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Abstract—Mitscherlich’s function is a well-known three-parameter non-linear regression function
that quantifies the relation between a stimulus or a time variable and a response. It has many
applications, in particular in the field of measurement reliability. Optimal designs for estimation
of this function have been constructed only for normally distributed responses with homoscedastic
variances. In this paper we generalize this literature to D-optimal designs for discrete and continu-
ous responses having their distribution function in the exponential family. We also demonstrate that
our D-optimal designs can be identical to and different from optimal designs for variance weighted
linear regression.
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1. INTRODUCTION

In different fields of science (e.g., chemistry, biology, medicine, and pharmacology) the relation
between a stimulus or a time variable (x) and a response variable (y) is being studied. These relations
help us quantify the beneficial or maximum levels of stimuli or time periods for the use of drugs,
pollutants, foods, and other substances. These relations are typically non-linear in both the stimulus
or time variable and the model parameters. For instance, the three-parameter Michaelis-Menten
curve E(y|x) = β1 + β2x/[β3 + x] is frequently used for chemical and biological applications [5, 7,
20], the four-parameter logistic growth curve E(y|x) = β1 + (β4 − β1)[1 + (x/β2)

β3 ]−1 is typically
used for biological assays [8, 27], the four-parameter non-linear exponential growth or decay curve
E(y|x) = β1 + β2x+ β3 exp{β4x} is used in biology and medical sciences [12, 17], and the three-
parameter one-compartmental model E(y|x) = β1[exp{−β2x} − exp{−β3x}]/[β3 − β2] is often used
in pharmacokinetics [4, 9, 10].

Precise estimation of non-linear models may require a substantial amount of testing. Designing
optimal experiments may therefore help reduce testing and possibly reduce also other resources (e.g.,
time, costs). A parameter estimation criterion for optimal designs is D-optimality [14], which maximizes
the determinant of XTX for linear regression functions, with X the design matrix. For non-linear
functions D-optimality is obtained by maximizing the determinant of the Fisher information matrix [14].
D-optimal designs have been studied for different types of non-linear functions for both continuous and
count responses.

Under assumption of normality, yi = E(yi|xi) + εi, with εi ∼ N (0, σ2) i.i.d., [5] provided D-optimal
designs for the two-parameter (β1 = 0) Michaelis-Menten curve, while [7] discussed D-optimal de-
signs for this two-parameter Michaelis-Menten curve under heteroscedastic residual errors, i.e., εi ∼
N (0, ν(E(yi|xi))), with ν a known function. In [18], a D-optimal design for the three (β1 = 0) and
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the four parameter logistic growth curve1) was provided, respectively. In [13], this work on logistic
curves was extended to heteroscedastic residuals, i.e., εi ∼ N (0, σ2

E(yi|xi)[1−E(yi|xi)]), when β1 = 0
and β4 = 1 holds. Under the same parameter restrictions, [13] also provided D-optimal designs
for the asymmetric logistic growth curve, i.e., E(yi|xi) = [1 + (x/β2)

β3 ]−r, with r > 0. In [8], D-
optimal designs for the full four and five parameter logistic growth curve (E(yi|xi) = β1 + (β4 − β1)[1 +

(x/β2)
β3 ]−r were studied with residuals having a heteroscedastic variance of the form [E(yi|xi)]γ , with

γ > 0. D-optimal designs for the two-parameter (where β2 = 0 and β3 = 1 and where β1 = β2 = 0)
and three-parameter (β2 = 0) exponential decay model were provided by [12] under the assumption of
homoscedastic residuals, while [17] provided a D-optimal design for the full four-parameter exponential
growth model (among others), also under homoscedastic residuals. Finally, [19] discussed D-optimal
designs for the three-parameter one-compartmental model under homoscedastic residuals, while [8]
studied D-optimality of this compartmental model under heteroscedastic residuals using [E(yi|xi)]γ
(again).

For count responses yi, the Poisson, Binomial, and Negative Binomial distributions have been used
frequently [11, 22, 25, 26, 28], but these papers discuss optimal designs for forms of E(yi|xi) that
can be rewritten into a linear function in the parameters, i.e., satisfying the definition of generalized
linear models [21]. Interestingly though, [11] provided D-optimal designs for the class of generalized
linear models with distributions in the exponential family a few years earlier. Contrary to the work
on generalized linear models, [20] discussed D-optimal designs for mixed effects Poisson regression
with the full three-parameter Michaelis-Menten curve. The random part only affected the constant or
intercept β1 and they also discussed designs without this random component.

One specific or special non-linear regression function is the three-parameter Mitscherlich function
[1], given by E(y|x) = β1 + β2 exp{β3x}, with β1 ∈ R, β2 �= 0, β3 �= 0, and with x the stimulus or the
logarithmically transformed stimulus variable. Note that the original formulation of the Mitscherlich
function in [23] assumed that the parameters β2 and β3 were both negative. In some areas [6, 12], the
Mitscherlich function is referred to as the three parameter decay model when the variable x is time. In
that case the parameter β3 is typically considered negative. The reason that the Mitscherlich function is
special, is that it can be naturally used to investigate violations of linearity in different directions, which
is less obvious for the other non-linear functions just discussed. Indeed, linearity can be obtained in two
ways:

β3 = 1 : E(y| log(x)) = β1 + β2x,

β1 = 0 : log(E(y|x)) = log(β2) + β3x, (1)

with the log the natural logarithm. In case both constraints β1 = 0 and β3 = 1 are satisfied, the system
may be referred to as proportional to stimulus x. This makes the Mitscherlich function a very relevant
function for the validation of measurement systems where violation of linearity plays an important role.

As far as we know, D-optimal designs for the Mitscherlich non-linear function have only been
discussed under the assumption of a normally distributed response y with homoscedastic residual
variances [1, 6, 12]. For measurement systems these restrictive distributional assumptions may only
be true for special cases. In (micro)biology the distribution of the biological response may typically
deviate from normality. For instance, the biological response can be discrete, when a number of events
or microorganisms is being observed. Furthermore, in chemical and (micro)biological analyses, the
residual variance may typically depend on the level of the response, i.e., a mean-variance relation may
exist. Thus, there are many applications where an extension of the current D-optimal designs for the
Mitscherlich function is needed. Here we will generalize the D-optimal designs for estimation of the
Mitscherlich function, when the discrete or continuous distribution function for the response y is from
the exponential family in its natural form [2, 21]. We also consider the situation where the dispersion

1)Although the Michaelis–Menten curve is in principle a special form of the logistic growth curve (using reparametrization
β1(L) = β1(M), β2(L) = β−1

3 (M), β3(L) = 1, β4(L) = β1(M) + β2(M), and stimulus x(L) = x−1(M)), one may be
inclined to think that literature on optimal designs for Michaelis–Menten is implied by optimal designs for logistic curves.
However, optimal designs are typically minimally optimal, which means that the number of stimulus values in the optimal
design is set equal to the number of parameters in the non-linear function and both functions have different numbers
of parameters. Additionally, when they do study for instance two-parameter versions, the two-parameter logistic curve
(β1(L) = 0 and β4(L) = 1) is typically different from the two-parameter Michaelis–Menten curve (β1(M) = 0), since
β3(L) is not considered equal to one, making research on these non-linear curves disjoint.
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parameter is not known. Due to the general formulation of our D-optimal design, the complicated proofs
that have been used by others for their special settings, become rather simple.

The next section will introduce our generalized non-linear model, the log-likelihood function,
Fisher’s information matrix, and the D-optimality criterion. In Section 3 we present our main result.
We will construct the D-optimal design for the Mitscherlich non-linear function using three stimuli
levels (minimally D-optimal [19]). We also provide examples for the well-known distributions in the
exponential family of distributions. In Section 4 we discuss transformations of the Mitscherlich non-
linear function to further generalize our results. We also show that our work generalizes the D-optimal
designs in literature [1, 6, 12]. Furthermore, we show that our D-optimal design can be constructed
from a D-optimal design for weighted linear regression, extending [1] directly to the distributions in
the exponential family. However, when heteroscedastic residual variances are introduced, D-optimality
can not be obtained through weighted linear regression anymore, demonstrating that D-optimality and
weighted least squares are different approaches and only identical under specific conditions. We finalize
with Section 5 summarizing and discussing our work.

