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A B S T R A C T

Late onset sepsis (LOS) is one of the main causes of death in preterm infants in a neonatal
intensive care unit (NICU). LOS can be better treated with early detection, reducing its morbidity
and mortality. In this study, an end-to-end deep learning model called DeepLOS was developed
to predict LOS in preterm infants in a NICU. The model is based on a residual convolutional
neural network (ResNet) with feature map (or channel) attention and uses RR intervals (i.e.,
interbeat intervals) as input. The model was trained and tested on a dataset composed of 128
preterm infants (60 blood-culture-proven LOS patients and 68 control patients). To minimize
the possible age effect on modeling, we also considered an age-matched dataset including
32 LOS and 32 control patients from the full dataset. Prediction was done with a one-hour
(non-overlapping) sliding window from 24 h before LOS to onset of LOS. We used 5-fold patient-
independent cross validation and F-score to evaluate the model performance. The DeepLOS
achieves an F-score of 0.72 for the full dataset and 0.73 for the matched dataset in LOS
prediction for all one-hour segments, outperforming the baseline ResNet model without channel
attention. F-score is generally higher (>0.75) when coming closer to the onset of LOS. Our study
demonstrates the feasibility of deep learning for end-to-end LOS prediction in preterm infants.
Furthermore, the model uses readily available RR intervals as input only; and is therefore
vendor-processing independent and has the potential to be easily deployed in different NICUs.

1. Introduction

Neonates who are born prematurely (GA < 37 weeks) and particularly the group of very prematurely born infants (GA < 32
weeks) are often admitted and hospitalized in a neonatal intensive care unit (NICU) for optimal treatment and monitoring. Although
the advances in neonatal intensive healthcare have led to a steady decline of neonatal mortality over years (Phibbs et al., 2022),
the mortality rate of neonatal sepsis, a clinical syndrome caused by invasion of pathogens, can still reach up to 11.3% in preterm
infants in NICUs (Al-Matary et al., 2019). Neonatal sepsis can be categorized as early-onset or late-onset sepsis (LOS), depending on
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being diagnosed within 72 h after birth, or after 72 h of birth. Although early-onset sepsis is also frequently seen in preterm infants,
LOS is even more common because of the immature immune systems of preterm infants and their need for prolonged hospitalization
and clinical interventions (Shane et al., 2017).

Although antibiotic treatment can reduce the morbidity and mortality of LOS, inaccurate use of antibiotics can have adverse
ffects (Alverdy & Krezalek, 2017). Ideally, antibiotic treatment would not be used when not needed. Since the consequences of
OS are so severe, in current clinical practice, clinicians start antibiotic therapy and order blood culture at the moment of clinical
ymptoms of infection. This moment is often denoted as the CRASH (Cultures, Resuscitation, and Antibiotics Started Here) moment.
owever, the blood-culture-based diagnosis (current ‘gold standard’) is time-consuming and not always accurate as it is sensitive to
ontamination (Klucher et al., 2021). Moreover, as the clinical symptoms are non-specific and subtle, their detection may occur in
late phase of the infection (Shane et al., 2017). These challenges raise the need for early non-culture dependent LOS diagnosis to

mprove neonatal outcomes in NICUs.
Machine learning models using vital signs have been investigated as a continuously available and non-invasive tool to detect

volving neonatal sepsis, showing that vital sign patterns can be important physiological markers to assist diagnosis of LOS before
bserved deterioration (Mithal et al., 2017; Peng et al., 2022). In particular, machine learning models with features extracted from
eart rate variability (HRV, reflecting beat-to-beat changes in RR intervals) are most often used to early detect LOS in preterm infants
s reviewed by Sullivan and Fairchild (2022) and Persad et al. (2021). For instance, the ‘HeRo’ monitoring system significantly
educed sepsis-related mortality in the NICU by showing a real-time HRV-based risk score for neonatal sepsis (Fairchild et al., 2013;
oorman et al., 2011). This score increases in the 24 h before CRASH. In addition, Leon et al. (2021) developed a machine learning
odel based on novel HRV features for LOS prediction, achieving an area under the receiver-operating-characteristics curve (AUC)

