means we expect the computing time and

2 Introduction

Figure 1.1 Every stick figure represents a member of our chess club. There is a
line between two members if they want to play each other, meaning at least one
of them needs to have a chess set.

power required to find a solution to increase superpolynomially with the size of
the input. In our example this means we cannot expect even the most powerful
computers to determine if a large chess club has enough chess sets.

Unfortunately many of the problems we want computers to solve are NP-hard.
Accepting that we will not be able to solve large instances of these problems in
general, the question becomes “what can we achieve to come closer to a solution?”
One option is to allow solutions that are suboptimal. Approximation algorithms
can efficiently find a solution that is slightly suboptimal for varying interpretations
of the word slightly. However, if you do not want to compromise on the quality
of the solution then this is not an option. An alternative is to simplify the prob-
lem input as much as possible, in the hope that it may be simplified to such an
extent that even an inefficient algorithm is able to solve it within reasonable time.
This approach of simplifying the problem before attempting to solve it is called
preprocessing.

A preprocessing algorithm aims to modify the input in such a way that the
solution remains the same but the new input can be solved faster. With the view
that the size of the input is the main factor in the running time, preprocessing
is a matter of “compressing” the input, decreasing its size but keeping the essen-
tial information that is required to find a solution. The notion of kernelization
formalizes this approach. A kernelization algorithm is an efficient algorithm (it
runs in polynomial time) that compresses the input down to a certain size. A
central theme in kernelization research is to determine to what size the input can
be compressed. The more we can reduce the size of the problem, the less time is
required to solve it.

A kernelization algorithm often works using a number of reduction rules, which
describe one small simplification of the problem. For the problem of distributing
chess sets among the members of our chess club, one such reduction rule could
be the following: if one chess player only has one chess partner and never plays
anyone else, then we can safely give their partner a chess set (see Figure 1.2).

3

Any distribution that would assign a chess set to a player with only one partner
also works if this partner was assigned the chess set instead. Once we assign this
chess set to the partner, we can forget about both these chess players and figure
out how to distribute the chess sets among the remaining players: we have made
the problem a little bit smaller! We obtain a kernelization algorithm if we can
efficiently apply a number of reduction rules like this such that afterwards we can
give a guarantee on the size of the remaining problem instance.

It may not be directly clear what sort of guarantee a kernelization algorithm
can give on the size of the compressed problem instance. Even something as simple
as “the compressed instance will always be smaller than the original instance” does
not result in a useful concept of a preprocessing algorithm because such algorithms
likely do not exist for NP-hard problems. This is because if there did exist an
efficient preprocessing algorithm that can always reduce the size of the input, then
we could run this algorithm again on the compressed instance to make it even
smaller. If we keep doing this we will reach a point where the compressed input
is so small that finding a solution is trivial. So solving the problem could then
be done efficiently by repeated preprocessing. Since we are looking specifically at
NP-hard problems which we believe cannot be solved efficiently, we immediately
also rule out any hope for a preprocessing algorithm that guarantees a reduction
in input size.

So what type of guarantee can kernelization give us? The solution comes from
Parameterized Complexity. Rather than analyze the running time of an algorithm
as a function of only the input size n, we can consider other properties of the
input that may affect the difficulty of solving the problem. A common property to
look at is the size of an optimal solution of the problem. We call such a value the
parameter and usually denote it by k. The running time of an algorithm can then
be expressed as a function of both n and k. This idea of looking at other properties
than only the size of the input allows us to formulate a usable guarantee on how
much a kernelization algorithm can compress a problem instance. Namely, we can
guarantee that the size of the compressed instance is bounded by a function of
this parameter k. So then, regardless of how large the input size is, as long as
the parameter k is small, the kernelization algorithm can be used to efficiently
compress large problems into small ones.

Figure 1.2 A simple reduction rule: find a chess player with only one partner.
Give their partner a chess set and continue with a smaller graph.

4 Introduction

Parameterized complexity

Fast exact algorithms for NP-hard problems are unlikely to exist. This means that
as the size of the problem instance gets larger we can no longer guarantee that the
algorithm terminates within reasonable time. This does not mean however that
such an algorithm will always fail to deliver an answer to a large problem instance.
In parameterized complexity we analyze under what conditions algorithms can
solve large instances quickly. To do this, problem instances are associated with a
parameter which measures in a way the “complexity” of the instance. With this
parameter we can give a more precise guarantee on how long an algorithm takes
to solve problem instances of size n with parameter k. This has led to algorithms
that can very efficiently solve large NP-hard problem instances under the condition
that the parameter is small. If a problem can be solved in time f(k) · nO(1) for
some function f , then this problem is said to be fixed-parameter tractable (FPT).
Such an algorithm runs in polynomial time as long as the parameter is bounded
by a constant, and the degree of this polynomial does not depend on this constant.

For many problems the size of a solution gives a natural parameterization.
For example if we consider the Vertex Cover example of distributing chess sets
parameterized by the number of available chess sets then this problem is fixed-
parameter tractable. This means that, even though we concluded earlier that we
cannot expect even the most powerful computers to determine whether a large
chess club has enough chess sets, we can now be more specific and claim that it is
the number of available chess sets rather than the number of members that makes
the problem hard.

While considering the size of a solution as parameter often gives positive results,
we are completely free to choose another parameterization. Ultimately we want
a parameter that overestimates the actual complexity of the problem as little as
possible. The natural parameter “solution size” for Vertex Cover for example,
hugely overestimates the actual complexity of the problem. Instead parameters
that tell something about the structure of the graph have turned out to be better
indicators of the complexity of the problem. Examples are the feedback vertex
number or treewidth of the graph. These can be arbitrarily smaller than the
solution size, meaning that even problem instances with a large solution size can
still have a relatively simple structure that allows them to be solved efficiently.
Such parameters are often called structural parameters.

Finding large sparse subgraphs

In the example problem of distributing chess sets among the members of a chess
club, we are looking for a small group of members to hand out chess sets to. From
another perspective we are looking for a large group of members that don’t need a
chess set, because they will never play against another member in this large group.
If we consider a graph as in Figure 1.1 but then restricted to only the people that
do not receive a chess set, this should be a graph without edges, because such an

5

edge would then represent two people who want to play each other but neither
of which has a chess set. So the problem of distributing chess sets is the same
as finding a large, so called, induced subgraph that has no edges. The problems
studied in this thesis revolve around finding large induced subgraphs that belong
to a certain class of graphs.

Edgeless graphs form a very simple class of graphs. A more interesting graph
class may be the class of acyclic graphs, graphs that do not contain a cycle. Where
edgeless graphs do not have any edges, acyclic graphs can have several edges but
they always have fewer edges than they have vertices. In general, if a graph class
consists only of graphs that have fewer edges than a constant multiple of the
number of vertices, then this is called a sparse graph class.

Similar to how edgeless graphs and acyclic graphs are not allowed to contain
edges and cycles respectively, we can define other graph classes by giving one or
multiple forbidden patterns. For the graph classes studied in this thesis, these
forbidden patterns can be defined by a finite set F containing graphs. The class
of graphs that do not contain (as a minor, a variation of subgraph) a forbidden
pattern described by F are called F-minor-free graphs. It turns out that regardless
of the choice of F , this graph class is a sparse graph class, i.e., F-minor-free graphs
have few edges compared to vertices.

The problem of finding a large induced subgraph that is F-minor free, or equiv-
alently, finding a small set of vertices whose removal makes the graph F-minor free
is called F-Minor-Free Deletion. The problems Vertex Cover and Feed-
back Vertex Set (finding a large acyclic induced subgraph) are two examples
of F-Minor-Free Deletion problems. Many other problems can be described
using a set of forbidden patterns. Observing this as a common theme among these
problems often allows us to generalize results and techniques developed from one
problem to be applied to other F-Minor-Free Deletion problems.

Beyond kernelization
In this thesis we study several F-Minor-Free Deletion problems using different
algorithmic paradigms. The notion of kernelization described before gives us the
first rigorous preprocessing framework. A kernelization algorithm is useful as a
preprocessing step to run before solving the problem because it reduces the size
of the problem instance. If the reduced instance is small enough, this means that
it can be solved in reasonable time afterwards. The notion of Turing kernelization
extends this idea of reducing the input size as a preprocessing step. Instead of
requiring that the result of solving the reduced instance tells us the answer to the
original problem, a Turing kernelization may take this result and give us another
small instance to solve instead. It may continue to do this polynomially many
times, after which it should produce the final solution. In this thesis we actually
describe a slightly simpler version of a Turing kernelization which does not have
to wait for the result of the small problem instances, but instead it produces a list
of small problem instances whose results are easily combined into a solution to the

6 Introduction

original problem.
Both traditional kernelization and Turing kernelization focus on reducing the

size of the instances to be solved. This works well together with the idea that
problem instances of small enough size can be solved in reasonable time. However,
as we have seen in parameterized complexity, the size of the instances may not
always play the largest role in the running time. Instead, the value of the parameter
largely determines whether an instance can be solved in reasonable time. Although
research in kernelization and its variations have resulted in fast practical algorithms
and effective reduction rules, this should mainly be attributed to reducing, in a
sense, the complexity of the problem rather than just its size. We see that many
of the successful reduction rules often succeed in reducing not only the problem
size, but also the parameter. The reduction rule we gave earlier for distributing
chess sets reduces the number of chess sets to be distributed for example.

Adhering to the strict framework of kernelization algorithms with their goal
of reducing the size of a problem instance may not always lead us towards such
reduction rules that prove so effective in practice, resulting in a significant speed up
for solving the preprocessed problem instance. Taking inspiration from reduction
rules such as the one described earlier, we shift our focus from reducing the size
of a problem to reducing the parameter.

In this thesis we apply several algorithmic techniques to find large sparse sub-
graphs. The next sections describe the techniques and problems discussed in each
chapter of this thesis.

Kernelization for outerplanar vertex deletion
In Chapter 3 we investigate kernelization for Outerplanar Vertex Deletion.
An outerplanar graph is a graph that can be embedded in the plane such that
all vertices are incident to the outer face, see Figure 1.3 for an example. In the
Outerplanar Vertex Deletion problem the objective is to find a small set of

Figure 1.3 On the left is an example of an outerplanar graph, drawn on the
plane without crossing edges. This divides the plane into bounded faces (marked
blue) and one unbounded region (marked white) called the outer face. All vertices
are incident to the outer face. On the right are (the only) two forbidden patterns
in outerplanar graphs.

7

vertices whose deletion makes the graph outerplanar. Since a graph is outerplanar
if and only if it does not contain one of two forbidden patterns, this problem can
be described as an F-Minor-Free Deletion problem.

It was already known [61] that a large collection of F-Minor-Free Deletion
problems, including Outerplanar Vertex Deletion, admit a polynomial ker-
nel when parameterized by the solution size. However it was unknown what this
polynomial bound on the size of the kernel is. We study specifically the Outer-
planar Vertex Deletion problem and using several algorithmic techniques we
present a new kernelization algorithm that reduces the size of the problem instance
to O(k4). This includes several new reduction rules for Outerplanar Vertex
Deletion and how they can be applied efficiently. In proving the correctness of
these reduction rules we uncover a number of structural properties of outerplanar
graphs.

A Turing kernelization dichotomy for F-Minor-Free Dele-
tion
In Chapter 4 of this thesis we study the applicability of Turing kernelization to
the class of all F-Minor-Free Deletion problems. We prove, under some com-
plexity theoretic assumptions, that for a certain structural parameterization of
F-Minor-Free Deletion there does not exist a polynomial Turing kernel for
all choices of F , apart from a special case that we identify. This means for example
that we do not expect a polynomial Turing kernelization for {P3}-Minor-Free
Deletion parameterized by the feedback vertex number. The remaining choices
of F , for which this hardness result does not apply, are relatively limited in their
complexity. This allows us to give a polynomial Turing kernelization for these
remaining choices of F , completing the dichotomy.

Finding antler structures to solve Feedback Vertex Set
As discussed, kernelization and its variations aim to reduce the problem in size.
However, the size of the input may not actually play the largest role in the time it
takes to find a solution. For fixed-parameter tractable problems such as F-Minor-
Free Deletion, the value of the parameter typically has the largest influence on
the running time of the algorithm rather than the size of the input. In Chapter 5
we investigate the possibility of an efficient preprocessing algorithm that reduces
the parameter instead of the input size. It is not clear how to formalize such a
preprocessing step. We cannot guarantee to always strictly reduce the parameter
in polynomial time just like we cannot guarantee to always strictly reduce the size
of the problem in polynomial time: such a preprocessing step could be applied
iteratively resulting in a trivial instance, meaning the problem can be solved in
polynomial time, something we believe is impossible for NP-hard problems. We
ask ourselves, under what conditions can we guarantee to reduce the parameter in
polynomial time?

8 Introduction

For the problem of Feedback Vertex Set parameterized by the solution
size, we describe a certain graph structure which we call antler and show that the
presence of sufficiently simple antlers in the graph allows us to efficiently reduce
the parameter (the size of a solution). Finding an antler structure in the graph
allows us to identify a set of vertices that is part of an optimal solution. This
reduces the problem to finding the remaining part of a solution which is strictly
smaller. This way the solution size can be reduced by finding antler structures.

Finding secluded sparse graphs
Chapters 3 to 5 investigate preprocessing methods F-Minor-Free Deletion
problems. In Chapter 6 we consider a related problem, finding a large sparse
secluded subgraph. A subgraph is k-secluded when it has at most k neighbors. For
example the reduction rule described in Figure 1.2 starts with finding a 1-secluded
vertex. In fact, the reduction rules discussed in Chapters 3 and 5 and many
other reduction rules for F-Minor-Free Deletion problems work in secluded
subgraphs that belong to a certain graphs class. In Chapter 6 we consider the
problem of finding a maximum size secluded subgraph that belongs to one of the
most elementary classes of sparse graphs: trees.

Finding maximum size k-secluded trees is known to be FPT when parameter-
ized by k [67], but the known algorithm has a running time with a doubly expo-
nential dependency on the parameter [66]. We improve this result and present an
algorithm with running time 2O(k log k)n4, which not only finds a maximum size
k-secluded tree, but it can be used to identify all maximum size k-secluded trees
in a graph.

Secluded trees are closely related to antler structures as discussed in Chapter 5,
since an antler can be shown to consist of a small number of secluded trees. Re-
search into secluded graph structures may open pathways to parameter reducing
reduction rules using local certificates of optimality like presented in Chapter 5.

List of publications
Chapter 3 is based on the following publication.

Huib Donkers, Bart M. P. Jansen, and Michał Włodarczyk. Pre-
processing for outerplanar vertex deletion: An elementary kernel of
quartic size. In Petr A. Golovach and Meirav Zehavi, editors, IPEC
2021, September 8-10, 2021, Lisbon, Portugal, volume 214 of LIPIcs,
pages 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.IPEC.2021.14.

Chapter 4 is based on the following publication.

Huib Donkers and Bart M. P. Jansen. A Turing kernelization di-
chotomy for structural parameterizations of F-minor-free deletion. Jour-

http://dx.doi.org/10.4230/LIPIcs.IPEC.2021.14

9

nal of Computer and System Sciences, 119:164–182, 2021. doi:10.
1016/j.jcss.2021.02.005.

Chapter 5 is based on the following publication, which was awarded the Best Paper
and Best Student Paper at WG 2021.

Huib Donkers and Bart M. P. Jansen. Preprocessing to reduce the
search space: Antler structures for feedback vertex set. In Lukasz
Kowalik, Michał Pilipczuk, and Paweł Rzążewski, editors, WG 2021,
Warsaw, Poland, June 23-25, 2021, Revised Selected Papers, volume
12911 of Lecture Notes in Computer Science, pages 1–14. Springer,
2021. doi:10.1007/978-3-030-86838-3_1.

Chapter 6 is based on the following publication.

Huib Donkers, Bart M.P. Jansen, and Jari J.H. de Kroon. Finding
k-secluded trees faster. In WG 2022. To appear.

http://dx.doi.org/10.1016/j.jcss.2021.02.005
http://dx.doi.org/10.1016/j.jcss.2021.02.005
http://dx.doi.org/10.1007/978-3-030-86838-3_1

2
Preliminaries

2.1 General notation

For a positive integer ` we denote the set {1, . . . , `} by [`], with [0] = ∅. Let X×Y
denote the Cartesian product of the sets X and Y defined as {(x, y) | x ∈ X, y ∈
Y }. For a set X and an integer ` > 0 let X` denote the `-ary Cartesian power
of X defined as {(x1, . . . , x`) | xi ∈ X for all i ∈ [`]}. Let 2X denote the powerset
of a set X consisting of all subsets of X. For a set X and integer ` let

(
X
`

)
denote

the family of all subsets X ′ ⊆ X with |X ′| = `. For any family of sets X1, . . . , X`

indexed by [`] we define for all i ∈ [`] the following:

X<i =
⋃

1≤j<i

Xj , X>i =
⋃

i<j≤`

Xj ,

X≤i =
⋃

1≤j≤i

Xj , and X≥i =
⋃

i≤j≤`

Xj .

For a function f : A → B, let f−1 : B → 2A denote the preimage function
of f , that is f−1(a) = {b ∈ B | f(b) = a}. For a set A′ ⊆ A, we use f(A′) as a
shorthand for

⋃
a∈A′ f(a), and similarly f−1(A′) =

⋃
a∈A′ f

−1(a).

12 Preliminaries

2.2 Graph theory

All graphs considered in this thesis are finite and undirected. With the exception
of Chapter 5 all graphs used in this thesis are simple graphs. In Chapter 5 we use
a generalization of simple graphs called multigraphs, which we formally define in
Section 5.2.

A simple graph G is a pair (V (G), E(G)) of its vertex set V (G) and edge
set E(G). When the graph is clear from context we use n and m to denote |V (G)|
and |E(G)| respectively. An edge in a graph is a set of two vertices that form its
endpoints, i.e. E(G) ⊆

(
V (G)

2

)
. This means a simple graph has no self-loops (an

edge of which both endpoints are the same vertex) and no multi-edges (multiple
edges between two vertices). A multigraph differs from a simple graph precisely
on these two points. For brevity we sometimes write uv to denote the edge {u, v}
of a simple graph. For an edge e = uv ∈ E(G) let V (e) denote the set of vertices
that form its endpoints, i.e., V (e) = {u, v}.

We call the graph on the empty vertex set the null graph. For a non-negative
integer n we use n ·G to denote the graph consisting of n disjoint copies of G.

Subgraphs For a vertex set S ⊆ V (G) let G[S] be the subgraph of G induced
by S, that is, G[S] = (S,E(G) ∩

(
S
2

)
). We use G − S denote the subgraph of G

induced by V (G)\S. For a vertex v ∈ V (G) we use G−v as shorthand for G−{v}.
For an edge set A ⊆ E(G) we denote by G \ A the graph with vertex set V (G)
and edge set E(G) \A. For e ∈ E(G) we write G \ e as a shorthand for G \ {e}.

Neighborhood and degree Let NG(v) denote the open neighborhood in G
of a vertex v defined asNG(v) = {u ∈ V (G) | uv ∈ E(G)}. For S ⊆ V (G) we define
the open neighborhood of S as NG(S) =

⋃
v∈S NG(v)\S. The closed neighborhood

of a single vertex v is NG[v] = NG(v)∪{v}, and the closed neighborhood of a vertex
set S is NG[S] = NG(S) ∪ S.

The degree degG(v) of a vertex v in a graph G is the number of edge-endpoints
incident to v, i.e., degG(v) = |{e ∈ E(G) | v ∈ e}| = |NG(v)|.

For (not necessarily disjoint) vertex sets A,B ⊆ V (G), we define EG(A,B) as
the set of edges with one endpoint in A and the other in B, i.e., EG(A,B) = {uv ∈
E(G) | u ∈ A, v ∈ B}.

Common abbreviations In all notation using the graph as subscript, we
may omit the subscript if the graph is clear from the context. To simplify the
presentation, in expressions taking one or more vertex sets as parameter such
as NG(..) and EG(.., ..), we sometimes use a subgraph H of G as argument as
a shorthand for the vertex set V (H) that is formally needed. In general, for
functions taking as argument a vertex set, we may sometimes give a graph as
argument instead of its vertex set. One common example of this occurs when
using a weight function w : V (G)→ N+ assigning weights to vertices in G. If H is

2.2 Graph theory 13

a subgraph of G, then using the shorthand defined earlier we may denote
⋃
v∈V (H)

as w(V (H)) which we may abbreviate further to w(H).

2.2.1 Structural graph properties

For ` ≥ 1 let P` denote the graph ({v1, . . . , v`}, {{vi, vi+1} | i ∈ [` − 1]}). A
path on ` vertices is any graph isomorphic to P`. To describe a path we may
give a sequence of vertices or a sequence of edges instead of describing the entire
graph. A path between two vertices u and v is called a uv-path. A graph G
is connected if for any two vertices a, b ∈ V (G) there is an ab-path in G. A
connected component (sometimes referred to simply as component) of a graph is
an inclusion-wise maximal subgraph that is connected. For a graph G and vertex
set A ⊆ V (G), we say A is connected in G if G[A] is connected. When G is clear
from context we simply say A is connected.

A graph that is acyclic is called a forest , and if the graph is also connected we
call it a tree. A rooted tree is a tree with a specified root vertex. For vertices u, v
in a tree T with root r, we say that u is an ancestor of v (or equivalently, v is a
descendant of u) if u lies on the (unique) path from r to v.

A vertex set X ⊆ V (G) is an independent set in G if EG(X,X) = ∅. A vertex
cover in G is a set of vertices Y ⊆ V (G) such that V (G) \ Y is an independent
set, i.e., every edge in E(G) has at least one endpoint in Y . The vertex cover
number vc(G) of a graph G is the smallest size of a vertex cover in G. A graph
is bipartite if there is a partition of V (G) into two independent sets A and B. A
feedback vertex set (FVS) in a graph G is a vertex set X ⊆ V (G) such that G−X
is acyclic. The feedback vertex number of a graph G, denoted by fvs(G), is the
minimum size of a FVS in G.

A vertex v ∈ V (G) is a cut vertex in G if G−v has more connected components
than G. A graph G is biconnected when it is connected and has no cut vertices.
A graph G is 2-connected when it is biconnected and has at least three vertices,
or equivalently, when for every pair of vertices u, v ∈ V (G) there exists a cycle
in G going through both u and v. A biconnected component of a graph is an
inclusion-wise maximal subgraph which is biconnected.

If X is the set of cut vertices in a graph G and Y is the set of biconnected
components of G, then consider the graph T with a vertex vB for each biconnected
component B in G, a vertex vc for each cut vertex c in G, and an edge between a
vertex vB and vc if and only if c ∈ V (B). It can easily be seen that T is bipartite,
but one can also show the stronger claim that T is acyclic [42, Lemma 3.1.4]. For
this reason we call T the block-cut forest , or when G is connected, a block-cut tree.

A graph G is a clique, or a complete graph, if E(G) =
(
V (G)

2

)
. For an integer q,

the graphKq is the complete graph on q vertices. For integers p, q, the graphKp,q is
the bipartite graph (A∪B,E), where |A| = p, |B| = q, and uv ∈ E whenever u ∈ A
and v ∈ B.

A leaf of a (possibly cyclic) graph G is a vertex v for which degG(v) ≤ 1. A

14 Preliminaries

vertex v in a graph G is said to be a universal vertex in G if for all u ∈ V (G)\{v}
we have uv ∈ E(G).

Minors A contraction of uv ∈ E(G) introduces a new vertex adjacent to all
of NG({u, v}), after which u and v are deleted. For A ⊆ V (G) such that G[A]
is connected, contracting A into a new vertex v replaces all vertices of A by the
single vertex v with NG(v) = NG(A), this is equivalent to exhaustively contracting
the edges in G[A].

A graph H is a minor of a graph G if H can be obtained from G by a (possibly
empty) series of edge contractions, edge deletions, and vertex deletions. If this
series is non-empty then H is called a proper minor of G. A minor model of H
(sometimes abbreviated to H-model) in G is a function ϕ : V (H) → 2V (G) such
that

1. for every vertex v ∈ V (H), the graph G[ϕ(v)] is connected,

2. for distinct u, v ∈ V (H) we have ϕ(v) ∩ ϕ(u) = ∅, and

3. for every edge uv ∈ E(H) we have |EG(ϕ(u), ϕ(v))| ≥ 1.

The sets ϕ(v) are called branch sets. Clearly, H is a minor of G if and only if
there is an H-model in G.

Recall that since an H-model ϕ : V (H)→ 2V (G) is a function, we may use the
shorthand notation ϕ(S) =

⋃
v∈S ϕ(v) for a vertex set S ⊆ V (H) and ϕ(H ′) =

ϕ(V (H ′)) for a subgraph H ′ of H. An H-model ϕ is called minimal if there does
not exist an H-model ϕ′ with ϕ′(H) (ϕ(H).

Treewidth A tree decomposition of graph G is a pair (T, χ) consisting of a rooted
tree T and a function χ : V (T)→ 2V (G), such that:

1. for each v ∈ V (G) the nodes {t | v ∈ χ(t)} induce a non-empty connected
subtree of T , and

2. for each edge uv ∈ E(G) there is a node t ∈ V (T) with {u, v} ⊆ χ(t).

The sets χ(t) for t ∈ V (T) are called bags. The width of a tree decomposition
is the size of the largest bag minus one, i.e., maxt∈V (T) |χ(t)| − 1. The treewidth
of a graph G, denoted by tw(G), is the minimum width of a tree decomposition
of G. If w is a constant, then there is a linear-time algorithm that given a graph G
either outputs a tree decomposition of width at most w or correctly concludes that
treewidth of G is larger than w [18].

Graph classes In Chapter 1 we have loosely introduced the idea of sparse graph
classes. A graph class is a collection of graphs. Interesting graph classes often
contain infinitely many graphs that satisfy a certain property, such as being acyclic
or biconnected. A graph class G is sparse if there exists a function f(n) ∈ O(n)

2.2 Graph theory 15

such that for all graphs G ∈ G we have that |E(G)| ≤ f(|V (G)|). Since an acyclic
graph has fewer edges than vertices, the class of acyclic graphs is a sparse graph
class. On the other hand, for any integer n ≥ 0 there is a biconnected graph with n
vertices and

(
n
2

)
= Θ(n2) edges (namely Kn), so the class of all biconnected graphs

is not a sparse graph class.
Planar graphs are graphs that can be embedded in the plane, i.e., they can be

drawn on the plane without crossing edges. In such an embedding, each v ∈ V (G)
is mapped to a point pv on the plane and each edge uv ∈ E(G) to a curve with
endpoints pu and pv whose interior does not intersect any other point or curve
of the drawing. This divides the plane into one or more connected regions, one
of which is infinite. These regions are called faces and the region that is infinite
is called the outer face. Planar graphs on n ≥ 3 vertices have at most 3n − 6
edges, hence the class of planar graphs is a sparse graph class. Outerplanar graphs
(discussed in detail in Chapter 3) are planar graphs that have an embedding in the
plane where all vertices are incident to the outer face. Outerplanar graphs on n
vertices have at most 2n edges [19, Lemma 78, Lemma 91].

Many of the sparse graph classes considered in this thesis can be described by a
set of forbidden minors. If F is a set of graphs then a graph that does not contain
any graph of F as a minor is called F-minor free. When F = {H} is a singleton
set, we often write H-minor free. The class of all K3-minor free graphs is precisely
the class of all acyclic graphs meaning it is a sparse graph class. In fact for any F ,
the class of all F-minor free graphs is a sparse graph class [99].

Similar to F-minor free graphs, a graph that does not contain any graph of F
as a subgraph is called F-subgraph free. However the class of all F-subgraph free
graphs is not necessarily a sparse graph class. For example, for all integers n > 0
there is a K3-subgraph free graph on 2n vertices with 1

2n
2 edges (namely Kn,n),

so the class of all K3-subgraph free graphs is not a sparse graph class.
Of particular interest in this thesis are graph classes that are minor-closed. A

graph class is minor-closed if for any graph G in the graph class, any minor of G
is also contained in the graph class. The class of planar graphs is minor-closed
since, intuitively, if a graph can be drawn on the plane without edge crossings,
then after contracting edges or removing vertices or edges, it can still be drawn
on the plane without edge crossings. Similarly, the class of outerplanar graphs is
minor-closed as well.

An important result in graph theory is the graph minor theorem by Robertson
and Seymour [113], which implies that a minor-closed graph class can be charac-
terized by a finite set of forbidden minors. That is, for any minor-closed graph
class G, there is a finite set of graphs F such that G is F-minor free if and only
if G ∈ G. For the class of planar graphs these forbidden minors are well known
to be K5 and K3,3 [125]. These forbidden minors are sometimes called obstruc-
tions to planarity. For outerplanar graphs the forbidden minors, or obstructions
to outerplanarity, are K4 and K2,3 [42].

Since the treewidth of a graph cannot increase when taking minors, the graph

16 Preliminaries

class consisting of all graphs G with tw(G) ≤ η for some constant η is a minor-
closed graph class, and can therefore be described as an F-minor free graph class
using a specific collection of forbidden minors F depending on η. Determining
the set F of forbidden minors for a given treewidth η is difficult and it is known
that the number of graphs in F increases at least exponentially with η [109], but
possibly much faster. However we do know that at least one of the graphs in F
is planar. This follows from the fact that the η by η grid graph1 is planar and
has treewidth exactly η. Conversely, the grid minor theorem by Robertson and
Seymour [111] shows that there is a function f such that any graph G with tw(G) ≥
f(n) contains �n as a minor, for any n. Since any planar graph is a minor of a
large enough grid, this also implies that there is a bound on the treewidth of graphs
that do not contain a fixed planar graph as minor. Combining these results, it
follows that F-minor-free graphs have bounded treewidth if and only if F contains
a planar graph.

2.3 Hitting forbidden minors

A vertex set X in a graph G for which G − X belongs to a certain graphs class
is called a modulator to this graph class, e.g., a modulator to planarity is a set
of vertices to remove from the graph such that the remaining graph is planar,
or {K5,K3,3}-minor free. Usually the graph class in consideration is clear from
context and we may use the single word “modulator” to describe the set.

Many of the algorithmic problems central to this thesis are about determining
whether a graph has a small modulator to a class of F-minor free graphs. Such a
modulator “hits”, so to speak, all forbidden F-minors in the given graph G, such
that G −X is F-minor free. These problems of hitting forbidden minors are F-
Minor-Free Deletion problems, defined for any fixed finite family of graphs F
as follows.
F-Minor-Free Deletion
Input: A graph G and an integer k
Question: Does there exist a vertex set X ⊆ V (G) of at most k vertices such
that G−X is F-minor free?
In the context of an F-Minor-Free Deletion problem, we may call a mod-

ulator X of size at most k a solution.
Many classic problems in the field of algorithms can be expressed as an F-

Minor-Free Deletion problem. For example Vertex Cover and Feed-
back Vertex Set are equivalent to {K2}-Minor-Free Deletion and {K3}-
Minor-Free Deletion respectively. The {K5,K3,3}-Minor-Free Deletion
and {K4,K2,3}-Minor-Free Deletion problems are commonly referred to as
Planar Deletion and Outerplanar Vertex Deletion. The F-Minor-

1The grid graph �η has vertex set {va,b | a, b ∈ [η]} and edge set {{va,b, va′,b′} | a, a′, b, b′ ∈
[η], |a− a′|+ |b− b′| = 1}).

2.4 Algorithms and complexity 17

Free Deletion problem in general has been studied extensively in recent years [12,
60, 61, 65, 81, 86].

2.4 Algorithms and complexity

A decision problem is commonly defined in complexity theory as a language over
a finite alphabet Σ. Such a language is a set Π ⊆ Σ∗ of finite strings consisting of
elements from Σ. An instance x ∈ Σ∗ of a problem Π is a yes-instance if x ∈ Π
and a no-instance otherwise. Decision problems can be categorized in complexity
classes such as P, NP and coNP. These classes are at the bottom of a hierarchy of
infinitely many classes closed under polynomial-time many-one reductions. This
is called the polynomial hierarchy (cf. [9, Chapter 5]). It is conjectured that all
these classes are distinct. We assume the reader is familiar with polynomial-time
reductions and the classes P, NP, and coNP.

The problems discussed in this thesis are NP-hard, in particular, if each graph
in F contains at least one edge, it follows from the general results of Lewis and
Yannakakis [93] that F-Minor-Free Deletion is NP-hard.

Approximation We define the notion of an approximation algorithm in the
context of F-Minor-Free Deletion problems. For any F and any graph G,
let optF (G) denote the minimum number of vertex deletions to make the graph G
F-minor free, i.e., an instance (G, k) of the F-Minor-Free Deletion problem
is a yes-instance if and only if k ≥ optF (G).

For a constant α > 1, an α-approximation algorithm for F-Minor-Free
Deletion is an algorithm that takes as input a graph G and returns a vertex
set X of size at most α ·optF (G) such that G−X is F-minor free. Approximation
algorithms are useful when they have a substantially better running time than the
best exact algorithms. In this thesis we only consider polynomial-time approxima-
tion algorithms for NP-hard problems. Vertex Cover and Feedback Vertex
Set both admit a polynomial-time 2-approximation algorithm, and in general, all
F-Minor-Free Deletion problems admit a polynomial-time α-approximation
algorithm for some constant α [61].

Parameterized complexity A parameterized decision problem is a language
Π ⊆ Σ∗×N, where each instance (x, k) ∈ Σ∗×N has a parameter k that captures
its complexity in some well-defined way. For example, an instance (x, k) of Vertex
Cover (or any F-Minor-Free Deletion problem) parameterized by solution
size is a yes-instance if x correctly encodes a graph G and G has a vertex cover
(or a modulator to an F-minor free graph) of size at most k. For structural
parameterizations we consider as part of the input a witness for the parameter.
For example, an instance (x, k) of F-Minor-Free Deletion parameterized by
the feedback vertex number is a yes-instance if x encodes a graph G, an integer `,

18 Preliminaries

and a feedback vertex set X of G with |X| = k, and if G has a modulator S to an
F-minor-free graph with |S| ≤ ` (cf. [53, § 2.2]).

The size |(x, k)| of an instance (x, k) of a parameterized problem is conven-
tionally defined as |x| + k, which corresponds to encoding k in unary. This is
how parameterized decision problems correspond to (classical) decision problems.
For a parameterized decision problem Π ⊆ Σ∗ × N the corresponding (classical)
decision problem is a language Π′ ⊆ (Σ ∪ {#})∗ over the alphabet Σ extended
with a separator symbol #, where Π′ contains, for each (x, k) ∈ Π, the string x
followed by # followed by k times some fixed symbol 1 ∈ Σ. When we say a pa-
rameterized decision problem belongs to some class of (classical) decision problems
we formally mean that the decision problem corresponding to the parameterized
decision problem belongs to that class. The problems and parameterizations con-
sidered in this thesis are always such that if (x, k) is a yes-instance then k ≤ |x|,
so we can immediately remove any instance (x, k) with k > |x| from considera-
tion. Hence the value and encoding of k never affects the asymptotic bounds on
the size of a problem instance and we may use |x| in asymptotic bounds rather
than |(x, k)| = |x|+ k.

We say that a parameterized problem Π is fixed-parameter tractable (FPT) if
there is an algorithm that given a parameterized instance (x, k) ∈ Σ∗×N, decides
whether (x, k) ∈ Π in time f(k) · |x|O(1) for some computable function f . For
problems that are FPT, such algorithms allow NP-hard problems to be solved
efficiently on instances whose parameter is small. The class of FPT problems is
closed under parameterized reductions, defined as follows.

Definition 2.4.1 ([35, Definition 13.1]). Let A,B ⊆ Σ∗×N be two parameterized
decision problems. A parameterized reduction from A to B is an algorithm that,
given an instance (x, k) of A, outputs an instance (x′, k′) of B such that

• (x, k) ∈ A if and only if (x′, k′) ∈ B,

• k′ ≤ g(k) for some computable function g, and

• the running time is f(k) · |x|O(1) for some computable function f .

It can be seen that if there is a parameterized reduction from a parameterized
decision problem A to a parameterized decision problem B, then existence of an
FPT algorithm for B immediately yields an FPT algorithm for A. A hierarchy of
complexity classes W[0] ⊆ W[1] ⊆ W[2] ⊆ . . . can be defined using parameterized
reductions, where each class is closed under parameterized reductions. Important
in this thesis are the classes W[0] and W[1]. The class W[0] contains precisely
those parameterixed decision problems that are FPT, and this class is therefore
commonly referred to as FPT. The class W[1] contains all decision problems for
which a parameterized reduction to k-Clique exists; k-Clique is W[1]-complete.
A parameterized decision problem Π is W[1]-hard if there is a parameterized re-
duction from k-Clique to Π. This implies that if any W[1]-hard problem can
be shown to be FPT, then all problems in W[1] are FPT. It is widely believed

2.4 Algorithms and complexity 19

that W[1]-hard problems do not admit an FPT algorithm. For a more elaborate
introduction to the field we refer to the books Parameterized Complexity [47] and
Parameterized Algorithms [35].

All of the F-Minor-Free Deletion problems are fixed-parameter tractable
when parameterized by k [115] and also when parameterized by treewidth [34].

Kernelization A kernelization algorithm is a polynomial-time preprocessing
algorithm that takes as input a parameterized problem instance and returns an
equivalent parameterized problem instance that has a bounded size. Formally, for
a parameterized problem Π ⊆ Σ∗ × N and a function f : N → N, a kernelization
algorithm for Π of size f is an algorithm that, on input (x, k) ∈ Σ∗×N, takes time
polynomial in |x|+ k and outputs (x′, k′) ∈ Σ∗ × N such that

1. (x, k) ∈ Π if and only if (x′, k′) ∈ Π, and

2. both |x′| ≤ f(k) and k′ ≤ f(k).

The term “kernelization algorithm” is sometimes abbreviated to “kernelization”, or
simply “kernel”.

It can easily be seen that if there exists a kernelization algorithm for a decidable
parameterized problem then it can be combined with a brute force algorithm to
obtain an FPT algorithm. So a decidable problem is FPT if there exists a kernel-
ization algorithm for it. The converse is also true, if a problem is fixed-parameter
tractable, i.e., it can be solved in f(k) · nc time for some computable function f
and constant c, then a kernel can be obtained by running this algorithm for nc+1

steps. If this produces an answer then a trivial instance of constant size can be
returned reflecting this answer. If this does not produce an answer then it is
guaranteed that n < f(k) hence the input instance already satisfies the conditions
for the output instance and no modification is required. It follows that a decid-
able parameterized problem is fixed-parameter tractable if and only if it admits
a kernelization algorithm [35, Lemma 2.2]. While all fixed-parameter tractable
problems admit a kernelization, they do not all admit a small kernelization. Of
particular interest are kernels of polynomial size. Determining which parameter-
ized problems admit kernelization algorithms of polynomial size has become a rich
area of algorithmic research [20, 62, 96].

Hardness results for kernelization can be obtained through various methods.
In this thesis we use polynomial-parameter transformations to obtain hardness
results for kernelization.

Definition 2.4.2. A polynomial-parameter transformation from parameterized
problem A to parameterized problem B is a polynomial-time algorithm that, given
an instance (x, k) of A, outputs an instance (x′, k′) of B such that

1. (x, k) ∈ A if and only if (x′, k′) ∈ B, and

2. k′ ≤ f(k) for some polynomial function f .

20 Preliminaries

If for two NP-complete parameterized decision problems A and B there is a
polynomial-parameter transformation from A to B and B admits a polynomial
kernel, then a polynomial kernel for A can be constructed as follows. First apply
the polynomial-parameter transformation to the input instance (x1, k1) to obtain
(in polynomial time) an equivalent instance (x2, k2) of problem B. Then run the
kernelization algorithm on (x2, k2) to obtain an equivalent instance (x3, k3) of
problem B with |x3| ≤ k

O(1)
2 ≤ k

O(1)
1 and similarly k3 ≤ k

O(1)
1 . Finally, since A

and B are NP-complete, there is a polynomial-time algorithm that transforms
the instance (x3, k3) of B into an equivalent instance (x4, k4) of A and since this
algorithm spends only polynomial time in the size of the input |x3| + k3 ≤ k

O(1)
1

we have that the size of the output |x4|+ k4 ≤ (|x3|+ k3)O(1) ≤ kO(1)
1 since it has

to write down the parameter value k4 resulting from the reduction in unary.
Using the observation that polynomial kernels are preserved under polynomial-

parameter transformations, we can transfer known hardness results from one prob-
lem to another. In particular it is known that the cnf-sat problem with clauses
of unbounded size and parameterized by the number of variables does not admit
a polynomial kernel unless NP ⊆ coNP/poly (cf. [72, Lemma 9]), so if there is a
polynomial-parameter transformation from cnf-sat to a parameterized decision
problem Π, then if Π admits a polynomial kernel then so does cnf-sat, i.e., Π
does not admit a polynomial kernel unless NP ⊆ coNP/poly. It is widely believed
that NP 6⊆ coNP/poly, hence this gives strong evidence that such a problem Π
does not admit a polynomial kernel.

There are two important reasons why it is widely believed that NP 6⊆ coNP/poly.
First is its relation to classical complexity. When the conjecture fails and NP ⊆
coNP/poly, then this implies that the polynomial hierarchy collapses to the third
level [127]. This hierarchy is based on satisfiability problems on quantified Boolean
formulas with an increasing number of alternating quantifiers. A collapse of the
polynomial hierarchy to a certain level implies that all Boolean formulas with ar-
bitrarily many alternating quantifiers can be converted in polynomial time into eq-
uisatisfiable formulas with some constant number of alternating quantifiers, which
seems impossible.

Second, it seems fundamentally easier to verify that a Boolean formula is sat-
isfiable (there exists a satisfying assignment) than it is to verify that a Boolean
formula is not satisfiable (there does not exist a satisfying assignment). This sug-
gests that NP and coNP are likely incomparable. We know coNP ⊆ coNP/poly,
so NP 6⊆ coNP does not directly contradict NP ⊆ coNP/poly. However, the sce-
nario that NP 6⊆ coNP but NP ⊆ coNP/poly seems impossible, since access to
polynomial-size advice that may only depend on the length of the input does not
seem of much use when, for example, verifying that a Boolean formula is not satis-
fiable. This is because there are exponentially many formulas of a given length, so
it seems impossible that a polynomial-size advice can be useful for many formulas.

It is unknown whether all F-Minor-Free Deletion problems admit a poly-
nomial kernel when parameterized by k. When F contains a planar graph we

2.4 Algorithms and complexity 21

speak of Planar-F Deletion, and these problems (parameterized by k) admit
a polynomial kernelization [61]. Since under this condition we know that F-minor
free graphs have a bounded treewidth, we have that any solution X is also a mod-
ulator to a graph of bounded treewidth. This insight was crucial to the method
used by Fomin et al. [61] to obtain these polynomial kernels. Kernelizability of
the remaining F-Minor-Free Deletion problem remains an open problem.

Turing kernelization Turing kernelization [54] is a relaxation of the tradi-
tional form of kernelization. Some problems that do not admit polynomial ker-
nelizations, do admit polynomial Turing kernelizations [17, 78, 83, 95, 126]. Note
that a parameterized problem that has a kernel of size O(kc) can be solved by a
polynomial-time algorithm that first spends polynomial time to prepare a query of
size O(kc), and then queries an oracle for its answer. Turing kernelization inves-
tigates if and how polynomial-time algorithms can solve NP-hard parameterized
problems by querying an oracle for the answers to instances of size kO(1), poten-
tially multiple times. Formally, for a parameterized problem Q ⊆ Σ∗ × N and
a function f : N → N, a Turing kernelization of size f is an algorithm taking in-
put (x, k) ∈ Σ∗ × N. This algorithm can query an oracle to obtain the answer to
any instance of problem Q of size and parameter bounded by f(k) in a single step,
and using this power solves any instance (x, k) in time polynomial in |x|+ k.

Similar to how polynomial-parameter transformations (Definition 2.4.2) pre-
serve existence of polynomial kernels for NP-complete problems, they also preserve
existence of polynomial Turing kernels. Hermelin et al. [72] describe a hierarchy of
complexity classes MK[1] ⊆ WK[1] ⊆ MK[2] ⊆ WK[2] ⊆ . . . based on polynomial-
parameter transformations. Relevant in this thesis are WK[1] and MK[2]. A prob-
lem complete for WK[1] is Hitting Set parameterized by the number of sets.
Two problems that are complete for MK[2] are Hitting Set parameterized by
the number of elements in the universe and cnf-sat parameterized by the num-
ber of variables. It is known [72] (cf. [48, Theorem 30.12.3]) that problems that
are WK[1]-hard (and therefore also problems that are MK[2]-hard) do not admit a
polynomial kernel unless NP ⊆ coNP/poly. Additionally it is conjectured (cf. [48,
Conjecture 30.12.1]) that they also do not admit polynomial Turing kernels. As
such, a polynomial-parameter transformation from cnf-sat to a parameterized de-
cision problem Π (which proves MK[2]-hardness of Π) gives strong evidence that Π
does not admit a polynomial Turing kernel.

3
A Kernel for Outerplanar
Vertex Deletion

3.1 Introduction

In this chapter we investigate kernelization for Outerplanar Deletion. This
problem belongs to the class of Planar-F Deletion problems, which consists of
all F-Minor-Free Deletion problems for which the family F contains a planar
graph. Since the family of F-minor-free graphs has bounded treewidth if and
only if F includes a planar graph [111], this restriction ensures that removing a
solution to the problem yields a graph of constant treewidth. Hence any solution is
a treewidth-η modulator for some η ∈ N depending on F . For this more restricted
class Fomin et al. [61] have shown that polynomial kernels exist for each choice
of F . However, the running time of this kernelization algorithm is described by
the authors as “horrendous” and regarding the size the authors state the following
in the arXiv version of their work:

The size of the kernel, however, is not explicit. Several of the constants
that go into the proof of Lemma 29 depend on the size of the largest
graph in certain antichains in a well-quasi-order and thus we don’t
know what the (constant) exponent bounding the size of the kernel is.
We leave it to future work to make also the size of the kernel explicit.

24 A Kernel for Outerplanar Vertex Deletion

For some specific Planar-F Deletion problems kernels with explicit size are
known. Most famous are Vertex Cover and Feedback Vertex Set which ad-
mit kernels with respectively a linear and quadratic number of vertices [30, 76, 121].
Additionally, if θc denotes the graph with two vertices and c ≥ 1 parallel edges,
then {θc}-Minor-Free Deletion admits a kernel with O(k2 log3/2 k) vertices
and edges [60, Theorem 1.2]; note that the cases c = 1 and c = 2 correspond
to Vertex Cover and Feedback Vertex Set. Another problem for which
an explicit kernel size bound is known is Pathwidth-one Deletion, where the
goal is to obtain a graph of pathwidth one, i.e., each connected component is
a caterpillar. First a kernel of quartic size was obtained [105] which was later
improved to a quadratic kernel [37]. If we want to remove at most k vertices
to obtain a graph of treedepth at most η, we obtain the Treedepth-η Dele-
tion problem. Since this property can be characterized by forbidden minors and
bounded treedepth implies bounded treewidth, this problem is also a special case
of Planar-F Deletion. Giannopoulou et al. [65] have shown that for every η,
there is a kernel with 2O(η2) ·k6 vertices for Treedepth-η Deletion. They have
also proven that, unless NP ⊆ coNP/poly, there is no universal constant c for which
all F-Minor-Free Deletion problems admit a kernel of size O(kc) because the
degree of the polynomial which bounds the kernel size must increase as a function
of F .

In this chapter we investigate Outerplanar Deletion, which asks for a
graph G and parameter k whether a set S ⊆ V (G) of size k exists such that G−S
is outerplanar. A graph is outerplanar if it admits a planar embedding for which
all vertices lie on the outer face, or equivalently, if it contains neither K4 nor K2,3

as a minor [42]. An outerplanar graph on n vertices has at most 2n edges [19], so
outerplanar graphs form a sparse graph class. The class of outerplanar graphs is
a rich superclass of forests and are frequently studied in graph theory [28, 33, 43,
55, 120], graph drawing [16, 64, 100], and optimization [41, 94, 101, 107].

Since outerplanarity can be characterized as being {K4,K2,3}-minor free [28],
the problem belongs to the class of Planar-F Deletion problems. It is ar-
guably the easiest problem in the class for which no explicit polynomial kernel
is known. This makes Outerplanar Deletion a well-suited starting point to
deepen our understanding of Planar-F Deletion problems in the search for
explicit kernelization bounds.

Results Let opd(G) denote the minimum size of a vertex set S ⊆ V (G) such
that G− S is outerplanar. Our main result is the following theorem:

Theorem 3.1.1. The Outerplanar Deletion problem admits a polynomial-
time kernelization algorithm that, given an instance (G, k), outputs an equivalent
instance (G′, k′), such that k′ ≤ k, graph G′ is a minor of G, and G′ has O(k4)
vertices and edges. Furthermore, if opd(G) ≤ k, then opd(G′) = opd(G)−(k−k′).

The algorithm behind Theorem 3.1.1 is elementary, consisting of a subroutine
to build a decomposition of the input graph G using marking procedures in a tree

3.1 Introduction 25

decomposition, together with a series of explicit reduction rules. In particular, we
avoid the use of protrusion replacement (summarized below). Concrete bounds
on the hidden constant in the O-notation follow from our arguments. The size
bound depends on the approximation ratio of an approximation algorithm that
bootstraps the decomposition phase, for which the current state-of-the-art is 40.
We will therefore present a formula to obtain a concrete bound on the kernel
size, rather than its value using the current-best approximation (which would
exceed 105).

Theorem 3.1.1 presents the first concrete upper bound on the degree of the poly-
nomial that bounds the size of kernels for Outerplanar Deletion. We hope
that it will pave the way towards obtaining explicit size bounds for all Planar-F
Deletion problems and give an impetus for research on the kernelization complex-
ity of the Planar Deletion problem, which is one of the major open problems
in kernelization today [117, 4:28],[62, Appendix A].

Via known connections [61] between kernelizations that reduce to a minor of
the input graph and bounds on the sizes of obstruction sets, we obtain the following
corollary.

Corollary 3.1.2. If G is a graph such that opd(G) > k but each proper minor G′
of G satisfies opd(G′) ≤ k, then G has O(k4) vertices and edges.

The existence of a polynomial bound with unknown degree follows from the
work of Fomin et al. [61]; Corollary 3.1.2 gives the first explicit size bounds and
contributes to a large body of research on minor-order obstructions (e.g. [27, 44,
45, 46, 91, 114, 116]).

Techniques The known kernelization algorithms [60, 61] for Planar-F Dele-
tion make use of (near-)protrusions. A protrusion is a vertex set that induces a
subgraph of constant treewidth and boundary size. Protrusion replacement is a
technique where sufficiently large protrusions are replaced by smaller ones with-
out changing the answer. Protrusion techniques were first used to obtain kernels
for problems on planar and other topologically-defined graph classes [21]. Later
Fomin et al. [60] described how to use protrusion techniques for problems on gen-
eral graphs. They proved [60, Lemma 3.3] that any graph G, which contains a
modulator X to constant treewidth such that |X| and the size of its neighborhood
can be bounded by a polynomial in k, contains a protrusion of size |V (G)|/kO(1)

that can be found efficiently. For any fixed F containing a planar graph, they
present a method to obtain a small modulator to an F-minor-free graph, which
has constant treewidth. This leads to a polynomial kernel for Planar-F Dele-
tion on graphs with bounded degree since the size of the neighborhood of the
modulator can be bounded so protrusion replacement can be used to obtain a
polynomial kernel. Specifically for {θc}-Minor-Free Deletion they give reduc-
tion rules to reduce the maximum degree in a general graph, which leads to a
polynomial kernel on general graphs.

26 A Kernel for Outerplanar Vertex Deletion

The kernel for Planar-F Deletion given by Fomin et al. [61] does not rely
on bounding the size of the neighborhood of the modulator followed by protrusion
replacement. Instead they present the notion of a near-protrusion: a vertex set
that will become a protrusion after removing any size-k solution from the graph.
With an argument based on well-quasi-ordering they determine that if such near-
protrusions are large enough one can, in polynomial time, reduce to a proper minor
of the graph without changing the answer.

In this chapter we present a method for Outerplanar Deletion to decrease
the size of the neighborhood of a modulator to outerplanarity. This relies on
a process that was called “tidying the modulator” in earlier work [124] and also
used in the kernelization for Chordal Vertex Deletion [82]. The result is a
larger modulator X ⊆ V (G) but with the additional feature that it retains its
modulator properties when omitting any single vertex, that is, G − (X \ {x}) is
outerplanar for each x ∈ X. We proceed by decomposing the graph into near-
protrusions, following along similar lines as the decomposition by Fomin et al. [60]
but exploiting the structure of outerplanar graphs at several steps to obtain such
a decomposition with respect to our larger tidied modulator, without leading to
worse bounds. With the additional properties of the modulator X obtained from
tidying we no longer need to rely on well-quasi-ordering, but instead are able to
reduce the size of the neighborhood of the modulator in two steps. The first
reduces the number of connected components of G − X which are adjacent to
any particular modulator vertex x ∈ X. In the case of {θc}-minor-free graphs,
if G − (X \ {x}) is {θc}-minor free then bounding the number of components
of G − X adjacent to each x ∈ X is sufficient to bound |NG(X)|, since any x ∈
X has less than c neighbors in any component of G − (X \ {x}). One of the
major difficulties we face when working with {K2,3}-minor-free graphs is that
in such a graph there can be arbitrarily many edges between a vertex x and
a connected component of G − (X \ {x}). Therefore we present an additional
reduction rule that reduces, in a second step, the number of edges between a
vertex and a connected component. After these two steps we obtain a bound on
the size of the neighborhood of the modulator. At this point, standard protrusion
replacement could be applied to prove the existence of a kernel for Outerplanar
Deletion with O(k4) vertices. In order to give an explicit kernelization algorithm
we present a number of additional reduction rules to avoid the generic protrusion
replacement technique. This eventually leads to a kernel with at most c·k4 vertices
and edges for Outerplanar Deletion. It is conceptually simple (yet tedious)
to extract the explicit value of c from the algorithm description.

Organization In the next section we give basic definitions and notation we use
throughout the rest of the chapter, together with structural observations for outer-
planar graphs. Section 3.3 describes how we obtain small modulators to outerpla-
narity with progressively stronger properties, and finally we obtain a modulator of
size O(k4) such that each remaining component has only 4 neighbors in the mod-

3.2 Preliminaries 27

ulator, effectively forming a decomposition into protrusions. The second stage of
the kernelization reduces the size of the connected components outside the modu-
lator. These reduction rules are described in Section 3.4. In Section 3.5 we finally
tie everything together to obtain a kernel with O(k4) vertices and edges.

3.2 Preliminaries

Graph theory The boundary of a vertex set S ⊆ V (G) is the set ∂G(S) =
NG(V (G) \ S).

Definition 3.2.1. For a vertex set S ⊆ V (G), we refer to the graph induced by S
and its neighbors as G〈S〉 = G[NG[S]].

When H is an induced subgraph of G we write briefly G〈H〉 = G〈V (H)〉
and ∂G(H) = ∂G(V (H)).

For two disjoint sets X,Y ⊆ V (G), we say that S ⊆ V (G) \ (X ∪ Y) is an
(X,Y)-separator if the graph G−S does not contain any path from any u ∈ X to
any v ∈ Y . By Menger’s theorem, if x, y ∈ V (G) are non-adjacent in G then the
size of a minimum (x, y)-separator is equal to the maximum number of internally
vertex-disjoint paths from x to y.

Definition 3.2.2. For a vertex set X ⊆ V (G) the component graph C(G,X) is the
bipartite graph (X ∪ Y,E) with bipartition X,Y , where Y is the set of connected
components of G−X, and (v, C) ∈ E if there is at least one edge between v ∈ X
and the component C ∈ Y .

Planar and outerplanar graphs A plane embedding of graph G is given by
a mapping from V (G) to R2 and a mapping that associates with each edge uv ∈
E(G) a simple curve on the plane connecting the images of u and v, such that the
curves given by two distinct edges can intersect only at the image of a vertex that
is a common endpoint of both edges. A face in a plane embedding of a graph G
is a subset of the plane enclosed by images of some subset of the edges. We say
that a vertex v lies on a face f if the image of v belongs to the closure of f . In
every plane embedding there is exactly one face of infinite area, referred to as the
outer face. Let F denote the set of faces in a plane embedding of G. Then Euler’s
formula states that |V (G)| − |E(G)|+ |F | = 2. Given a plane embedding of G we
define the dual graph Ĝ with V (Ĝ) = F and edges given by pairs of distinct faces
that are incident to an image of a common edge from E(G). A weak dual graph is
obtained from the dual graph by removing the vertex created in place of the outer
face.

A graph is called planar if it admits a plane embedding. By Wagner’s theorem,
a graph G is planar if and only if G contains neither K5 nor K3,3 as a minor. A
graph is called outerplanar if it admits a plane embedding with all vertices lying
on the outer face. A graph G is outerplanar if and only if G contains neither K4

28 A Kernel for Outerplanar Vertex Deletion

e ee

e

Figure 3.1 The figure shows the induced subgraphs on which Condition 1 of
Lemma 3.2.4 has to be evaluated.

nor K2,3 as a minor [28]. If a graph G is planar (resp. outerplanar) and H
is a minor of G, then H is also planar (resp. outerplanar). The weak dual of an
embedded biconnected outerplanar graph G is either the null graph, if G is a single
edge or vertex, or a tree otherwise [55]. A graph G is planar (resp. outerplanar) if
and only if every biconnected component in G induces a planar (resp. outerplanar)
graph.

Observation 3.2.3. Let v ∈ V (G). The graph G is outerplanar if and only if for
each connected component C of G− v the graph G〈C〉 is outerplanar.

For a graph G we call S ⊆ V (G) an outerplanar deletion set if G − S is
outerplanar. The outerplanar deletion number of G, denoted opd(G), is the size
of a smallest outerplanar deletion set in G.

Structural properties of outerplanar graphs We present a number of struc-
tural observations of outerplanar graphs which will be useful in our later argumen-
tation. The first is a characterization of outerplanar graphs similar to Observa-
tion 3.2.3. Rather than looking at the components of a graph with one vertex
removed, it considers the components of a graph with both endpoints of an edge
removed. This allows us for example to easily argue about outerplanarity of graphs
obtained from “gluing” two outerplanar graphs on two adjacent vertices, see also
Figure 3.1. Recall that G〈C〉 = G[NG[V (C)]].

Lemma 3.2.4. Let G be a graph and e ∈ E(G). Then G is outerplanar if and
only if both of the following conditions hold:

1. for each connected component C of G−V (e) the graph G〈C〉 is outerplanar,
and

2. the graph G \ e, obtained from G by removing the edge e, does not have three
induced internally vertex-disjoint paths connecting the endpoints of e.

3.2 Preliminaries 29

Proof. (⇒) Suppose G is outerplanar. Then every subgraph of G is outerplanar,
showing the first condition holds. If G \ e has three induced internally vertex-
disjoint paths connecting the endpoints of e = xy, then each path has at least one
interior vertex which shows that G has a K2,3-minor, contradicting outerplanarity
of G.

(⇐) Suppose the two conditions hold, and suppose for a contradiction that G
is not outerplanar. Then G contains K4 or K2,3 as a minor. We consider the two
cases separately.

G has a K2,3-minor. Suppose that G contains K2,3 as a minor. It is easy
to see that there exist two vertices u, v ∈ V (G) and three disjoint connected
vertex sets A1, A2, A3 such that Ai contains a vertex of both NG(u) and NG(v)
for all i ∈ [3]. Let Gi be the graph obtained from G[{u, v} ∪ Ai] by removing the
edge uv, if it exists. There exists an (u, v)-path in Gi, so by taking a shortest path
there exists an induced (u, v)-path Pi in Gi. Since the edge uv does not belong
to Gi, path Pi has at least one interior vertex. The three (u, v)-paths P1, P2, P3

in G obtained in this way are internally vertex-disjoint, have at least one interior
vertex, and are induced after removing the edge uv if it exists. We use this to
derive a contradiction.

If the edge uv exists and is equal to e, then the existence of P1, P2, P3 shows that
the second condition is violated and leads to a contradiction. So in the remainder,
we may assume that e 6= uv. Hence at least one vertex of {u, v} lies in a connected
component C of G − V (e). Assume without loss of generality that u /∈ V (e)
and u lies in V (C). We show that v ∈ V (G〈C〉) in this case. Suppose that v
does not belong to G〈C〉. Then in particular v /∈ V (e) and the vertices V (e)
separate u from v; but since P1, P2, P3 are three internally vertex-disjoint paths,
vertices u and v cannot be separated by the set V (e) of two vertices. It follows
that u, v ∈ V (G〈C〉).

We claim that each path Pi is a subgraph of G〈C〉. To see this, note that the
path starts and ends in G〈C〉. The two vertices V (e) are the only vertices of G〈C〉
which have neighbors in G outside G〈C〉. So a path starting and ending in G〈C〉
has to leave G〈C〉 at one vertex of V (e) and enter G〈C〉 at the other; but then e
is a chord of this path other than uv. Since the paths Pi do not have such chords,
it follows that each path Pi is a subgraph of G〈C〉.

By the above we have that the graph G〈C〉 contains three internally vertex-
disjoint paths P1, P2, P3 with at least one interior vertex each. But then G〈C〉
contains K2,3 as a minor and is not outerplanar; a contradiction to the first con-
dition.

G has a K4-minor. In the remainder, we may assume that G contains K4 as
a minor but does not contain K2,3 as a minor, as otherwise the previous case ap-
plies. Observe that this means that G contains K4 as a subgraph: any subdivision
of K4 leads to a K2,3 minor.

30 A Kernel for Outerplanar Vertex Deletion

So let H be a K4 subgraph in G. Observe that there cannot be two connected
components of G − V (e) that both contain a vertex of H: any two vertices of
the clique H are connected by an edge, which merges the connected components.
So there is one connected component C of G − V (e) that contains all vertices
of V (H) \ V (e). But then H is a subgraph of G〈C〉, proving that G〈C〉 is not
outerplanar and contradicting the first condition.

In order to more easily apply Lemma 3.2.4, we show that no two induced paths
as referred to in Lemma 3.2.4(2) can lie in the same connected component C as
referred to in Lemma 3.2.4(1).

Lemma 3.2.5. Suppose G is outerplanar with an edge uv ∈ E(G). If P1, P2 are
internally vertex-disjoint (u, v)-paths in G \uv, then the interiors of P1 and P2 lie
in different connected components of G− {u, v}.
Proof. Suppose for contradiction that the interiors of P1 and P2 are in the same
connected component of G − {u, v}, and let P be a path from V (P1) to V (P2)
in G − {u, v}. Let G′ be the graph obtained from G by contracting the interiors
of P1 and P2 into a single vertex p1 and p2 respectively and contracting P to realize
the edge p1p2. Clearly G′ is a minor of G so then G′ doesn’t contain a K4-minor.
Observe however that {u, v, p1, p2} induce aK4 subgraph inG′. Contradiction.

We now give a condition under which an edge can be added to an outerplanar
graph without violating outerplanarity. Intuitively, this corresponds to adding an
edge between two vertices that lie on the same interior face.

Lemma 3.2.6. Suppose G is outerplanar and vertices x, y lie on an induced cy-
cle D with xy /∈ E(G). Then adding the edge xy to G preserves outerplanarity.

Proof. Let D1, D2 be the two parts of the cycle D − {x, y}. We claim that D1

and D2 belong to different connected components of G − {x, y}. Suppose not,
and let P be a path from V (D1) to V (D2) in G − {x, y} that intersects V (D1)
and V (D2) in exactly one vertex v1 and v2, respectively. The path P has at
least one interior vertex since the cycle D is induced. But then P together with
the two induced (v1, v2)-paths along D give a K2,3-minor; a contradiction to the
assumption that G is outerplanar.

Hence D1 and D2 belong to different connected components of G − {x, y}.
Let G′ be the graph obtained from G by adding the edge xy. We show that for
each connected component C of G′ − {x, y} the graph G′〈C〉 is a minor of G and
therefore outerplanar. This follows from the fact that, by the argument above, C
contains at most one segment of the cycle D and therefore we can contract the
remaining segment to realize the edge xy.

Using the above, we prove that G′ is outerplanar by applying Lemma 3.2.4
to edge xy. The preceding argument shows that the first condition is satisfied.
To see that the second condition is satisfied as well, note that G is outerplanar
and therefore G′ \ xy = G does not contain three internally vertex-disjoint paths
connecting the endpoints of e.

3.2 Preliminaries 31

Finally, we observe that if an outerplanar graph G has a cycle C, then any
component of G−V (C) is adjacent to at most two vertices of the cycle (else there
would be a K4 minor), and these must be consecutive on the cycle (else there
would be a K2,3 minor).

Lemma 3.2.7. If C is a cycle in an outerplanar graph G, then each connected
component of G − V (C) has at most two neighbors in C, and they must be con-
secutive along the cycle.

Proof. Suppose for a contradiction that some component D of G− V (C) has two
neighbors x, y which are not consecutive along C. Then the cycle provides two
vertex-disjoint (x, y)-paths with at least one interior vertex each, and componentD
provides a third (x, y)-path with an interior vertex. This yields a K2,3-minor
where {x} and {y} are the branch sets of the degree-3 vertices, contradicting
outerplanarity.

Now suppose that some component D of G−V (C) has three or more neighbors
on C. Let P1, P2, P3 be three vertex-disjoint paths that cover the entire cycle C
such that each path contains a neighbor of D and observe that V (P1), V (P2),
V (P3), V (D) form the branch sets of a K4-minor in G, contradicting outerpla-
narity.

LCA closure If a graph is outerplanar, then its treewidth is at most 2 [19,
Lemma 78]. Since n-vertex graphs of treewidth w can have at most w ·n edges [19,
Lemma 91] we obtain the following.

Observation 3.2.8. If G is an outerplanar graph, then |E(G)| ≤ 2 · |V (G)|.

Let T be a rooted tree and S ⊆ V (T) be a set of vertices in T . We define
the lowest common ancestor (LCA) of u and v (not necessarily distinct), denoted
as LCA(u, v), to be the deepest node x which is an ancestor of both u and v. The
LCA closure of S is the set

LCA(S) = {LCA(u, v) : u, v ∈ S}.