2. STATISTICAL MODEL
Let yij be response j ∈ {1, 2, ..., ni} at stimulus xi, i ∈ {1, 2, ...,m}, and all yij being mutually

independently distributed. The distribution of yij is an element of the exponential family2) having
density f(y|θi, φ) = exp{[yθi − b(θi)]/a(φ) + c(y, φ)}, with y ∈ R, θi an unknown parameter that will
depend on stimulus xi, φ an (un)known dispersion parameter, and a(·), b(·), and c(·, ·) known functions
[21]. It is assumed that the range of y does not depend on θi and φ. Furthermore, function b(·) is
at least twice differentiable, with b′(·) and b′′(·) the first and second derivative. As a consequence, we
have E(yij|xi) ≡ μi = b′(θi) and VAR(yij |xi) = b′′(θi)a(φ). Using the canonical link function g, the
relation between θi and μi is given by θi = g(μi). Our model includes the well-known distributions
Poisson, Binomial, Negative Binomial, Gaussian, Gamma, and Inverse Gaussian with their canonical
link functions.

The Mitscherlich function we will study is μi = β1 + β2x
β3
i with constraints β2 > 0, β3 > 0, and

xi ≥ 0 the stimulus of interest. Note that we allow a stimulus that can be equal to zero, which was
not implemented in earlier formulations. Restrictions on parameter β1 are determined by the type of
distribution for yij . For instance, β1 ∈ R is allowed for the normal distribution, β1 ≥ 0 is needed for the
Poisson distribution, and β1 > 0 is required for the Gamma distribution. Our choice for the Mitscherlich
function fits very well with measurement system analysis where we expect typically non-negative values
when we choose certain levels for the stimulus. Thus we will assume that β1 ≥ 0.

2.1. Maximum Likelihood Estimation
If we define yi = (yi1, yi2, ..., yini)

T , y = (y1,y2, ...,ym)T , and β = (β1, β2, β3)
T , the log-likelihood

function can be written as

	 (β, φ|y) =
m∑

i=1

ni∑

j=1

[(yijθi − b(θi))/a(φ) + c(yij , φ)]

= 1
a(φ)

m∑

i=1

[yi.g (μi)− nib(g(μi))] +

m∑

i=1

ni∑

j=1

c(yij , φ), (2)

where yi. =
∑ni

j=1 yij is the sum of the observations at stimulus xi. The maximum likelihood estimates
(MLEs) for the parameters β and φ can be obtained by solving the following likelihood equations:

	′βk
=

∂	 (β, φ|y)
∂βk

=
1

a(φ)

m∑

i=1

(yi. − niμi) g
′ (μi)

∂μi

∂βk
= 0 ∀k = 1, 2, 3,

2)Note that there exists a more general formulation of the exponential family of distributions of the form f(y|θi) =
exp{T (y)η(θi)− A(θi) +B(y)}, but that we have selected its more restrictive natural form with θi the canonical
parameter when φ is known [2]. Furthermore, if φ is unknown our formulation may not be a two-parameter exponential
family anymore [21]. Irrespective of its formal definition, we will focus on densities f(y|θi, φ) = exp{[yθi − b(θi)]/a(φ) +
c(y, φ)} where φ is allowed to be unknown.

MATHEMATICAL METHODS OF STATISTICS Vol. 31 No. 1 2022
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	′φ =
∂	 (β, φ|y)

∂φ
= − a′ (φ)

a2 (φ)

m∑

i=1

[yi.g(μi)− nib(g(μi))] +

m∑

i=1

ni∑

j=1

c′(yij , φ) = 0, (3)

where g′(μi) = ∂g(μi)/∂μi, a′(φ) = ∂a(φ)/∂φ, and c′(yij, φ) = ∂c(yij , φ)/∂φ. The 4× 4 Fisher infor-
mation matrix I4×4(β, φ) is obtained by the (negative) expected values of the derivatives of the score
functions in (3), but the elements of I4×4(β, φ) are also equal to the variances and covariances of the
score functions [16, Theorem 1.1, p. 406]. Using the derivatives of the score functions and taking
expectations (see for details Appendix A), the variances and covariances of the score functions become

VAR(	′βk
) =

1

a(φ)

m∑

i=1

nig
′(μi)

(
∂μi

∂βk

)2

,

VAR(	′φ) =
m∑

i=1

ni∑

j=1

[(
a′′ (φ)

a′ (φ)
− 2a′ (φ)

a (φ)

)
E

(
∂c(yij , φ)

∂φ

)
− E

(
∂2c(yij, φ)

(∂φ)2

)]
,

COV(	′βr
, 	′βs

) =
1

a(φ)

m∑

i=1

nig
′(μi)

(
∂μi

∂βr

)(
∂μi

∂βs

)
, r �= s,

COV(	′βk
, 	′φ) = 0. (4)

Orthogonality of the score functions for the location parameters β and the score function for the
dispersion parameter φ has been obtained earlier [3]. Furthermore, when φ would be known (e.g., φ = 1),
the Fisher information matrix I4×4(β, φ) reduces to a 3× 3 matrix I3×3(β)/a(φ), fully determined by
the score functions 	′βk

in (4), and with I3×3(β) independent of φ. Note that COV(	′βk
, 	′φ) = 0 for

all k ∈ {1, 2, 3}, implies that the covariance of the MLEs for βk and φ is zero too, but this does not
necessarily imply that the variance VAR(β̂) of MLE β̂ is independent of φ or the variance VAR(φ̂) of
MLE φ̂ is independent of β, since the corresponding elements of the inverse Fisher information may still
depend on φ or β through its density, respectively.

2.2. D-Optimality Criterion

D-Optimality is defined by maximizing the determinant of the Fisher information matrix I4×4(β, φ),
see [14, 15]. Due to the (asymptotic) independence of the ML estimators β̂ and φ̂, the determinant of
the Fisher information matrix can be rewritten as |I4×4(β, φ)| = VAR(	′φ)|I3×3(β)|/a(φ). In case the

variance VAR(φ̂) of MLE φ̂ is independent of β, i.e.,

∂VAR(	′φ)

∂βk
= 0, ∀k ∈ {1, 2, 3}, (5)

we can focus on determinant |I3×3(β)|, as if the dispersion parameter φ would be known.3) Condition (5)
is satisfied for exponential families of distributions of the form f(y|θ, η) = exp{η[yθi − b(θi)] + d1(y) +
d2(η) + ηc(y)}, where η = 1/a(φ), since the derivative ∂	′η/∂η of the score function 	′η is independent
of y and β (see [29, formula (1.22), p. 8]). Condition (5) holds for all well-known distribution functions
Poisson, Binomial, Negative Binomial, Gaussian, Gamma, and inverse Gaussian (see [29, Table 1.1]),
but we can not rule out that there may exist an exotic distribution function in our formulation of the
exponential family of distributions for which condition (5) would not hold.

We are interested in the smallest number of stimuli that would maximize determinant |I4×4(β, φ)|,
i.e., the locally minimal D-optimality criterion [19]. Assuming that condition (5) holds true, we can focus

3)Note that we do not need a fourth stimulus to be able to estimate parameter φ. The reason is that the MLE of β can be
obtained independently of the estimation of φ because the likelihood equations for β do not involve the parameter φ, see
(3). Additionally, φ can be estimated from the variability in the observations yij if n > 1, since VAR(yij |xi) = b′′(θi)a(φ)

and θi can be estimated with MLE β̂ and xi.

