

Lattice cryptanalysis

Citation for published version (APA):
Doulgerakis, E. (2022). Lattice cryptanalysis: Theoretical and practical aspects. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Eindhoven University of Technology.

Document status and date:
Published: 09/09/2022

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/c061a943-f169-4348-8f7b-ea1755d65b30

Lattice cryptanalysis
Theoretical and practical aspects

Emmanouil Doulgerakis

Copyright © Emmanouil Doulgerakis
E-mail: emmanouhld@gmail.com

First edition August 2022

This research was supported by the Netherlands Organisation for Scientific Research
(NWO) grant 628.001.028 (“Faster and Stronger Onion Routing”).

Printed by: Gildeprint – www.gildeprint.nl

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-555-0

The cover (front and back) presents an analogy of how cryptography is usually viewed
by non-expert people. In most cases the “end product” receives the most attention: the
security of communications. The mathematical foundations of cryptography tend to be
ignored, like a back cover is usually ignored compared to the front cover.

The picture on the front cover is used under a Standard License from the webpage
www.istockphoto.com. The graph on the back cover was a result of this thesis. Further
information about it can be found in Chapter 3.

Lattice cryptanalysis
Theoretical and practical aspects

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven,
op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens, voor een commissie
aangewezen door het College voor Promoties, in het openbaar te verdedigen

op vrijdag 9 september 2022 om 16:00 uur

door

Emmanouil Doulgerakis

geboren te Rethymnon, Griekenland

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotie-
commissie is als volgt:

voorzitter: prof. dr. E.R. van den Heuvel
1e promotor: dr. B.M.M. de Weger
2e promotor: prof. dr. T. Lange
leden: prof. dr. M. Albrecht (Royal Holloway)

prof. dr. D.J. Bernstein
dr. D. Dadush (Centrum Wiskunde & Informatica)
prof. dr. A. May (Ruhr-Universität Bochum)
dr. ir. L.A.M. Schoenmakers

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Acknowledgments

Like many PhD candidates before me, I would like to extend a word about the journey
called PhD and the people who helped me throughout it.

The first people whom I would like to thank are my supervisors, as without them this
journey would not have even started. Despite the fact that I was coming from a relatively
remote place, you interviewed me and decided to give me the opportunity to join your
group. Since then you have kept supporting and being patient with me even though
I had a rough start with my project. In addition, you gave me the freedom to pursue
my own ideas and become independent. A special thanks goes to my daily supervisor
Benne. Benne, you had always been there for me, listening to my crazy, semi-crazy and
sometimes non-crazy ideas. There was always something to learn from you. Even when
we went for hiking at the mountains of Zhangjiajie, you would still have a nice lesson to
teach me. Additionally, I would like to thank you for your endless patience while helping
me to improve my writing style. I would also like to thank my second supervisor, Tanja.
Even though we only worked more closely towards the end of my PhD, I always knew
that I could ask you for anything I would need help with. Furthermore I must mention
that I greatly enjoyed your chocolate cakes, which you used to bring on special occasions.
Concluding, I could say that I had the privilege to be supervised by great scientists who
are also great humans. I will be grateful to you for the rest of my life for this opportunity.

Next I would like to thank my committee Martin Albrecht, Daniel J. Bernstein, Daniel
Dadush, Alexander May and Berry Schoenmakers for taking the time to read this thesis
and performing all the duties that follow by joining my doctorate committee.

Being a member of the coding theory and cryptology group I had the opportunity to
travel around the world to conferences and workshops. In many cases, much farther than
I had ever imagined I would travel, or I would dare to travel. This is an additional reason
why I should thank my supervisors. While attending all these conferences and workshops
I had the opportunity to broaden and deepen my knowledge on the field of cryptology.
Apart from scientific knowledge, all these journeys provided me the opportunity to grow
more mature through the interaction with great scientists as well as with a variety of
different cultures. Such experiences make a person rethink of his place in the world,
both as a scientist and a human being. Questions like, which projects match my interests,
which is my place in the scientific community, or which is the future I desire for myself,
become eminent. Cultural questions also tend to arise. Some of these are: why do we
behave differently, how are cultures formed, do we notice the similarities we share, do
we respect each other enough. At this point I will stop because as one of my supervisors

says, I tend to getting too philosophical.
My staying in the coding theory and cryptology group would not have been as fun if it

had not been for some great colleagues. Thank you all, for the nice lunch breaks and cof-
fee breaks. In alphabetical order I would like to thank Alberto, Alessandro, Alessandro,
Andy, Anita, Bor, Boris, Chloe, Christine, Daan, Daniel, Davide, Dominik, Florian, Fran-
cisco, Frank, Gustavo, Harm, Huub, Iggy, Jake, Kai-Chun, Laura, Leon, Lorenz, Mahdi, Mi-
lan, Mina, Niek, Niels, Pavlo, Putranto, Simon, Sowmya, Stefan, Taras, Thijs and Tomer.
For some of them I would like to express my gratitude separately.

To my permanent officemate Gustavo, I want to say that it was a great pleasure to
share the office with you. We could always understand each other when the weather was
too depressing or the food at the canteen was not... satisfying. We would also have some
nice conversations when we did not feel like working, with topics ranging from poisonous
animals of the Amazon to ways of cooking meat in Brazil vs Greece. Furthermore, I
am very glad that during our studies I had the chance to introduce you to Greek and
especially Cretan cuisine (which you loved). Summarising, you offered me one of the
most unexpected and happy surprises during my PhD, you showed me that even nations
from two opposite sides of the globe may share similar cultures.

I would also like to thank Alessandro for being a fellow Mediterranean guy, who would
also understand me and offer me a positive thought even in difficult times. Next I would
like to thank Thijs for many reasons. The most important of them is that he greatly
inspired me as a researcher since his return in Eindhoven. He introduced me to sieving,
Voronoi cells and showed me how to prepare nice graphics for talks. Together we spent a
lot of time discussing about lattices and various other topics. Also we had the chance to
spend some nice time together during conferences around the world. Last but not least,
I would like to thank our secretary Anita for always happily helping when bureaucratic
issues would arise.

Moving to family and friends from Crete, I would like to thank my cousin Antonis,
whose help and hospitality were of critical importance for my survival during my first
days in the Netherlands. Antonis, thank you for your generosity and your optimistic
spirit! Also a special thanks goes to my dear friends and “koumparoi” in Crete, Dimitris
and Maria. Thank you both for always making my vacation in Crete much more fun and
enjoyable. Our trips around Crete were definitely amongst the highlights of my summer
vacation. I wish that in the future we will be able to spend more time together.