f 0.88 during 6 h preceding CRASH. These promising results indicate the predictive value of HRV signals on LOS prediction.
owever, these models highly rely on the extracted HRV features based on domain knowledge, with a good model interpretability
ut at the cost of losing opportunities to uncover unknown but potentially essential information from HRV. Therefore, to better
ake advantage of all aspects of HRV, an end-to-end approach with intelligent and automated feature extraction is the next step
or neonatal LOS prediction. Deep learning is such an approach that has developed fast in terms of performance in a variety of
omains such as computer vision, text analytics, and healthcare. It can reveal complex structures in high-dimensional data, playing
significant role in building intelligent and data-driven models for a wide range of applications (Sarker, 2021). With HRV data,

ften expressed as RR interval (RRI) signals, deep learning models have been successfully applied to detect diseases or biological
tatus such as apnea (Wang et al., 2019), atrial fibrillation (Faust et al., 2020) and (neonatal) sleep states (Werth et al., 2020).
owever, there are limited studies focusing on LOS prediction using HRV-based deep learning models.

In this study, we aim to predict upcoming LOS in preterm infants using a deep learning model developed based on RRI signals.
o the best of our knowledge, this is the first study developing an end-to-end LOS prediction model solely using RRI signals for
reterm infants. For this study, we firstly built a deep residual convolutional neural network (ResNet) as the baseline model. Then,
e added channel attention on top of ResNet to form DeepLOS. Lastly, we compared the performance of DeepLOS to ResNet for
OS prediction.

. Datasets

The full dataset used in the present study comprised data from 128 preterm infants born before 32 weeks of gestation and
ospitalized in the NICU of the Máxima Medical Center in Veldhoven, the Netherlands, from July 2016 to December 2018. The
edical ethical committee of the Máxima Medical Center provided a waiver for this retrospective study in accordance with the
utch law on medical research with humans.

The LOS patients and their corresponding CRASH moments were defined by a group of neonatologists according to the Vermont
xford Criteria and C-reactive protein level (Vermont Oxford Network, 2007), Hofer et al. (2012). The LOS patients had clinical

ymptoms of LOS and culture-proven infection. The control patients had no clinical suspicion and no need to take any blood culture.
s RRI signals can change with maturation in preterm infants (Leon et al., 2022), to minimize this impact, we first defined the CRASH
oment for each LOS patient and then searched for one or more control patients with a GA within 3 days younger or older than the

OS patient (Peng et al., 2022). Subsequently, we calculated an ‘equivalent CRASH’ moment for those control patients to determine
he 24 h to analyze, based on their postmenstrual age (PMA) close to the LOS patient. This procedure resulted in 60 LOS patients
LOS group) and 68 control patients (control group) with pre-defined CRASH or equivalent CRASH moments, composing the full
ataset in this study (Peng et al., 2022). However, even if using this procedure, there was a slightly lower GA for the LOS group and
herefore we defined another ‘matched’ dataset as described in a previous study (Cabrera-Quiros et al., 2021), in which a ‘one-to-one’
atching of GA and PMA of LOS patients with control patients was performed, resulting in 32 patients in both groups. The matched
ataset allowed us to investigate the ‘pure’ impact of LOS on HRV of preterm infants. Table 1 summarizes the characteristics of
he studied patients in the full dataset and the matched dataset. It can be seen that there is a significant difference in maturation
etween the two groups in the full dataset, but no difference in the matched dataset. We performed all the following deep learning
xperiments using both datasets separately.

The ECG of all patients was obtained from patient monitors (Philips IntelliVue MX 800, Philips, Hamburg, Germany), with a
ampling rate of 250 Hz. The ECG data of 24 h before CRASH or equivalent CRASH moments were used in this study.