Lemma 3.2.9. [62, Lemmas 9.26, 9.27, 9.28] Let T be a rooted tree, S ⊆ V (T),
and M = LCA(S). All of the following hold.

1. Each connected component C of T −M satisfies |NT (C)| ≤ 2.

2. |M | ≤ 2 · |S| − 1.

3. LCA(M) = M .

Lemma 3.2.10. If (T, χ) is a tree decomposition of width at most c of a graph G,
and B ⊆ V (T) is a set of nodes of T closed under taking lowest common ancestors
(i.e., LCA(B) = B), then for M =

⋃
t∈B χ(t) and any connected component C

of G−M we have |NG(C) ∩M | ≤ 2c.

32 A Kernel for Outerplanar Vertex Deletion

Proof. Let TC denote the subgraph of T induced by the nodes whose bag contains
a vertex of C. Since C is a connected component of G−M , we have V (TC)∩B = ∅
and TC is a connected tree rather than a forest. Hence there exists a tree T ′ in
the forest T − B such that TC is a subtree of T ′. Since B is closed under taking
lowest common ancestors, it follows from Lemma 3.2.9 that for Z := NT (V (T ′))
we have |Z| ≤ 2. For each z ∈ Z, let f(z) denote the first node outside V (TC) on
the unique shortest path in T from V (TC) to z. Note that we may have z = f(z).
Let g(z) denote the unique neighbor in T of node f(z) among V (TC). Observe
that both f(z) and g(z) lie on each path in T connecting a node of TC to z.

By definition of TC we have that each bag of TC intersects V (C) while χ(f(z))
does not. Hence χ(f(z)) 6= χ(g(z)). As each bag has size at most c + 1, it
follows that |χ(f(z)) ∩ χ(g(z))| ≤ c for each z ∈ Z. To prove the desired
claim that |NG(C) ∩M | ≤ 2c, it therefore suffices to argue that NG(C) ∩M ⊆⋃
z∈Z(χ(f(z)) ∩ χ(g(z))).
Consider a vertex v ∈ NG(C) ∩ M . We argue that v ∈ χ(f(z)) ∩ χ(g(z))

for some z ∈ Z, as follows. Since v ∈ M , there exists a node b∗ ∈ B such
that v ∈ χ(b∗). Since v ∈ NG(C) there exists u ∈ V (C) such that {u, v} ∈ E(G).
Hence there is a bag in the tree decomposition containing both u and v, and as
vertices of V (C) only occur in bags of the subtree TC , we find that v occurs in at
least one bag of TC . Since the occurrences of v form a connected subtree of T ,
and v appears in at least one bag of TC and at least one bag of B, while the only
neighbors in B of the supertree T ′ of TC are the nodes in Z, it follows that v
occurs in at least one bag χ(z) for some z ∈ Z. But since all paths from TC to z
pass through f(z) and g(z) as observed above, this implies z ∈ χ(f(z)) ∩ χ(g(z));
this concludes the proof.

3.3 Splitting the graph into pieces

In this section we show how to reduce any input of Outerplanar Deletion to
an equivalent instance which admits a decomposition into a modulator of bounded
size along with a bounded number of outerplanar components containing at most
four neighbors of the modulator.

3.3.1 The augmented modulator

The starting point for both our kernelization algorithm and the one from Fomin
et al. [61] is to employ a constant-factor approximation algorithm. We however
begin with a different approximation algorithm, which has two advantages. First,
the algorithm is constructive: it relies only on separating properties of bounded-
treewidth graphs and rounding a fractional solution from a linear programming
relaxation. Second, the approximation factor can be pinned down to a concrete
value.

3.3 Splitting the graph into pieces 33

Theorem 3.3.1. [71] There is a polynomial-time deterministic 40-approximation
algorithm for Outerplanar Deletion.

Proof. The article [71] only states that the approximation factor is constant. How-
ever, it also provides a recipe to retrieve its value. From [71, Theorem 1.1] we get
that the approximation factor for Outerplanar Deletion is 2 · α(3), for a
function α satisfying the following: the problem k-Subset Vertex Separator
admits a polynomial-time (α(k),O(1))-bicriteria approximation algorithm. With-
out going into details, one can check that such an algorithm has been given by
Lee [92]: by examining the proof of Lemma 2 therein for ε = 1

4 we see that one
can construct a polynomial-time (8 · H2k, 2)-bicriteria approximation algorithm,
where Hk is the k-th harmonic number. We check that 2 · 8 · H6 < 40. Both
algorithms in question are deterministic.

In our setting, for a given graph G and integer k, we want to determine
whether G admits an outerplanar deletion set of size at most k. Thanks to the
theorem above, we can assume that we are given an outerplanar deletion set X
(also called a modulator to outerplanarity) of size at most 40 · k. As a next step,
we would like to augment this set to satisfy a stronger property. This step is
inspired by the technique of tidying the modulator from van Bevern, Moser, and
Niedermeier [124]. For each vertex v ∈ X we would like to be able to “put it
back” into G − X while maintaining outerplanarity. In order to do so, we look
for a set of vertices from V (G) \ X that needs to be removed if v is put back.
Since G−X is outerplanar and hence has treewidth at most two, we can construct
such a set of moderate size by a greedy approach. We scan a tree decomposition in
a bottom-up manner and look for maximal subgraphs that are outerplanar when
considered together with v. When such a subgraph cannot be further extended we
mark one bag of a decomposition, which gives 3 vertices to be removed. We show
that this idea leads to a 3-approximation algorithm. While this approach based
on covering/packing duality is well-known, we present the proof for completeness.

Lemma 3.3.2. There is a polynomial-time algorithm that, given a graph G, an
integer k, and a vertex v such that G−v is outerplanar, either finds an outerplanar
deletion set S ⊆ V (G) \ {v} in G of size of most 3k or correctly concludes that
there is no outerplanar deletion set S ⊆ V (G) \ {v} in G of size of most k.

Proof. Since G− v is outerplanar, its treewidth is at most two. A tree decompo-
sition (T, χ) of G− v of this width can be computed in linear time [18].

Consider a process in which we scan the tree decomposition in a bottom-up
manner and mark some nodes of T . In the i-th step we will mark a node ti ∈
V (T) and maintain a family Y1, . . . , Yi of disjoint subsets of V (G) \ {v}, so that
for each j ∈ [i] the graph G[Yi ∪ {v}] is not outerplanar. We begin with no
marked vertices and an empty family of vertex sets. Let U(t) be the set of vertices
appearing in a bag in the subtree of T rooted at t ∈ V (T). In the i-th step we
choose a lowest node ti ∈ V (T) (breaking ties arbitrarily), so that U(ti) ∪ {v} \

34 A Kernel for Outerplanar Vertex Deletion

⋃i−1
j=1 Yj induces a non-outerplanar subgraph of G. If there is no such node, we

terminate the process. Otherwise we set Yi = U(ti) \
⋃i−1
j=1 Yj and continue the

process.
By the definition, the sets Y1, . . . , Yi are disjoint and each of them, when consid-

ered together with v, induces a subgraph which is not outerplanar. Suppose that
the procedure has executed for at least k+1 steps. Then for any set S ⊆ V (G)\{v}
of size of most k, there is some i ∈ [k+1] such that Yi∩S = ∅. Since G[Yi∪{v}] is
not outerplanar, we can conclude that S is not an outerplanar deletion set. Hence
we can conclude that no set as desired exists and terminate.

Suppose now that the procedure has terminated at the k′-th step, where k′ ≤ k.
Since ti is chosen as a lowest node among those satisfying the given condition, we
get that U(ti) ∪ {v} \ (χ(ti) ∪

⋃i−1
j=1 Yj) induces an outerplanar subgraph of G.

Observe that S =
⋃k′
j=1 χ(tj) separates Yi from Yj in G − v for each pair 1 ≤

i < j ≤ k′, because in particular χ(ti) ⊆ S. Let Y0 = V (G) \
⋃k′
j=1 Yj . Then

also G[Y0 ∪ {v}] is outerplanar and S separates Y0 from any Yi in G − v. We
apply Observation 3.2.3 to G− S with cut vertex v and check that any connected
component C of G − S − v is contained in some set Yi, so G〈C〉 is outerplanar,
and thus G − S is outerplanar. The size of each bag in (T, χ) is at most 3,
hence |S| ≤ 3k′ ≤ 3k. The claim follows.

Observe that if it is impossible to remove k vertices avoiding v from G− (X \
{v}) to make it outerplanar, then any outerplanar deletion set in G of size at
most k must contain v. In this situation it suffices to solve the problem on G− v.
Otherwise, we identify a set R(v) of at most 3k vertices whose removal allows v to
be put back in G −X without spoiling outerplanarity. After inserting R(v) into
the set X, we could put v back “for free”. Let us formalize this idea of augmenting
the modulator.

Definition 3.3.3. A (k, c)-augmented modulator in graph G is a pair of disjoint
sets X0, X1 ⊆ V (G) such that:

1. G−X0 is outerplanar,

2. for each v ∈ X0, there is a set R(v) ⊆ X1, such that |R(v)| ≤ 3k and G −
((X0 \ {v}) ∪R(v)) is outerplanar, and

3. |X0| ≤ c · k, X1 =
⋃
v∈X0

R(v), which implies |X1| ≤ 3c · k2.

We classify the pairs of vertices within X0 ∪X1. A pair (u, v) : u, v ∈ X0 ∪X1 is
of type:

A: if u, v ∈ X0 or (u ∈ X0, v ∈ R(u)) or (v ∈ X0, u ∈ R(v)),

B: if (u, v) is not of type A and {u, v} ∩X0 6= ∅,

C: if u, v ∈ X1.

3.3 Splitting the graph into pieces 35

We note that the number of type-A pairs is at most c(3 + c) · k2, the number of
type-B pairs is at most 3c2 ·k3, and the number of type-C pairs is at most 9c2 ·k4.

The downside of the augmented modulator is that its size can be as large
as O(k2). However, in return we obtain an even stronger property than previously
sketched. For most of the pairs of vertices u, v from the augmented modula-
tor (X0, X1), putting them back into G − (X0 ∪ X1) at the same time still does
not break outerplanarity. This property will come in useful for bounding the size
of the kernel.

Observation 3.3.4. Let (X0, X1) be a (k, c)-augmented modulator in a graph G.
Then for each v ∈ X0 ∪ X1, the graph G − (X0 ∪ X1 \ {v}) is outerplanar.
Furthermore, if u, v ∈ X0 ∪ X1 and the pair (u, v) is of type B or C, then the
graph G− (X0 ∪X1 \ {u, v}) is outerplanar.

Let us summarize what we can compute so far. We say that instances (G, k)
and (G′, k′) are equivalent if opd(G) ≤ k ⇔ opd(G′) ≤ k′.

Lemma 3.3.5. There is a polynomial-time algorithm that, when given an in-
stance (G, k), either correctly concludes that opd(G) > k or outputs an equiv-
alent instance (G′, k′), where k′ ≤ k and G′ is a subgraph of G, along with a
(k′, 40)-augmented modulator in G′. If opd(G) ≤ k then it holds that opd(G′) =
opd(G)− (k− k′). Moreover, if for every vertex v ∈ V (G) there is an outerplanar
deletion set S ⊆ V (G) \ {v} in G of size at most k, then k′ = k.

Proof. We run the 40-approximation algorithm from Theorem 3.3.1 to obtain an
outerplanar deletion set X0. If |X0| > 40 · k, we conclude that opd(G) > k.
Otherwise, we iterate over v ∈ X0 and execute the subroutine from Lemma 3.3.2
with respect to the graph Gv = G − (X0 \ {v}). If for any vertex v we have
concluded that Gv does not admit any outerplanar deletion set S ⊆ V (Gv) \ {v}
of size at most k, then the same holds for G. This implies that any outerplanar
deletion set in G of size at most k (if there is any) must include the vertex v and the
instance (G−v, k−1) is equivalent to (G, k). Furthermore, in this case opd(G′) =
opd(G) − 1 as long as opd(G) ≤ k. We can thus remove the vertex v from G,
decrease the value of parameter k by 1, and start the process from scratch. If
during this process we reach an instance (G′, 0), then (G, k) is satisfiable if and
only if G′ is outerplanar. Observe that if for every vertex v ∈ V (G) there is an
outerplanar deletion set S ⊆ V (G) \ {v} in G of size at most k, then this holds
also for the graph Gv and thus we will not apply the reduction rule decreasing the
value of k.

Suppose now that for each v ∈ X0 we have obtained a set Sv ⊆ V (Gv) \ {v} of
size at most 3k such that G−((X0\{v})∪Sv) is outerplanar. Then setting R(v) =
Sv and X1 =

⋃
v∈X0

R(v) satisfies the requirements of Definition 3.3.3.

The reduction step above is the only one in our algorithm that may decrease
the value of k. Moreover, no further reduction will modify the outerplanar deletion

36 A Kernel for Outerplanar Vertex Deletion

X

u

v

k + 3O(k2)

Figure 3.2 Illustration of Reduction Rule 3.1. For each pair u, v ∈ X = X0∪X1

we choose up to k+ 3 components of G−X with edges to both u and v and mark
the corresponding edges in the component graph C(G,X). If a pair (v, C) is not
marked in the end, all the edges between v and C are removed.

number as long as opd(G) ≤ k. This observation will come in useful for bounding
the size of minimal minor obstructions to having an outerplanar deletion set of
size k.

As the next step, we would like to bound the number of connected components
in G − (X0 ∪ X1) and the number of connections between the components and
the modulator vertices. We show that if vertices u, v ∈ X0 ∪ X1 are adjacent
to sufficiently many components, then at least one of u, v must be removed in
any solution of size at most k. Together with the “putting back” property of the
augmented modulator, this allows us to forget some of the edges without modifying
the space of solutions of size at most k. We formalize this idea with the following
marking scheme, an illustration of which can be found in Figure 3.2.

Reduction Rule 3.1. Let G be a graph, k ∈ N, and (X0, X1) be a (k, c)-
augmented modulator in G. Consider the component graph C(G,X0 ∪ X1). For
each pair u, v ∈ X0 ∪X1 choose up to k + 3 components Ci with edges to both u
and v, and mark the edges (u,Ci), (v, Ci) in C(G,X0 ∪ X1). If an edge (v, C) is
unmarked in the end, remove all the edges between v and C in G. If some com-
ponent C of G − (X0 ∪X1) or a vertex v ∈ X0 ∪X1 becomes isolated, remove it
from G.

Lemma 3.3.6 (Safeness). Let G be a graph, k ∈ N, and (X0, X1) be a (k, c)-
augmented modulator in G. Let G′ be obtained from G by applying Reduction
Rule 3.1 with respect to (X0, X1, k). If opd(G) > k then opd(G′) > k and
if opd(G) ≤ k then opd(G′) = opd(G).

Proof. It suffices to show that any solution in G′ of size at most k is also valid in G.
Removing an outerplanar connected component is always safe so it suffices to argue
for the correctness of the edge removal rule. Consider a single step of the reduction

3.3 Splitting the graph into pieces 37

in a graph G, in which we have removed the edges between vertex v ∈ (X0 ∪X1)
and a connected component C of G − (X0 ∪X1). Let G′ be the graph after this
modification and S be an outerplanar deletion set of size at most k in G′. If v ∈ S,
then G′ − S = G− S so let us assume that v 6∈ S.

Suppose there is another u ∈ X0 ∪ X1 with an edge to C in G. Since the
pair (v, C) was not marked, there are k + 3 components Ci, different from C,
of G − (X0 ∪X1) with edges to both u and v. These pairs were marked, so they
cannot be removed in any previous reduction step. By a counting argument, at
least 3 of these components have empty intersections with S. If u 6∈ S, then these
components together with {u, v} form a minor model of K2,3 in G′ − S, which is
not possible. Therefore, u ∈ S.

It follows that v is the only neighbor of C in G − S. By Observation 3.3.4
we can “put back” v into G − (X0 ∪X1) without spoiling the outerplanarity and
so the graph (G − S)〈C〉 being the subgraph of G[C ∪ {v}] is outerplanar. The
graph G−S−C is a subgraph of G′−S, so it is also outerplanar. The intersection
of their vertex sets is exactly {v} so from Observation 3.2.3 we obtain that G− S
is outerplanar.

Now we show that after application of Reduction Rule 3.1 the component
graph C(G,X0 ∪ X1) cannot be too large. This will come in useful for proving
further upper bounds. We could trivially bound the number of its edges by |X0 ∪
X1|2 · (k+ 3) = O(k5) but, thanks to the properties of the augmented modulator,
we can be more economical. First, we need a simple observation about bipartite
outerplanar graphs.

Proposition 3.3.7. Consider an outerplanar bipartite graph (X ∪Y,E) such that
all the vertices in Y have degree at least two. Then |Y | ≤ 4 · |X| and |E| ≤ 10 · |X|.

Proof. Remove part of the edges so that each vertex in Y has degree exactly two.
Now contract each vertex from Y to one of its neighbors. The constructed graph
is a minor of (X∪Y,E) with a vertex set X, so it is outerplanar and the number of
edges is at most 2 · |X| by Observation 3.2.8. Each edge could have been obtained
by at most 2 different contractions, as otherwise (X ∪ Y,E) would contain K2,3

as a minor. Therefore |Y | ≤ 4 · |X|. Again by Observation 3.2.8, the number of
edges in (X ∪ Y,E) is at most 2 · (|X|+ |Y |) ≤ 10 · |X|.

Recall the types of pairs from Definition 3.3.3 and their properties from Ob-
servation 3.3.4. We know that the number of type-A pairs is at most c(3 + c) · k2
and the number of type-B pairs is at most 3c2 · k3. Moreover, pairs of type B can
be inserted back into G− (X0 ∪X1) without affecting its outerplanarity.

Lemma 3.3.8. After the application of Reduction Rule 3.1 with respect to a (k, c)-
augmented modulator (X0, X1), the component graph C(G,X0 ∪ X1) contains at
most f1(c) · (k + 3)3 vertices and edges, where f1(c) = 14c2 + 60c.

38 A Kernel for Outerplanar Vertex Deletion

Proof. For pairs of type A we have marked at most (k + 3) · c(3 + c) · k2 edges.
If (u, v) is of type B, then by Observation 3.3.4 the graph G− (X0 ∪X1 \ {u, v})
is outerplanar and there can be at most 2 components adjacent to both u, v as
otherwise we would obtain a K2,3-minor. Hence, for pairs of type B we have
marked at most 2 · 3c2 · k3 edges.

Next, we argue that the total number of edges marked due to pairs of type C
is 30c · k2. Let EC ⊆ E(C(G,X0 ∪X1)) denote the set of these edges. Let YC ⊆
V (C(G,X0 ∪ X1)) be the set of these connected components of G − (X0 ∪ X1)
which are incident to at least one edge from EC in C(G,X0∪X1). By the definition
of the marking scheme, if C ∈ YC then C is in fact incident to at least 2 edges
from EC , and their other endpoints belong to X1. Consider the subgraph (X1 ∪
YC , EC) of C(G,X0 ∪X1). It is a minor of G−X0, therefore it is outerplanar. By
Proposition 3.3.7, we get that |EC | ≤ 10 · |X1| = 10 · 3c · k2.

We can thus estimate the number of edges in C(G,X0∪X1) by (7c2 + 3c) · (k+
3)3 + 30c · k2 ≤ (7c2 + 30c) · (k + 3)2. Finally, since C(G,X0 ∪ X1) contains no
isolated vertices, the number of vertices is at most twice the number of edges.

3.3.2 The outerplanar decomposition

We proceed by enriching the augmented modulator further. We would like to pro-
vide additional properties at the expense of growing the modulator size to O(k3).
For two vertices u, v in an augmented modulator (X0, X1) ideally we would like
to ensure that no component of G − (X0 ∪X1 ∪ Z) is adjacent to both u and v,
where Z is some vertex set of size O(k3). This is not always possible, but we will
guarantee that in such a case any outerplanar deletion set of size at most k must
contain either u or v.

Definition 3.3.9. Let Y ⊆ V (G) be a vertex subset in a graph G. We say
that u, v ∈ Y are Y -separated if no connected component of G− Y is adjacent to
both u and v.

In Lemma 3.3.11 we are going to show that when G is outerplanar and X ⊆
V (G), then there always exists a small set Y ⊆ V (G) so that every pair from X
is (X ∪ Y)-separated. Towards that goal, we need the following proposition.

Proposition 3.3.10. Let X ⊆ V (G) be an independent set in an outerplanar
graph G. Then there exists v ∈ X and S ⊆ V (G) \ X of size at most four, so
that S is a (v,X \ v)-separator in G.

Proof. Consider a tree decomposition (T, χ) of G of width two where T is rooted
at an arbitrary node r. For a vertex v ∈ V (G) let tv ∈ V (T) be the node which
is closest to the root r, among those whose bag contain v. Consider v ∈ X for
which tv is furthest from the root (if there are many, pick any of them) and let
Bv := χ(tv). By standard properties of tree decompositions, any path from v
to X \ v either goes through Bv \ v or ends at Bv \ v.

3.3 Splitting the graph into pieces 39

If (Bv \v)∩X = ∅, set S = Bv \v. If Bv \v = {u1, u2}, where u1 ∈ X, u2 6∈ X,
consider a minimal (v, u1)-separator S′ and set S = S′ ∪ {u2}. There cannot
be three vertex-disjoint paths connecting v, u1 as vu1 6∈ E(G) and this would
give a minor model of K2,3 in G. Therefore by Menger’s theorem we have |S′| ≤ 2
and |S| ≤ 3. Finally, suppose (Bv\v) ⊆ X. In this case, let S be a minimal (v,Bv\
v)-separator. If there were five vertex-disjoint paths connecting v and Bv \ v then
in particular there would be three vertex-disjoint paths connecting v and some u ∈
Bv \ v, which would again give a minor model of K2,3 in G. Therefore |S| ≤ 4.

Suppose there is a path in G \ S connecting v with some x ∈ X \ v. It
contains a subpath connecting v with some u ∈ Bv \ v. If u 6∈ X, then u ∈ S, so
suppose that u ∈ X. But S contains a (v, u)-separator, so such path cannot exist
in G− S.

Lemma 3.3.11. There is a polynomial-time algorithm that, given a vertex set X ⊆
V (G) in an outerplanar graph G, finds a vertex set Y ⊆ V (G) \ X of size at
most 4 · |X|, so that every pair u, v ∈ X with u 6= v is (X ∪ Y)-separated.

Proof. We can assume that X is an independent set in G because removing edges
between vertices in X does not affect the neighborhood of a connected component
in G−(X∪Y). Initialize Y = ∅. By Proposition 3.3.10 we can find a vertex v ∈ X
that can be separated from X \ v by at most 4 vertices. Add these vertices to Y
and repeat this operation recursively on X \ v.

Given an augmented modulator (X0, X1), we would like to find a set Z of
moderate size so that for each pair (u, v) from X0∪X1 either u, v are (X0∪X1∪Z)-
separated or there exist k + 4 internally vertex-disjoint paths, with non-empty
interior, connecting u and v in G. If the latter case occurs, then any outerplanar
deletion set of size bounded by k, can intersect at most k of these paths’ interiors.
Therefore, this solution must remove either u or v in order to get rid of all K2,3-
minors. We remark that this property already holds if we request k + 3 disjoint
(u, v)-paths, but in this stronger form it also holds for a graph obtained from G
by an edge removal. This fact will be crucial for the safeness proof for Reduction
Rule 3.3.

In order to find the set Z, we could consider all pairs (u, v) from X0 ∪X1 and,
if there exists an (u, v)-separator of size at most k + 3, add it to Z. This however
would make Z as large as O(k5). We can make this process more economical by
analyzing what happens for different types of pairs from Definition 3.3.3. Recall
that the number of type-A pairs is at most c(3 + c) · k2 and the number of type-B
pairs is at most 3c2 · k3.

Lemma 3.3.12. There is a polynomial-time algorithm that, when given an in-
stance (G, k) with (k, c)-augmented modulator (X0, X1), returns a set Z ⊆ V (G) \
(X0 ∪X1) of size at most f2(c) · (k + 3)3, where f2(c) = 4c2 + 15c, such that for
each pair u, v ∈ X0 ∪X1 of distinct vertices one of the following holds:

1. vertices u, v are (X0 ∪X1 ∪ Z)-separated, or

40 A Kernel for Outerplanar Vertex Deletion

2. there are k + 4 internally vertex-disjoint paths, with non-empty interior,
connecting u and v in G.

Proof. Initialize Z0 = ∅. Consider all the pairs (u, v) from the augmented mod-
ulator. If (u, v) is of type A or B, compute a minimum (u, v)-separator Su,v
with u, v /∈ Su,v in G− (X0 ∪X1 \ {u, v}) \uv, that is, we remove the edge uv if it
exists. If |Su,v| ≤ k+3, add Su,v to Z0. Recall from Observation 3.3.4 that if (u, v)
is of type B, then the graph G − (X0 ∪X1 \ {u, v}) is outerplanar, so |Su,v| ≤ 2,
as otherwise we could construct a K2,3 minor. For pairs of type A we add at
most (k+ 3) · c(3 + c) · k2 elements, and for pairs of type B at most 2 · 3c2 · k3 ele-
ments. If the pair (u, v) does not satisfy condition (2), then the set Z0 contains a
set Su,v which forms a (u, v)-separator in G−(X0∪X1\{u, v})\uv. Therefore u, v
belong to different connected components of G− (X0 ∪X1 ∪Z0 \ {u, v}) \ uv and
so they are (X0 ∪X1 ∪ Z0)-separated.

To cover pairs of type C we consider the outerplanar graph G − X0. By
Lemma 3.3.11 we can find a vertex set Z1 ⊆ V (G)\(X0∪X1) of size 4·|X1| ≤ 12c·k2
so that all pairs u, v ∈ X1 are (X1 ∪ Z)-separated in G − X0. We return the
set Z0 ∪Z1, which has no more than (k+ 3) · c(3 + c) · k2 + 2 · 3c2 · k3 + 12c · k2 ≤
(4c2 + 15c) · (k + 3)3 elements.

We would like to simplify the interface between a connected component C
of G − (X0 ∪ X1 ∪ Z) and the rest of the graph. Since G − X0 is outerplanar it
has treewidth at most two, which implies there is a tree decomposition in which
each pair of distinct bags intersects in at most 2 vertices. When constructing
a separator Z ′ ⊇ Z via the LCA closure, the neighborhood of each connected
component C of G− Z ′ within the set Z ′ is contained in at most two bags of the
decomposition. This allows us to guarantee that |NG(C) ∩ Z ′| ≤ 4.

Lemma 3.3.13. There is a polynomial-time algorithm that, given an outerplanar
graph G and Z ⊆ V (G), returns a set Z ′ ⊇ Z of size at most 6 · |Z| such that each
connected component of G− Z ′ has at most four neighbors in Z ′.

Proof. Consider a tree decomposition (T, χ) of width two of the graph G, rooted
at a node r ∈ V (T). It can be found in linear time [18]. For a vertex v let tv be
the node which is closest to the root among those whose bags contain v. Consider
the set of nodes TZ = {tv | v ∈ Z}. Let T ′Z = LCA(TZ) be the LCA closure of TZ .
Finally, let Z ′ be union of all bags in T ′Z . We have |T ′Z | ≤ 2 · |TZ | and |Z ′| ≤ 6 · |Z|.
By Lemma 3.2.10 we obtain that each connected component of G−Z ′ has at most
four neighbors.

In order to keep the kernel size in check, we need to analyze the number of
connected components of G− (X0 ∪X1 ∪Z). We have managed to bound the size
of Z by O(k3) and, in Lemma 3.3.8, we have also bounded by O(k3) the number
of edges in the component graph C(G,X0 ∪X1). These two properties suffice to
also bound the number of connected components of G− (X0 ∪X1 ∪ Z) that have

3.3 Splitting the graph into pieces 41

at least two neighbors in X0 ∪X1 ∪Z. It will be easier to deal with the remaining
ones later.

Lemma 3.3.14. Let (X0, X1) be a (k, c)-augmented modulator in G, so that the
component graph C(G,X0 ∪X1) has at most s vertices and s edges, and let Z ⊆
V (G)\(X0∪X1). Then there are at most 3·s+4·|Z| components of G−(X0∪X1∪Z)
that have two or more neighbors in X0 ∪X1 ∪ Z.

Proof. Let X = X0 ∪ X1. We analyze the number of connected components
of G− (X ∪ Z) by splitting them into three categories.

1. Components with at least two neighbors in Z. Consider a subgraph (Z∪Y,E)
of C(G,X ∪Z) given by restricting the vertex-side to Z and the component-
side to those components Y that have at least two neighbors in Z. This
graph is a minor of G − X, so it is outerplanar. By Proposition 3.3.7, we
get |Y | ≤ 4 · |Z|.

2. Components with exactly one neighbor in Z and at least one in X. We call
such a component a dangling component. For a connected component H
of G−X, consider the collection of dangling components (Ci)

`
i=1 within H.

Since each dangling component has exactly one neighbor in H, removing it
does not affect connectivity of H. Therefore the graph H ′ = H −

⋃`
i=1 Ci

is connected. Note that H ′ cannot be empty since it must contain at least
one vertex in Z. For each vertex x ∈ X, there are at most two dangling
components in H which are adjacent to x: if there were three C1, C2, C3,
they would form a minor model of K2,3 together with x and V (H ′). By
Observation 3.3.4 this would contradict outerplanarity of G− (X ∪ {x}).
Hence the number of dangling components within H is at most twice as large
as |NG(H) ∩ X|, which is the degree of H in C(G,X). The total number
of dangling components is thus at most 2 times the sum of degrees of the
component-nodes in C(G,X), which equals the number of edges in C(G,X).
We obtain a bound 2s on the total number of dangling components.

3. Components without any neighbors in Z. These are also components of G−
X, so there are at most s of them.

The previous lemma gives us a bound on the number of components outside
the modulator with at least two neighbors. To bound the total number of com-
ponents outside the modulator, we employ the following reduction rule to remove
the remaining components with at most one neighbor.

Reduction Rule 3.2. If for some C ⊆ V (G) the graph G〈C〉 is outerplanar and
it holds that |NG(C)| ≤ 1, then remove the vertex set C.

Safeness of this rule follows from Observation 3.2.3, which implies opd(G−C) =
opd(G).

42 A Kernel for Outerplanar Vertex Deletion

With these properties at hand, we are able to construct the desired extension
of the augmented modulator. The decomposition below is inspired by the notion
of a near-protrusion [61], combined with the idea of the augmented modulator,
and with an O(k3) bound on the number of leftover connected components.

Definition 3.3.15. For k, c, d ∈ N a (k, c, d)-outerplanar decomposition of a
graph G is a triple (X0, X1, Z) of disjoint vertex sets in G, such that:

1. (X0, X1) is a (k, c)-augmented modulator for (G, k),

2. for each pair u, v ∈ X0 ∪X1 of distinct vertices one of the following holds:

(a) vertices u, v are (X0 ∪X1 ∪ Z)-separated, or
(b) there are k + 4 internally vertex-disjoint (u, v)-paths in G, each with

non-empty interior.

3. for each connected component C of G−(X0∪X1∪Z) it holds that |NG(C)∩
Z| ≤ 4,

4. |Z| ≤ d · (k + 3)3 and there are at most d · (k + 3)3 connected components
in G− (X0 ∪X1 ∪ Z).

Lemma 3.3.16. There is a constant c, a function f3 : N→ N, and a polynomial-
time algorithm that, given an instance (G, k), either returns an equivalent in-
stance (G′, k′), where k′ ≤ k and G′ is subgraph of G, along with a (k′, c, f3(c))-
outerplanar decomposition of G′, or concludes that opd(G) > k. If opd(G) ≤ k
then it holds that opd(G′) = opd(G)− (k − k′). Furthermore, c = 40 and f3(c) =
3 · f1(c) + 24 · f2(c) (see Lemmas 3.3.8 and 3.3.12).

Proof. Begin with Lemma 3.3.5 to either conclude opd(G) > k or find an equiv-
alent instance (G′′, k′), where k′ ≤ k and G′′ is a subgraph of G, along with an
(k′, c)-augmented modulator. Next, apply Reduction Rule 3.1 to obtain an equiv-
alent instance (G′, k′) that satisfies the conditions in the statement, along with an
(k′, c)-augmented modulator (X0, X1), so that the number of vertices and edges
in C(G,X0 ∪ X1) is at most f1(c) · (k′ + 3)3 (see Lemma 3.3.8). This reduction
rule may remove edges and vertices from the graph, so G′ is a subgraph of G.

We find a set Z0 of size at most f2(c) · (k′+ 3)3 satisfying the Condition 2 with
Lemma 3.3.12. Next, apply Lemma 3.3.13 to graph G− (X0 ∪X1) and set Z0 to
compute Z ⊇ Z0, |Z| ≤ 6 ·f2(c) ·(k′+3)3, which satisfies the Condition 3. Observe
that Condition 2 is preserved for any superset of Z0, and hence for Z.

Now identify all connected components of G − (X0 ∪ X1 ∪ Z) with only one
neighbor and apply Reduction Rule 3.2 to remove them. Note that this removed
only vertices disjoint from X0, X1, and Z, so Conditions 1, 2(a), and 3 remain
satisfied. Since such a connected component only has one neighbor in X0 ∪ X1,
the number of (u, v)-paths in G cannot have been decreased for any distinct u, v ∈
X0 ∪X1, hence Condition 2(a) also remains satisfied. We complete the proof by
showing that now Condition 4 holds.

3.3 Splitting the graph into pieces 43

First note that |Z| ≤ 6·f2(c)·(k′+3)3 ≤ f3(c)·(k′+3)3. It remains to show that
the number of components in G−(X0∪X1∪Z) is at most f3(c)·(k′+3)3. Any such
connected component has at least two neighbors since otherwise we would have
applied Reduction Rule 3.2 to remove it. Any other connected component has at
least two neighbors inX0∪X1∪Z, so by Lemma 3.3.14 there are at most 3·s+4·|Z|
of these components, where s denotes the number of edges in C(G,X0∪X1) which
is upper bounded by f1(c) · (k′ + 3)3 (see Lemma 3.3.8). Hence in total there are
at most 3 ·f1(c) · (k′+3)3 +4 ·6 ·f2(c) · (k′+3)3 = f3(c) · (k′+3)3 components.

As the last property of the (k, c, d)-outerplanar decomposition, we formulate
the bound on the total number of connections between X0∪X1∪Z and the leftover
components, which will lead to the total kernel size O(k4).

Lemma 3.3.17. Let (X0, X1, Z) be a (k, c, d)-outerplanar decomposition of a
graph G. Then the number of edges in the component graph C(G,X0 ∪X1 ∪ Z) is
at most f4(c, d) · (k + 3)4, where f4(c, d) = cd+ 6c+ 4d.

Proof. By Definition 3.3.15(4) there are at most d · (k + 3)3 components of G −
(X0∪X1∪Z) and each can have at most |X0| ≤ c·k neighbors from X0. It remains
to bound the total number of edges from X1 ∪ Z. The graph given by restricting
the vertex-side of C(G,X0 ∪X1 ∪ Z) to X1 ∪ Z is a minor of G−X0, hence it is
outerplanar and, by Observation 3.2.8, the number of edges is at most twice the
number of vertices, that is, 2 · (|X1 ∪Z|+ d · (k+ 3)3) ≤ 6c · k2 + 4d · (k+ 3)3.

3.3.3 Reducing the size of the neighborhood
Given a (k, c, d)-outerplanar decomposition (X0, X1, Z), we will now present the
final reduction rule to reduce the size of the neighborhood NG(X0∪X1) to O(k4).
As the size of Z is already bounded by O(k3) we focus on reducing the size
of NG(X0 ∪X1) \ Z. We have already shown the number of edges in the compo-
nent graph C(G,X0 ∪ X1 ∪ Z) is bounded by O(k4), so it suffices to reduce the
number of edges between a single modulator vertex x ∈ X0 ∪X1 and a connected
component C of G − (X0 ∪X1 ∪ Z) to a constant. For this, we first show in the
following lemma where the neighbors of x occur in C.

Lemma 3.3.18. Suppose G is outerplanar, x ∈ V (G), and G − x is connected.
Then the vertices from NG(x) lie on an induced path P in G − x such that for
each biconnected component B of G − x and each pair of distinct vertices u, v ∈
V (P)∩V (B) we have that uv ∈ E(G−x). We can find such a path in polynomial
time.

Proof. If |NG(x)| = 1 this is trivially true, so we assume |NG(x)| ≥ 2 in the
remainder of the proof.

Consider a tree T obtained from a spanning tree ofG−x by iteratively removing
leaves that are not in NG(x). We show T is a path. If T contains a vertex y of
degree at least 3 then T − y contains three components containing a neighbor

44 A Kernel for Outerplanar Vertex Deletion

of x and, since T is connected, neighbors of y. This forms a K2,3-minor in G
contradicting outerplanarity of G. Hence T is a path, and by construction both
its leaves are a neighbor of x. We now describe how to obtain the desired induced
path P from T . If T is not an induced path in G, there are two nonconsecutive
vertices u, v in T with uv ∈ E(G). If there is no vertex w ∈ NG(x) between u
and v on T , then the path T ′ obtained from T by replacing the subpath between u
and v with the edge uv is a shorter path containing all of NG(x). Exhaustively
repeat this shortcutting step and call the resulting path P . Since this procedure
does not affect the first and last vertices we know the first and last vertex of P are
both neighbors of x. All operations to obtain P can be performed in polynomial
time.

If the path P obtained after shortcutting is not an induced path in G, there
are two nonconsecutive vertices u, v in P with uv ∈ E(G). By construction of P
we know that there is a vertex w ∈ NG(x) between u and v on P . Now G contains
a K4-minor since {x, u, v, w} are pairwise connected by internally vertex-disjoint
paths, contradicting outerplanarity of G. So P is an induced path.

Let B be an arbitrary biconnected component of G − x and let u, v ∈ B ∩ P
be distinct. If uv is a bridge in G − x, it is trivial to see that uv ∈ E(G − x), so
we can assume that B contains at least 3 vertices (so B is 2-connected). We first
consider the case where u is the first vertex along P that is contained in B and v
is the last. Since the first and the last vertex of P are neighbor to x, (u, x, v)
forms a (u, v)-path in G. Since u, v ∈ B and B is 2-connected, there is a cycle
within B containing u and v. This gives us two internally vertex-disjoint paths
from u to v within B. If uv 6∈ E(G − x), these paths have non-empty interiors.
Together with the path (u, x, v), this leads to a K2,3-minor in G and contradicting
its outerplanarity. Hence, we can assume that uv ∈ E(G− x).

If u and v are not the first and last vertices along P contained in B, then there
are two vertices u′ and v′ that are. Then u′v′ is an edge in G− x and because P
is an induced path, u′ and v′ have to be consecutive in P , contradicting existence
of such a pair (u, v).

We now investigate what happens when a modulator vertex x ∈ X0∪X1 is the
only vertex in X0 ∪X1 that is adjacent to a connected component C of G− (X0 ∪
X1 ∪Z). If x has sufficiently many edges to a part of C that is not adjacent to Z,
then one of these edges can be removed without affecting the outerplanar deletion
number opd(G). We will also exploit this property for a reduction rule later in
this chapter when we reduce the number of edges within a connected component
of G− (X0 ∪X1 ∪ Z).

Lemma 3.3.19. Suppose we are given a graph G, a vertex x ∈ V (G), and five
vertices v1, . . . , v5 ∈ NG(x) that lie, in order of increasing index, on an induced
path P in G− x from v1 to v5, such that NG(x) ∩ V (P) = {v1, . . . , v5}. Let C be
the component of G− {v1, v5, x} containing P − {v1, v5}. If G〈C〉 is outerplanar,
then opd(G) = opd(G \ xv3).

3.3 Splitting the graph into pieces 45

Proof. Clearly for any S ⊆ V (G) if G − S is outerplanar, then G \ xv3 − S is
also outerplanar, hence opd(G) ≥ opd(G \ xv3). To show opd(G) ≤ opd(G \ xv3),
suppose G \ xv3 − S is outerplanar for some arbitrary S ⊆ V (G). If x ∈ S
or v3 ∈ S then clearly G−S is outerplanar, so suppose x, v3 6∈ S. We show G−S′
is outerplanar for some S′ ⊆ V (G) with |S′| ≤ |S|. Consider the following cases:

1. If |S ∩ V (P)| = 0 then G \ xv3 − S contains an induced cycle formed by x
together with the subpath of P from v2 to v4. This cycle includes x and v3,
so by Lemma 3.2.6 the graph G \ xv3 − S remains outerplanar after adding
the edge xv3, hence G− S is outerplanar.

2. If |S ∩ V (P)| ≥ 2 then let S′ := {v1, v5} ∪ (S \ V (C)). Since |S′| ≤ |S|,
showing that G − S′ is outerplanar proves the claim. Let C := G − V (C)
and note that C−S′ is outerplanar since it is a subgraph of G\xv3−S. Also
note that G[V (C) ∪ {x}] is outerplanar since it is a subgraph of G[V (C) ∪
{v1, v5, x}] = G〈C〉. Since for any connected component H of G − S′ − x
the graph (G − S′)〈H〉 is a subgraph of C − S′ or G[V (C) ∪ {x}] we have
that (G−S′)〈H〉 is outerplanar. Then by Observation 3.2.3 the graph G−S′
is outerplanar.

3. If |S∩V (P)| = 1 then let u ∈ S∩V (P) and assume without loss of generality
that u lies on the subpath of P from v3 to v5, so the subpath of P from v1
to v3 does not contain vertices of S (recall that v3 6∈ S). Let S′ := {v5}∪(S \
V (C)) and note that |S′| ≤ |S|. We shall show that G − S′ is outerplanar.
Since x, v1 6∈ S, we have that also x, v1 6∈ S′, so xv1 ∈ E(G − S′). In order
to apply Lemma 3.2.4 to G− S′ and xv1 we have to show that

• for each connected component C ′ of G − S′ − {v1, x} the graph (G −
S′)〈C ′〉 is outerplanar, and

• there are at most two induced internally vertex-disjoint (v1, x)-paths
in (G− S′) \ v1x.

Because v5 ∈ S′ we have G − S′ − {v1, x} = G − {v1, v5, x} − S′ and
since C is a connected component of G − {v1, v5, x} we have that all con-
nected components of G − S′ − {v1, x} are either a connected component
of C − S′ = C or of G − S′ − {v1, x} − V (C). It is given that C is con-
nected and G[V (C)∪ {v1, v5, x}] is outerplanar so then G[V (C)∪ {v1, x}] =
(G−S′)〈C〉 is also outerplanar. Any other connected component C ′ is a con-
nected component of G− S′ −{v1, x}− V (C), so we have that (G− S′)〈C ′〉
is a subgraph of G− S′ − V (C). This is in turn, a subgraph of G \ xv3 − S
which is outerplanar. Hence (G− S′)〈C ′〉 is outerplanar.
It remains to show that there are at most two induced internally vertex-
disjoint (v1, x)-paths in (G− S′) \ v1x. Suppose for contradiction that (G−
S′) \ v1x contains three induced internally vertex-disjoint (v1, x)-paths. As
shown before, C is a connected component of G − S′ − {v1, x} adjacent

46 A Kernel for Outerplanar Vertex Deletion

to v1 and x, so there exists an induced (v1, x)-path P1 in G − S′ \ v1x
whose internal vertices all lie in C. Since G〈C〉 is outerplanar and C is
connected, by Lemma 3.2.5 the graph G〈C〉 does not contain two internally
vertex-disjoint (v1, x)-paths with non-empty interiors. Hence there are two
induced internally vertex-disjoint (v1, x)-paths P2, P3 in (G−S′\v1x)−V (C).
Observe that P2 and P3 are then disjoint from S \ S′ ⊆ V (C) and do not
contain xv3. It follows that P1, P2 and P3 are three induced internally
vertex-disjoint (v1, x)-paths in G \ xv3 − S, contradicting its outerplanarity
by Lemma 3.2.4. We conclude also the second condition of Lemma 3.2.4
holds for G− S′ and the edge v1x, hence G− S′ is outerplanar.

We now use the properties of the (k, c, d)-outerplanar decomposition to show
that any solution of size at most k contains all but possibly one vertex from (X0∪
X1) ∩ NG(C), where C is a connected component from G − (X0 ∪ X1 ∪ Z). We
use this fact together with the result from Lemma 3.3.19 to identify an irrelevant
edge, which leads to the following reduction rule:

Reduction Rule 3.3. Given a (k, c, d)-outerplanar decomposition (X0, X1, Z) of
a graph G, a vertex x ∈ X0 ∪X1, and five vertices v1, . . . , v5 ∈ NG(x) \ (X0 ∪X1)
that lie, in order of increasing index, on an induced path P in G − (X0 ∪ X1)
from v1 to v5, such that NG(x) ∩ V (P) = {v1, . . . , v5}. Let C be the component
of G− (X0 ∪X1)− {v1, v5} containing P − {v1, v5}. If V (C) ∩ Z = ∅ remove the
edge xv3.

Lemma 3.3.20 (Safeness). Suppose that applying Reduction Rule 3.3 to a graph G
removes the edge e = xv3. If opd(G) > k then opd(G \ e) > k and if opd(G) ≤ k
then opd(G \ e) = opd(G).

Proof. Clearly opd(G \ e) ≤ opd(G) so it suffices to show that opd(G \ e) ≤ k
implies opd(G\e) = opd(G). Suppose G\e−S is outerplanar for some S ⊆ V (G) of
size at most k; we prove opd(G) ≤ |S|. If S contains x or v3 then the claim is trivial.
Otherwise let X := X0 ∪X1 and XS := X ∩ S and note that x /∈ XS . Since C is
a connected component of G−X − {v1, v5} we have that NG(C) ⊆ X ∪ {v1, v5}.
We first show that NG(C) ⊆ XS ∪ {v1, v5, x}. Suppose for contradiction that
some u ∈ NG(C) is not contained in XS ∪ {v1, v5, x}, so that u ∈ X \ (S ∪ {v}).
Since x and u are both neighbor to C, which is connected and does not contain
vertices from X or Z, we have that x and u are not (X ∪Z)-separated. It follows
from Definition 3.3.15(2) that there are k + 4 internally vertex-disjoint paths,
with non-empty interior, connecting x and u in G. At most one of these paths
contains the edge e, so in G \ e there are at least k + 3 internally vertex-disjoint
paths, with non-empty interior, connecting x and u. Since x, u 6∈ S, and |S| ≤ k
we have that G \ e − S has at least 3 internally vertex-disjoint paths, with non-
empty interior, connecting x and v. This contradicts outerplanarity of G \ e− S.
Hence NG(C) ⊆ XS ∪ {v1, v5, x}.

Consider the graph G′ := G − XS . To prove that opd(G) ≤ |S|, it suffices
to prove opd(G′) ≤ |S| − |XS |. Observe that x ∈ V (G′) and v1, . . . , v5 ∈ NG′(x)

3.3 Splitting the graph into pieces 47

≤ 20
X

O(k2)

Z

O(k3)O(k3)

Figure 3.3 An illustration of Lemma 3.3.21. Given a (k, c, d)-outerplanar de-
composition (X0, X1, Z) of a graph G, a vertex x ∈ X = X0 ∪X1 and a compo-
nent C of G − (X0 ∪ X1 ∪ Z), we are guaranteed that |N(C) ∩ Z| ≤ 4 and we
can apply Reduction Rule 3.3 until |N(x) ∩ V (C)| ≤ 20. The expressions at the
bottom bound the size of X, the number of components of G− (X ∪ Z), and size
of Z.

lie in order of increasing index on the induced path P in G′ − x from v1 to v5,
such that NG′(x)∩P = {v1, . . . , v5}. Let C ′ be the connected component of G′ −
{v1, v5, x} containing P − {v1, v5}. In order to apply Lemma 3.3.19 we show
that G′[V (C ′) ∪ {v1, v5, x}] is outerplanar.

Since C is connected and NG(C) ⊆ XS ∪ {v1, v5, x} we have that C is a con-
nected component of G − (XS ∪ {v1, v5, x}) = G′ − {v1, v5, x}. As C ′ is also a
connected component of G′ − {v1, v5, x} and both C and C ′ contain P − {v1, v5}
they are the same connected component. It follows that G[V (C ′) ∪ {v1, v5, x}] =
G[V (C) ∪ {v1, v5, x}], which is outerplanar by Definition 3.3.3 since it only inter-
sects with X0 ∪X1 on the single vertex x.

This shows Lemma 3.3.19 can be applied to G′ with vertex x and the path P .
Since S \XS forms a size-(|S| − |XS |) outerplanar deletion set for G′ \ e, it follows
there is a size-(|S| − |XS |) outerplanar deletion set S′ for G′. Then S′ ∪XS forms
a size-|S| outerplanar deletion set for G.

We now show how this reduction rule can be applied to reduce the number of
edges between a vertex x ∈ X0∪X1 and a connected component inG−(X0∪X1∪Z)
to a constant. This leads to an O(k4) bound on the size of NG(X0 ∪ X1); see
Figure 3.3.

Lemma 3.3.21. There is a polynomial-time algorithm that, given a (k, c, d)-
outerplanar decomposition (X0, X1, Z) of a graph G, a vertex x ∈ X0 ∪ X1 and
a component C of G − (X0 ∪ X1 ∪ Z), applies Reduction Rule 3.3 or concludes
that |NG(x) ∩ V (C)| ≤ 20.

Proof. We first describe the algorithm and then proceed to prove its correctness.

48 A Kernel for Outerplanar Vertex Deletion

Algorithm If x 6∈ NG(C) then conclude |N(x) ∩ V (C)| ≤ 20. Otherwise
let C+ := G[V (C)∪ (NG(C)∩Z)∪ {x}]. Apply Lemma 3.3.18 to find an induced
path P in C+ containing all of NC+(x) (we will show C+ is outerplanar). Let the
vertices NC+(x) = {v1, . . . , v`} be indexed by the order in which they occur on P .
For all 1 ≤ i ≤ `− 4 let Pi be the subpath of P from vi to vi+4 and let Ci denote
the connected component of C+ − {vi, vi+4, x} containing Pi − {vi, vi+4}. If for
some 1 ≤ i ≤ `− 4 we have V (Ci) ∩ Z = ∅ then apply Reduction Rule 3.3 with x
and Pi to remove the edge xvi+2. Otherwise conclude |N(x) ∩ V (C)| ≤ 20.

All operations can be performed in polynomial time.

Correctness We first show Lemma 3.3.18 is applicable. Clearly C+ − x =
G[V (C) ∪ (NG(C) ∩ Z)] is connected since C is connected, so it remains to show
that C+ is outerplanar. This follows from the fact that C+ is a subgraph of G−
((X0 ∪X1) \ {x}), which is outerplanar by Observation 3.3.4. For the remainder
of the proof we first establish a number of properties of the graphs defined in the
algorithm.

Claim 3.3.22. Any connected component of C+ − (V (P) ∪ {x}) has at most two
neighbors in V (P) and they must be consecutive along P .

Proof. Consider the cycle in C+ formed by the vertices V (P) ∪ {x} (recall the
first and last vertices of P are neighbor to x). Since C+ is outerplanar the claim
follows directly from Lemma 3.2.7. y

Observation 3.3.23. For any 1 ≤ i ≤ ` − 4, since Ci is a connected component
of C+ − {vi, vi+4, x} we have that any connected component of Ci − V (P) is also
a connected component of C+ − {vi, vi+4, x} − V (P) = C+ − (V (P) ∪ {x}).

Claim 3.3.24. For all 1 ≤ i ≤ `− 4 we have V (Ci) ∩ V (P) = V (Pi − {vi, vi+4}).

Proof. Let u, v ∈ V (P) ∩ Ci be distinct vertices. Since Ci is connected, there
exists a path in Ci connecting u and v. Let P ′ be a shortest (u, v)-path in Ci.
If P ′ contains a vertex not in P then this is a vertex in a connected component D
in Ci−V (P). By Observation 3.3.23 and Claim 3.3.22 we have that D has at most
two neighbors in P and they are consecutive along P . Since the path P ′ must enter
and leave D, the path visits both these neighbors, however since these neighbors
are adjacent we can obtain a shorter (u, v)-path by skipping vertices in D. This
contradicts that P ′ is a shortest (u, v)-path. It follows that the shortest path in Ci
between any two vertices from P is a subpath of P . Since Ci does not contain vi
and vi+4 by definition, we have V (Ci) ∩ V (P) = V (Pi − {vi, vi+4}). y

Claim 3.3.25. For all 1 ≤ i ≤ ` − 4, if V (Ci) ∩ Z = ∅ then NG(Ci) ⊆ X0 ∪X1 ∪
{vi, vi+4}.

3.3 Splitting the graph into pieces 49

Proof. Suppose for some 1 ≤ i ≤ ` − 4 that V (Ci) ∩ Z = ∅ and let v ∈ NG(Ci).
We show v ∈ X0 ∪ X1 ∪ {vi, vi+4}. If v ∈ V (C+) then since Ci is a connected
component of C+ − {vi, vi+4, x} we have v ∈ {vi, vi+4, x} ⊆ X0 ∪X1 ∪ {vi, vi+4},
so suppose v 6∈ V (C+) ⊇ V (C). Since v ∈ NG(Ci) there exists a vertex u ∈
NG(v) ∩ V (Ci) and note that u 6∈ Z because NG(Ci) ∩ Z = ∅. Since u ∈ V (Ci) ⊆
V (C+ − {vi, vi+4, x}) ⊆ V (C) ∪ (NG(C) ∩ Z) and u 6∈ Z we have u ∈ V (C).
Because u and v are neighbors we have v ∈ NG(C) so v ∈ X0 ∪ X1 ∪ Z since C
is a connected component of G − (X0 ∪ X1 ∪ Z). Clearly if v ∈ X0 ∪ X1 then
the claim holds, so suppose v ∈ Z. However since v ∈ NG(C) and v ∈ Z we
have v ∈ NG(C) ∩ Z so by definition of C+ we have v ∈ V (C+), a contradiction
since we assumed v 6∈ V (C+). y

Suppose that for some 1 ≤ i ≤ ` − 4 we have V (Ci) ∩ Z = ∅. In order to
show that Reduction Rule 3.3 applies to x and Pi, first note that (X0, X1, Z) is a
(k, c, d)-outerplanar decomposition of G and x ∈ X0∪X1. The vertices vi, . . . , vi+4

lie on Pi, an induced path in G−(X0∪X1) from vi to vi+4 such thatN(x)∩V (Pi) =
{vi, . . . , vi+4}. We show that Ci is the connected component of G− (X0 ∪X1)−
{vi, vi+4} containing Pi − {vi, vi+4}.

Note that Ci does not contain any vertices from X0 ∪ X1 ∪ {vi, vi+4} so Ci
is a (connected) subgraph of G − (X0 ∪ X1) − {vi, vi+4}. By Claim 3.3.25 we
have NG(Ci) ⊆ X0 ∪ X1 ∪ {v1, vi+4}. We can conclude that Ci is a connected
component ofG−(X0∪X1)−{vi, vi+4}, and by definition it contains Pi−{vi, vi+4}.

Finally, observe that G[V (Ci)∪ {vi, vi+4, x}] is outerplanar as it is a subgraph
of C+. So since V (Ci) ∩ Z = ∅ we have that Reduction Rule 3.3 applies.

Now suppose that the algorithm was unable to apply Reduction Rule 3.3, i.e.,
for all 1 ≤ i ≤ ` − 4 we have V (Ci) ∩ Z 6= ∅. We show |N(x) ∩ V (C)| ≤ 20.
Suppose for contradiction that |N(x) ∩ V (C)| > 20. Then NC+(x) > 20, so the
path P contains more than 20 neighbors of x, i.e., ` > 20 so C1, C5, C9, C13, C17

are defined. Since V (Ci)∩Z 6= ∅ for all 1 ≤ i ≤ `− 4 we know C1, C5, C9, C13, C17

all contain a vertex from Z. We show C1, C5, C9, C13, C17 are disjoint.
If C1, C5, C9, C13, C17 are not disjoint, then there exist integers i, j ∈ {1, 5, 9,

13, 17} and a vertex v such that i < j and v ∈ V (Ci)∩V (Cj). Using Claim 3.3.24
we find that V (P)∩V (Ci)∩V (Cj) ⊆ (V (Ci)∩V (P))∩ (V (Cj)∩V (P)) = V (Pi−
{vi, vi+4}) ∩ V (Pj − {vj , vj+4}) = ∅, so v 6∈ V (P). Then v is a vertex in some
connected componentD of Ci−V (P) and a connected componentD′ of Cj−V (P).
By Observation 3.3.23, both D and D′ are connected components of C+−(V (P)∪
{x}), and since both contain v, they are the same connected component. Since Ci
is connected, D must contain a neighbor u1 ∈ V (Ci)∩V (P) = V (Pi−{vi, vi+4}).
SimilarlyD′ = D must contain a neighbor u2 ∈ V (Cj)∩V (P) = V (Pj−{vj , vj+4}).
Since these two sets are disjoint we have u1 6= u2. By Claim 3.3.22 these neighbors
must be the only neighbors of D and they must be consecutive along P . However
the vertex vi+4 lies on P between u1 and u2 since i+ 4 ≤ j so u1 and u2 are not
consecutive along P . By contradiction, C1, C5, C9, C13, C17 are disjoint.

50 A Kernel for Outerplanar Vertex Deletion

Since C1, C5, C9, C13, C17 are disjoint subgraphs of C+ and each subgraph con-
tains a vertex from Z, we have that |Z ∩ V (C+)| ≥ 5. By definition of C+

we know V (C+) = V (C) ∪ {x} ∪ (N(C) ∩ Z). Recall that |N(C) ∩ Z| ≤ 4
by Definition 3.3.15(3), so then (V (C) ∪ {x}) ∩ Z 6= ∅. This is a contradiction
since x ∈ X0 ∪ X1 and C is a connected component of G − (X0 ∪ X1 ∪ Z),
hence |N(x) ∩ V (C)| ≤ 20.

We are going to apply Lemma 3.3.21 to a computed outerplanar decomposition
in order to reduce the total neighborhood size of X0 ∪ X1. This allows us to
construct a final modulator L of size O(k4) with a structure referred to in previous
works as a protrusion decomposition. We can now proceed to proving a lemma
that encapsulates application of Reduction Rule 3.3.

Lemma 3.3.26. There exists a function f5 : N2 → N and a polynomial-time al-
gorithm that, when given a (k, c, d)-outerplanar decomposition (X0, X1, Z) of a
graph G, either applies Reduction Rule 3.2 or Reduction Rule 3.3, or outputs a
set L ⊆ V (G) such that

1. |L| ≤ f5(c, d) · (k + 3)4,

2. |EG(L,L)| ≤ f5(c, d) · (k + 3)4,

3. there are at most f5(c, d) · (k + 3)4 connected components in G− L, and

4. for each connected component C of G − L the graph G〈C〉 is outerplanar
and |NG(C)| ≤ 4.

Furthermore, f5(c, d) = 24 · (20 · f4(c, d) + d+ c+ c2) (see Lemma 3.3.17).

Proof. We first describe the algorithm and then proceed to prove its correctness.

Algorithm For all x ∈ X0 ∪X1 and connected components C in G− (X0 ∪
X1 ∪Z) we run the algorithm from Lemma 3.3.21 to apply Reduction Rule 3.3 or
conclude that |NG(x)∩V (C)| ≤ 20. If Reduction Rule 3.3 could not be applied to
any x and C, we take X = X0 ∪X1 and apply Lemma 3.3.13 on the graph G−X
with vertex set Z ∪ NG(X) to obtain a set Z ′ ⊆ V (G) \X. We set L = X ∪ Z ′.
If some component C of G − L has at most one neighbor, we apply Reduction
Rule 3.2 to remove C. Otherwise we return L.

Correctness It can easily be seen that Lemma 3.3.21 applies on all x ∈ X0∪
X1 and connected components C in G− (X0∪X1∪Z). If by calling Lemma 3.3.21
we have applied Reduction Rule 3.3 we can terminate the algorithm. Otherwise
it holds that |NG(x) ∩ V (C)| ≤ 20 for each x ∈ X0 ∪ X1 and each connected
component C of G − (X0 ∪ X1 ∪ Z). Let us examine Z ′ and L given by the
execution of the algorithm.

3.3 Splitting the graph into pieces 51

Clearly G − X is outerplanar as it is a subgraph of G − X0, which justifies
that the algorithm correctly applies Lemma 3.3.13. To show Condition 1 and 2,
we first prove a bound on |EG(X,V (G) \ (X ∪ Z)|.

Consider the component graphH = C(G,X∪Z). For any x ∈ X and connected
component C of G − (X ∪ Z) if H does not contain an edge between x and the
vertex representing C, then |NG(x)∩V (C)| = 0. If H contains an edge between x
and the vertex representing C, then our earlier bound applies: |NG(x) ∩ V (C)| ≤
20. By Lemma 3.3.17 we have that H contains at most f4(c, d) · (k + 3)4 edges,
so |EG(X,V (G)\ (X ∪Z))| ≤ 20 ·f4(c, d) · (k+3)4 and |NG(X)\Z| ≤ 20 ·f4(c, d) ·
(k + 3)4.

By Lemma 3.3.13 we have |Z ′| ≤ 6 · |Z ∪NG(X)| and by Definition 3.3.15(4)
we have |Z| ≤ d · (k + 3)3. To show Condition 1 we check that

|Z ′| ≤ 6 · (20 · f4(c, d) + d)) · (k + 3)4, and

|L| = |Z ′|+ |X| ≤ 6 · (20 · f4(c, d) + d+ c)) · (k + 3)4.

Let us now bound the number of edges in EG(L,L). We group these edges
into four categories: (a) edges within X0, (b) edges between X0 and X1 ∪ Z, (c)
edges between X0 and L \ (X ∪ Z), and (d) edges within L \X0. The number of
edges in (a) is clearly at most |X0|2 = c2 · k2. Similarly, in case (b) we obtain the
bound |X0| · |X1∪Z| = ck ·(3c ·k2+d ·(k+3)3) ≤ (3c2+d) ·(k+3)4. To handle case
(c), observe that EG(X0, L\(X∪Z)) ⊆ EG(X,V (G)\(X∪Z)) and the size of this
set has already been bounded by 20 · f4(c, d) · (k+ 3)4. Finally, the subgraph of G
induced by L \X0 is outerplanar and by Observation 3.2.8 we bound the number
of edges in case (d) by 2 · |L| ≤ 2 · 6 · (20 · f4(c, d) + d+ c)) · (k+ 3)4. By collecting
all summands we obtain that |EG(L,L)| ≤ 13 · (20 · f4(c, d) + d+ c+ c2)) · (k+ 3)4

and prove Condition 2.

To show Condition 4 note that Z ∪NG(X) ⊆ Z ′ by Lemma 3.3.13 and so Z ∪
NG[X] ⊆ L. Consider a connected component C ofG−L. Since C does not contain
neighbors ofX we haveNG[C]∩X = ∅. So thenG〈C〉 is a subgraph ofG−X, hence
it is outerplanar. Furthermore, by Lemma 3.3.13 we know that |NG−X(C)| ≤ 4
and so |NG(C)| ≤ 4.

If |NG(C)| ≤ 1 for some connected component C of G − L, we have applied
Reduction Rule 3.2 and terminated the algorithm. If the algorithm is unable
to apply this reduction rule, we know that all components of G − L have at
least two neighbors, which must belong to L \X. The vertices representing these
components in the component graph C(G−X,L) all have degree at least 2. Note
also that this graph is bipartite (by definition) and outerplanar since it is a minor
of G−X, which is outerplanar. It follows from Proposition 3.3.7 that G− L has
at most 4 · |L| ≤ 4 · 6 · (20 · f4(c, d) + d+ c)) · (k+ 3)4 components. This shows that
Condition 3 holds.

52 A Kernel for Outerplanar Vertex Deletion

outerplanarouterplanar

Figure 3.4 On the left a depiction of Reduction Rule 3.4, which reduces a
connected subgraph to one or two vertices depending on its internal structure. On
the right a depiction of Reduction Rule 3.5 which contracts a connected subgraph
to a single vertex if it is outerplanar together with the two adjacent vertices that
form its neighborhood.

3.4 Compressing the outerplanar subgraphs

3.4.1 Reducing the number of biconnected components
Once we arrive at the decomposition from Lemma 3.3.26, it remains to compress
outerplanar subgraphs with a small boundary. First, we present a reduction to
bound the number of biconnected components in such a subgraph. It will also
come in useful later, for reducing the maximum size of a face in a biconnected out-
erplanar graph with a small boundary. Intuitively, this reduction checks whether
an outerplanar subgraph with exactly two non-adjacent neighbors can supply one
or two vertex-disjoint paths to the rest of the graph and replaces this subgraph
with a minimal gadget with the same property, see also Figure 3.4.

Reduction Rule 3.4. Consider a graph G and vertex set C ⊆ V (G) such
that NG(C) = {x, y}, xy 6∈ E(G), G[C] is connected, and G〈C〉 is outerplanar.
Let P = (u1, u2, . . . , um), u1 = x, um = y be any shortest path connecting x and y
in G〈C〉 and D1, D2, . . . , D` be the connected components of G〈C〉 − V (P). We
consider 3 cases:

1. if there is a component Di, for which NG(Di) includes two non-consecutive
elements of P , replace C with two vertices c1, c2, each adjacent to both x
and y,

2. if there are two distinct components Di, Dj , for which |NG(Di)∩NG(Dj)| ≥
2, replace C with two vertices c1, c2, each adjacent to both x and y,

3. otherwise replace C with one vertex c1 adjacent to both x and y.

3.4 Compressing the outerplanar subgraphs 53

Lemma 3.4.1. Let x, y ∈ V (G) and C ⊆ V (G) be such that Reduction Rule 3.4
applies and let G′ be the graph obtained after application of the rule. Then G′ is
a minor of G.

Proof. In case 1, there exists a component Di adjacent to non-consecutive ver-
tices uj , uh from V (P), j < h. Let Px, PC , Py denote the non-empty subpaths: (u1,
. . . , uj), (uj+1, . . . , uh−1), (uh, . . . , um). First, we remove all the connected com-
ponents of G[N [C]] − V (P) different from Di. Next, we contract Px into x, Py
into y, PC into a vertex denoted c1, and Di into a vertex denoted c2. By the
choice of Di we see that each of c1, c2 is adjacent to both x, y, therefore we have
obtained G′ through vertex deletions and edge contractions.