Moving towards the end of this acknowledgments, I would like to thank my family for
their love and support during all these years. Even though modern technology allows calls
and video calls, managing the distance was not always easy. Thank you for supporting
me even when I would not have enough time for us to talk or I would not be in a good
mood.

I want to conclude these acknowledgments with the person who has supported me the
most during my PhD journey. Anthi, it would simply have been impossible without your
love and support. I am not able to express in only just a paragraph the magnitude of your
support during the past five years. Together we faced many challenges while pursuing
our PhDs. Despite these difficulties, you have always been there for me. The least to say
is that you help me become the best of me. Thank you for everything!

Emmanouil Doulgerakis

Paderborn, June 2022

Contents

Introduction 1

1 A brief introduction to lattices 5
1.1 Basic notions and main problems . 5
1.2 Classical results and heuristic assumptions 8
1.3 Structured lattices . 11

2 Finding closest lattice vectors using approximate Voronoi cells 15
2.1 Introduction . 15
2.2 Preliminaries . 17
2.3 The CVPP cost model . 21
2.4 Voronoi cells . 22
2.5 Voronoi cell algorithms . 23
2.6 Approximate Voronoi cells . 24
2.7 Randomized slicing . 27
2.8 Preprocessing costs . 29
2.9 CVPP complexities . 31
2.10 Experimental results . 33
2.11 Another few dimensions for free . 35

3 The irreducible vectors of a lattice 37
3.1 Introduction . 37
3.2 Previous Work . 38
3.3 Irreducibility of lattice vectors . 40
3.4 Computation of the set P(L) . 48
3.5 Applications of P(L) . 59
3.6 Corner cases among S1(L) , Irr(L) and R(L) 63
3.7 Some graph theoretical aspects . 67

4 Hybrid lattice algorithms for SVP via CVPP 71
4.1 Introduction . 71
4.2 Preliminaries . 72
4.3 Sieve, Enumerate, Slice, and Lift . 75
4.4 Sieve, Enumerate, Slice, Repeat . 81
4.5 Experimental Results . 83

5 Gambling at the Ring’s casino: The zeros-guessing game 87
5.1 Introduction . 87
5.2 The consecutive zeros pattern . 88
5.3 A pattern’s index of symmetry . 92

6 Exploiting generalised Ring-LWE lattices 99
6.1 Introduction . 99
6.2 Preliminaries . 100
6.3 Can Ring-LWE get overstretched? . 104
6.4 Implications for attack performance . 110

7 Conclusions and open problems 113
7.1 Research questions on approximate Voronoi cells 113
7.2 Research questions on irreducible vectors 113
7.3 Research questions on hybrid algorithms 114
7.4 Research questions on guessing patterns 115
7.5 Research questions on Ring-LWE’s lattices 115

Summary 117

Curriculum Vitae 119

Bibliography 121

Introduction

Perhaps one of the most important moments in human history was when we first man-
aged to establish a formal means of communication, a language. This was a great break-
through as it allowed knowledge not only to be shared among people in a standardised
way, but also to be transferred through time. However, it soon became clear that some
information was supposed to remain secret and not to be shared indiscriminately. This
became apparent in the field of military communications. For instance, assume that a
message-bearer in ancient Greece carries a scroll including a message from an Athenian
general to a Spartan. It would be very unfortunate if that scroll fell in Persian possession.
If the message-bearer was bribed or captivated by the Persians that would enable them to
just read the scroll and become aware of the message. A new idea was needed, one that
would ensure the secrecy of the message without any assumptions on the trustworthiness
of the message-bearer. This is when cryptography was born.

Even though nowadays cryptography is not only used to ensure secrecy, this was actu-
ally its only purpose for a very long time. Cryptographers of the past would devise various
methods (cryptosystems) in order to make sure that a message could be concealed from
everybody except from its righteous recipient. These methods combined with a secret key
would help a sender to transform his message to a seemingly unreadable state (encrypt)
which would be handed to the recipient. Then he and only he was supposed to be able
to reverse the used process and recover the message (decrypt). At this point two natural
questions arise.

Firstly, why would the recipient be the only one able to reverse the process? The
answer is that even though the cryptosystem used could be publicly known,1 he would
possess some extra knowledge that no third-party had, namely the secret key. Therefore,
a sender and a recipient may have to agree in advance on a secret key, which of course
is a big challenge on its own.2 A second question which could come to mind is: could
somebody reveal the message without knowing the key, or even recover the key itself by
just observing encrypted messages? This question lies at the core of one of the longest
lasting battles in science: Cryptographers vs Cryptanalysts.

Cryptographers have used various techniques in order to design cryptosystems. Each
such attempt was founded on the assumption that breaking the cryptosystem (i.e. recov-

1In some cases even the cryptosystem was assumed to be secret, but such an assumption proved to be
unrealistic due to espionage.

2The key-exchange problem was only solved in 1976 by Diffie and Hellman in their seminal work “New
directions in cryptography” [DH76].

2 INTRODUCTION

ering the secret key or decrypting without it) would result in actually solving a “hard”
problem. In the dawn of cryptography an example of what was considered “hard” was
finding a rotation of the alphabet. In fact, the Caesar cipher [Sin00] was doing exactly
that. It attempted to secure messages by substituting each letter in the message by the
letter in a predetermined number of places forward in the alphabet. Although this was
considered secure at that time, people realised that it only requires to try all 26 possible
shifts of the alphabet in order to find the “correct” one. Thus, a problem, initially con-
sidered as “hard”, proved to not actually be “hard”. Nevertheless, cryptographers did not
give up and struck back. An example from the Renaissance is the Vigenère cipher [Sin00].
In order to deal with the small keyspace of the Caesar cipher, the Vigenère cipher intro-
duced the idea of using multiple rotations of the alphabet. Admittedly, this increases the
difficulty of the underlying problem, but cryptanalysts found a way to break it as well.
Therefore, once more an initially considered “hard” problem proved to not actually be
“hard”. Moving forward to the 20th century, cryptographers utilised electro-mechanical
devices in order to build even more complex cryptosystems. Probably the most well-
known of them is the ENIGMA [Sin00], used by the Germans in World War II.3 The “rule”
under which ENIGMA chose how to substitute each letter was too complicated for any
pen-and-paper method to threaten it. That is why cryptanalysts employed the power of
machines in order to break it.

This brings us to the modern era, and especially after 1976, when public-key cryp-
tography was born. This breakthrough in cryptography introduced a new trend in the
design of cryptographic schemes. Cryptographers who design public-key cryptographic
schemes nowadays, utilise number-theoretical problems instead of puzzles or complex
machine designs in order to ensure their security. One of the most well-known crypto-
graphic schemes in this category is RSA [RSA78]. The security of this scheme relies on
the difficulty of factoring integers which are the product of two (big) primes. But once
again the question arises, given a specific mathematical problem, can we decide if it is
“hard” or not?