. Methodology
2

The schematic diagram we proposed for LOS prediction is shown in Fig. 1.
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Table 1
Characteristics of the patient population in full and matched datasets—presented as median (interquartile range). The Mann–Whitney U test was used to examine
the significance of difference between the two groups. NS: Not Significant (𝑝 > 0.05).

Full dataset Matched dataset

LOS group
(𝑛 = 60)

Control group
(𝑛 = 68)

LOS group
(𝑛 = 32)

Control group
(𝑛 = 32)

Gestational age (weeks) (GA) 27.86 (26.86–29.29) 29.43 (28.71–30.71) 𝑝 < 0.01 28.71 (27.57–29.36) 28.86 (27.93–29.57) NS
Postnatal age (days) (PNA) 6.95 (5.04–10.05) 5.17 (3.61–6.77) 𝑝 < 0.01 5.98 (4.77–9.39) 5.27 (4.46–7.50) NS
Postmenstrual age (weeks) (PMA) 29.07 (27.96–30.26) 30.12 (29.60–31.57) 𝑝 < 0.01 35.49 (33.73–37.90) 34.60 (32.90–36.00) NS
Birth weight (g) (BW) 1075 (870–1285) 1268 (1075–1409) 𝑝 < 0.01 1150 (895–1320) 1105 (965–1318) NS

Fig. 1. The schematic diagram for the LOS prediction model. ECG—electrocardiogram, RRI—R-R interval.

3.1. Signal preprocessing and labeling

We first applied a peak detection algorithm to detect R-peaks in ECG waveforms of all patients in 24 h before CRASH or equivalent
CRASH (Rooijakkers et al., 2012), followed by the extraction of RRI signals (RRI raw). Each RRI signal (per patient) was divided
into non-overlapping one-hour segments. The segments prior to CRASH in the LOS group were labeled as positive samples (labeled
as 1). The segments in the control group were labeled as negative samples (labeled as 0). Afterwards, the RRI samples (time points)
in each segment were centered, regardless of their original length, within the segment length of 12,000 samples for one hour by
filling zeros on two ends for the following model training and evaluation (RRI zero-pad).

3.2. DeepLOS

The neural network architecture of DeepLOS is shown in Fig. 2. It consists of a ResNet and an attention layer with skip
connection (ResAtte), ending up with fully connected layers (FC). There are two types of residual blocks (ResConv and ResSkip)
in ResNet. The details of each block (ResConv, ResSkip, ResAtte, and FC) are shown in Fig. 3. In ResNet, the convolution-based
blocks gradually reduce the size of the temporal domain from 12,000 to 750 and increase the number of feature maps (channels)
from 1 to 1024 at the same time to encode information. The ResNet is used to allow training deeper neural networks with less
complexity, preventing vanishing gradient problems (He et al., 2016). In each convolutional layer, the neighboring information along
the temporal axis is aggregated. Thus, the shallower convolutional layers focus on shorter time scales (seconds) of RRI signals, and the
deeper convolutional layers can encode RRI information with larger time scales (minutes). After several convolutional operations
3
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Fig. 2. The neural network architecture in DeepLOS consists of ResNet and attention. The values represent the size of temporal and channel dimensions
accordingly.