MATHEMATICAL METHODS OF STATISTICS Vol. 31 No. 1 2022
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on only three stimuli x1, x2, and x3, since determinant |I3×3(β)| contains only three parameters. Thus
we are looking for stimuli x1, x2, and x3, with x1 < x2 < x3, such that

arg max
L≤x1<x2<x3≤U

|I3×3(β)|, (6)

with L ≥ 0 and U < ∞ a known lower and upper bound on the range of stimuli, respectively, typically
determined by practical limitations. With the help of Matlab we were able to express the determinant
|I3×3(β)| in an explicit form equal to

β2
2

[
(x1x2)

β3 log

(
x2
x1

)
− (x1x3)

β3 log

(
x3
x1

)
+ (x2x3)

β3 log

(
x3
x2

)]2 3∏

i=1

[nig
′(μi)]. (7)

It is important to realize that the sample sizes n1, n2, and n3 do not influence the choice of stimuli x1,
x2, and x3 for maximization of (7), since only the product n1n2n3 is involved in (7). Thus if the optimal
design is known and the total sample size n = n1 + n2 + n3 is determined, it would be best to choose
the same sample size in each stimulus to maximize precision, or equivalently to minimize the variance
of the parameter estimates.

3. MAIN RESULTS: D-OPTIMAL DESIGNS

Here we will focus on finding the optimal values for x1, x2, and x3 that would maximize determinant
|I3×3(β)| in (7) under constraint L ≤ x1 < x2 < x3 ≤ U , with L ≥ 0 and U < ∞. We will see that the
choice of the three stimuli depends on the mathematical behavior of the link function g. Note that our
results will be D-optimal when either φ is known or otherwise when condition (5) is satisfied. Our main
results are formulated in the following three theorems. The proofs are provided in Appendix B.

Theorem 1. If g′(μ) ≥ 0, and g′′(μ) ≤ 0 holds, then the optimal stimulus xopt1 for x1 that

maximizes determinant |I3×3(β)| in (7), is the smallest possible stimulus value, i.e., xopt
1 = L.

Proof. See Appendix B. �
The two conditions on the link function in Theorem 1 indicate that we are studying concave

increasing link functions. This is satisfied for the identity link function g(μ) = μ with μ ∈ R, the log
link function g(μ) = log(μ) with μ ∈ (0,∞), the square root link function g(μ) =

√
μ with μ ∈ (0,∞),

the negative inverse link function g(μ) = −μ−1 with μ ∈ (0,∞), and the half negative inverse-square
link function g(μ) = −0.5μ−2 with μ ∈ (0,∞). Thus for these link functions we need to choose the
first stimulus x1 as small as possible if we want to maximize the determinant of the Fisher information
matrix. For the logit link function g(μ) = log(μ/[N − μ]) with μ ∈ (0, N) the condition g′′(μ) ≤ 0 is
only guaranteed when μ ≤ N/2. Thus when μ > N/2, we do not know if stimulus x1 should be selected
as small as possible.

Theorem 2. If g′(μ) ≥ 0, g′′(μ) ≤ 0, and g′′(μ)μ + 2g′(μ) ≥ 0 holds, then the optimal stimulus
xopt3 for x3 that maximizes determinant |I3×3(β)| in (7), is the largest possible value, i.e., xopt

3 = U .
Proof. See Appendix B �.
The third condition g′′(μ)μ+ 2g′(μ) ≥ 0 in Theorem 2 for link function g would be satisfied for

most of the link functions (e.g., g(μ) = μ, g(μ) = log(μ), g(μ) =
√
μ, g(μ) = log(μ/[N − μ]), and

g(μ) = −μ−1), but it does not hold for the canonical link function g(μ) = −0.5μ−2, with μ ∈ (0,∞),
for the inverse Gaussian distribution. Recall that the canonical link function g(μ) = log(μ/[N − μ]) of
the Binomial distribution satisfies condition g′′(μ) ≤ 0 only when μ ≤ N/2. Thus the third stimulus x3
should be chosen as large as possible for most canonical link functions, but for the inverse Gaussian and
Binomial distribution with their canonical link function it may be possible to obtain better designs when
we stay away from the boundary value U (see Section 3.1).

Theorem 3. Assume that g′(μ) ≥ 0, and g′′(μ) ≤ 0 holds and let x1 and x3 be given stimuli,
then the optimal stimulus xopt2 for x2 that maximizes determinant |I3×3(β)| in (7), is obtained by
solving the following equation

β2β3g
′′ (μ2)

[
(x1x2)

β3 log

(
x2
x1

)
− (x1x3)

β3 log

(
x3
x1

)
+ (x2x3)

β3 log

(
x3
x2

)]

MATHEMATICAL METHODS OF STATISTICS Vol. 31 No. 1 2022



6 HEIDARI et al.

+ 2g′ (μ2)

[
β3x

β3
1 log

(
x2
x1

)
+ β3x

β3
3 log

(
x3
x2

)
+ xβ3

1 − xβ3
3

]
= 0. (8)

The optimal solution xopt2 is an element of interval (x1, x3) and satisfies constraint β3 log(x
opt
2 ) ≤

[xβ3
3 log(xβ3

3 )− xβ3
1 log(xβ3

1 )− (xβ3
3 − xβ3

1 )]/[xβ3
3 − xβ3

1 ].
Proof. See Appendix B. �
Theorems 1–3 all formulate optimal choices of only one stimulus, conditionally on the other two

stimuli, whether these other two stimuli are chosen optimally or not. The theorems tell us what to do
with this one stimulus to maximize determinant |I3×3(β)| when the other stimuli are already provided.
For Theorem 3 it shows that the best choice for x2 ∈ (x1, x3) is the value that solves Eq. (8), if we wish
to maximize determinant |I3×3(β)|.

Corollary 1. If the conditions of Theorem 3 hold and x1 = 0, then the optimal stimulus xopt2 for
x2 that maximizes determinant |I3×3(β)| in (7), is obtained by solving equation

β2β3g
′′ (μ2)x

β3
2 log

(
x3
x2

)
+ 2g′ (μ2)

[
β3 log

(
x3
x2

)
− 1

]
= 0 (9)

and the optimal solution satisfies 0 < x
opt
2 ≤ x3 exp{−β−1

3 }.
Proof. Substituting x1 = 0 in (8) leads directly to Eq. (9), since the value of the third stimulus is

always larger than zero (i.e., x3 > 0) to guarantee that we have three different stimuli. Furthermore, sub-
stituting x1 = 0 in the boundaries on x

opt
2 results in the lower and upper boundary 0 and x3 exp{−β−1

3 },
respectively. �

Corollary 1 and Theorem 3 demonstrate that the optimal value x
opt
2 for the second stimulus depends

on the two other stimuli x1 and x3, and on the link function g through its derivatives g′ and g′′.
Equations (8) and (9) also show that distributions with the same link function result in the same D-
optimal design. Thus the D-optimal designs for a Poisson and Negative Binomial distributed response
y are identical, since they both have canonical link function g(μ) = log(μ) and they just differ in the
dispersion variable φ. Whether all three model parameters β are involved in x

opt
2 , depends on the link

function (see Section 3.1), but it always involves the power parameter β3.

3.1. Examples of D-Optimal Designs

We will discuss D-optimal designs for the well-known distribution functions of the exponential family
of distributions using their canonical link function. Note that it is common practice to use the canonical
link functions in modeling data from measurement reliability studies. As illustration we will assume a
measurement system analysis for which the stimuli can range from L = 0 to U = 15. We will consider
six combinations of parameter settings for β1 ∈ {0.5, 1.0}, β2 ∈ {0.8, 1.0, 1.2}, and β3 ∈ {0.9, 1.0, 1.1}.