Usually a definite answer to this question is only possible when the answer is nega-
tive. An affirmative answer has proven to be more challenging and has only been reached
in some very special cases. However, mathematical problems are not discarded if a defi-
nite answer cannot be given. Instead, we build confidence in the hardness of a problem
through many years of research, which we call cryptanalysis. This process involves the
extensive use of human ingenuity in order to achieve two goals:

1. Deepen our understanding of a problem by developing extra theory.
2. Build algorithms which solve the mathematical problem and analyse their perfor-

mance.
As we already described in the above paragraphs whenever cryptographers deployed

more complicated cryptosystems, cryptanalysts responded by more advanced cryptana-
lytic techniques. The same is true in our times as well. However, this time the threat
seems to not be a theoretical breakthrough in our understanding of the utilised mathe-
matical problems, but rather a technological advancement. The race for building the first
large scale quantum computer is already on. Once such a device is built, there are serious

3For the reader who would be interested in ENIGMA and the history around it, I recommend visiting https:
//www.cryptomuseum.com/crypto/enigma/index.htm. Also, for those who would not like diving into
the technical cryptographical details of this machine I suggest the excellent movie “The Imitation Game”.

https://www.cryptomuseum.com/crypto/enigma/index.htm
https://www.cryptomuseum.com/crypto/enigma/index.htm

INTRODUCTION 3

reasons to believe that most of the modern, widely used cryptography will be broken. In
particular, Shor [Sho94] described a quantum algorithm which can factor a product of
two primes much faster than any classical algorithm. The same algorithm affects not only
RSA but all widely used public-key cryptography.

Even though this might sound scary, cryptographers always struck back throughout
history, and our times are no exception. The need for post-quantum cryptography has led
some brave cryptographers of our times to investigate new mathematical foundations of
cryptography which are believed to be secure even in the presence of quantum computers.
One such option is lattice-based cryptography. However, as was previously mentioned, in
practice the only way to ensure that a cryptographic scheme is secure is through extensive
cryptanalysis.

This dissertation is devoted to the study of lattice problems, with the aim to contribute
to the process of “extensive cryptanalysis” for lattice-based cryptography. The dissertation
consists of two main parts. The first part, (Chapters 1, 2, 3) focuses on the theory of
lattices and lattice problems, while the second part (Chapters 4, 5, 6) focuses more on
practice (attacks).

Part 1: Lattice theory

• Chapter 1 describes the basic notions used in the study of lattices and introduces
some lattice problems of great cryptographic interest. It also mentions a few clas-
sical results and some commonly used heuristic assumptions.

• Chapter 2 discusses the Closest Vector Problem with Preprocessing (CVPP). In par-
ticular, it describes how the Voronoi cell of a lattice can be used in order to solve
CVPP and how the use of approximate Voronoi cells can result in improved com-
plexities.

• Chapter 3 introduces two notions: the irreducible vectors of a lattice and a complete
system of irreducible vectors. As a first step, some main properties of these sets of
lattice vectors are given. Furthermore, it is discussed how these sets relate to the
set of Voronoi relevant vectors, sieving algorithms and the study of lattice problems.

Part 2: Lattice attacks

• Chapter 4 describes some hybrid lattice algorithms for the Shortest Vector Problem
(SVP). The hybrids are built by combining the approximate Voronoi cell techniques
mentioned in Chapter 2 with lattice enumeration and Babai lifting.

• Chapter 5 examines some combinatorial aspects of guessing a pattern of zeros in
a secret lattice vector. Namely, it is examined in more detail why random patterns
seem to be more likely to occur than the consecutive zeros pattern and how we
could possibly optimise our choice of a pattern.

• Chapter 6 investigates the potential benefits of using a “wider” set of lattices mod-
elling the Ring-LWE problem. The idea is mainly examined within an “overstretched”
case analysis and briefly within the framework of lattice reduction attacks.

Finally, Chapter 7 discusses open problems emerging from this dissertation.

Chapter 1

A brief introduction to lattices

In this chapter we will mention some basic notions, problems and results regarding lat-
tices. In this way we aim at both easing the exposition of ideas in the following chapters,
as well as motivating a non-expert reader to read further ahead. The interested reader
can refer to [MG02] for further details on the topic.

1.1 — Basic notions and main problems

1.1.1 – Basic notions. The first definition in this thesis could be none other than that
of a lattice.

Definition 1.1. Let Rd be the d-dimensional Euclidean space and B = {b1, . . . ,bn} ⊂ Rd
a set of linearly independent vectors. The lattice L induced by B is the set of all integral
combinations of the vectors in B:

L = L(B) :=

{
n∑
i=1

xibi : xi ∈ Z

}
. (1.1)

An equivalent definition using algebraic terms is that a lattice L is a discrete additive
subgroup of Rd. By discrete we imply that there exists a positive real λ > 0 such that
around each lattice point there is a ball with radius λ that has no other lattice point in
it. An example of a lattice is shown in Figure 1.1. The integer d is called the dimension
of the lattice and n the rank of the lattice. If n = d we call L a full rank lattice. The
set B is called a basis of the lattice. We may also interpret B as a matrix with columns
bi. A lattice has several bases. If B1, B2 are two bases of a lattice then there will exist
an integral unimodular matrix U such that B2 = B1U. This leads us to one of the most
commonly used invariants of a lattice, its volume.

Definition 1.2 (Volume). Let L be a lattice in Rd and B a basis of it. We define Vol(L) :=
det(BTB)1/2 to be the volume of the lattice.

If L is a full rank lattice the definition reduces to Vol(L) := | det(B)|. A crucial element
in this definition is that the volume of the lattice is independent of the basis. A geometrical
interpretation of the lattice volume is that it corresponds to the volume of the region
{Bx : x ∈ [0, 1]n} (see Figure 1.1).

6 CHAPTER 1. A BRIEF INTRODUCTION TO LATTICES

As a lattice is a discrete structure, we can also define another invariant, the length
of a shortest non-zero vector. Throughout this thesis we will consider problems in the
Euclidean norm, unless stated otherwise.

b1

s

b2

Figure 1.1: A lattice in R2.

Definition 1.3 (First minimum). Let L be a lattice. We define λ1(L) := minv∈L\{0} ‖v‖.
We call λ1(L) the first successive minimum of L.

It can be the case that many lattice vectors reach the first successive minimum.

Definition 1.4 (First shell). Let L be a lattice. We define

S1(L) := {v ∈ L | ‖v‖ = λ1(L)}. (1.2)

We call S1(L) the first shell of L.