In case 2, there exist distinct components Di1 , Di2 both adjacent to vertices uj ,
uh from V (P), with j < h. Let Px, Py denote the subpaths (u1, . . . , uj) and (uh,
. . . , um). Again, we begin by removing all the connected components of G[N [C]]−
V (P) different from Di1 , Di2 . Next, we contract Px into x, Py into y, Di1 into a
vertex denoted c1, and Di2 into a vertex denoted c2, thus obtaining G′.

In case 3, we simply contract C into a vertex c1.

In order to show correctness of the reduction rule, we will prove that any
outerplanar deletion set in the new instance can be turned into an outerplanar
deletion set in the original instance without increasing its size. If we replaced the
vertex set C with two vertices, we show that any outerplanar deletion set must
break all the connections between the neighbors of C which go outside C. In the
other case, when we replaced C with just one vertex, we show that we can undo the
graph modification from Reduction Rule 3.4 while preserving the outerplanarity.

Lemma 3.4.2. Let x, y ∈ V (G) and C ⊆ V (G) be such that Reduction Rule 3.4
applies and let G′ be the graph obtained after application of the rule. If S′ ⊆
V (G′) is an outerplanar deletion set in G′, then there exists a set S ⊆ V (G) such
that |S| ≤ |S′| and which is an outerplanar deletion set in G.

Proof. Let C ′ ⊆ V (G′) consist of the vertices put in place of C, that is, c1 and, if we
replaced C with two vertices, c2. We naturally identify the elements of V (G′) \C ′
with V (G)\C. In particular, NG′(C ′) = NG(C) = {x, y}. We consider four cases:

• S′ ∩{x, y} 6= ∅. We show that G−S′ is outerplanar. If S′ ⊇ {x, y} then this
is immediate since G[C] is outerplanar by assumption and forms a connected
component of G− S′, while (G− S′)− V (C) is a subgraph of G′ − S′.
Otherwise, let z = S′∩{x, y} and z = {x, y}\{z}. As before, (G−S′)−V (C)
is outerplanar since it is a subgraph of G′ − S′. The graph G − S′ can be
obtained from (G−S′)−V (C) by attaching G[C] onto the cut vertex z, and
is therefore outerplanar by Observation 3.2.3.

• S′ ∩ V (C ′) 6= ∅. We define the set S as (S′ \ V (C ′)) ∪ {x}. It clearly holds
that |S| ≤ |S′|. Furthermore, y is a cut vertex in G−S. The graph G− (S∪

54 A Kernel for Outerplanar Vertex Deletion

C∪{x}) is isomorphic with G′− (S′∪C ′∪{x}), hence it is outerplanar. On
the other hand, G[C ∪ {y}] is outerplanar by assumption. Therefore, all the
components obtained by splitting G−S at y are outerplanar and thus G−S
is outerplanar by Observation 3.2.3.

• S′ ∩NG′ [C ′] = ∅ and C ′ = {c1, c2}. We can simply write S = S′ as we have
identified elements of V (G′) \ C ′ and V (G) \ C. Let F1, F2 . . . , F` be the
connected components of G′ − (S′ ∪ C ′ ∪ {x, y}). Observe that no Fi can
be adjacent to both x, y, as otherwise x, y, c1, c2, Fi would form branch sets
of a K2,3-minor in G′ − S′. The graph G − S can be obtained from G〈C〉
by appending the components F1, F2 . . . , F` at x or y. For each i ∈ [`]
it holds that G〈Fi〉 is a subgraph of G′ − S′, so it is outerplanar. From
Observation 3.2.3 we infer that G− S is outerplanar.

• S′ ∩ NG′ [C ′] = ∅ and C ′ = {c1}. We again set S = S′ via vertex identifi-
cation and we are going to transform G′ − S′ into G − S while preserving
outerplanarity of the graph. Note that the path P contains at least one
vertex from C as xy 6∈ E(G). Subdividing a subdivided edge multiple times
preserves outerplanarity, and so does replacing (x, c1, y) with P . Let G′′
denote the resulting graph.

Since P is a shortest (x, y)-path in G〈C〉, there are no edges in G〈C〉 connect-
ing non-adjacent vertices of P . Recall that D1, D2, . . . , D` are the connected
components of G〈C〉 − V (P). Since C ′ = {c1}, the conditions from cases 1
and 2 in Reduction Rule 3.4 are not satisfied. Therefore each component Di

is either adjacent to one vertex from V (P) or to two vertices which are con-
secutive. Furthermore, for any pair of consecutive vertices on P , there can
be only one component Di adjacent to both of them.

For each i ∈ [`] it holds thatNG[Di] ⊆ NG[C], soG〈Di〉 is outerplanar. IfDi

has two neighbors u, v in P then any (u, v)-path in G′′ \ uv includes x or y
as an internal vertex, hence there cannot be two induced internally vertex-
disjoint (u, v)-paths in G′′\uv. By Lemma 3.2.5 appending Di to the edge uv
in G′′ supplies at most one more induced (u, v)-path and no other Dj , j ∈
[`] \ {i}, can supply a (u, v)-path in G′′ \uv, so this preserves outerplanarity
due to Lemma 3.2.4 applied to the edge uv. Next, by Observation 3.2.3 the
graph obtained by appending each component adjacent to a single vertex is
still outerplanar. We have replaced c1 back with C, thus transforming G′−S′
into G − S, while preserving outerplanarity of the graph, hence G − S is
outerplanar.

As NG′ [C ′] = V (C ′)∪ {x, y}, the case distinction is exhaustive and completes the
proof.

Lemma 3.4.3. Let G be a graph and G′ be obtained from G by applying Reduction
Rule 3.4. Then opd(G′) = opd(G).

3.4 Compressing the outerplanar subgraphs 55

Proof. By Lemma 3.4.1 we know that G′ is a minor of G, so opd(G′) ≤ opd(G).
On the other hand, if G′ admits an outerplanar deletion set of size at most `, then
Lemma 3.4.2 guarantees that the same holds for G.

We are now going to make use of Reduction Rule 3.4 to reduce the number of
biconnected components in an outerplanar graph with a small boundary. Recall
that the block-cut tree of a graph H has a vertex for each biconnected component
of H and for each cut vertex in H. A biconnected component B and a cut vertex
v are connected by an edge if v ∈ B. We will show that when the block-cut tree
ofH = G〈A〉 is large then we can always find either one or two cut vertices that cut
off an outerplanar subgraph which can be either removed or compressed. Recall
that ∂G(B) = NG(V (G) \ B) denotes the boundary of vertex set B ⊆ V (G) in
graph G.

Lemma 3.4.4. For a graph G and a vertex set A ⊆ V (G), such that |NG(A)| ≤
4, G[A] is connected, and G〈A〉 is outerplanar, there is a polynomial-time algo-
rithm that, given G and A satisfying the conditions above, outputs either

1. a block-cut tree of G〈A〉 with at most 25 biconnected components, where each
such biconnected component B satisfies |∂G(B)| ≤ 4, or

2. a vertex set C ⊆ A, to which either Reduction Rule 3.2 or Reduction Rule 3.4
applies and decreases the number of vertices in the graph.

Proof. We begin by computing the block-cut tree T ofG〈A〉 and rooting it at an ar-
bitrary node [75]. For a node t ∈ V (T) let χ(t) denote the vertex set represented
by t, either a biconnected component, or a single vertex of t that corresponds to
a cut vertex. Note that each leaf in T must represent a biconnected component.
Furthermore, observe that no vertex from NG(A) can be a cut vertex in G〈A〉,
because G[A] is connected. Therefore for each v ∈ NG(A) there is a unique bicon-
nected component containing v. Let tv ∈ V (T) be the node in the block-cut tree
representing this component.

First suppose that there exists a biconnected component B of G〈A〉 such
that |∂G(B)| > 4. The set ∂G(B) is a disjoint union of NG(A) ∩ B and the cut
vertices of G〈A〉 lying in B. Let d = |NG(A)∩B|. Then there are at least 5−d cut
vertices of G〈A〉 lying in B, but at most 4−d vertices of NG(A)\B. By a counting
argument, there is one cut vertex v ∈ B of G〈A〉 which separates B \ {v} from a
set C ⊆ NG[A] which does not contain any vertex from NG(A). Hence, C ⊆ A
and it induces a connected outerplanar subgraph of G having exactly one neighbor
in G. Therefore, Reduction Rule 3.2 applies for C and removes it, decreasing the
number of vertices in G.

Suppose for the rest of the proof that there are at least 26 biconnected compo-
nents of G〈A〉. Let L ⊆ V (T) denote the LCA closure of the set {tv | v ∈ NG(A)}.
By Lemma 3.2.9 we know that |L| ≤ 7 and each connected subtree of T − L
then is adjacent to at most two nodes from L. It follows that if t ∈ V (T) \ L,
then χ(t) ∩NG(A) = ∅.

56 A Kernel for Outerplanar Vertex Deletion

Suppose that some component TC of T −L is adjacent to just one node from L.
It is either a cut vertex or its neighbor in TC is a cut vertex. The set C =⋃
t∈TC

χ(t) has an empty intersection with NG(A) and contains a vertex v which
separates C\{v} from the rest of the graph G. Therefore we can find a subset C ′ ⊆
C \ {v} which induces a connected subgraph of G, has exactly one neighbor v,
and C ′ ∪ {v} ⊆ NG[A] induces an outerplanar graph. Hence, Reduction Rule 3.2
applies for C ′ and removes it, decreasing the size of the graph.

A similar situation occurs when TC has a vertex of degree at least 3. Then there
exists a leaf t in TC which represents a biconnected component and is not adjacent
to L, so it is also a leaf in T . Again, χ(t) ∩NG(A) = ∅, so χ(t) contains a single
vertex v which separates χ(t) \ {v} from the rest of the graph G. Analogously as
above, Reduction Rule 3.2 applies and decreases the size of the graph.

Suppose now that the previous cases do not hold. Then each connected compo-
nent of T−L is adjacent to exactly two nodes from L and induces a path in T with
the endpoints adjacent to L. If we contracted each such component to an edge
connecting two nodes from L, we would obtain a tree with vertex set L and |L|−1
edges. Hence, the number of such components of T − L is at most 6. Since the
total number of biconnected components in G〈A〉 is at least 26, we infer that there
exists a connected component TC of T − L containing at least

⌈
26−7

6

⌉
= 4 nodes

representing biconnected components of G〈A〉. The set C =
⋃
t∈TC

χ(t) contains
two vertices u, v which together separate C − {u, v} from the rest of G〈A〉. Note
that u, v belong to disjoint biconnected components of G〈A〉, so uv 6∈ E(G) and
the set C − {u, v} induces a connected subgraph of G. As C ∩ NG(A) = ∅, this
implies that C − {u, v} is a connected component of G − {u, v}. Furthermore, a
union of 4 biconnected components has at least 5 vertices (the corner case occurs
when they are all single edges), so C − {u, v} has at least 3 vertices. Therefore,
Reduction Rule 3.2 applies for C − {u, v} and replaces it with at most two new
vertices, therefore the total number of vertices in the graph decreases. All the de-
scribed operations on the block-cut tree can be implemented to run in polynomial
time.

3.4.2 Reducing a large biconnected component

We now give the remaining reduction rules to reduce the size of a biconnected
component of a protrusion. If a subgraph of a graph is outerplanar and adjacent
only to two connected vertices, we can use Lemma 3.2.4 to argue that the entire
subgraph can be replaced by any other outerplanar graph that is adjacent to the
same two vertices. The following reduction rule exploits this by replacing such a
subgraph with a single vertex, see also Figure 3.4.

Reduction Rule 3.5. Suppose that there is an edge e = uv in a graph G such
that G−V (e) has a connected component C such that G〈C〉 is outerplanar. Then
contract C into a single vertex.

3.4 Compressing the outerplanar subgraphs 57

Lemma 3.4.5 (Safeness). Let G, uv ∈ E(G), C satisfy the requirements of Re-
duction Rule 3.5 and let G′ be obtained from G by contracting C to a new vertex c.
Then opd(G) = opd(G′).

Proof. It suffices to prove inequality opd(G) ≤ opd(G′). If |NG(C)| = 1, then we
obtain the case already considered in Reduction Rule 3.2, which is safe due to
Observation 3.2.3. Assume for the rest of the proof that NG(C) = {u, v}.

Let S′ ⊆ V (G′) be any outerplanar deletion set in G′; we will prove opd(G) ≤
|S′|. We first deal with two easy cases.

If S′ ∩ {u, v} 6= ∅, then we argue that S = (S′ \ {c}) is an outerplanar deletion
set in G. This follows from the fact that G〈C〉 is outerplanar while C has at most
one neighbor in G − S′, so that Observation 3.2.3 shows G − S is outerplanar.
Hence opd(G) ≤ |S| ≤ |S′|.

If c ∈ S′ but S′ ∩ {u, v} = ∅, then S = (S′ \ {c}) ∪ {u} is not larger than S′.
To see that G− S is outerplanar, we apply Observation 3.2.3 to the cut vertex v.
Since G〈C〉 is outerplanar by assumption, while (G − S) − V (C) is a subgraph
ofG′−S′ and therefore outerplanar, Observation 3.2.3 ensuresG−S is outerplanar.
Hence opd(G) ≤ |S′|.

Suppose now that S′ ∩ {u, v, c} = ∅. We show Lemma 3.2.4 applied to the
graph G − S′ and edge uv. First, each connected component of G − S′ − {u, v}
is outerplanar when considered together with its neighborhood. It remains to
show that (G − S′) \ uv does not have three induced internally vertex-disjoint
paths connecting u and v. Since (u, c, v) already gives such a path and G′ − S′ is
outerplanar, the graph G′− (S′∪{c})\uv = (G− (S′∪C))\uv does not have two
induced internally vertex-disjoint (u, v)-paths. By Lemma 3.2.5, there also cannot
be two such paths in G〈C〉 \ uv. Therefore replacing c with C does not increase
the number of induced internally vertex-disjoint (u, v)-paths and so Lemma 3.2.4
applies. We have thus shown that S′ is an outerplanar deletion set in G, which
concludes the proof.

The next reduction rule addresses high degree vertices within a biconnected
component. It uses the same idea as used in Reduction Rule 3.3, in fact, its
safeness follows directly from Lemma 3.3.19. See also Figure 3.5.

Reduction Rule 3.6. Suppose we are given a graph G, a vertex x ∈ V (G), and
five vertices v1, . . . , v5 ∈ NG(x) that lie, in order of increasing index, on an induced
path P in G− x from v1 to v5, such that NG(x) ∩ V (P) = {v1, . . . , v5}. Let C be
the component of G− {v1, v5, x} containing P − {v1, v5}. If G〈C〉 is outerplanar,
then remove the edge xv3.

The final reduction rule reduces the number of “internal” edges of an outerpla-
nar biconnected graph. These are the edges whose endpoints form a separator in
the graph. The previous rule addresses the case where these edges share an end-
point. The final reduction rule focuses on the case where the edges are disjoint:
they form a matching.

58 A Kernel for Outerplanar Vertex Deletion

Definition 3.4.6. For a graph G, a sequence of edges e1, . . . , e` ∈ E(G) is an
order-respecting matching if the set of edges is a matching and if for all 1 ≤
i < j < k ≤ ` we have that ei and ek are in different connected components
of G− V (ej).

We can now formulate a property of biconnected graphs containing an order-
respecting matching. This allows us to identify a number of cycles in the graph
that are useful in the proof of the final reduction rule.

Lemma 3.4.7. For an integer ` > 1, if G is biconnected and e1, . . . , e` is an
order-respecting matching in G then there exist vertex-disjoint paths Px, Py in G,
such that each of Px, Py intersects every set V (ei), i ∈ [`], and these intersections
appear in order of increasing index.

Proof. Let G′ be the graph obtained from G by subdividing e1 and e` with new
vertices a and b. Since subdividing edges preserves biconnectivity, the graph G′

is biconnected. So then there are two internally vertex-disjoint (a, b)-paths P1

and P2. Take Px := P1 − {a, b} and Py := P2 − {a, b}. Let x1, x`, y1, and y` be
the unique vertices in (respectively) V (Px)∩V (e1), V (Px)∩V (e`), V (Py)∩V (e1),
and V (Py) ∩ V (e`). Observe that Px is an (x1, x`)-path in G and Py is a (y1, y`)-
path in G and both paths are vertex disjoint.

For any ei ∈ {e2, . . . , e`−1} we have by definition of order-respecting matching
that x1 and x` are in different connected components of G − V (ei), hence one of
the endpoints of ei must lie on Px. Similarly one of the endpoints of ei must lie
on Py. For all 1 < i < ` let xi denote the endpoint of ei that lies on Px and let yi
denote the endpoint of ei that lies on Py.

By Definition 3.4.6 we have for all 1 ≤ i < j < k ≤ ` that xi and xk are in
different connected components of G − V (ej). So the subpath of Px between xi
and xk must contain a vertex of V (ej). Since yj lies on Py which is disjoint from Px
we must have that xj lies on Px between xi and xk. Since 1 ≤ i < j < k ≤ `
are arbitrary it follows that {x1, . . . , x`} occur in order of increasing index on
the path Px. Similarly, {y1, . . . , y`} occur in order of increasing index on the
path Py.

We are now ready to formulate the final reduction rule. It applies within
a biconnected outerplanar part of the graph that has multiple “internal” edges.
We make use of the definition of order-respecting matching to define an order on
the internal edges, so that the endpoints of the first and the last one separate
the biconnected outerplanar part from the remainder of the graph. We show
that in such a case the edges in the middle can be removed without affecting
the outerplanar deletion number of the graph (see Figure 3.5). To advocate the
safeness of such a graph modification, we observe that if any cycle in the modified
outerplanar part is disjoint from a solution, then by Lemma 3.2.7 the solution must
intersect all the paths connecting the endpoints of the first and the last edge of
the matching on the “outside”. This allows us to apply the outerplanarity criterion

3.4 Compressing the outerplanar subgraphs 59

outerplanar outerplanar

Figure 3.5 On the left a depiction of Reduction Rule 3.6 which is able to remove
the middle edge of a fan structure in an outerplanar subgraph that is sufficiently
isolated from the rest of the graph. On the right a depiction of Reduction Rule 3.7,
which removes the middle edge of an order-respecting matching in an outerplanar
subgraph that is sufficiently isolated from the rest of the graph.

from Lemma 3.2.4 to an edge on this cycle. In order to simplify the argument that
such a cycle exists, we require an order-respecting matching of size 7.

Reduction Rule 3.7. Let G be a graph, e1, . . . , e7 be a matching in G, and
let C be a connected component of G − (V (e1) ∪ V (e7)). If e1, . . . , e7 is an
order-respecting matching in G〈C〉, {e2, . . . , e6} ⊆ E(C), NG(C) = V (e1)∪V (e7),
and G〈C〉 is biconnected and outerplanar, then remove e4.

Lemma 3.4.8 (Safeness). Let e1, . . . , e7 be a matching in a graph G and let C
be a connected component of G − (V (e1) ∪ V (e7)). If Reduction Rule 3.7 applies
to G, e1, . . . , e7, and C, then opd(G \ e4) = opd(G).

Proof. Clearly any solution to G is also a solution to G\e4 so opd(G\e4) ≤ opd(G).
To show opd(G\e4) ≥ opd(G) suppose that G\e4−S is outerplanar. We will show
that there is a set S′ ⊆ V (G) of size at most |S| such that G− S′ is outerplanar.
We first formulate the following structural property:

Claim 3.4.9. If i ∈ {2, . . . , 6} then for any induced path P in G \ ei between the
endpoints of ei, either P is an induced path in G〈C〉 \ ei, or P has a subpath
disjoint from C connecting an endpoint of e1 to an endpoint of e7.

Proof. Let i ∈ {2, . . . , 6} be arbitrary. Suppose that P is an induced path in G\ei
between the endpoints of ei that contains a vertex v outside G〈C〉. We show that P
contains a subpath disjoint from C connecting an endpoint of e1 to an endpoint
of e7. Consider the subpath P ′ of P from the last vertex x of G〈C〉 before v, to
the first vertex y of G〈C〉 after v. By definition x, y have neighbors outside G〈C〉
so x, y ∈ NG(C) = V (e1) ∪ V (e7), showing that P ′ is disjoint from C. Since P
is induced, so is P ′, hence there is no edge between x and y. It follows that one

60 A Kernel for Outerplanar Vertex Deletion

of x, y is an endpoint of e1 and the other an endpoint of e7, hence P ′ is a subpath
of P disjoint from C that connects an endpoint of e1 to an endpoint of e7. y

We apply Lemma 3.4.7 to G〈C〉 and the matching (e1, . . . , e7) to obtain vertex-
disjoint paths Px, Py in G〈C〉 which intersect each V (ei), i ∈ [7], in order of
increasing index. For i ∈ [7] let {xi, yi} be the endpoints of edge ei with xi ∈ V (Px)
and yi ∈ V (Py). For all 1 ≤ p < q ≤ 7 let Cp,q denote the cycle inG〈C〉 as obtained
by combining the edges ep, eq with the subpaths in Px, Py from V (ep) to V (eq).
Observe that whenever p1 < q1 < p2 < q2, then V (Cp1,q1) ∩ V (Cp2,q2) = ∅. For
brevity let Ci denote Ci,i+1 for all 1 ≤ i ≤ 6. We consider the following cases:

• If |NG[C] ∩ S| ≥ 3 then take S′ := {x1, y1, x7} ∪ (S \ V (C)) and observe
that |S′| ≤ |S|. We show G− S′ is outerplanar using Observation 3.2.3. We
show for all connected components C ′ of G − S′ − y7 that (G − S′)〈C ′〉 is
outerplanar. Since S′ ∩ V (C) = ∅ we have that C is a connected component
ofG−S′−V (e1)−V (e7). Since (V (e1)∪V (e7))\S′ = {y7} this yields that C is
a connected component ofG−S′−y7. Clearly (G−S′)〈C〉 is outerplanar since
it is a subgraph of G〈C〉. Any other connected component C ′ of G−S′− y7
clearly is a connected component of G−S′−y7−V (C), so then (G−S′)〈C ′〉
is a subgraph of G−S′−V (C). Since both endpoints of e4 are in C we have
that G− S′ − V (C) = G \ e4 − S′ − V (C). This is a subgraph of G \ e4 − S
since S ⊆ S′ ∪ V (C). Because G \ e4 − S is outerplanar we can conclude
that (G− S′)〈C ′〉 is outerplanar. By Observation 3.2.3 we have that G− S′
is outerplanar.

• If |NG[C]∩S| = 2 and at least one of {C1, C6} does not intersect S, we may
assume without loss of generality (by symmetry) that C6 does not intersect S.
Take S′ := V (e1)∪ (S \ V (C)) and observe that |S′| ≤ |S|. We show G− S′
is outerplanar using Lemma 3.2.4 on the edge e7.

We first show for all connected components C ′ of (G−S′)−V (e7) that (G−
S′)〈C ′〉 is outerplanar. Since S′ ∩ V (C) = ∅ we have that C is a connected
component of G − S′ − V (e1) − V (e7) = (G − S′) − V (e7). Clearly (G −
S′)〈C〉 is outerplanar since it is a subgraph of G〈C〉. Any other connected
component C ′ of G − S′ − V (e7) is a connected component of G − S′ −
V (e7)− V (C), so then (G− S′)〈C ′〉 is a subgraph of G− S′ − V (C). Since
both endpoints of e4 are in C we have that G − S′ − V (C) is a subgraph
of G \ e4 − S, which is outerplanar. Hence (G− S′)〈C ′〉 is outerplanar.
It remains to show that there do not exist three induced internally vertex-
disjoint paths in (G−S′) \ e7 connecting the endpoints of e7. Since C6 does
not intersect S or S′ and V (C6) ∩ V (e4) = ∅ we have that C6 \ e7 is a path
connecting the endpoints of e7 in (G − S) \ {e4, e7} and in (G − S′) \ e7.
By shortcutting we obtain an induced path P ∗ in (G − S) \ {e4, e7} and
in (G−S′) \ e7, so that P ∗ connects the endpoints of e7 and its internal ver-
tices are all contained in C6. Suppose for a contradiction that (G− S′) \ e7

3.4 Compressing the outerplanar subgraphs 61

contains three induced internally vertex-disjoint paths P1, P2, P3 connecting
the endpoints of e7. Observe that if such a path Pi in (G − S′) \ e7 inter-
sects V (C), then its interior vertices belong entirely to V (C), since NG(C) =
V (e1) ∪ V (e7) while V (e1) ⊆ S′. If two paths Pi, Pj out of {P1, P2, P3} in-
tersect V (C), then we contradict Lemma 3.2.5 applied to the edge e7 of
the outerplanar subgraph G[V (C) ∪ V (e7)] since C is a connected compo-
nent of G[V (C) ∪ V (e7)] − V (e7) and would contain the interiors of two
internally vertex-disjoint (u, v) paths. Hence at most one path Pi inter-
sects V (C), while the remaining two paths avoid V (C) and therefore also
exist in (G − S) \ {e4, e7}. But then we can replace Pi by P ∗ to obtain
three induced internally vertex-disjoint paths in (G− S) \ {e4, e7} connect-
ing the endpoints of e7, contradicting the outerplanarity of (G − S) \ e4
by Lemma 3.2.4. This shows also the second condition of Lemma 3.2.4 is
satisfied, hence G− S′ is outerplanar.

• Otherwise we are in one of the following cases: (1) |NG[C] ∩ S| ≤ 1, or
(2) |NG[C] ∩ S| = 2 and S intersects both C1 and C6. We show that G− S
is outerplanar.

Claim 3.4.10. Suppose the preconditions of Reduction Rule 3.7 hold, S ⊆
V (G), G\e4−S is outerplanar, and either |NG[C]∩S| ≤ 1 or |NG[C]∩S| = 2
and S intersects both C1 and C6. Then any path in G \ e4 − S from an
endpoint of e1 to an endpoint of e7 intersects V (C).

Proof. First we argue that at least one of C1,3, C3,5, C5,7 is disjoint from S.
If S intersects C1 and C6, then S cannot intersect C3,5 since C1, C6, and C3,5

are vertex-disjoint. If C1 or C6 does not intersect S then by assump-
tion |NG[C] ∩ S| ≤ 1 so S cannot intersect both C1,3 and C5,7 as they are
vertex-disjoint. Hence S is disjoint from at least one of C1,3, C3,5, or C5,7.

For the sake of contradiction, suppose that there is a path Pz inG\e4−(S∪C)
which connects z1 ∈ V (e1) to z7 ∈ V (e7). First consider the case V (C3,5) ∩
S = ∅. Recall the paths Px, Py defined in the beginning of the proof. Let P ′x
(resp. P ′y) be the subpath of Px (resp. Py) from x1 ∈ V (e1) to x3 ∈ V (e3)
(resp. y1 ∈ V (e1) to y3 ∈ V (e3)). If |NG[C] ∩ S| = 2, then S intersects C6,
which is disjoint from V (P ′x)∪V (P ′y). We therefore have |(V (P ′x)∪V (P ′y))∩
S| ≤ 1 and by disjointness of Px, Py we infer that one of the paths P ′x, P ′y is
disjoint from S; assume w.l.o.g. that it is P ′x. Let P ′′x be P ′x if z1 ∈ V (P ′x)
or P ′x concatenated with e1 otherwise. Then P ′′x connects V (e3) to z1, it is
internally vertex disjoint from C3,5 and, since z1 6∈ S, it is vertex-disjoint
from S. Using a symmetric argument we can construct a path, disjoint
from S, which connects V (e5) to z7. By concatenating these paths with Pz
we obtain that there is a connected component of (G\e4−S)−V (C3,5) which
is adjacent to at least two vertices on the cycle C3,5: one from V (e3) and
the other one from V (e5). Since V (e4) separates V (e3) from V (e5) in G〈C〉,

62 A Kernel for Outerplanar Vertex Deletion

e1 e2 e3 e4 e5 e6 e7
ea eb

C

e1 e3 e4 e5 e7

D′
1D′

2

e6
eb

e2
ea

Figure 3.6 Illustration of the last case of the proof of Lemma 3.4.8. The illus-
tration shows a situation to which Reduction Rule 3.7 is applicable to remove e4.
A solution S in G \ e4 consisting of a singleton vertex is visualized by a cross,
leading to choices for ea = e2 and eb = e6. On the right, the induced subgraph D′1
and its subgraph D′2 are highlighted.

these vertices are non-consecutive on the cycle C3,5. By Lemma 3.2.7, this
contradicts the assumption that G \ e4 − S is outerplanar.

It remains to consider the case V (C1,3)∩S = ∅, as the case V (C5,7)∩S = ∅
is symmetric. We have V (C1) ⊆ V (C1,3) so V (C1) ∩ S = ∅ and by the
assumption |NG[C]∩S| ≤ 1. Let P ′x (resp. P ′y) be the subpath of Px (resp. Py)
from x3 ∈ V (e3) to x7 ∈ V (e7) (resp. y3 ∈ V (e3) to y7 ∈ V (e7)). Recall that
neither of Px, Py goes through e4 as its endpoints lie on each of Px, Py. By
disjointness of Px, Py we infer that one of the paths P ′x, P ′y is disjoint from S;
assume w.l.o.g. that it is P ′x. Similarly as before, we define P ′′x to be P ′x
if z7 ∈ V (P ′x) or P ′x concatenated with e7 otherwise. Then P ′′x connects V (e3)
to z7 in G〈C〉 \ e4 − S and it is internally vertex disjoint with C1,3. By
concatenating P ′′x with Pz we obtain that there is a connected component
of (G\e4−S)−V (C1,3) which is adjacent to two non-consecutive vertices on
the cycle C1,3 (z1 ∈ V (e1) and the other one from V (e3)). By Lemma 3.2.7,
this contradicts the initial assumption that G \ e4 − S is outerplanar. y

Using this structural property we complete the proof of the third case. We
start by defining two edges ea and eb, whose endpoints are disjoint from S,
as follows; see Figure 3.6. If S intersects both C1 and C6 then take ea = e3
and eb = e5, otherwise we have |NG[C]∩S| ≤ 1 so at least one of ea ∈ {e2, e3}
is not hit by S. Similarly there is an edge eb ∈ {e5, e6} that does not
intersect S. Now note that {e1, ea, e4, eb, e7} is an order-respecting matching
in G〈C〉, NG(V (ea)) ⊆ NG[C], and NG(V (eb)) ⊆ NG[C].

To show G − S is outerplanar we use Lemma 3.2.4 on the edge ea, i.e., we
show for any connected component H of G− S − V (ea) that (G− S)〈H〉 is
outerplanar and there do not exist three induced internally vertex-disjoint
paths in (G− S) \ ea connecting both endpoints of ea.

3.4 Compressing the outerplanar subgraphs 63

To prove the latter, observe that any induced path in (G−S) \ ea is also an
induced path in G \ ea and by Claim 3.4.10 they cannot contain a subpath
from an endpoint of e1 to an endpoint of e7. Now by Claim 3.4.9 we have any
such path is an induced path in G〈C〉 \ ea. Since G〈C〉 \ ea is outerplanar
we have by Lemma 3.2.4 that there are at most two such paths that are
internally vertex-disjoint.
We now show for any connected component H of G− S − V (ea) that (G−
S)〈H〉 is outerplanar. Consider the case that H does not intersect Ca,b.
Then we know that (G − S)〈H〉 does not contain the edge e4, hence (G −
S)〈H〉 is a subgraph of G \ e4 − S, which is outerplanar. For the other case,
let D1 be the graph consisting of all connected components of G−S−V (ea)
intersecting Ca,b. It suffices to show that (G− S)〈D1〉 is outerplanar.
We use Lemma 3.2.4 on the edge eb in the graph D′1 := (G − S)〈D1〉, i.e.,
we show for any connected component H of D′1 − V (eb) that D′1〈H〉 is out-
erplanar and there are at most two induced internally vertex-disjoint paths
in D′1 \ eb connecting the endpoints of eb. Let D2 be the graph consisting of
all connected components ofD′1−V (eb) that intersect Ca,b. Since (e1, . . . , e7)
is an order-respecting matching in G〈C〉, we have that the graph D′1〈D2〉 is
a subgraph of G〈C〉. Hence D′1〈D2〉 is outerplanar. Any other connected
component H of D′1 − V (eb) that does not intersect Ca,b does not contain
the edge e4, hence D′1〈H〉 is a subgraph of G \ e4 − S, which is outerplanar.
It remains to show that there are at most two induced internally vertex-
disjoint paths in D′1 \ eb connecting both endpoints of eb. By Claim 3.4.10
such paths cannot contain an endpoint of e1. Since such a path is also an
induced path in G \ eb so then by Claim 3.4.9 we have that such a path
is an induced path in G〈C〉 \ eb. Since G〈C〉 \ eb is outerplanar it follows
from Lemma 3.2.4 that there are at most two such internally vertex-disjoint
paths. Hence D′1 = (G − S)〈D1〉 is outerplanar completing the argument
that G− S is outerplanar.

We have shown in all cases that there exists a set S′ of size at most |S| such
that G− S′ is outerplanar.

This concludes our final reduction rule. What remains is how they can be
applied in polynomial time to reduce the protrusions to a constant size. Since the
number of biconnected components can be bounded by a constant (see Lemma 3.4.4),
we proceed to show how to reduce the size of these biconnected components to a
constant.

3.4.3 Reducible structures in biconnected components
In this section we use the weak dual of a biconnected outerplanar graph to argue
that a large biconnected outerplanar graph contains a structure to which a reduc-
tion rule is applicable. We therefore need some terminology to relate objects in

64 A Kernel for Outerplanar Vertex Deletion

a biconnected outerplanar graph G with those in its weak dual Ĝ. The following
properties are well-known.

Observation 3.4.11 ([120, Corollary 6]). Any biconnected outerplanar graph on
at least three vertices has a unique Hamiltonian cycle.

Observation 3.4.12 ([55]). The weak dual of a biconnected outerplanar graph is
a tree.

It is justified to speak of the weak dual of a biconnected outerplanar graph,
since all embeddings in which all vertices lie on the outer face have exactly the
same set of faces. This can easily be seen by noting that the unique Hamiltonian
cycle has a unique outerplanar embedding up to reversing the ordering, and that
all remaining edges are chords of this cycle drawn in the interior. For a biconnected
outerplanar graph G we can therefore uniquely classify its edges into exterior edges
which lie on the outer face of an outerplanar embedding, and interior edges which
bound two interior faces and are chords of the Hamiltonian cycle formed by the
outer face.

For a biconnected outerplanar graph G we use Ĝ to denote its weak dual. For
an interior edge e ∈ E(G) we use ê to denote its dual in Ĝ. Note that exterior
edges, which lie on the outer face, do not have a dual in Ĝ since we work with the
weak dual. Each bounded face f of an outerplanar embedding of G corresponds
to a vertex f̂ of Ĝ. For a vertex f̂ of Ĝ, we use VG(f̂) to denote the vertices
of G incident on face f . We extend this notation to vertex sets and subgraphs
of Ĝ, so that VG(Ĝ′) =

⋃
f̂∈Ĝ′ VG(f̂). Similarly, for an edge ê of Ĝ we use VG(ê)

or simply V (e) to denote the endpoints of the edge in G for which ê is the dual.
For Ŷ ⊆ E(Ĝ) we define VG(Ŷ) :=

⋃
ê∈Ŷ VG(ê).

It is insightful to think about the weak dual Ĝ of a biconnected outerplanar
graph G as prescribing a way in which to build graph G as follows: starting from
the disjoint union of the induced cycles forming the interior faces corresponding
to V (Ĝ), for each edge f̂ ′f̂ ′′ = ê ∈ E(Ĝ) glue together the induced cycles for f ′
and f ′′ at the edge e that is common to both cycles. Since each interior face is
an induced cycle and therefore biconnected, while gluing biconnected subgraphs
along edges preserves biconnectivity, we observe the following.

Observation 3.4.13. If G is a biconnected outerplanar graph and R̂ is a non-
empty connected subtree of its weak dual Ĝ, then G[VG(R̂)] is biconnected.

Suppose we have a connected subtree R̂ of the weak dual Ĝ of a biconnected
outerplanar graph G. In the process of constructing G from the induced cycles
formed by its faces, the subgraph G[R̂] only becomes adjacent to vertices outside
the subgraph by gluing faces outside R̂ onto faces of R̂. Since these are glued along
edges whose dual has one endpoint inside and one endpoint outside R̂, we observe
the following.

3.4 Compressing the outerplanar subgraphs 65

Observation 3.4.14. Let G be a biconnected outerplanar graph and let R̂ be a
connected subtree of its weak dual Ĝ. Let Ŷ ⊆ E(Ĝ) denote those edges which
have exactly one endpoint in R̂. The only vertices of VG(R̂) which have a neighbor
outside VG(R̂) are those in VG(Ŷ).

From these observations, we deduce the following lemma stating how a subtree
of Ĝ that is attached to the rest of Ĝ at a single edge, represents a connected
subgraph.

Lemma 3.4.15. Let G be a biconnected outerplanar graph, let ê ∈ E(Ĝ), and
let R̂ be one of the two trees in Ĝ \ ê. For C = VG(R̂) \ VG(ê) the graph G[C] is
connected and NG(C) = VG(ê).

Proof. By Observation 3.4.13, the graph G[VG(R̂)] is biconnected, so by Obser-
vation 3.4.11 it has a Hamiltonian cycle. It is easy to see that R̂ is the weak
dual of G[VG(R̂)]. The latter graph contains edge e, since it is incident on both
faces represented by the endpoints of ê, one of which has its dual vertex in R̂.
Since ê /∈ E(R̂), the edge e is an exterior edge of G[R̂]. So e is an edge of the
unique Hamiltonian cycle of G[R̂], which implies that the removal of V (e) leaves
that subgraph connected. Hence VG(R̂) \ VG(ê) is a connected subgraph of G.
By Observation 3.4.14 the only vertices of VG(R̂) which have neighbors in G out-
side VG(R̂) are those in VG(ê), which proves that G[R̂] − VG(ê) is a connected
component of G − VG(ê). Its neighborhood in G is equal to VG(ê) since the pre-
decessor and successor of the vertices of VG(ê) on the Hamiltonian cycle of G[R̂]

are contained in G[R̂]− VG(ê).

The following lemma gives a condition under which removing the endpoints
of a matching of two edges preserves connectivity. Recall the definition of order-
respecting matching (Definition 3.4.6).

Lemma 3.4.16. If G is a biconnected outerplanar graph and M = {e1, e2, e3} is
an order-respecting matching in G such that e1 and e3 are exterior edges while e2 is
an interior edge, then the subgraph G′ := G−V ({e1, e3}) is connected and NG(G′) =
V ({e1, e3}).

Proof. Consider the unique Hamiltonian cycle C ofG. The exterior edges e1 and e3
lie on C while the interior edge e2 is a chord of C. Since M is an order-respecting
matching, the vertex sets V (e1) and V (e3) lie in different connected components
of G − V (e2). Partition the cycle C into two vertex-disjoint (V (e1), V (e3))-
paths C1, C2, and let C ′1, C ′2 be the paths formed by the interior vertices of C1

and C2. Since V (e2) separates V (e1) and V (e3), the paths C ′1, C ′2 are non-empty
and both contain a vertex of V (e2). This implies that the graph G[C ′1 ∪ C ′2] is
connected, since the edge e2 connects the two paths. Since C ′1∪C ′2 span all vertices
of G except V ({e1, e3}) we have G′ = G[V (C ′1) ∪ V (C ′2)], and since each vertex
of V ({e1, e3}) is adjacent to an endpoint of C ′1 or C ′2, the lemma follows.

66 A Kernel for Outerplanar Vertex Deletion

The following shows that the order-respecting property of a matching can be
deduced from its path-like structure in the dual.

Lemma 3.4.17. Let G be a biconnected outerplanar graph. If P̂ is a path in Ĝ
and M = {e1, . . . , e`} is a matching in G such that the dual edges ê1, . . . , ê` appear
on P̂ in the order as given by the indices, but not necessarily consecutively, thenM
is an order-respecting matching in G.

Proof. For 1 < i < ` let Ĝi denote the tree in Ĝ \ êi that contains ê1. Since the
edges êi lie on P̂ in order of increasing index, tree Ĝi contains {êj | j < i} but no
edge of {êj | j > i}. Since the edges in the matching M are vertex-disjoint, this
implies that VG(Ĝi) contains VG(êj) for j < i but contains no vertex of VG(êj)
for j > i.

By Lemma 3.4.15, we have NG(VG(Ĝi) \ VG(êi)) = VG(êi) for all 1 < i <

`, which implies that the only vertices of VG(Ĝi) which have neighbors outside
that set are those in VG(êi). Hence the removal of VG(êi) breaks all paths from
endpoints of VG(êj) to endpoints of VG(êr) for j < i < r. This establishes that
the matching M is order-respecting.

The previous observation leads to the following lemma. Intuitively, it gives
a property similar to that of a tree decomposition, saying that the vertices of Ĝ
representing faces containing a fixed vertex t ∈ V (G) form a connected subtree
of Ĝ.

Lemma 3.4.18. Let G be a biconnected outerplanar graph and let t ∈ V (G). If
interior faces f and f ′ both contain t, then t ∈ V (e) for each edge ê on the unique
(f̂ , f̂ ′)-path P̂ in Ĝ.

Proof. Let ê be an edge on P̂ and consider the two trees Ĝ1, Ĝ2 of Ĝ \ ê. Since ê
lies on the path between f̂ and f̂ ′, with t ∈ VG(f̂)∩VG(f̂ ′), we have t ∈ VG(Ĝ1)∩
VG(Ĝ2). By applying Observation 3.4.14 twice, once for Ĝ1 and once for Ĝ2, the
graph G− VG(ê) has one connected component on vertex set VG(Ĝ1) \ VG(ê) and
one connected component on vertex set VG(Ĝ2) \ VG(ê), which implies VG(Ĝ1) ∩
VG(Ĝ2) ⊆ VG(ê) = V (e). Since t belongs to VG(Ĝ1) ∩ VG(Ĝ2), we have t ∈
V (e).

The next lemma analyzes how a star of edges incident on a common vertex x
are represented in the weak dual.

Lemma 3.4.19. Let G be a biconnected outerplanar graph and let P̂ be a path
in Ĝ consisting of consecutive vertices and edges f̂0, ê1, f̂1, ê2, f̂2, . . . , ê`, f̂` of Ĝ,
such that x ∈ V (e1) ∩ V (e`). Then x ∈ V (ei) for all i ∈ [`], and letting vi denote
the endpoint of ei other than x for each i, the vertices {vi | i ∈ [`]} lie in order of
increasing index on an induced (v1, v`)-path P in G[VG({f̂1, . . . , f̂`−1})] − x that
contains no other neighbors of x.

3.4 Compressing the outerplanar subgraphs 67

Proof. Since f̂0 (respectively f̂`) is incident on ê1 (ê`) and x ∈ V (e1) ∩ V (e`),
we have x ∈ VG(f̂0) ∩ VG(f̂`). By Lemma 3.4.18, this implies that x ∈ V (ei) for
all i ∈ [`].

Since G is a simple graph without parallel edges, the fact that x ∈ V (ei) for
all i ∈ [`] implies that the other endpoints of the edges ei are all distinct. Let {vi} =

V (ei) \ {x} for each i. Since P̂ is a path in Ĝ, we can construct the graph G′ :=

G[VG({f̂1, . . . , f̂`−1})] from disjoint induced cycles for the faces f1, . . . , f`−1 by
gluing them back-to-back along the edges e1, . . . , e`, all of which are incident on x.
Note that we do not use the faces f0 and f`. Since in this construction we glue
disjoint cycles together at distinct edges in a path-like sequence, and all edges
along which we glue are incident on x, it follows that G′ − x is an induced path.
It contains v1, . . . , v` in this order and no other neighbors of x.

The last property of a weak dual we need states how removing two nonadjacent
vertices incident on a common interior face separates the graph.

Lemma 3.4.20. Let G be a biconnected outerplanar graph and let Ĝ be its weak
dual. Let f̂ ∈ V (Ĝ) and let u, v ∈ V (G) be nonadjacent vertices incident to f .
Let E1, E2 be the edge sets of the two (u, v)-subpaths along the boundary of f ,
respectively. Let Ĝi for i ∈ [2] denote the union of all trees R̂ of Ĝ− f̂ for which
the unique edge connecting R̂ to f̂ is the dual of an edge in Ei. Then the connected
components of G− {u, v} are G[(V (Ei) ∪ VG(Ĝi)) \ {u, v}] for i ∈ [2].

Proof. Consider the process of constructing G from the disjoint cycles bounding its
interior faces as dictated by the weak dual Ĝ. Since any interior face is an induced
cycle, removing the nonadjacent vertices u, v from the induced cycle bounding f
separates the cycle into exactly two paths P1, P2. Since weak dual witnesses that G
can be constructed by gluing the subgraphs G[R̂] for R̂ a tree of Ĝ− f̂ onto an edge
of the cycle bounding f , the interior vertices of the paths P1, P2 belong to different
connected components of G − {u, v}. Since each subgraph G[R̂] is glued onto at
least one interior vertices of a path P1, P2, the graph G − {u, v} has exactly two
connected components and their contents are as claimed; note that V (Ei) \ {u, v}
are exactly the interior vertices of path Pi.

Using these properties we can now prove that a large biconnected outerplanar
graph contains a reducible structure. Each of the three types of structures below
can be reduced by one of our reduction rules.

Lemma 3.4.21. Let G be a biconnected outerplanar graph and let T ⊆ V (G) be
a non-empty subset of vertices with |T | ≤ 4. If |V (G)| > 6288, then in polynomial
time we can identify one of the following reducible structures in G:

• two (possibly adjacent) vertices u, v such that there is a component C of G−
{u, v} that does not contain any vertex of T , for which |V (C)| > 2,

68 A Kernel for Outerplanar Vertex Deletion

• a matching e1, . . . , e7 in G, such that there is a single connected component C
of G−(V (e1)∪V (e7)) which contains {e2, . . . , e6} but no vertex from T , such
that NG(C) = V (e1) ∪ V (e7), the graph G〈C〉 is biconnected, and e1, . . . , e7
is an order-respecting matching in G〈C〉, or

• a vertex x ∈ V (G) and five vertices v1, . . . , v5 ∈ NG(x) that lie, in order
of increasing index, on an induced path P in G − x from v1 to v5, such
that NG(x) ∩ V (P) = {v1, . . . , v5}, and such that the connected component
of G− {v1, v5, x} which contains P − {v1, v5} contains no vertex from T .

Proof. We will refer to vertices from T as terminals. For each t ∈ T , fix an interior
face f(t) of G incident to t and define f̂(T) := {f̂(t) | t ∈ T}. Let ĜT be the
minimal subtree of the weak dual Ĝ spanning f̂(T). We say a vertex of ĜT is
important if it belongs to f̂(T) or has degree unequal to two in the graph ĜT . By
minimality of ĜT each leaf of ĜT belongs to f̂(T), from which it easily follows
that the edges of ĜT can be partitioned into at most five paths between important
vertices, such that no interior vertex of such a path is important. The number
five corresponds to the fact that any tree on at most four leaves without vertices
of degree two has at most two internal vertices, so at most six vertices and hence
five edges in total. The following claim shows the relevance of the set of important
vertices.

Claim 3.4.22. Let R̂ be a connected subtree of Ĝ and let

S = {V (e) | ê has exactly one endpoint in R̂}.

If R̂ contains no important vertex of ĜT , then VG(R̂) \ S contains no vertex of T .

Proof. Suppose there exists t ∈ T with t ∈ VG(R̂), so t lies on a face f whose
dual f̂ is in R̂. Since R̂ contains no important vertex, some tree R̂′ of Ĝ − V (R̂)

contains the chosen face f̂(t) representing t. The edge ê connecting R̂ to R̂′ lies
on the path between f̂ and f̂(t) in Ĝ and has exactly one endpoint in R̂. By
Lemma 3.4.18, we have t ∈ V (e) and therefore t ∈ S. y

We derive a number of claims showing how to find a reducible structure under
certain conditions. After presenting these claims, we show that at least one of
them guarantees the existence of a reducible structure if G is sufficiently large.
The first claim shows that if any subtree of Ĝ attaches to ĜT at a single edge and
represents more than two vertices other than the attachments, we find a reducible
structure of the first type.

Claim 3.4.23. Let R̂ be a connected component of Ĝ − V (ĜT), which is a tree,
and let ê be the unique edge of Ĝ connecting R̂ to ĜT . If |VG(R̂) \ V (e)| > 2,
then G contains a reducible structure.

3.4 Compressing the outerplanar subgraphs 69

Proof. By Lemma 3.4.15 we know that VG(R̂)\V (e) is the vertex set of a connected
component of G−V (e), and by Claim 3.4.22 this component contains no terminals
since ĜT spans all important vertices. As the number of vertices in the connected
component is larger than two, this yields a reducible structure of the first type
for {u, v} = V (e). y

Next we show that if ĜT contains a long path of non-important vertices, we
find a reducible structure of the second or third type.
Claim 3.4.24. Let P̂ be a subpath of ĜT such that no vertex of P̂ is important.
If |V (P̂ ′)| > 6 · 4 + 1, then G contains a reducible structure.

Proof. Consider such a subpath P̂ of ĜT . Let ê0, . . . , ê24 be the first 25 edges
on P̂ . Partition these into sets Ê1, . . . , Ê6 of four consecutive edges each, and
let Ê7 be a singleton set with the next edge. Observe that for any two edges êi, êj
on P̂ with i < j − 1, the subtree R̂ of Ĝ \ {êi, êj} containing êi+1 contains no
important vertex since the only vertices of ĜT it contains belong to P̂ ; here we
exploit the fact that all vertices of degree three or more in ĜT are important.
Hence by Claim 3.4.22 the set VG(R̂) \ V ({ei, ej}) contains no vertex of T . We
will use this property below to find a reducible structure of the second or third
type via a case distinction.

Suppose first that there exists i ∈ [6] such that VG(ê4i)∩ VG(ê4(i+1)) 6= ∅, that
is, some vertex x ∈ V (G) is a common endpoint of e4i and e4(i+1). Let Ê′i :=

Êi ∪ {ê4(i+1)} and let E′i := {e | ê ∈ Ê′i}. Let P̂ ′ be the four vertices of Ĝ
which are incident to two edges of Êi, that is, the four internal vertices of the
path formed by the five edges Êi. By applying Lemma 3.4.19 to the path formed
by Êi we find x ∈ V (e) for each e ∈ E′i while the other endpoints v1, . . . , v5 of the
edges in E′i are all distinct and lie on an induced (v1, v5)-path P in G[VG(P̂ ′)]− x
containing no other neighbors of x. Let R̂ be the tree of Ĝ \ {ê4i, ê4(i+1)} contain-
ing ê4i+1 and note that VG({ê4i, ê4(i+1)}) = {v1, v5, x} and VG(R̂) ⊇ VG(P̂ ′). By
Observation 3.4.14, the only vertices of VG(R̂) which have neighbors outside VG(R̂)
are those in VG({ê4i, ê4(i+1)}) = {v1, v5, x}. Consider the connected component C
of G− {v1, v5, x} that contains P − {v1, v5}. By the previous argument, V (C) ⊆
VG(R̂) while the construction ensures V (C) ∩ {v1, v5, x} = ∅. By the argument in
the first paragraph of this claim, VG(R̂)\V ({ei, ej}) = VG(R̂)\{v1, v5, x} contains
no vertex of T , implying that no vertex of T belongs to C. Hence G contains a
reducible structure of the third type.

Now suppose the previous case does not apply; then the set M = {e4i | 0 ≤
i ≤ 6} is a matching in G. Since M̂ lies on the path P̂ in Ĝ in the relative
order given by the indices, by Lemma 3.4.17 the set M is an order-respecting
matching in G, which implies it is order-respecting in all subgraphs containing
this matching. Let R̂ be the tree of Ĝ \ {ê0, ê24} containing the rest of M̂ . By
Observation 3.4.13, the graph G[VG(R̂)] is biconnected. Since for each 0 ≤ i ≤ 6

70 A Kernel for Outerplanar Vertex Deletion

the tree R̂ contains a vertex incident on ê4i, which corresponds to a face in G
incident on e4i, it follows that G[VG(R̂)] contains all edges of M . Since R̂ is
the weak dual of G[VG(R̂)], while R̂ does not contain the edges ê0 and ê24,
the edges e0, e24 are exterior edges of G[VG(R̂)]; since ê4 is contained in E(R̂)

the edge e4 is an interior edge of G[VG(R̂)]. By applying Lemma 3.4.16 to the
order-respecting matching {e0, e4, e24} in the biconnected graph G[VG(R̂)], we find
that C = G[VG(R̂)]− V ({e0, e24}) is connected and contains a vertex adjacent to
each member of V ({e0, e24}), so that G〈C〉 = G[VG(R̂)] is biconnected and con-
tains the order-respecting matching M . By the argument in the first paragraph,
the set VG(R̂) \ V ({e0, e24}) contains no vertex of T , so that C contains no vertex
of T . Since Observation 3.4.14 shows that no vertex of C has a neighbor out-
side V ({e0, e24}) it follows that C is a connected component of G− V ({e0, e24}).
Hence we find a reducible structure of the second type. y

As the last ingredient, we show that if any interior face of G contains more
than 16 vertices, we find a reducible structure.
Claim 3.4.25. If G contains an interior face f that is incident to more than 16
vertices, then G contains a reducible structure of the first type.

Proof. Let f be a bounded face in G and consider the cycle bounding f on the
edge set E(f). We call an edge e that lies on f a portal if the tree in Ĝ \ {ê} that
does not contain f̂ contains a vertex of f̂(T). Since |f(T)| ≤ 4 at most four edges
on f are portals. By Lemma 3.4.18, if a terminal t lies on f but f(t) 6= f̂ , then
the edge e for which ê lies on the path from f̂ to f̂(t) is a portal.

Let T ′ := (T ∩ V (f)) ∪ {V (e) | e ∈ E(f) is a portal}. Since each terminal t
for which f̂(t) 6= f̂ contributes two adjacent vertices to T ′, while each terminal t
with f̂(t) = f̂ contributes one vertex, it follows that T ′ can be partitioned into
at most four sets of two vertices each, such that the vertices in each subset are
consecutive along the face. Since f is incident to more than 16 vertices, this
implies that there is a subpath P of the boundary of f consisting of five vertices,
whose three interior vertices do not belong to T ′. Let {u, v} be the endpoints
of P . Let ĜP denote the union of all trees R̂ of Ĝ− f̂ for which the unique edge ê
connecting R̂ to f̂ satisfies e ∈ E(P). By Lemma 3.4.20 there is a connected
component C of G− {u, v} on vertex set (V (P) ∪ VG(ĜP)) \ {u, v}. This implies
that all three interior vertices of P belong to C.

We conclude the proof by showing that C contains no vertex of T . To see this,
note first that V (P) \ {u, v} contains no vertex of T by choice of P . Since all
endpoints of portals belong to T ′, while no interior vertex of P belongs to T ′, it
follows that no edge of P is a portal. Consequently, for each edge e ∈ E(P) the tree
of Ĝ \ ê that does not contain f̂ does not contain any vertex of f̂(T). We exploit
this in the following argument. Suppose there exists t ∈ T with t ∈ VG(ĜP),
and let e be the edge of P such that Ĝ \ ê contains a tree R̂ with t ∈ VG(R̂).

3.4 Compressing the outerplanar subgraphs 71

Since e is not a portal, f̂(t) does not belong to R̂. Hence f̂(t) is either equal to f̂ ,
or belongs to some tree R̂′ of Ĝ − f̂ for which the edge ê′ connecting R̂′ to f̂
satisfies e′ /∈ E(P). We consider these cases separately.

• If f̂(t) = f̂ , then t ∈ V (f) and therefore t ∈ T ′. By construction, no
interior vertex of P belongs to T ′. Since all vertices that belong both to V (f)

and to VG(ĜP) belong to P , it follows that t is an endpoint of P , so t ∈
{u, v}. This shows that t does not belong to the component C on vertex
set (V (P) ∪ VG(ĜP)) \ {u, v}, as required.

• If f̂(t) 6= f̂ , then f̂(t) lies in some tree R̂′ of Ĝ − f̂ for which the edge ê′

connecting R̂′ to f̂ satisfies e′ ∈ E(f)\E(P), where E(f) are the edges of G
bounding face f . Since both ê and ê′ lie on the path in Ĝ between f̂(t)

and a vertex of R̂ representing a face containing t, by Lemma 3.4.18 we
have t ∈ V (e′)∩ V (e). So t is simultaneously an endpoint of the edge e that
lies on P and the edge e′ that lies on face f but not in P . Consequently, t
is an endpoint of P and therefore t ∈ {u, v}, showing that t does not belong
to the component C on vertex set (V (P) ∪ VG(ĜP)) \ {u, v}.

The preceding argument established that there is a component of G − {u, v}
containing at least three vertices and no terminals, which forms a reducible struc-
ture of the first kind and completes the proof. y

We can now complete the proof of Lemma 3.4.21 by combining the claims
above. Recall from the beginning of the proof that ĜT is a tree containing at most
six important vertices, such that each vertex of f̂(T) and each vertex whose degree
in ĜT is unequal to two is important. Removing the important vertices from ĜT
splits it into at most five paths P̂1, . . . , P̂` of non-important vertices. If any of these
paths has more than 25 vertices, we find a reducible structure via Claim 3.4.24.
Assume that this is not the case; then ĜT consists of at most 5 · 25 non-important
and 6 important vertices. If there exists f̂ ∈ ĜT such that face f contains more
than 16 vertices, we find a reducible structure via Claim 3.4.25. If not, then the
faces represented by ĜT span at most (5 · 25 + 6) · 16 edges. All remaining vertices
of G lie on faces whose duals are not contained in ĜT , and therefore each such
vertex lies on a face f for which f̂ belongs to some tree R̂ of Ĝ− V (ĜT). When ê
is the edge connecting R̂ to ĜT then e lies on a face represented by ĜT . If for any
such tree R̂ the number of vertices |R̂ \ V (e)| which are not already accounted for
is larger than two, then Claim 3.4.23 yields a reducible structure. If not, then since
the number of attachment edges is bounded by (5 ·25+6) ·16, while each attached
tree contributes at most two additional vertices, the total number of vertices in G
is bounded by (5 ·25+6) ·16+2 ·(5 ·25+6) ·16 = 3(5 ·25+6) ·16 = 6288. Hence any
biconnected outerplanar graph with more than this number of vertices contains a
reducible structure. The proof above easily turns into a polynomial-time algorithm
to find such a structure.

72 A Kernel for Outerplanar Vertex Deletion

3.5 Wrapping up

Finally, we combine the decomposition from Lemma 3.3.26 with the rules that
reduce protrusions. If A is sufficiently large,G〈A〉 is outerplanar, and |NG(A)| ≤ 4,
we explicitly detect a reducible structure within G〈A〉. First, we use Reduction
Rule 3.4 to reduce the number of biconnected components in G〈A〉. Next, we apply
Lemma 3.4.21 to a biconnected component B of G〈A〉 and the set T = ∂G(B).
It provides us with one of several reducible structures which match our reduction
rules. It is crucial that when C is a subgraph of B and C ∩ ∂G(B) = ∅, then the
neighborhood of C in both B and G is the same.

We remark that the following lemma can be turned into an iterative procedure
that maintains the decomposition from Lemma 3.3.26 without the need to recom-
pute the set L. However, we state it in the simplest form as our analysis does not
keep track of the polynomial in the running time.

Lemma 3.5.1. Consider a graph G and a vertex set A ⊆ V (G), such that |A| >
25 · 6288, |NG(A)| ≤ 4, G[A] is connected, and G〈A〉 is outerplanar. There is
a polynomial-time algorithm that, given G and A satisfying the conditions above,
outputs a proper minor G′ of G, so that opd(G′) = opd(G).

Proof. Within this proof, we say that replacing graph G with G′ is safe when
opd(G′) = opd(G). With G and A as specified, we can execute the algorithm
from Lemma 3.4.4. Suppose that it outputs a vertex set C ⊆ S to which either
Reduction Rule 3.2 or Reduction Rule 3.4 applies and shrinks the graph. They
are safe due to Observation 3.2.3 and Lemma 3.4.3. In this case we can terminate
the algorithm.

Otherwise Lemma 3.4.4 provides us with a block-cut tree of G〈A〉 with at
most 25 biconnected components, where each such biconnected component B sat-
isfies |∂G(B)| ≤ 4. By a counting argument we can choose one biconnected compo-
nentB with more than 6288 vertices. We execute the algorithm from Lemma 3.4.21
for the graph B and the set T = ∂G(B). Note that B is a subgraph of G〈A〉, which
is outerplanar by the assumption. Depending on the type of returned structure,
we select an appropriate reduction rule.

• Case 1. We find two (possibly adjacent) vertices u, v such that there is
a component C of B − {u, v} that does not contain any vertex of ∂G(B),
for which |V (C)| > 2. Clearly NG(C) ⊆ {u, v} and G〈C〉 is outerplanar
as a subgraph of B. If uv ∈ E(G), then we apply Reduction Rule 3.5 to
contract C into a single vertex. This reduction is safe due to Lemma 3.4.5.

If uv 6∈ E(G), we apply Reduction Rule 3.4. The criterion in the statement
of the rule can be easily checked in polynomial time. By Lemma 3.4.1, the
replacement operation is equivalent to a series of edge contractions. The
safeness follows from Lemma 3.4.3. Since |V (C)| > 2, we always perform at
least one contraction.

3.5 Wrapping up 73

• Case 2. We obtain a matching e1, . . . , e7 in B, such that there is a single
connected component C of B − (V (e1) ∪ V (e7)) which contains {e2, . . . ,
e6} but no vertex from ∂G(B), such that NB(C) = V (e1) ∪ V (e7), the
graph B〈C〉 is biconnected, and e1, . . . , e7 is an order-respecting matching
in B〈C〉. Since C∩∂G(B) = ∅, we get thatNG(C) = NB(C) = V (e1)∪V (e7).
This allows us to apply Reduction Rule 3.7 and remove the edge e4. This is
safe thanks to Lemma 3.4.8.

• Case 3. We find a vertex x ∈ V (B) and five vertices v1, . . . , v5 ∈ NB(x)
that lie, in order of increasing index, on an induced path P in B−x from v1
to v5, such that NB(x) ∩ V (P) = {v1, . . . , v5}, and such that the connected
component C of B − {v1, v5, x} which contains P − {v1, v5} contains no
vertex from ∂G(B). This means that C is also the connected component
of G − {v1, v5, x} which contains P − {v1, v5}. Furthermore, the path P is
also induced in the graph G − x because B is an induced subgraph of G.
The graph G〈C〉 is outerplanar as a subgraph of B and thus Reduction
Rule 3.6 applies so we can remove the edge xv3. This operation is safe due
to Lemma 3.3.19.

In each case we are able to perform a contraction or removal operation while
preserving the outerplanar deletion number of the graph. The claim follows.

It is important that the graph is guaranteed to shrink at each step, so after
polynomially many invocations of Lemma 3.5.1 we must arrive at an irreducible
instance. We are now ready to prove the main theorem with the final bound on the
size of compressed graph 2 ·(25 ·6288+5) ·f5(c, f3(c)) ·(k2+3)4 (see Lemmas 3.3.16
and 3.3.26), where c = 40. Recall that instances (G, k) and (G′, k′) are equivalent
if opd(G) ≤ k ⇔ opd(G′) ≤ k′.

Theorem (3.1.1, restated). The Outerplanar Deletion problem admits a
polynomial-time kernelization algorithm that, given an instance (G, k), outputs
an equivalent instance (G′, k′), such that k′ ≤ k, graph G′ is a minor of G,
and G′ has O(k4) vertices and edges. Furthermore, if opd(G) ≤ k, then opd(G′) =
opd(G)− (k − k′).

Proof of Theorem 3.1.1. We use Lemma 3.3.16 to either conclude that opd(G) > k
or to find an equivalent instance (G1, k1), where G1 is a subgraph of G and k1 ≤ k.
In the first case, eitherK4 orK2,3 must be a minor of G. We check it in polynomial
time and depending on the result we output an instance (H, 0), where H = K4

or H = K2,3, which is then equivalent to (G, k). Otherwise we are guaranteed
that opd(G) ≤ k implies opd(G1) = opd(G) − (k − k1) and we also obtain a
(k1, c, d)-outerplanar decomposition of G1, where d = f3(c), which we supply to
the algorithm from Lemma 3.3.26. In the first scenario, it applies Reduction
Rule 3.3 or Reduction Rule 3.2 to the instance (G1, k1). These rules may remove
vertices or edges, but do not change the value of the parameter and transform

74 A Kernel for Outerplanar Vertex Deletion

the instance into an equivalent one due to Lemma 3.3.20 and Observation 3.2.3.
Moreover, when opd(G1) ≤ k1, then the outerplanar deletion number also stays
intact. If this is the case, we shrink the graph and rerun the algorithm from scratch
on the smaller graph, starting from recomputing the outerplanar decomposition.

Since the graph shrinks at each step, at some point the routine described
in Lemma 3.3.26 terminates with the set L as the outcome. Let (G2, k2) be the
instance equivalent to (G, k) obtained so far. Then for the returned set L ⊆ V (G2)
we have that f5(c, d) · (k2 + 3)4 upper bounds each of: |L|, |EG(L,L)|, and the
number of connected components in G2 − L. Furthermore, for each connected
component A of G2 − L it holds that G2〈A〉 is outerplanar and |NG2

(A)| ≤ 4.
If any of these components has more than 25 · 6288 vertices, then Lemma 3.5.1
applies and produces an equivalent instance (G3, k2), where G3 is a proper minor
of G2. This reduction does not affect the parameter nor the outerplanar deletion
number. We can thus again rerun the algorithm from scratch on the smaller graph.

Otherwise, each component of G2 − L has bounded size and (G2, k2) is the
outcome of the kernelization algorithm. We check that G2 has at most (25 ·6288+
1) · f5(c, d) · (k2 + 3)4 vertices. The number of edges in G2 can be upper bounded
by |EG(L,L)| plus the sum of edges in each G〈A〉, where A is connected component
of G2−L. Note that this also takes into account the edges with just one endpoint
in L. We estimate |V (G〈A〉)| ≤ 25 · 6288 + 4 and by Observation 3.2.8 we have
that |E(G〈A〉)| ≤ 2 · |V (G〈A〉)|. Therefore, |E(G2)| is at most 2 · (25 · 6288 + 5) ·
f5(c, d) · (k2 + 3)4.