Fig. 3. The building blocks in DeepLOS. (a) The building block of the residual convolutional layer. (b) The building block of residual skip layer. (c) The
building block of residual attention layer. (d) The building block of the fully connected layer. Conv—convolution, BN—batch normalization, RELU—rectified
linear activation function, ResConv—residual convolutional, ResSkip—residual skip, ResAtte—residual attention, FC—fully connected.

in ResNet, the RRI patterns are aggregated into feature maps (channels) where the ‘‘self-attention’’ layer is applied. Specifically,
this self-attention is the scaled dot-product attention proposed in Vaswani et al. (2017). We computed the dot products of the
feature maps with their transpose, followed by applying a softmax function to obtain the weights on each feature map (channel).
Afterwards, the output of the self-attention is obtained by multiplying these weights with the corresponding feature maps. The
attention mechanism is designed to highlight the important RRI patterns associated with LOS since it allows the neural network to
learn long-term dependencies (Vaswani et al., 2017), Lin et al. (2017). Finally, the encoded information from attention is fed into
the fully connected layers to obtain the probability of LOS for each segment. We set dropout rate of 0.1 for convolutional layers
and 0.5 for fully connected layers. The model was optimized using an Adam optimizer with a learning rate of 0.0001. Binary cross
entropy was used as the loss function.

3.3. Prediction evaluation and comparison

To evaluate the prediction performance of DeepLOS using RRI signals, we applied a 5-fold patient-independent cross validation
for training and testing models. Each fold included 25–26 patients for the full dataset or 12–13 patients for the matched dataset.
Firstly, the training set (4 folds of data) was further split into inner training (75%) and validation (25%) set. The model was updated
for 300 epochs, the hyperparameters and the optimized epoch were determined based on the performance in validation set to avoid
overfitting. Then, the model retrained on all training set (4 folds of data) with optimized parameters and epoch was tested on
the remaining fold of data during each iteration of the cross validation. Because a previous study showed that the RRI of preterm
infants can change 24 h before CRASH [11], we used F-score during 24 h before LOS to optimize parameters during training. Mean
4
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Table 2
Metrics of prediction in both datasets during 24 hours before crash, metrics are presented as mean (SD).

Model Sensitivity Specificity Positive
Predictive
Value (PPV)

Negative
Predictive
Value (NPV)

Accuracy AUC F-score

Full dataset
(𝑛 = 128)

DeepLOS 0.79 (0.07) 0.63 (0.23) 0.68 (0.12) 0.78 (0.02) 0.71 (0.09) 0.77 (0.06) 0.72 (0.06)
Baseline 0.91 (0.07) 0.22 (0.17) 0.51 (0.04) 0.78 (0.04) 0.55 (0.05) 0.67 (0.02) 0.65 (0.03)

Matched dataset
(𝑛 = 64)

DeepLOS 0.91 (0.07) 0.43 (0.21) 0.63 (0.11) 0.84 (0.06) 0.66 (0.09) 0.72 (0.05) 0.73 (0.05)
Baseline 0.93 (0.12) 0.16 (0.26) 0.54 (0.04) 0.74 (0.05) 0.56 (0.06) 0.64 (0.03) 0.68 (0.02)

Fig. 4. Receiver operating characteristic (ROC) curve for LOS prediction during 24 h before CRASH using DeepLOS and Baseline in the full dataset and matched
dataset.

and standard deviation (SD) of F-score for all one-hour segments (totally 24 h) over folds were used to evaluate the prediction
performance.

To evaluate the contribution of channel attention for RRI-based LOS prediction, we also implemented the evaluation scheme
o a baseline model using only ResNet. More specifically, the RRI signal of each one-hour segment was fed into ResNet, directly
ollowed by fully connected layers to train the model and obtain the LOS prediction probability for each segment.

In addition to F-score, we calculated other metrics including sensitivity, specificity, positive predictive value (PPV), negative
redictive value (NPV), overall accuracy, and AUC. Furthermore, we also used the receiver operating characteristic (ROC) curve
or all hours to compare overall LOS prediction performance and used F-score per hour to compare performance over time for the
esNet (Baseline) and DeepLOS.