Like the first successive minimum we can further define the i-th successive minimum
of L for i 6 n.

Definition 1.5 (Successive minima). Let L be a lattice of rank n. For i = 1, 2, . . . ,n we
define the i-th successive minimum of L to be

λi(L) := min{max{‖x1‖, . . . , ‖xi‖} | x1, . . . , xi ∈ L are linearly independent}. (1.3)

The first successive minimum indicates how close a lattice vector can be to the origin.
However, we can also consider the case where it is required to find a lattice vector not
closest to 0 but to a given vector t in Rd.

1.1. BASIC NOTIONS AND MAIN PROBLEMS 7

Definition 1.6 (Covering radius). Let L be a full rank lattice in Rd. We define

µ(L) := max
t∈Rd

min
v∈L
‖t− v‖ (1.4)

and µ(L) is called the covering radius of the lattice.

For the sake of simplicity the aforementioned definition of the covering radius is given
for a full rank lattice. However it can be easily adapted to the case of a non-full rank
lattice. This can be done by replacing Rd with the linear span of a basis of the lattice.
Therefore in both cases the covering radius will indicate how far from the lattice a point
of its linear span can be.

Finally, we will give the definition of the dual of a lattice. Even though this notion
might seem complicated or counter-intuitive at first glance, it has been used a lot in the
literature.

Definition 1.7 (Dual lattice). The dual of a lattice L is the set of all vectors x in the linear
span of L such that 〈x, v〉 ∈ Z for all v ∈ L. We denote the dual lattice of L by L∗.

A result which helps in making the definition of the dual lattice more explicit is the
following. If B is a basis of a lattice L then B(BTB)−1 is a basis for L∗.

Having in place enough definitions regarding a lattice, we are ready to define some
of the most common lattice problems in the literature.

1.1.2 – Lattice problems. We will start our exposition of lattice problems with those
regarding finding short lattice vectors.

Definition 1.8 (Shortest Vector Problem, SVP). Given a lattice L, find a non-zero lattice
vector s ∈ L satisfying ‖s‖ = λ1(L).

In some cases, an exact solution to SVP might be “too hard” to find, or even not
necessary and thus we may resort to an approximate version of the problem.

Definition 1.9 (Approximate Shortest Vector Problem, SVPγ). Given a lattice L and an
approximation factor γ > 1, find a non-zero vector s ∈ L such that ‖s‖ 6 γ · λ1(L).

The SVP and SVPγ ask for a lattice vector achieving the first successive minimum
λ1(L) or one approximating it respectively. However, if a “short” lattice vector is given, it
is required to know the value of λ1(L) in order to verify if it constitutes a solution to the
problem. In order to circumvent the computation of λ1(L) we can ask for short lattice
vectors with regard to a lattice invariant which is easily computable, its volume.

Definition 1.10 (Hermite Shortest Vector Problem, HSVPγ). Given a lattice L of rank n
and an approximation factor γ > 1, find a non-zero vector s ∈ L such that
‖s‖ 6 γ · Vol(L)1/n.

Apart from stating lattice problems where only one vector is required as output, prob-
lems asking for a set of lattice vectors can be of interest. One such problem is the follow-
ing.

Definition 1.11 (Shortest Independent Vector Problem, SIVP). Given a lattice L of rank
n, find n linearly independent vectors v1, . . . , vn ∈ L such that max16i6n ‖vi‖ 6 λn(L).

8 CHAPTER 1. A BRIEF INTRODUCTION TO LATTICES

Following the same path as in the previous subsection, we will move from problems
asking for lattice vectors close to the origin, to lattice problems asking for lattice vectors
close to a random vector in t ∈ Rd. Again in order to ease the exposition we will give
definitions for full rank lattices. Of course these definitions can be extended to the case
of non-full rank lattices.

Definition 1.12 (Closest Vector Problem, CVP). Given a full rank lattice L in Rd and a
target vector t ∈ Rd, find a lattice vector s ∈ L satisfying ‖t− s‖ = minv∈L ‖v− t‖.

Like in the case of SVP an approximate solution to the problem may suffice, therefore
an approximate version of the problem is given.

Definition 1.13 (Approximate Closest Vector Problem, CVPγ). Given a full rank lattice L
in Rd, a target vector t ∈ Rd, and an approximation factor γ > 1, find a vector s ∈ L with
‖s− t‖ 6 γ ·minv∈L ‖v− t‖.

An important difference between SVP and CVP is that the second depends on a “target
vector” t ∈ Rd. Hence, a preprocessing version of the problem can be defined. In the
preprocessing variant of CVP (CVPP), one is allowed to preprocess the lattice L, and use
the preprocessed data to solve a CVP instance for t. This problem naturally comes up in
contexts where either L is known long before t is known, or if a large number of CVP
instances on the same lattice are to be solved.

Definition 1.14 (Closest Vector Problem with Preprocessing, CVPP). Let L be a full rank
lattice in Rd and Π be a preprocessing function, computing the preprocessing data Π(L).
Given a target vector t ∈ Rd find a lattice vector s ∈ L satisfying |t − s| = minv∈L |v − t|
using the preprocessing data Π(L).

We will conclude this section with a remark on the theoretical vs the practical use of
the definitions we gave in this section. In all cases we considered the “general” case where
a lattice L was a subset of Rd. However when computational problems are processed in
practice it is easier to work with rational or even integer arithmetic instead of floating
point. That is why it is common when lattices are used in practical applications to assume
that L ⊆ Zd instead of L ⊆ Rd.1

1.2 — Classical results and heuristic assumptions

In this section we will mention a couple of classical results/assumptions which are
used in the study of lattices. Again, we will start with results regarding short vectors
of the lattice. A natural question to ask would be if there is an upper bound to λ1(L).
Hermite gave an upper bound on λ1(L) depending on the volume of L.

Theorem 1.15 (Hermite). For each d ∈ N there exists a constant γd such that for any full
rank lattice in Rd it holds that

λ1(L) 6 γd
1/2Vol(L)1/d. (1.5)

1A lattice L with L ⊆ Qd can be associated to one L ′ ⊆ Zd by proper scaling which again allows to work
with integers.

1.2. CLASSICAL RESULTS AND HEURISTIC ASSUMPTIONS 9

We notice that Theorem 1.15 justifies the definition of problem 1.10 as it provides a
guarantee that for γ > γd1/2 there always exists a solution to HSVPγ.

Definition 1.16. The supremum of λ1(L)
2/Vol(L)2/d over all rank-d lattices L is denoted

by γd and called Hermite’s constant for dimension d.