Gaussian distribution. For the Gaussian distribution with the identity link function, Eq. (8) can
be solved explicitly. Theorems 1 and 2 imply that the first and third optimal stimulus should be chosen
equal to x

opt
1 = L and x

opt
3 = U , respectively. Then the optimal second stimulus is equal to

x
opt
2 = exp

{
[Uβ3 log(U)− Lβ3 log(L)]/[Uβ3 − Lβ3 ]− β−1

3

}
, (10)

which depends only on the power parameter β3 (and not on the intercept β1 and slope β2). In case the
lower boundary L is equal to zero, the optimal second stimulus reduces to x

opt
2 = U exp{−β−1

3 }, which

is equal to the upper bound on x
opt
2 mentioned in Corollary 1. Table 1 shows the optimal stimulus x

opt
2

for our illustration. Since β3 ≈ 1, the stimulus is approximately 36.8% of the upper boundary U = 15.
Poisson and negative binomial distribution. The canonical link function is g(μ) = log(μ), which

implies that xopt
1 = L and x

opt
3 = U (Theorems 1 and 2, respectively). A solution for Eq. (8) can only be

obtained numerically and this equation contains all three parameters of the Mitscherlich function. When
L = 0, Eq. (9) reduces to

[
β1 + β2x

β3
2

] [
β3 log

(
U

x2

)
− 2

]
+ β1β3 log

(
U

x2

)
= 0, (11)
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Table 1. Optimal value for the second stimulus x2 for different distributions of the exponential family (L = 0 and
U = 15)

Parameters
Gaussian Poisson Gamma

Binomial

β1 β2 β3 N = 25 N = 50 N = 100

0.5 1.2 0.9 4.94 2.24 0.70 2.65 2.41 2.32

0.5 1 1 5.52 2.67 0.90 3.16 2.87 2.76

0.5 0.8 1.1 6.04 3.10 1.14 3.66 3.33 3.20

1.0 1.2 0.9 4.94 2.58 1.12 3.04 2.77 2.67

1.0 1 1 5.52 3.02 1.38 3.57 3.25 3.13

1.0 0.8 1.1 6.04 3.47 1.68 4.08 3.71 3.58

which can not be solved explicitly either and still depends on all three parameters. However, the
optimal solution for the second stimulus x

opt
2 is inside the interval [U exp{−2β−1

3 }, U exp{−β−1
3 }].

Indeed, the left-hand side in (11) is non-negative when β3 log(U/x2) ≥ 2, which means that x
opt
2 ∈

[U exp{−2β−1
3 }, U). In addition, the left-hand side in (11) is non-positive if β3 log(U/x2) ≤ 1, which

means that xopt
2 ∈ (0, U exp{−β−1

3 }], but this was already known from the upper boundary in Corollary

1. When the intercept β1 = 0, the optimal value for the second stimulus becomes xopt
2 = U exp{−2β−1

3 },
which is different from the solution of the Gaussian distribution. Table 1 shows that the optimal stimulus
x

opt
2 is substantially lower than the solution of the Gaussian distribution with the identity link function.

Gamma distribution. The canonical link function g(μ) = −μ−1 together with Theorems 1 and 2,

imply that xopt
1 = L and x

opt
3 = U . The solution of Eq. (8) can be determined numerically and it involves

all three parameters β1, β2, and β3 of the Mitscherlich function. If we assume again that L = 0, Eq. (9)
reduces to

β1 + β2x
β3
2 + β1β3 log(x2) = β1β3 log(U), (12)

which can be solved numerically for different values of β1, β2, and β3. In case β1 = 0, the optimal second
stimulus becomes equal to x

opt
2 = 0, but these results are not allowed for a gamma distribution with a

positive range. The parameter β1 should be positive when we allow the stimulus x1 to be equal to zero.
Table 1 shows that the optimal stimulus xopt

2 is still close to zero when β1 > 0.

Binomial distribution. To solve Eqs. (8) or even (9) for the Binomial distribution with canonical link
function g(μ) = log(μ/[N − μ]) is very tedious and does not easily reduce into manageable functions.

The solution x
opt
2 depends on all three parameters β1, β2, and β3 of the Mitscherlich function and

numerical approaches should be used to determine the D-optimal design. When β1 + β2U
β3 ≤ N/2

we know that xopt
1 = L and x

opt
3 = U based on Theorems 1 and 2. Thus for our illustration with L = 0

and U = 15 and the six selected combinations of parameter settings β1 ∈ {0.5, 1.0}, β2 ∈ {0.8, 1.0, 1.2},
and β3 ∈ {0.9, 1.0, 1.1} in Table 1, a sample size of N = 34 would be enough to satisfy the condition

g′′(μ) ≤ 0 in Theorems 1–3. Thus forN = 50 and N = 100, we know that xopt
1 = L = 0 and x

opt
3 = U =

15, but for N = 25 we do not know this. Investigating the optimal stimuli xi ∈ [0, 15] using numerical
calculations (just calculating the determinant for a grid of stimuli using step size h = 0.01) still shows
that xopt

1 = 0 and x
opt
3 = 15. Table 1 shows the results of the optimal stimulus x

opt
2 for all settings. The

results show that xopt
2 is close to the optimal value of the Poisson, which is not a surprise since the

Binomial and Poisson distribution are very similar, in particular when the sample size N is increasing.
This resemblence between the two distributions may explain why the optimal stimulus x

opt
1 and x

opt
3 are

still equal to L = 0 and U = 15 when N = 25.
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Table 2. D-optimal design for the Inverse Gaussian distribution with canonical link function g(μ) = −0.5μ−2 and
boundaries L = 0 and U = 15

Parameters Optimal design* Equidistant designs, %

β1 β2 β3 x
opt
1 x

opt
2 x

opt
3 |I3×3(β)| d = 60 d = 30 d = 15

0.5 1.2 0.9 0 0.26 5.21 1.455 70.8 55.4 21.0

0.5 1 1 0 0.36 5.32 1.697 64.5 65.2 32.3

0.5 0.8 1.1 0 0.48 5.58 2.192 51.8 68.8 45.3

1.0 1.2 0.9 0 0.57 11.34 0.045 64.9 73.4 45.9

1.0 1 1 0 0.72 10.65 0.053 51.3 73.7 59.4

1.0 0.8 1.1 0 0.91 10.53 0.068 36.0 66.4 69.8

* We have assumed that the sample sizes are equal to one (n1 = n2 = n3 = 1) for calculation of I3×3(β).

Inverse gaussian distribution. Since the canonical link function g(μ) = −0.5μ−2 does not satisfy
the conditions of Theorem 2, i.e., μg′′(μ) + 2g′(μ) = −μ−3 < 0 for μ ∈ (0,∞), it is not known how to

choose the optimal value for the third stimulus x3, but we know from Theorem 1 that xopt
1 = L. If we

assume that L = 0, determinant |I3×3(β)| becomes equal to

n1n2n3β
−3
1 β2

2

[
(x2x3)

β3 log(x3
x2
)
]2 [

β1 + β2x
β3
2

]−3 [
β1 + β2x

β3
3

]−3
. (13)

Given the parameters β1, β2, and β3 a grid search for x2 and x3 can be conducted to maximize (13).
Table 2 shows the optimal stimuli for a measurement study where the stimuli can range from L = 0 to
U = 15. We used a step size of 0.01 in our grid search. Table 2 shows that xopt

3 is far away from the

boundary U = 15 and x
opt
2 is relatively close to L = 0.

The optimal solution for the second stimulus should satisfy Eq. (9), which can be rewritten in

β3

[
β2x

β3
2 − 2β1

]
log(x3

x2
) + 2

[
β1 + β2x

β3
2

]
= 0. (14)

In case β2x
β3
2 − 2β1 > 0 the left-hand side in (14) is positive, while it is negative when x2 gets close

to zero. This implies that xopt
2 ∈ (0, [2β1/β2]

1/β3), illustrating that xopt
2 can never be far away from zero

(unless β2 is close to zero). This upper bound on x2 can be useful in a grid search for maximization of
(13), since x2 should never go beyond [2β1/β2]

1/β3 and x3 should never start before [2β1/β2]
1/β3 when

x
opt
2 reaches this bound.

Furthermore, in a measurement system analysis it is common to use equidistant stimuli designs,
either in the original scale or otherwise in the logarithmic scale. Considering the D-optimal design
in Table 2, an equidistant design in the logarithmic scale is closer to the D-optimal design than an
equidistant design in its original scale, although the dilution factor varies with the parameters β1, β2,
and β3. The efficiency of these so-called dilution designs with respect to the optimal design is provided
in Table 2 for different dilution factors d (and taking x3 = U ). It is obvious that our D-optimal design is
substantially more effcient than a dilution experiment.