As a consequence of the theorem above, we obtain the first concrete bounds on
the sizes of minor-minimal obstructions to having an outerplanar vertex deletion
set of size k.

Corollary (3.1.2, restated). If G is a graph such that opd(G) > k but each proper
minor G′ of G satisfies opd(G′) ≤ k, then G has O(k4) vertices and edges.

Proof of Corollary 3.1.2. Let p : N → N be a function such that for each in-
stance (G, k) of Outerplanar Deletion there is an equivalent instance (G′, k′)
where G′ is a minor of G on at most p(k) vertices and at most p(k) edges. The-
orem 3.1.1 provides such a function with p(k) ∈ O(k4). In the remainder of the
proof, we refer to a vertex set S whose removal makes a graph outerplanar as a
solution, regardless of its size.

Let (G, k) be a pair satisfying the preconditions to the corollary. Note that
we have opd(G) ≤ k + 1 since the graph G′ obtained after removing an arbitrary
vertex v satisfies opd(G′) ≤ k and therefore has a solution S of size at most k, so
that S ∪ {v} is a solution in G of size at most k + 1.

Next, we argue that for each vertex v ∈ V (G) there is a solution of size k + 1
in G without v. If v is an isolated vertex in G then this is trivial. Otherwise,
let uv ∈ E(G) be an arbitrary edge incident on v. Since G′ := G \ uv is a
proper minor of G, it has a solution S′ of size k by assumption. We have v /∈ S′:
if v ∈ S′, then G′ − S = G− S which would imply that G has a solution of size k,

3.6 Conclusion 75

contradicting opd(G) > k. Now observe that S′ ∪ {u} is a solution in G, because
the graph G− (S′ ∪ {u}) is a minor of G′ − S, as removing vertex u also removes
the edge uv. Hence S′∪{u} is a solution of size k+1 in G that does not contain v.

Consider the effect of applying the kernelization algorithm of Theorem 3.1.1
to the instance (G, k + 1), resulting in an instance (G′, k′). Since opd(G) = k +
1, we have that opd(G′) = opd(G) − (k + 1 − k′). We also know that G′ is a
minor of G and the number of vertices and edges in G′ is at most p(k + 1). We
are going to show that G′ = G. Suppose otherwise and consider the series of
graph modifying reductions applied by the kernelization algorithm, resulting in
successive instances (G, k + 1) = (G1, k1), (G2, k2), . . . , (G`, k`) = (G′, k′). We
consider two cases: k2 < k1 and k2 = k1. In the first case, the only reduction
rule that may decrease the value of the parameter is the one from Lemma 3.3.5.
However, as k1 = k+1 and for each vertex v ∈ V (G) there is a solution of size k+1
in G without v, this reduction must produce a new instance with k2 = k1; a
contradiction. In the second case, the graph G2 is a proper minor of G1 = G
and opd(G2) = opd(G) = k + 1 because no reduction can change the outerplanar
deletion number unless it is greater than k1 or k2 < k1. But each proper minor
of G has a solution of size at most k by assumption, which again leads to a
contradiction. This implies that G′ = G and hence the number of vertices and
edges in G is at most p(k + 1) ∈ O(k4).

3.6 Conclusion

We presented a number of elementary reduction rules for Outerplanar Dele-
tion that can be applied in polynomial time to obtain a kernel of O(k4) vertices
and edges. This kernel does not use protrusion replacement and the constants
hidden by the O-notation can be derived easily. This is the first concrete kernel
for Outerplanar Deletion, and a step towards more concrete kernelization
bounds for Planar-F Deletion.

In earlier work Dell and Van Melkebeek [40, Theorem 3] have shown that
there is no kernel for Outerplanar Deletion of bitsize O(k2−ε) unless NP ⊆
coNP/poly. This naturally leads to the question, can these two bounds be brought
closer together?

Our work exploits the fact that K2,3-minor free graphs cannot have many
disjoint paths between two vertices. Previous work [60] used a similar observation
to derive a kernel for θc-Minor-Free Deletion. Since the appearance of the
extended abstract of our work, a concrete kernelization bound was given for {K4}-
Minor-Free Deletion by Schols [118], showing that a similar approach can also
work for F-Minor-Free Deletion when F-minor free graphs may contain many
disjoint paths between two vertices. Both for {K4,K2,3}-Minor-Free Deletion
and {K4}-Minor-Free Deletion it is possible to obtain near-protrusions that
behave nicely in the following sense: there is a set Z of O(1) vertices such that
for any optimal solution S all but one of the neighbors of the near-protrusion

76 A Kernel for Outerplanar Vertex Deletion

which are not in S, belong to Z except for at most one vertex. This can be
exploited to give explicit concrete kernelizations. This leads to the question, is
there something special about {K4,K2,3} and {K4} that makes this possible or
can these techniques also be used to obtain explicit concrete polynomial kernels
for all Planar-F Deletion problems?

3.6 Conclusion 77

4
A Turing Kernelization Dicho-
tomy for Finding F-Minor Free
Graphs

4.1 Introduction

In Chapter 3 we gave a kernelization for the Outerplanar Deletion problem
parameterized by the solution size, often referred to as the natural parameter.
Using the natural parameter is a common approach in kernelization [5, 61, 76, 90],
and it often leads to meaningful results when we can expect the solution to be
small. However, this method does not give any nontrivial guarantees when the
solution size is known to be proportional to the total size of the input. For that
reason, there is an alternative line of research [25, 36, 59, 69, 79, 80, 81, 123] that
focuses on parameterizations based on a measure of nontriviality of the instance
(cf. [104]). One formal way to capture nontriviality of a graph problem is to mea-
sure how many vertex-deletions are needed to reduce the input graph to a graph
class in which the problem can be solved in polynomial time. Since many graph
problems can be solved in polynomial time on trees and forests, the structural
graph parameter feedback vertex number (the minimum number of vertex dele-
tions needed to make the graph acyclic, i.e., a forest) is a relevant measure of the
distance of the input to a trivially solvable one.

80 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

Previous research has shown that for the Vertex Cover problem, there is a
polynomial kernel parameterized by the feedback vertex number [79]. This prepro-
cessing algorithm guarantees that inputs which are large with respect to their feed-
back vertex number can be efficiently reduced. Similarly, the Feedback Vertex
Set problem parameterized by the feedback vertex number (its natural parameter
in this case) admits a polynomial kernel [23, 76, 121]. The Vertex Cover and
Feedback Vertex Set problems are arguably the simplest of the F-Minor-
Free Deletion problems (taking F = {K2} and F = {K3} respectively) which
leads to the following question: Do all F-Minor-Free Deletion problems admit
a polynomial kernel when parameterized by the feedback vertex number?

To our initial surprise, we prove that the answer to this question is no (under
the assumption that NP 6⊆ coNP/poly, which we tacitly assume throughout the
informal discussion in this introduction). We show that some F-Minor-Free
Deletion problems parameterized by the feedback vertex number do not admit a
polynomial kernel. The non-existence of a polynomial kernel does not necessarily
imply that any size-reduction strategy will fail. Turing kernelization [54] is a
relaxation of the traditional form of kernelization. Some problems that do not
admit polynomial kernelizations, do admit polynomial Turing kernelizations [17,
78, 83, 95, 126]. Recall that where a kernelization algorithm is required to find
a single polynomial-size problem instance whose solution can be converted into
a solution of the original problem, a Turing kernelization may use the results of
multiple polynomial-size problem instances to derive the solution to the original
problem. A formal definition of Turing kernelization is given in Section 2.4.

Given that not all F-Minor-Free Deletion problems parameterized by the
feedback vertex number admit a polynomial kernel, one may wonder if in those
cases a polynomial Turing kernel exists instead. Using the framework of Hermelin
et al. [72], our argument for ruling out a traditional polynomial kernel, also rules
out the existence of polynomial-size Turing kernelizations under a certain hardness
assumption.

Results While it is known that the parameterization by feedback vertex
number admits polynomial kernels for F = {K2}, for F = {K3}, and for any
set F containing a planar graph1 but no forests [61], we show there are also cases
that do not admit polynomial kernels. For example, the case of F consisting of a
single graph P3 that forms a path on three vertices does not admit a polynomial
kernel. This lower bound for F = {P3} follows from a more general theorem that
we state below.

Recall that a graph is a forest if and only if its treewidth is one [19]. Hence the
feedback vertex number is exactly the minimum number of vertex deletions needed

1If F contains no forests, then any acyclic graph is F-minor free, implying the size of an
optimal solution is at most the size of a feedback vertex set. Hence the kernelization for the
solution-size parameterization yields a kernel of size bounded polynomially in the feedback vertex
number.

4.1 Introduction 81

to obtain a graph of treewidth one. Our lower bound also holds for F-Subgraph-
Free Deletion, which is the related problem that asks whether there is a vertex
set S of size at most k such that G − S contains no graph H ∈ F as a subgraph.
Let min tw(F) := minH∈F tw(H). We prove the following.

Theorem 4.1.1. Let F be a finite set of graphs, such that each graph in F has
a connected component on at least three vertices. Then F-Minor-Free Dele-
tion and F-Subgraph-Free Deletion do not admit polynomial kernels when
parameterized by the vertex-deletion distance to a graph of treewidth min tw(F),
unless NP ⊆ coNP/poly.

To see that Theorem 4.1.1 implies the claimed lower bound for F = {P3},
observe that whenever F contains an acyclic graph with at least one edge we
have min tw(F) = 1 and therefore the vertex-deletion distance to a graph of tree-
width min tw(F) equals the feedback vertex number. The theorem also generalizes
earlier results of Cygan et al. [36, Theorem 13], who investigated the problem of
losing treewidth. They proved that for each fixed 1 ≤ η < ρ, the η-Transversal
problem (delete at most ` vertices to get a graph of treewidth at most η) does not
have a polynomial kernel when parameterized by the vertex-deletion distance to
treewidth ρ. Since the treewidth of a graph does not increase when taking minors,
there is a finite set Fη of forbidden minors (cf. [113]) that characterize the graphs
of treewidth at most η. As the members of the obstruction set for η ≥ 1 are easily
seen to be connected, have treewidth η + 1, and at least three vertices, the lower
bound of Theorem 4.1.1 encompasses the theorem of Cygan et al. and generalizes
it to arbitrary F-Minor-Free Deletion problems.

Theorem 4.1.1 is obtained through a polynomial-parameter transformation
from the cnf-sat problem parameterized by the number of variables, for which
a superpolynomial kernelization lower bound is known [40, 63]. The main tech-
nical contribution in the hardness proof consists of the design of a gadget that
acts as a clause checker. A certain budget of vertex deletions is available to break
all F-minors present in the gadget, and this is possible if and only if one of the
neighboring vertices in a variable gadget is removed by the solution. This removal
encodes that the variable is set in a way that satisfies the clause. The intricate
part of the construction is to design the gadget knowing only that F has a graph
with a connected component of at least three vertices. Here we extensively rely
on the fact that minimal minor models of biconnected graphs live in biconnected
subgraphs, together with the fact that the treewidth of a graph does not increase
when attaching structures along cut vertices in a tree-like manner.

The reduction proving Theorem 4.1.1 also proves the non-existence of poly-
nomial-size Turing kernelizations, unless all parameterized problems in the com-
plexity class MK[2] defined by Hermelin et al. [72] have polynomial Turing kernels.
(The cnf-sat problem with clauses of unbounded length, parameterized by the
number of variables, isMK[2]-complete [72, Theorem 1, cf. Theorem 10] and widely
believed not to admit polynomial-size Turing kernels.)

82 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

Motivated by the general form of the lower bound statement in Theorem 4.1.1,
we also investigate upper bounds and derive a complexity dichotomy. For any F
that does not meet the criterion of Theorem 4.1.1, we obtain a polynomial Turing
kernel.

Theorem 4.1.2. Let F be a finite family of graphs, such that some H ∈ F has
no connected component of three or more vertices. Then F-Minor-Free Dele-
tion and F-Subgraph-Free Deletion admit polynomial Turing kernels when
parameterized by the vertex-deletion distance to a graph of treewidth min tw(F).

The main insight in the Turing kernelization is the following. If H ∈ F has
no connected component of three or more vertices, then H consists of disjoint
edges and isolated vertices. If H only has isolated vertices, then F-Minor-
Free Deletion is polynomial-time solvable because the leftover graph has less
than |V (H)| ∈ O(1) vertices, for which we can search by brute force. Otherwise, H
is a matching of size t ≥ 1 plus potentially some isolated vertices. The isolated
vertices turn out only to make a difference if the solution F-free graph has con-
stant size. In the interesting case, we can focus on H ∈ F being a matching of
size t. Then a graph that is F-minor-free does not admit a matching of size t, and
therefore has a vertex cover of size at most 2t. Hence a solution to F-Minor-Free
Deletion can be extended to a vertex cover by including O(1) additional vertices.
Using the Tutte-Berge formula, we can make the relation between F-Minor-Free
Deletion and the vertex cover precise, and use it to reduce an instance of F-
Minor-Free Deletion parameterized by deletion distance to min tw(F), to the
logical OR of a polynomial number of instances of Vertex Cover parameterized
by deletion distance to min tw(F). If F has a graph with no component of size
at least three, then min tw(F) = 1, implying that the parameter is the feedback
vertex set size. This allows us to use the polynomial kernel for Vertex Cover
parameterized by feedback vertex set on each generated instance. We query the
resulting instances of size kO(1) to the oracle to find the answer.

Organization We present preliminaries on graphs and kernelization in Sec-
tion 4.2. Section 4.3 develops the lower bounds on (Turing) kernelization when all
graphs in F have a connected component with at least three vertices. In Section 4.4
we show that in all other cases, a polynomial Turing kernelization exists.

4.2 Preliminaries

If a graph H is a minor of a graph G we denote this as H � G. We say a graph H
is a component-wise minor of a graph G, denoted as H - G, when every connected
component of H is a minor of G.

Observation 4.2.1. For graphs H and G, if H � G and G � H then H and G
are isomorphic.

4.2 Preliminaries 83

Since the treewidth of a graph H is the maximum treewidth of its connected
components, we have that if H - G for some graph G, then each connected
component H ′ of H is a minor of G, hence tw(H ′) ≤ tw(G). This leads to the
following observation:

Observation 4.2.2. For graphs H and G, if H - G then tw(H) ≤ tw(G).

Definition 4.2.3. Let F be a family of graphs and let G ∈ F . For every relation E
∈ {�,-} we define minimal and maximal elements as follows:

• G is said to be E-minimal in F when for all graphs H ∈ F we have H E
G⇒ G E H.

• G is said to be E-maximal in F when for all graphs H ∈ F we have G E
H ⇒ H E G.

Definition 4.2.4. We call a connected component C of a graph G a �-maximal
component of G when C is �-maximal in the set of graphs that form the connected
components of G.

For type ∈ {minor, subgraph} and a finite family of graphs F , we define:

F-type-Free Deletion
Input: A graph G and an integer `.
Parameter: Vertex-deletion distance of G to a graph of treewidth min tw(F).
Question: Is there a set X ⊆ V (G) of at most ` vertices such that G−X does
not contain any H ∈ F as a type?

For any integer α, a graph G is called α-robust when |V (G)| ≥ α and no
vertex v ∈ V (G) exists such that G − v contains a connected component with
strictly less than α− 1 vertices.

Proposition 4.2.5. Any graph G has a unique maximal α-robust subgraph. Any
α-robust subgraph of G is a subgraph of the maximal α-robust subgraph of G.

Proof. The proposition follows straightforwardly from the fact that ifG[A] andG[B]
are α-robust, then so is G[A ∪B]. We now prove this fact.

Consider two vertex sets A,B ⊆ V (G), such that G[A] and G[B] are α-robust.
We show that G[A ∪ B] is α-robust. Since G[A] is α-robust we have |A| ≥ α so
then |A ∪B| ≥ α. Suppose for contradiction that there exists a vertex v ∈ A ∪B
such that G[A∪B]−v contains a connected component of size smaller than α−1.
Let C be the vertices of this connected component. We know C contains vertices
of at least one of A and B. Assume, without loss of generality, A ∩ C 6= ∅.
Then G[A ∩ C] is a connected component of size less than α − 1 in G[A] − v.
If v ∈ A this directly contradicts α-robustness of G[A], so assume v 6∈ A. Now G[A]
contains a connected component with less than α−1 vertices. Since |C| < α ≤ |A|
there exists a vertex u ∈ A \C, so then G[A]− u contains a connected component
with less than α− 1 vertices, which contradicts α-robustness of G[A].

84 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

Recall that a biconnected component of a graph is a maximal subgraph that
is biconnected. We define a leaf-block of a graph G as a biconnected component
of G that contains at most one vertex v that is a cut vertex in G. The size of a
leaf-block H is |V (H)|. The size of a smallest leaf-block of a graph G is denoted
as λ(G). Observe that G is α-robust if and only if λ(G) ≥ α. For any graph G
and integer α, let α -prune(G) denote the unique maximal α-robust subgraph of G,
which may be empty. Note that α -prune(G) can be obtained from G by repeatedly
removing interior vertices of leaf blocks of size less than α.

4.3 Lower bound

In this section we consider the case where all graphs in F contain a connected com-
ponent of at least three vertices and give a polynomial-parameter transformation
from cnf-sat parameterized by the number of variables. In order to construct a
clause gadget G for a clauses with more than two literals, our construction relies
on the presence of a connected component H↑ with at least three vertices in a
--minimal graph in F . Such a graph only exists when all graphs in F have a
connected component on at least 3 vertices. Intuitively, the reason we need at
least three vertices is as follows. The gadget for a clause Ci is constructed based
on the sequence of its literals `1, . . . , `|Ci|. For each literal `i, there is a corre-
sponding part of the gadget which checks three things: whether a literal before `i
is satisfied, whether `i itself is satisfied, and whether a literal after `i is satisfied.
To implement this check, we need that H has at least three vertices.

4.3.1 Properties of biconnected and robust subgraphs
Our construction exploits the way in which biconnected components of H and the
clause gadget G restrict the options for an H-model to exist in G. We therefore
first derive some relevant properties.

Proposition 4.3.1. If H is an α-robust graph and ϕ is a minimal H-model in a
graph G, then G[ϕ(H)] is α-robust.

Proof. Since H is α-robust we have |V (H)| ≥ α. So |ϕ(H)| ≥ |V (H)| ≥ α and
it remains to verify that G[ϕ(H)] − v does not have any connected components
smaller than α−1 for any v. Take an arbitrary vertex v ∈ ϕ(H) and let u ∈ V (H)
be such that v ∈ ϕ(u). Since H − u does not have connected components smaller
than α− 1, the graph G[ϕ(H)]−ϕ(u) cannot have connected components smaller
than α − 1. Consider a spanning tree of G[ϕ(u)]. Each leaf of this spanning tree
must be connected to a vertex in a different branch set, otherwise ϕ is not minimal.
We know every connected component in G[ϕ(u)] − v contains at least one leaf of
this spanning tree, hence every connected component of G[ϕ(u)]− v is connected
to G[ϕ(H)] − ϕ(u). So G[ϕ(H)] − v does not contain a connected component
smaller than α− 1. Since v was arbitrary, the graph G[ϕ(H)] is α-robust.

4.3 Lower bound 85

Proposition 4.3.2. If ϕ is an H-model in G and B is a biconnected component
of H, then G[ϕ(B)] contains a biconnected subgraph on at least |B| vertices.

Proof. Since G[ϕ(B)] clearly contains B as a minor, there is a minimal B-model ϕ′
in G with ϕ′(B) ⊆ ϕ(B), so that G[ϕ′(B)] is a subgraph of G[ϕ(B)]. It suf-
fices to show that G[ϕ′(B)] contains a biconnected component on at least |V (B)|
vertices. Since B is biconnected, it is |V (B)|-robust so by Proposition 4.3.1 we
know G[ϕ′(B)] is |V (B)|-robust. Hence G[ϕ′(B)] contains a biconnected compo-
nent on at least |V (B)| vertices.

Observation 4.3.3. For any graph H, which may be the null graph, and inte-
gers α ≥ β we have α -prune(β -prune(H)) = α -prune(H).

Proposition 4.3.4. For graphs H and G we have H � G ⇒ α -prune(H) �
α -prune(G) for any integer α.

Proof. Clearly α -prune(H) � H so since H � G we have α -prune(H) � G.
For simplicity let H ′ := α -prune(H). Let ϕ be a minimal H ′-model in G and
observe H ′ � G[ϕ(H ′)]. From Proposition 4.3.1 we know G[ϕ(H ′)] is α-robust.
Since G[ϕ(H ′)] is an α-robust subgraph of G it is also a subgraph of α -prune(G)
by Proposition 4.2.5. Hence α -prune(H) � G[ϕ(H ′)] � α -prune(G).

Proposition 4.3.5. For any E ∈ {�,-}, two integers α ≥ β, and graphs H
and G we have that H E G⇒ α -prune(H) E β -prune(G).

Proof. Suppose H � G, then

α -prune(H) � α -prune(G) by Proposition 4.3.4
= α -prune(β -prune(G)) by Observation 4.3.3
� β -prune(G).

Alternatively, suppose H - G. If H ′ is a connected component of α -prune(H),
then there exists a connected component H ′′ of H such that H ′ � H ′′. Since H -
G we have H ′′ � G so then H ′ � G. As shown above, this implies α -prune(H ′) �
β -prune(G). Note that α -prune(H ′) = H ′ since H ′ is a connected component
of α -prune(H). It follows that α -prune(H) - β -prune(G).

4.3.2 Clause gadget construction
We proceed to construct a clause gadget to be used in the polynomial-parameter
transformation from cnf-sat.

Lemma 4.3.6. For any connected graph H with at least three vertices there exists
a polynomial-time algorithm that, given an integer n ≥ 1, outputs a graph G and
a vertex set S ⊆ V (G) of size n such that all of the following are true:

1. tw(G) ≤ tw(H),

86 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

2. G contains a packing of 3n− 1 vertex-disjoint H-subgraphs,

3. G− S contains a packing of 3n− 2 vertex-disjoint H-subgraphs, and

4. ∀v ∈ S there exists X ⊆ V (G) of size 3n−1 s.t. all of the following are true:

(a) v ∈ X,

(b) G−X is H-minor free,

(c) λ(H) -prune(G−X) - H, and

(d) for all connected components Gc of G − X that contain a vertex of S
we have |V (Gc)| < λ(H) and Gc contains exactly one vertex of S.

Proof. Before describing the construction of G and S, we define a few subgraphs
and vertices. Let L be a smallest leaf-block of H. Let R be the graph obtained
from H by removing all vertices of L that are not cut vertices in H. Note that
when H is biconnected, L = H and R is the null graph. We distinguish three
distinct vertices a, b, c in H. Vertices c and b are both part of L, where c is the
cut vertex (if there is one) and b is any other vertex in L. Finally vertex a is any
vertex in H that is not c or b. See Figure 4.1a. In the construction of G we will
combine copies of H such that a, b, and c form cut vertices in G and are part of
two different H-subgraphs. Intuitively this choice of b and c ensures that removing
either one from a copy of H in G means no vertex from the L-subgraph of this
copy of H can be used in a minimal H-model in G. In the remainder of this proof
we use fK→K′ : V (K)→ V (K ′) for isomorphic graphs K and K ′ to denote a fixed
isomorphism.

Construction Take two copies of H, call them H1 and H2. Let R1 and L1

denote the subgraphs of H1 related to R and L, respectively, by the isomorphism
between H and H1. Similarly let R2 and L2 denote the subgraphs of H2. Take a
copy of L which we call L3. Let M be the graph obtained from the disjoint union
of H1, H2, and L3 by identifying the pair fH→H1

(c) and fH→H2
(b) into a single

vertex s, and identifying the pair fH→H2(c) and fL→L3(c) into a single vertex t.
We label fH→H1(a), fH→H1(b), and fL→L3(b) as u, w, and v respectively.

This construction is motivated by the fact that the graphs M − {v, s}, M −
{u, t}, and M − {w, t} are all H-minor free, which we will exploit in the formal
correctness argument later. We will connect copies of M to each other via the
vertices u, v, and w such that, although two vertices need to be removed in every
copy of M , one such vertex can always be in two copies of M at the same time.

Now take 2n − 1 copies of M , call them M1, . . . ,M2n−1. For readability we
denote fM→Mi

as fi for all 1 ≤ i ≤ 2n − 1. For all 1 ≤ i < n we identify fi(w)
and fn+i(v), and we identify fn+i(w) and fi+1(u). Let this graph be G, and let S
be the set of vertices fi(v) for all 1 ≤ i ≤ n. Let H1,i, H2,i, R1,i, R2,i, L1,i, L2,i,
and L3,i denote the subgraphs in Mi that correspond to the subgraphs H1, H2,
R1, R2, L1, L2, and L3 in M . See Figures 4.1b and 4.1c.

4.3 Lower bound 87

c

b

a

R

L

(a) Graph H

R1;i

L1;i

L
2
;iR2;i

L
3
;i

fi(s)

fi(t)

fi(u) fi(w)

fi(v)

(b) Graph Mi for 1 ≤ i ≤ n

L
3
;n

+
i

L
1
;n

+
i

L2;n+i

R
2
;n

+
i

R
1
;n

+
i

fn+i(w)
fn+i(v)

fn+i(t)

fn+i(s)

(c) Graph Mn+i for 1 ≤ i < n

Figure 4.1 We show the situation where a is contained in R. Note that a can
always be chosen such that it is contained in R when H is not biconnected. Note
that the graphs in Figures 4.1b and 4.1c are isomorphic but drawn differently.

This concludes the description of graph G and set S, see Figure 4.2 for an
illustration. In Figure 4.5 the subgraphsW1,W2, andW3 form a concrete example
of G with the choice H = P3 and n = 4, n = 3, and n = 3 respectively. It is easily
seen that G and S can be constructed in polynomial time.

Correctness It remains to verify that all conditions of the lemma statement
are met.

Condition 1: Since we connected copies of L and R in a treelike fashion along
cut vertices, we did not introduce any new biconnected components. The treewidth
of a graph is equal to the maximum treewidth over all its biconnected components
so we know that tw(G) ≤ max{tw(R), tw(L)} = tw(H).

Condition 2: For each 1 ≤ i ≤ n we can distinguish two H-subgraphs in Mi,
namely H1,i and L3,i ∪R2,i. This gives us 2n H-subgraphs in G. Note that since
all M1, . . . ,Mn are vertex-disjoint, these 2n H-subgraphs are also vertex-disjoint
in G. For each n < i ≤ 2n− 1 we distinguish one H-subgraph, namely H2,i. Note
that since H2,i is vertex-disjoint from all M1, . . . ,Mi−1, Mi+1, . . . ,M2n−1 we have
a total of 2n+ n− 1 = 3n− 1 vertex-disjoint H-subgraphs in G. This packing is
shown in Figure 4.2a.

Condition 3: Alternatively, for each 1 ≤ i ≤ n we can distinguish one H-
subgraph in Mi, namely H2,i. For each n < i ≤ 2n − 1 we distinguish two
H-subgraphs in Mi, namely H1,i and L3,i ∪ R2,i. Again these H-subgraphs are
vertex-disjoint, and since they also do not contain any vertices of S, they form
a packing of n + 2(n − 1) = 3n − 2 vertex-disjoint H-subgraphs in G − S. See
Figure 4.2b.

Condition 4: Finally we prove that for all v ∈ S there exists a set X ⊆ V (G) of
size 3n−1 such that the four parts listed in Condition 4 are true. For this purpose

88 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

M1 Mn+1 M2 M2n−1 MnMn+2 M3 Mn+3

(a) A packing of 3n− 1 vertex-disjoint H-subgraphs in G

M1 Mn+1 M2 M2n−1 MnMn+2 M3 Mn+3

(b) A packing of 3n− 2 vertex-disjoint H-subgraphs in G− S

Figure 4.2 Two packings of vertex-disjoint H-subgraphs in G and G− S. Ver-
tices in S are marked black.

M1 Mn+1 M2 M2n−1 MnMn+2 M3 Mn+3

Figure 4.3 Vertex sets in Q are encircled.

we first identify a family Q of vertex sets such that any H-model in G spans at
least one vertex set in Q. Let Q be defined as follows: (see Figure 4.3)

Q = {{fi(v), fi(t)} | 1 ≤ i ≤ 2n− 1} ∪ {{fi(t), fi(s)} | 1 ≤ i ≤ 2n− 1}
∪ {{fi(s), fi(w)} | n+ 1 ≤ i ≤ 2n− 1} ∪ {{fi(u), fi(s), fi(w)} | 1 ≤ i ≤ n}.

Claim 4.3.7. If ϕ is an H-model in G, then ϕ(H) ⊇ Q for some Q ∈ Q.

Proof. Let ϕ be an arbitrary H-model in G. We know from Proposition 4.3.2
that G[ϕ(L)] contains a biconnected subgraph on at least |L| vertices. Let B
be such a biconnected subgraph in G. Subgraph B must be fully contained in
a biconnected component of G. Such a biconnected component must contain at
least |B| ≥ |L| vertices. We make a case distinction over all biconnected com-
ponents in G with size at least |L|, and prove that if B is contained in them,
then ϕ(H) ⊇ Q for some Q ∈ Q.

4.3 Lower bound 89

• L2,i for any 1 ≤ i ≤ 2n − 1: We know |L2,i| = |L| so then B = L,
hence fi(t), fi(s) ∈ ϕ(L).

• L3,i for any 1 ≤ i ≤ 2n − 1: We know |L3,i| = |L| so then B = L,
hence fi(v), fi(t) ∈ ϕ(L).

• L1,i for any n + 1 ≤ i ≤ 2n − 1: We know |L1,i| = |L| so then B = L,
hence fi(s), fi(w) ∈ ϕ(L).

• L1,i for any 1 ≤ i ≤ n: We know |L1,i| = |L| so B = L, hence fi(s), fi(w) ∈
ϕ(L). If fi(t) ∈ ϕ(H) or fi(u) ∈ ϕ(H) then clearly Q 3 {fi(t), fi(s)} ⊆
ϕ(H) or Q 3 {fi(u), fi(s), fi(w)} ⊆ ϕ(H). If fn+i(t) ∈ ϕ(H) then Q 3
{fn+i(v), fn+i(t)} ⊆ ϕ(H), since fi(w) = fn+i(v). Suppose ϕ(H) does
not contain fi(t), fi(u), or fn+i(t), then ϕ must be an H-model in the
graph G′ := (H1,i − fi(u)) ∪ (L2,i − fi(t)) ∪ (L3,n+i − fi(t)), so H � G′. By
Proposition 4.3.4 we know that |L| -prune(H) � |L| -prune(G′). Clearly
we have |L| -prune(H) = H. The graph G′ contains at least two leaf
blocks that are smaller than |L|, namely L2,i − fi(t) and L3,n+i − fi(t),
so |L| -prune(G′) is a subgraph ofH1,i−fi(u). But then |V (|L| -prune(G′))| <
|V (H)| so |L| -prune(G′) cannot contain an H-model. Contradiction.

• There can be biconnected components of size at least |L| in R2,i for any 1 ≤
i ≤ 2n − 1. Suppose fi(t) 6∈ ϕ(H), then ϕ must be an H-model in the
graph R2,i − fi(t). Clearly this is not possible since |V (R2,i − fi(t))| <
|V (H)|, so fi(t) ∈ ϕ(H). If fi(v) ∈ ϕ(H) or fi(s) ∈ ϕ(H) then Q 3
{fi(v), fi(t)} ⊆ ϕ(H) or Q 3 {fi(t), fi(s)} ⊆ ϕ(H). Suppose ϕ(H) does
not contain fi(v) or fi(s), then ϕ must be an H-model in the graph G′ :=
R2,i∪(L3,i−fi(v))∪(L2,i−fi(s)), so H � G′. By Proposition 4.3.4 we know
that |L| -prune(H) � |L| -prune(G′), so H � |L| -prune(G′) = R2,i. This is
a contradiction since R2,i cannot contain H as a minor.

• There can be biconnected components of size at least |L| in R1,i for any n+
1 ≤ i ≤ 2n − 1. Suppose fi(s) 6∈ ϕ(H), then ϕ must be an H-model in the
graph R1,i − fi(s). As before this is not possible since |V (R1,i − fi(s))| <
|V (H)|, so fi(s) ∈ ϕ(H). If fi(t) ∈ ϕ(H) or fi(w) ∈ ϕ(H) then Q 3
{fi(t), fi(s)} ⊆ ϕ(H) or Q 3 {fi(s), fi(w)} ⊆ ϕ(H). Suppose ϕ(H) does
not contain fi(t) or fi(w), then ϕ must be an H-model in the graph G′ :=
R1,i∪(L2,i−fi(t))∪(L1,i−fi(w)), soH � G′. As before, by Proposition 4.3.4
it follows that H � R1,i which is a contradiction.

• There can be biconnected components of size at least |L| in R1,i for any 1 <
i < n. Suppose fn+i−1(s) ∈ ϕ(H) then fi(u) = fn+i−1(w) ∈ ϕ(H) since
any path in G connecting fn+i−1(s) to any vertex in R1,i includes fi(u).
So Q 3 {fn+i−1(s), fn+i−1(w)} ⊆ ϕ(H). Similarly if fi(t) ∈ ϕ(H) then Q 3
{fi(t), fi(s)} ⊆ ϕ(H) and if fn+i(t) ∈ ϕ(G) then Q 3 {fn+i(v), fn+i(t)} ⊆
ϕ(H). Suppose ϕ(H) does not contain fn+i−1(s), fi(t), or fn+i(t), then ϕ

90 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

must be an H-model in the graph G′ := H1,i ∪ (L1,n+i−1 − fn+i−1(s)) ∪
(L2,i − fi(t)) ∪ (L3,n+i − fn+i(t)). If Q 3 {fi(u), fi(s), fi(w)} ⊆ ϕ(H), then
the claim holds, so suppose {fi(u), fi(s), fi(w)} 6⊆ ϕ(H), then for some p ∈
{fi(u), fi(s), fi(w)} we have that ϕ is an H-model in G′− p. Therefore H �
G′−p and by Proposition 4.3.4 we know |L| -prune(H) � |L| -prune(G′−p),
soH � |L| -prune(G′−p) = |L| -prune(H1,i−p). However |L| -prune(H1,i−p)
has at most |V (H1,i − p)| = |V (H)| − 1 vertices, so it cannot contain an H-
model. Contradiction.

• There can be biconnected components of size at least |L| in R1,1. As in the
previous case we can assume that ϕ(H) does not contain f1(t) or fn+1(t), so
then ϕ must be an H-model in G′ := H1,1∪(L2,1−fi(t))∪(L3,n+1−fn+1(t)).
Like in the previous case, by Proposition 4.3.4 this results in a contradiction.

• There can be biconnected components of size at least |L| in R1,n. As above
we can assume that ϕ(H) does not contain f2n−1(s) or f1(t), so then ϕ must
be an H-model in G′ := H1,1 ∪ (L1,2n−1 − f2n−1(s)) ∪ (L2,1 − fi(t)). Again,
by Proposition 4.3.4 this results in a contradiction.

This concludes the proof of Claim 4.3.7. y

We now proceed to prove Condition 4 of the lemma statement. Let fj(v) ∈ S
be an arbitrary vertex in S, implying 1 ≤ j ≤ n, and let X be defined as:⋃

1≤i<j

{fi(t), fi(w), fi+n(s)} ∪ {fj(v), fj(s)} ∪
⋃

j<i≤n

{fi(t), fi(u), fi+n−1(t)} .

In Figure 4.4 the vertices inX are shown in graph G as a cross. Observe that |X| =
3n− 1 and fj(v) ∈ X. Furthermore X contains at least one element from each set
in Q, hence G−X is H-minor free by Claim 4.3.7. This shows Parts 4a and 4b of
the lemma statement hold. We proceed to show Parts 4c and 4d.

Part 4c: Consider the graph G′ := λ(H) -prune(G−X). Figure 4.4 shows a su-
pergraph ofG′ in red for the case that a ∈ V (R). Every connected component inG′
must contain a biconnected component with at least λ(H) = |L| vertices. Consider
all biconnected components in G −X containing at least |L| vertices. These can
only be contained in the following subgraphs of G: R2,i for any 1 ≤ i ≤ 2n − 1,
H1,i for any 1 ≤ i ≤ n, and R1,i for any n+ 1 ≤ i ≤ 2n− 1. Note that any path
from a vertex of one of these subgraphs to a vertex of another contains at least one
vertex in X, hence any connected component in G′ contains vertices of at most
one of these subgraphs. Since all other biconnected components in G − X have
size less than |L| we know that each connected component in |L| -prune(G−X) is
a subgraph of R1,i, R2,i or H1,i for some i, hence |L| -prune(G−X) - H.

Part 4d: Finally we show that all connected components in G−X that contain
a vertex of S have size less than |L|. Since we have fj(v) ∈ X, there is no connected
component in G − X containing fj(v). For all i 6= j we have fi(t) ∈ X so the
connected components in G − X containing a vertex from S are L3,i − fi(t) for

4.3 Lower bound 91

Mj−1 Mj+1 MnMn+j−1 Mj Mn+jM1

Figure 4.4 The graph G − X. Vertices in X that are removed from the
graph are marked by a cross. Vertices in S are marked black. A supergraph
of λ(H) -prune(G−X) is shown in red. Note that when |V (R)| = |V (L)|, not all
subgraphs and vertices marked red are necessarily part of λ(H) -prune(G − X).
Note that the subgraphs W1, W2, and W3 (shaded in red) include some vertices
from Gvar.

all 1 ≤ i < j or j < i ≤ n. These all have size |L| − 1 and contain exactly one
vertex of S.

4.3.3 Reduction for connected graphs H

Using the clause gadget described in Lemma 4.3.6 we give a polynomial-parameter
transformation for the case where F contains a single, connected graph H.

Lemma 4.3.8. For any connected graph H with at least three vertices there exists a
polynomial-time algorithm that, given a CNF-formula Φ with k variables, outputs
a graph G and an integer ` such that all of the following are true:

1. there is a set S ⊆ V (G) of at most 2k vertices such that tw(G−S) ≤ tw(H),

2. G contains ` vertex-disjoint H-subgraphs,

3. if Φ is not satisfiable then there does not exist a set X ⊆ V (G) of size at
most ` such that G−X is H-subgraph free,

4. if Φ is satisfiable then there exists a set X ⊆ V (G) of size at most ` such
that G −X is H-minor free, λ(H) -prune(G −X) - H, and tw(G −X) ≤
tw(H).

Proof. Let x1, . . . , xk denote the variables of Φ, let C1, . . . , Cm denote the sets of
literals in each clause of Φ, and let n denote the total number of occurrences of
literals in Φ, i.e., n =

∑
1≤j≤m |Cj |.

Construction Let H1, . . . ,Hk be copies of H. In each copy Hi we arbitrarily
label one vertex vxi and another v¬xi . Let Gvar be the graph obtained from the
disjoint union of H1, . . . ,Hk. For each clause Cj of Φ we create a graph called Wj

and vertex set Sj ⊆ V (Wj) by invoking Lemma 4.3.6 withH and |Cj |. LetG be the

92 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

vx1
v¬x1

vx3
v¬x3

vx4
v¬x4

vx2
v¬x2

Gvar

W1

W2

W3

H1

H2

H3

H4

Figure 4.5 The graph G as obtained with H = P3 and Φ = (¬x4 ∨ ¬x3 ∨ x2 ∨
¬x1) ∧ (x4 ∨ ¬x3 ∨ x1) ∧ (x3 ∨ ¬x2 ∨ x1). Vertices in a solution corresponding to
the satisfying assignment x1 = True, x2 = True, x3 = False, x4 = True are marked
with a cross.

graph obtained from the disjoint union ofW1, . . . ,Wm and Gvar where we identify
the vertices in Sj with the appropriate vxi

or v¬xi
as follows: For each clause Cj

let s1, . . . , s|Cj | be the vertices in Sj in some arbitrary order, and let c1, . . . , c|Cj |
be the literals in Cj , then we identify si and vci for each 1 ≤ i ≤ |Cj |. Finally
let ` = k+3n−2m and S =

⋃
1≤i≤k{vxi , v¬xi}. Note that Sj ⊆ S for all 1 ≤ j ≤ m.

This concludes the description of G, `, and S. See Figure 4.5 for an example.

Correctness It is easy to see they can be constructed in polynomial time.
We proceed to show that all conditions in the lemma statement are met.

Condition 1: Clearly |S| = 2k and since every connected component in G −
S is a subgraph of H1, . . . ,Hk or W1, . . . ,Wm, it follows from Lemma 4.3.6(1)
that tw(G− S) ≤ tw(H).

Condition 2: For all 1 ≤ j ≤ m we know from Lemma 4.3.6(3) that Wj − S
contains a packing of 3|Cj |−2 H-subgraphs. Since Wj−S and Wi−S are vertex-
disjoint for j 6= i we can combine these packings to obtain a packing in G − S
of
∑

1≤j≤m(3|Cj | − 2) = 3n − 2m vertex-disjoint H-subgraphs. Note that this
packing does not contain vertices from H1, . . . ,Hk, so we can add these to the
packing and obtain a packing of k + 3n − 2m = ` vertex disjoint H-subgraphs
in G.

Condition 3: We now show that if Φ is not satisfiable, then there does not exist
a setX ⊆ V (G) of size at most ` such thatG−X isH-subgraph free. Suppose there

4.3 Lower bound 93

exists such a set X. Since there is a packing of ` vertex-disjoint H-subgraphs in G,
we know that X contains exactly one vertex from each H-subgraph in the packing.
Since vxi

and v¬xi
belong to the same subgraph, they cannot both be contained

in X. Consider the variable assignment where xi is assigned true if vxi
∈ X or false

otherwise. Since we assumed Φ is not satisfiable, there is at least one clause in Φ
that evaluates to false with this variable assignment. Let Cj denote such a clause.
Since Cj evaluates to false, all of its literals must be false, so for all variables xi that
are not negated in Cj we have xi = false and therefore vxi

6∈ X. For all negated
variables xi in Cj we know xi = true meaning vxi

∈ X, so v¬xi
6∈ X. This means

that ∅ = X∩Sj = X∩V (Wj)∩V (Gvar), but since Gvar contains k vertex-disjoint
H-subgraphs we have |X ∩ V (Gvar)| ≥ k, so then |X ∩ (V (Gvar) \ V (Wj))| ≥ k.
For all i there is a packing of 3|Ci| − 2 vertex-disjoint H-subgraphs in Wi − S =
Wi − V (Gvar), so in the graph G− V (Wj) there are k +

∑
i 6=j(3|Ci| − 2) vertex-

disjointH-subgraphs. This means that |X∩(V (G)\V (Wj))| ≥ k+
∑
i 6=j(3|Ci|−2),

and since |X| = k +
∑

1≤i≤m(3|Ci| − 2) we know that |X ∩ V (Wj)| ≤ 3|Cj | − 2.
However Wj contains 3|Cj | − 1 vertex-disjoint H-subgraphs, so G−X cannot be
H-subgraph free. Contradiction.

Condition 4: Finally we show that if Φ is satisfiable then there exists a set X ⊆
V (G) of size at most ` such that G−X is H-minor free, λ(H) -prune(G−X) - H,
and tw(G−X) ≤ tw(H). Since Φ is satisfiable there exists a variable assignment
such that each clause contains at least one literal that is true. Consider the
set X ′ consisting of all vertices vxi

when xi is true and v¬xi
when xi is false.

Since every clause contains one literal that is true, we know for each 1 ≤ j ≤
m that Wj contains at least one vertex from X ′. So for each 1 ≤ j ≤ m we
have X ′ ∩ Sj 6= ∅. Take an arbitrary vertex vj ∈ X ′ ∩ Sj and let Xj ⊆ V (Wj) be
the vertex set containing vj obtained from Condition 4 of Lemma 4.3.6. Let X =
X ′ ∪

⋃
1≤j≤mXj . For all 1 ≤ j ≤ m we know |X ′ ∩Xj | ≥ 1 since vj ∈ X ′ ∩Xj .

So |X| ≤ |X ′|+
∑

1≤j≤m(3|Cj | − 2) = k + 3n− 2m = `.
By Lemma 4.3.6(4b) we have thatWj−Xj is H-minor free for all 1 ≤ j ≤ m, so

clearlyWj−X is alsoH-minor free. Consider an arbitrary connected componentG′
of G − X. If G′ is also a connected component of Wj − X for some 1 ≤ j ≤ m,
then we have that G′ is H-minor free, λ(H) -prune(G′) � H (by Lemma 4.3.6(4c)),
and tw(G′) ≤ tw(Wj) ≤ tw(H). If G′ is not a connected component of Wj −X for
any 1 ≤ j ≤ m, then it contains a connected component of Hi−X as a subgraph,
for some 1 ≤ i ≤ k. When G′ does not contain any vertices of S we know that G′
must be a subgraph of Hi, so G′ is H-minor free, λ(H) -prune(G′) � G′ � H,
and tw(G′) ≤ tw(Hi) = tw(H).

Suppose on the other hand G′ does contain a vertex v ∈ S. No connected
component of Wj −Xj contains more than one vertex from S and each connected
component of Gvar contains exactly two vertices of S, one of which is in X. So v
is the only vertex in G′ that is contained in S. Moreover, since S is the only
overlap between the graphs Gvar andWj for all 1 ≤ j ≤ m, we have that v is a cut
vertex in G′, such that for some 1 ≤ i ≤ k, each biconnected component of G′ is a

94 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

subgraph of Hi −X or Wj −X for any 1 ≤ j ≤ m. So each of these biconnected
components of G′ has treewidth at most tw(H), hence tw(G′) ≤ tw(H). Also,
each biconnected component in G′ that is a subgraph of Wj −X = Wj −Xj for
some 1 ≤ j ≤ m contains a vertex from S and therefore has size at most λ(H)− 1
by Lemma 4.3.6(4d) on the choice of Xj . So we have that λ(H) -prune(G′) is a
subgraph of Hi, hence λ(H) -prune(G′) � G′ � H. Additionally since Hi contains
at least one vertex that is not contained in G′ we have H 6� λ(H) -prune(G′).
Because H = λ(H) -prune(H) we can conclude by Proposition 4.3.5 that G′ is
H-minor free. Since H is connected, and all connected components of G−X are
H-minor free, G−X must also be H-minor free. We also know for all connected
components G′ of G−X that λ(H) -prune(G′) � H, so λ(H) -prune(G−X) - H.
Finally since tw(G′) ≤ tw(H) for each connected component G′ of G−X we have
that tw(G−X) ≤ tw(H).

The construction from Lemma 4.3.8 can directly be used to give a polynomial-
parameter transformation from cnf-sat parameterized by the number of variables.
Observe that if G − X is F-minor free, then G − X is also F-subgraph free.
Similarly, if G − X contains an H-subgraph for all X ⊆ V (G) with |X| ≤ `,
then G−X also contains anH-minor. Therefore, for any type ∈ {minor, subgraph}
and F consisting of one connected graph on at least three vertices, Lemma 4.3.8
gives a polynomial-parameter transformation from cnf-sat parameterized by the
number of variables to F-type-Free Deletion parameterized by deletion distance
to min tw(F).

4.3.4 Reduction for families of disconnected graphs

When F contains multiple graphs, each containing a connected component of at
least three vertices, it is possible to select a connected component H of one of
the graphs in F such that the construction described in Lemma 4.3.8 forms the
main ingredient for a polynomial-parameter transformation. This will formally be
argued in the next lemma. To aid the intuition for this technical construction,
we describe a simple special case. If F is a family of connected graphs, each
on at least three vertices, and we choose H ∈ F as a --minimal graph in F
with tw(H) = min tw(F), we may safely apply the construction of Lemma 4.3.8,
to reduce the satisfiability of a CNF-formula Φ to F-Minor-Free Deletion on
a graph G. For a deletion set X ⊆ V (G) corresponding to a satisfiable assignment,
the graph G−X is guaranteed to be H-minor free by Lemma 4.3.8, and tw(G−
X) ≤ tw(H). The latter implies thatG−X also does not contain any graphs F ∈ F
with tw(F) > min tw(F) as a minor; and since H is connected and --minimal
among the treewidth-minimal graphs in F , the fact that G − X is H-minor free
implies that G−X does not contain any other treewidth-minimal graph in F as a
minor either. Hence our choice of H ensures that G−X is not only H-minor free,
but also F-minor free. The next lemma introduces a more sophisticated choice
of H that also works when F contains disconnected graphs.

4.3 Lower bound 95

-

-

�

�

F1

F2

F3

�

Figure 4.6 In F = {F1, F2, F3} there are two graphs (F1 and F2) that are
--minimal, in this case both with treewidth 2 = min tw(F), hence F↓ = {F1, F2}.
Together, the graphs in F↓ contain five �-maximal components. The leaf-blocks
of these components are circled in red. Observe that this leaves three candidates
for H↑, namely those with a leaf-block of size 2. Suppose we select H↑ = P4,
so H = F1, then c = 2 since H↑ occurs twice in H. Vertices in Y are colored red.

Lemma 4.3.9. For any fixed finite set of graphs F , all with a connected component
of at least 3 vertices, there exists a polynomial time algorithm that, given a CNF-
formula Φ with k variables, outputs a graph G and integer ` such that all of the
following are true:

1. there exists a set S ⊆ V (G) of at most kO(1) vertices such that tw(G− S) ≤
min tw(F),

2. if Φ is not satisfiable then there does not exist a set X ⊆ V (G) of size at
most ` such that G−X is F-subgraph free, and

3. if Φ is satisfiable then there exists a set X ⊆ V (G) of size at most ` such
that G−X is F-minor free.

Proof. Before describing the construction of G and ` we define some graphs and
sets based on F .

Note that as a consequence of Observation 4.2.2, there is a graph F ∈ F that is
--minimal with tw(F) = min tw(F). Let F↓ ⊆ F denote the set of all --minimal
graphs in F that have treewidth min tw(F). We select a �-maximal componentH↑
of a graph H ∈ F↓ such that λ(H↑) ≤ λ(H ′↑) for all �-maximal components H ′↑ of
any H ′ ∈ F↓. Note that H↑ contains at least 3 vertices since otherwise H↑ would
be a minor of at least one connected component of H containing at least 3 vertices,
which contradicts H↑ being a �-maximal component of H. Let c ≥ 1 denote the
number of connected components in H isomorphic to H↑ and let Y denote the
set of vertices contained in these connected components, i.e., H[Y] is isomorphic
to c ·H↑. See Figure 4.6 for an example of the choices of F↓, H, H↑, and c for a
concrete F .

96 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

G2

G1

G′ G′

Figure 4.7 Based on the choices of H, H↑, c, and Y in Fig. 4.6 and the CNF-
formula Φ as in Fig. 4.5 we obtain the graph G = G1 ∪G2 depicted above.

Construction We take the algorithm from Lemma 4.3.8 for the graph H↑
and apply it to Φ to construct a graph G′ and integer `′. Let S′ ⊆ V (G′) be the
vertex set obtained from Lemma 4.3.8(1). Let G1 := (2c − 1) · G′, and let the
set S be the union of all 2c− 1 corresponding copies of S′. Take ` := (2c− 1) · `′
and let G2 := (` + 1) · (H − Y) and G := G2 ∪G1. See Figure 4.7 for a concrete
example of G.

Before proving the conditions of the lemma statement hold for G and ` we
prove some properties of G2.
Claim 4.3.10. G2 has the following four properties: (1) G2 - H, (2) tw(G2) ≤
tw(H), (3) G2 is H-minor free, and (4) G2 is F-minor free.

Proof. Property (1) follows directly from the construction and Property (2) follows
directly from Property (1). To show Property (3), we show that G2 is H↑-minor
free. Suppose for contradiction that G2 contains H↑ as minor then, since H↑ is
connected, there is a connected component H ′ of G2 that contains H↑ as minor. H ′
is also a connected component of H. Since H↑ is a �-maximal component of H
and H↑ � H ′ we know H ′ � H↑, and it follows from Observation 4.2.1 that H ′
is isomorphic to H↑. This is a contradiction since G2 contains only connected
components of H that are not isomorphic to H↑.

Having shown that G2 is H↑-minor free, Property (4) is easily shown by con-
tradiction. Suppose G2 is not F-minor free, then there exists a graph B ∈ F such
that B � G2. It follows from G2 - H that B - H and since H is --minimal in F
we have that H - B � G2, but then H↑ � G2. This is a contradiction since G2 is
H↑-minor free. y

Correctness We show all conditions of the lemma statement hold for G
and `.

4.3 Lower bound 97

Condition 1.: Observe that |S| = (2c − 1) · 2k ∈ kO(1). By Lemma 4.3.8(1)
that tw(G1 − S) ≤ tw(H↑) ≤ tw(H) and since tw(G2) ≤ tw(H) by Claim 4.3.10,
we obtain tw(G− S) ≤ tw(H) = min tw(F).

Condition 2.: Suppose Φ is not satisfiable, and take an arbitrary X ⊆ V (G)
of size at most `. We prove G −X is not F-subgraph free by showing that G −
X contains an H-subgraph. First note that G2 − X contains at least one copy
of H − Y = H − c · H↑, so it remains to show that G1 − X contains c vertex-
disjoint H↑-subgraphs. Recall that G1 is the disjoint union of 2c− 1 copies of G′.
Consider the subgraph Ĝ1 of G1 consisting of the G′-subgraphs in G1 that contain
at most `′ vertices of X. Since Φ is not satisfiable, G′ leaves at least one H↑-
subgraph when `′ or fewer vertices are removed, so each G′-subgraph in Ĝ1 leaves
at least oneH↑-subgraph inG1−X. When Ĝ1 contains at least c vertex-disjointG′-
subgraphs, we know that there are at least c vertex-disjoint H↑-subgraphs in G1−
X, concluding the proof. Suppose instead that Ĝ1 contains less than c vertex-
disjoint G′-subgraphs. Let x be the number of G′-subgraphs in G1 − V (Ĝ1).
Since G1 contains 2c− 1 vertex-disjoint G′-subgraphs we have x ≥ c. Each of the
G′-subgraphs in G1 − V (Ĝ1) contains at least `′ + 1 vertices of X, so Ĝ1 contains
at most ` − x(`′ + 1) vertices of X. We also know Ĝ1 contains `′((2c − 1) − x)
vertex-disjoint H↑-subgraphs since G′ contains `′ vertex-disjoint H↑-subgraphs (by
Lemma 4.3.8(2)) and there are (2c − 1) − x vertex-disjoint G′-subgraphs in Ĝ1.
We conclude that the number of vertex-disjoint H↑-subgraphs in Ĝ1 − X, and
therefore also in G1 −X, is at least

`′((2c− 1)− x)− (`− x(`′ + 1)) = `′((2c− 1)− x)− (`′(2c− 1)− `′x− x)

= `′((2c− 1)− x)− `′((2c− 1)− x) + x

= x ≥ c.

This concludes the proof of Condition 2..
Condition 3.: When Φ is satisfiable we know that there exists a set X ′ ⊆ V (G′)

of size at most `′ such that G′−X ′ is H↑-minor free and λ(H↑) -prune(G′−X ′) -
H↑. So then there exists a set X ⊆ V (G1) of size at most (2c − 1) · `′ = ` such
that G1 −X is H↑-minor free and λ(H↑) -prune(G1 −X) - H↑. Since G2 is also
H↑-minor free we know that G −X is H↑-minor free and therefore also H-minor
free. We now show that G−X is also F-minor free.

First observe the following:

λ(H↑) -prune(G2 −X) � G2 −X � G2 - H, and (4.1)
λ(H↑) -prune(G1 −X) - H↑ � H. (4.2)

We now deduce

λ(H↑) -prune(G−X) = λ(H↑) -prune((G2 −X) ∪ (G1 −X))

= λ(H↑) -prune(G2 −X) ∪ λ(H↑) -prune(G1 −X))

- H (by Equations (4.1) and (4.2))

98 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

Suppose G−X is not F-minor free, then for some H ′ ∈ F we have H ′ � G−X.
There must exist a graph B ∈ F such that B is --minimal in F and B - G−X
since if H ′ is --minimal in F then H ′ forms such a graph B, and if on the
other hand H ′ is not --minimal in F then there exists a graph H ′′ ∈ F such
that H ′′ - H ′ and H ′′ is --minimal in F , meaning H ′′ forms such a graph B.

Since B - G − X we know by Observation 4.2.2 that tw(B) ≤ tw(G − X).
Recall that tw(G−X) ≤ min tw(F) so then B ∈ F↓. Because of how we chose H↑,
we know for all �-maximal components B↑ of B that λ(B↑) ≥ λ(H↑). Therefore

B - λ(H↑) -prune(B) since B = λ(H↑) -prune(B)

- λ(H↑) -prune(G−X) by Proposition 4.3.5 since B - G−X
- H.

Since H is --minimal in F , it follows that H - B. By definition of - we
have H↑ � B - G−X. Since H↑ is connected we conclude H↑ � G−X. This is
a contradiction since G−X is H↑-minor free.

We conclude that a polynomial-parameter transformation exists for all type ∈
{minor, subgraph} and F containing only graphs with a connected component on
at least three vertices. Together with the fact that cnf-sat is MK[2]-hard and
does not admit a polynomial kernel unless NP ⊆ coNP/poly (cf. [72, Lemma 9]),
this proves the following generalization of Theorem 4.1.1.

Theorem 4.3.11. For type ∈ {minor, subgraph} and a set F of graphs, all with a
connected component of at least three vertices, F-type-Free Deletion parame-
terized by vertex-deletion distance to a graph of treewidth min tw(F) is MK[2]-hard
and does not admit a polynomial kernel unless NP ⊆ coNP/poly.

4.4 A polynomial Turing kernelization

In this section we consider the case where F contains a graph with no connected
component of more than two vertices; or in short F contains a P3-subgraph-free
graph. This graph consists of isolated vertices and disjoint edges. Let isol(G)
denote the set of isolated vertices in a graphG, i.e., isol(G) = {v ∈ V (G) | deg(v) =
0}. We first show that the removal of all isolated vertices from all graphs in F
only changes the answer to F-Minor-Free Deletion and F-Subgraph-Free
Deletion when the input is of constant size.

Lemma 4.4.1. For type ∈ {minor, subgraph} and any family of graphs F contain-
ing a P3-subgraph-free graph, let F ′ = {F − isol(F) | F ∈ F}. For any graph G,
if G is F-type free but not F ′-type free, then |V (G)| < max

F∈F
(|V (F)|+ 2|V (F)|3).

Proof. We first prove the lemma for type = subgraph. Suppose G is F-subgraph
free but not F ′-subgraph free, so G contains an H ′-subgraph for some H ′ ∈ F ′.

4.4 A polynomial Turing kernelization 99

This subgraph consists of |V (H ′)| vertices. LetH ∈ F be the graph for whichH ′ =
H − isol(H). The graph G cannot contain | isol(H)| vertices in addition to the
vertices in the H ′-subgraph because otherwise G trivially contains an F-subgraph.
Hence |V (G)| < |V (H ′)|+ | isol(H)| = |V (H)| ≤ max

F∈F
|V (F)|.

Next, we show the lemma holds for type = minor. If some graph G is F-minor
free but not F ′-minor free then for some graph H ∈ F we have H ′ � G but
not H � G where H ′ = H − isol(H). Let ϕ be a minimal H ′-model in G. The
graph G has less than |V (isol(H))| vertices that are not in any branch set of ϕ,
since otherwise an H-model could be constructed in G by taking the branch sets
of ϕ and adding |V (isol(H))| branch sets consisting of a single vertex.

The number of vertices in G that are contained in a branch set of ϕ can
also be limited. For an arbitrary vertex v ∈ V (H ′) consider a spanning tree T
ofG[ϕ(v)]. If ϕ(v) contains multiple vertices then for each leaf p of T , there must be
a vertex u ∈ NH′(v) and q ∈ NG(p)∩ϕ(u), such that p is the only vertex from ϕ(v)
that is adjacent to ϕ(u); otherwise, removing leaf p from the branch set φ(v) would
yield a smaller H ′-model in G. Hence there can only be max{1,degH′(v)} leaves
in T .

To give a bound on the size of each branch set consider a smallest graph D ∈ F ′
that is P3-subgraph free. Take ` = |V (D)| and note that D � P`. Since we know
that G is F ′-minor free, G must also be P`-subgraph-free, therefore T is also P`-
subgraph free. Consider an arbitrary vertex r in T . Since T is a tree, there is
exactly one path from r to each leaf of T and every vertex of T lies on at least
one path from r to a leaf of T . Since there are no more than max{1,degH′(v)}
leaves in T there are at most max{1,degH′(v)} such paths, and all these paths
contain less than ` vertices since T is P`-subgraph free, hence in total T contains
less than degH′(v) · ` vertices. We can now give a bound on the total number of
vertices in G as follows:

|V (G)| < | isol(H)|+
∑

v∈H−isol(H)

|ϕ(v)|

≤ | isol(H)|+
∑

v∈H−isol(H)

(degH′(v) · `)

≤ | isol(H)|+ 2 · |E(H)| · `
≤ |V (H)|+ 2 · |V (H)|2 · |V (D)|
≤ max

F∈F
(|V (F)|+ 2|V (F)|3)

This concludes the proof.

After the removal of isolated vertices in F to obtain F ′, we know that F ′
contains a graph consisting entirely of disjoint edges, i.e., this graph is isomorphic
to c ·P2 for some integer c ≥ 0. If c = 0 then F-type-free graphs have constant size
and the problem is polynomial-time solvable. We proceed assuming c ≥ 1. Let

100 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

the matching number of a graph G, denoted as ν(G), be the size of a maximum
matching in G. We make the following observation.

Observation 4.4.2. For all c ≥ 1, a graph G is c · P2-subgraph free if and only
if ν(G) ≤ c− 1.

We give a characterization of graphs with bounded matching number, based
on an adaptation of the Tutte-Berge formula [13]. We use odd(G) to denote the
number of connected components in G that consist of an odd number of vertices.

Lemma 4.4.3. For any graph G and integer m we have ν(G) ≤ m if and only
if V (G) can be partitioned into three disjoint sets U,R, S such that all of the
following are true:

• all connected components in G[R] have an odd number of at least 3 vertices,

• G[S] is independent,

• NG(S) ⊆ U , and

• |U |+ 1
2 (|R| − odd(G[R])) ≤ m.

Proof. Consider the Tutte-Berge formula [13] (cf. [119, Chapter 24]):

ν(G) = 1
2 min
U⊆V (G)

(|V (G)| − odd(G− U) + |U |).

Suppose ν(G) ≤ m. It follows from the Tutte-Berge formula that there exists
a U1 ⊆ V (G) such that 1

2 (|V (G)| − odd(G − U1) + |U1|) = ν(G) ≤ m. From
each connected component H in G − U1 on an even number of vertices, select a
vertex that is not a cut vertex of H (any leaf of a spanning tree of H suffices) and
add the selected vertices to a set U2. Now take U = U1 ∪ U2. Note that G − U
contains only connected components with an odd number of vertices and odd(G−
U) = odd(G − U1) + |U2|. Let S be the set of isolated vertices in G − U and
let R = V (G)\(U ∪S). Observe that U , R, and S satisfy the first three conditions
in the lemma statement: G[R] contains only connected components with an odd
number of at least 3 vertices, G[S] is independent, and NG(S) ⊆ U . Note that this
implies that odd(G[R])+ |S| = odd(G[R∪S]) = odd(G−U). The last requirement
follows from the Tutte-Berge formula as follows:

|U |+ 1
2 (|R| − odd(G[R])) = 1

2 (2|U |+ |S| − |S|+ |R| − odd(G[R])

= 1
2 ((|U |+ |S|+ |R|)− (odd(G[R]) + |S|) + |U |)

= 1
2 (|V (G)| − odd(G− U) + |U |)

= 1
2 (|V (G)| − (odd(G− U1) + |U2|) + |U1|+ |U2|)

= 1
2 (|V (G)| − odd(G− U1) + |U1|)

= ν(G) ≤ m

4.4 A polynomial Turing kernelization 101

For the reverse direction of the proof, suppose V (G) can be partitioned into
disjoint sets U,R, S as described in the lemma statement. A maximum matching
in G[R] has size at most 1

2 (|R| − odd(G[R]) since at least one vertex in each
odd component remains unmatched and every matching edge covers two vertices.
Since NG(S) ⊆ U we know that S is isolated in G− U , so ν(G− U) = ν(G[R]) ≤
1
2 (|R| − odd(G[R]). Since a matching in G is at most |U | edges larger than a
matching in G− U we conclude ν(G) ≤ |U |+ 1

2 (|R| − odd(G[R]) ≤ m.

Let us showcase how Lemma 4.4.3 can be used to attack F-Minor-Free
Deletion when F consists of a single graph c ·P2, so that the problem is to find a
set X ⊆ V (G) of size at most ` such that G−X has matching number less than c.

Theorem 4.4.4. For any constant c, the {c ·P2}-Minor-Free Deletion prob-
lem parameterized by the size k of a feedback vertex set, can be solved in polynomial
time using an oracle that answers Vertex Cover instances with O(k3) vertices.

Proof. If an instance (G, `) admits a solution X, then Lemma 4.4.3 guarantees
that V (G−X) can be partitioned into U,R, S satisfying the four conditions form =
c− 1. We try all relevant options for the sets U and R in the partition, of which
there are only polynomially many since |U |+ 1

3 |R| ≤ m ∈ O(1).
For given sets U,R ⊆ V (G), we can decide whether there is a solution X of

size at most ` for which U,R, and S := V (G) \ (U ∪ R ∪ X) form the partition
witnessing that G − X has matching number at most m, as follows. If some
component of G[R] has an even number of vertices or less than three vertices,
we reject outright. Similarly, if |U | + 1

2 (|R| − odd(G[R])) > m, we reject. Now,
if U and R were guessed correctly, then Lemma 4.4.3 guarantees that the only
neighbors of R in the graph G −X belong to U . Hence we infer that all vertices
of X ′ := NG(R) \ U must belong to the solution X. Note that since S is an
independent set in G − X, the solution X forms a vertex cover of G − (U ∪ R),
so that X ′′ := X \ X ′ is a vertex cover of G′ := G − (U ∪ R ∪ X ′). On the
other hand, for every vertex cover X ′′ of G′, the graph G − (X ′ ∪X ′′) will have
matching number at most m, as witnessed by the partition. Hence the problem
of finding a minimum solution X whose corresponding graph G−X has U and R
as two of the classes in its witness partition, reduces to finding a minimum vertex
cover of the graph G′. In terms of the decision problem, this means G has a
solution of size at most ` with U and R as witness partite sets, if and only if G′
has a vertex cover of size at most ` − |X ′|. Since fvs(G′) ≤ fvs(G), we can apply
the known [79] kernel for Vertex Cover parameterized by the feedback vertex
number to reduce (G′, `−|X ′|) to an equivalent instance with O(fvs(G)3) vertices,
which is queried to the oracle. If the oracle answers positively to any query,
then (G, `) has answer yes; otherwise the answer is no.