Asymptotic bounds on γd show that it actually is linear in d (see [Ngu09]). However,
the exact value of γd is only known for dimensions 1 6 d 6 8 and d = 24.

Even though Theorem 1.15 is a nice result for bounding λ1(L), a similar result can-
not occur for rest of the successive minima. The classical counterexample is the lattice
generated by

B =

(
ε 0
0 1/ε

)
with ε > 0. (1.6)

As it becomes clear for this example the volume of the lattice is equal to 1 but for small
ε we get λ2(L) = 1/ε which can become arbitrarily large. However, by Minkowski
we know the following theorem which bounds the norms of the successive minima in a
“collective way”.

Theorem 1.17 (Minkwoski). Let L be a full rank lattice in Rd. Then

d∏
i=1

λi(L) 6 γd
d/2 Vol(L). (1.7)

When studying lattices in practice, apart from exact results, some so called heuristic
assumptions are used. These assumptions will probably not be true for all lattices. How-
ever they will closely approximate some property for “most” lattices. In this way a specific
property of a lattice, or a lattice algorithm, can be more easily studied/analysed in what
is commonly referred as the “average case”. Such an assumption commonly used in the
literature is the Gaussian heuristic.

Assumption 1.18 (Gaussian heuristic). Given a full-rank lattice L and a region A ⊂ Rn,
the (expected) number of lattice points in A, denoted |A ∩ L|, satisfies:

|A ∩ L| ≈ Vol(A)
Vol(L)

. (1.8)

Remark 1.19. As it was mentioned earlier, heuristic assumptions can be precise for some
families of lattices but imprecise for some others. We refer to [BL21] for a detailed analysis
formalising when the Gaussian heuristic is accurate and investigating for which families of
lattices.

Using volume arguments, the Gaussian heuristic predicts that λ1(L) = gh(L) where
gh(L) :=

√
d/(2πe) · Vol(L)1/d · (1 + o(1)). For average-case, random CVP(P) target

instances t ∈ Rd, this further means that we expect the distance to the closest lattice
point to be roughly λ1(L): any smaller ball around t of radius (1−ε)λ1(L) is expected to
be empty, and a bigger ball of radius (1+ ε)λ1(L) will likely contain up to (1+ ε)d+o(d)

(exponentially many) lattice points for a random lattice L.
As it was mentioned earlier, each lattice has infinitely many bases. Usually we are

interested in a “good” basis of the lattice, which roughly speaking means that the basis

10 CHAPTER 1. A BRIEF INTRODUCTION TO LATTICES

vectors are short and close to orthogonal. In order to compute such nice bases of a
lattice we deploy lattice basis reduction algorithms. The most famous and widely used
are the LLL algorithm [LLL82] and a generalisation of it, the BKZ algorithm [Sch87]. In
particular, the BKZ algorithm requires an “SVP oracle” solving SVP in some dimension β,
that is why we adopt the notation of a BKZ-β reduced basis. In addition, a basis which is
BKZ-β reduced for some “big” β, will be called a strongly reduced basis.

For a basis B = {b0, . . . ,bd−1} and i ∈ {0, 1, . . . ,d − 1} we define πi as the pro-
jection onto the orthogonal complement of {b0, . . . ,bi−1} . The Gram-Schmidt vectors
b∗0 , . . . ,b∗d−1 are defined as b∗i := πi(bi). The sequence (‖b∗i‖)

d−1
i=0 is called the profile

of a basis. The profile of a lattice basis is related to the volume of the lattice by the fol-
lowing formula: Vol(L) =

∏d−1
i=0 ‖b∗i‖. A way to measure the quality of a basis is via the

behaviour of its profile. In particular, we examine if it decreases too fast. A commonly
used heuristic assumption on the profile of a BKZ-reduced basis is the Geometric Series
Assumption (GSA).

Assumption 1.20 (Geometric Series Assumption). Let B be a BKZ-β reduced basis of a
full rank d-dimensional lattice. Then the Gram-Schmidt vectors b∗i satisfy

‖b∗i‖ = α
(d−1−2i)/2
β Vol(L)1/d

where αβ ≈ (β/2πe)1/(β−1).

Remark 1.21. The value of αβ given in Assumption 1.20 is derived by an asymptotic esti-
mate. For small values of β (say β < 50) it will not give a good approximation of a basis’
profile.

0 50 100 150
6

8

10

12

→ index i

→
lo

g(
‖b
i
‖)

exper.
GSA

Figure 1.2: A comparison of a BKZ-60 reduced basis’ profile to the prediction of the GSA. For this particular
example we reduced a basis of a 180-dimensional lattice with BKZ using block size 60. The picture is drawn in
logarithmic scale.

1.3. STRUCTURED LATTICES 11

1.3 — Structured lattices

So far we have considered a basis of a lattice as its representation. If L is a full rank
lattice in Zd then in order to store (or transmit) it we would need to handle d2 integers.
If d = 1000 then it would take a million (106) integers in order to represent the lattice.
Even though in general this is not a problem with modern technology, it may not be very
“convenient” once we start considering lattices within cryptographic applications.

One reason why it may not be so convenient, is that nowadays there is a wide variety
of devices using cryptographic schemes. Many of these devices may have a restricted
memory capacity (e.g. embedded devices), unlike a laptop for example. Therefore, for a
full-scale deployment of a lattice-based scheme it would be preferred to make it fit in as
many frameworks as possible. A second reason is more of a matter of comparison to the
currently used cryptography. The cryptographic schemes used at the moment store keys
of at most a few KB. If a (new) lattice-based scheme requires a few MB for storing a key,
this may be considered as loss in the performance of the used cryptography. Therefore,
the question arises: could it be possible to represent a lattice in a more compact way?

The answer to this question is positive for some lattices and we will mention two
examples from the literature. Such examples emerge from the use of algebraic objects, in
this case, rings. The underlying structure of a ring allows a more compact representation
of a lattice, reducing the memory requirements.

The first such example we will mention is NTRU [HPS98].

Definition 1.22 (The NTRU Problem). Let n be a prime, q a positive integer and let f,g ∈
Zq[X] be polynomials of degree n with small coefficients sampled from some distribution χ
under the condition that f is invertible in Rq := Zq[X]/〈Xn − 1〉. The pair (f,g) forms the
secret key and the public key is defined as h := gf−1 in Rq. The NTRU problem is to recover
any rotation (Xif,Xig) of the secret key from h.

Usually, the polynomials f,g are chosen to have coefficients in {0,±1} with each value
occurring about n/3 times. In the definition of the NTRU problem, no lattices were
involved. Nevertheless, we can reduce the NTRU problem to a lattice problem by defining
the NTRU lattice. In order to do so, it is useful to consider the multiplication matrix of
an element in Rq. For a ∈ Rq we set M(a) to be the multiplication matrix of a, i.e. the
j-th column is formed by the coefficients of Xja.