4. RELATIONS TO EARLIER WORK AND EXTENSIONS

As we mentioned earlier, D-optimal designs for the Mitscherlich function were already obtained
for the normal distribution with homogeneous residual variances [1, 6, 12], but they used different
parametrizations of the Mitscherlich function. Here we will show that these parametrizations are
irrelevant and that their D-optimal results follow from our work. We will also show that under certain
conditions our D-optimal solution can be obtained from minimizing a weighted least squares. However,
when we start considering heteroscedastic residual variances, which may be typical in measurement
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reliability studies, these two approaches for optimal designs can also be different. This shows that
weighted least squares solutions and D-optimal designs are not always identical. We finish with
a discussion on extending our work to transformations of the Mitscherlich function ψ(β1 + β2x

β3

i ),
making our general results even more general.

4.1. Existing D-Optimal Designs

In our results we formulated the Mitscherlich non-linear function as E(yij|xi) = β1 + β2x
β3
i , with

xi a non-negative stimulus, and β2 and β3 both positive. However, Box and Lucas [1] introduced the
Mitscherlich function as E(yij|zi) = β1 − β2 exp{−β3zi}, with β2 > 0 and β3 > 0, Han and Chaloner
[12] used E(yij|zi) = β1 + β2 exp{−β3zi}, with β2 > 0 and β3 > 0, and Dette et al., [6] used E(yij|zi) =
β1 + β2 exp{zi/β̃3}, with β2 > 0 and β̃3 > 0. Due to these reparametrizations, the published D-optimal
designs are difficult to compare. Here we will show that it is reasonably straightforward to calculate their
D-optimal designs from our results. We will show that their results are just obtained from reformulations
of our own form E(yij|xi) = β1 + β2x

β3
i with β2 > 0 and β3 > 0.

For Dette et al.’s formulation under their assumption of normality with homoscedastic residual
variances, we need to both reparametrize β3 and transform the stimulus. Our stimulus xi can be
taken equal to xi = exp{zi} and the power parameter β3 can be taken equal to β3 = 1/β̃3. Here the
transformation for the stimulus is an increasing function of zi, thus Theorems 1 and 2 indicate we need
to choose z

opt
1 as small as possible and z

opt
3 as large as possible. In case zi represents time, the smallest

value could potentially be zero, implying that xopt
1 ≥ 1. Using optimal solution (10) with L = exp{zopt

1 },

U = exp{zopt
3 }, β3 = 1/β̃3, and x

opt
2 = exp{zopt

2 }, the optimal solution z
opt
2 is now equal to

z
opt
2 =

z
opt
3 exp{zopt

3 /β̃3} − z
opt
1 exp{zopt

1 /β̃3}
exp{zopt

3 /β̃3} − exp{zopt
1 /β̃3}

− β̃3, (15)

which was indeed presented in [6].
The optimal solutions for the other two formulations can be obtained in a similar way. For the

formulation of Box and Lucas, we can take xi = exp{zi}. If one realizes that our proofs of Theorems 1–3
remain correct if both β2 and β3 become negative (instead of being both positive), we obtain also
z

opt
1 = zmin, zopt

3 = zmax, with zmin and zmax the minimal and maximal allowable value for stimulus z,

and z
opt
2 satisfies (15) with β̃3 replaced by −β−1

3 , which was obtained by [1]. For the formulation of Han

and Chaloner, with xi = exp{−zi}, we obtain z
opt
1 = zmax, zopt

3 = zmin, and

z
opt
2 =

z
opt
1 exp{−β3z

opt
1 } − z

opt
3 exp{−β3z

opt
3 }

exp{−β3z
opt
1 } − exp{−β3z

opt
3 }

+
1

β3
,

which was reported by [12]. The order for zopt
1 and z

opt
3 is changed, since the stimulus xi = exp{−zi} is

now a decreasing function of zi.

4.2. Weighted Least Squares and Heteroscedasticity

The optimal design for the Mitscherlich function that was proposed by Box and Lucas [1] in 1959,
was based on the linearization of the Mitscherlich non-linear function and the maximization of the
determinant of the corresponding design matrix (as if they were constructing a D-optimal design for
a linear regression problem [24]). Their design matrix was equal to

X =

⎛

⎜⎜⎜⎜⎜⎝

∂μ1

∂β1

∂μ1

∂β2

∂μ1

∂β3
∂μ2

∂β1

∂μ2

∂β2

∂μ2

∂β3
∂μ3

∂β1

∂μ3

∂β2

∂μ3

∂β3

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

1 xβ3
1 β2x

β3
1 log (x1)

1 xβ3
2 β2x

β3
2 log (x2)

1 xβ3
3 β2x

β3
3 log (x3)

⎞

⎟⎟⎟⎠ (16)
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and they maximized determinant |XTX| over L ≤ x1 < x2 < x3 ≤ U , assuming that at each stimulus
the same sample size was used. For an imbalanced design the determinant becomes |XTWX|, with W
a 3× 3 diagonal matrix with n1, n2, and n3 at the diagonal. Under the assumption of normality with the
identity link function, this linearization with an imbalanced design leads to the maximization of |I3×3(β)|
in (7), see also the variances of the score functions in (4). However, for other distributions, with another
canonical link function than the identity, our D-optimal design would deviate from the optimal design of
[1] since the linearization should involve the link function.

To generalize the approach of [1], we should change XTX such that it represents the variances in (4).
Thus if we would choose weight matrix W by

W =

⎛

⎜⎜⎜⎝

n1g
′(μ1)/a(φ) 0 0

0 n2g
′(μ2)/a(φ) 0

0 0 n3g
′(μ3)/a(φ)

⎞

⎟⎟⎟⎠ (17)

and maximize determinant |XTWX|, we would maximize determinant |I3×3(β)| in (7). Thus by
changing the least squares approach of [1] to a weighted least squares approach, we obtain the D-
optimal designs for the Mitscherlich non-linear function for any of the distributions in the exponential
family that satisfy condition (5). It should be noted that the weight wi = nia

−1(φ)g′(μi) in (17) is equal
to wi = ni[VAR(yij)]−1, the typical weights used in a weighted linear regression approach.

If we return to the normal distribution again and assume that the dispersion parameter φ depends
on the mean μ, i.e., yij ∼ N(μi, σ

2ϕ(μi)), with ϕ a positive function that is twice differentiable, and σ2

known, the Fisher information matrix I3×3(β) becomes equal to (Appendix C):

3∑

i=1

nih(μi)

⎛

⎜⎜⎜⎝

1 xβ3
i β2x

β3
i log(xi)

xβ3

i x2β3

i β2x
2β3

i log(xi)

β2x
β3
i log(xi) β2x

2β3
i log(xi) [β2x

β3
i log(xi)]

2

⎞

⎟⎟⎟⎠ (18)

with h(μ) = 0.5[ϕ′(μ)/ϕ(μ)]2 + [σ2ϕ(μ)]−1, ϕ′ the first derivative of ϕ, and with the summation in (18)
taken element wise. This Fisher information matrix has strong similarities with the Fisher information
matrix for constructing optimal designs for the Michaelis–Menten curve studied in [7]. If we now
take the weight wi = ni[VAR(yij)]−1 and consider XTWX, we obtain matrix (18) with h(μi) equal
to [σ2ϕ(μi)]

−1. Thus under heteroscedasticity, the usual inverse variance weight wi = ni[VAR(yij)]−1

does not lead to a D-optimal design, but if we choose the weight wi = nih(μi), with h(μi) as defined in
(18), XTWX becomes equal to (18).

The determinant of I3×3(β) in (18) becomes equal to (7) with g′(μi) replaced by h(μi), making
use of Matlab. Thus the solutions x1, x2, and x3 that maximize |I3×3(β)| are determined by our
Theorems 1, 2, and 3 when the following three conditions are satisfied h(μ) ≥ 0, h′(μ) ≤ 0, and
μh′(μ) + 2h(μ) ≥ 0. If we would assume that the dispersion parameter is a power function of the mean,
i.e., ϕ(μ) = μp, with p > 0, we obtain that h(μ) = 0.5p2μ−2 + σ−2μ−p, h′(μ) = −p[pμ−3 + σ−2μ−p−1],
and μh′(μ) + 2h(μ) = [2− p]σ−2μ−p. Thus conditions h(μ) ≥ 0 and h′(μ) ≤ 0 are always satisfied
when p > 0, but condition μh′(μ) + 2h(μ) ≥ 0 is only satisfied when 0 < p ≤ 2, implying that we would
only choose x3 equal to its maximum value when p ≤ 2. When we assume that xopt

1 = 0 and p ∈ (0, 2],

the optimal solution x
opt
2 follows from (9) with g′ = h, and should satisfy equation

β3

[
(2− p)

σ2μp
2

+
pβ1

σ2μp+1
2

+
p2β1
μ3
2

]
log

(
x3
x2

)
=

p2

μ2
2

+
2

σ2μp
2

with μ2 = β1 + β2x
β3
2 .