. Results

Table 2 presents the prediction performance metrics of the two models (Baseline and DeepLOS) for LOS prediction for all 24 h
receding CRASH in the full dataset and the matched dataset. Using DeepLOS, we achieved a mean (SD) F-score of 0.72 (0.06) on
he full dataset and 0.73 (0.05) on the matched dataset, performing clearly better than the Baseline with only ResNet used. This
an also be evidenced by comparing the results of almost all other metrics. The ROC curves shown in Fig. 4 indicate the superiority
f DeepLOS over Baseline in the entire solution space when using both full and matched datasets. The model performance in the
wo datasets differs on different metrics. The AUC of DeepLOS in full dataset is higher than that in matched dataset, although the
-score is similar.

To further compare the prediction performance of both models, Fig. 5 illustrates the F-score changes over time (on one-hour
asis). It can be observed that DeepLOS outperforms Baseline for almost all the 24 h before CRASH. The performance of DeepLOS
ncreases over time when coming closer to CRASH in both datasets. The performance of DeepLOS in the matched dataset is similar
o that in the full dataset.

To monitor the performance of the best-performing model (DeepLOS) that learn incrementally over time (epoch), we plotted the
veraged learning curve of DeepLOS in both datasets as shown in Fig. 6. The selected epoch numbers in full dataset and matched
5
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Fig. 5. Prediction performance (F-score) of DeepLOS and Baseline over time before CRASH. (a) In the full dataset. (b) In matched dataset.

Fig. 6. Learning curve of DeepLOS for LOS prediction during 24 h before CRASH. (a) In the full dataset. (b) In matched dataset.

dataset are within range of 35–67 and 45–97 respectively. It can be seen that the test performance in full dataset is more stable
than that in matched dataset. After the epoch of around 80 the level of overfitting keep increasing over epochs.

5. Discussion

The goal of this study is to demonstrate that the upcoming LOS in preterm infants can be predicted several hours before observed
deterioration using an end-to-end deep learning model (DeepLOS) on RRI signals. The results of this study also indicate that the use
of channel attention can largely improve the prediction performance for LOS in preterm infants.

In addition, we observed that the model (DeepLOS) performed better (higher AUC with similar F-score) in the full dataset than
in the matched model. This may be caused by the difference in GA and PMA happening in the full dataset between the LOS and the
control group, where the HRV of preterm infants is proven to be associated with the maturation level as measured by age (Patural
et al., 2019). However, it is also known that in general LOS patients are younger than control patients because of the inherent
higher LOS risk in very preterm infants (Wynn et al., 2010). Besides, although maturation per se is an important risk factor in
clinical practice and is associated with LOS in preterm infants (Wynn et al., 2010), the model including maturation based on a small
dataset (full dataset) would be difficult to generalize and the performance can be ‘overestimated’ due to the maturation difference
between the two groups. However, the matched dataset we designed might ‘underestimate’ the performance of the model because
the inherent maturation difference was not considered. Therefore, a bigger dataset including more patients with a larger range of
maturation should be further investigated to accommodate the use of maturation for a more generalizable model. Interestingly, by
comparing the two figures in Fig. 5, it can be observed that the performance of all models in the two datasets stays high and stable
from 6 h before CRASH. This may indicate the time moment of the deterioration for LOS patients.
6
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We compared the LOS prediction performance using DeepLOS proposed in this work with several other studies using RRI signals.
or instance, Leon et al. (2021) used principal component analysis of HRV features and a logistic regression classifier, obtaining
n AUC of 0.88 during 6 h before CRASH. Griffin et al. (2007) achieved an AUC of 0.67 using logistic regression based on HRV
eatures to predict LOS within the next 24 h. Our model outperformed the feature-based model proposed by Griffin et al. (2007)
ithin the similar evaluation metric. To compare with the results by Leon et al. (2021), we also computed the AUC during 6 h before
RASH using DeepLOS and we obtained a lower AUC of 0.85. It is worth mentioning that, comparing results between studies using
ifferent datasets is always difficult mainly because of the heterogeneity in the study population, different clinical definitions, and
arying evaluation metrics (Persad et al., 2021; Verstraete et al., 2015). Considering this, we also compared with a recent proposed
eature-based algorithm (extreme gradient boosting) using the same datasets (Peng et al., 2022). That study analyzed multiple signal
odalities including HRV, respiration, and movement for LOS prediction. For a fair comparison, we re-generated the results using