We remark that by using the polynomial-time reduction guaranteed by NP-
completeness, the queries to the oracle can be posed as instances of the original
F-Minor-Free Deletion problem, rather than Vertex Cover. The following

102 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

lemma formalizes this and will be used as a black box for our general Turing
kernelization.

Lemma 4.4.5. Let F be a finite set of graphs such that each graph in F contains
at least one edge, and let type ∈ {minor, subgraph}. There is a polynomial-time
algorithm that, given a graph G and integer `, decides whether G has a vertex cover
of size at most `, using an oracle that answers F-type-Free Deletion instances
with fvs(G)O(1) vertices.

Proof. For a fixed F and type, the following procedure solves the Vertex Cover
instance (G, `) in polynomial time using an oracle for F-type-Free Deletion
instances with fvs(G)O(1) vertices.

1. Compute a 2-approximate feedback vertex set S on G in polynomial time,
for example using the algorithm by Bafna et al. [11].

2. Apply the kernelization by Jansen and Bodlaender [79] for Vertex Cover
parameterized by feedback vertex set to the instance (G, `) and the approx-
imate feedback vertex set S. This takes polynomial time, and results in an
instance (G1, `1) of Vertex Cover on O(|S|3) ≤ O(fvs(G)3) vertices that
is equivalent to (G, `).

3. Since every graph in F contains at least one edge, the F-type-Free Dele-
tion problem is NP-complete [93]. The Vertex Cover problem is also
known to be NP-complete, hence there exists a polynomial-time algorithm
that transforms the Vertex Cover instance (G1, `1) into an equivalent F-
type-Free Deletion instance (G2, `2). Since this algorithm runs in poly-
nomial time and the size of its input is fvs(G)O(1), the number of vertices
in G2 is upper-bounded by fvs(G)O(1).

4. Query the instance (G2, `2) of size fvs(G)O(1) to the F-type-Free Deletion
oracle, and output the oracle’s answer as the decision on the Vertex Cover
instance (G, `).

We point out that in Lemma 4.4.5, the oracle that answers F-type-Free Dele-
tion instances with fvs(G)O(1) vertices may be replaced with an oracle that an-
swers Vertex Cover instances on O(fvs(G)3) vertices, due to the application
of the Vertex Cover kernelization in Step 2. Hence when using an oracle for
Vertex Cover, the query size can be bounded uniformly and does not depend
on F .

We now present our general (non-adaptive) Turing kernelization for the minor-
free and subgraph-free deletion problems for all families F containing a P3-subgraph-
free graph, combining three ingredients. Lemma 4.4.1 allows us to focus on families
whose graphs have no isolated vertices. The guessing strategy of Theorem 4.4.4 is
the second ingredient. The final ingredient is required to deal with the fact that
a solution subgraph G−X that is c · P2-minor free for some c · P2 ∈ F , may still

4.4 A polynomial Turing kernelization 103

have one of the other graphs in F as a minor. To cope with this issue, we show
in Lemma 4.4.7 that if G−X has no matching of size c (i.e., G−X has a vertex
cover of size at most 2c), but does contain a minor model of some graph in F , then
there is such a minor model of constant size. By employing a more expensive (but
still polynomially bounded) guessing step, this allows us to complete the Turing
kernelization. In the following lemmas ∆(G) will denote the maximum degree
of G.

Proposition 4.4.6 ([59, Proposition 1]). If G contains H as a minor, then
there is a subgraph G∗ of G containing an H-minor such that ∆(G∗) ≤ ∆(H)
and |V (G∗)| ≤ |V (H)|+ vc(G∗) · (∆(H) + 1).

Lemma 4.4.7. For any type ∈ {minor, subgraph}, let F be a family of graphs,
let G be a graph with vertex cover C, and let S = V (G − C). If G contains
an F-type, then there exists S′ ⊆ S such that G[C ∪ S′] contains an F-type
and |S′| ≤ maxH∈F |V (H)|+ |C| · (∆(H) + 1).

Proof. Suppose type = minor, then by Proposition 4.4.6 we know that if G con-
tains H ∈ F as a minor, then there is a subgraph G∗ of G containing an H-
minor such that |V (G∗)| ≤ |V (H)|+ vc(G∗) · (∆(H) + 1). Take S′ = V (G∗) ∩ S,
then G[C ∪ S′] = G[C ∪ V (G∗)] contains an F-minor and

|S′| ≤ |V (G∗)|
≤ |V (H)|+ vc(G∗) · (∆(H) + 1)

≤ |V (H)|+ |C| · (∆(H) + 1)

≤ max
H∈F

|V (H)|+ |C| · (∆(H) + 1).

On the other hand, when type = subgraph then G contains an H-subgraph
for some H ∈ F , and trivially there exists a set X ⊆ V (G) of |V (H)| vertices
such that G[X] contains an H-subgraph. Take S′ = X − C and clearly G[C ∪ S′]
contains an H-subgraph.

Armed with Lemma 4.4.7 we now present the proof of the general Turing
kernelization.

Theorem 4.1.2. Let F be a finite family of graphs, such that some H ∈ F has
no connected component of three or more vertices. Then F-Minor-Free Dele-
tion and F-Subgraph-Free Deletion admit polynomial Turing kernels when
parameterized by the vertex-deletion distance to a graph of treewidth min tw(F).

Proof. Fix some type ∈ {minor, subgraph}. First, consider input instances (G, `)
for which |V (G)| − ` ≤ maxF∈F (|V (F)| + 2|V (F)|3). If |V (G)| − ` < 0, there is
a trivial solution. Otherwise, there exists a vertex set X of size at most ` such
that G−X is F-type free if and only if there exists a set X ′ of size exactly ` such
that G−X ′ is F-type free, since F-type-free graphs are hereditary and X ′ be ob-
tained by adding sufficiently many vertices to X. Such a set X ′ exists if and only if

104 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

there exists a vertex set Y of size exactly |V (G)|−` ≤ maxF∈F (|V (F)|+2|V (F)|3)
such that G[Y] is F-type free. Since there are only polynomially many such vertex
sets Y , and for each Y we can check in polynomial time whether G[Y] contains
an F-type [112], we can apply brute force to solve the instance in polynomial time.

So from now on we only consider instances (G, `) for which |V (G)| − ` >
maxF∈F (|V (F)| + 2|V (F)|3). This means that for any vertex set X of size at
most `, the graph G−X contains more than maxF∈F (|V (F)|+2|V (F)|3) vertices.
Take F ′ = {F − isol(F) | F ∈ F} and we obtain from Lemma 4.4.1 that if G−X
is F-type free, it is also F ′-type free, and clearly if G − X contains an F-type
it also contains an F ′-type. Hence the F-type-Free Deletion instance (G, `) is
equivalent to the F ′-type-Free Deletion instance (G, `). Note that if F contains
an edgeless graph then F ′ contains the null graph. In this case the instance is
trivially false since every graph contains the null graph as a subgraph. In the rest
of the algorithm we assume each graph in F ′ contains at least one edge.

Since every graph in F contains an edge and at least one graph in F has
no component of three vertices or more, we have min tw(F) = 1. Therefore the
parameter, the deletion distance to treewidth min tw(F), is equal to fvs(G).

To complete the Turing kernelization for F-type-Free Deletion, it suffices to
give a polynomial-time algorithm solving F ′-type-Free Deletion using an oracle
that can solve F-Minor-Free Deletion instances (G′, `′) for which |V (G′)| ≤
fvs(G)O(1) and fvs(G′) ≤ fvs(G)O(1). Note that the latter condition on (G′, `′) is
redundant since fvs(G′) < |V (G′)| for any graph G′.

Our Turing kernelization will use the algorithm described in Lemma 4.4.5 to
solve Vertex Cover instances (G′′, `′′) for induced subgraphs G′′ of G. This al-
gorithm requires an oracle for F-type-Free Deletion instances with fvs(G′′)O(1)

vertices. Note that since G′′ is an induced subgraph of G, we have fvs(G′′) ≤
fvs(G), hence our F-type-Free Deletion oracle for instances with fvs(G)O(1)

suffices. We will refer to this algorithm as VCoracle.
Using this subroutine, the Turing kernelization algorithm is given in Algo-

rithm 1. The high-level idea is as follows. Let M be the smallest graph in F ′ that
has no component of three or more vertices, or equivalently, which is P3-subgraph
free; then M consists of isolated edges. The Turing kernelization first guesses the
sets U and R as per Lemma 4.4.3 witnessing that the graph G −X obtained af-
ter removing the unknown solution X does not have a matching of |E(M)| edges
(i.e., that G−X does not containM ∈ F ′ as both a minor and a subgraph). Since
Lemma 4.4.3 guarantees that in the graph G−X we have NG−X(R) ⊆ U , it follows
that NG(R) \U must belong to the unknown solution X if this guess was correct.
The algorithm then considers the remaining vertices Q := V (G)\ (U ∪R∪NG(R))
and classifies them into 2|U | types based on their adjacency to U . An addi-
tional guessing step attempts to guess up to α (line 2) vertices of each type
in G − X, which will be part of the set S in the partition of Lemma 4.4.3, by
taking them into the range of the function f (line 8). The algorithm tests whether
the graph G[f(2U) ∪ U ∪ R] is F ′-type free. If not, then the guess was incorrect.

4.4 A polynomial Turing kernelization 105

If so, then for each type of which fewer than α vertices were guessed to remain
behind in G −X, the algorithm collects the remaining vertices of that type in a
set Q′ to be added to the solution X, and a Vertex Cover instance is formulated
on the remaining vertices of Q. For types of which α vertices remained behind,
no vertices have to be added to Q′ or the solution X in this step, because using
Lemma 4.4.7 it can be guaranteed that having more vertices of that type will not
lead to an F ′-type. The algorithm returns true if the formulated instance of Ver-
tex Cover has a solution that yields a set of size at most ` when combined with
the vertices of NG(R) \ U and Q′.

Algorithm 1: Solving F ′-type-Free Deletion instances using
VCoracle with F ′ containing a P3-subgraph-free graph and no edgeless
graphs.
input : A graph G and an integer `
output: true if there exists a set X of size at most ` such that G−X is

F ′-type-free, or false otherwise.
1 m := |E(M)| − 1 where M is a smallest P3-subgraph-free graph in F ′
2 α := maxH∈F ′ |V (H)|+ 3m(∆(H) + 1)
3 forall U ⊆ V (G) with |U | ≤ m do
4 forall R ⊆ V (G− U) such that
5 all connected components in G[R] have an odd number of at least 3

vertices and |U |+ 1
2 (|R| − odd(G[R])) ≤ m

6 do
7 Q := V (G) \ (U ∪R ∪NG(R))

8 forall functions f : 2U → 2Q such that
9 G[f(2U)] is independent and

. Recall that f(2U) =
⋃
Y⊆U f(Y)

10 G[f(2U) ∪ U ∪R] is F ′-type free and
11 ∀Y⊆U |f(Y)| ≤ α and
12 ∀Y⊆U∀v∈f(Y)NG(v) ∩ U = Y
13 do
14 Q′ := {v ∈ Q \ f(2U) | |f(NG(v) ∩ U)| < α}
15 if VCoracle(G[Q]−Q′, `− |(NG(R) \ U) ∪Q′|) then
16 return true

17 return false

Soundness When the algorithm returns true, then consider the values of U ,
R, Q, f , and Q′ at the time that true is returned. There exists a vertex cover X ′ of
size at most `−|(NG(R)\U)∪Q′| inG[Q]−Q′. LetX = X ′∪(NG(R)\U)∪Q′, which
has size at most `. The setX is a vertex cover inG−(U∪R), sinceG−(U∪R)−X =

106 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

Q

Q′

NG(R) \ U
R

U
S

X

X ′

(a)

Q

NG(R) \ U
R

U
S

X

X ∩Q

(b)

Figure 4.8 We show two partitions of G. Figure 4.8a shows a partition of G
given that Algorithm 1 returns true, while Figure 4.8b shows a partition of G
given that G − X is F-type free. Note that in both cases there can be no edges
between R and Q.

(G[Q] − Q′) − X ′. Hence S := V (G − (U ∪ R)) \ X is an independent set, even
in G. The sets U,R, S,X form a partition of V (G). See Figure 4.8a for a visual
representation of these sets. We will show that X is a solution to F ′-type-Free
Deletion on G.

Consider an arbitrary vertex v ∈ S. Note that since NG(R) ⊆ U ∪ X we
have S = V (G) \ (U ∪ R ∪ X) ⊆ V (G) \ (U ∪ R ∪ NG(R)) = Q, so v ∈ Q. By
definition of X we know Q′ ⊆ X so v 6∈ Q′. Then by definition of Q′ on line 14 we
observe the following:

Observation 4.4.8. For all v ∈ S we have v ∈ f(2U) or |f(NG(v) ∩ U)| ≥ α.

Assume for a contradiction that G −X = G[U ∪ R ∪ S] contains an F ′-type.
Since G[S] is independent, U ∪R is a vertex cover in G−X, and by Lemma 4.4.7
there exists a set S′ ⊆ S with |S′| ≤ max

H∈F ′
|V (H)| + |U ∪ R| · (∆(H) + 1) such

that G[U ∪ R ∪ S′] contains an F ′-type. Note that |R| − 3 odd(G[R]) ≥ 0 since
every connected component in G[R] contains at least 3 vertices, so then

|S′| ≤ max
H∈F ′

|V (H)|+ |U ∪R| · (∆(H) + 1)

≤ max
H∈F ′

|V (H)|+ (|U |+ |R|+ 1

2
(|R| − 3 odd(G[R]))) · (∆(H) + 1)

≤ max
H∈F ′

|V (H)|+ 3(|U |+ 1

2
(|R| − odd(G[R]))) · (∆(H) + 1)

≤ max
H∈F ′

|V (H)|+ 3m(∆(H) + 1)

= α.

Claim 4.4.9. The graph G[U ∪ R ∪ S′] is isomorphic to a subgraph of G[U ∪ R ∪
f(2U)].

4.4 A polynomial Turing kernelization 107

Proof. Observe that S contains no neighbors of R, and since G[S] is independent,
we know for all v ∈ S that NG(v) ⊆ U ∪X and therefore NG−X(v) = NG(v) ∩ U .
From Observation 4.4.8 it follows for all v ∈ S′ that v ∈ f(2U) or |f(NG(v)∩U)| ≥
α. In the latter case v is a false twin of any vertex u ∈ f(NG(v)∩U) in G−X since
by definition of f we have NG(u)∩U = NG(v)∩U for all vertices u ∈ f(NG(v)∩U).
We have |S′| ≤ |f(NG(v)∩U)| for all v ∈ S′, so there exists a bijection that maps
all vertices v ∈ S′ to a vertex u ∈ f(2U) that is a false twin of v in G −X. Any
two false twins in G − X are interchangeable in G − X, hence G[U ∪ R ∪ S′] is
isomorphic to a subgraph of G[U ∪R ∪ f(2U)]. y

Since f is chosen such that G[U ∪ R ∪ f(2U)] is F ′-type free on line 10,
Claim 4.4.9 leads to a contradiction with the fact that G[U ∪ R ∪ S′] contains
an F ′-type. We conclude that if the algorithm returns true a set X of size ` exists
such that G−X is F ′-type free.

Completeness Next, we consider the reverse direction. We show that the
algorithm returns true when there exists a set X of size at most ` such that G−X
is F ′-type free. Let m = |E(M)| − 1 where M is the smallest P3-subgraph-free
graph in F ′, i.e., M is isomorphic to (m + 1) · P2 since no graph in F ′ contains
isolated vertices. The graph G−X is F ′-type free so it is also (m+1) ·P2-subgraph
free, and by Observation 4.4.2 we know ν(G−X) ≤ m. Therefore by Lemma 4.4.3
there exists a partition U ′, R′, S of V (G − X) such that all of the following are
true:

• all connected components in (G−X)[R′] = G[R′] have an odd number of at
least 3 vertices,

• (G−X)[S] = G[S] is independent,

• NG−X(S) ⊆ U or equivalently NG(S) ⊆ U ∪X, and

• |U ′|+ 1
2 (|R′| − odd(G[R′])) ≤ m.

Clearly U ′ and R′ are such that there is an iteration in the algorithm where U = U ′

and R = R′. Let Q be the set as defined on line 7 in this iteration, see Figure 4.8b.
Let g : 2U → 2S be defined as g(Y) = {v ∈ S | Y = NG(v) ∩ U} for all Y ⊆ U .
We define a function f ′ : 2U → 2S that maps any Y ⊆ U to an arbitrary subset
of g(Y) of size min{|g(Y)|, α}. We make the following observations:

• Since NG(S) ⊆ U ∪ X we have NG(R) ∩ S = ∅ so S = S \ NG(R) =
V (G)\(U ∪R∪X∪NG(R)) ⊆ V (G)\(U ∪R∪NG(R)) = Q, so f ′ : 2U → 2Q.

• G[S] is independent, so G[f ′(2U)] is also independent because f ′(2U) ⊆ S.

• G[U ∪R∪ f ′(2U)] is a subgraph of G[U ∪R∪ S] = G−X, and since G−X
is F ′-type free, G[U ∪R ∪ f ′(2U)] is also F ′-type free.

108 A Turing Kernelization Dichotomy for Finding F-Minor Free Graphs

• Clearly ∀Y⊆U |f ′(Y)| ≤ α, and

• ∀Y⊆U∀v∈f ′(Y)NG(v) ∩ U = Y .

Hence f ′ satisfies all conditions stated in line 8 of the algorithm, so there is an
iteration of the algorithm where f = f ′. Let Q′ be the set as defined on line 14 in
this iteration. We now show that there exists a vertex cover of size at most ` −
|(NG(R) \ U) ∪Q′| in G[Q]−Q′.

Since G[S] is independent, X is a vertex cover in G[X ∪ S] = G − (U ∪ R).
Then clearly X \ (NG(R) \U) is a vertex cover in G− (U ∪R∪ (NG(R) \U)) and
since NG(R) \ U ⊆ X we have |X \ (NG(R) \ U)| ≤ ` − |NG(R) \ U |. Similarly
consider the set A = (NG(R) \ U) ∪ Q′. Clearly X \ A is a vertex cover in G −
(U ∪ R ∪ A) and |X \ A| ≤ ` − |A| if A ⊆ X. We will show that A ⊆ X. We
know NG(R) \ U ⊆ X so it remains to be shown that Q′ ⊆ X. Consider an
arbitrary v ∈ Q′ and suppose v 6∈ X. Since Q′ ⊆ Q we obtain from the definition
of Q that v 6∈ U and v 6∈ R, so then v ∈ S. We also note from the definition of Q′
that |f(NG(v)∩U)| < α. Since f = f ′ we have |f ′(NG(v)∩U)| < α, and from the
definition of f ′ we know that if |f ′(Y)| < α for some Y ⊆ U , then f ′(Y) = g(Y).
By definition of g we have v ∈ g(NG(v) ∩ U), so then v ∈ f(NG(v) ∩ U) ⊆ f(2U).
This is a contradiction since v 6∈ f(2U) by definition of Q′.

Now we have shown that X \ A is a vertex cover of size at most ` − |A| =
`−|(NG(R)\U)∪Q′| in G− (U ∪R∪A) = G[Q]−Q′, hence the VCoracle should
report that a vertex cover exists on line 8.

Running time and query size The sets U and R have a maximum size
of m and 2m respectively, so there are at most

(|V (G)|
m

)
≤ |V (G)|m and

(|V (G)|
2m

)
≤

|V (G)|2m possibilities for U and R respectively. The function f maps all subsets
of U to subsets of Q with a maximum size of α, so there are at most 2|U | ·

(|Q|
α

)
≤

22m · |V (G)|α possible functions f . From the definition of m and α on lines 1 and 2
it can be determined that m ∈ O(maxH∈F |V (H)|) and α ∈ O(maxH∈F |V (H)|2).
It can now be seen that the total number of calls to VCoracle is bounded by
|V (G)|O(maxH∈F |V (H)|2). Since F is fixed and VCoracle runs in polynomial time,
this yields a polynomial bound on the running time of Algorithm 1.

The VCoracle subroutine (Lemma 4.4.5) is invoked on induced subgraphs G′′
of G which therefore have a feedback vertex number of at most fvs(G). Hence
Lemma 4.4.5 only queries the oracle for instances with fvs(G′′)O(1) ≤ fvs(G)O(1)

vertices.

4.5 Conclusion

Earlier work [23, 76, 79, 121] has shown that several F-Minor-Free Deletion
problems admit polynomial kernelizations when parameterized by the feedback
vertex number. In this chapter we showed that when F contains a forest and each

4.5 Conclusion 109

graph in F has a connected component of at least three vertices, the F-Minor-
Free Deletion and F-Subgraph-Free Deletion problems do not admit such
a polynomial kernel unless NP ⊆ coNP/poly. This lower bound generalizes to any
F where each graph has a connected component of at least three vertices, when
we consider the vertex-deletion distance to treewidth min tw(F) as parameter.

For all other choices of F we showed that a polynomial Turing kernelization
exists for F-Minor-Free Deletion and F-Subgraph-Free Deletion param-
eterized by the feedback vertex number. The size of the Vertex Cover queries
generated by the Turing kernelization does not depend on F : the Turing kernel-
ization can be shown to be uniformly polynomial (cf. [65]) by a further analysis
of the polynomial-time reduction referred to in Step 3 of the procedure described
in Lemma 4.4.5. However, it remains unknown whether the running time can
be made uniformly polynomial, and whether the Turing kernelization can be im-
proved to a traditional kernelization. Due to the large degree of the polynomial
running time, the algorithm is mainly of theoretical interest.

In this chapter we discussed F-Minor-Free Deletion and F-Subgraph-
Free Deletion. We leave open the case of F-Induced-Subgraph-Free Dele-
tion where a vertex set S is a solution for a graph G if G−S does not contain any
graph in F as induced subgraph. Although a number of our lower bound results
also apply to this problem, the Turing kernelization we present cannot easily be
generalized to F-Induced-Subgraph-Free Deletion. This is mainly because
we make use of a characterization of graphs that do not have a size-c matching. A
similar characterization for graphs that do not have a size-c induced matching is
unlikely to exist since finding a maximum induced matching is NP-complete while
finding a maximum matching is not.

Our results leave open the possibility that all F-Minor-Free Deletion prob-
lems admit a polynomial kernel when parameterized by the vertex-deletion dis-
tance to a linear forest, i.e., a collection of paths. Resolving this question may be
an interesting direction for future work.

5
Finding Antler Structures
to Solve Feedback Vertex Set

5.1 Introduction

In the previous chapters we have presented methods to reduce the task of solving
large problem instances to solving problem instances that are small (bounded by
a polynomial function of the parameter). In this chapter we look at preprocessing
from a new perspective with the goal to open up a new research direction aimed
at understanding the power of preprocessing in speeding up algorithms that solve
NP-hard problems exactly [52, 70]. In a nutshell, this new perspective can be
summarized as: how can an algorithm identify part of an optimal solution in
an efficient preprocessing phase? We explore this question for the classic [87]
Feedback Vertex Set problem on undirected graphs, leading to a new graph
structure called antler which reveals vertices that belong to an optimal feedback
vertex set.

We start by motivating the need for a new direction in the theoretical analysis
of preprocessing. The use of preprocessing, often via the repeated application
of reduction rules, has long been known [3, 4, 108] to speed up the solution of
algorithmic tasks in practice. The notion of kernelization made it possible to also
analyze the power of preprocessing theoretically. A substantial framework has
been built around the definition of kernelization [35, 48, 56, 62, 70]. It includes

112 Finding Antler Structures to Solve Feedback Vertex Set

deep techniques for obtaining kernelization algorithms [21, 61, 89, 106], as well
as tools for ruling out the existence of small kernelizations [22, 40, 49, 63, 72]
under complexity-theoretic hypotheses. This body of work gives a good theoretical
understanding of polynomial-time data compression for NP-hard problems.

However, we argue that these results on kernelization do not explain the often
exponential speed-ups (e.g. [3], [6, Table 6]) caused by applying effective pre-
processing steps to non-trivial algorithms. Why not? A kernelization algorithm
guarantees that the input size is reduced to a function of the parameter; but the
running time of modern parameterized algorithms for NP-hard problems is not ex-
ponential in the total input size. Instead, the running time of an FPT algorithm
scales polynomially with the input size and is exponential only in the parameter.
Hence an exponential speed-up of such algorithms cannot be explained by merely
a decrease in input size, but only by a decrease in the parameter !

We therefore propose the following novel research direction: to investigate how
preprocessing algorithms can decrease the parameter value of FPT algorithms, in
a theoretically sound way. It is nontrivial to phrase meaningful formal questions
in this direction. To illustrate this difficulty, note that strengthening the definition
of kernelization to “a preprocessing algorithm that is guaranteed to always output
an equivalent instance of the same problem with a strictly smaller parameter” is
useless. Under minor technical assumptions, such an algorithm would allow the
problem to be solved in polynomial time by repeatedly reducing the parameter, and
solving the problem using an FPT or XP algorithm once the parameter value be-
comes constant. Hence NP-hard problems do not admit such parameter-decreasing
algorithms. To formalize a meaningful line of inquiry, we take our inspiration from
the Vertex Cover problem, the fruit fly of parameterized algorithms.

A rich body of theoretical and applied algorithmic research has been devoted
to the exact solution of the Vertex Cover problem [6, 50, 73, 74]. A standard 2-
way branching algorithm can test whether a graph G has a vertex cover of size k in
time O(2k(n+m)), which can be improved by more sophisticated techniques [31].
The running time of the algorithm scales linearly with the input size, and expo-
nentially with the size k of the desired solution. This running time suggests that
to speed up the algorithm by a factor 1000, one either has to decrease the input
size by a factor 1000, or decrease k by log2(1000) ≈ 10.

It turns out that state-of-the-art preprocessing strategies for Vertex Cover
indeed often succeed in decreasing the size of the solution that the follow-up algo-
rithm has to find, by means of crown-reduction [2, 32, 51], or the intimately related
Nemhauser-Trotter reduction based on the linear-programming relaxation [103].
Observe that if H ⊆ V (G) is a set of vertices with the property that there exists a
minimum vertex cover of G containing all of H, then G has a vertex cover of size k
if and only if G−H has a vertex cover of size k−|H|. Therefore, if a preprocessing
algorithm can identify a set of vertices H which are guaranteed to belong to an
optimal solution, then it can effectively reduce the parameter of the problem by
restricting to a search for a solution of size k − |H| in G−H.

5.1 Introduction 113

A crown decomposition (cf. [1, 32, 51], [35, §2.3], [62, §4]) of a graph G serves
exactly this purpose. It consists of two disjoint vertex sets (head , crown), such
that crown is a non-empty independent set whose neighborhood is contained
in head , and such that the graph G[head ∪crown] has a matchingM of size |head |.
As crown is an independent set, the matching M assigns to each vertex of head
a private neighbor in crown. It certifies that any vertex cover in G contains
at least |head | vertices from head ∪ crown, and as crown is an independent set
with NG(crown) ⊆ head , a simple exchange argument shows there is indeed an
optimal vertex cover in G containing all of head and none of crown. Since there
is a polynomial-time algorithm to find a crown decomposition if one exists [2,
Theorems 11–12], this yields the following preprocessing guarantee for Vertex
Cover: if the input instance (G, k) has a crown decomposition (head , crown),
then a polynomial-time algorithm can reduce the problem to an equivalent one
with parameter at most k−|head |, thereby giving a formal guarantee on reduction
in the parameter based on the structure of the input.1

As a first step towards preprocessing from the perspective of parameter reduc-
tion, we present a graph decomposition for Feedback Vertex Set which can
identify vertices S that belong to an optimal solution and which therefore facili-
tate a reduction from finding a solution of size k in graph G, to finding a solution
of size k − |S| in G − S. While there has been a significant amount of work on
kernelization for Feedback Vertex Set [23, 26, 76, 84, 121], the corresponding
preprocessing algorithms do not succeed in finding vertices that belong to an opti-
mal solution, other than those for which there is a self-loop or those which form the
center of a flower (consisting of k+ 1 otherwise vertex-disjoint cycles [23, 26, 121],
or a technical relaxation of this notion [76]). In particular, apart from the trivial
self-loop rule, earlier preprocessing algorithms can only conclude a vertex v be-
longs to all optimal solutions (of a size k which must be given in advance) if they
find a suitable packing of cycles witnessing that solutions without v must have
size larger than k. In contrast, our argumentation will be based on local exchange
arguments, which can be applied independently of the global solution size k, and
can be used to detect vertices which are in some but not necessarily all optimal
solutions.

We therefore introduce a new graph decomposition for preprocessing Feed-
back Vertex Set. To motivate it, we distill the essential features of a crown
decomposition. Effectively, a crown decomposition of G certifies that G has a
minimum vertex cover containing all of head , because (i) any vertex cover has
to pick at least |head | vertices from head ∪ crown, as the matching M certifies

1The effect of the crown reduction rule can also be theoretically explained by the fact that
interleaving basic 2-way branching with exhaustive crown reduction yields an algorithm whose
running time is only exponential in the gap between the size of a minimum vertex cover and the
cost of an optimal solution to its linear-programming relaxation [97]. However, this type of result
cannot be generalized to Feedback Vertex Set since it is already NP-complete to determine
whether there is a feedback vertex set whose size matches the cost of the linear-programming
relaxation (Corollary 5.3.6).

114 Finding Antler Structures to Solve Feedback Vertex Set

Figure 5.1 Graph structures showing there is an optimal solution containing all
blue vertices and no gray vertices, certified by the blue subgraph. Left: Crown
decomposition for Vertex Cover. Right: Antler for Feedback Vertex Set.
For legibility, the number of edges in the drawing has been restricted. It therefore
has vertices of degree at most 2, which makes the graph it reducible by standard
reduction rules; but adding all possible edges between gray and blue vertices leads
to a structure of minimum degree at least three which is still a 1-antler.

that vc(G[head ∪ crown]) ≥ |head |, while (ii) any minimum vertex cover S′ in G−
(head ∪ crown) yields a minimum vertex cover S′ ∪ head in G, since NG(crown) ⊆
head and crown is an independent set. To obtain similar guarantees for Feedback
Vertex Set, we need a decomposition to supply disjoint vertex sets (head , antler)
such that

1. any minimum feedback vertex set in G contains at least |head | vertices
from head ∪ antler , and

2. any minimum feedback vertex set S′ in G−(head ∪antler) yields a minimum
feedback vertex set S′ ∪ head in G.

To achieve Condition 1, it suffices for G[head ∪antler] to contain a set of |head |
vertex-disjoint cycles (implying that each cycle contains exactly one vertex of head);
to achieve Condition 2, it suffices for G[antler] to be acyclic, with each tree T of
the forest G[antler] connected to the remainder V (G) \ (head ∪ antler) by at most
one edge (implying that all cycles through antler intersect head). We call such a
decomposition a 1-antler. Here antler refers to the shape of the forest G[antler],
which no longer consists of isolated spikes of a crown (see Figure 5.1). The prefix 1
indicates it is the simplest type of antler; we present a generalization later. An
antler is non-empty if head ∪ crown 6= ∅, and the width of the antler is defined to
be |head |.

Unfortunately, assuming P 6= NP there is no polynomial-time algorithm that
always outputs a non-empty 1-antler if one exists. We prove this in Section 5.3.1.
However, for the purpose of making a preprocessing algorithm that reduces the
target solution size, we can allow FPT time in a parameter such as |head | to find a
decomposition. Each fixed choice of |head | would then correspond to a reduction
rule which identifies a small (|head |-sized) part of an optimal feedback vertex set,
for which there is a simple certificate for it being part of an optimal solution. Such

5.1 Introduction 115

a reduction rule can then be iterated in the preprocessing phase, thereby poten-
tially decreasing the target solution size by an arbitrarily large amount. Hence
we consider the parameterized complexity of testing whether a graph admits a
non-empty 1-antler with |head | ≤ k, parameterized by k. On the one hand, we
show this problem to be W[1]-hard in Section 5.3.2. This hardness turns out to
be a technicality based on the forced bound on |head |, though. We provide the
following FPT algorithm which yields a search-space reducing preprocessing step.

Theorem 5.1.1. There is an algorithm that runs in 2O(k5) ·nO(1) time that, given
a multigraph G on n vertices and integer k, either correctly determines that G does
not admit a non-empty 1-antler of width at most k, or outputs a set S of at least k
vertices such that there exists an optimal feedback vertex set in G containing all
vertices of S.

Hence if the input graph admits a non-empty 1-antler of width at most k,
the algorithm is guaranteed to find at least k vertices that belong to an optimal
feedback vertex set, thereby reducing the search space.

Based on this positive result, we go further and generalize our approach beyond
1-antlers. For a 1-antler (head , antler) in G, the set of |head | vertex-disjoint cycles
in G[head∪antler] forms a very simple certificate that any feedback vertex set of G
contains at least |head | vertices from head∪antler . We can generalize our approach
to identify part of an optimal solution, by allowing more complex certificates of
optimality. The following interpretation of a 1-antler is the basis of the generaliza-
tion: for a 1-antler (head , antler) in G, there is a subgraph G′ of G[head ∪ antler]
(formed by the |head | vertex-disjoint cycles) such that V (G′) ⊇ head and head is
an optimal feedback vertex set of G′; and furthermore this subgraph G′ is simple
because all its connected components, being cycles, have a feedback vertex set of
size 1. For an arbitrary integer z, we therefore define a z-antler in a multigraph G
as a pair of disjoint vertex sets (head , antler) such that

1. any minimum feedback vertex set in G contains at least |head | vertices
from head ∪ antler , as witnessed by the fact that G[head ∪ antler] has a
subgraph G′ for which head is an optimal feedback vertex set and with each
component of G′ having a feedback vertex set of size at most z; and

2. the graph G[antler] is acyclic, with each tree T of the forest G[antler] con-
nected to the remainder V (G) \ (head ∪ antler) by at most one edge. This
second condition is not changed compared to a 1-antler.

See Figure 5.2 for an example of a 3-antler of width 5. Our main result is the
following.

Theorem 5.1.2. There is an algorithm that runs in 2O(k5z2) · nO(z) time that,
given a multigraph G on n vertices and integers k ≥ z ≥ 0, either correctly deter-
mines that G does not admit a non-empty z-antler of width at most k, or outputs
a set S of at least k vertices such that there exists an optimal feedback vertex set
in G containing all vertices of S.

116 Finding Antler Structures to Solve Feedback Vertex Set

head

antler

V (G) \ (head ∪ antler)

Figure 5.2 An example of a 3-antler. The subgraph G′, marked in blue, has a
feedback vertex number of 5 showing that any feedback vertex set of G contains
at least |head | = 5 from head ∪ antler . Each connected component of G′ has a
feedback vertex set of at most 3. The subgraph G[antler] is acyclic and each of its
connected components has at most one edge to V (G) \ (head ∪ antler).

In fact, we prove a slightly stronger statement. If a graph G can be reduced to
a graph G′ by iteratively removing z-antlers, each of width at most k, and the sum
of the widths of this sequence of antlers is t, then we can find in time f(k, z) ·nO(z)

a subset of at least t vertices of G that belong to an optimal feedback vertex
set. This implies that if a complete solution to Feedback Vertex Set can
be assembled by iteratively combining O(1)-antlers of width at most k, then the
entire solution can be found in time f ′(k) · nO(1). Hence our work uncovers a new
parameterization in terms of the complexity of the solution structure, rather than
its size, in which Feedback Vertex Set is fixed-parameter tractable.

Our algorithmic results are based on a combination of graph reduction and color
coding. We use reduction steps inspired by the kernelization algorithms [23, 121]
for Feedback Vertex Set to bound the size of antler in the size of head . After
such reduction steps, we use color coding [7] to help identify antler structures. A
significant amount of effort goes into proving that the reduction steps preserve
antler structures and the optimal solution size.

5.2 Preliminaries

In this section we give a number of preliminary definitions. First we describe multi-
graphs and related notation, which are used extensively throughout this chapter.
Unless mentioned otherwise, all graphs in this chapter are multigraphs. After
the definitions of notation for multigraphs, we formally define antlers and related
concepts.

Multigraphs Multigraphs are a generalization of a simple graphs in that they
can have multiple edges with the same endpoints and edges with only one end-
point, called a self-loop. We formally model a multigraph using an edge-incidence

5.2 Preliminaries 117

relation ι as follows: we define a multigraph G as a tuple consisting of a vertex
set V (G), an edge set E(G), and a function ι : E(G)→ 2V (G) where ι(e) is the set
of one or two vertices incident to e for all e ∈ E(G).

Most notation we use for multigraphs is similar to notation used for simple
graphs. We formally define the relevant terms here. For a multigraph G and vertex
set S ⊆ V (G), let G[S] denote the multigraph induced by S which consists of the
vertex set S, the edge set E′ = {e ∈ E(G) | ι(e) ⊆ S}, and the function ι′ : E′ → 2S

defined as ι′(e) = ι(e) for all e ∈ E′. For a set of vertices and/or edges X ⊆
V (G) ∪ E(G) we define G − X as the graph obtained from G after removing all
vertices and edges in X, more formally, G−X is the multigraph consisting of the
vertex set V (G) \ X, the edge set E′ = {e ∈ E(G) \ X | ι(e) ⊆ V (G) \ X}, and
the function ι′ : E′ → 2V (G)\S defined as ι′(e) = ι(e) for all e ∈ E′. If X is a
singleton set consisting of a single vertex v or edge e we may write G− v or G− e
as shorthand for G− {v} or G− {e}.

The open neighborhood of a vertex v in a multigraph G, denoted NG(v),
is the set of all vertices u 6= v for which there is an edge between u and v,
i.e., NG(v) = {u ∈ V (G)\{v} | ∃e ∈ E(G) : {u, v} = ι(e)}. As in simple graphs, we
define NG(S) =

⋃
v∈S NG(v) as the open neighborhood of a vertex set S ⊆ V (G),

the closed neighborhood of v is defined as NG[v] = NG(v) ∪ {v}, and the closed
neighborhood of a vertex set S ⊆ V (G) is defined as NG[S] = NG(S) ∪ S.

The degree degG(v) of a vertex v in a multigraph G is the number of edge-
incidences to v where a self-loop contributes two edge-incidences. Formally, we
define degG(v) = |{e ∈ E(G) | v ∈ ι(e)}| + |{e ∈ E(G) | {v} = ι(e)}|. Note
that the degree-sum theorem,

∑
v∈V (G) degG(v) = 2|E(G)|, remains true in multi-

graphs. Like in simple graphs, we define EG(A,B) as the set of edges with one
endpoint in the vertex set A ⊆ V (G) and another in the vertex set B ⊆ V (G),
i.e., EG(A,B) = {e ∈ E(G) | ι(e) = {a, b} for some a ∈ A, b ∈ B}. We de-
fine eG(A,B) = |EG(A,B)|.

As before with simple graphs, in all notation using the graph as subscript, we
may omit the subscript if the graph is clear from the context, and to simplify
the presentation, in expressions taking one or more vertex sets as parameter such
as NG(..) and EG(.., ..), we sometimes use a subgraph H of G as argument as a
shorthand for the vertex set V (H) that is formally needed.

For two multigraphs G1 and G2, the graph G1∩G2 is the multigraph on vertex
set V ′ = V (G1)∩V (G2), edge set E′ = E(G1)∩E(G2), and function ι′ : E′ → 2V

′

defined as ι′(e) = ι(e) for all e ∈ E′.
We assume the multigraphs are stored such that the number of edges between

any two vertices can be retrieved and modified in constant time so that ensuring
there are at most two edges between any two vertices (and hence m ∈ O(n2)) can
be done without overhead in the asymptotic runtime of our algorithms.

Feedback vertex cuts and antlers We now introduce antlers and related
structures. A feedback vertex cut (FVC) in a multigraph G is a pair of disjoint

118 Finding Antler Structures to Solve Feedback Vertex Set

vertex sets (C,F) such that C,F ⊆ V (G), G[F] is a forest, and for each tree T
in G[F] we have e(T,G − (C ∪ F)) ≤ 1. The width of a FVC (C,F) is |C|,
and (C,F) is empty if |C ∪ F | = 0.

Observation 5.2.1. If (C,F) is a FVC in G then any cycle in G containing a
vertex from F also contains a vertex from C. The set C is a FVS in G[C ∪ F],
hence |C| ≥ fvs(G[C ∪ F]).

Observation 5.2.2. If (C,F) is a FVC in G then for any X ⊆ V (G) we have
that (C \X,F \X) is a FVC in G−X. Additionally, for any Y ⊆ E(G) we have
that (C,F) is a FVC in G− Y .

We now present one of the main concepts for this work. An antler in a multi-
graph G is a FVC (C,F) in G such that |C| ≤ fvs(G[C ∪ F]). Then by Observa-
tion 5.2.1 the set C is a minimum FVS in G[C ∪F] and no cycle in G−C contains
a vertex from F . We observe:

Observation 5.2.3. If (C,F) is an antler in G, then fvs(G) = |C|+ fvs(G− (C ∪
F)).

For a multigraph G and vertex set C ⊆ V (G), a C-certificate is a subgraph H
of G such that C is a minimum FVS in H. We say a C-certificate has order z
if for each component H ′ of H we have fvs(H ′) = |C ∩ V (H ′)| ≤ z. For an
integer z ≥ 0, a z-antler in G is an antler (C,F) in G such that G[C ∪F] contains
a C-certificate of order z. Note that a 0-antler has width 0. In Figure 5.2 we
depicted a feedback vertex cut (head , antler) of width 5 where G[head ∪ antler]
contains a head -certificate of order 3 (marked in blue), hence (head , antler) is a
3-antler of width 5.

Observation 5.2.4. If (C,F) is a z-antler in G for some z ≥ 0, then for any X ⊆
C, we have that (C \X,F) is a z-antler in G−X. See Figure 5.3 for an example.

C \X

F

V (G) \ (C ∪ F)

Figure 5.3 Consider the 3-antler (head , antler) = (C,F) from Figure 5.2. The
pair (C \X,F) remains a 3-antler after removing a subset X ⊆ C from G.

5.3 Hardness results 119

5.3 Hardness results

To motivate the use of FPT algorithm to find antlers we present the hardness
results presented in the introduction here. As these results apply to the simplest
types of antlers this also forms an introduction to their properties. The hard-
ness results presented in this section apply to the type of antlers as discussed in
Section 5.1 consisting of two vertex sets head and antler . This type of antler is
formally defined in Section 5.2 as 1-antlers, the simplest type of antler, consisting
of the vertex sets C and F corresponding to head and antler respectively. For
convenience we give a self contained definition of a 1-antler below.

Definition 5.3.1. A 1-antler in an multigraph G is a pair of disjoint vertex
sets (C,F) such that:

1. G[F] is acyclic,

2. each tree T of the forest G[F] is connected to V (G)\ (C ∪F) by at most one
edge, and

3. the subgraph G[C ∪ F] contains |C| vertex-disjoint cycles.

A 1-antler is called non-empty if H ∪ C 6= ∅.

Observe that the combination of Properties 1 and 2 is equivalent to stating
that (C,F) is a FVC, and Property 3 describes the existence of a C-certificate
of order 1 in G[C ∪ F]. Will use the following easily verified consequence of this
definition.

Observation 5.3.2. If (C,F) is a 1-antler in an multigraph G, then for each
vertex c ∈ C the subgraph G[{c} ∪ F] contains a cycle.

5.3.1 NP-hardness of finding 1-antlers
For the hardness results in this section we use a reduction from cnf-sat. We can
use the same construction as in Chapter 4 which is captured in Lemma 4.3.8. For
convenience we give a simplified version of the lemma below, which is sufficient to
show the results in this section.

Lemma 5.3.3 (Lemma 4.3.8 for H = K3). There is a polynomial-time algorithm
that, given a CNF formula Φ, outputs a graph G and a collection H = {H1, . . . ,H`}
of vertex-disjoint cycles in G, such that Φ is satisfiable if and only if G has a
feedback vertex set of size `.

We now show that finding non-empty 1-antlers is NP-hard.

Theorem 5.3.4. Assuming P 6= NP, there is no polynomial-time algorithm that,
given a simple graph G, outputs a non-empty 1-antler in G or concludes that no
non-empty 1-antler exists.

120 Finding Antler Structures to Solve Feedback Vertex Set

Proof. We need the following simple claim.
Claim 5.3.5. If G contains a packing of ` ≥ 1 vertex-disjoint cycles and a feedback
vertex set of size `, then G admits a non-empty 1-antler (C,F).

Proof. Let C be a feedback vertex set in G of size ` and let F := V (G) \ C. y

Now suppose there is a polynomial-time algorithm to find a non-empty 1-antler
decomposition, if one exists. We use it to solve cnf-sat in polynomial time. Given
an input formula Φ for cnf-sat, use Lemma 5.3.3 to produce in polynomial time a
graph G and a packing H of ` vertex-disjoint cycles in G, such that Φ is satisfiable
if and only if fvs(G) = `. The following recursive polynomial-time algorithm
correctly tests, given a graph G and a packing H of some ` ≥ 0 vertex-disjoint
cycles in G, whether fvs(G) = `.

1. If ` = 0, then output yes if and only if G is acyclic.

2. If ` > 0, run the hypothetical algorithm to find a non-empty 1-antler (C,F).

(a) If a non-empty 1-antler (C,F) is returned, then let H′ consist of those
cycles in the packing not intersected by C, and let `′ := |H′|. Return
the result of recursively running the algorithm on G′ := G − (C ∪ F)
and H′ to test whether G′ has a feedback vertex set of size |H′|.

(b) Otherwise, return no.

The claim shows that the algorithm is correct when it returns no. Observa-
tion 5.2.3 shows that if we recurse, we have fvs(G) = ` if and only if fvs(G− (C ∪
H)) = `′; hence the result of the recursion is the correct output. Since the number
of vertices in the graph reduces by at least one in each iteration, the overall running
time is polynomial assuming the hypothetical algorithm to compute a non-empty
1-antler. Hence using Lemma 5.3.3 we can decide cnf-sat in polynomial time.

Next, we show that determining whether the cost of a solution to the linear
programming relaxation of Feedback Vertex Set on G is equal to the feedback
vertex number of G is NP-complete.

Corollary 5.3.6. For a simple graph G, determining whether fvs(G) = fvsLP(G) is
NP-complete. Here fvsLP(G) denotes the minimum cost of a solution to the linear
programming relaxation of Feedback Vertex Set on G.

Proof. Membership in NP is trivial; we prove hardness. Suppose such an algorithm
exists. As above, we use it to solve cnf-sat in polynomial time. Given an input Φ
for cnf-sat, use Lemma 5.3.3 to produce in polynomial time a graph G and
packing H of ` vertex-disjoint cycles in G, such that Φ is satisfiable if and only
if fvs(G) = `.

Compute the cost c of an optimal solution to the linear programming relaxation
of Feedback Vertex Set on G, using the ellipsoid method. By the properties

5.3 Hardness results 121

of a relaxation, if c > ` then fvs(G) > `, and hence we can safely report that Φ is
unsatisfiable. If c ≤ `, then the existence of ` vertex-disjoint cycles in G implies
that c = `. Run the hypothetical algorithm to test whether fvs(G) = fvsLP(G).
If the answer is yes, then G has a feedback vertex set of size ` and hence Φ is
satisfiable; if not, then Φ is unsatisfiable.

5.3.2 W[1]-hardness of finding bounded-width 1-antlers

We consider the following parameterized problem.

Bounded-Width 1-Antler Detection
Input: A multigraph G and an integer k.
Parameter: k.
Question: Does G admit a non-empty 1-antler (C,F) with |C| ≤ k?

We prove that Bounded-Width 1-Antler Detection is W[1]-hard by a
reduction from Multicolored Clique, which is defined as follows.

Multicolored Clique
Input: A simple graph G, an integer k, and a partition of V (G) into
sets V1, . . . , Vk.
Parameter: k.
Question: Is there a clique S in G such that for each 1 ≤ i ≤ k we
have |S ∩ Vi| = 1?

The sets Vi are referred to as color classes, and a solution clique S is called
a multicolored clique. It is well-known that Multicolored Clique is W[1]-
hard (cf. [35, Theorem 13.25]). Our reduction is inspired by the W[1]-hardness of
detecting a Hall set [35, Exercise 13.28].

Theorem 5.3.7. Bounded-Width 1-Antler Detection is W[1]-hard.

Proof. We give a parameterized reduction (Definition 2.4.1) from the Multicol-
ored Clique problem. By inserting isolated vertices if needed, we may as-
sume without loss of generality that for the input instance (G, k, V1, . . . , Vk) we
have |V1| = |V2| = . . . = |Vk| = n for some n ≥ k(k − 1) + 4. For each i ∈ [k], fix
an arbitrary labeling of the vertices in Vi as vi,j for j ∈ [n]. Given this instance,
we construct an input (G′, k′) for Bounded-Width 1-Antler Detection as
follows.

1. For each i ∈ [k], for each j ∈ [n], create a set Ui,j = {ui,j,` | ` ∈ [k] \ {i}}
of vertices in G′ to represent vi,j . Intuitively, vertex ui,j,` represents the
connection that the jth vertex from the ith color class should have to the
neighbor in the `th color class chosen in the solution clique.

2. Define U :=
⋃
i∈[k]

⋃
j∈[n] Ui,j . Insert (single) edges to turn U into a clique

in G′.

122 Finding Antler Structures to Solve Feedback Vertex Set

3. For each edge e in G between vertices of different color classes, let e =
{vi,j , vi′,j′} with i < i′, and insert two vertices into G′ to represent e:

• Insert a vertex we, add an edge from we to each vertex in Ui,j ∪ Ui′,j′ ,
and then add a second edge between we and ui,j,i′ .
• Insert a vertex we′ , add an edge from we′ to each vertex in Ui,j ∪Ui′,j′ ,

and then add a second edge between we′ and ui′,j′,i.

Let W denote the set of vertices of the form we, we′ inserted to represent an
edge of G. Observe that W is an independent set in G.

4. Finally, insert a vertex u∗ into G′. Add a single edge from u∗ to all other
vertices of G′, to make u∗ into a universal vertex.

This concludes the construction of G′. Note that G′ contains double-edges,
but no self-loops. We set k′ := k(k − 1), which is appropriately bounded for a
parameterized reduction. It is easy to see that the reduction can be performed
in polynomial time. It remains to show that G has a multicolored k-clique if and
only if G′ has a non-empty 1-antler of width at most k. To illustrate the intended
behavior of the reduction, we first prove the forward implication.
Claim 5.3.8. If G has a multicolored clique of size k, then G′ has a non-empty
1-antler of width k′.

Proof. Suppose S is a multicolored clique of size k in G. Choose indices j1, . . . , jk
such that S ∩ Vi = {vi,ji} for all i ∈ [k]. Define a 1-antler (C,F) in G′ as follows:

C =
⋃
i∈[k]

Ui,ji ,

F = {we, we′ | e is an edge in G between distinct vertices of S}.

Since each set Ui,ji has size k−1, it follows that |C| = k(k−1) = k′. Since F ⊆W
is an independent set in G′, it also follows that G′[F] is acyclic. Each tree T in
the forest G′[F] consists of a single vertex we or we′ . By construction, there is
exactly one edge between T and V (G′) \ (C ∪F); this is the edge to the universal
vertex u∗. It remains to verify that G′[C ∪ F] contains |C| vertex-disjoint cycles,
each containing exactly one vertex of C. Consider an arbitrary vertex ui,ji,` in C;
we show we can assign it a cycle in G′[C∪F] so that all assigned cycles are vertex-
disjoint. Since S is a clique, there is an edge e in G between vi,ji and v`,j` , and the
corresponding vertices we, we′ are in F . If i < `, then we ∈ F and there are two
edges between ui,ji,` and we, forming a cycle on two vertices. If i > `, then there
is a cycle on two vertices ui,ji,` and we′ . Since for any vertex of the form we or we′
there is a unique vertex of C that it has a double-edge to, the resulting cycles are
indeed vertex-disjoint. This proves that (C,F) is a 1-antler of width k′. y

Before proving reverse implication, we establish some structural claims about
the structure of 1-antlers in G′.

5.3 Hardness results 123

Claim 5.3.9. If (C,F) is a non-empty 1-antler in G′ with |C| ≤ k′, then all of the
following conditions holds:

1. U ∩ F = ∅.

2. u∗ /∈ C ∪ F .

3. W ∩ C = ∅.

4. C ⊆ U , F ⊆W , and each tree of the forest G′[F] consists of a single vertex.

5. For each vertex w ∈ F we have NG′(w) ∩ U ⊆ C.

6. F 6= ∅.

Proof. Condition 1: Assume for a contradiction that there is a vertex ui,j,` ∈ U∩F .
Since G′[F] is a forest by Property 1 of Definition 5.3.1, while U is a clique in G′,
it follows that |F ∩ U| ≤ 2. By Property 2, for a vertex in F , there is at most one
of its neighbors that belongs to neither F nor C. Since |U| ≥ n ≥ k(k − 1) + 4,
and ui,j,` ∈ F is adjacent to all other vertices of U since that set forms a clique,
the fact that |F ∩U| ≤ 2 implies that |C ∩U| ≥ |U|−2−1 ≥ k(k−1) + 4−3 > k′.
So |C| > k′, which contradicts that (C,F) is a 1-antler with |C| ≤ k′.

Condition 2: Since u∗ is a universal vertex in G′, the set U ∪ {u∗} is a clique
and the preceding argument shows that u∗ /∈ F . To prove the claim we show
that additionally, u∗ /∈ C. Assume for a contradiction that u∗ ∈ C. By Observa-
tion 5.3.2, the graph G′[{u∗} ∪ F] contains a cycle. Since W is an independent
set in G′ and u∗ is not incident on any double-edges, the graph G′[{u∗} ∪W] is
acyclic. Hence to get a cycle in G′[{u∗}∪F], the set F contains at least one vertex
that is not in W and not u∗; hence this vertex belongs to U . So U ∩ F 6= ∅; but
this contradicts Condition 1.

Condition 3: Assume for a contradiction that w ∈W ∩ C. Again by Observa-
tion 5.3.2, there is a cycle in G′[{w}∪F], and since G′ does not have any self-loops
this impliesNG′(w)∩F 6= ∅. But by construction of G′ we haveNG′(w) ⊆ U∪{u∗},
so F contains a vertex of either U or u∗. But this contradict either Condition 1 or
Condition 2.

Condition 4: Since the sets U ,W, {u∗} form a partition of V (G′), the preceding
claims imply C ⊆ U and F ⊆W . SinceW is an independent set in G′, this implies
that each tree T of the forest G′[W] consists of a single vertex.

Condition 5: Consider a vertex w ∈ F , which by itself forms a tree in G′[F].
Since u∗ /∈ C ∪ F , the edge between T and u∗ is the unique edge connecting T
to a vertex of V (G′) \ (C ∪ F), and therefore all neighbors of T other than u∗

belong to C ∪ F . Since a vertex w ∈ W has NG′(w) ⊆ U ∪ {u∗}, it follows
that NG′(w) ∩ U ⊆ C.

Condition 6: By the assumption that (C,F) is non-empty, we have C ∪F 6= ∅.
This implies that F 6= ∅: if C would contain a vertex c while F = ∅, then by
Observation 5.3.2 the graph G′[{c} ∪ F] = G′[{c}] would contain a cycle, which is
not the case since G′ has no self-loops. Hence F 6= ∅. y

124 Finding Antler Structures to Solve Feedback Vertex Set

With these structural insights, we can prove the remaining implication.

Claim 5.3.10. If G′ has a non-empty 1-antler (C,F) with |C| ≤ k′, then G has a
multicolored clique of size k.

Proof. Let (C,F) be a non-empty 1-antler in G′ with |C| ≤ k′. By Claim 5.3.9
we have C ⊆ U , while F ⊆ W and F 6= ∅. Consider a fixed vertex w ∈ F .
Since F ⊆W , vertex w is of the form we or we′ constructed in Step 3 to represent
some edge e of G. Choose i∗ ∈ [k], j∗ ∈ [n] such that vi∗,j∗ ∈ Vi∗ is an endpoint of
edge e in G. By construction we have Ui∗,j∗ ⊆ NG′(w) and therefore Claim 5.3.9(5)
implies Ui∗,j∗ ⊆ C.

Consider an arbitrary ` ∈ [k] \ {i∗}. Then ui∗,j∗,` ∈ Ui∗,j∗ ⊆ C, so by Ob-
servation 5.3.2 the graph G′[{ui∗,j∗,`} ∪ F] contains a cycle. Since G′[F] is an
independent set and G′ has no self-loops, this cycle consists of two vertices joined
by a double-edge. By construction of G′, such a cycle involving ui∗,j∗,` exists only
through vertices we or we′ where e is an edge of G connecting vi∗,j∗ to a neighbor
in class V`. Consequently, F contains a vertex w that represents such an edge e.
Let v`,j` denote the other endpoint of e. Then NG′(w) ⊇ Ui∗,j∗ ∪ U`,j` , and by
Claim 5.3.9(5) we therefore have U`,j` ⊆ C.

Applying the previous argument for all ` ∈ [k] \ {i∗}, together with the fact
that Ui∗,j∗ ⊆ C, we find that for each i ∈ [k] there exists a value ji such that Ui,ji ⊆
C. Since |C| ≤ k(k− 1) while each such set Ui,ji has size k− 1, it follows that the
choice of ji is uniquely determined for each i ∈ [k], and that there are no other
vertices in C. To complete the proof, we argue that the set S = {vi,ji | i ∈ [k]} is
a clique in G.

Consider an arbitrary pair of distinct vertices vi,ji , vi′,ji′ in S, and choose the
indices such that i < i′. We argue that G contains an edge e between these vertices,
as follows. Since ui,ji,i′ ∈ Ui,ji ⊆ C, by Observation 5.3.2 the graph G′[{ui,ji,i′} ∪
F] contains a cycle. As argued above, the construction of G′ and the fact that F ⊆
W ensure that this cycle consists of ui,ji,i′ joined to a vertex in F by a double-
edge. By Step 3 and the fact that i < i′, this vertex is of the form we for an
edge e in G connecting vi,ji to a vertex vi′,j′ in Vi′ . By construction of G′ we
have Ui′,j′ ⊆ NG′(we), and then we ∈ F implies by Claim 5.3.9(5) that Ui′,j′ ⊆ C.
Since we argued above that for index i′ there is a unique choice ji′ with Ui′,ji′ ⊆ C,
we must have j′ = ji′ . Hence the vertex we contained in F represents the edge
of G between vi,ji and vi′,ji′ in G, which proves in particular that the edge exists.
As the choice of vertices was arbitrary, this shows that S is a clique in G. As
it contains exactly one vertex from each color class, graph G has a multicolored
clique of size k. y

Claims 5.3.8 and 5.3.10 show that the instance (G, k) of Multicolored
Clique is equivalent to the instance (G′, k′) of Bounded-Width 1-Antler De-
tection. This concludes the proof of Theorem 5.3.7.

5.4 Structural properties of antlers 125

Observe that the proof of Theorem 5.3.7 shows that the variant of Bounded-
Width 1-Antler Detection where we ask for the existence of a 1-antler of
width exactly k, is also W[1]-hard.

5.4 Structural properties of antlers

In this section we give a number of structural properties of antlers. While antlers
may intersect in non-trivial ways, the following proposition relates the sizes of the
cross-intersections.

Proposition 5.4.1. If (C1, F1) and (C2, F2) are antlers in G, then |C1 ∩ F2| =
|C2 ∩ F1|.

Proof. We show fvs(G[F1 ∪ F2]) = |C1 ∩ F2|. First we show fvs(G[F1 ∪ F2]) ≥
|C1∩F2| by showing (C1∩F2, F1) is an antler in G[F1∪F2]. Clearly (C1, F1) is an
antler in G[F1 ∪ F2 ∪ C1], so then by Observation 5.2.4 (C1 ∩ F2, F1) is an antler
in G[F1 ∪ F2 ∪ C1]− (C1 \ F2) = G[F1 ∪ F2].

Second we show fvs(G[F1 ∪F2]) ≤ |C1 ∩F2| by showing G[F1 ∪F2]− (C1 ∩F2)
is acyclic. Note that G[F1 ∪ F2]− (C1 ∩ F2) = G[F1 ∪ F2]− C1. Suppose G[F1 ∪
F2]−C1 contains a cycle. We know this cycle does not contain a vertex from C1,
however it does contain at least one vertex from F1 since otherwise this cycle exists
in G[F2] which is a forest. We know from Observation 5.2.1 that any cycle in G
containing a vertex from F1 also contains a vertex from C1. Contradiction. The
proof for fvs(G[F1 ∪ F2]) = |C2 ∩ F1| is symmetric. It follows that |C1 ∩ F2| =
fvs(G[F1 ∪ F2]) = |C2 ∪ F1|.

Lemma 5.4.2 shows that what remains of a z-antler (C1, F1) when removing
a different antler (C2, F2), again forms a smaller z-antler. We will rely on this
lemma repeatedly to ensure that after having found and removed an incomplete
fragment of a width-k z-antler, the remainder of that antler persists as a z-antler
to be found later.

Lemma 5.4.2. For any integer z ≥ 0, if a multigraph G has a z-antler (C1, F1)
and another antler (C2, F2), then (C1 \ (C2 ∪ F2), F1 \ (C2 ∪ F2)) is a z-antler
in G− (C2 ∪ F2).

Before we prove Lemma 5.4.2, we prove a weaker claim:

Proposition 5.4.3. If (C1, F1) and (C2, F2) are antlers in G, then (C1 \ (C2 ∪
F2), F1 \ (C2 ∪ F2)) is an antler in G− (C2 ∪ F2).

Proof. For brevity let C ′1 := C1 \ (C2 ∪ F2) and F ′1 := F1 \ (C2 ∪ F2) and G′ :=
G − (C2 ∪ F2) (see Figure 5.4). First note that (C ′1, F

′
1) is a FVC in G′ by

Observation 5.2.2. We proceed to show that fvs(G′[C ′1 ∪ F ′1]) ≥ |C ′1|. By Ob-
servation 5.2.4 (∅, F2) is an antler in G − C2, so then by Observation 5.2.2 we
have (∅, F2 ∩ (C1 ∪ F1)) is a FVC in G[C1 ∪ F1] − C2. Since a FVC of width 0

126 Finding Antler Structures to Solve Feedback Vertex Set

C2

F2

C1

F1

G− (C1 ∪ C2 ∪ F1 ∪ F2)

F ′
1

C ′
1

G′

Figure 5.4 A diagram of the different vertex sets used in the proof of Proposi-
tion 5.4.3. The triangles represent induced trees.

is an antler we can apply Observation 5.2.3 and obtain fvs(G[C1 ∪ F1] − C2) =
fvs(G[C1 ∪ F1]− (C2 ∪ F2)) = fvs(G′[C ′1 ∪ F ′1]). We derive

fvs(G′[C ′1 ∪ F ′1]) = fvs(G[C1 ∪ F1]− C2)

≥ fvs(G[C1 ∪ F1])− |C2 ∩ (C1 ∪ F1)|
= |C1| − |C2 ∩ C1| − |C2 ∩ F1| Since C1 ∩ F1 = ∅
= |C1| − |C2 ∩ C1| − |C1 ∩ F2| By Proposition 5.4.1
= |C1| − |(C2 ∩ C1) ∪ (C1 ∩ F2)| Since C2 ∩ F2 = ∅
= |C1 \ (C2 ∪ F2)| = |C ′1|.

We can now prove Lemma 5.4.2.

Proof. For brevity let C ′1 := C1 \ (C2 ∪ F2) and F ′1 := F1 \ (C2 ∪ F2) and G′ :=
G − (C2 ∪ F2). By Proposition 5.4.3 we know (C ′1, F

′
1) is an antler, so it remains

to show that G′[C ′1 ∪ F ′1] contains a C ′1-certificate of order z. Since (C1, F1) is a
z-antler in G, we have that G[C1 ∪ F1] contains a C1-certificate of order z. Let H
denote this C1-certificate and letH be the set of all edges and vertices inG′[C ′1∪F ′1]
that are not in H. Now (C1, F1) is a z-antler in G′′ := G −H since it is a FVC
by Observation 5.2.2 and G′′[C1 ∪ F1] contains a C1-certificate of order z since H
is a subgraph of G′′. Note that (C2, F2) is also an antler in G′′ since H does not
contain vertices or edges from G[C2 ∪ F2]. It follows that (C ′1, F

′
1) is an antler

in G′′ by Proposition 5.4.3, so G′′[C ′1∪F ′1] is a C ′1-certificate in G′′. Clearly this is
a C ′1-certificate of order z since G′′[C ′1∪F ′1] is a subgraph of H. Since G′′[C ′1∪F ′1]
is a subgraph of G′[C ′1 ∪F ′1] it follows that G′[C ′1 ∪F ′1] contains a C ′1-certificate of
order z.

Lemma 5.4.4 shows that we can consider consecutive removal of two z-antlers
as the removal of a single z-antler.

Lemma 5.4.4. For any integer z ≥ 0, if a multigraph G has a z-antler (C1, F1)
and G − (C1 ∪ F1) has a z-antler (C2, F2) then (C1 ∪ C2, F1 ∪ F2) is a z-antler
in G.

5.4 Structural properties of antlers 127

Proof. Since (C1, F1) is a z-antler in G we know G[C1∪F1] contains a C1-certificate
of order z, similarly (G− (C1 ∪ F1))[C2 ∪ F2] contains a C2-certificate of order z.
The union of these certificates forms a (C1 ∪ C2)-certificate of order z in G[C1 ∪
C2 ∪ F1 ∪ F2]. It remains to show that (C1 ∪ C2, F1 ∪ F2) is a FVC in G.

First we show G[F1 ∪F2] is acyclic. Suppose for contradiction that G[F1 ∪F2]
contains a cycle C. Since (C1, F1) is a FVC in G, any cycle containing a vertex
from F1 also contains a vertex from C1, hence C does not contain vertices from F1.
Therefore C can only contain vertices from F2. This is a contradiction with the
fact that G[F2] is acyclic.