Unfortunately, when σ2 would be unknown, the D-optimal design is not determined by determinant
I3×3(β) anymore, even though condition (5) is still satisfied. Indeed, the variance of the score function
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with respect to σ is independent of β, since VAR(	′σ) = 0.5n/σ4 (Appendix C). The issue is that the
covariances between the score functions with respect to β and the score function with respect to σ are
no longer equal to zero (Appendix C).

4.3. Transformations of the Mitscherlich Function

Our results provide D-optimal designs for E(yij|xi) = β1 + β2x
β3
i , with β1 ≥ 0, β2, β3 > 0, xi ≥ 0,

and yij having a distribution in the canonical exponential family with θi = g(β1 + β2x
β3
i ). If we wish

to study the non-linear function E(yij|xi) = ψ(β1 + β2x
β3
i ), with canonical link function g, the log-

likelihood function in (2) and determinant |I3×3(β)| in (7) both change due to the transformation ψ. The
determinant becomes

β2
2 [M(x|β)]2

3∏

i=1

[
nig

′(ψ(μi))
{
ψ′(μi)

}2
]
,

with M(x|β) = (x1x2)
β3 log(x2/x1)− (x1x3)

β3 log(x3/x1) + (x2x3)
β3 log(x3/x2), μi = β1 + β2x

β3
i ,

and ψ′ the derivative of ψ. If we now define the function g̃ through its derivative g̃′(μ) = g′(ψ(μ))[ψ′(μ)]2,
the second derivative of function g̃ would become g̃′′(μ) = g′′(ψ(μ))[ψ′(μ)]3 + 2g′(ψ(μ))ψ′′(μ)ψ′(μ).
Based on the proof of Theorem 1, xopt

1 should be chosen equal to L when g̃′(μ) = g′(ψ(μ))[ψ′(μ)]2 is
non-negative and decreasing in μ (i.e., g′′(ψ(μ))[ψ′(μ)]3 + 2g′(ψ(μ))ψ′′(μ)ψ′(μ) ≤ 0). If we also have
that μg̃′′(μ) + 2g̃′(μ) ≥ 0, xopt

3 should be chosen equal to U . The optimal stimuli xopt
2 should satisfy

Eq. (8) with g′(μ2) and g′′(μ2) replaced by g̃′(μ2) and g̃′′(μ2), respectively.
To illustrate these results, let’s assume we would like to study the square root transformation

ψ(μ) =
√
μ of the Mitscherlich function μ = β1 + β2x

β3 and assume that the canonical link function
is equal to g(μ) = log(μ), with μ > 0. Then the function g̃′(μ) = 0.25μ−3/2 is a positive decreasing
function and g̃′′(μ) = −0.375μ−5/2 is negative for all μ > 0. Furthermore, the condition μg̃′′(μ) + 2g̃′(μ)
is equal to 0.125μ−3/2 and positive for all μ > 0. Thus the combination g(μ) = log(μ) and ψ(μ) =

√
μ

results into x
opt
1 = L, xopt

3 = U , and x
opt
2 can be obtained from

−0.75β2β3

[
(Lx2)

β3 log (fracx2L)− (LU)β3 log

(
U

L

)
+ (x2U)β3 log

(
U

x2

)]

+μ2

[
β3L

β3 log
(x2
L

)
+ β3U

β3 log

(
U

x2

)
+ Lβ3 − Uβ3

]
= 0.

On the other hand, when we would like to study the exponential transformation ψ(μ) = exp{μ} and
the canonical link function is still g(μ) = log(μ), with μ > 0, we do not satisfy the criteria. The
function g̃′(μ) = exp{μ} is still positive, but it is clearly not a decreasing function, since the derivative
g̃′′(μ) = exp{μ} is always positive. Thus D-optimal designs for the combination ψ(μ) = exp{μ} and
g(μ) = log(μ) may be different from what Theorems 1–3 seem to indicate. Thus our theorems only
apply to certain combinations.

5. SUMMARY AND DISCUSSION

In this paper, we determined D-optimal designs for responses having their distribution in the
exponential family and their mean equal to the three-parameter Mitscherlich non-linear function,
Transformations of the Mitscherlich function are possible too, but only under certain conditions. The
D-optimal criterion is independent of estimation of the dispersion parameter if the precision of the
estimation of the dispersion parameter is independent of the parameters of the Mitscherlich function,
a condition that holds for all well-known distribution functions. It would be interesting to know if there
exists an example within our formulation of the exponential family for which this condition does not hold.

It was demonstrated that the canonical link function plays an important role in selecting the optimal
values of the three stimuli. For most distribution functions we should choose the first stimulus as small
as possible and the third stimulus as large as possible, but for the inverse Gaussian distribution the
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third stimulus can be substantially smaller than the maximum allowable stimulus. The middle stimulus
depends on the parameters, the optimal first and third stimulus, and the canonical link function. For the
Binomial distribution, the conditions on the canonical (logit) link function in our theory may also not
always be satisfied. Hence, the canonical link function has a strong effect on how to choose the stimuli
(as we illustrated).

We showed that our results are an extension of earlier results [1], and that their approach of
linearization of the Mitscherlich function can be extended easily by including weights. Our D-optimality
criterion is identical to the D-optimality criterion of a weighted linear regression problem, where the
weights are the traditional inverse variances of the response at the selected stimuli. However, when the
residual variance would be heterogeneous, linearization of the Mitscherlich function does not lead to a
D-optimal design anymore.

We believe that the Mitscherlich non-linear function has not received enough attention, while we
believe it is a very useful stimulus-response function for validation studies of measurement systems.
The Mitscherlich function is an extension of the two-parameter linear or log-linear regression function
and therefore useful to investigate linearity of the system. Our results may help formulate an optimal
design for maximizing the precision of the estimators of the parameters of the Mitscherlich function and
then evaluate linearity of the measurement system.

Altough we were able to formulate D-optimal designs for the Mitscherlich function with a large
class of probability distributions, testing for linearity may require alternative optimal designs, since
two different models are being compared that would not have the same D-optimal design. Secondly, it
would be of interest to determine the optimal settings in case more than three stimuli are being selected,
for instance to test the goodness-of-fit of the Mitscherlich function. Thirdly, more work is needed to
understand the optimal designs for transformations that may not satisfy our conditions. Finally, we
believe that our work may be extended to other non-linear functions that have similar characteristics as
the Mitscherlich function.

Appendix A

Here we will determine the Fisher information matrix for the parameters β, using the second
derivatives of the log likelihood function. An explicit formula for determinant |I3×3(β)| in (7) can then be
determined using for instance Matlab.

The second derivative ∂2	(β, φ|y)/(∂βk)2 of the log likelihood function in (2) with respect to βk is
given by

− 1

a(φ)

m∑

i=1

[
nig

′(μi)

(
∂μi

∂βk

)2

−
{
g′′(μi)

(
∂μi

∂βk

)2

+ g′(μi)
∂2μi

(∂βk)2

}
(yi. − niμi)

]
.

Using [16, Theorem 1.1, p. 406], we obtain that the variance of the score function 	′βk
is equal to

VAR(	′βk
) = −E[∂2	(β, φ|y)/(∂βk)2]. This leads to the first variance in (4), since E[yi. − niμi] = 0.