Definition 1.23. Let (n,q, f,g,h) be an NTRU instance. We define the NTRU lattice as

Lh,q :=

(
qIn M(h)
0 In

)
· Z2n. (1.9)

If we identify f,g with their coefficient vectors, then (g|f)T is an exceptionally short
vector in the lattice Lh,q as:(

qIn M(h)
0 In

)(
k
f

)
=

(
g
f

)
for some k ∈ Zn.

Hence, the NTRU problem is reduced to finding a short vector in a lattice.

Remark 1.24. The ring Rq could be defined for other choices of a modulus polynomial apart
from Xn − 1. Other options might actually be even more secure (e.g. see [BCLv19]).

12 CHAPTER 1. A BRIEF INTRODUCTION TO LATTICES

There are two special properties of the NTRU lattice which are worth mentioning.
Initially, the NTRU lattice is a q-ary lattice.

Definition 1.25 (q-ary lattice). A lattice L of dimension d is called q-ary if for some q > 0
we have

qZd ⊆ L ⊆ Zd.

Also the NTRU lattice is a cyclic lattice.

Definition 1.26. A lattice L is called cyclic if for every lattice vector v ∈ L, all the vectors
obtained by cyclically rotating the coordinates of v also belong to L.

A second example taking advantage of the algebraic structure of rings is the Ring
Learning With Errors problem (Ring-LWE). Let q be a prime and f(X) ∈ Z[X] a poly-
nomial of degree n which is also irreducible in Z[X]. We set R = Z[X]/〈f(X)〉 and
Rq = Zq[X]/〈f(X)〉. In order to ease the exposition we will consider the specific case
f(X) = Xn + 1 with n = 2l, known as the 2n-th cyclotomic polynomial.

Definition 1.27 (The Ring-LWE Problem). Let a,e ∈ R with “small” coefficients, sampled
according to some distributions χ1 and χ2.2 Let G be a uniformly random element of Rq
and A ∈ Rq such that aG+ e = A in Rq. Given, G,A find a.

In order to express Ring-LWE in terms of a lattice problem we define the lattice gen-
erated by the columns of the following matrix,

B =

 qIn A M(−G)
0 1 0
0 0 In

 . (1.10)

If we consider a,e as vectors, then (e|1|a) is an exceptionally short vector in the lattice
L(B). Hence, the Ring-LWE problem is reduced to a lattice problem.

Remark 1.28. The matrix B given above generates the most commonly used lattice for mod-
elling Ring-LWE as a lattice problem. However, it is not the only one that can be used, more
options are possible. This is a topic examined in Chapter 6.

We note that using the aforementioned lattice for modelling Ring-LWE does not allow
the formation of a cyclic structure in the lattice.

Concluding we can claim that both for NTRU and Ring-LWE one or two ring ele-
ments were used respectively in order to encode a lattice problem. These ring elements
take O(n) space while the corresponding lattices are of size O(n2). Therefore the repre-
sentation of the underlying lattices via the ring elements is smaller by a factor of O(n)
compared to any other random lattice in the same dimension. Hence, an improvement is
achieved.

2Here “small” usually refers to some set like {0,±1}.

1.3. STRUCTURED LATTICES 13

Further background. As it was mentioned at the beginning of this chapter, its purpose
is to provide a brief introduction to the subject of lattices. This implies that later chapters
will present background specific to the scientific publications they cover. In particular,
even though in this chapter we briefly discussed about lattice basis reduction, we did
not mention anything about algorithms solving problems like SVP and CVP. This will be
done in the following chapters. We refer to Section 2.2 for a discussion on lattice sieving
and to Section 4.2.2 for an brief introduction to lattice enumeration. Finally we refer to
Section 2.4 for an introduction to Voronoi cells.

Chapter 2

Finding closest lattice vectors using
approximate Voronoi cells

This chapter presents parts of the paper Finding closest lattice vectors using approximate
Voronoi cells [DLdW19] authored jointly with Thijs Laarhoven and Benne de Weger, which
was published at PQCrypto 2019. As this chapter merely presents some parts of the paper,
proofs of results will not be included. We refer to [DLdW19] for the proofs.

2.1 — Introduction

Given a basis of a lattice L, the shortest vector problem (SVP) asks to find a shortest
non-zero vector in L under the Euclidean norm, i.e., a non-zero lattice vector s of norm
‖s‖ = λ1(L). Given a basis of a lattice and a target vector t ∈ Rd, the closest vector
problem (CVP) asks to find a lattice vector s ∈ L closest to t. The preprocessing variant
of CVP (CVPP) permits to preprocess the lattice L such that, when later given a target
vector t, one can quickly find a closest lattice vector to t.

SVP and CVP are fundamental in the study of lattice-based cryptography, as the se-
curity of many schemes is directly related to their hardness. Various other hard lattice
problems, such as Learning With Errors (LWE), are closely related to SVP and CVP; see
e.g. [Ste16] for reductions among lattice problems. These reductions show that under-
standing the hardness of SVP and CVP is crucial for accurately estimating the security of
lattice-based cryptographic schemes.

Worst-case SVP/CVP analyses. Although SVP and CVP are both central in the study of
lattice-based cryptography, algorithms for SVP have received somewhat more attention,
including a benchmarking website to compare different methods [svp19]. Various SVP
algorithms have been studied which can solve CVP as well, such as the polynomial-space,
superexponential-time lattice enumeration (see Section 4.2.2) studied in e.g. [Kan83,
FP85, GNR10, MW15, AN17]. More recently, methods have been proposed which solve
SVP/CVP in only single exponential time, but which also require exponential-sized mem-
ory [AKS01,MV10a,ADRS15]. By constructing the Voronoi cell of the lattice, Micciancio–
Voulgaris [MV10a] showed that SVP and CVP(P) can provably be solved in time 22d+o(d),
and Bonifas–Dadush [BD15] reduced the complexity for CVPP to only 2d+o(d). In high
dimensions the best provable complexities for SVP and CVP are currently due to discrete

16 CHAPTER 2. FINDING CLOSEST LATTICE VECTORS USING APPROXIMATE
VORONOI CELLS

Gaussian sampling [ADRS15,ADSD15], solving both problems in 2d+o(d) time and space
in the worst case on arbitrary lattices.