nly HRV data and obtained an F-score of 0.65 and an AUC of 0.65 for all 24 h of data, which are much lower than those achieved
y DeepLOS. Interestingly, combining multiple signal modalities could lead to large performance improvement in neonatal LOS
rediction using the feature-based model. This encourages us to verify DeepLOS on multimodal data (adding other signal modalities
o HRV) in future work.

This study uses HRV data solely for neonatal LOS prediction. The HRV-based prediction models can be easily deployed in
ifferent NICUs because ECG is a standard measurement in a NICU from which RRI can be extracted. The use of RRI is vendor-
ndependent without needing other specific devices. Furthermore, HRV can also be obtained with many advanced unobtrusive
onitoring technologies such as a smart mat underneath the infant measuring ballistocardiogram (Cathelain et al., 2020) and a

ital sign camera measuring heart rate from the face (Chaichulee et al., 2019). Therefore, the HRV-based algorithm presented in
his study can be potentially applied when using an unobtrusive or non-contact measurement device.

One main limitation of this study is that all 24 one-hour segments before CRASH in LOS patients were labeled as positive and fed
nto the model while some infants may be not infected or the deterioration has not started yet when being far away from CRASH.
rom the results in the matched dataset, we can see that the deterioration of LOS patients is more predictable when the time was
loser to CRASH. Ideally, we would like to predict LOS as early as possible, and in terms of the modeling performance, the positive
abels should only include the RRI segments directly around the exact time moment of the deterioration. However, it is impossible
o determine exactly when the deterioration starts for each individual. One possible direction could be to take the time window
ength (number of hours) included in the training set as a hyperparameter to optimize, ‘statistically’ finding the general time window
ength for the whole population (Peng et al., 2022). However, the reduced window length also leads to reduced training data size,
hich can lead to poor performance of deep learning models (Lecun et al., 2015). Besides, the dataset size in this study is limited
nd the dataset is from a single center. As we can observe in the learning curve (Fig. 6), the generalization error (gas between
raining and test loss) significantly increases over training after 80 epochs. This may be because the model has more capacity than
s required for this application and in turn because of the limited size of the dataset. One option to compensate for this limitation
s dataset augmentation, where the new synthetic data is created based on existing data of known labels so that the synthetic data
an come from the same generation distribution as existing data (DeVries & Taylor, 2019). This needs to be carefully designed and
ould be interesting for future research. Also, validation using external datasets is a useful way to enlarge available data. However,
his is always challenging due to the different standardization of clinical definitions (Fleuren et al., 2020), Persad et al. (2021) and
ata. For instance, Das et al. defined sepsis based on culture-proven of blood, urine, or cerebrospinal fluid culture after 7 days of
ife (Das et al., 2016). In the study of Leon et al. sepsis was defined as antibiotics treatment longer than 4 days after 3 days of life
t onset (Leon et al., 2021). The data standardization is also challenging because not all the data are stored with a high temporal
esolution, and the collecting sensors in different centers are also not standardized. Although our raw RRI-based model is more
endor-neutral than multimodal feature-based models, cross-center validation is still needed to investigate the generalizability of
he model. In future work, the aim is to explore more data (both internal and external) for further model evaluation and to carefully
esign data augmentation to compensate for the limitation of dataset size (DeVries & Taylor, 2019).

. Conclusion

In this study, we demonstrate the potential of an end-to-end model (DeepLOS) to predict LOS solely based on the RRI signal which
s continuously available through routine patient monitoring in NICUs. The better performance of DeepLOS compared to feature-
ased models and ResNet suggests further investigations on attention-based end-to-end solutions for LOS prediction in preterm
nfants.
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