The second derivative ∂2	(β, φ|y)/(∂φ)2 of the log likelihood function in (2) with respect to φ is
given by

−
m∑

i=1

ni∑

j=1

[
a′′(φ)a(φ)−2[a′(φ)]2

a3(φ) (yijg(μi)− b(g(μi)))− c′′(yij, φ)
]
,

with c′′(·, ·) the second derivative with respect to the second argument. Using again [16, Theorem 1.1,
p. 406], the variance of the score function 	′φ is equal to VAR(	′φ) = −E[∂2	(β, φ|y)/(∂φ)2 ]. Since
Ec′(yij, φ) = a′(φ)E[yijg(μi)− b(g(μi))]/a

2(φ), with c′(yij, φ) = ∂c(yij , φ)/∂φ, the variance VAR(	′φ)
becomes equal to the second equation in (4).

The second derivative ∂2	(β, φ|y)/(∂βr∂βs) of the log likelihood function in (2) with respect to βr
and βs, with r �= s, is given by

1

a(φ)

m∑

i=1

[
−nig

′(μi)
∂μi

∂βr

∂μi

∂βs
+ (yi. − niμi)

(
g′′(μi)

∂μi

∂βr

∂μi

∂βs
+ g′(μi)

∂2μi

∂βr∂βs

)]
.
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Using the same [16 , Theorem 1.1, p. 406], the covariance of the score functions 	′βr
and 	′βs

is

equal to COV(	′βr
, 	′βs

) = −E[∂2	(β, φ|y)/(∂βr∂βs)]. Using again that E[yi.−niμi] = 0, the covariance
COV(	′βr

, 	′βs
) becomes equal to the third equation in (4).

The second derivative ∂2	(β, φ|y)/(∂βk∂φ) of the log likelihood function in (2) with respect to βk and
φ is given by

−a′(φ)

a2(φ)

m∑

i=1

[
(yi. − niμi) g

′(μi)
∂μi

∂βk

]
.

Using [16 , Theorem 1.1, p. 406], the covariance of the score functions 	′βk
and 	′φ is equal to

COV(	′βk
, 	′φ) = −E[∂2	(β, φ|y)/(∂βk∂φ)]. Since Eyi. = niμi, the covariance COV(	′βk

, 	′φ) becomes
equal to zero.

Appendix B

Here, we will provide the proofs of Theorems 1–3.

Proof of Theorem 1

We may assume that n1 = n2 = n3 = 1 without loss of generality and introduce zi = xβ3

i with
β3 > 0. The determinant |I3×3(β)| can now be written as

|I3×3(β)| = β−2
3 β2

2g
′(β1 + β2z1)g

′(β1 + β2z2)g
′(β1 + β2z3)[h(z1|z2, z3)]2,

with function h(z1|z2, z3) = z1z2 log(
z2
z1
)− z1z3 log(

z3
z1
) + z2z3 log(

z3
z2
). We will demonstrate that the

determinant |I3×3(β)| is a decreasing function of z1 ∈ [0, z2) for any value of z2 > 0 and z3 > z2, which
proves that we should choose x1 as small as possible.

Since we assumed that g′′(μ) ≤ 0, the function g′(μ) is a non-increasing function in μ. Since μ1 is
an increasing function in z1 (β2 > 0), we have demonstrated that g′(μ1) is a non-increasing function
in z1 and thus in x1. We will now demonstrate that h(z1|z2, z3) is decreasing in z1 by showing that
∂h(z1|z2, z3)/∂z1 ≤ 0 for all z1 ∈ [0, z2).

The derivative of h(z1|z2, z3) with respect to z1 is given by

h′(z1|z2, z3) = (z3 − z2) log(z1) + z2(log(z2)− 1)− z3(log(z3)− 1),

which is an increasing function in z1. It is clear that for z1 approaching 0 from above, limz1↓0 h
′(z1|z2,

z3) = −∞, that h′(z1|z2, z3) = 0 at z1 = z01 with

log(z01) =
z3(log(z3)− 1)− z2(log(z2)− 1)

z3 − z2
,

and that h′(z1|z2, z3) is negative for z1 ∈ [0, z01). If we can show that log(z01) ≥ log(z2), then we can
conclude that h(z1|z2, z3) is a decreasing function on the interval [0, z2). Inequality log(z01) ≥ log(z2)
is identical to z3(log(z3)− log(z2)) ≥ z3 − z2, using standard algebra. If we now choose z2 = az3,
with 0 < a < 1, inequality log(z01) ≥ log(z2) results in inequality a− log(a) ≥ 1. Since a− log(a) is
a decreasing function for a ∈ (0, 1) and a− log(a) is equal to one for a = 1, we have demonstrated that
z01 > z2 and that h(z1|z2, z3) is a decreasing function in z1.

Furthermore, h(z2|z2, z3) is equal to zero, which means that h(z1|z2, z3) > 0 for z1 ∈ [0, z2) and
hence [h(z1|z2, z3)]2 is a decreasing function in z1 on the interval [0, z2). This implies that g′(β1 +
β2z1)[h(z1|z2, z3)]2 is a decreasing function in z1 on the interval [0, z2) and thus |I3×3(β)| is a decreasing
function in x1 on the interval [0, x2).
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Proof of Theorem 2
Again we assume that n1 = n2 = n3 = 1 and introduce zi = xβ3

i with β3 > 0. The determinant
|I3×3(β)| can now be written as

|I3×3(β)| = β−2
3 β2

2g
′(β1 + β2z1)g

′(β1 + β2z2)g
′(β1 + β2z3)[h(z3|z1, z2)]2,

with function h(z3|z1, z2) = z1z2 log(
z2
z1
)− z1z3 log(

z3
z1
) + z2z3 log(

z3
z2
). We will demonstrate that deter-

minant |I3×3(β)| is an increasing function in z3 ∈ (z2,∞), under the stated conditions of Theorem 2 for
any value of z1 ≥ 0 and z2 > z1, which proves that we should choose x3 as large as possible. To do this,
we may just study the product function D(z3) = g′(β1 + β2z3)[h(z3|z1, z2)]2, since all other elements in
|I3×3(β)| are positive constants with respect to z3.

If we denote h′(z3|z1, z2) as the derivative of h(z3|z1, z2) with respect to z3 and define C(μ) =
g′′(μ)μ + 2g′(μ), the derivative of D(z3) with respect to z3 can be written as

∂D(z3)

∂z3
= β2g

′′(μ3) [h(z3|z1, z2)]2 + 2g′(μ3)h(z3|z1, z2)h′(z3|z1, z2)

=
[h(z3|z1, z2)]2

z3

[
g′′(μ3)β2z3 + 2g′(μ3)

z3h
′(z3|z1, z2)

h(z3|z1, z2)

]

=
[h(z3|z1, z2)]2

z3

[
g′′(μ3)μ3 − β1g

′′(μ3) + 2g′(μ3)
z3h

′(z3|z1, z2)
h(z3|z1, z2)

]

=
[h(z3|z1, z2)]2

z3

[
C(μ3)− β1g

′′(μ3) + 2g′(μ3)

(
z3h

′(z3|z1, z2)
h(z3|z1, z2)

− 1

)]
. (19)

Based on the assumptions of Theorem 2, we have that C(μ3) ≥ 0, −β1g
′′(μ3) ≥ 0, and 2g′(μ3) ≥ 0.

Furthermore, the term [h(z3|z1, z2)]2 /z3 is non-negative for all z3. If we can now demonstrate that
the term z3h

′(z3|z1, z2)/h(z3|z1, z2) ≥ 1, we have demonstrated that the derivative ∂D(z3)/∂z3 is non-
negative, indicating that D(z3) is increasing.

If we rewrite h(z3|z1, z2) into h(z3|z1, z2) = A1 +A2z3 log(z3) +A3z3, with A1 = z1z2 log(
z2
z1
), A2 =

z2 − z1, and A3 = z1 log(z1)− z2 log(z2), the derivative of h(z3|z1, z2) with respect to z3 is given
by h′(z3|z1, z2) = A2 +A2 log(z3) +A3. Since A2 > 0, h′(z3|z1, z2) is an increasing function with
limz3→∞ h′(z3|z1, z2) = ∞. The function h′(z3|z1, z2) is equal to zero in z3 = z03 , with

log(z03) = −A3 +A2

A2
=

z2 log(z2)− z1 log(z1)

z2 − z1
− 1.