Finally we show that for each tree T in G[F1 ∪F2] we have e(T,G− (C1 ∪C2 ∪
F1 ∪ F2)) ≤ 1. If V (T) ⊆ F2 this follows directly from the fact that (C2, F2) is a
FVC in G− (C1 ∪ F1). Similarly if V (T) ⊆ F1 this follows directly from the fact
that (C1, F1) is a FVC in G. So suppose T is a tree that contains vertices from
both F1 and F2. Since T is connected, each tree in T [F1] contains a neighbor of
a vertex in a tree in T [F2]. Hence no tree in T [F1] contains a neighbor of V (G−
(C1 ∪ C2 ∪ F1 ∪ F2)), so e(V (T) ∩ F1, G− (C1 ∪ C2 ∪ F1 ∪ F2)) = 0. To complete
the proof we show e(V (T) ∩ F2, G − (C1 ∪ C2 ∪ F1 ∪ F2)) ≤ 1. Recall each tree
in G[F2] has at most 1 edge to G − (C1 ∪ C2 ∪ F1 ∪ F2), so it suffices to show
that T [F2] is connected. Suppose T [F2] is not connected, then let u, v ∈ F2 be
vertices from different components of T [F2]. Since T is connected, there is a path
from u to v. This path must use a vertex w ∈ V (T − F2) ⊆ F1. Let T ′ denote
the tree in T [F1] that contains this vertex. Since (C1, F1) is a FVC in G we have
that e(T ′, F2) ≤ e(T ′, G − (C1 ∪ F1)) ≤ 1 hence no vertex in T ′ can be part of a
path from u to v in T . This contradicts our choice of T ′.

The last structural property of antlers, given in Lemma 5.4.6, derives a bound
on the number of trees of a forest G[F] needed to witness that C is an optimal
FVS of G[C ∪ F]. Lemma 5.4.6 is a corollary to the following lemma.

Lemma 5.4.5. If a multigraph G contains a C-certificate H of order z ≥ 0 for
some C ⊆ V (G), then H contains a C-certificate Ĥ of order z such that Ĥ − C
has at most |C|2 (z2 + 4z − 1) trees.

Proof. Consider a tree T in H − C, we show that fvs(H − V (T)) = fvs(H) if

1. for all v ∈ C such that H[V (T) ∪ {v}] has a cycle, H − V (T) contains k
cycles whose vertex sets only intersect in v, and

2. for all {u, v} ∈
(
NH(T)

2

)
there are at least z+ 1 other trees in H−C adjacent

to u and v.

Consider the componentH ′ ofH containing T . It suffices to show that fvs(H ′−
V (T)) = fvs(H ′). Clearly fvs(H ′ − V (T)) ≤ fvs(H ′) so it remains to show
that fvs(H ′−V (T)) ≥ fvs(H ′). Assume fvs(H ′−V (T)) < fvs(H ′), then let X be a
FVS in H ′− V (T) with |X| < fvs(H ′) = |C ∩ V (H ′)| ≤ z. For any v ∈ C ∩ V (H ′)
such that H[V (T) ∪ {v}] has a cycle we know from Condition 1 that H ′ − V (T)

128 Finding Antler Structures to Solve Feedback Vertex Set

has z > |X| cycles that intersect only in v, hence v ∈ X. By Condition 2 we have
that all but possibly one vertex in NG(T) must be contained in X, since if there are
two vertices x, y ∈ NG(T)\X then H−V (T)−X has at least z+1−|X| ≥ 2 inter-
nally vertex-disjoint paths between x and y forming a cycle and contradicting our
choice of X. Since there is at most one vertex v ∈ NG(T)\X and H[T ∪{v}] does
not have a cycle, we have thatH ′−X is acyclic, a contradiction since |X| < fvs(H ′).

The desired C-certificate Ĥ can be obtained from H by iteratively removing
trees from H − C for which both conditions hold. We show that if no such tree
exists, then H − C has at most |C|2 (z2 + 2z − 1) trees. Each tree T for which
Condition 1 fails can be charged to a vertex v ∈ C that witnesses this, i.e., H[T ∪
{v}] has a cycle and there are at most z trees T ′ such that T ′∪v has a cycle. Clearly
each vertex v ∈ C can be charged at most z times, hence there are at most z · |C|
trees violating Condition 1. Similarly each tree T for which Condition 2 fails can
be charged to a pair of vertices {u, v} ∈

(
NH(T)

2

)
for which at most z + 1 trees

in H − T are adjacent to u and v. Clearly each pair of vertices can be charged
at most z + 1 times. Additionally each pair consists of vertices from the same
component of H. Let H1, . . . ,H` be the components in H, then the number of
such pairs is at most

∑
1≤i≤`

(
|C ∩ V (Hi)|

2

)
=
∑

1≤i≤`

1

2
|C ∩ V (Hi)|(|C ∩ V (Hi)| − 1)

≤
∑

1≤i≤`

1

2
|C ∩ V (Hi)|(z − 1)

=
|C|
2

(z − 1)

Thus H − C has at most z · |C| + (z + 1) · |C|2 (z − 1) = |C|
2 (z2 + 2z − 1) trees

violating Condition 2.
To conclude, there are at most z · |C| + |C|

2 (z2 + 2z − 1) trees of H − C that
violate one or both conditions and any tree in H−C that satisfies both conditions
can be excluded from Ĥ. We obtain a final bound on the number of trees in Ĥ
of z · |C|+ |C|

2 (z2 + 2z − 1) = |C|
2 (z2 + 4z − 1).

We can now give an upper bound on the number of trees in G[F] required for
a z-antler (C,F).

Lemma 5.4.6. Let (C,F) be a z-antler in a multigraph G for some z ≥ 0. There
exists an F ′ ⊆ F such that (C,F ′) is a z-antler in G and G[F ′] has at most |C|2 (z2+
4z − 1) trees.

Proof. Since (C,F) is a z-antler, G[C∪F] contains a C-certificateH or order z and
by Lemma 5.4.5 we know H contains a C-certificate Ĥ of order z such that Ĥ−C
has at most |C|2 (z2 + 4z− 1) components. Take F ′ := V (H−C) then G[F ′] has at

5.5 Finding antlers 129

most |C|2 (z2+4z−1) components and Ĥ is a subgraph of G[C∪F ′], meaning (C,F ′)
is a z-antler.

5.5 Finding antlers

5.5.1 Finding feedback vertex cuts

As described in Section 5.1, our algorithm aims to identify vertices in antlers uses
color coding. To allow a relatively small family of colorings to identify an entire
antler structure (C,F) with |C| ≤ k, we need to bound |F | in terms of k as well.
We therefore use several graph reduction steps. In this section, we show that if
there is a width-k antler whose forest F is significantly larger than k, then we can
identify a reducible structure in the graph. To identify a reducible structure we
will also use color coding. In Section 5.5.2 we show how to reduce such a structure
while preserving antlers and optimal feedback vertex sets.

Define the function fr : N→ N as fr(x) = 2x3 + 3x2−x. We say a FVC (C,F)
is reducible if |F | > fr(|C|), and we say (C,F) is a single-tree FVC if G[F] is
connected.

Definition 5.5.1. A FVC (C,F) is simple if |F | ≤ 2fr(|C|) and one of the
following holds: (a) G[F] is connected, or (b) all trees in G[F] have a common
neighbor v and there exists a single-tree FVC (C,F2) with v ∈ F2 \F and F ⊆ F2.

The algorithm we will present can identify a reducible FVC when it is also
simple. First we show that such a FVC always exists when the graph contains a
single-tree reducible FVS.

Lemma 5.5.2. If a multigraph G contains a reducible single-tree FVC (C,F)
there exists a simple reducible FVC (C,F ′) with F ′ ⊆ F .

Proof. We use induction on |F |. If |F | ≤ 2fr(|C|) then (C,F) is simple by con-
dition (a). Assume |F | > 2fr(|C|). Since (C,F) is a FVC and G[F] is connected
there is at most one vertex v ∈ F that has a neighbor in V (G) \ (C ∪ F). If no
such vertex exists, take v ∈ F to be any other vertex. Observe that (C,F \ {v})
is a FVC. Consider the following cases:

• All trees in G[F]− v contain at most fr(|C|) vertices. Let F ′ be the vertices
of an inclusion minimal set of trees of G[F] − v such that |F ′| > fr(|C|).
Clearly |F ′| ≤ 2fr(|C|) since otherwise the set is not inclusion minimal.
Each tree in G[F ′] contains a neighbor of v and F ′ ⊆ F , hence (C,F ′) is
simple by condition (b), and (C,F ′) is reducible since |F ′| > fr(|C|).

• There is a tree T in G[F] − v that contains more than fr(|C|) vertices.
Now (C, V (T)) is a single-tree reducible FVC with |V (T)| < |F |, so the
induction hypothesis applies.

130 Finding Antler Structures to Solve Feedback Vertex Set

We proceed to show how a simple reducible FVC can be found using color
coding. A vertex coloring of G is a function χ : V (G) → {Ċ, Ḟ}. We say a simple
FVC (C,F) is properly colored by a coloring χ if F ⊆ χ−1(Ḟ) and C ∪NG(F) ⊆
χ−1(Ċ).

Lemma 5.5.3. Given a multigraph G and coloring χ of G that properly colors
a simple reducible FVC (C,F), a reducible FVC (C ′, F ′) can be found in O(n3)
time.

Proof. If (C,F) is simple by condition (a), i.e., G[F] is connected, it is easily
verified that we can find a reducible FVC in O(n3) time as follows: Consider the
set T of all trees in G[χ−1(Ḟ)]. For each tree T ∈ T , if there is a vertex u ∈ NG(T)
such that e({u}, T) = 1 take C ′ := NG(T) \ {u}, otherwise take C ′ := NG(T).
If |V (T)| > fr(|C ′|) return (C ′, V (T)).

In the remainder of the proof we assume that (C,F) is simple by condition (b).

Algorithm For each vertex u ∈ χ−1V (Ċ) consider the set T of all trees T
in G[χ−1V (Ḟ)] such that e({u}, T) = 1. Let C ′ ⊆ χ−1V (Ċ) \ {u} be the set of
vertices (excluding u) with a neighbor in at least two trees in T and let T1 be
the set of trees T ∈ T for which NG(T) ⊆ C ′ ∪ {u}. Now consider the set of
trees T2 = T \ T1 as a set of objects for a 0-1 knapsack problem where we define
for each T ∈ T2 its weight as |NG(T)\(C ′∪{u})| and its value as |V (T)|. Using the
dynamic programming algorithm [122] for the 0-1 knapsack problem we compute
for all 0 ≤ b ≤ |NG(V (T2)) \ (C ′ ∪ {u})| a set of trees T b2 ⊆ T2 with a combined
weight

∑
T∈T b

2
|NG(T)\(C ′∪{u})| ≤ b such that the combined value

∑
T∈T b

2
|V (T)|

is maximized. If for any such b we have |V (T1)| + |V (T b2)| > fr(|C ′| + b) then
take Ĉ := C ′ ∪NG(V (T b2)) \ {u} and F̂ := V (T1) ∪ V (T b2) and return (Ĉ, F̂).

Correctness To show that (Ĉ, F̂) is a FVC, first note that G[F̂] is a forest.
For each tree T in this forest we have e(T, {u}) = 1 and NG(T) ⊆ C ′ ∪ {u} ∪
NG(V (T b2)) = Ĉ ∪ {u}. It follows that e(T,G − (Ĉ ∪ F̂)) = e(T, {u}) = 1. To
show that (Ĉ, F̂) indeed reducible observe that

∑
T∈T b

2
|NG(T) \ (C ′ ∪ {u})| =

|
⋃
T∈T b

2
NG(T)\(C ′∪{u})| since if two trees T1, T2 ∈ T b2 have a common neighbor

that is not u, it must be in C ′ by definition, hence the neighborhoods only intersect
on C ′ ∪ {u}. We can now deduce |F̂ | = |V (T1)| + |V (T b2)| > fr(|C ′| + b) ≥
fr(|C ′|+

∑
T∈T b

2
|NG(T) \ (C ′ ∪ {u})|) = fr(|C ′ ∪NG(V (T b2)) \ {u}|) = fr(|Ĉ|).

It remains to show that if χ properly colors a simple reducible FVC (C,F) then
for some u ∈ χ−1V (Ċ) there exists a b such that |V (T1)| + |V (T b2)| ≥ fr(|C ′| + b).
Recall that we assumed (C,F) is simple by condition (b), i.e., all trees in G[F] have
a common neighbor v and there exists a single-tree FVC (C,F2) with v ∈ F2 \ F
and F ⊆ F2. Since (C,F) is properly colored we know v ∈ χ−1(Ċ), so in some
iteration we will have u = v. Consider the sets T , T1, T2, and C ′ as defined in this
iteration. We first show C ′ ⊆ C. If w ∈ C ′ then w has a neighbor in two trees

5.5 Finding antlers 131

in T . This means there are two internally vertex disjoint paths between v and w,
forming a cycle. Since v ∈ F2 we have by Observation 5.2.1 for the FVC (C,F2)
that this cycle must contain a vertex in C which is therefore different from v.
Recall that (C,F) is properly colored, hence all vertices in C have color Ċ. Note
that the internal vertices of these paths all have color Ḟ because they are vertices
from trees in G[χ−1V (Ḟ)]. Hence w ∈ C and therefore C ′ ⊆ C. To complete the
proof we show
Claim 5.5.4. There exists a value b such that |V (T1)|+ |V (T b2)| ≥ fr(|C ′|+ b).

Proof. Recall that we assumed existence of a properly colored FVC (C,F) that
is reducible and simple by condition (b) witnessed by the FVC (C,F2). Consider
the set T ′ of trees in G[F]. Note that any tree T ′ in T ′ is a tree in G[χ−1(Ḟ)]
since (C,F) is properly colored and note also that T ′ contains a neighbor of v.
If e(T ′, {v}) > 1 then G[F2] contains a cycle, contradicting that (C,F2) is a FVC
in G, hence e(T ′, {v}) = 1. It follows that T ′ ∈ T , meaning T ′ ⊆ T . Take T ′2 =
T ′ \T1 = T ′∩T2 and b =

∑
T∈T ′2

|NG(V (T))\ (C ′∪{v}|. Clearly T ′2 is a candidate
solution for the 0-1 knapsack problem with capacity b, hence |V (T b2)| ≥ |V (T ′2)|.
We deduce

|V (T1)|+ |V (T b2)| ≥ |V (T1)|+ |V (T ′2)| ≥ |V (T ′)| = |F |
> fr(|C|) since (C,F) is reducible
= fr(|C ′ ∪ C|) since C ′ ⊆ C
= fr(|C ′ ∪ (NG(F) \ {v}) ∪ C|) since NG(T ′2) \ {v} ⊆ C
≥ fr(|C ′ ∪ (NG(T ′2) \ {v})|) since fr is non-decreasing
= fr(|C ′|+ |NG(T ′2) \ (C ′ ∪ {v})|) since |A ∪B| = |A|+ |B \A|
> fr(|C ′|+ b) y

Running time For each u ∈ χ−1V (Ċ) we perform a number of O(n+m)-time
operations and run the dynamic programming algorithm for a problem with O(n)
objects and a capacity of O(n) yielding a run time of O(n2) for each u or O(n3)
for the algorithm as a whole.

Using the previous lemmas the problem of finding a reducible single-tree FVC
reduces to finding a coloring that properly colors a simple reducible FVC. We
generate a set of colorings that is guaranteed to contain at least one such coloring.
To generate this set we use the concept of a universal set. For some set D of size n
and integer s with n ≥ s an (n, s)-universal set for D is a family U of subsets of D
such that for all S ⊆ D of size at most s we have {S ∩ U | U ∈ U} = 2S .

Theorem 5.5.5 ([102, Theorem 6], cf. [35, Theorem 5.20]). For any set D and
integers n and s with |D| = n ≥ s, an (n, s)-universal set U for D with |U| =
2O(s) log n can be created in 2O(s)n log n time.

132 Finding Antler Structures to Solve Feedback Vertex Set

It can be shown that whether a simple FVC of width k is properly colored is
determined by at most 1 + k + 2fr(k) = O(k3) relevant vertices. By creating an
(n,O(k3))-universal set for V (G) using Theorem 5.5.5, we can obtain in 2O(k3) ·
n log n time a set of 2O(k3) ·log n colorings that contains a coloring for each possible
assignment of colors for these relevant vertices. By applying Lemma 5.5.3 for each
coloring we obtain the following lemma:

Lemma 5.5.6. There exists an algorithm that, given a multigraph G and an
integer k, outputs a (possibly empty) FVC (C,F) in G. If G contains a reducible
single-tree FVC of width at most k then (C,F) is reducible. The algorithm runs
in time 2O(k3) · n3 log n.

Proof. Take s = 2fr(k)+k+1. By Theorem 5.5.5 an (n, s)-universal set U for V (G)
of size 2O(s) log n can be created in 2O(s)n log n time. For each Q ∈ U let χQ be
the coloring of G with χ−1Q (Ċ) = Q. Run the algorithm from Lemma 5.5.3 on χQ
for every Q ∈ U and return the first reducible FVC. If no reducible FVC was found
return (∅, ∅). We obtain an overall run time of 2O(s) · n3 log n = 2O(k3) · n3 log n.

To prove correctness assume G contains a reducible single-tree FVC (C,F)
with |C| ≤ k. Then by Lemma 5.5.2 we know G contains a simple reducible
FVC (C,F ′). Coloring χ properly colors (C,F ′) if all vertices in F ′∪C∪NG(F ′) are
assigned the correct color. Hence at most |F ′|+ |C+NG(F ′)| ≤ 2fr(k)+k+1 = s
vertices need to have the correct color. By construction of U , there is a Q ∈ U
such that χQ assigns the correct colors to these vertices. Hence χQ properly
colors (C,F ′) and by Lemma 5.5.3 a reducible FVC is returned.

5.5.2 Reducing feedback vertex cuts

We introduce reduction rules inspired by existing kernelization algorithms [23, 121]
and apply them on the subgraph G[C ∪ F] for a FVC (C,F) in G. We give 5
reduction rules and show at least one is applicable if |F | > fr(|C|). The rules
reduce the number of vertices v ∈ F with degG(v) < 3 or reduce e(C,F). The
following lemma shows that this is sufficient to reduce the size of F .

Lemma 5.5.7. Let G be a multigraph with minimum degree at least 3 and let (C,F)
be a FVC in G. We have |F | ≤ e(C,F).

Proof. We first show that the claim holds if G[F] is a tree. For all i ≥ 0 let Vi :=
{v ∈ F | degG[F](v) = i}. Note that since G[F] is connected, V0 6= ∅ if and
only if |F | = 1 and the claim is trivially true, so suppose V0 = ∅. We first
show |V≥3| < |V1|.

2|E(G[F])| =
∑
v∈F

degG[F](v) ≥ |V1|+ 2|V2|+ 3|V≥3|

2|E(G[F])| = 2(|V (G[F])| − 1) = 2|V1|+ 2|V2|+ 2|V≥3| − 2

5.5 Finding antlers 133

We obtain |V1|+ 2|V2|+ 3|V≥3| ≤ 2|V1|+ 2|V2|+ 2|V≥3|− 2 hence |V≥3| < |V1|. We
know all vertices in F have degree at least 3 in G, so e(V (G)\F, F) ≥ 2|V1|+|V2| >
|V1| + |V2| + |V≥3| = |F |. By definition of FVC there is at most one vertex in F
that has an edge to V (G) \ (C ∪ F), all other edges must be between C and F .
We obtain 1 + e(C,F) > |F |.

If G[F] is a forest, then let F1, . . . , F` be the vertex sets for each tree in G[F].
Since (C,Fi) is a FVC in G for all 1 ≤ i ≤ `, we know e(C,Fi) ≥ |Fi| for
all 1 ≤ i ≤ `, and since F1, . . . , F` is a partition of F we conclude e(C,F) =∑

1≤i≤` e(C,Fi) ≥
∑

1≤i≤` |Fi| = |F |.

Next, we give the reduction rules. These rules apply to a multigraph G and
yield a new multigraph G′ and vertex set S ⊆ V (G)\V (G′). A reduction rule with
output G′ and S is FVS-safe if for any minimum feedback vertex set S′ of G′, the
set S ∪ S′ is a minimum feedback vertex set of G. A reduction rule is antler-safe
if for all z ≥ 0 and any z-antler (C,F) in G, there exists a z-antler (C ′, F ′) in G′
with C ′ ∪ F ′ = (C ∪ F) ∩ V (G′) and |C ′| = |C| − |(C ∪ F) ∩ S|.

Reduction Rule 5.1. If u, v ∈ V (G) are connected by more than two edges,
remove all but two of these edges to obtain G′ and take S := ∅.

Reduction Rule 5.2. If v ∈ V (G) has degree exactly 2 and no self-loop, obtainG′
by removing v from G and adding an edge e with ι(e) = NG(v). Take S := ∅.

Reduction Rules 5.1 and 5.2 are well established and FVS-safe. Additionally
Reduction Rule 5.1 can easily be seen to be antler-safe. To see that Reduction
Rule 5.2 is antler-safe, consider a z-antler (C,F) in G for some z ≥ 0. If v 6∈ C it
is easily verified that (C,F \ {v}) is a z-antler in G′. If v ∈ C pick a vertex u ∈
NG(v) ∩ F and observe that ({u} ∪ C \ {v}, F \ {u}) is a z-antler in G′.

Reduction Rule 5.3. If (C,F) is an antler in G, then G′ := G − (C ∪ F)
and S := C.

Lemma 5.5.8. Reduction Rule 5.3 is FVS-safe and antler-safe.

Proof. To show Reduction Rule 5.3 is FVS-safe, let Z be a minimum FVS of G′.
Now (Z, V (G′ − Z)) is an antler in G′ = G − (C ∪ F) so then G contains the
antler (Z ∪ C, V (G′ − Z) ∪ F) = (Z ∪ S, V (G − (Z ∪ S))) by Lemma 5.4.4. It
follows that Z ∪ S is a minimum FVS of G.

To show Reduction Rule 5.3 is antler-safe, let z ≥ 0 and let (Ĉ, F̂) be an
arbitrary z-antler in G, then by Lemma 5.4.2 (Ĉ \ (C∪F), F̂ \ (C∪F) is a z-antler

134 Finding Antler Structures to Solve Feedback Vertex Set

in G′ = G− (C ∪ F). We deduce:

|Ĉ \ (C ∪ F)| = |Ĉ| − |Ĉ ∩ C| − |Ĉ ∩ F | since C ∩ F = ∅
= |Ĉ| − |Ĉ ∩ C| − |C ∩ F̂ | by Proposition 5.4.1

= |Ĉ| − |(Ĉ ∩ C) ∪ (C ∩ F̂)| since Ĉ ∩ F̂ = ∅
= |Ĉ| − |(Ĉ ∪ F̂) ∩ C|
= |Ĉ| − |(Ĉ ∪ F̂) ∩ Ŝ′|.

The following reduction rule uses a graph structure called flower. For a ver-
tex v ∈ V (G) and an integer k, a v-flower of order k is a collection of k cycles
in G whose vertex sets only intersect in v.

Reduction Rule 5.4. If (C,F) is a FVC in G and for some v ∈ C the sub-
graph G[F∪{v}] contains a v-flower of order |C|+1, then G′ := G−v and S := {v}.

Lemma 5.5.9. Reduction Rule 5.4 is FVS-safe and antler-safe.

Proof. We first show that any minimum FVS inG contains v. LetX be a minimum
FVS in G. If v 6∈ X then |F ∩ X| > |C| since G[F ∪ {v}] contains a v-flower of
order |C|+ 1. Take X ′ := C ∪ (X \F), clearly |X ′| < |X| so G−X ′ must contain
a cycle since X was minimum. This cycle must contain a vertex from X \X ′ ⊆ F ,
so by Observation 5.2.1 this cycle must contain a vertex from C, but C ⊆ X ′.
Contradiction.

To show Reduction Rule 5.4 is FVS-safe, suppose Z is a minimum FVS of G′ =
G−v. Clearly Z∪{v} is a FVS inG. To show that Z∪{v} is minimum suppose Z ′ is
a smaller FVS inG. We know v ∈ Z so Z ′\{v} is a FVS inG−v, but |Z ′\{v}| < |Z|
contradicting optimality of Z.

To show Reduction Rule 5.4 is antler-safe, suppose (Ĉ, F̂) is a z-antler in G
for some z ≥ 0. We show (Ĉ \ {v}, F̂) is a z-antler in G′. If v ∈ Ĉ then this
follows directly from Observation 5.2.4, so suppose v 6∈ Ĉ. Note that v ∈ F̂
would contradict that any minimum FVS in G contains v by Observation 5.2.3.
So G[Ĉ ∪ F̂] = G′[Ĉ ∪ F̂] and (Ĉ \ {v}, F̂) = (Ĉ, F̂) is a FVC in G′ = G − v by
Observation 5.2.2, hence (Ĉ \ {v}, F̂) is a z-antler in G′.

Reduction Rule 5.5. If (C,F) is a FVC in G, v ∈ C, andX ⊆ F such that G[F∪
{v}]−X is acyclic, and if T is a tree in G[F]−X containing a vertex w ∈ NG(v)
such that for each u ∈ NG(T) \ {v} there are more than |C| other trees T ′ 6= T
in G[F] − X for which {u, v} ⊆ NG(T ′), then take S := ∅ and obtain G′ by
removing the unique edge between v and w, and adding double-edges between v
and u for all u ∈ NG(V (T)) \ {v}.

Lemma 5.5.10. Reduction Rule 5.5 is FVS-safe and antler-safe.

Proof. Suppose (Ĉ, F̂) is a z-antler in G for some z ≥ 0. We first prove the
following claim:

5.5 Finding antlers 135

Claim 5.5.11. For all u ∈ NG(T)\{v} we have v ∈ F̂ ⇒ u ∈ Ĉ and u ∈ F̂ ⇒ v ∈ Ĉ.

Proof. Each tree of G[F] − X supplies a path between u and v, hence there are
more than |C|+1 internally vertex-disjoint paths between u and v. Suppose v ∈ F̂ ,
we show u ∈ Ĉ. The proof of the second implication is symmetric. Suppose for
contradiction that u 6∈ Ĉ. All except possibly one of the disjoint paths between u
and v must contain a vertex in Ĉ by Observation 5.2.1 since any two disjoint
paths form a cycle containing a vertex from F̂ . Let Y ⊆ Ĉ be the set of vertices
in Ĉ that are in a tree of G[F] − X with neighbors of u and v, so |Y | > |C|.
Then |C∪Ĉ \Y | < |Ĉ| we derive a contradiction by showing G[Ĉ∪F̂]−(C∪Ĉ \Y)
is acyclic. We know Y ⊆ F , so any cycle in G containing a vertex from Y also
contains a vertex from C by Observation 5.2.1. So if G[Ĉ ∪ F̂] − (C ∪ Ĉ \ Y)
contains a cycle, then so does G[Ĉ ∪ F̂] − (C ∪ Ĉ) which contradicts that Ĉ is a
(minimum) FVS in G[Ĉ ∪ F̂] since (Ĉ, F̂) is an antler in G. y

To prove Reduction Rule 5.5 is antler-safe, we show that (Ĉ, F̂) is also a z-
antler in G′. Suppose v 6∈ Ĉ ∪ F̂ , then G[Ĉ ∪ F̂] = G′[Ĉ ∪ F̂] as G and G′ only
differ on edges incident to v. It remains to show that for each tree T ′ in G′[F̂] we
have e(T ′, G′−(Ĉ∪F̂)) ≤ 1. Suppose T ′ is a tree inG′[F̂] with e(T ′, G′−(Ĉ∪F̂)) >
1. Since e(T ′, G − (Ĉ ∪ F̂)) ≤ 1 we know that at least one of the edges added
between v and some u ∈ NG(T) has an endpoint in V (T ′) ⊆ F̂ . Since v 6∈ F̂ we
have u ∈ F̂ , so v ∈ Ĉ by Claim 5.5.11 contradicting our assumption v 6∈ Ĉ ∪ F̂ .

Suppose v ∈ Ĉ ∪ F̂ , we first show that (Ĉ, F̂) is a FVC in G′. If v ∈ Ĉ this is
clearly the case, so suppose v ∈ F̂ . From Claim 5.5.11 it follows that NG(T)\{v} ⊆
Ĉ, so all edges added in G′ are incident to vertices in Ĉ hence (Ĉ, F̂) is still a
FVC in G′. We now show that G′[Ĉ ∪ F̂] contains an Ĉ-certificate of order z.
We know G[Ĉ ∪ F̂] contains a Ĉ-certificate of order z. Let H be an arbitrary
component of this certificate. Take Y := V (H)∩ Ĉ, so Y is a minimum FVS in H.
It suffices to show that Y is also a minimum FVS of G′ ∩H. This is easily seen to
be true when v 6∈ V (H), so suppose v ∈ V (H). First we argue that (G′ ∩H)− Y
is acyclic. This is easily seen to be true when v ∈ Y since G and G′ only differ
in edges incident to v, so suppose v 6∈ Y . Then v 6∈ Ĉ hence v ∈ F̂ and by
Claim 5.5.11 NG(T) \ {v} ⊆ Ĉ. It follows that V (H) ∩ (NG(T) \ {v}) ⊆ Y so
clearly (G′ ∩ H) − Y is acyclic since all edges in G′ ∩ H that are not in H are
incident to a vertex in Y .

To show Y is a minimum FVS, suppose there is a FVS Y ′ of G′∩H with |Y ′| <
|Y |. Since H − v is a subgraph of G′ ∩H we know H − (Y ′ ∪ {v}) is acyclic, but
since |Y ′| < |Y | = fvs(H) we also know H − Y ′ contains a cycle. This cycle
must contain the edge {v, w} since otherwise this cycle is also present in (G′ ∩
H) − Y ′. Then there must be some u ∈ NG(T) \ {v} on the cycle, so u, v 6∈ Y ′.
But G′ contains a double-edge between u and v so (G′ ∩H)−Y ′ contains a cycle,
contradicting that Y ′ is a FVS in G′ ∩H.

We finally show Reduction Rule 5.5 is FVS-safe. Let Z ′ be a minimum FVS
in G′, and suppose Z ′ is not a FVS in G. Then G − Z ′ contains a cycle. This

136 Finding Antler Structures to Solve Feedback Vertex Set

cycle contains the edge {v, w} since otherwise G′ − Z ′ also contains this cycle.
Since G′ contains double-edges between v and all u ∈ NG(T) \ {v} and v 6∈ Z ′,
it follows that NG(T) \ {v} ⊆ Z ′, but then no cycle in G − Z ′ can intersect T
and {v, w} is not part of a cycle in G−Z ′. We conclude by contradiction that Z ′
is a FVS in G. To prove optimality, consider a minimum FVS Z in G and observe
that (Z, V (G − Z)) is an antler in G. Since Reduction Rule 5.5 is antler-safe we
know G′ contains an antler (C ′, F ′) with C ′∪F ′ = (Z∪V (G−Z))∩V (G′) = V (G′)
and |C ′| = |Z|− |(Z ∪V (G−Z))∩S| = |Z|. Since C ′ ∪F ′ = V (G′) we know C ′ is
a FVS in G′, hence fvs(G′) ≤ |C ′| = |Z|, hence fvs(G) = |Z| ≥ fvs(G′) = |Z ′|.

Before showing one of these reduction rules can be applied efficiently given a
reducible FVC, we give the following lemma, which helps in particular with the
application of Reduction Rule 5.4.

Lemma 5.5.12 (Cf. [110, Lemma 3.9]). If v is a vertex in a multigraph G such
that v does not have a self-loop and G − v is acyclic, then we can find in O(n)
time a set X ⊆ V (G) \ {v} such that G−X is acyclic and G contains a v-flower
of order |X|.

Proof. We prove the existence of such a set X and v-flower by induction on |V (G)|.
The inductive proof can easily be translated into a linear-time algorithm. If G is
acyclic, output X = ∅ and a v-flower of order 0. Otherwise, since v does not have
a self-loop there is a tree T of the forest G− v such that G[V (T) ∪ {v}] contains
a cycle. Root T at an arbitrary vertex and consider a deepest node x in T for
which the subgraph G[V (Tx)∪{v}] contains a cycle C. Then any feedback vertex
set of G that does not contain v, has to contain at least one vertex of Tx; and
the choice of x as a deepest vertex implies that x lies on all cycles of G that
intersect Tx. By induction on G′ := G − V (Tx) and v, there is a feedback vertex
set X ′ ⊆ V (G′)\{v} of G′ and a v-flower in G′ of order |X ′|. We obtain a v-flower
of order |X ′|+1 in G by adding C, while X := X ′∪{x} ⊆ V (G)\{v} is a feedback
vertex set of size |X ′|+ 1.

Finally we show that when we are given a reducible FVC (C,F) in G, then
we can find and apply a rule in O(n2) time. With a more careful analysis better
running time bounds can be shown, but this does not affect the final running time
of the main algorithm.

Lemma 5.5.13. Given a multigraph G and a reducible FVC (C,F) in G, we can
find and apply a rule in O(n2) time.

Proof. Note that if a vertex v ∈ V (G) has a self-loop then ({v}, ∅) is an antler in G
and we can apply Reduction Rule 5.3. If a vertex v has degree 0 or 1 then (∅, {v})
is an antler in G. Hence Reduction Rules 5.1, 5.2 and 5.3 can always be applied
if the graph contains a self-loop, a vertex with degree less than 3, or more than 2
edges between two vertices. So assume G is a graph with no self-loops, minimum
degree at least 3, and at most two edges between any pair of vertices.

5.5 Finding antlers 137

By Lemma 5.5.7 we have e(C,F) ≥ |F | > 2|C|3 + 3|C|2 − |C| so then there
must be a vertex v in C with more than 1

|C| ·(2|C|
3+3|C|2−|C|) = 2|C|2+3|C|−1

edges to F . By Lemma 5.5.12 we can find a set X ⊆ F such that G[F ∪ {v}]−X
is acyclic and G[F ∪ {v}] contains a v-flower of order |X|. Hence if |X| ≥ |C|+ 1
Reduction Rule 5.4 can be applied, so assume |X| ≤ |C|. For each u ∈ X ∪C \{v}
that is not connected to v by a double-edge, mark up to |C|+1 trees T ′ in G[F]−X
for which {u, v} ∈ NG(T). Note that we marked at most (|C|+ 1) · |X ∪C \{v}| ≤
(|C|+ 1) · (2|C| − 1) = 2|C|2 + |C| − 1 trees. Since v has exactly one edge to each
marked tree (G[F ∪{v}]−X is acyclic) and at most two edges to each vertex in X,
this accounts for at most 2|C|2 + 3|C| − 1 edges from v to F , so there must be at
least one more edge from v to a vertex w ∈ F , hence Reduction Rule 5.5 applies.

It can easily be verified that all operations described can be performed in O(n2)
time.

5.5.3 Finding and removing antlers
We will find antlers making use of color coding, using coloring functions of the
form χ : V (G)∪E(G)→ {Ḟ, Ċ, Ṙ}. For all c ∈ {Ḟ, Ċ, Ṙ} let χ−1V (c) = χ−1(c)∩V (G).
For any integer z ≥ 0, a z-antler (C,F) in a multigraph G is z-properly colored by
a coloring χ if all of the following hold:

(i) F ⊆ χ−1V (Ḟ),

(ii) C ⊆ χ−1V (Ċ),

(iii) NG(F) \ C ⊆ χ−1V (Ṙ), and

(iv) G[C ∪ F]− χ−1(Ṙ) is a C-certificate of order z.

Recall that χ−1(Ṙ) can contain edges as well as vertices so for any subgraph H
of G the multigraph H−χ−1(Ṙ) is obtained from H by removing both vertices and
edges. It can be seen that if (C,F) is a z-antler, then there exists a coloring that
z-properly colors it. Consider for example a coloring where a vertex v is colored Ċ
(resp. Ḟ) if v ∈ C (resp. v ∈ F), all other vertices are colored Ṙ, and for some
C-certificate H of order z in G[C ∪ F] all edges in H have color Ḟ and all other
edges have color Ṙ. The property in of a properly colored z-antler described in
Lemma 5.5.14 will be useful to prove correctness of the color coding algorithm.

Lemma 5.5.14. For any z ≥ 0, if a z-antler (C,F) in multigraph G is z-properly
colored by a coloring χ and H is a component of G[C∪F]−χ−1(Ṙ) then each com-
ponent H ′ of H−C is a component of G[χ−1V (Ḟ)]−χ−1(Ṙ) with NG−χ−1(Ṙ)(H

′) ⊆
C ∩ V (H).

Proof. Note that since C ∩ χ−1V (Ḟ) = ∅ we have that NG−χ−1(Ṙ)(H
′) ⊆ C ∩

V (H) implies that NG[χ−1
V (Ḟ)]−χ−1(Ṙ)(H

′) = ∅ and hence that H ′ is a component

of G[χ−1V (Ḟ)]− χ−1(Ṙ). We show NG−χ−1(Ṙ)(H
′) ⊆ C ∩ V (H).

138 Finding Antler Structures to Solve Feedback Vertex Set

Suppose v ∈ NG−χ−1(Ṙ)(H
′) and let u ∈ V (H ′) be a neighbor of v in G −

χ−1(Ṙ). Since V (H ′) ⊆ F we know u ∈ F . Since (C,F) is z-properly col-
ored we also have NG(F) \ C = χ−1(Ṙ), hence NG(u) ⊆ C ∪ F ∪ χ−1(Ṙ) so
then NG−χ−1(u) ⊆ C ∪ F . By choice of u we have v ∈ NG−χ−1(u) ⊆ C ∪ F . So
since u, v ∈ C ∪F , and u and v are neighbors in G−χ−1(Ṙ) we know u and v are
in the same component of G[C ∪ F]− χ−1(Ṙ), hence v ∈ V (H).

Suppose v 6∈ C, so v ∈ F . Since also u ∈ F we know that u and v are in
the same component of G[F] − χ−1(Ṙ), so v ∈ H ′, but then v 6∈ NG−χ−1(Ṙ)(H

′)

contradicting our choice of v. It follows that v ∈ C hence v ∈ C∩V (H). Since v ∈
NG−χ−1(Ṙ)(H

′) was arbitrary NG−χ−1(Ṙ)(H
′) ⊆ C ∩ V (H).

We now show that a z-antler can be obtained from a suitable coloring of the
graph.

Lemma 5.5.15. An nO(z) time algorithm exists taking as input an integer z ≥ 0,
a multigraph G, and a coloring χ and producing as output a z-antler (C,F) in G,
such that for any z-antler (Ĉ, F̂) that is z-properly colored by χ we have Ĉ ⊆ C
and F̂ ⊆ F .

Proof. We define a functionWχ : 2χ
−1
V (Ċ) → 2χ

−1
V (Ḟ) as follows: for any C ⊆ χ−1V (Ċ)

let Wχ(C) denote the set of all vertices that are in a component H of G[χ−1V (Ḟ)]−
χ−1(Ṙ) for which NG−χ−1(Ṙ)(H) ⊆ C. The algorithm we describe updates the
coloring χ and recolors any vertex or edge that is not part of a z-properly colored
antler to color Ṙ.

1. Recolor all edges to color Ṙ when one of its endpoints has color Ṙ.

2. For each component H of G[χ−1V (Ḟ)] we recolor all vertices of H and their
incident edges to color Ṙ if H is not a tree or e(H,χ−1V (Ṙ)) > 1.

3. For each subset C ⊆ χ−1V (Ċ) of size at most z, mark all vertices in C

if fvs(G[C ∪Wχ(C)]− χ−1(Ṙ)) = |C|.

4. If χ−1V (Ċ) contains unmarked vertices we recolor them to color Ṙ, remove
markings made in Step 3 and repeat from Step 1.

5. If all vertices in χ−1V (Ċ) are marked in Step 3, return (χ−1V (Ċ), χ−1V (Ḟ)).

Running time The algorithm will terminate after at most n iterations since
in every iteration the number of vertices in χ−1V (Ṙ) increases. Steps 1, 2, 4 and 5
can easily be seen to take no more than O(n2) time. Step 3 can be performed
in O(4z ·nz+1) time by checking for all O(nz) subsets C ∈ χ−1V (Ċ) of size at most z
whether the subgraph G[C∪Wχ(C)]−χ−1(Ṙ) has feedback vertex number z. This
can be done in time O(4z · n) [77]. Hence the algorithm runs in time nO(z).

5.5 Finding antlers 139

Correctness We show first that any z-properly colored antler prior to exe-
cuting the algorithm remains z-properly colored after termination and then that,
in Step 5, (χ−1V (Ċ), χ−1V (Ḟ)) is a z-antler in G. Since (χ−1V (Ċ), χ−1V (Ḟ)) contains all
properly colored antlers this proves correctness.

Claim 5.5.16. All z-antlers (Ĉ, F̂) that are z-properly colored by χ prior to ex-
ecuting the algorithm are also z-properly colored by χ after termination of the
algorithm.

Proof. To show the algorithm preserves properness of the coloring, we show that
every individual recoloring preserves properness, that is, if an arbitrary z-antler
is z-properly colored prior to the recoloring, it is also z-properly colored after the
recoloring.

Suppose an arbitrary z-antler (Ĉ, F̂) is z-properly colored by χ. An edge is
only recolored when one of its endpoints has color Ṙ. Since these edges are not
in G[Ĉ ∪ F̂] its color does change whether (Ĉ, F̂) is colored z-properly. All other
operations done by the algorithm are recolorings of vertices to color Ṙ. We show
that any time a vertex v is recolored we have that v 6∈ Ĉ ∪ F̂ , meaning (Ĉ, F̂)
remains colored z-properly.

Suppose v is recolored in Step 2, then we know χ(v) = Ḟ, and v is part of a
component H of G[χ−1V (Ḟ)]. Since χ z-properly colors (Ĉ, F̂) we have F̂ ⊆ χ−1V (Ḟ)

but NG(F̂) ∩ χ−1V (Ḟ) = ∅, so since H is a component of G[χ−1V (Ḟ)] we know
either V (H) ⊆ F̂ or V (H) ∩ F̂ = ∅. If V (H) ∩ F̂ = ∅ then clearly v 6∈ Ĉ ∪ F̂ . So
suppose V (H) ⊆ F̂ , then H is a tree in G[F̂]. Since v was recolored and H is a
tree it must be that e(H,χ−1C (Ṙ)) > 1 but this contradicts that (Ĉ, F̂) is a FVC.

Suppose v is recolored in Step 4, then we know v was not marked during
Step 3 and χ(v) = Ċ, so v 6∈ F̂ . Suppose that v ∈ Ĉ. We derive a contradiction
by showing that v was marked in Step 3. Since (Ĉ, F̂) is z-properly colored, we
know that G[Ĉ∪ F̂]−χ−1(Ṙ) is a Ĉ-certificate of order z, so if H is the component
of G[Ĉ∪F̂]−χ−1(Ṙ) containing v then fvs(H) = |Ĉ∩V (H)| ≤ z. Since Ĉ∩V (H) ⊆
Ĉ ⊆ χ−1V (Ċ) we know that in some iteration in Step 3 we have C = Ĉ ∩ V (H).
To show that v was marked, we show that fvs(G[C ∪Wχ(C))] − χ−1(Ṙ)) = |C|.
We know G[Wχ(C)]−χ−1(Ṙ) is a forest since it is a subgraph of G[χ−1V (Ḟ)] which
is a forest by Step 2, so we have that fvs(G[C ∪ Wχ(C)] − χ−1(Ṙ)) ≤ |C|. To
show fvs(G[C ∪Wχ(C))]− χ−1(Ṙ)) ≥ |C| we show that H is a subgraph of G[C ∪
Wχ(C))]− χ−1(Ṙ). By Lemma 5.5.14 we have that each component H ′ of H − Ĉ
is also a component of G[χ−1V (Ḟ)]−χ−1(Ṙ) with NG−χ−1(Ṙ)(H

′) ⊆ Ĉ ∩V (H) = C.
Hence V (H − Ĉ) = V (H − C) ⊆ Wχ(C) so H is a subgraph of G[C ∪Wχ(C)].
Since H is also a subgraph of G[Ĉ∪ F̂]−χ−1(Ṙ) we conclude that H is a subgraph
of G[C∪Wχ(C))]−χ−1(Ṙ) and therefore fvs(G[C∪Wχ(C))]−χ−1(Ṙ)) ≥ fvs(H) =
|C|. y

140 Finding Antler Structures to Solve Feedback Vertex Set

Claim 5.5.17. In Step 5, (χ−1V (Ċ), χ−1V (Ḟ)) is a z-antler in G.

Proof. We know (χ−1V (Ċ), χ−1V (Ḟ)) is a FVC in G because each connected compo-
nent of G[χ−1V (Ḟ)] is a tree and has at most one edge to a vertex not in χ−1V (Ċ) by
Step 2. It remains to show that G[χ−1V (Ċ) ∪ χ−1V (Ḟ)] contains a χ−1V (Ċ)-certificate
of order z. Note that in Step 5 the coloring χ is the same as in the last execution
of Step 3. Let C ⊆ 2χ

−1
V (Ċ) be the family of all subsets C ⊆ χ−1V (Ċ) that have

been considered in Step 3 and met the conditions for marking all vertices in C,
i.e., fvs(G[C ∪Wχ(C)]−χ−1(Ṙ)) = |C| ≤ z. Since all vertices in χ−1V (Ċ) have been
marked during the last execution of Step 3 we know

⋃
C∈C C = χ−1V (Ċ).

Let C1, . . . , C|C| be the sets in C in an arbitrary order and define Di := Ci \C<i
for all 1 ≤ i ≤ |C|. Observe that D1, . . . , D|C| is a partition of χ−1V (Ċ) with |Di| ≤ z
and Ci ⊆ D≤i for all 1 ≤ i ≤ |C|. Note that Di may be empty for some i. We
now show that G[χ−1V (Ċ)∪χ−1V (Ḟ)] contains a χ−1V (Ċ)-certificate of order z. We do
this by showing there are |C| vertex disjoint subgraphs of G[χ−1V (Ċ)∪χ−1V (Ḟ)], call
them G1, . . . , G|C|, such that fvs(Gi) = |Di| ≤ z for each 1 ≤ i ≤ |C|. Take Gi :=

G[Di ∪ (Wχ(D≤i) \Wχ(D<i))]−χ−1(Ṙ) for all 1 ≤ i ≤ |C|. First we show that for
any i 6= j the multigraphs Gi and Gj are vertex disjoint. Clearly Di∩Dj = ∅. We
can assume i < j, so D≤i ⊆ D<j and then Wχ(D≤i) ⊆Wχ(D<j). By successively
dropping two terms, we deduce

(Wχ(D≤i) \Wχ(D<i)) ∩ (Wχ(D≤j) \Wχ(D<j))

⊆Wχ(D≤i) ∩ (Wχ(D≤j) \Wχ(D<j))

⊆Wχ(D≤i) \Wχ(D<j) = ∅.

We complete the proof by showing fvs(Gi) = |Di| for all 1 ≤ i ≤ `. Recall
thatDi = Ci\C<i. Since Ci ∈ C we know Ci is an optimal FVS in G[Ci∪Wχ(Ci)]−
χ−1(Ṙ), so then clearly Di is an optimal FVS in G[Ci∪Wχ(Ci)]−χ−1(Ṙ)−C<i =

G[Di ∪ Wχ(Ci)] − χ−1(Ṙ). We know that Ci ⊆ D≤i so then also Wχ(Ci) ⊆
Wχ(D≤i). It follows that Di is an optimal FVS in G[Di ∪Wχ(D≤i)]−χ−1(Ṙ). In
this multigraph, all vertices in Wχ(D<i) must be in a component that does not
contain any vertices from Di, so this component is a tree and we obtain |Di| =
fvs(G[Di ∪Wχ(D≤i)]− χ−1(Ṙ)) = fvs(G[Di ∪Wχ(D≤i)]− χ−1(Ṙ)−Wχ(D<i)) =

fvs(G[Di ∪ (Wχ(D≤i) \Wχ(D<i))]− χ−1(Ṙ)) = fvs(Gi). y

It can be seen from Claim 5.5.16 that for any z-properly colored antler (Ĉ, F̂)
we have Ĉ ⊆ χ−1V (Ċ) and F̂ ⊆ χ−1V (Ḟ). Claim 5.5.17 completes the correctness
argument.

If a multigraph G contains a reducible single-tree FVC of width at most k then
we can find and apply a reduction rule by Lemma 5.5.6 and Lemma 5.5.13. If G
does not contain such a FVC, but G does contain a non-empty z-antler (C,F) of

5.5 Finding antlers 141

width at most k, then using Lemma 5.4.6 we can prove that whether (C,F) is z-
properly colored is determined by the color of at most 41k5z2 relevant vertices and
edges. Similar to the algorithm from Lemma 5.5.6, we can use two (n+m, 41k5z2)-
universal sets to create a set of colorings that is guaranteed to contain a coloring
that z-properly colors (C,F). Using Lemma 5.5.15 we find a non-empty z-antler
and apply Reduction Rule 5.3. We obtain the following:

Lemma 5.5.18. Given a multigraph G and integers k ≥ z ≥ 0. If G contains
a non-empty z-antler of width at most k we can find and apply a reduction rule
in 2O(k5z2) · nO(z)time.

Proof. Consider the following algorithm: First we use Lemma 5.5.6 to obtain a
FVC (C1, F1) in 2O(k3) · n3 log n time. If (C1, F1) is reducible we can find and
apply a reduction rule in O(n2) time by Lemma 5.5.13 so assume (C1, F1) is not
reducible. Create two (n + m, 41k5z2)-universal sets U1 and U2 for V (G) ∪ E(G)
using Theorem 5.5.5. Define for each pair (Q1, Q2) ∈ U1 × U2 the coloring χQ1,Q2

of G that assigns all vertices and edges in Q1 color Ċ, all vertices and edges in Q2 \
Q1 color Ḟ, and all vertices and edges not in Q1 ∪Q2 color Ṙ. For each (Q1, Q2) ∈
U1 × U2 obtain in nO(z) time a z-antler (C2, F2) by running the algorithm from
Lemma 5.5.15 on G and χQ1,Q2 . If (C2, F2) is not empty, apply Reduction Rule 5.3
to remove (C2, F2), otherwise report G does not contain a z-antler of width at
most k.

Running time By Theorem 5.5.5, the sets U1 and U2 have size 2O(k5z2) ·log n
and can be created in 2O(k5z2) · n log n time. It follows that there are |U1 ×
U2| = 2O(k5z2) · log2 n colorings for which we apply the nO(z) time algorithm from
Lemma 5.5.15. We obtain an overall running time of 2O(k5z2) · nO(z). Since a
z-antler has width at least z, we can assume k ≥ z, hence 2O(k5z2) · nO(z) ≤
2O(k7) · nO(z).

Correctness Suppose G contains a z-antler (C,F) of width at most k, we
show the algorithm finds a reduction rule to apply. By Lemma 5.4.6 we know
that there exists an F ′ ⊆ F such that (C,F ′) is a z-antler where G[F ′] has at
most |C|2 (z2 + 4z − 1) trees. For each tree T in G[F ′] note that (C, V (T)) is a
single-tree FVC of width |C| ≤ k. If for some tree T in G the FVC (C, V (T)) is
reducible, then (C1, F1) is reducible by Lemma 5.5.6 and we find a reduction rule
using Lemma 5.5.13, so suppose for all trees T in G[F ′] that |V (T)| ≤ fr(|C|). So
then |F ′| ≤ |C|

2 (z2 + 4z − 1) · fr(|C|). We show that in this case there exists a
pair (Q1, Q2) ∈ U1 × U2 such that χQ1,Q2 z-properly colors (C,F ′).

Whether a coloring z-properly colors (C,F ′) is only determined by the colors
of C ∪ F ′ ∪NG(F ′) ∪ E(G[C ∪ F ′]).

142 Finding Antler Structures to Solve Feedback Vertex Set

Claim 5.5.19. |C ∪ F ′ ∪NG(F ′) ∪ E(G[C ∪ F ′])| ≤ 41k5z2.

Proof. Note that |NG(F ′) \ C| ≤ |C|2 (z2 + 4z − 1) since no tree in G[F ′] can have
more than one neighbor outside C. Additionally we have

|E(G[C ∪ F ′])| ≤ |E(G[C])|+ |E(G[F ′])|+ e(C,F ′)

≤ |E(G[C])|+ |F ′|+ |C| · |F ′| since G[F ′] is a forest

≤ |C|2 + (|C|+ 1) · |F ′|

≤ |C|2 + (|C|+ 1) · |C|
2

(z2 + 4z − 1) · fr(|C|)

≤ k2 + (k + 1) · k
2

(z2 + 4z − 1) · (2k3 + 3k2 − k)

≤ k2 +
z2 + 4z − 1

2
· (k2 + k) · (2k3 + 3k2 − k)

≤ k2 +
z2 + 4z − 1

2
· 2k2 · 5k3 since k = 0 or k ≥ 1

≤ k2 +
5z2

2
· 10k5 since z = 0 or z ≥ 1

≤ k2 + 25k5z2 ≤ 26k5z2,

hence

|C ∪ F ′ ∪NG(F ′) ∪ E(G[C ∪ F ′])|
= |C|+ |F ′|+ |NG(F ′) \ C|+ |E(G[C ∪ F ′])|

≤ |C|+ |C|
2

(z2 + 4z − 1) · fr(|C|) +
|C|
2

(z2 + 4z − 1) + 26k5z2

= |C|+ |C|
2

(z2 + 4z − 1) · (fr(|C|) + 1) + 26k5z2

≤ k +
k

2
(5z2) · (fr(k) + 1) + 26k5z2

≤ k +
5

2
(kz2) · (2k3 + 3k2 − k + 1) + 26k5z2

≤ k +
5

2
(kz2) · (6k3) + 26k5z2

≤ k +
30

2
z2k4 + 26k5z2

≤ 41k5z2. y

By construction of U1 and U2 there exist sets Q1 ∈ U1 and Q2 ∈ U2 such
that χQ1,Q2 z-properly colors (C,F ′). Hence the algorithm from Lemma 5.5.15
returns a non-empty z-antler for χQ1,Q2 and Reduction Rule 5.3 can be executed.

5.5 Finding antlers 143

Note that applying a reduction rule reduces the number of vertices or increases
the number of double-edges. Hence by repeatedly using Lemma 5.5.18 to apply
a reduction rule we obtain, after at most O(n2) iterations, a graph in which no
rule applies. By Lemma 5.5.18 this graph does not contain a non-empty z-antler
of width at most k. We show that this method reduces the solution size at least
as much as iteratively removing z-antlers of width at most k. We first describe
the behavior of such a sequence of antlers. For integer k ≥ 0 and z ≥ 0, we say
a sequence of disjoint vertex sets C1, F1, . . . , C`, F` is a z-antler-sequence for a
multigraph G if for all 1 ≤ i ≤ ` the pair (Ci, Fi) is a z-antler in G− (C<i ∪F<i).
The width of a z-antler-sequence is defined as max1≤i≤` |C1|.

Proposition 5.5.20. If C1, F1, . . . , C`, F` is a z-antler-sequence for some multi-
graph G, then the pair (C≤i, F≤i) is a z-antler in G for any 1 ≤ i ≤ `.

Proof. We use induction on i. Clearly the statement holds for i = 1, so suppose i >
1. By induction (C<i, F<i) is a z-antler in G, and since (Ci, Fi) is a z-antler
in G− (C<i∪F<i) we have by Lemma 5.4.4 that (C<i∪Ci, F<i∪Fi) = (C≤i, F≤i)
is a z-antler in G.

The following theorem describes that repeatedly applying Lemma 5.5.18 re-
duces the solution size at least as much as repeatedly removing z-antlers of width
at most k. By taking t = 1 we obtain Theorem 5.1.2.

Theorem 5.5.21. Given as input a multigraph G and integers k ≥ z ≥ 0 we can
find in 2O(k5z2) · nO(z) time a vertex set S ⊆ V (G) such that

1. there is a minimum FVS in G containing all vertices of S, and

2. if C1, F1, . . . , Ct, Ft is a z-antler sequence of width at most k then |S| ≥ |C≤t|.

Proof. We first describe the algorithm.

Algorithm We use Lemma 5.5.18 to apply a reduction rule in G and obtain
the resulting multigraphG′ and vertex set S. If no applicable rule was found return
an empty vertex set S := ∅. Otherwise we recursively call our algorithm on G′

with integers z and k to obtain a vertex set S′ and return the vertex set S ∪ S′.

Running time Note that since every reduction rule reduces the number of
vertices or increases the number of double-edges, after applying at most O(n2)
reduction rules we obtain a graph where no rules can be applied. Therefore after
at most O(n2) recursive calls the algorithm terminates. We obtain a running time
of 2O(k5z2) · nO(z).

144 Finding Antler Structures to Solve Feedback Vertex Set

Correctness We prove correctness by induction on the recursion depth,
which is shown the be finite by the run time analysis.

First consider the case that no reduction rule was found. Clearly Condition 1
holds for G′ := G and S := ∅. To show Condition 2 suppose C1, F1, . . . , Ct, Ft is
a z-antler-sequence of width at most k for G. The first non-empty antler in this
sequence is a z-antler of width at most k in G. Since no reduction rule was found
using Lemma 5.5.18 it follows that G does not contain a non-empty z-antler of
width at most k. Hence all antlers in the sequence must be empty and |C≤t| = 0,
so Condition 2 holds for G′ := G and S := ∅.

For the other case, suppose G′ and S are obtained by applying a reduction
rule, then since this rule is FVS-safe we know for any minimum FVS S′′ of G′
that S ∪ S′′ is a minimum FVS in G. Since S′ is obtained from a recursive call
there is a minimum FVS in G′ containing all vertices of S′. Let S′′ be such a FVS
in G′, so S′ ⊆ S′′ then we know S ∪ S′′ is a minimum FVS in G. It follows that
there is a minimum FVS in G containing all vertices of S∪S′, proving Condition 1.

To prove Condition 2 suppose C1, F1, . . . , Ct, Ft is a z-antler-sequence of width
at most k for G. We first prove the following:

Claim 5.5.22. There exists a z-antler-sequence C ′1, F ′1, . . . , C ′t, F ′t of width at most k
for G′ such that

1. C ′≤t ∪ F ′≤t = V (G′) ∩ (C≤t ∪ F≤t) and

2. |C ′≤t| =
∑

1≤i≤t |Ci| − |(Ci ∪ Fi) ∩ S|.

Proof. We use induction on t. Since G′ and S are obtained through an antler-
safe reduction rule and (C1, F1) is a z-antler in G, we know that G′ contains a z-
antler (C ′1, F

′
1) such that C ′1∪F ′1 = (C1∪F1)∩V (G′) and |C ′1| = |C1|−|(C1∪F1)∩S|.

The claim holds for t = 1.
For the induction step, consider t > 1. By applying induction to the length-

(t − 1) prefix of the sequence, there is a z-antler sequence C ′1, F ′1, . . . , C ′t−1, F ′t−1
of width at most k for G′ such that both conditions hold. We have by Propo-
sition 5.5.20 that (C≤t, F≤t) is a z-antler in G. Since G′ and S are obtained
through an antler-safe reduction rule from G there is a z-antler (C ′, F ′) in G′

such that C ′ ∪ F ′ = V (G′) ∩ (C≤t ∪ F≤t) and |C ′| = |C≤t| − |S ∩ (C≤t ∪ F≤t)|.
Take C ′t := C ′ \ (C ′<t ∪F ′<t) and F ′t := F ′ \ (C ′<t ∪F ′<t). By Lemma 5.4.2 we have
that (C ′t, F

′
t) is a z-antler in G′ − (C ′<t ∪ F ′<t), it follows that C ′1, F ′1, . . . , C ′t, F ′t is

a z-antler-sequence for G′. We first show Condition 1.

C ′≤t ∪ F ′≤t = C ′t ∪ F ′t ∪ C ′<t ∪ F ′<t
= C ′ ∪ F ′ by choice of C ′t and F

′
t

= V (G′) ∩ (C≤t ∪ F≤t) by choice of C ′ and F ′.

To prove Condition 2 and the z-antler-sequence C ′1, F ′1, . . . , C ′t, F ′t has width at
most k we first show |C ′t| = |Ct| − |(Ct ∪ Ft) ∩ S|. Observe that (C ′≤t, F

′
≤t) is an

5.5 Finding antlers 145

antler in G′ by Proposition 5.5.20.

|C ′t| = |C ′≤t| − |C ′<t| since C ′i ∩ C ′j = ∅ for all i 6= j

= fvs(G′[C ′≤t ∪ F ′≤t])− |C ′<t| by the above

= fvs(G′[V (G′) ∩ (C≤t ∪ F≤t)])− |C ′<t| by Condition 1
= fvs(G′[C ′ ∪ F ′])− |C ′<t| by choice of C ′ and F ′

= |C ′| − |C ′<t| since (C ′, F ′) is an antler in G′

= |C ′| −
∑

1≤i<t

(|Ci| − |(Ci ∪ Fi) ∩ S|) by induction

= |C≤t| − |S ∩ (C≤t ∪ F≤t)| −
∑

1≤i<t

(|Ci| − |(Ci ∪ Fi) ∩ S|)

=
∑

1≤i≤t

(|Ci| − |S ∩ (Ci ∪ Fi)|)−
∑

1≤i<t

(|Ci| − |(Ci ∪ Fi) ∩ S|)

since C1, F1, . . . , Ct, Ft are pairwise disjoint
= |Ct| − |(Ct ∪ Ft) ∩ S|

We know the z-antler-sequence C ′1, F ′1, . . . , Ct−1, Ft−1 has width at most k,
so to show that this z-antler-sequence has width at most k it suffices to prove
that |C ′t| ≤ k. Indeed |C ′t| = |Ct| − |(Ct ∪ Ft) ∩ S| ≤ |Ct| ≤ k.

To complete the proof of Claim 5.5.22 we now derive Condition 2:

|C ′≤t| = |C ′t|+ |C ′<t| since C ′t ∩ C ′<t = ∅
= |Ct| − |(Ct ∪ Ft) ∩ S|+ |C ′<t|

= |Ct| − |(Ct ∪ Ft) ∩ S|+
∑

1≤i≤t−1

(|Ci| − |(Ci ∪ Fi) ∩ S|) by induction

=
∑

1≤i≤t

(|Ci| − |(Ci ∪ Fi) ∩ S|). y

To complete the proof of Condition 2 from Theorem 5.5.21 we show |S ∪S′| ≥
|C≤t|. By Claim 5.5.22 we know a z-antler-sequence C ′1, F ′1, . . . , C ′t, F ′t of width at
most k for G′ exists. Since S′ is obtained from a recursive call we have |S′| ≥ |C ′≤t|,

146 Finding Antler Structures to Solve Feedback Vertex Set

so then

|S ∪ S′| = |S|+ |S′|
≥ |S|+ |C ′≤t|

= |S|+
∑

1≤i≤t

(|Ci| − |(Ci ∪ Fi) ∩ S|) by Claim 5.5.22

= |S|+
∑

1≤i≤t

|Ci| −
∑

1≤i≤t

|(Ci ∪ Fi) ∩ S|

= |S|+ |C≤t| − |S ∩ (C≤t ∪ F≤t)| since C ′1, F
′
1, . . . , C

′
t, F
′
t are disjoint

= |S|+ |C≤t| − |S|
≥ |C≤t|.

As a corollary to this theorem, we obtain a new type of parameterized-tractability
result for Feedback Vertex Set. For an integer z, let the z-antler complex-
ity of G be the minimum number k for which there exists a (potentially long)
sequence C1, F1, . . . , Ct, Ft of disjoint vertex sets such that for all 1 ≤ i ≤ t,
the pair (Ci, Fi) is a z-antler of width at most k in G − (C<i ∪ F<i), and such
that G− (C≤t ∪ F≤t) is acyclic (implying that C≤t is a feedback vertex set in G).
If no such sequence exists, the z-antler complexity of G is +∞.

Intuitively, Corollary 5.5.23 states that optimal solutions can be found effi-
ciently when they are composed out of small pieces, each of which has a low-
complexity certificate for belonging to some optimal solution.

Corollary 5.5.23. There is an algorithm that, given a multigraph G, returns an
optimal feedback vertex set in time f(k∗) · nO(z∗), where (k∗, z∗) is any pair of
integers such that the z∗-antler complexity of G is at most k∗.

Proof. Let (k∗, z∗) be such that the z∗-antler complexity of G is at most k∗.
Let p1 ∈ O(k5z2), p2 ∈ O(z) be concrete functions such that the running time
of Theorem 5.5.21 is bounded by 2p1(k,z) · np2(z). Consider the pairs {(k′, z′) ∈
N2 | 1 ≤ z′ ≤ k′ ≤ n} in order of increasing value of the running-time guaran-
tee 2p1(k,z) · np2(z). For each such pair (k′, z′), start from the multigraph G and
invoke Theorem 5.5.21 to obtain a vertex set S which is guaranteed to be contained
in an optimal solution. If G−S is acyclic, then S itself is an optimal solution and
we return S. Otherwise we proceed to the next pair (k′, z′).

Correctness The correctness of Theorem 5.5.21 and the definition of z-antler
complexity ensure that for (k′, z′) = (k∗, z∗), the set S is an optimal solution. In
particular, if C1, F1, . . . , Ct, Ft is a sequence of vertex sets witnessing that the
z∗-antler complexity of G is at most k∗, then Theorem 5.5.21 is guaranteed by
Condition 2 to output a set S of size at least

∑
1≤i≤t |Ci|, which is equal to the

size of an optimal solution on G by definition.

5.6 Conclusion 147

Running time For a fixed choice of (k′, z′) the algorithm from Theorem 5.5.21
runs in time 2O((k′)5(z′)2) ·nO(z′) ≤ 2O((k∗)5(z∗)2) ·nO(z∗) because we try pairs (k′, z′)
in order of increasing running time. As we try at most n2 pairs before finding the
solution, the corollary follows.