Average-case SVP/CVP algorithms. When considering and comparing these methods
in practice on random lattices, we get a completely different picture. Currently the fastest
heuristic methods for SVP and CVP in high dimensions are based on lattice sieving (see
Section 2.2). After a long series of theoretical works on constructing efficient heuris-
tic sieving algorithms like e.g. [NV08,MV10b,Laa15,BDGL16] as well as applied papers
studying how to further speed up these algorithms in practice e.g. [LM18, Duc18], the
best heuristic time complexity for solving SVP (and CVP [Laa16b]) currently stands at
20.292d+o(d) [BDGL16], using 20.208d+o(d) memory. The highest records in the SVP chal-
lenge [svp19]were recently obtained using a BKZ-sieving hybrid [ADH+19]. These recent
improvements have resulted in a shift in security estimates for lattice-based cryptography,
from estimating the hardness of SVP/CVP using the best enumeration methods, to esti-
mating this hardness based on state-of-the-art sieving results (e.g. [ADPS16]) .

Hybrid algorithms and batch-CVP. In moderate dimensions, enumeration-based meth-
ods dominated for a long time, and the cross-over point with single-exponential time al-
gorithms like sieving seemed to be far out of reach [MW15]. Moreover, the exponential
memory of e.g. lattice sieving will ultimately also significantly slow down these algorithms
due to the large number of random memory accesses [BCLV17]. Some previous work fo-
cused on obtaining a tradeoff between enumeration and sieving, using less memory for
sieving [BLS16,HK17,HKL18].

Another well-known direction for a hybrid between memory-intensive methods and
enumeration is to use a fast CVP(P) algorithm as a subroutine within enumeration (see
Chapter 4). As described in e.g. [GNR10,MW15], at any given level in the enumeration
tree, one is attempting to solve a CVP instance in a lower-rank sublattice, where the target
vector is determined by the path from the root to the current node in the tree. Each node
at this level in the tree corresponds to a CVP instance in the same sublattice, but with
a different target. If we can preprocess this low-dimensional sublattice such that the
amortized time complexity of solving a batch of CVP-instances in this sublattice is small,
then this may speed up processing the bottom part of the enumeration tree.

A first step in this direction was taken in [Laa16b], where it was shown that with a
sufficient amount of preprocessing and space, one can achieve better amortized time com-
plexities for batch-CVP than when solving just one instance. The large memory require-
ment (at least 2d/2+o(d) memory is required to improve upon direct CVP approaches) as
well as the large number of CVP instances required to get a lower amortized complexity
made this approach impractical to date.

In this chapter we study CVPP in terms of approximate Voronoi cells, and observe
better time and space complexities using randomized slicing, which is similar in spirit to
using randomized bases in lattice enumeration [GNR10].

2.1.1 – Notation. We write vectors in boldface (e.g. x), and we denote their coordi-
nates with non-boldface subscripts (e.g. xi). Throughout the chapter we primarily con-
sider problems in the Euclidean norm, hence unless stated otherwise, ‖x‖ = ‖x‖2 :=
(
∑
i x

2
i)

1/2 denotes the Euclidean norm of the vector x. We write Sd−1 for the Eu-
clidean unit sphere in Rd, i.e. the set of vectors x ∈ Rd with ‖x‖ = 1. We denote

2.2. PRELIMINARIES 17

balls in high-dimensional space by B(x, r) := {y ∈ Rd : ‖y − x‖ 6 r}, and we write
H(x) := {v ∈ Rd : ‖v‖ 6 ‖v− x‖} for half-spaces whose boundaries are the hyperplanes
orthogonal to x and passing through 1

2x. For regions R ⊂ Rd, we denote their volume
by Vol(R).

Given a parameter s > 0, we define ρs(v) := exp(−π‖v‖2/s2), and given a lattice
L we define ρs(L) :=

∑
v∈L ρs(v). We define a discrete probability distribution on

this lattice L by setting Pr(X = x) := ρs(x)/ρs(L) for x ∈ L and Pr(X = x) := 0
if x /∈ L. We denote this distribution as the discrete Gaussian distribution on L with
parameter s, and we write X ∼ DL,s to denote that the random variable X follows this
distribution. For cosets of a lattice t + L, we analogously define Dt+L,s with relative
density ρs,t(v) := exp(−π‖v− t‖2/s2).

2.2 — Preliminaries

2.2.1 – Heuristic assumptions. As discussed in the introduction, worst-case analyses
of algorithms for e.g. SVP and CVP(P) are far off from the best average-case performance
we can achieve in practice by just testing these algorithms on random lattices. For pur-
poses in cryptography, where it is in a sense better to be safe than sorry, it therefore makes
sense to try to analyze algorithms under “mild” assumptions that allow us to obtain tighter
estimates on their performance on average-case lattices. Even if we can no longer for-
mally prove these complexity bounds hold in the worst-case—indeed, these complexities
may not even be accurate for e.g. exotic, dense lattices like the Leech lattice [CS98]—
such estimates may give us a better idea of the actual performance of the best algorithms
on random lattices appearing in cryptanalysis.

A commonly made heuristic assumption for analyzing lattice algorithms is the Gaus-
sian heuristic 1.18. A consequence of this assumption is that for random lattices of high
dimension d, the length of the shortest vector can be approximated as:

λ1(L) ≈
√

d

2πe
· det(L)1/d · (1 + o(1)). (2.1)

For average-case, random CVP(P) target instances t ∈ Rd, this further means that we ex-
pect the distance to the closest lattice point to be roughly λ1(L) as was already mentioned
in Section 1.2.

When working with lattice vectors v ∈ L, even if for some algorithm we know the
distribution of the “input vectors” over the lattice, after modifying these vectors we quickly
lose track of the actual distribution these vectors now follow. A common assumption here
is then to simply assume that if at some point in the execution of the algorithm, we are
left with a vector v ′ ∈ L of norm ‖v ′‖, then this vector follows a uniform distribution
over the sphere of radius ‖v ′‖ around the origin. Clearly this assumption is incorrect and
ignores the discrete nature of the lattice (which may play a bigger role as the radius gets
smaller), but unless this inaccuracy is exploited and abused in the analysis, this often
gives us a better grip on e.g. the probability that two vectors v,w appearing in a lattice
algorithm can be combined to form a shorter vector v±w.

Finally, observe that although these heuristic assumptions may not be provably accu-
rate for all lattices, extensive experimentation with these algorithms on random lattices
has supported these claims for average-case lattices.