If we can demonstrate that log(z03) ≤ log(z2), we would obtain that h′(z3|z1, z2) > 0 for z3 ∈ (z2,∞),
and thush(z3|z1, z2) is an increasing function. Since h(z2|z1, z2) = 0, h(z3|z1, z2) would also be positive
on (z2,∞).

If we now choose z1 = az2, with a ∈ [0, 1), the solution log(z03) is equal to [log(z2)− a log(z2)−
a log(a)− 1 + a]/[1 − a]. Then inequality log(z03) ≤ log(z2) results in a− a log(a) ≤ 1. The function
a− a log(a) is an increasing function in a ∈ [0, 1), since its derivative is equal to − log(a), and it is equal
to one when a = 1. Thus inequality log(z03) ≤ log(z2) is guaranteed.

Knowing that h(z3|z1, z2) > 0 for z3 ∈ (z2,∞), we can see that inequality z3h
′(z3|z1, z2)/h(z3|z1,

z2) ≥ 1 is equivalent to the following inequality

z3h
′(z3|z1, z2)/h(z3|z1, z2) ≥ 1 ⇐⇒ A2z3 −A1 ≥ 0

⇐⇒ z3 ≥ z1z2 log(z2/z1)/[z2 − z1].

If we can prove that z1z2 log(z2/z1)/[z2 − z1] is smaller than or equal to z2, we have demonstrated that
z3h

′(z3|z1, z2)/h(z3|z1, z2) ≥ 1 holds for z3 ∈ (z2,∞). If we again take z1 = az2, with a ∈ [0, 1), we
obtain that z1z2 log(z2/z1)/[z2 − z1] = −az2 log(a)/[1 − a] and this function is smaller or equal to z2
when −a log(a)/[1 − a] ≤ 1. This results again in a− a log(a) ≤ 1, which we already demonstrated to
be true.

Thus we have finally shown that ∂D(z3)/∂z3 > 0 under the stated conditions of Theorem 2, making
the determinant |I3×3(β)| an increasing function in z3 on the interval (z2,∞).
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Proof of Theorem 3

We start again with the assumption that n1 = n2 = n3 = 1 and we introduce zi = xβ3
i with β3 > 0.

The determinant |I3×3(β)| can now be written as

|I3×3(β)| = β−2
3 β2

2g
′(β1 + β2z1)g

′(β1 + β2z2)g
′(β1 + β2z3)[h(z2|z1, z3)]2,

with function h(z2|z1, z3) = z1z2 log(
z2
z1
)− z1z3 log(

z3
z1
) + z2z3 log(

z3
z2
). We will now study D(z2) =

g′(β1 + β2z2)[h(z2|z1, z3)]2 as function of z2 in the interval (z1, z3), since the remaining part of the
determinant is just a constant.

Function h(z2|z1, z3) is rewritten into h(z2|z1, z3) = −A1z2 log(z2) +A2z2 −A3, with A1 = z3 − z1,
A2 = z3 log(z3)− z1 log(z1), and A3 = z1z3 log(z3/z1). The terms A1 and A3 are both positive when
z3 > z1 ≥ 0, but the term A2 is only positive when we may assume that z3 ≥ 1. Note that h(z1|z1, z3) =
h(z3|z1, z3) = 0 and the derivative h′(z2|z1, z3) = ∂h(z2|z1, z3)/∂z2 is equal to A2 −A1 −A1 log(z2),
which is a decreasing function in z2. The solution z02 of h′(z2|z1, z3) = 0 is unique and satisfies
log(z02) = [A2 −A1]/A1. If we can demonstrate that log(z1) < log(z02) < log(z3), we would know that
h(z2|z1, z3) is increasing on interval z2 ∈ (z1, z

0
2) and decreasing on interval z2 ∈ (z02 , z3) and thus

always positive on z2 ∈ (z1, z3).

Inequality log(z1) < log(z02) is equivalent to inequality z3 − z1 < z3[log(z3)− log(z1)]. If we choose
z1 = az3, with a ∈ [0, 1), the inequality becomes 1− a+ log(a) < 0, which holds for a ∈ [0, 1), since
1− a+ log(a) is an increasing function on interval a ∈ [0, 1) with lima→1[1− a+ log(a)] = 0. Inequality
log(z02) < log(z3) is equivalent to inequality z1[log(z3)− log(z1)] < (z3 − z1). If we choose z1 = az3,
with a ∈ [0, 1), the inequality becomes 1− a+ a log(a) > 0, which holds for a ∈ [0, 1), since 1− a+
a log(a) is a decreasing function on interval a ∈ [0, 1) with lima→1[1− a+ a log(a)] = 0. Thus this
proves log(z1) < log(z02) < log(z3).

Maximizing D(z2) in z2, can be done by setting the derivative equal to zero. Since h(z2|z1, z3) is
positive on z2 ∈ (z1, z3), setting the derivative ∂D(z2)/∂z2 equal to zero leads to the following equality

β2g
′′(μ2)h(z2|z1, z3) + 2g′(μ2)h

′(z2|z1, z3) = 0, (20)

which is identical to Eq. (8). We now need to demonstrate that Eq. (20) has at least one so-
lution for a value of z2 ∈ (z1, z3). Rewriting Eq. (20), leads to β2g

′′(μ2)/g
′(μ2) = −2h′(z2|z1,

z3)/h(z2|z1, z3). The left-hand side is smaller or equal to zero for any z2, while the right-hand side is
negative for z2 ∈ (z1, z

0
2), zero at z2 = z02 , and positive for z2 ∈ (z02 , z3), using the results on h′(z2|z1, z3)

and h(z2|z1, z3) above. Since we also have that limz2↓z1 −2h′(z2|z1, z3)/h(z2|z1, z3) = −∞ when z2
goes down to z1, we now know that a solution must occur for z2 ∈ (z1, z

0
2 ], thereby satisfying the

constraint in Theorem 3.

Appendix C

Here, we will assume that yij ∼ N(μi, σ
2ϕ(μi)) is normally distributed with a mean μi equal to the

Mitscherlich function E(yij|xi) ≡ μi = β1 + β2x
β3
i , and with βi > 0. We will provide the elements of the

Fisher information matrix for estimation of θT = (β1, β2, β3, σ
2). The log likelihood function is given by

	(θ|y) = −1

2

m∑

i=1

ni∑

j=1

[
log(2π) + log(σ2) + log(ϕ(μi)) + (yij − μi)

2/(σ2ϕ(μi))
]

with y = (y1,y2, ...,ym)T and yi = (yi1, yi2, ..., yini)
T . The four score functions 	′βk

= ∂	(θ|y)/∂βk ,

k ∈ {1, 2, 3}, and 	′σ2 = ∂	(θ|y)/∂(σ2) are now given by

	′βk
= −1

2

m∑

i=1

ni∑

j=1

[
ϕ′(μi)

ϕ(μi)
− 2

yij − μi

σ2ϕ(μi)
− ϕ′(μi)(yij − μi)

2

[σϕ(μi)]2

]
∂μi

∂βk
,
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	′σ2 = −1

2

m∑

i=1

ni∑

j=1

[
1

σ2
− (yij − μi)

2

σ4ϕ(μi)

]
.

After tedious algebraic calculations using the score functions directly, the variances and covariances of
the score functions can be calculated. They are given by

VAR(	′βk
) =

m∑

i=1

ni

[
1

2

(
ϕ′(μi)

ϕ(μi)

)2

+
1

σ2ϕ(μi)

](
∂μi

∂βk

)2

,

VAR(	′σ2) =
1

2σ4

m∑

i=1

ni,

COV(	′βr
, 	′βs

) =

m∑

i=1

ni

[
1

2

(
ϕ′(μi)

ϕ(μi)

)2

+
1

σ2ϕ(μi)

]
∂μi

∂βr

∂μi

∂βs
,

COV(	′βk
, 	′σ2) =

1

2σ2

m∑

i=1

ni

[
ϕ′(μi)

ϕ(μi)

]
∂μi

∂βk
.

Since we have ∂μi/∂β1 = 1, ∂μi/∂β2 = xβ3
i , and ∂μi/∂β3 = β2x

β3
i log(xi), we obtain that the matrix

I3×3(β) is given by (18).
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