To conclude, we reflect on the running time of Corollary 5.5.23 compared
to running times of the form 2O(fvs(G)) · nO(1) obtained by FPT algorithms for
the parameterization by solution size. If we exhaustively apply Lemma 5.5.13
with the FVC (C, V (G) \ C), where C is obtained from a 2-approximation al-
gorithm [11], then this gives an antler-safe kernelization: it reduces the graph
as long as the graph is larger than fr(|C|). This opening step reduces the in-
stance size to O(fvs(G)3) without increasing the antler complexity. As observed
before, after applying O(n2) reduction rules we obtain a graph in which no rules
can be applied. This leads to a running time of O(n4) of the kernelization.
Running Theorem 5.5.21 to solve the reduced instance yields a total running
time of 2O(k5z2) fvs(G)O(z) + O(n4). This is asymptotically faster than 2O(fvs(G))

when z ≤ k ∈ o(7
√
fvs(G)) and fvs(G) ∈ ω(log n), which captures the intuitive idea

sketched above that our algorithmic approach has an advantage when there is an
optimal solution that is large but composed of small pieces for which there are
low-complexity certificates.

5.6 Conclusion

We have taken the first steps into a new direction for preprocessing which aims to
investigate how and when a preprocessing phase can guarantee to identify parts of
an optimal solution to an NP-hard problem, thereby reducing the running time of
the follow-up algorithm. Aside from the technical results concerning antler struc-
tures for Feedback Vertex Set and their algorithmic properties, we consider
the conceptual message of this research direction an important contribution of our
theoretical work on understanding the power of preprocessing and the structure
of solutions to NP-hard problems.

This line of investigation opens up a host of opportunities for future research.
For combinatorial problems such as Vertex Cover, Odd Cycle Transversal,
and Directed Feedback Vertex Set, which kinds of substructures in inputs
allow parts of an optimal solution to be identified by an efficient preprocessing
phase? Is it possible to give preprocessing guarantees not in terms of the size
of an optimal solution, but in terms of measures of the stability [8, 10, 38] of
optimal solutions under small perturbations? Some questions also remain open
concerning the concrete technical results in this chapter. Can the running time
of Theorem 5.1.2 be improved to f(k) · nO(1)? We conjecture that it cannot, but
have not been able to prove this. A related question applies to Vertex Cover:
Is there an algorithm running in time f(k) ·nO(1) that, given a graph G which has
disjoint vertex sets (C,H) such that NG(C) ⊆ H and H of size k is an optimal

148 Finding Antler Structures to Solve Feedback Vertex Set

Figure 5.5 Standard reduction rules for Feedback Vertex Set reduce any
1-antler of width 1 to a pair of vertices with two edges between them, one of which
has degree 3. Hence we can reduce the graph until all 1-antlers of width 1 are
removed with the addition of the following reduction rule: If vertices u and v are
connected by a double edge and deg(v) = 3 then remove u and v from the graph
and decrease the solution size by one. These reduction rules can be exhaustively
applied in linear time.

vertex cover in G[C ∪H], outputs a set of size at least k that is part of an optimal
vertex cover in G? (Note that this is an easier target than computing such a
decomposition of width k if one exists, which can be shown to be W[1]-hard.)

To apply the theoretical ideas on antlers in the practical settings that motivated
their investigation, it would be interesting to determine which types of antler can
be found in linear time. A slight extension of the standard reduction rules [35,
FVS.1–FVS.5] for Feedback Vertex Set can be used to detect 1-antlers of
width 1 in linear time (see Figure 5.5). Can the running time of Theorem 5.1.1
be improved to f(k) · (n + m)? It would also be interesting to investigate which
types of antlers are present in practical inputs.

5.6 Conclusion 149

6
Finding Secluded Sparse Graphs

6.1 Introduction

This thesis studies a number of problems that can be described as finding large
sparse subgraphs. For the problems studied in the previous chapters the subgraphs
to be found are sparse because they exclude a set of forbidden minors, and they are
large because they can be obtained from the input graph by removing only a small
number of vertices. We have explored a number of different techniques for various
sets of forbidden minors. In this final chapter we consider a secluded variant of the
problem. Rather than requiring that the subgraph can be obtained by removing
a small number of vertices from the input graph, we require the subgraph to be
connected to only a small set of vertices of the remainder of the graph. More
formally, in the Connected Secluded Π-Subgraph problem we are given a
graph G and an integer k and the task is to find a maximum size k-secluded
subgraph belonging to the target graph class Π, where an induced subgraph H
of G is k-secluded if |NG(H)| ≤ k. Note that this is not strictly speaking a
decision problem as discussed in Section 2.4 since the answer is a subgraph rather
than yes or no. This is because in this chapter we also consider the problem
of enumerating and counting all possible solutions. The Connected Secluded
Π-Subgraph problem has been studied before by Golovach et al. [67]. In this
chapter we investigate the case where Π is the graph class consisting of trees, i.e.,
we consider the following problem.

152 Finding Secluded Sparse Graphs

Large Secluded Tree (LST)
Input: A graph G, a non-negative integer k, and a weight function w : V (G)→
N+.
Parameter: k.
Task: Find a k-secluded tree H of G of maximum weight, or report that no
such H exists.
Secluded versions of several classic optimization problems have been studied

intensively in recent years [14, 15, 29, 58, 98], many of which are discussed in Till
Fluschnik’s PhD thesis [57]. Golovach et al. [67] mention that finding a maxi-
mum size k-secluded tree is FPT when parameterized by k and can be solved in
time 22

O(k log k) · nO(1) using the recursive understanding technique, the details of
which can be found in the arXiv version [66]. For the case where Π is characterized
by a finite set of forbidden induced subgraphs F , they show that the problem is
FPT with a triple-exponential dependency on the parameter k. They pose the
question whether it is possible to avoid these double- and triple-exponential de-
pendencies on the parameter. They give some examples of Π for which this is the
case, namely for Π being a clique, a star, a d-regular graph, or an induced path.

Another motivation for studying k-secluded trees comes from the work in the
previous chapter. The graph structures defined in Chapter 5 have a close re-
semblance to the concept of k-secluded trees. The key difference is that while a
k-secluded tree is not allowed to have any neighbors outside of a set of k vertices,
a feedback vertex cut (C,F) of width k is allowed to have a number of edges be-
tween F and the remainder of the graph, G − (C ∪ F). For the case where G[F]
is connected, i.e., (C,F) is a single-tree feedback vertex cut, there can be at most
one such edge, so G[F] is a (k + 1)-secluded tree in G. Conversely, observe that
if H is a k-secluded tree in G then (NG(H), V (H)) is a single-tree feedback vertex
cut of width k in G.

Chapter 5 describes two color coding procedures to find certain types of feed-
back vertex cuts (C,F). These procedures do not necessarily attempt to maximize
the size of F . While for the antlers found using Lemma 5.5.18 the size of F is
irrelevant, for the feedback vertex cuts found using Lemma 5.5.6 the size of F
needs to be sufficiently large compared to C. In fact, Lemma 5.5.6 is used for the
purpose of reducing the size of single-tree feedback vertex cuts. It achieves this
by finding a sufficiently large part of a single-tree feedback vertex cut, which can
be reduced using a reduction rule. Although in this chapter we focus on the more
traditional problem of finding maximum k-secluded trees, the acute reader may
observe that the algorithm we present in this chapter can in fact be used to find
single-tree feedback vertex cuts of maximum size, which achieves the same goal as
Lemma 5.5.6.

Results Our main result is an algorithm for Large Secluded Tree that
takes 2O(k log k) · n4 time. This answers the question of Golovach et al. [67] af-
firmatively for the case of trees. We solve a more general version of the problem,

6.2 Framework for enumerating secluded trees 153

where a set of vertices is given that should be part of the k-secluded tree. Our
algorithm goes one step further by allowing us to find all maximum-weight so-
lutions. As we will later argue, it is not possible to output all such solutions
directly in the promised running time. Instead, the output consists of a bounded
number of solution descriptions such that each maximum-weight solution can be
constructed from one such description. This is similar in spirit to the work of
Guo et al. [68], who enumerate all size-k solutions to the Feedback Vertex Set
problem in 2O(k) ·m time. They do so by giving a list of compact representations,
a set C of pairwise disjoint vertex subsets such that choosing exactly one vertex
from every set results in a minimal feedback vertex set. Our descriptions allow us
to count the number of maximum-weight k-secluded trees containing a specified
vertex in the same running time.

Techniques Rather than using recursive understanding, our algorithm is based
on bounded-depth branching with a non-trivial progress measure. Similarly to
existing algorithms to compute spanning trees with many leaves [88], our algorithm
iteratively grows the vertex set of a k-secluded tree T . If we select a vertex v in the
neighborhood of the current tree T , then for any k-secluded supertree T ′ of T there
are two possibilities: either v belongs to the neighborhood of T ′, or it is contained
in T ′; the latter case can only happen if v has exactly one neighbor in T . Solutions
of the first kind can be found by deleting v from the graph and searching for a
(k − 1)-secluded supertree of T . To find solutions of the second kind we can
include v in T , but since the parameter does not decrease in this case we have to
be careful that the recursion depth stays bounded. Using a reduction rule to deal
with degree-1 vertices, we can essentially ensure that v has at least three neighbors
(exactly one of which belongs to T), so that adding v to T strictly increases the
open neighborhood size |N(T)|. Our main insight to obtain an FPT algorithm is
a structural lemma showing that, whenever |N(T)| becomes sufficiently large in
terms of k, we can identify a vertex u that belongs to the open neighborhood of
any k-secluded supertree T ′ ⊇ T . At that point, we can remove u and decrease k
to make progress.

Organization We introduce our enumeration framework in Section 6.2. We
present our algorithm that enumerates maximum-weight k-secluded trees and
present its correctness and running time analysis in Section 6.3. We give some
conclusions in Section 6.4.

6.2 Framework for enumerating secluded trees

In this section we introduce the framework for enumerating secluded trees, includ-
ing our notion of a description which captures a potentially exponential number
of secluded trees. To see why such a notion is required we first argue that enumer-
ating all maximum-weight k-secluded trees individually cannot be done in FPT

154 Finding Secluded Sparse Graphs

time. Consider the graph in Figure 6.1. In this graph there are O(k · (nk)k)

maximum-weight k-secluded trees, which cannot all be listed in time f(k) · nO(1).
However, it is possible to give one short description for such an exponential number
of k-secluded trees.

v1
n 1 1 1 1 n

1

1

1 1 1

1 1 1

1 1 1 1

v2

k + 1

 ︸ ︷︷ ︸
n

k+1

Figure 6.1 A vertex-weighted graph G on n + 2 vertices. All vertices have
weight 1 except for v1 and v2 which have weight n. There are k + 1 v1v2-paths,
each with n

k+1 internal vertices. There are O(k ·(nk)k) maximum-weight k-secluded
trees consisting of all vertices except one vertex out of exactly k paths. One such
k-secluded tree is indicated with orange.

Definition 6.2.1. For a graph G, a description is a pair (r,X) consisting of a
vertex r ∈ V (G) and a set X of pairwise disjoint subsets of V (G − r) such that
for any set S consisting of exactly one vertex from each set X ∈ X , the connected
component H of G − S containing r is acyclic and N(H) = S, i.e., H is a |X |-
secluded tree in G. The order of a description is equal to |X |. We say that a
k-secluded tree H is described by a description (r,X) if N(H) consists of exactly
one vertex of each X ∈ X and r ∈ V (H).

Definition 6.2.2. For a graph G, a set of descriptions X of maximum order k is
called redundant for G if there is a k-secluded tree H in G such that H is described
by two distinct descriptions in X. We say X is non-redundant for G otherwise.

Definition 6.2.3. For a graph G and a set of descriptions X of maximum order k,
let TG(X) denote the set of all k-secluded trees in G described by a description
in X.

Observation 6.2.4. For a graph G and two sets of descriptions X1,X2 we have:

TG(X1) ∪ TG(X2) = TG(X1 ∪ X2).

Observation 6.2.5. Consider a graph G, a set of descriptions X, and vertex
sets X1, X2 disjoint from

⋃
(r,X)∈X({r} ∪

⋃
X∈X X). The set TG({(r,X ∪ {X1 ∪

X2}) | (r,X) ∈ X)} equals:

TG({(r,X ∪ {X1}) | (r,X) ∈ X)} ∪ (r,X ∪ {X2}) | (r,X) ∈ X)}).

6.3 Enumerate large secluded supertrees 155

For an induced subgraph H of G and a set F ⊆ V (G), we say that H is a
supertree of F if H induces a tree and F ⊆ V (H). Let SkG(F) be the set of all
k-secluded supertrees of F in G. For a set X of subgraphs of G let maxsetw(X) :=
{H ∈ X | w(H) ≥ w(H ′) for all H ′ ∈ X} (recall from Section 2.2 that w(H) =
w(V (H)) =

⋃
v∈V (H)). We focus our attention to the following version of the

problem, where some parts of the tree are already given.

Enumerate Large Secluded Supertrees (ELSS)
Input: A graph G, a non-negative integer k, non-empty vertex sets T ⊆ F ⊆
V (G) such that G[T] is connected, and a weight function w : V (G)→ N+.
Parameter: k
Task: Find a non-redundant set X of descriptions such that TG(X) =
maxsetw(SkG(F)).

In the end we solve the general enumeration problem by solving ELSS with F =
T = {v} for each v ∈ V (G) and reporting only those k-secluded trees of maximum
weight. Intuitively, our algorithm for ELSS finds k-secluded trees that “grow” out
of T . In order to derive some properties of the types of descriptions we compute,
we may at certain points demand that certain vertices non-adjacent to T need to
end up in the k-secluded tree. For this reason the input additionally has a set F ,
rather than just T .

Our algorithm solves smaller instances recursively. We use the following abuse
of notation: in an instance with graph G and weight function w : V (G) → N+,
when solving the problem recursively for an instance with induced subgraph G′

ofG, we keep the weight function w instead of restricting the domain of w to V (G′).

Observation 6.2.6. For a graph G, a vertex v ∈ V (G), and an integer k ≥
1, if H is a (k − 1)-secluded tree in G − v, then H is a k-secluded tree in G.
Consequently, Sk−1G−v(F) ⊆ SkG(F) for any F ⊆ V (G).

Observation 6.2.7. For a graph G, a vertex v ∈ V (G), and an integer k ≥ 1, if H
is a k-secluded tree in G with v ∈ NG(H), then H is a (k−1)-secluded tree in G−v.
Consequently, {H ∈ SkG(F) | v ∈ NG(H)} ⊆ Sk−1G−v(F) for any F ⊆ V (G).

6.3 Enumerate large secluded supertrees

Section 6.3.1 proves the correctness of a few subroutines used by the algorithm.
Section 6.3.2 describes the algorithm to solve ELSS. In Section 6.3.3 we prove its
correctness and in Section 6.3.4 we analyze its time complexity. In Section 6.3.5 we
show how the algorithm for ELSS can be used to count and enumerate maximum-
weight k-secluded trees containing a specified vertex.

6.3.1 Subroutines for the algorithm
Similar to the Feedback Vertex Set algorithm given by Guo et al. [68], we aim
to get rid of degree-1 vertices. In our setting there is one edge case however. The

156 Finding Secluded Sparse Graphs

reduction rule is formalized as follows.

Definition 6.3.1. For an ELSS instance (G, k, F, T, w) with a degree-1 vertex v
in G such that F 6= {v}, contracting v into its neighbor u yields the ELSS in-
stance (G− v, k, F ′, T ′, w′) where the weight of u is increased by w(v) and:

F ′ =

{
(F \ {v}) ∪ {u} if v ∈ F
F otherwise

T ′ =

{
(T \ {v}) ∪ {u} if v ∈ T
T otherwise.

We prove the correctness of the reduction rule, that is, the descriptions of the
reduced instance form the desired output for the original instance.

Lemma 6.3.2. Let I = (G, k, F, T, w) be an ELSS instance. Suppose G contains
a degree-1 vertex v such that {v} 6= F . Let I ′ = (G − v, k, F ′, T ′, w′) be the
instance obtained by contracting v into its neighbor u. If X is a non-redundant set
of descriptions for G − v such that TG−v(X) = maxsetw′(SkG−v(F ′)), then X is a
non-redundant set of descriptions for G such that TG(X) = maxsetw(SkG(F)).

Proof. We first argue that X is a valid set of descriptions for the graph G. For
any (r,X) ∈ X, we have r ∈ V (G− v) and X consists of disjoint subsets of V (G−
{v, r}), which trivially implies that r ∈ V (G) and that X consists of disjoint
subsets of V (G − r). Consider any set S consisting of exactly one vertex from
each X ∈ X . The connected component H of (G− v)− S containing r is acyclic
and NG−v(H) = S since X is a description for G − v. Let H ′ be the connected
component of G − S containing r. Note that V (H) ⊆ V (H ′) ⊆ V (H) ∪ {v}.
Clearly H ′ is acyclic as it is obtained from H by possibly adding a degree-1 vertex.
We argue that NG(H ′) = S. By construction of H ′ we have NG(H ′) ⊆ S. For the
sake of contradiction suppose that there is some p ∈ S\NG(H ′). Since NG−v(H) =
S, there is some vertex q ∈ V (H) such that p ∈ NG−v(q). But since q ∈ V (H ′),
we have that p ∈ NG(q) and so p ∈ NG(H ′); a contradiction to the containment
of p ∈ S \NG(H ′). It follows that NG(H ′) = S.

Observe that any maximum-weight k-secluded supertree H of F in G con-
taining u, contains its neighbor v as well: adding v to an induced tree subgraph
containing u does not introduce cycles since v has degree one, does not increase
the size of the neighborhood, and strictly increases the weight since w(v) > 0 by
definition. Conversely, any (maximum-weight) k-secluded supertree H of F in G
that contains v also contains u: tree H contains all vertices of the non-empty set F
and F 6= {v}, so H contains at least one vertex other than v, which implies by
connectivity that it contains the unique neighbor u of v. Hence a maximum-weight
k-secluded supertree H of F in G contains u if and only if it contains v.

Using this fact, we relate the sets maxsetw(SkG(F)) and maxsetw′(SkG−v(F ′)).
For any H ∈ maxsetw(SkG(F)), there is a k-secluded supertree of F ′ in G − v of
the same weight under w′:

• If v ∈ H, then u ∈ H as argued above. Now observe thatH−v is a k-secluded
tree in G − v that contains u. Since the weight of u was increased by w(v)

6.3 Enumerate large secluded supertrees 157

in the transformation, we have w(H) = w′(H − v). Since H is a supertree
of F and H − v contains u, the latter is a supertree of F ′ ⊆ (F \ {v})∪ {u}.

• If v /∈ H, then u /∈ H and therefore w(H) = w′(H) and NG(H) = NG−v(H).
As v /∈ H while H is a supertree of F ⊇ T we have v /∈ F ∪ T , which
shows F ′ = F and T ′ = T so that H is a k-secluded supertree of F ′ in G−v.

Conversely, for any k-secluded supertree H ′ of F ′ in G−v, there is a k-secluded
supertree of F in G of the same weight under w: if u /∈ H ′ then H ′ itself is such
a tree, otherwise G[V (H ′) ∪ {v}] is such a tree.

These transformations imply that the maximum w-weight of trees in SkG(F)
is identical to the maximum w′-weight of trees in SkG−v(F ′). Since any H ∈
maxsetw(SkG(F)) contains u if and only if it contains v, they also show that
an induced subgraph H of G containing either both u and v or neither belongs
to maxsetw(SkG(F)) if and only ifH−v ∈ maxsetw′(SkG−v(F ′)); note that this holds
regardless of whether v ∈ H. To show that TG(X) = maxsetw(SkG(F)) it now suf-
fices to observe that if (r,X) ∈ X describes a tree H − v ∈ maxsetw′(SkG−v(F ′))
via the set S containing exactly one vertex of each X ∈ X , such that H − v is the
connected component of (G− v)− S containing r, then the connected component
of G−S containing r is exactly H, which again holds regardless of whether v ∈ H.
Hence TG(X) = maxsetw(SkG(F)), and the set of descriptions is non-redundant
for G since X is non-redundant for G− v.

We say an instance is almost leafless if the lemma above cannot be applied,
that is, if G contains a vertex v of degree 1, then F = {v}.

Lemma 6.3.3. There is an algorithm that, given an almost leafless ELSS in-
stance (G, k, F, T, w) such that k > 0 and |NG(T)| > k(k+1), runs in time O(k·n3)
and either:

1. finds a vertex v ∈ V (G) \ F such that any k-secluded supertree H of F in G
satisfies v ∈ NG(H), or

2. concludes that G does not contain a k-secluded supertree of F .

Proof. We aim to find a vertex v ∈ V (G)\F with k+2 distinct paths P1, . . . , Pk+2

from NG(T) to v that intersect only in v and do not contain vertices from T . We
first argue that such a vertex v satisfies the first condition, if it exists. Consider
some k-secluded supertree H of F . Since the paths P1, . . . , Pk+2 are disjoint apart
from their common endpoint v while |NG(H)| ≤ k, there are two paths Pi, Pj
with i 6= j ∈ [k+ 2] for which Pi \ {v} and Pj \ {v} do not intersect NG(H). Since
they start in NG(T), the paths Pi \ {v} and Pj \ {v} are contained in H. As Pi
and Pj form a cycle together with a path through the connected set T , which
cannot be contained in the acyclic graph H, this implies v ∈ NG(H).

Next we argue that if G has a k-secluded supertree H of F ⊇ T , then there
exists such a vertex v. Consider an arbitrary such H and root it at a vertex t ∈ T .

158 Finding Secluded Sparse Graphs

For each vertex u ∈ NG(T), we construct a path Pu disjoint from T that starts
in u and ends in NG(H), as follows.

• If u /∈ H, then u ∈ NG(H) and we take Pu = (u).

• If u ∈ H, then let `u be an arbitrary leaf in the subtree of H rooted
at u; possibly u = `u. Since T is connected and H ⊇ T is acyclic and
rooted in t ∈ T , the subtree rooted at u ∈ NG(T) ∩ H is disjoint from T .
Hence `u /∈ T , so that F 6= {`u}. As the instance is almost leafless we there-
fore have degG(`u) > 1. Because `u is a leaf of H this implies that NG(`u)
contains a vertex y other than the parent of `u in H, so that y ∈ NG(H). We
let Pu be the path from u to `u throughH, followed by the vertex y ∈ NG(H).

The paths we construct are distinct since their startpoints are. Two constructed
paths cannot intersect in any vertex other than their endpoints, since they were
extracted from different subtrees of H. Since we construct |NG(T)| > k(k + 1)
paths, each of which ends in NG(H) which has size at most k, some vertex v ∈
NG(H) is the endpoint of k+2 of the constructed paths. As shown in the beginning
the proof, this establishes that v belongs to the neighborhood of any k-secluded
supertree of F . Since F ⊆ V (H) we have v /∈ F .

All that is left to show is that we can find such a vertex v in the promised
time bound. After contracting T into a source vertex s, for each v ∈ V (G) \ F ,
do k + 2 iterations of the Ford-Fulkerson algorithm in order to check if there
are k + 2 internally vertex-disjoint sv-paths. If so, then return v. If for none of
the choices of v this holds, then output that there is no k-secluded supertree of F
in G. In order to see that this satisfies the claimed running time bound, note that
there are O(n) choices for v, and k + 2 iterations of Ford-Fulkerson runs can be
implemented to run in O(k · (n+m)) time.

6.3.2 The algorithm

Consider an input instance (G, k, F, T, w) of ELSS. If G[F] contains a cycle, re-
turn ∅. Otherwise we remove all connected components of G that do not contain
a vertex of F . If more than one connected component remains, return ∅. Then,
while there is a degree-1 vertex v such that F 6= {v}, contract v into its neighbor
as per Definition 6.3.1. While NG(T) contains a vertex v ∈ F , add v to T . Finally,
if NG(F) = ∅, return {(r, ∅)} for some r ∈ F . Otherwise if k = 0, return ∅.

We proceed by considering the neighborhood of T as follows:

1. If any vertex v ∈ NG(T) has two neighbors in T , then recursively run this
algorithm to obtain a set of descriptions X′ for (G − v, k − 1, F, T, w) and
return {(r,X ∪ {{v}}) | (r,X) ∈ X′}.

2. If |NG(T)| > k(k + 1), apply Lemma 6.3.3. If it concludes that G does not
contain a k-secluded supertree of F , return ∅. Otherwise let v ∈ V (G)\F be

6.3 Enumerate large secluded supertrees 159

the vertex it finds, obtain a set of descriptions X′ for (G− v, k − 1, F, T, w)
and return {(r,X ∪ {{v}}) | (r,X) ∈ X′}.

3. Pick some v ∈ NG(T) and let P = (v = v1, v2, . . . , v`) be the unique1
maximal path disjoint from T satisfying degG(vi) = 2 for each 1 ≤ i < `
and (v` ∈ NG(T) or degG(v`) > 2).

(a) If v` 6∈ F , obtain a set of descriptions X1 by recursively solving (G −
v`, k−1, F, T, w). Otherwise take X1 = ∅. (We find the k-secluded trees
avoiding v` but containing P − v`.)

(b) If P − F − v` 6= ∅, obtain a set of descriptions X2 by recursively solv-
ing (G−V (P−v`), k−1, (F \V (P))∪{v`}, T, w). Otherwise take X2 = ∅.
(We find the k-secluded trees containing both endpoints of P which have
one vertex in P as a neighbor.)

(c) If G[F ∪ V (P)] is acyclic, obtain a set of descriptions X3 by recursively
solving (G, k, F ∪V (P), T ∪V (P), w). Otherwise take X3 = ∅. (We find
the k-secluded trees containing the entire path P .)

Let M be the set of minimum weight vertices in P − F − v` and define:

X′1 := {(r,X ∪ {{v`}}) | (r,X) ∈ X1}
X′2 := {(r,X ∪ {M}) | (r,X) ∈ X2}
X′3 := X3.

For each i ∈ [3] let wi be the weight of an arbitrary H ∈ TG(X′i), or 0
if X′i = ∅. Return the set X′ defined as

⋃
{i∈[3]|wi=max{w1,w2,w3}} X

′
i.

6.3.3 Proof of correctness

In this section we argue that the algorithm described in Section 6.3.2 solves the
ELSS problem. In various steps we identify a vertex v such that the neighborhood
of any maximum-weight k-secluded supertree must include v. We argue that for
these steps, the descriptions of the current instance can be found by adding {v} to
every description of the supertrees of T in G−v if some preconditions are satisfied.

Lemma 6.3.4. Let (G, k, F, T, w) be an ELSS instance and let v ∈ V (G) \ F .
Let X be a set of descriptions for G− v such that TG−v(X) = maxsetw(Sk−1G−v(F))
and v ∈ NG(H) for all H ∈ TG−v(X). Then we have:

TG ({(r,X ∪ {{v}}) | (r,X) ∈ X}) = maxsetw{H ∈ SkG(F) | v ∈ NG(H)}.
1To construct P , initialize P := (v = v1); then while degG(v|V (P)|) = 2 and NG(v|V (P)|) \

(V (P) ∪ T) consists of a single vertex, append that vertex to P .

160 Finding Secluded Sparse Graphs

Proof. First observe that X′ = {(r,X ∪ {{v}}) | (r,X) ∈ X} is a valid set of
descriptions for G since v ∈ NG(H) for all H ∈ TG−v(X).

Consider a maximum-weight (with respect to w) k-secluded supertree H ∈
SkG(F) such that v ∈ NG(H). We show that it is contained in TG(X′). By Obser-
vation 6.2.7 we have that H ∈ Sk−1G−v(F), that is, H is a (k− 1)-secluded supertree
of F in G − v. We argue that H ∈ maxsetw(Sk−1G−v(F)). For the sake of contra-
diction, suppose there is H ′ ∈ maxsetw(Sk−1G−v(F)) such that w(H ′) > w(H).
By Observation 6.2.6 it follows that H ′ is a k-secluded supertree of F in G.
This contradicts the fact that H is of maximum weight among such supertrees.
It follows that H ∈ maxsetw(Sk−1G−v(F)). By the assumption that TG−v(X) =

maxsetw(Sk−1G−v(F)), we have that there is a description (r,X) ∈ X for G− v that
describes H. Since (r,X ∪ {{v}}) ∈ X′ is a description for H in G, we have
that H ∈ TG(X′) as required.

In the other direction, consider some tree J ∈ TG(X′). We show that J ∈
maxsetw{H ∈ SkG(F) | v ∈ NG(H)}. Let (r,X ∪ {{v}}) ∈ X′ be a description
that describes J . By Definition 6.2.1 we have v ∈ NG(J). Since (r,X) ∈ X
describes J in G − v and TG−v(X) = maxsetw(Sk−1G−v(F)), we have that J ∈
maxsetw(Sk−1G−v(F)). Since v ∈ NG(J), by Observation 6.2.6 we have that J ∈
{H ∈ SkG(F) | v ∈ NG(H)}. For the sake of contradiction, suppose that there
is J ′ ∈ {H ∈ SkG(F) | v ∈ NG(H)} such that w(J ′) > w(J). Then we get
that J ′ ∈ maxsetw(Sk−1G−v(F)), but this contradicts that J ∈ maxsetw(Sk−1G−v(F)).
It follows that J ∈ maxsetw{H ∈ SkG(F) | v ∈ NG(H)} as required.

The next lemma will be used to argue correctness of Step 3(b) of the algorithm,
in which we find k-secluded trees which avoid a single vertex from path P .

Lemma 6.3.5. Let (G, k, F, T, w) be an ELSS instance and let P be a path in G
with degG(v) = 2 for all v ∈ V (P) and NG(P) = {a, b} for some a, b ∈ F . Let X be
a set of descriptions for G−V (P) such that TG−V (P)(X) = maxsetw(Sk−1G−V (P)(F \
V (P))). Then for all p ∈ V (P) \ F we have:

TG({(r,X ∪ {{p}}) | (r,X) ∈ X}) = maxsetw{H ∈ SkG(F) | p ∈ NG(H)}.

Proof. For any p ∈ V (P) we define Xp = {(r,X∪{{p}}) | (r,X) ∈ X}. We show Xp

is a valid set of descriptions for G. Note that for any set S consisting of exactly one
vertex from each setX ∈ X∪{{p}} there is anH ∈ TG−V (P)(X) with NG(H) = S\
{p} and r ∈ V (H) since X is a valid set of descriptions for G−V (P). Since {a, b} ⊆
V (H) and NG(P) = {a, b}, we have that H ′ = G[V (H) ∪ V (P)] is the connected
component of G−(S\p) containing r. Observe that H ′−p is acyclic and connected
and since p ∈ V (P) ⊆ V (H ′) we have that p ∈ NG(H ′−p), hence NG(H ′−p) = S
and Xp is a valid set of descriptions for G.

Next we show TG(Xp) ⊇ maxsetw{H ∈ SkG(F) | p ∈ NG(H)} for any p ∈
V (P)\F . Consider a k-secluded supertree H ∈ SkG(F) which has maximum weight
(with respect to w) among those satisfying p ∈ NG(H). We show thatH ∈ TG(Xp).

6.3 Enumerate large secluded supertrees 161

By Note 6.2.7 we have that H ∈ Sk−1G−p(F), that is, H is a (k − 1)-secluded su-
pertree of F in G− p. Observe that H − V (P) remains connected so H − V (P) ∈
Sk−1G−V (P)(F \ V (P)). We argue that H − V (P) ∈ maxsetw(Sk−1G−V (P)(F \ V (P))).
For the sake of contradiction, suppose there is H ′ ∈ maxsetw(Sk−1G−V (P)(F \V (P)))

such that w(H ′) > w(H − V (P)). Observe that H ′′ := G[V (H ′) ∪ V (P − p)]
is a connected acyclic subgraph of G with NG(H ′′) = NG(H ′) ∪ {p}, i.e., H ′′
is a k-secluded supertree of F in G. Since w(H ′′) = w(H ′) + w(P − p) >
w(H − V (P)) + w(P − p) = w(H) this contradicts that H ∈ maxsetw(SkG(F)).
It follows that H − V (P) ∈ maxsetw(Sk−1G−V (P)(F \ V (P))). Since it is given
that TG−V (P)(X) = maxsetw(Sk−1G−V (P)(F \V (P))), we have that there is a descrip-
tion (r,X) ∈ X for G− V (P) that describes H − V (P). Then (r,X ∪ {{p}}) ∈ Xp

is a description for H in G and we conclude that H ∈ TG(Xp) as required.
Finally we show TG(Xp) ⊆ maxsetw{H ∈ SkG(F) | p ∈ NG(H)} for any p ∈

V (P) \ F . Consider some tree J ∈ TG(Xp). We show that J ∈ maxsetw{H ∈
SkG(F) | p ∈ NG(H)}. Clearly J ∈ {H ∈ SkG(F) | p ∈ NG(H)}, so it remains
to show that w(J) ≥ w(J ′) for all J ′ ∈ {H ∈ SkG(F) | p ∈ NG(H)}. Suppose
for contradiction that there exists such a J ′ for which w(J) < w(J ′). Observe
that J − V (P) and J ′ − V (P) are both (k − 1)-secluded supertrees of F \ V (P)
in G − V (P), i.e., they are contained in Sk−1G−V (P)(F \ V (P)). Since V (P − p) ⊆
V (J) and V (P − p) ⊆ V (J ′) we have that w(J − V (P)) < w(J ′ − V (P)),
so J − V (P) 6∈ maxsetw(Sk−1G−V (P)(F \ V (P))). Recall that J ∈ TG(Xp) and con-
sider the description (r,X ∪ {{p}}) ∈ Xp that describes J . Observe that (r,X)
describes J−V (P) in G−V (P), i.e., J−V (P) ∈ TG−V (P)(X). However it is given
that TG−V (P)(X) = maxsetw(Sk−1G−V (P)(F \ V (P))), a contradiction. Hence J ∈
maxsetw{H ∈ SkG(F) | p ∈ NG(H)}.

The following lemma is used to argue that the problem to solve in Step 3 of
the algorithm reduces to the three problems solved in the recursive calls.

Lemma 6.3.6. Let (G, k, F, T, w) be an almost leafless ELSS instance such that G
is connected and NG(F) 6= ∅. Fix some v ∈ NG(T) and let P = (v = v1, v2, . . . , v`)
be the unique maximal path disjoint from T satisfying degG(vi) = 2 for each 1 ≤
i < ` and (v` ∈ NG(T) or degG(v`) > 2). Then for any maximum weight k-
secluded supertree H of F , exactly one of the following holds:

1. v` ∈ N(H) (so v` /∈ F),

2. |N(H) ∩ V (P − F − v`)| = 1 and v` ∈ V (H), or

3. V (P) ⊆ V (H).

Proof. First note that such a vertex v exists since NG(F) 6= ∅ and G is connected,
so NG(T) 6= ∅. Furthermore since the instance is almost leafless, the path P is well
defined. If there is no k-secluded supertree of F , then there is nothing to show. So

162 Finding Secluded Sparse Graphs

suppose H is a maximum-weight k-secluded supertree of F . We have v ∈ V (P)
is a neighbor of T ⊆ F ⊆ V (H), so either V (P) ⊆ V (H) or V (P) contains
a vertex from N(H). In the first case Condition 3 holds, in the second case we
have |N(H)∩V (P)| ≥ 1. First suppose that |N(H)∩V (P)| ≥ 2. Let i ∈ [`] be the
smallest index such that vi ∈ N(H)∩V (P). Similarly let j ∈ [`] be the largest such
index. We show that in this case we can contradict the fact that H is a maximum-
weight k-secluded supertree of F . Observe thatH ′ = V (H)∪{vi, . . . , vj−1} induces
a tree since (vi, . . . , vj−1) forms a path of degree-2 vertices and the neighbor vj
of vj−1 is not in H. Furthermore H ′ has a strictly smaller neighborhood than H
and it has larger weight as vertices have positive weight. Since F ⊆ V (H ′), this
contradicts that H is a maximum-weight k-secluded supertree of F .

We conclude that |N(H) ∩ V (P)| = 1. Let i ∈ [`] be the unique index such
that N(H)∩V (P) = {vi}. Clearly vi /∈ F . In the case that i = `, then Condition 1
holds. Otherwise if i < `, the first condition of Condition 2 holds. In order to
argue that the second condition also holds, suppose that v` /∈ V (H). Then H ∪
{vi, . . . , v`−1} is a k-secluded supertree of F in G and it has larger weight than H
as vertices have positive weight. This contradicts the fact that H has maximum
weight, hence the second condition of Condition 2 holds as well.

Armed with Lemmas 6.3.4 to 6.3.6 we are now ready to prove correctness of
the algorithm.

Lemma 6.3.7. The algorithm described in Section 6.3.2 is correct.

Proof. Let I = (G, k, F, T, w) be an ELSS instance. We prove correctness by in-
duction on |V (G)\F |. Assume the algorithm is correct for any input (Ĝ, k̂, F̂ , T̂ , ŵ)
with |V (Ĝ) \ F̂ | < |V (G) \ F |.

Before Step 1 We first prove correctness when the algorithm terminates
before Step 1, which includes the base case of the induction. Note that if G[F]
contains a cycle, then no induced subgraph H of G with F ⊆ V (H) can be acyclic.
Therefore the set of maximum-weight k-secluded trees containing F is the empty
set, so we correctly return ∅. Otherwise G[F] is acyclic. Clearly any connected
component of G that has no vertices of F can be removed. If there are two
connected components of G containing vertices of F , then no induced subgraph
of G containing all of F can be connected, again we correctly return the empty
set. In the remainder we have that G is connected.

By iteratively applying Lemma 6.3.2 we conclude that a solution to the instance
obtained after iteratively contracting (most) degree-1 vertices is also a solution to
the original instance. Hence we can proceed to solve the new instance, which
we know is almost leafless. In addition, observe that the contraction of degree-1
vertices maintains the property that G is connected and G[F] is acyclic.

After exhaustively adding vertices v ∈ NG(T) ∩ F to T we have that G[T] is
a connected component of G[F]. In the case that NG(F) = ∅, then since G is

6.3 Enumerate large secluded supertrees 163

connected it follows that F = T = V (G) and therefore T is the only maximum-
weight k-secluded tree. For any r ∈ V (G), the description (r, ∅) describes this
k-secluded tree, so we return {(r, ∅)}. In the remainder we have NG(F) 6= ∅.

Since NG(F) 6= ∅ and G is almost leafless, we argue that there is no 0-secluded
supertree of F . Suppose G contains a 0-secluded supertree H of F , so |NG(H)| = 0
and since H ⊇ F is non-empty and G is connected we must have H = G, hence G
is a tree with at least two vertices (since F and NG(F) are both non-empty) so G
contains at least two vertices of degree-1, contradicting that G is almost leafless.
So there is no k-secluded supertree of F in G and the algorithm correctly returns ∅
if k = 0.

Observe that the value |V (G) \ F | cannot have increased since the start of
the algorithm since we never add vertices to G and any time we remove a vertex
from F it is also removed fromG. Hence we can still assume in the remainder of the
proof that the algorithm is correct for any input (Ĝ, k̂, F̂ , T̂ , ŵ) with |V (Ĝ) \ F̂ | <
|V (G) \ F |. To conclude this part of the proof, we have established that if the
algorithm terminates before reaching Step 1, then its output is correct. On the
other hand, if the algorithm continues we can make use of the following properties
of the instance just before reaching Step 1:

Property 6.3.8. If the algorithm does not terminate before reaching Step 1 then

(i) the ELSS instance (G, k, F, T, w) is almost leafless,

(ii) G[F] is acyclic,

(iii) G[T] is a connected component of G[F],

(iv) G is connected,

(v) k > 0, and

(vi) NG(F) 6= ∅.

Step 1 Before arguing that the return value in Step 1 is correct, we observe
the following.
Claim 6.3.9. If H is an induced subtree of G that contains T and v ∈ NG(T) has
at least two neighbors in T , then v ∈ NG(H).

Proof. Suppose v 6∈ NG(H), then since v ∈ NG(T) and T ⊆ V (H) we have
that v ∈ V (H). But then since T is connected, subgraph H contains a cycle. This
contradicts that H is a tree and confirms that v ∈ NG(H). y

Now consider the case that in Step 1 we find a vertex v ∈ NG(T) with two neigh-
bors in T , and let X′ be the set of descriptions as obtained by the algorithm through
recursively solving the instance (G−v, k−1, F, T, w). Since |V (G−v)\F | < |V (G)\
F | (as v 6∈ F) we know by induction that TG−v(X′) is the set of all maximum-weight

164 Finding Secluded Sparse Graphs

(k−1)-secluded supertrees of F in G−v. Any H ∈ TG−v(X′) is an induced subtree
of G with T ⊆ V (H), so by Claim 6.3.9 we have v ∈ NG(H) for all H ∈ TG−v(X′).
We can now apply Lemma 6.3.4 to conclude that TG({(r,X ∪{{v}}) | (r,X) ∈ X′})
is the set of all maximum-weight k-secluded supertrees H of F in G for which v ∈
NG(H). Again by Claim 6.3.9 we have that v ∈ NG(H) for all such k-secluded
supertrees of F , hence TG({(r,X ∪{{v}}) | (r,X) ∈ X′}) is the set of all maximum-
weight k-secluded supertrees of F in G. We argue non-redundancy of the output.
Suppose that two descriptions (r,X ∪ {{v}}) and (r′,X ′ ∪ {{v}}) describe the
same supertree H of F in G. Note that then (r,X) and (r′,X) describe the same
supertree H of F in G − v, which contradicts the induction hypothesis that the
output of the recursive call was correct and therefore non-redundant.

Concluding this part of the proof, we showed that if the algorithm terminates
during Step 1, then its output is correct. On the other hand, if the algorithm con-
tinues after Step 1 we can make use of the following in addition to Property 6.3.8.

Property 6.3.10. If the algorithm does not terminate before reaching Step 2 then
no vertex v ∈ NG(T) has two neighbors in T .

Step 2 In Step 2 we use Lemma 6.3.3 if |NG(T)| > k(k + 1). The precondi-
tions of the lemma are satisfied since k > 0 and the instance is almost leafless by
Property 6.3.8. If it concludes that G does not contain a k-secluded supertree of F ,
then the algorithm correctly outputs ∅. Otherwise it finds a vertex v ∈ V (G) \ F
such that any k-secluded supertree H of F in G satisfies v ∈ NG(H). We ar-
gue that the algorithm’s output is correct. Let X′ be the set of descriptions
as obtained through recursively solving (G − v, k − 1, F, T, w). Since v 6∈ F we
have |(V (G− v) \ F | < |V (G) \ F |, so by induction we have that TG−v(X′) is the
set of all maximum-weight (k−1)-secluded supertrees of F in G− v. Furthermore
by Observation 6.2.6 for any H ∈ TG−v(X′) = Sk−1G−v(F) we have H ∈ SkG(F),
and therefore v ∈ NG(H). It follows that Lemma 6.3.4 applies to X′ so we
can conclude that TG({(r,X ∪ {{v}}) | (r,X) ∈ X′}) is the set of maximum-
weight k-secluded supertrees H of F in G for which v ∈ NG(H). Since we know
there are no k-secluded supertrees H of F in G for which v 6∈ NG(H), it follows
that TG({(r,X ∪ {{v}}) | (r,X) ∈ X}) is the set of maximum-weight k-secluded
supertrees of F in G as required. Non-redundancy of the output follows as in
Step 1.

To summarize the progress so far, we have shown that if the algorithm ter-
minates before it reaches Step 3, then its output is correct. Alternatively, if we
proceed to Step 3 we can make use of the following property, in addition to Prop-
erties 6.3.8 and 6.3.10, which we will use later in the running time analysis.

Property 6.3.11. If the algorithm does not terminate before reaching Step 3
then |NG(T)| ≤ k(k + 1).

6.3 Enumerate large secluded supertrees 165

Step 3 Fix some v ∈ NG(T), which exists as NG(T) 6= ∅ by Property 6.3.8.
Let P = (v = v1, . . . , v`) be a path as described in Lemma 6.3.6. By Lemma 6.3.6
we can partition the set maxsetw(SkG(F)) of maximum-weight k-secluded supertrees
of F in G into the following three sets:

• T1 = {H ∈ maxsetw(SkG(F)) | v` ∈ NG(H)},

• T2 = {H ∈ maxsetw(SkG(F)) | |N(H)∩V (P −F − v`)| = 1 and v` ∈ V (H)},

• T3 = {H ∈ maxsetw(SkG(F)) | V (P) ⊆ V (H)},

Consider the sets X1, X2, and X3 of descriptions as obtained through recursion
in Step 3 of the algorithm. By induction we have the following:

• TG−v`(X1) = maxsetw(Sk−1G−v`(F)), since |V (G− v`) \ F | < |V (G) \ F |,

• TG−V (P−v`)(X2) = maxsetw(Sk−1G−V (P−v`)((F \ V (P)) ∪ {v`})) since

|V (G− V (P − v`)) \ ((F \ V (P)) ∪ {v`})| =
|V (G− V (P − v`)) \ (F ∪ {v`})| < |V (G) \ F |, and

• TG(X3) = maxsetw(SkG(F ∪ V (P))) since |V (G) \ (F ∪ V (P))| < |V (G) \ F |.

Let X′1, X′2, and X′3 be the sets of descriptions as computed in Step 3 of the
algorithm.
Claim 6.3.12. The sets X′1, X′2, and X′3 consist of valid descriptions for G.

Proof. To argue that X′1 = {(r,X ∪ {{v`}}) | (r,X) ∈ X1} consists of valid de-
scriptions for G we show for an arbitrary description (r,X) ∈ X1 for G − v`
that (r,X ∪{{v`}}) is a valid description for G. Clearly r ∈ V (G) and X ∪{{v`}}
consists of pairwise disjoint subsets of V (G− r). Consider any set S′ consisting of
exactly one vertex from each setX ∈ X∪{{v`}}. Clearly v` ∈ S′. Let S = S′\{v`}.
Since (r,X) is a description for G− v`, the connected component H of G− v`−S
containing r is acyclic and satisfies NG−v`(H) = S. Note that the connected com-
ponent of G − S′ containing r is identical to H and is therefore also acyclic. All
that is left to argue is that v` ∈ NG(H). If ` = 1, then v` ∈ NG(F) and the
claim follows as H is a supertree of F . Otherwise note that since (r,X) ∈ X1

we have that H ∈ maxsetw(Sk−1G−v`(F)), i.e., H is of maximum weight. Since
all vertices of V (P − v`) have degree 2 in G, with v`−1 adjacent to v`, the
graphG[V (H)∪V (P−v`)] is acyclic and |NG(H)| = |NG(V (H)∪V (P−v`))|. It fol-
lows that V (P−v`) ⊆ V (H) since otherwise the secluded tree G[V (H)∪V (P−v`)]
would have larger weight than H. Hence v`−1 ∈ V (H) so v` ∈ NG(H).

Next we argue X′2 consists of valid descriptions for G. Recall that X′2 = {(r,X ∪
{M}) | (r,X) ∈ X2} where M is the set of minimum weight vertices in P −F −v`,
so it suffices to show for an arbitrary description (r,X) ∈ X2 for G − V (P − v`)
that (r,X ∪ {M}) ∈ X′2 is a valid description for G. Again it is easy to see

166 Finding Secluded Sparse Graphs

that r ∈ V (G) and X ∪ {M} consists of pairwise disjoint subsets of V (G − r).
Consider any set S′ consisting of exactly one vertex from each set X ∈ X ∪ {M}.
Let S = S′ \M and {m} = M ∩S′. Since (r,X) is a description for G−V (P −v`),
the connected component H of G − V (P − v`) − S containing r is acyclic and
satisfies NG−V (P−v`)(H) = S. Note that the connected component H ′ of G − S′
containing r is a supergraph of H and so S ⊆ NG(H ′). All that is left to argue
is that H ′ is acyclic and m ∈ NG(H ′). Let u be the vertex in T that is adjacent
to v1. Note that this vertex is uniquely defined since no vertex in NG(T) has
two neighbors in T . Since H is a supertree of (F \ V (P)) ∪ {v`} and u, v` ∈ F ,
it follows that P − v` is a path between two vertices in H, of which S′ contains
exactly one vertex chosen from M . Consequently, the component H ′ of G − S
satisfies V (H ′) = V (H) ∪ V (P − v` −m), H ′ is acyclic, and m ∈ NG(H ′).

Finally since X3 is a set of descriptions for G and X′3 = X3, the claim holds
for X′3. y

Before we proceed to show that the output of the algorithm is correct, we
prove two claims about intermediate results obtained by modifying the output of
a recursive call.

Claim 6.3.13. TG(X′1) = maxsetw{H ∈ SkG(F) | v` ∈ NG(H)}

Proof. Recall X′1 is defined as {(r,X∪{{v`}}) | (r,X) ∈ X1}. We know TG−v`(X1) =
maxsetw(Sk−1G−v`(F)). In order to apply Lemma 6.3.4 we prove that v` ∈ NG(H)
for all H ∈ TG−v`(X1). Let H ∈ TG−v`(X1) be arbitrary. If ` = 1, then as v` = v ∈
NG(T) and T ⊆ H we get v` ∈ NG(H). Otherwise if ` > 1, suppose for the sake of
contradiction that v`−1 /∈ V (H). Then some vertex u ∈ V (P−F−v`) must be con-
tained in NG−v`(H). But then observe that H ∪V (P −v`) acyclic and has strictly
larger weight than H, while |NG−v`(H ∪ V (P − v`))| < |NG−v`(H)|. This contra-
dicts the choice of H. It follows that v`−1 ∈ V (H) and therefore v` ∈ NG(H). We
can now apply Lemma 6.3.4 to obtain that TG(X′1) = maxsetw{H ∈ SkG(F) | v` ∈
NG(H)}. y

Claim 6.3.14. If m ∈ V (P − F − v`) then TG({(r,X ∪ {{m}}) | (r,X) ∈ X2}) =
maxsetw{Ĥ ∈ SkG(F ∪ {v`}) | m ∈ NG(Ĥ)}.

Proof. We show Lemma 6.3.5 applies to the instance (G, k, F ∪{v`}, T, w). Recall
that by induction TG−V (P−v`)(X2) = maxsetw(Sk−1G−V (P−v`)((F \ V (P))∪ {v`})) =

maxsetw(Sk−1G−V (P−v`)((F∪{v`})\V (P−v`))). Recall also that v1 = v ∈ NG(T) has
exactly one neighbor in T ⊆ F by Property 6.3.10, let v′ be this vertex. Observe
that P−v` is a path in G with degG(p) = 2 for all p ∈ V (P−v`) and NG(P−v`) =
{v′, v`} with v′, v` ∈ F∪{v`}. Then sincem ∈ V (P−F−v`) = V (P−v`)\F we can
apply Lemma 6.3.5 to obtain TG({(r,X ∪ {{m}}) | (r,X) ∈ X2}) = maxsetw{Ĥ ∈
SkG(F ∪ {v`}) | m ∈ NG(Ĥ)}. y

6.3 Enumerate large secluded supertrees 167

We now show that all maximum-weight k-secluded supertrees of F in G are
described by at least one description in our output. More formally, we show
that maxsetw(SkG(F)) ⊆ TG(X′1 ∪ X′2 ∪ X′3) ⊆ SkG(F). To that end we first show
that Ti ⊆ TG(X′i) ⊆ SkG(F) for each i ∈ [3] in Claims 6.3.15 to 6.3.17.

Claim 6.3.15. T1 ⊆ TG(X′1) ⊆ SkG(F)

Proof. It follows from Claim 6.3.13 that TG(X′1) ⊆ SkG(F) so it remains to show
that T1 ⊆ TG(X′1). Let H ∈ T1 be arbitrary. By definition of T1 we have H ∈
maxsetw(SkG(F)) ⊆ SkG(F) and v` ∈ NG(H). So then clearly H ∈ maxsetw{H ′ ∈
SkG(F) | v` ∈ NG(H ′)} = TG(X′1) (by Claim 6.3.13). Since H ∈ T1 was arbitrary
we conclude T1 ⊆ TG(X′1) completing the proof. y

Claim 6.3.16. T2 ⊆ TG(X′2) ⊆ SkG(F)

Proof. Recall X′2 is defined as {(r,X ∪ {M}) | (r,X) ∈ X2}, where M is the set of
minimum weight vertices in P−F−v`. For any u ∈ V (P−F−v`) we define Xu2 :=
{(r,X ∪ {{u}}) | (r,X) ∈ X2}. By repeated application of Observation 6.2.5 we
have that TG(

⋃
u∈M Xu2) = TG({(r,X ∪ {M}) | (r,X) ∈ X2}). Observe that Xu2

is a valid set of descriptions for G for each u ∈ M . By Observation 6.2.4 and
definition of X′2 we have

⋃
u∈M TG(Xu2) = TG(

⋃
u∈M Xu2) = TG(X′2). We will

prove T2 ⊆
⋃
u∈M TG(Xu2) ⊆ SkG(F).

We show T2 ⊆
⋃
u∈M TG(Xu2). Let H ∈ T2 be arbitrary. By definition

of T2 we have H ∈ maxsetw(SkG(F)), |NG(H) ∩ V (P − F − v`)| = 1, and v` ∈
V (H). Then also H ∈ maxsetw(SkG(F ∪ {v`})). Let m be such that NG(H) ∩
V (P − F − v`) = {m}. Since m ∈ V (P − F − v`), by Claim 6.3.14 we have
that TG(Xm2) = maxsetw{Ĥ ∈ SkG(F ∪ {v`}) | m ∈ NG(Ĥ)}. Since m ∈ NG(H)

and H ∈ maxsetw(SkG(F ∪ {v`})) clearly H ∈ maxsetw{Ĥ ∈ SkG(F ∪ {v`}) | m ∈
NG(Ĥ)} = TG(Xm2). It follows that H ∈

⋃
u∈M TG(Xu2). Since H was arbitrary

we conclude that T2 ⊆
⋃
u∈M TG(Xu2).

It remains to show that
⋃
u∈M TG(Xu2) ⊆ SkG(F). Let u ∈M be arbitrary. We

show TG(Xu2) ⊆ SkG(F). It suffices to show that when considering a set S consisting
of one element from each set of a description (r,X ∪{u}) ∈ Xu2 , the component H
of G − S containing r is a k-secluded supertree of F in G. This component H
is a k-secluded tree in G since Xu2 is a valid set of descriptions for G of order
at most k. It remains to show that F ⊆ V (H). By induction the component
of (G − V (P − v`)) − (S \ {u}) contains all of (F \ V (P)) ∪ {v`}. As the two
neighbors of V (P − v`) both belong to F ∪ {v`}, the subpath of P before u and
subpath after u are both reachable from r in G − S. Hence V (P − u) ⊆ V (H),
and since u ∈ M ⊆ V (P − F − v`) we know u 6∈ F , so F ⊆ V (H). It follows
that H is a k-secluded supertree of F in G so since H ∈ TG(Xu2) was arbitrary we
have TG(Xu2) ⊆ SkG(F). y

168 Finding Secluded Sparse Graphs

Claim 6.3.17. T3 ⊆ TG(X′3) ⊆ SkG(F)

Proof. Recall X′3 is defined to be equal to X3, so we show T3 ⊆ TG(X3) ⊆ SkG(F).
Let H ∈ T3 be arbitrary. By definition of T3 we have H ∈ maxsetw(SkG(F)) ⊆

SkG(F) and V (P) ⊆ V (H). So clearly H ∈ SkG(F ∪ V (P)). To show that H ∈
TG(X3) = maxsetw(SkG(F ∪ V (P))) we have to show for all H ′ ∈ SkG(F ∪ V (P))
that w(H ′) ≤ w(H). Suppose for contradiction there is an H ′ ∈ SkG(F ∪ V (P))
such that w(H ′) > w(H). Clearly H ′ ∈ SkG(F) but then w(H ′) > w(H) con-
tradicts that H ∈ maxsetw(SkG(F))). So by contradiction it follows that H ∈
maxsetw(SkG(F ∪ V (P))) = TG(X3) and since H ∈ T3 was arbitrary we con-
clude T3 ⊆ TG(X3).

Finally observe that TG(X3) = maxsetw(SkG(F ∪ V (P))) ⊆ SkG(F ∪ V (P)) ⊆
SkG(F), completing the proof. y

It follows from Claims 6.3.15 to 6.3.17 that maxsetw(SkG(F)) = T1 ∪ T2 ∪ T3 ⊆
TG(X′1) ∪ TG(X′2) ∪ TG(X′3) ⊆ SkG(F). So then we have

maxsetw(SkG(F)) = maxsetw(TG(X′1) ∪ TG(X′2) ∪ TG(X′3)). (6.1)

The algorithm proceeds to calculate values w1, w2, w3 based on an arbitrary
secluded tree in TG(X′1), TG(X′2), and TG(X′3) respectively. We show that, for
any i ∈ [3], all secluded trees in TG(X′i) have weight wi.

• For i = 1, we know from Claim 6.3.13 that TG(X′1) = maxsetw{H ∈ SkG(F) |
v` ∈ NG(H)}, and clearly all trees in maxsetw{H ∈ SkG(F) | v` ∈ NG(H)}
have the same weight, which must be w1.

• For i = 2, consider two arbitrary secluded trees H1, H2 in the set TG(X′2) =
TG({(r,X ∪ {M}) | (r,X) ∈ X2}) where M ⊆ V (P − F − v`) is the set of
minimum weight vertices in P − F − v`. We show that w(H1) = w(H2).
Observe that NG(H1) ∩M = {m1} for some m1 ∈ V (P − v`) \ F , so H1 ∈
TG({(r,X ∪ {{m1}}) | (r,X) ∈ X2}). Hence H1 ∈ maxsetw{Ĥ ∈ SkG(F ∪
{v`}) | m1 ∈ NG(Ĥ)} by Claim 6.3.14 since m1 ∈ V (P − v`) \ F . Sim-
ilarly H2 ∈ maxsetw{Ĥ ∈ SkG(F ∪ {v`}) | m2 ∈ NG(Ĥ)} for some m2 ∈
V (P −v`)\F . Consider the graph H ′2 := G[V (H2)∪{m2}]−m1 and observe
that H ′2 ∈ {Ĥ ∈ SkG(F ∪ {v`}) | m1 ∈ NG(Ĥ)}. Additionally w(H2) =
w(H ′2) + w(m2) − w(m1) = w(H ′2) since m1,m2 are of minimum weight
in V (P − F − v`), so H ′2 ∈ maxsetw{Ĥ ∈ SkG(F ∪ {v`}) | m1 ∈ NG(Ĥ)}. It
follows that w(H2) = w(H ′2) = w(H1). Since H1, H2 ∈ TG(X′2) are arbitrary,
we have that all secluded trees in TG(X′2) have the same weight, which must
be w2.

• For i = 3 we know that TG(X′3) = TG(X3) = maxsetw(SkG(F ∪ V (P))), and
clearly all trees in maxsetw(SkG(F ∪ V (P))) have the same weight, which
must be w3.

6.3 Enumerate large secluded supertrees 169

Clearly it follows that

TG(X′) = TG

 ⋃
{i∈[3]|wi=max{w1,w2,w3}}

X′i

 Definition of X′ in Step 3

= maxsetw(TG(X′1 ∪ X′2 ∪ X′3)) Any tree in TG(X′i) has weight wi.
= maxsetw(TG(X′1) ∪ TG(X′2) ∪ TG(X′3)) Observation 6.2.4

= maxsetw(SkG(F)). Equation (6.1)

So the algorithm correctly returns a set of descriptions X′ for which TG(X′) =
maxsetw(SkG(F)). To complete the proof of correctness, we show that X′ is non-
redundant for G.

Claim 6.3.18. X′ is non-redundant for G.

Proof. Suppose for contradiction that X′ is redundant for G, i.e., there is a k-
secluded tree H in G such that H is described by two distinct descriptions (r1,X1),
(r2,X2) ∈ X′. Since X′ ⊆ X′1 ∪ X′2 ∪ X′3 it suffices to consider the cases (r1,X1) ∈
X′1, (r1,X1) ∈ X′2, and (r1,X1) ∈ X′3.

• If (r1,X1) ∈ X′1, then {v`} ∈ X1 by definition of X′1. So then v` ∈ NG(H).
Since H is described by (r2,X2) there exists X ∈ X2 such that v` ∈ X.
If (r2,X2) ∈ X′3 = X3 then X must be part of a description in X3, so there
must be a H ′ ∈ TG(X3) with v` ∈ NG(H ′). However we know by induction
that TG(X3) = maxsetw(SkG(F ∪ V (P))), so v` ∈ F ∪ V (P) ⊆ V (H ′′) for
allH ′′ ∈ TG−V (P−v`)(X3). It follows that (r2,X2) 6∈ X′3. If (r2,X2) ∈ X′2 then
we show this also leads to a contradiction. It follows from the definition of X′2
that X must be part of a description in X2, however we know by induction
that TG−V (P−v`)(X2) = maxsetw(Sk−1G−V (P−v`)((F \ V (P)) ∪ {v`})), so v` ∈
(F \ V (P)) ∪ {v`} ⊆ V (H ′′) for all H ′′ ∈ TG−V (P−v`)(X2). Hence (r2,X2) 6∈
X′2, and since also (r2,X2) 6∈ X′3 we have that (r2,X2) ∈ X′1, meaning X =
{v`}.
Since (r1,X1) and (r2,X2) are distinct, {v`} ∈ X1, and {v`} ∈ X2 we have
that (r1,X1\{{v`}}) and (r2,X2\{{v`}}) are distinct. Observe that (r1,X1\
{{v`}}) ∈ X1 and (r2,X2 \ {{v`}}) ∈ X1. We know by induction that X1

is non-redundant for G − v. However since H is a k-secluded tree in G
with v` ∈ NG(H) we have that H is a (k − 1)-secluded tree in G − v`,
and clearly H is described by both (r1,X1 \ {{v`}}) and (r2,X2 \ {{v`}}),
contradicting that X1 is non-redundant for G− v.

• If (r1,X1) ∈ X′2, then without loss of generality we can assume that (r2,X2) 6∈
X′1 since otherwise we can swap the roles of (r1,X1) and (r2,X2) and the
previous case would apply. Suppose that (r2,X2) ∈ X′3 = X3, then H ∈
TG(X3) and we have by induction that TG(X3) = maxsetw(SkG(F ∪ V (P)))

170 Finding Secluded Sparse Graphs

hence v` ∈ F∪V (P) ⊆ V (H). This contradicts v` ∈ NG(H) so (r2,X2) 6∈ X′3.
This leaves as only option that (r2,X2) ∈ X′2.

Recall that X′2 = {(r,X ∪ {M}) | (r,X) ∈ X2} where M ⊆ V (P − F − v`),
so (r1,X1 \ {M}) ∈ X2 and (r2,X2 \ {M}) ∈ X2. Since X2 is a set of valid
descriptions for G−V (P−v`) (by induction) we have that X1\{M} and X2\
{M} contain only subsets of V (G)\V (P−v`), so NG(H)\M ⊆ V (G)\V (P−
v`). Observe that since the path P −v` is connected to H ′ := H−V (P −v`)
only via its endpoints, and H does not contain m ∈ V (P) we have that H ′
remains connected so H ′ is a (k−1)-secluded tree in G−V (P −v`) described
by (r1,X1 \{M}) as well as (r2,X2 \{M}). However this contradicts that X2

is a non-redundant set of descriptions for G−V (P−v`) as given by induction.

• If (r1,X1) ∈ X′3 = X3, then without loss of generality we can assume (r2,X2) ∈
X′3 = X3 since otherwise we can swap the roles of (r1,X1) and (r2,X2) and
one of the previous cases would apply. But then H is a k-secluded tree in G
described by two distinct descriptions from X3, i.e. X3 is redundant for G
contradicting the induction hypothesis. y

This concludes the proof of Lemma 6.3.7 and establishes correctness.

6.3.4 Runtime analysis
If all recursive calls in the algorithm would decrease k then, since for k = 0 it
does not make any further recursive calls, the maximum recursion depth is k.
However in Step 3(c) the recursive call does not decrease k. In order to bound
the recursion depth, we show the algorithm cannot make more than k(k + 1)
consecutive recursive calls in Step 3(c), that is, the recursion depth cannot increase
by more than k(k + 1) since the last time k decreased. We do this by showing in
the following three lemmas that |NG(T)| increases as consecutive recursive calls
in Step 3(c) are made. Since the algorithm executes Step 2 if |NG(T)| > k(k+ 1),
this limits the number of consecutive recursive calls in Step 3(c).

The following lemma states that under certain conditions, the neighborhood
of T does not decrease during the execution of a single recursive call.

Lemma 6.3.19. Let (G0, k0, F0, T0, w0) be an ELSS instance such that all leaves
of G0 are contained in T0. If the algorithm does not terminate before Step 3,
then the instance (G′, k′, F ′, T ′, w′) when executing Step 3 satisfies |NG′(T ′)| ≥
|NG0

(T0)|.

Proof. Since the algorithm does not terminate before Step 3 it follows that Steps 1
and 2 are not executed, so consider the part of the algorithm before Step 1.
Throughout the proof we use (G, k, F, T, w) to refer to the instance at the time
the algorithm evaluates it; initially (G, k, F, T, w) = (G0, k0, F0, T0, w0), but ac-
tions such as contracting leaves may change the instance during the execution.
Suppose that all leaves of G are contained in T . We infer that G[F] is acyclic, as

6.3 Enumerate large secluded supertrees 171

otherwise the algorithm would return ∅ before reaching Step 3. Removing the con-
nected components of G that do not contain a vertex of F does not alter |NG(T)|.
Afterwards we know that G is connected, as otherwise the algorithm would re-
turn ∅. Consider a single degree-1 contraction step of a vertex v with F 6= {v}
that results in the instance (G− v, k, F ∗, T ∗, w∗). Since we assume that all leaves
are contained in T , we have that v ∈ T . Let u be the neighbor of v. By Defi-
nition 6.3.1 we have F ∗ = (F \ {v}) ∪ {u} and T ∗ = (T \ {v}) ∪ {u}. If u ∈ T ,
then NG−v(T

∗) = NG(T) and therefore their size is equal. If u /∈ T , then ob-
serve that u cannot be a leaf in G by assumption and therefore NG(u) \ {v} 6= ∅.
Since T is connected and v is a leaf in T we get (NG(u) \ {v}) ∩ T = ∅. It follows
that |NG−v(T ∗)| ≥ |NG(T)|. These arguments can be applied for each consecutive
contraction step to infer |NG(T)| ≥ |NG0(T0)| for the instance (G, k, F, T, w) after
all contractions.

Next consider the step where if NG(T) contains a vertex v ∈ F , the vertex v
is added to T . Since G[F] is acyclic, G[T] is connected, and v /∈ T is not a leaf,
it follows that NG(v) \ T 6= ∅ and |NG(v) ∩ T | = 1. It follows that |NG(T ∪
{v})| ≥ |NG(T)|. Again these arguments can be applied iteratively. For the
instance (G, k, F, T, w) to which this step can no longer be applied, G[T] is a
connected component of G[F].

Next we get that NG(F) 6= ∅ as otherwise the algorithm would return {(r, ∅)}
for some r ∈ F . We also get k > 0, as otherwise ∅ would have been returned.

Since none of the steps decreased the size of the neighborhood of T , for the
instance (G′, k′, F ′, T ′, w′) at the time Step 3 is executed we conclude |NG′(T ′)| ≥
|NG0(T0)| as required.

In the next lemma we show that the size of the neighborhood of T strictly
increases as we make the recursive call in Step 3(c).

Lemma 6.3.20. Let (G, k, F, T, w) be the instance considered in Step 3. If Step 3(c)
branches on the instance (G, k, F ∪ V (P), T ∪ V (P), w), then either |NG(T ∪
V (P))| > |NG(T)| or some vertex u ∈ NG(T ∪ V (P)) is adjacent to at least
two vertices in T ∪ V (P).

Proof. Consider the path P = (v = v1, . . . , v`) with degG(vi) = 2 for each 1 ≤
i < ` and (v` ∈ NG(T) or degG(v`) > 2) as defined in Step 3. The precondi-
tion of Step 3(c) gives that G[F ∪ V (P)] is acyclic. Since T ⊆ F , this implies
that G[T ∪ V (P)] is acyclic. It follows that V (P) ∩NG(T) = {v} and degG(v`) >
2. Hence |NG(T) \ {v}| = |NG(T)| − 1 and |NG(v`) \ V (P)| ≥ 2. Observe
that NG(T ∪ V (P)) = (NG(T) \ {v}) ∪ (NG(v`) \ V (P)) so if (NG(T) \ {v}) ∩
(NG(v`) \ V (P)) = ∅ we have |NG(T ∪ V (P))| > |NG(T)|. Alternatively, sup-
pose u ∈ (NG(T)\{v})∩ (NG(v`)\V (P)). Then the second condition holds; u has
at least one neighbor in T as u ∈ NG(T)\{v} and u is adjacent to v` /∈ T \{v}.

Finally we combine Lemmas 6.3.19 and 6.3.20 to show |NG(T)| is an upper
bound to the number of consecutive recursive calls in Step 3(c).

172 Finding Secluded Sparse Graphs

Lemma 6.3.21. If the recursion tree generated by the algorithm contains a path
of i ≥ 1 consecutive recursive calls in Step 3(c), and (G, k, F, T, w) is the instance
considered in Step 3 where the i-th of these recursive calls is made, then |NG(T)| ≥
i.

Proof. We use induction of i. First suppose i = 1 and let (G, k, F, T, w) be the
instance considered in Step 3 where the first of these recursive calls is made.
If |NG(T)| = 0, then G[T] is a component of G. However, since (G, k, F, T, w) is
an instance considered in Step 3 we know that Properties 6.3.8, 6.3.10 and 6.3.11
apply. In particular NG(F) 6= ∅, ruling out that T = F . However if T 6= F , then
there are at least two connected components in G containing a vertex from F , con-
tradicting that G is connected (Property 6.3.8). By contradiction we can conclude
that |NG(T)| ≥ 1 = i.

Suppose i ≥ 2 and let (G, k, F, T, w) be the instance considered in Step 3
where the i-th recursive call is made. Let (G′, k′, F ′, T ′, w′) be the instance con-
sidered in Step 3 where the (i − 1)-th recursive call is made. By induction we
know |NG′(T ′)| ≥ i−1. Let P be as in Step 3 where the (i−1)-th recursive call is
made, then by Lemma 6.3.20 we have that |NG′(T ′ ∪ V (P))| > |NG′(T ′)| or some
vertex u ∈ NG′(T ′∪V (P)) is adjacent to at least two vertices in T ′∪V (P). Since we
know that the recursive call on (G′, k′, F ′∪V (P), T ′∪V (P), w′) reaches Step 3 with
the instance (G, k, F, T, w), we can rule out that some vertex u ∈ NG′(T ′ ∪ V (P))
is adjacent to at least two vertices in T ′ ∪ V (P) as this would mean the recursive
call ends in Step 1. We can conclude instead that |NG′(T ′ ∪ V (P))| > |NG′(T ′)|.

Note that since (G′, k′, F ′, T ′, w′) is the instance in Step 3 we have that Prop-
erties 6.3.8, 6.3.10 and 6.3.11 apply. In particular, (G′, k′, F ′, T ′, w′) is almost
leafless, implying that all leaves in G′ are contained in T ′. It follows that all
leaves in G′ are also contained in T ′ ∪V (P), so Lemma 6.3.19 applies to the input
instance (G′, k′, F ′ ∪ V (P), T ′ ∪ V (P), w′) (as recursively solved in Step 3) and
the instance (G, k, F, T, w) (as considered in Step 3 of that recursive call). So we
obtain |NG(T)| ≥ |NG′(T ′ ∪ V (P))| > |NG′(T ′)| ≥ i− 1, that is, |NG(T)| ≥ i.

Since we know in Step 3 that |NG(T)| ≤ k(k + 1) (by Property 6.3.11) we can
now claim that there are at most k(k+ 1) consecutive recursive calls of Step 3(c),
leading to a bound on the recursion depth of O(k3). We argue that each recursive
call takes O(kn3) time and since we branch at most three ways, we obtain a
running time of 3O(k3) · kn3 = 3O(k3) · n3. However, with a more careful analysis
we can give a better bound on the number of nodes in the recursion tree.

Lemma 6.3.22. The algorithm described in Section 6.3.2 can be implemented to
run in time 2O(k log k) · n3.

Proof. Consider the recursion tree of the algorithm. We first prove that each
recursive call takes O(kn3) time (not including the time further recursive calls
require). We then show that the recursion tree contains at most 2O(k log k) nodes.

6.3 Enumerate large secluded supertrees 173

Runtime per node Consider the input instance (G, k, F, T, w) with n =
|V (G)| and m = |E(G)|. We can verify that G[F] is acyclic in O(|F |) time using
DFS. Again using DFS, in O(n+m) time identify all connected components of G
and determine whether they contain a vertex of F . We can then in linear time
remove all connected components that contain no vertex of F and return ∅ if more
than one component remains. Finally exhaustively contracting degree-1 vertices
into their neighbor is known to take O(n) time. Updating F and T only results
in O(1) overhead for each contraction. Exhaustively adding vertices v ∈ NG(T)∩
F to T can be done in O(n) time since it corresponds to finding a connected
component in G[F] which is acyclic.

For Step 1 we can find a vertex v ∈ NG(T) with two neighbors in T in O(n2)
time by iterating over all neighbors of each vertex in T .

Determining the size of the neighborhood in Step 2 can be done in O(n2) time.
Applying Lemma 6.3.3 takes O(kn3) time. So excluding the recursive call, Step 2
can be completed in O(kn3) time.

For Step 3 an arbitrary v ∈ NG(T) can be selected in O(1) time, and the path P
can be found in O(|P |) = O(n) time as described in Footnote 1. Finally the results
of the three recursive calls in Step 3 are combined. Selecting an arbitrary tree
from TG(X′i) for any i ∈ [3] involves selecting and arbitrary description (r,X) ∈ X′i
and then selecting, for each X ∈ X and arbitrary vertex v ∈ X. Now the tree
can be found using DFS starting from r exploring an acyclic graph until it reaches
the selected vertices from a set X ∈ X . This all takes O(n) time. The weights
of the selected secluded trees can be found in O(n) time as well. Finally we take
the union of (a selection of) the three sets of descriptions. Since these sets are
guaranteed to be disjoint, this can be done in constant time.

Number of nodes We now calculate the number of nodes in the recursion
tree. To do this, label each edge in the recursion tree with a label from the
set {1, 2, 3a, 3b, 3c} indicating where in the algorithm the recursive call took place.
Now observe that each node in the recursion tree can be uniquely identified by a
sequence of edge-labels corresponding to the path from the root of the tree to the
relevant node. We call such a sequence of labels a trace.

Note that for all recursive calls made in 1, 2, 3a, and 3b the parameter (k) de-
creases, and for the call made in 3c the parameter remains the same. If k ≤ 0
we do not make further recursive calls, so the trace contains at most k occur-
rences of 1, 2, 3a, and 3b. Next, we argue there are at most k(k + 1) consecutive
occurrences of 3c in the trace.

Suppose for the sake of contradiction that the trace contains k(k + 1) + 1
consecutive occurrences of 3c. Let (G, k, F, T, w) be the instance considered in
Step 3 where the last of these recursive calls is made. By Lemma 6.3.21 we
have |NG(T)| > k(k + 1). This contradicts Property 6.3.11, so we can conclude
the trace contains at most k(k + 1) consecutive occurrences of 3c and hence any
valid trace has a total length of at most k · k(k + 1) ∈ O(k3).

174 Finding Secluded Sparse Graphs

In order to count the number of nodes in the recursion tree, it suffices to count
the number of different valid traces. Since a trace contains at most k occurrences
that are not 3c we have that the total number of traces of length ` is

(
`
k

)
· 4k ≤

`k · 4k = (4`)k. We derive the following bound on the total number of valid traces
using the fact that (kc)k = (2log(k

c))k ∈ 2O(k log k):∑
1≤`≤k2(k+1)

(4`)k ≤ k2(k + 1) · (4k2(k + 1))k ∈ 2O(k log k).

We can conclude that the total number of nodes in the recursion tree is at
most 2O(k log k) so the overall running time is 2O(k log k) · kn3 = 2O(k log k) · n3.

6.3.5 Finding, enumerating, and counting large secluded
trees

With the algorithm of Section 6.3.2 at hand we argue that we are able to enumerate
k-secluded trees, count such trees containing a specified vertex, and solve LST.

Theorem 6.3.23. There is an algorithm that, given a graph G, weight function w,
and integer k, runs in time 2O(k log k)n4 and outputs a set of descriptions X such
that TG(X) is exactly the set of maximum-weight k-secluded trees in G. Each such
tree H is described by |V (H)| distinct descriptions in X.

Proof. Given the input (G, k,w), we proceed as follows. For each v ∈ V (G), let Xv
be the output of the ELSS instance (G, k, F = {v}, T = {v}, w) and let wv be the
weight of an arbitrary k-secluded supertree in TG(Xv), or 0 if Xv = ∅. Note that all
k-secluded trees described by Xv have weight exactly wv. Let w∗ := maxv∈V (G) wv.
If w∗ = 0 then there are no k-secluded trees in G and we output X = ∅; otherwise
we output X :=

⋃
{Xv | v ∈ V (G) ∧ wv = w∗}.

Clearly TG(X) is the set of all k-secluded trees in G of maximum weight. Since
each Xv is non-redundant, each maximum-weight k-secluded tree H is described
by exactly |V (H)| descriptions in X.

By returning an arbitrary maximum-weight k-secluded tree described by any
description in the output of Theorem 6.3.23, we have the following consequence.

Corollary 6.3.24. There is an algorithm that, given a graph G, weight function w,
and integer k, runs in time 2O(k log k)n4 and outputs a maximum-weight k-secluded
tree in G if one exists.

The following theorem captures the consequences for counting.

Theorem 6.3.25. There is an algorithm that, given a graph G, vertex v ∈ V (G),
weight function w, and integer k, runs in time 2O(k log k)n3 and counts the number
of k-secluded trees in G that contain v and have maximum weight out of all k-
secluded trees containing v.

6.4 Conclusion 175

Proof. Construct the ELSS instance (G, k, F = {v}, T = {v}, w) and let X be
the output obtained by the algorithm described in Section 6.3.2. Note that this
takes 2O(k log k)n3 time by Lemma 6.3.22. Since the definition of ELSS guarantees
that X is non-redundant, each maximum-weight tree containing v is described by
exactly one description in X. To solve the counting problem it therefore suffices to
count how many distinct k-secluded trees are described by each description in X.

By Definition 6.2.1, for each description (r,X) ∈ X, each way of choosing one
vertex from each set X ∈ X yields a unique k-secluded tree. Hence the total
number of maximum-weight k-secluded trees containing v is:∑

(r,X)∈X

∏
X∈X

|X|,

which can easily be computed in the stated time bound.

6.4 Conclusion

We revisited the k-Secluded Tree problem first studied by Golovach et al. [67],
leading to improved FPT algorithms with the additional ability to count and enu-
merate solutions. The non-trivial progress measure of our branching algorithm is
based on a structural insight that allows a vertex that belongs to the neighborhood
of every solution subtree to be identified, once the solution under construction
has a sufficiently large open neighborhood. As stated, the correctness of this step
crucially relies on the requirement that solution subgraphs are acyclic. It would
be interesting to determine whether similar branching strategies can be developed
to solve the more general k-Secluded Connected F-Minor-Free Subgraph
problem; the setting studied here corresponds to F = {K3}. While any F-minor-
free graph is known to be sparse, it may still contain large numbers of internally
vertex-disjoint paths between specific pairs of vertices, which stands in the way of
a direct extension of our techniques.

A second open problem concerns the optimal parameter dependence for k-
Secluded Tree. The parameter dependence of our algorithm is 2O(k log k). Can
it be improved to single-exponential, or shown to be optimal under the Exponential
Time Hypothesis?

7
Conclusion

7.1 Overview of results

We studied a number of graph problems revolving around finding large sparse
subgraphs, in particular, F-minor free subgraphs. As problems like these are of-
ten NP-hard, we made use of the tools and ideas from parameterized complexity,
which gives a rigorous framework to show how the time required to solve a problem
instance can be described more precisely by using one or more additional param-
eters rather than by using just the size of the problem instance. The notion of
kernelization nicely illustrates this as it shows how, in polynomial time, the origi-
nal problem instance can be encoded into a new instance whose size is bounded by
a function of the parameter k, showing that the size n of the original instance only
has a limited influence on the overall running time required to solve the instance.
The techniques developed to attain these theoretical results sometimes lead to
practical strategies to speed up solving NP-hard problems.

Much effort has gone into designing kernelization algorithms which produce
instances that are as small as possible. In Chapter 3 we studied the Outerplanar
Vertex Deletion problem parameterized by the solution size. We presented
the first concrete kernelization algorithm for Outerplanar Vertex Deletion
with a low degree polynomial bound on the size of the reduced instance. While
the kernelization algorithm is not directly of practical interest, the formulation of
concrete reduction rules gives a good insight in the types of structures found in
large graphs with a small solution size.

178 Conclusion

In Chapter 4 we studied F-Minor-Free Deletion problems (such as Out-
erplanar Vertex Deletion) and considered as parameter the vertex-deletion
distance to a constant treewidth. Specifically we considered the smallest such con-
stant c for which the deletion distance to a treewidth of c is at most as large as
the solution size. We showed that most F-Minor-Free Deletion problems do
not admit a polynomial kernel under this parameterization, even if we consider
Turing kernelization. For all remaining F-Minor-Free Deletion problems we
gave a Turing kernelization algorithm.

We argued for a new perspective on preprocessing in Chapter 5. The goal of
kernelization to reduce the size of problem instances does not always explain or
guarantee the desired speed up of the followup algorithm tasked with solving the
problem. We argue that a reduction in the parameter may result in a more signifi-
cant speed up of the followup algorithm. We introduced the antler decomposition
to describe a condition under which one can efficiently find part of an optimal so-
lution to Feedback Vertex Set, thereby reducing the natural parameter. The
techniques exploit local properties of the input graph to argue membership in an
optimal solution.

In Chapter 6 we investigated the problem of finding large k-secluded trees,
which is closely related to finding antler structures. We presented a 2O(k log k) ·n4-
time algorithm to find, enumerate, and count maximum-weight k-secluded trees.
This improves the previously best known running time which was doubly expo-
nential in k.

7.2 Future work

Two important themes in this thesis are kernelization for F-Minor-Free Dele-
tion and the exploration of a new research direction in preprocessing. For both
themes there is a variety of open questions and opportunities for future work.

Kernelization for F-Minor-Free Deletion A longstanding open prob-
lem is the question whether all F-Minor-Free Deletion problems parameter-
ized by solution size admit a polynomial kernel. A polynomial kernel can be
obtained if F contains a planar graph. The techniques used for this kerneliza-
tion rely on the fact that an F-minor free graph has bounded treewidth (in the
case that F contains a planar graph). Another approach is needed to obtain a
polynomial kernel for F-Minor-Free Deletion for the cases where F does not
contain a planar graph. One of the simplest of these cases is F = {K5,K3,3}
corresponding to the Planar Deletion problem. In recent work Jansen and
Włodarczyk [85] showed Planar Deletion admits a polynomial constant-factor
approximate kernel. Their work shows that kernelizing Planar Deletion can
be reduced to analyzing planar subgraphs connected to the rest of the graph only
through vertices on their outer face. The key to use these insights to obtain a poly-
nomial kernel is determining whether a planar graph H with a set B of t boundary

7.2 Future work 179

vertices all incident to the outer face, has a vertex set A of size at most tO(1) such
that for any graph G that contains H as a subgraph with NG(V (G) \ H) = B,
there is an optimal solution avoiding V (H) \A.

For problems that admit a polynomial kernel, the natural question is whether
we can obtain tight bounds on the size of the kernel. For Planar-F Deletion
(parameterized by solution size) we do not have any concrete bounds on the size
of the kernel in general. For some Planar-F Deletion problem (such as Ver-
tex Cover, Feedback Vertex Set, and Outerplanar Vertex Deletion)
explicit bounds are known. We asked in Chapter 3 whether the upper and lower
bounds for Outerplanar Vertex Deletion can be brought closer together. In
general not a lot is known about how the size of kernels for Planar-F Deletion
depends on F . Giannopoulou et al. [65] show that for each fixed η the Treedepth-
η Deletion problem admits a kernel with O(k6) vertices while the degree of the
polynomial bounding the number of vertices in a kernel for Treedwidth-η Dele-
tion increases with η (unless NP ⊆ coNP/poly). Can we identify all choices of F
for which a uniformly polynomial kernel exists for Planar-F Deletion? How
does the degree of the polynomial bounding the kernel size depend on F for the
remaining cases? With regard to upper bounds, the techniques used in Chapter 3
inspired an explicit kernelization bound for Treewidth-2 Deletion [118] lead-
ing to the question whether these techniques can be further generalized to obtain
explicit bounds for other Planar-F Deletion problems.

In addition to determining the smallest polynomial bounding the kernel size of
different Planar-F Deletion problems parameterized by solution size, an inter-
esting question is if smaller parameterizations can still lead to polynomial kernels.
In Chapter 4 we show that the deletion distance to a constant treewidth is not one
such parameter. Deletion distance to a graph with constant treedepth does admit
a polynomial kernel [81], at least for the case where F contains only connected
graphs. Can we determine for a wide variety of parameters whether or not they
allow polynomial kernels for Planar-F Deletion, assuming NP 6⊆ coNP/poly?
For the parameters deletion distance to a (minor-closed) graph class G, some re-
sults have been attained recently. Feedback Vertex Set admits a polynomial
kernel under such a parameterization if and only if G has a constant elimination
distance to a forest [39]. Elimination distance to a forest is the minimum num-
ber of “rounds” required to obtain forest, where a round consists of removing a
single vertex from each connected component. This work followed a similar result
for Vertex Cover which admits a polynomial kernel under the given parame-
terization if and only if G has constant bridge-depth [24]. The bridge-depth of
a graph is the minimum number of “rounds” required to obtain the null graph,
where each round consists of first contracting bridges (edges whose removal in-
creases the number of connected components) and then deleting a vertex from
each connected component. Can such results be obtained for a broader range of
Planar-F Deletion problems?

180 Conclusion

Preprocessing to reduce the parameter As discussed in Chapter 5, efficient
algorithms to reduce the size of a problem instance are not necessarily the only
effective method to speed up the followup algorithm tasked with finding a solution.
A reduction in the parameter may be more effective, but under which conditions
can such a reduction be achieved? We propose to consider problems parameterized
by solution size and explore under which conditions one can efficiently obtain part
of an optimal solution, thereby reducing the parameter. We explored this question
for Feedback Vertex Set and showed how a partial solution can be found
efficiently under the condition that the graph contains sufficiently simple antlers.
More precisely, if G has an antler of width k and order z then we can find at least k
vertices of a minimum feedback vertex set of G in 2O(k5z2)nO(z) time.

A natural question is whether this running time can be improved, in particular
the dependency on z. One can show that for certain types of antlers with a
“well connected” certificate1, of arbitrary order z ≤ k and width k, a running
time of f(k) · nO(1) can be achieved as the number of subsets C considered in
Step 3 of the algorithm given in Lemma 5.5.15 can then be reduced to nO(1).
For other types of antlers with more loosely connected certificates it is unclear if
such a running time can be achieved. Rather than measuring the complexity of
the certificates based on their order (the highest feedback vertex number of its
connected components), we wonder if algorithms exist with an efficient running
time expressed using another measure of complexity, for example the treewidth of
the certificate.

Another direction for future research is to explore if graph structures, such as
the crown decomposition for Vertex Cover and the antler decomposition for
Feedback Vertex Set, exist for other F-Minor-Free Deletion problems. A
good first candidate may be Outerplanar Vertex Deletion for which it may
be possible to use the reduction rules presented in Chapter 3 in a similar vein as
we used reduction rules inspired by the kernels for Feedback Vertex Set in
Chapter 5.

Finally, we ask whether other types of guarantees on reducing the parameter
can be given. When a reduction in the parameter can be achieved through finding
part of an optimal solution, this could mean identifying vertices that are “obvi-
ously” required in any optimal solution in some way, for example because avoiding
such a vertex is associated with a high cost. A reduction rule used in the simple
kernel for Vertex Cover is to put any vertex with a degree higher than k into
the solution. This is a safe reduction since the cost of avoiding v (i.e. including
all neighbors of v in the solution) is higher than the cost of an acceptable solution
(k). Can we formulate weaker conditions such that v is still guaranteed to be in an

1Consider for example antlers (C,F) with a C-certificate H where each connected compo-
nent H′ of H contains a Kfvs(H′)+2-minor, i.e., C ∩ V (H′) is an optimal feedback vertex set
in H′ as H′ contains a clique on |C ∩ V (H′)| + 2 vertices as a minor. Then H′ − C contains
a tree whose neighborhood (in H′) is exactly equal to C ∩ V (H′). This allows us, in Step 3 of
the algorithm given in Lemma 5.5.15, to consider only O(n) vertex sets (rather than O(nz)) by
considering the neighborhoods of O(n) trees.

7.2 Future work 181

optimal solution while maintaining the property that such vertices can be found
efficiently? Can these ideas be used to find part of an optimal solution for other
F-Minor-Free Deletion problems?

182 Conclusion

Index of Definitions

A
almost leafless . 157
ancestor . 13
antler, z-antler 118, 119

empty. .118
width . 118

z-antler complexity 146
antler-safe . 133
z-antler-sequence 143

width . 143
α-approximation algorithm.17
(k, c)-augmented modulator 34

B
bags . 14
biconnected component 13
biconnected graph 13
bipartite graph . 13
block-cut forest . 13
block-cut tree . 13
boundary . 27
Bounded-Width 1-Antler Detec-

tion .121
branch set . 14

C
C-certificate . 118

order .118
clique . 13
complete graph . 13
component .13
component graph 27

component-wise minor 82
connected component 13
2-connected graph 13
cut vertex . 13

D
decision problem . 17
degG(v) . see degree
degree (multigraphs) 117
degree (simple graphs) 12
descendant. .13
description. .154

E
EG(.., ..) (multigraphs).117
EG(.., ..) (simple graphs) 12
eG(.., ..) . 117
edge (simple graphs) 12
ELSS see Enumerate Large

Secluded Supertrees
Enumerate Large Secluded Super-

trees 155
exterior edge . 64

F
face . 15
feedback vertex cut 117

empty. .118
width . 118

feedback vertex number 13
feedback vertex set.13
fixed-parameter tractable 18

184 Index of Definitions

v-flower. .134
order .134

forest . 13
FPT see fixed-parameter tractable
FVC see feedback vertex cut
FVS.see feedback vertex set
fvs(G) see feedback vertex number
FVS-safe . 133

G
graph minor theorem 15
grid graph . 16
grid minor theorem 16

I
independent set . 13
interior edge . 64
isol(G) . 98

K
kernel .19
kernelization algorithm.19

L
Large Secluded Tree152
LCA see lowest common ancestor
leaf . 13
leaf-block . 84
lowest common ancestor 31
LST see Large Secluded Tree

M
�-maximal component 83
maxsetw(X) . 155
min tw(F) . 81
minimal minor model 14
minor . 14
F-minor free . 15
minor model . 14
minor-closed . 15
F-Minor-Free Deletion16, 83
MK-hierarchy . 21
model. .14
modulator . 16
Multicolored Clique 121

multigraph . 117

N
NG(..), NG[..] see neighborhood
neighborhood (multigraphs).117
neighborhood (simple graphs) 12
non-redundant . 154
null graph . 12

O
obstruction . 15
odd(G) . 100
opd(G)see outerplanar deletion number
order-respecting matching.58
outer face . 15
(k, c, d)-outerplanar decomposition . . 42
outerplanar deletion number 28
outerplanar deletion set 28
outerplanar graph.15

P
parameterized decision problem 17
parameterized reduction 18
path . 13
planar graph . 15
polynomial-parameter transformation

. 19
preimage function.11
proper minor . 14
α -prune(G) . 84

R
reducible FVC . 129
redundant . 154
α-robust . 83
rooted tree. .13

S
self-loop . 116
Y -separated . 38
(X,Y)-separator . 27
simple FVC. .129
simple graph . 12
single-tree FVC. 129
sparse graph class14

Index of Definitions 185

F-subgraph free . 15

T
tree . 13
tree decomposition 14
treewidth . 14
Turing kernelization 21
tw(G) .14
F-type-Free Deletion 83

U
(n, s)-universal set 131
universal vertex . 14

V
V (e) . 12
vc(G) see vertex cover number
vertex cover. .13
vertex cover number 13

W
W-hierarchy . 18
weak dual . 27, 64
WK-hierarchy . 21

186 Index of Definitions

Bibliography

[1] Faisal N. Abu-Khzam, Rebecca L. Collins, Michael R. Fellows, Michael A.
Langston, W. Henry Suters, and Christopher T. Symons. Kernelization
algorithms for the vertex cover problem: Theory and experiments. In Proc.
6th ALENEX/ANALC, pages 62–69, 2004.

[2] Faisal N. Abu-Khzam, Michael R. Fellows, Michael A. Langston, and
W. Henry Suters. Crown structures for vertex cover kernelization. Theory
Comput. Syst., 41(3):411–430, 2007. doi:10.1007/s00224-007-1328-0.

[3] Tobias Achterberg, Robert E. Bixby, Zonghao Gu, Edward Rothberg, and
Dieter Weninger. Presolve reductions in mixed integer programming. Tech-
nical Report 16-44, ZIB, Takustr.7, 14195 Berlin, 2016. URL: http:
//nbn-resolving.de/urn:nbn:de:0297-zib-60370.

[4] Tobias Achterberg and Roland Wunderling. Mixed Integer Programming:
Analyzing 12 Years of Progress, pages 449–481. Springer Berlin Heidelberg,
2013. doi:10.1007/978-3-642-38189-8_18.

[5] Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh,
and Meirav Zehavi. Feedback vertex set inspired kernel for chordal vertex
deletion. ACM Trans. Algorithms, 15(1):11:1–11:28, 2019. doi:10.1145/
3284356.

[6] Takuya Akiba and Yoichi Iwata. Branch-and-reduce exponential/FPT al-
gorithms in practice: A case study of vertex cover. Theor. Comput. Sci.,
609:211–225, 2016. doi:10.1016/j.tcs.2015.09.023.

[7] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM,
42(4):844–856, 1995.

[8] Haris Angelidakis, Pranjal Awasthi, Avrim Blum, Vaggos Chatziafratis, and
Chen Dan. Bilu-Linial stability, certified algorithms and the independent set
problem. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, edi-
tors, Proc. 27th ESA, volume 144 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.7.

http://dx.doi.org/10.1007/s00224-007-1328-0
http://nbn-resolving.de/urn:nbn:de:0297-zib-60370
http://nbn-resolving.de/urn:nbn:de:0297-zib-60370
http://dx.doi.org/10.1007/978-3-642-38189-8_18
http://dx.doi.org/10.1145/3284356
http://dx.doi.org/10.1145/3284356
http://dx.doi.org/10.1016/j.tcs.2015.09.023
http://dx.doi.org/10.4230/LIPIcs.ESA.2019.7

188 Bibliography

[9] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Ap-
proach. Cambridge University Press, 2009. URL: http://www.cambridge.
org/catalogue/catalogue.asp?isbn=9780521424264.

[10] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under
perturbation stability. Inf. Process. Lett., 112(1-2):49–54, 2012. doi:10.
1016/j.ipl.2011.10.006.

[11] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation
algorithm for the undirected feedback vertex set problem. SIAM
Journal on Discrete Mathematics, 12(3):289–297, 1999. doi:10.1137/
S0895480196305124.

[12] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Optimal algorithms for
hitting (topological) minors on graphs of bounded treewidth. In Proc. 12th
IPEC, volume 89 of LIPIcs, pages 4:1–4:12, 2017. doi:10.4230/LIPIcs.
IPEC.2017.4.

[13] C. Berge. Sur le couplage maximum d’un graphe. Comptes rendus hebdo-
madaires des séances de l’Académie des sciences, 247:258–259, 1958.

[14] René van Bevern, Till Fluschnik, George B. Mertzios, Hendrik Molter,
Manuel Sorge, and Ondrej Suchý. The parameterized complexity of find-
ing secluded solutions to some classical optimization problems on graphs.
Discret. Optim., 30:20–50, 2018. doi:10.1016/j.disopt.2018.05.002.

[15] René van Bevern, Till Fluschnik, and Oxana Yu. Tsidulko. Parameterized
algorithms and data reduction for the short secluded s-t-path problem. Net-
works, 75(1):34–63, 2020. doi:10.1002/net.21904.

[16] Therese C. Biedl. Small drawings of outerplanar graphs, series-parallel
graphs, and other planar graphs. Discret. Comput. Geom., 45(1):141–160,
2011. doi:10.1007/s00454-010-9310-z.

[17] Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov,
Saket Saurabh, and Yngve Villanger. Kernel(s) for problems with no kernel:
On out-trees with many leaves. ACM Trans. Algorithms, 8(4):38, 2012.
doi:10.1145/2344422.2344428.

[18] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM J. Comput., 25(6):1305–1317, 1996. doi:10.1137/
S0097539793251219.

[19] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theor. Comput. Sci., 209(1-2):1–45, 1998. doi:10.1016/
S0304-3975(97)00228-4.

http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://dx.doi.org/10.1016/j.ipl.2011.10.006
http://dx.doi.org/10.1016/j.ipl.2011.10.006
http://dx.doi.org/10.1137/S0895480196305124
http://dx.doi.org/10.1137/S0895480196305124
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.4
http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.4
http://dx.doi.org/10.1016/j.disopt.2018.05.002
http://dx.doi.org/10.1002/net.21904
http://dx.doi.org/10.1007/s00454-010-9310-z
http://dx.doi.org/10.1145/2344422.2344428
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1016/S0304-3975(97)00228-4

189

[20] Hans L. Bodlaender. Kernelization: New upper and lower bound tech-
niques. In Proc. 4th IWPEC, pages 17–37, 2009. doi:10.1007/
978-3-642-11269-0_2.

[21] Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx,
Saket Saurabh, and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM,
63(5):44:1–44:69, 2016. doi:10.1145/2973749.

[22] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization
lower bounds by cross-composition. SIAM J. Discrete Math., 28(1):277–305,
2014. doi:10.1137/120880240.

[23] Hans L. Bodlaender and Thomas C. van Dijk. A cubic kernel for feedback
vertex set and loop cutset. Theory Comput. Syst., 46(3):566–597, 2010.
doi:10.1007/s00224-009-9234-2.

[24] Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Bridge-depth character-
izes which structural parameterizations of vertex cover admit a polynomial
kernel. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
ICALP 2020, volume 168 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 16:1–16:19, Dagstuhl, Germany, 2020. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2020.16.

[25] Marin Bougeret and Ignasi Sau. How much does a treedepth modulator
help to obtain polynomial kernels beyond sparse graphs? Algorithmica,
81(10):4043–4068, 2019. doi:10.1007/s00453-018-0468-8.

[26] Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A.
Langston, Shev Mac, and Frances A. Rosamond. The undirected feed-
back vertex set problem has a poly(k) kernel. In Hans L. Bodlaender
and Michael A. Langston, editors, Proc. 2nd IWPEC, volume 4169 of Lec-
ture Notes in Computer Science, pages 192–202. Springer, 2006. doi:
10.1007/11847250_18.

[27] Kevin Cattell, Michael J. Dinneen, Rodney G. Downey, Michael R. Fel-
lows, and Michael A. Langston. On computing graph minor obstruc-
tion sets. Theor. Comput. Sci., 233(1-2):107–127, 2000. doi:10.1016/
S0304-3975(97)00300-9.

[28] Gary Chartrand and Frank Harary. Planar permutation graphs. Annales de
l’I.H.P. Probabilités et statistiques, 3(4):433–438, 1967.

[29] Shiri Chechik, Matthew P. Johnson, Merav Parter, and David Peleg. Se-
cluded connectivity problems. Algorithmica, 79(3):708–741, 2017. doi:
10.1007/s00453-016-0222-z.

http://dx.doi.org/10.1007/978-3-642-11269-0_2
http://dx.doi.org/10.1007/978-3-642-11269-0_2
http://dx.doi.org/10.1145/2973749
http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1007/s00224-009-9234-2
http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.16
http://dx.doi.org/10.1007/s00453-018-0468-8
http://dx.doi.org/10.1007/11847250_18
http://dx.doi.org/10.1007/11847250_18
http://dx.doi.org/10.1016/S0304-3975(97)00300-9
http://dx.doi.org/10.1016/S0304-3975(97)00300-9
http://dx.doi.org/10.1007/s00453-016-0222-z
http://dx.doi.org/10.1007/s00453-016-0222-z

190 Bibliography

[30] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further obser-
vations and further improvements. Journal of Algorithms, 41(2):280–301,
2001. doi:10.1006/jagm.2001.1186.

[31] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex
cover. Theor. Comput. Sci., 411(40-42):3736–3756, 2010. doi:10.1016/j.
tcs.2010.06.026.

[32] Benny Chor, Mike Fellows, and David W. Juedes. Linear kernels in linear
time, or how to save k colors in O(n2) steps. In Proc. 30th WG, pages
257–269, 2004. doi:10.1007/978-3-540-30559-0_22.

[33] David Coudert, Florian Huc, and Jean-Sébastien Sereni. Pathwidth of out-
erplanar graphs. J. Graph Theory, 55(1):27–41, 2007. doi:10.1002/jgt.
20218.

[34] Bruno Courcelle. The monadic second-order logic of graphs I: Recogniz-
able sets of finite graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/
0890-5401(90)90043-H.

[35] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh.
Parameterized Algorithms. Springer, London, 2015. doi:10.1007/
978-3-319-21275-3.

[36] Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh. On the hardness of losing width. Theory Comput. Syst.,
54(1):73–82, 2014. doi:10.1007/s00224-013-9480-1.

[37] Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Woj-
taszczyk. An improved FPT algorithm and a quadratic kernel for pathwidth
one vertex deletion. Algorithmica, 64(1):170–188, sep 2012.

[38] Amit Daniely, Nati Linial, and Michael E. Saks. Clustering is difficult only
when it does not matter. CoRR, abs/1205.4891, 2012. arXiv:1205.4891.

[39] David Dekker and Bart M.P. Jansen. Kernelization for feedback vertex set
via elimination distance to a forest. In WG 2022. To appear.

[40] Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontriv-
ial sparsification unless the polynomial-time hierarchy collapses. J. ACM,
61(4):23:1–23:27, jul 2014. doi:10.1145/2629620.

[41] Emilio Di Giacomo, Giuseppe Liotta, and Tamara Mchedlidze. Lower and
upper bounds for long induced paths in 3-connected planar graphs. Theor.
Comput. Sci., 636:47–55, 2016. doi:10.1016/j.tcs.2016.04.034.

http://dx.doi.org/10.1006/jagm.2001.1186
http://dx.doi.org/10.1016/j.tcs.2010.06.026
http://dx.doi.org/10.1016/j.tcs.2010.06.026
http://dx.doi.org/10.1007/978-3-540-30559-0_22
http://dx.doi.org/10.1002/jgt.20218
http://dx.doi.org/10.1002/jgt.20218
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/s00224-013-9480-1
http://arxiv.org/abs/1205.4891
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1016/j.tcs.2016.04.034

191

[42] Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2017. doi:10.1007/978-3-662-53622-3.

[43] Guoli Ding and Stan Dziobiak. Excluded-minor characterization of apex-
outerplanar graphs. Graphs Comb., 32(2):583–627, 2016. doi:10.1007/
s00373-015-1611-9.

[44] Michael J. Dinneen. Too many minor order obstructions. J. Univers. Com-
put. Sci., 3(11):1199–1206, 1997. doi:10.3217/jucs-003-11-1199.

[45] Michael J. Dinneen, Kevin Cattell, and Michael R. Fellows. Forbidden mi-
nors to graphs with small feedback sets. Discrete Math., 230(1-3):215–252,
2001. doi:10.1016/S0012-365X(00)00083-2.

[46] Michael J. Dinneen and Liu Xiong. Minor-order obstructions for the graphs
of vertex cover 6. J. Graph Theory, 41(3):163–178, 2002. doi:10.1002/jgt.
10059.

[47] Rodney G. Downey and Michael R. Fellows. Parameterized Complex-
ity. Monographs in Computer Science. Springer, 1999. doi:10.1007/
978-1-4612-0515-9.

[48] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, London, 2013. doi:
10.1007/978-1-4471-5559-1.

[49] Andrew Drucker. New limits to classical and quantum instance compression.
SIAM J. Comput., 44(5):1443–1479, 2015. doi:10.1137/130927115.

[50] M. Ayaz Dzulfikar, Johannes Klaus Fichte, and Markus Hecher. The PACE
2019 parameterized algorithms and computational experiments challenge:
The fourth iteration (invited paper). In Bart M. P. Jansen and Jan Arne
Telle, editors, Proc. 14th IPEC, volume 148 of LIPIcs, pages 25:1–25:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.IPEC.2019.25.

[51] Michael R. Fellows. Blow-ups, win/win’s, and crown rules: Some new direc-
tions in FPT. In Proc. 29th WG, pages 1–12, 2003.

[52] Michael R. Fellows. The lost continent of polynomial time: Preprocessing
and kernelization. In Proc. 2nd IWPEC, pages 276–277, 2006. doi:10.
1007/11847250_25.

[53] Michael R. Fellows, Bart M.P. Jansen, and Frances Rosamond. Towards
fully multivariate algorithmics: Parameter ecology and the deconstruction of
computational complexity. European Journal of Combinatorics, 34(3):541–
566, 2013. Combinatorial Algorithms and Complexity. doi:10.1016/j.ejc.
2012.04.008.

http://dx.doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.1007/s00373-015-1611-9
http://dx.doi.org/10.1007/s00373-015-1611-9
http://dx.doi.org/10.3217/jucs-003-11-1199
http://dx.doi.org/10.1016/S0012-365X(00)00083-2
http://dx.doi.org/10.1002/jgt.10059
http://dx.doi.org/10.1002/jgt.10059
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1137/130927115
http://dx.doi.org/10.4230/LIPIcs.IPEC.2019.25
http://dx.doi.org/10.4230/LIPIcs.IPEC.2019.25
http://dx.doi.org/10.1007/11847250_25
http://dx.doi.org/10.1007/11847250_25
http://dx.doi.org/10.1016/j.ejc.2012.04.008
http://dx.doi.org/10.1016/j.ejc.2012.04.008

192 Bibliography

[54] Henning Fernau. Kernelization, Turing kernels. In Encyclope-
dia of Algorithms, pages 1043–1045. Springer, 2016. doi:10.1007/
978-1-4939-2864-4_528.

[55] Herbert J. Fleischner, Dennis P. Geller, and Frank Harary. Outerpla-
nar graphs and weak duals. Journal of the Indian Mathematical Society,
38, 1974. URL: http://www.informaticsjournals.com/index.php/jims/
article/view/16694.

[56] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag,
2006. doi:10.1007/3-540-29953-X.

[57] Till Fluschnik. Elements of Efficient Data Reduction: Fractals, Diminishers,
Weights and Neighborhoods. PhD thesis, Technische Universität Berlin, 2020.
doi:10.14279/depositonce-10134.

[58] Fedor V. Fomin, Petr A. Golovach, Nikolay Karpov, and Alexander S. Ku-
likov. Parameterized complexity of secluded connectivity problems. Theory
Comput. Syst., 61(3):795–819, 2017. doi:10.1007/s00224-016-9717-x.

[59] Fedor V. Fomin, Bart M.P. Jansen, and Michał Pilipczuk. Preprocess-
ing subgraph and minor problems: When does a small vertex cover help?
Journal of Computer and System Sciences, 80(2):468–495, 2014. doi:
10.1016/j.jcss.2013.09.004.

[60] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip,
and Saket Saurabh. Hitting forbidden minors: Approximation and ker-
nelization. SIAM J. Discrete Math., 30(1):383–410, 2016. doi:10.1137/
140997889.

[61] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh.
Planar F-deletion: Approximation, kernelization and optimal FPT algo-
rithms. In 53rd Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages
470–479, Washington, 2012. IEEE Computer Society. doi:10.1109/FOCS.
2012.62.

[62] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Kernelization: Theory of Parameterized Preprocessing. Cambridge Univer-
sity Press, Cambridge, 2019. doi:10.1017/9781107415157.

[63] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression
and succinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. doi:
10.1016/j.jcss.2010.06.007.

[64] Fabrizio Frati. Straight-line drawings of outerplanar graphs in O(dn log n)
area. Computational Geometry, 45(9):524–533, 2012. doi:10.1016/j.
comgeo.2010.03.007.

http://dx.doi.org/10.1007/978-1-4939-2864-4_528
http://dx.doi.org/10.1007/978-1-4939-2864-4_528
http://www.informaticsjournals.com/index.php/jims/article/view/16694
http://www.informaticsjournals.com/index.php/jims/article/view/16694
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.14279/depositonce-10134
http://dx.doi.org/10.1007/s00224-016-9717-x
http://dx.doi.org/10.1016/j.jcss.2013.09.004
http://dx.doi.org/10.1016/j.jcss.2013.09.004
http://dx.doi.org/10.1137/140997889
http://dx.doi.org/10.1137/140997889
http://dx.doi.org/10.1109/FOCS.2012.62
http://dx.doi.org/10.1109/FOCS.2012.62
http://dx.doi.org/10.1017/9781107415157
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1016/j.jcss.2010.06.007
http://dx.doi.org/10.1016/j.comgeo.2010.03.007
http://dx.doi.org/10.1016/j.comgeo.2010.03.007

193

[65] Archontia C. Giannopoulou, Bart M. P. Jansen, Daniel Lokshtanov, and
Saket Saurabh. Uniform kernelization complexity of hitting forbidden mi-
nors. ACM Trans. Algorithms, 13(3):35:1–35:35, March 2017. doi:10.1145/
3029051.

[66] Petr A. Golovach, Pinar Heggernes, Paloma T. Lima, and Pedro Monteale-
gre. Finding connected secluded subgraphs. CoRR, abs/1710.10979, 2017.
arXiv:1710.10979.

[67] Petr A. Golovach, Pinar Heggernes, Paloma T. Lima, and Pedro Monteale-
gre. Finding connected secluded subgraphs. J. Comput. Syst. Sci., 113:101–
124, 2020. doi:10.1016/j.jcss.2020.05.006.

[68] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian
Wernicke. Compression-based fixed-parameter algorithms for feedback ver-
tex set and edge bipartization. J. Comput. Syst. Sci., 72(8):1386–1396, 2006.
doi:10.1016/j.jcss.2006.02.001.

[69] Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on pa-
rameterizing problems: Distance from triviality. In Rodney G. Downey,
Michael R. Fellows, and Frank K. H. A. Dehne, editors, Parameter-
ized and Exact Computation, First International Workshop, IWPEC 2004,
Bergen, Norway, September 14-17, 2004, Proceedings, volume 3162 of Lec-
ture Notes in Computer Science, pages 162–173. Springer, 2004. doi:
10.1007/978-3-540-28639-4_15.

[70] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem
kernelization. SIGACT News, 38(1):31–45, 2007. doi:10.1145/1233481.
1233493.

[71] Anupam Gupta, Euiwoong Lee, Jason Li, Pasin Manurangsi, and Michał
Włodarczyk. Losing treewidth by separating subsets. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1731–1749. SIAM, 2019. doi:10.1137/1.9781611975482.104.

[72] Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlström, and
Xi Wu. A completeness theory for polynomial (Turing) kernelization. Algo-
rithmica, 71(3):702–730, 2015. doi:10.1007/s00453-014-9910-8.

[73] Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash.
Wegotyoucovered: The winning solver from the PACE 2019 implementa-
tion challenge, vertex cover track. CoRR, abs/1908.06795, 2019. arXiv:
1908.06795.

[74] Demian Hespe, Christian Schulz, and Darren Strash. Scalable kernelization
for maximum independent sets. ACM Journal of Experimental Algorithmics,
24(1):1.16:1–1.16:22, 2019. doi:10.1145/3355502.

http://dx.doi.org/10.1145/3029051
http://dx.doi.org/10.1145/3029051
http://arxiv.org/abs/1710.10979
http://dx.doi.org/10.1016/j.jcss.2020.05.006
http://dx.doi.org/10.1016/j.jcss.2006.02.001
http://dx.doi.org/10.1007/978-3-540-28639-4_15
http://dx.doi.org/10.1007/978-3-540-28639-4_15
http://dx.doi.org/10.1145/1233481.1233493
http://dx.doi.org/10.1145/1233481.1233493
http://dx.doi.org/10.1137/1.9781611975482.104
http://dx.doi.org/10.1007/s00453-014-9910-8
http://arxiv.org/abs/1908.06795
http://arxiv.org/abs/1908.06795
http://dx.doi.org/10.1145/3355502

194 Bibliography

[75] John E. Hopcroft and Robert Endre Tarjan. Efficient algorithms for graph
manipulation (algorithm 447). Commun. ACM, 16(6):372–378, 1973. doi:
10.1145/362248.362272.

[76] Yoichi Iwata. Linear-time kernelization for feedback vertex set. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors,
44th International Colloquium on Automata, Languages, and Programming
(ICALP 2017), volume 80 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 68:1–68:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2017.68.

[77] Yoichi Iwata and Yusuke Kobayashi. Improved analysis of highest-degree
branching for feedback vertex set. In Bart M. P. Jansen and Jan Arne Telle,
editors, Proc. 14th IPEC, volume 148 of LIPIcs, pages 22:1–22:11. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
IPEC.2019.22.

[78] Bart M. P. Jansen. Turing kernelization for finding long paths and cycles
in restricted graph classes. J. Comput. Syst. Sci., 85:18–37, 2017. doi:
10.1016/j.jcss.2016.10.008.

[79] Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization
revisited - upper and lower bounds for a refined parameter. Theory Comput.
Syst., 53(2):263–299, 2013. doi:10.1007/s00224-012-9393-4.

[80] Bart M. P. Jansen and Stefan Kratsch. Data reduction for graph coloring
problems. Inf. Comput., 231:70–88, 2013. doi:10.1016/j.ic.2013.08.005.

[81] Bart M. P. Jansen and Astrid Pieterse. Polynomial kernels for hitting for-
bidden minors under structural parameterizations. Theor. Comput. Sci.,
841:124–166, 2020. doi:10.1016/j.tcs.2020.07.009.

[82] Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization
for chordal vertex deletion. SIAM J. Discret. Math., 32(3):2258–2301, 2018.
doi:10.1137/17M112035X.

[83] Bart M. P. Jansen, Marcin Pilipczuk, and Marcin Wrochna. Turing kernel-
ization for finding long paths in graph classes excluding a topological minor.
Algorithmica, 81(10):3936–3967, 2019. doi:10.1007/s00453-019-00614-4.

[84] Bart M. P. Jansen, Venkatesh Raman, and Martin Vatshelle. Parameter
ecology for feedback vertex set. Tsinghua Science and Technology, 19(4):387–
409, 2014. doi:10.1109/TST.2014.6867520.

[85] Bart M. P. Jansen and Michał Włodarczyk. Lossy planarization: A constant-
factor approximate kernelization for planar vertex deletion. In Proceedings of
the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC

http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.68
http://dx.doi.org/10.4230/LIPIcs.IPEC.2019.22
http://dx.doi.org/10.4230/LIPIcs.IPEC.2019.22
http://dx.doi.org/10.1016/j.jcss.2016.10.008
http://dx.doi.org/10.1016/j.jcss.2016.10.008
http://dx.doi.org/10.1007/s00224-012-9393-4
http://dx.doi.org/10.1016/j.ic.2013.08.005
http://dx.doi.org/10.1016/j.tcs.2020.07.009
http://dx.doi.org/10.1137/17M112035X
http://dx.doi.org/10.1007/s00453-019-00614-4
http://dx.doi.org/10.1109/TST.2014.6867520

195

2022, page 900–913, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3519935.3520021.

[86] Gwenaël Joret, Christophe Paul, Ignasi Sau, Saket Saurabh, and Stéphan
Thomassé. Hitting and harvesting pumpkins. SIAM J. Discret. Math.,
28(3):1363–1390, 2014. doi:10.1137/120883736.

[87] R. M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103. Plenum Press, 1972.

[88] Joachim Kneis, Alexander Langer, and Peter Rossmanith. A new algorithm
for finding trees with many leaves. Algorithmica, 61(4):882–897, 2011. doi:
10.1007/s00453-010-9454-5.

[89] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant
vertices: New tools for kernelization. In Proc. 53rd FOCS, pages 450–459,
2012. doi:10.1109/FOCS.2012.46.

[90] Stefan Kratsch and Magnus Wahlström. Compression via matroids: A ran-
domized polynomial kernel for odd cycle transversal. ACM Trans. Algo-
rithms, 10(4):20:1–20:15, 2014. doi:10.1145/2635810.

[91] Jens Lagergren. Upper bounds on the size of obstructions and intertwines.
J. Comb. Theory, Ser. B, 73(1):7–40, 1998. doi:10.1006/jctb.1997.1788.

[92] Euiwoong Lee. Partitioning a graph into small pieces with applications to
path transversal. Math. Program., 177(1–2):1–19, sep 2019. doi:10.1007/
s10107-018-1255-7.

[93] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for
hereditary properties is NP-complete. J. Comput. Syst. Sci., 20(2):219–230,
1980. doi:10.1016/0022-0000(80)90060-4.

[94] J. Leydold and P. Stadler. Minimal cycle bases of outerplanar graphs. Elec-
tron. J. Comb., 5, 1998. URL: http://eudml.org/doc/119549.

[95] Daniel Lokshtanov. New Methods in Parameterized Algorithms and Com-
plexity. PhD thesis, University of Bergen, Norway, 2009.

[96] Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Kernelization -
Preprocessing with a guarantee. In The Multivariate Algorithmic Revolution
and Beyond, pages 129–161, 2012. doi:10.1007/978-3-642-30891-8_10.

[97] Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ra-
manujan, and Saket Saurabh. Faster parameterized algorithms using lin-
ear programming. ACM Trans. Algorithms, 11(2):15:1–15:31, 2014. doi:
10.1145/2566616.

http://dx.doi.org/10.1145/3519935.3520021
http://dx.doi.org/10.1137/120883736
http://dx.doi.org/10.1007/s00453-010-9454-5
http://dx.doi.org/10.1007/s00453-010-9454-5
http://dx.doi.org/10.1109/FOCS.2012.46
http://dx.doi.org/10.1145/2635810
http://dx.doi.org/10.1006/jctb.1997.1788
http://dx.doi.org/10.1007/s10107-018-1255-7
http://dx.doi.org/10.1007/s10107-018-1255-7
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://eudml.org/doc/119549
http://dx.doi.org/10.1007/978-3-642-30891-8_10
http://dx.doi.org/10.1145/2566616
http://dx.doi.org/10.1145/2566616

196 Bibliography

[98] Max-Jonathan Luckow and Till Fluschnik. On the computational complexity
of length- and neighborhood-constrained path problems. Inf. Process. Lett.,
156:105913, 2020. doi:10.1016/j.ipl.2019.105913.

[99] Wolfgang Mader. Homomorphieeigenschaften und mittlere Kantendichte von
Graphen. Mathematische Annalen, 174(4):265–268, 1967. doi:10.1007/
BF01364272.

[100] Tamara Mchedlidze and Antonios Symvonis. Crossing-optimal acyclic
hp-completion for outerplanar st-digraphs. J. Graph Algorithms Appl.,
15(3):373–415, 2011. doi:10.7155/jgaa.00231.

[101] Kerri Morgan and Graham Farr. Approximation algorithms for the maxi-
mum induced planar and outerplanar subgraph problems. J. Graph Algo-
rithms Appl., 11(1):165–193, 2007. doi:10.7155/jgaa.00141.

[102] Moni Naor, Leonard J. Schulman, and Srinivasan Aravind. Splitters and
near-optimal derandomization. In 36th Annual Symposium on Foundations
of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995,
pages 182–191. IEEE Computer Society, 1995. doi:10.1109/SFCS.1995.
492475.

[103] G.L. Nemhauser and L.E.jun. Trotter. Vertex packings: structural prop-
erties and algorithms. Math. Program., 8:232–248, 1975. doi:10.1007/
BF01580444.

[104] Rolf Niedermeier. Reflections on multivariate algorithmics and problem
parameterization. In Jean-Yves Marion and Thomas Schwentick, editors,
27th International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2010, March 4-6, 2010, Nancy, France, volume 5 of LIPIcs,
pages 17–32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010.
doi:10.4230/LIPIcs.STACS.2010.2495.

[105] Geevarghese Philip, Venkatesh Raman, and Yngve Villanger. A quartic
kernel for pathwidth-one vertex deletion. In Dimitrios M. Thilikos, editor,
Graph Theoretic Concepts in Computer Science - 36th International Work-
shop, WG 2010, Zarós, Crete, Greece, June 28-30, 2010 Revised Papers,
volume 6410 of Lecture Notes in Computer Science, pages 196–207, 2010.
doi:10.1007/978-3-642-16926-7_19.

[106] Marcin Pilipczuk, Michal Pilipczuk, Piotr Sankowski, and Erik Jan van
Leeuwen. Network sparsification for steiner problems on planar and
bounded-genus graphs. ACM Trans. Algorithms, 14(4):53:1–53:73, 2018.
doi:10.1145/3239560.

[107] Timo Poranen. Heuristics for the maximum outerplanar subgraph problem.
J. Heuristics, 11(1):59–88, 2005. doi:10.1007/s10732-005-6999-6.

http://dx.doi.org/10.1016/j.ipl.2019.105913
http://dx.doi.org/10.1007/BF01364272
http://dx.doi.org/10.1007/BF01364272
http://dx.doi.org/10.7155/jgaa.00231
http://dx.doi.org/10.7155/jgaa.00141
http://dx.doi.org/10.1109/SFCS.1995.492475
http://dx.doi.org/10.1109/SFCS.1995.492475
http://dx.doi.org/10.1007/BF01580444
http://dx.doi.org/10.1007/BF01580444
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2495
http://dx.doi.org/10.1007/978-3-642-16926-7_19
http://dx.doi.org/10.1145/3239560
http://dx.doi.org/10.1007/s10732-005-6999-6

197

[108] W. V. Quine. The problem of simplifying truth functions. The American
Mathematical Monthly, 59(8):521–531, 1952. doi:10.2307/2308219.

[109] Siddharthan Ramachandramurthi. The structure and number of obstruc-
tions to treewidth. SIAM Journal on Discrete Mathematics, 10(1):146–157,
1997. doi:10.1137/S0895480195280010.

[110] Jean-Florent Raymond and Dimitrios M. Thilikos. Recent techniques and
results on the erdős-pósa property. Discret. Appl. Math., 231:25–43, 2017.
doi:10.1016/j.dam.2016.12.025.

[111] Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a pla-
nar graph. J. Comb. Theory, Ser. B, 41(1):92–114, 1986. doi:10.1016/
0095-8956(86)90030-4.

[112] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint
paths problem. J. Comb. Theory, Ser. B, 63(1):65–110, 1995. doi:10.
1006/jctb.1995.1006.

[113] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjec-
ture. J. Comb. Theory, Ser. B, 92(2):325–357, 2004. doi:10.1016/j.jctb.
2004.08.001.

[114] Juanjo Rué, Konstantinos S. Stavropoulos, and Dimitrios M. Thilikos. Out-
erplanar obstructions for a feedback vertex set. Eur. J. Comb., 33(5):948–
968, 2012. doi:10.1016/j.ejc.2011.09.018.

[115] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. An FPT-
algorithm for recognizing k-apices of minor-closed graph classes. In Ar-
tur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP
2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), vol-
ume 168 of LIPIcs, pages 95:1–95:20, Dagstuhl, 2020. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2020.95.

[116] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k-apices of minor-
closed graph classes. I. Bounding the obstructions. CoRR, 2021. arXiv:
2103.00882.

[117] Saket Saurabh. Open problems from the workshop on kernelization (WorKer
2019), 2019. URL: https://www.youtube.com/watch?v=vCjG5zGjQr4.

[118] Jeroen L. G. Schols. Kernelization for treewidth-2 vertex deletion, 2022.
arXiv:2203.10070.

[119] Alexander Schrijver. Combinatorial Optimization. Polyhedra and Efficiency.
Springer, Berlin, 2003.

http://dx.doi.org/10.2307/2308219
http://dx.doi.org/10.1137/S0895480195280010
http://dx.doi.org/10.1016/j.dam.2016.12.025
http://dx.doi.org/10.1016/0095-8956(86)90030-4
http://dx.doi.org/10.1016/0095-8956(86)90030-4
http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1006/jctb.1995.1006
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1016/j.ejc.2011.09.018
http://dx.doi.org/10.4230/LIPIcs.ICALP.2020.95
http://arxiv.org/abs/2103.00882
http://arxiv.org/abs/2103.00882
https://www.youtube.com/watch?v=vCjG5zGjQr4
http://arxiv.org/abs/2203.10070

198 Bibliography

[120] Maciej M. Syslo. Characterizations of outerplanar graphs. Discret. Math.,
26(1):47–53, 1979. doi:10.1016/0012-365X(79)90060-8.

[121] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans.
Algorithms, 6(2):32:1–32:8, 2010. doi:10.1145/1721837.1721848.

[122] P. Toth. Dynamic programming algorithms for the zero-one knapsack prob-
lem. Computing, 25:29–45, 1980. doi:10.1007/BF02243880.

[123] Johannes Uhlmann and Mathias Weller. Two-layer planarization param-
eterized by feedback edge set. Theor. Comput. Sci., 494:99–111, 2013.
doi:10.1016/j.tcs.2013.01.029.

[124] René Van Bevern, Hannes Moser, and Rolf Niedermeier. Approximation and
tidying—a problem kernel for s-plex cluster vertex deletion. Algorithmica,
62(3):930–950, 2012. doi:10.1007/s00453-011-9492-7.

[125] Klaus Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische
Annalen, 114(1):570–590, 1937. doi:10.1007/BF01594196.

[126] Mathias Weller. Aspects of Preprocessing Applied to Combinatorial Graph
Problems. PhD thesis, Technische Universität Berlin, 2013.

[127] Chee-Keng Yap. Some consequences of non-uniform conditions on uni-
form classes. Theor. Comput. Sci., 26:287–300, 1983. doi:10.1016/
0304-3975(83)90020-8.

http://dx.doi.org/10.1016/0012-365X(79)90060-8
http://dx.doi.org/10.1145/1721837.1721848
http://dx.doi.org/10.1007/BF02243880
http://dx.doi.org/10.1016/j.tcs.2013.01.029
http://dx.doi.org/10.1007/s00453-011-9492-7
http://dx.doi.org/10.1007/BF01594196
http://dx.doi.org/10.1016/0304-3975(83)90020-8
http://dx.doi.org/10.1016/0304-3975(83)90020-8

Summary

Parameterized Algorithms for Finding Large Sparse Subgraphs

Many of the problems we would like computers to solve are NP-hard, which means
that the computing time and power required to solve the problem is expected to in-
crease superpolynomially with the size of the input. Simply put, we cannot expect
to solve large instances of NP-hard problems in general. Parameterized algorithms
are able to solve a portion of these large instances. In parameterized complexity
an instance of a (parameterized) problem is associated with a parameter k, which
can be seen as a measure of the complexity of the problem instance. We say a
problem is fixed parameter tractable if there is an algorithm that can solve the
problem in time f(k) · nO(1) for some function f . Such algorithms can solve large
problem instances with a small parameter.

An important subfield of parameterized complexity is that of kernelization.
A kernelization algorithm takes as input a parameterized instance of size n and
parameter k and it produces in polynomial time an equivalent problem instance
whose size and parameter are bounded by a function of k. Rather than solving
the problem, a kernelization algorithm preprocesses the problem such that, if k is
not too large, even an inefficient algorithm can solve the preprocessed instance in
reasonable time.

In this thesis we study parameterized algorithms for problems that revolve
around finding large sparse subgraphs of an input graph. The first result we
present is a kernelization algorithm for the problem of Outerplanar Vertex
Deletion. This problem asks to determine whether a graph can be made outer-
planar using a small number of vertex deletions, or equivalently, whether it contains
a large outerplanar subgraph. We show that if we parameterize the problem by
the number of allowed vertex deletions k then there is an elementary kernelization
algorithm that produces an equivalent instance of size at most O(k4).

The concept of kernelization can be extended to Turing kernelization. Where a
kernelization algorithm preprocesses the input once and relies on an external algo-
rithm to solve the final preprocessed instance, a polynomial Turing kernelization
algorithm is allowed to rely (during its entire operation) on an external algorithm
to solve any number of small (size at most kO(1)) problem instances. In this thesis

200 Summary

we study the existence of polynomial Turing kernelizations for a certain parame-
terization of the F-Minor-Free Deletion problem. This problem asks whether
a given graph can be made F-minor-free by removing a small number of vertices,
or equivalently, whether the graph contains a large F-minor-free subgraph. This
meta-problem encompasses many classical NP-hard problems including Feedback
Vertex Set. We show that for most choices of F such a polynomial Turing ker-
nelization algorithm is unlikely to exist for the studied parameterization. This
rules out a polynomial Turing kernel for (among others) P3-Minor-Free Dele-
tion parameterized by the feedback vertex number. To complete the dichotomy
we show that for all remaining choices of F there does exist a polynomial Turing
kernelization algorithm for the studied parameterization.

Kernelization and Turing kernelization are based on the idea that the algo-
rithms that solve the problem require the size of the problem instance to be small.
While this is true for traditional algorithms for NP-hard problems, parameterized
algorithms allow us to solve large problem instances with small parameters. For
these algorithms the influence of the size of the input on the running time is over-
shadowed by the influence of the parameter. Existence of a (Turing) kernelization
algorithm does therefore not guarantee a faster overall running time. We observe
however that often existing proprocessing algorithms speed up the solving process
significantly. This can only be explained by a decrease in the parameter. It turns
out that often preprocessing algorithms succeed in reducing the parameter. The
notion of (Turing) kernelization does not guarantee a reduction of the parame-
ter. In this thesis we consider the classical problem of Feedback Vertex Set
parameterized by solution size and study under what conditions this parameter
can be efficiently reduced. We introduce a graph structure we dubbed “Antler de-
composition” and a parameterized algorithm that is able to efficiently reduce the
parameter under the condition that the input graph contains a sufficiently simple
antler decomposition.

Closely related to the antler decomposition is the concept of secluded trees. A
k-secluded tree is an acyclic connected subgraph with at most k neighbors. We
give a parameterized algorithm that enumerates all maximum size k-secluded trees
of a graph using a branching algorithm.

Curriculum Vitae

Huib Donkers was born on 17 February 1993 in Vlissingen. After completing his
secondary education in 2011 at Nehalennia SSG in Middelburg, he studied Com-
puter Science and Engineering at Eindhoven University of Technology. In 2015 he
received his Bachelor’s degree followed by his Master’s degree in 2017. From 2017
he started his PhD at Eindhoven University of Technology under the supervision
of dr. Bart M.P. Jansen of which the results are presented in this dissertation.
During his PhD he was awarded the best student paper and best paper awards
at the 47th International Workshop on Graph-Theoretic Concepts in Computer
Science in 2021.

	Acknowledgements
	Introduction
	Preliminaries
	General notation
	Graph theory
	Structural graph properties

	Hitting forbidden minors
	Algorithms and complexity

	A Kernel for Outerplanar Vertex Deletion
	Introduction
	Preliminaries
	Splitting the graph into pieces
	The augmented modulator
	The outerplanar decomposition
	Reducing the size of the neighborhood

	Compressing the outerplanar subgraphs
	Reducing the number of biconnected components
	Reducing a large biconnected component
	Reducible structures in biconnected components

	Wrapping up
	Conclusion

	A Turing Kernelization Dichotomy for Finding F-Minor FreeGraphs
	Introduction
	Preliminaries
	Lower bound
	Properties of biconnected and robust subgraphs
	Clause gadget construction
	Reduction for connected graphs H
	Reduction for families of disconnected graphs

	A polynomial Turing kernelization
	Conclusion

	Finding Antler Structures to Solve Feedback Vertex Set
	Introduction
	Preliminaries
	Hardness results
	NP-hardness of finding 1-antlers
	W[1]-hardness of finding bounded-width 1-antlers

	Structural properties of antlers
	Finding antlers
	Finding feedback vertex cuts
	Reducing feedback vertex cuts
	Finding and removing antlers

	Conclusion

	Finding Secluded Sparse Graphs
	Introduction
	Framework for enumerating secluded trees
	Enumerate large secluded supertrees
	Subroutines for the algorithm
	The algorithm
	Proof of correctness
	Runtime analysis
	Finding, enumerating, and counting large secluded trees

	Conclusion

	Conclusion
	Overview of results
	Future work

	Index of Definitions
	Bibliography
	Summary
	Curriculum Vitae