18 CHAPTER 2. FINDING CLOSEST LATTICE VECTORS USING APPROXIMATE
VORONOI CELLS

2.2.2 – Lattice sieving algorithms. Heuristic lattice sieving algorithms for solving
SVP are based on the following two principles: (1) if v,w ∈ L, then their sum/difference
v±w is also a lattice vector; and (2) if we have a sufficiently long list L of lattice vectors,
then we expect there to be pairs v,w ∈ L with ‖v ±w‖ < ‖v‖, ‖w‖. This intuitively
describes the approach: we first generate a sufficiently long list of lattice vectors, and
then keep combining pairs of vectors in our list to form shorter and shorter lattice vectors
until we (hopefully) find a shortest lattice vector in our list.

To make sure the algorithm makes progress in finding shorter lattice vectors, L needs
to contain exponentially many lattice vectors; for vectors v,w ∈ L of similar norm, the
vector v−w is shorter than v,w iff the angle between v,w is smaller than π/3, which for
random vectors v,w of similar norm would occur with probability (3/4)d/2+o(d). Under
the aforementioned heuristic assumption, that when normalized, vectors in L follow the
same distribution as vectors sampled uniformly at random from the unit sphere, this then
also models the probability that two vectors in our list can reduce one another.

The expected space complexity of heuristic sieving algorithms follows from the previ-
ous observation: if we sample (4/3)d/2+o(d) vectors uniformly at random from the unit
sphere, then we expect a significant number of pairs of vectors to have angle less than
π/3, leading to many short difference vectors. Therefore, if we start by sampling a list
L of (4/3)d/2+o(d) rather long lattice vectors, and iteratively consider combinations of
vectors in L to find shorter vectors (and replace the longer vector with the shorter com-
bination), we expect to keep making progress. Combining all pairs of vectors in a list of
size (4/3)d/2+o(d) ≈ 20.208d+o(d) naively takes time (4/3)d+o(d) ≈ 20.415d+o(d).

The Nguyen–Vidick sieve. The heuristic sieve of Nguyen and Vidick [NV08] starts by
sampling a list L of (4/3)d/2+o(d) reasonably long lattice vectors, sampled from a discrete
GaussianDL,s with the standard deviation s chosen such that (1) we can efficiently sam-
ple from this distribution, and (2) the returned vectors are at most of norm 2O(d)λ1(L).
Then we use a sieve to map L, with some maximum norm R := maxv∈L ‖v‖, to a new list
L ′, with maximum norm at most R ′ := γR for a geometric factor 0 � γ < 1 close to 1.
By repeatedly applying this sieve operation, after poly(d) iterations we expect to find a
long list of lattice vectors of norm at most γpoly(d)R = O(λ1(L)), which then (with high
probability) contains a shortest vector in the lattice.

Algorithm 2.1 describes a variant of Nguyen–Vidick’s original sieve, to map L to L ′ in
|L|2 time (ignoring costs polynomial in d). The presented algorithm is a more intuitive
version of the original sieve; see [Laa15, Appendix B] for details on this equivalence.
Without any further modifications to this algorithm, the heuristic complexities for solving
SVP with this method are as follows [NV08, Section 4].

Lemma 2.1 (Complexities of the Nguyen–Vidick sieve). Heuristically, the Nguyen–Vidick
sieve solves SVP in space S and time T, with

S = (4/3)d/2+o(d) ≈ 20.208d+o(d), T = (4/3)d+o(d) ≈ 20.415d+o(d). (2.2)

By applying more sophisticated techniques for indexing the list L and searching for
pairs of vectors that can be combined to form shorter vectors, the time complexity can
be further reduced to (3/2)d/2+o(d) ≈ 20.292d+o(d) [BDGL16]. The following result (a
restatement of [BDGL16, Corollary 8]) shows that this can be done without increasing
the space complexity.

2.2. PRELIMINARIES 19

Algorithm 2.1 The Nguyen–Vidick sieve for finding shortest vectors [NV08]

Require: An LLL-reduced basis B of a lattice L(B)
Ensure: The algorithm finds a shortest lattice vector

1: Initialize empty lists L,L ′ and set γ← 1 − 1/d
2: Sample (4/3)d/2+o(d) lattice vectors and add them to L
3: Set R← maxw∈L ‖w‖
4: repeat
5: for each w1,w2 ∈ L do . NNS techniques can be used to speed this up
6: if ‖w1 −w2‖ < γR then
7: Add w1 −w2 to the list L ′

8: end if
9: end for

10: Replace L← L ′, set L ′ ← ∅, and recompute R← maxw∈L ‖w‖
11: until L contains a shortest lattice vector
12: return argmin0 6=v∈L ‖v‖

Lemma 2.2 (Complexities of the optimized Nguyen–Vidick sieve). The Nguyen–Vidick
sieve with the spherical locality-sensitive filters of Becker–Ducas–Gama–Laarhoven heuristi-
cally solves SVP in space S and time T, with

S = (4/3)d/2+o(d) ≈ 20.208d+o(d), T = (3/2)d/2+o(d) ≈ 20.292d+o(d). (2.3)

Micciancio and Voulgaris’ GaussSieve. Micciancio and Voulgaris used a slightly differ-
ent approach in their GaussSieve algorithm [MV10b]. This algorithm reduces the memory
footprint by immediately reducing all pairs of lattice vectors that can be combined to form
shorter lattice vectors. The algorithm uses a single list L, which is continuously kept in
a state where for all w1,w2 ∈ L, ‖w1 ±w2‖ > ‖w1‖, ‖w2‖. Each time a new vector
v ∈ L is sampled, its norm is reduced with vectors in L by adding/subtracting vectors
w ∈ L which would lead to a shorter vector, and vectors in the list are also reduced
with the vector v. After v can no longer be reduced with L, v is finally added to the list,
guaranteeing that the pairwise reduction property is maintained. Modified list vectors
are added to a stack to be reconsidered later. Algorithm 2.2 describes this procedure in
pseudocode.

By immediately reducing all pairs of vectors, the GaussSieve achieves significantly
better practical time and space complexities than the Nguyen–Vidick sieve. At the same
time however, Nguyen and Vidick’s (heuristic) proof technique does not apply to the
GaussSieve, and there is no proven theoretical bound on the time complexity of the
GaussSieve, even using heuristic assumptions. However, it is commonly believed that
the Nguyen–Vidick sieve and the GaussSieve have the same heuristic asymptotic space
and time complexities, i.e. using 20.208d+o(d) space and 20.415d+o(d) time without any
further modifications.

2.2.3 – Nearest neighbor algorithms. Related to nearest neighbor searching, we re-
call the following problem definitions. These are all problems where preprocessing is
essential, and the most general statements of these problems are given below.

20 CHAPTER 2. FINDING CLOSEST LATTICE VECTORS USING APPROXIMATE
VORONOI CELLS

Algorithm 2.2 The GaussSieve algorithm for finding shortest vectors [MV10b]

Require: A basis B of a lattice L(B)
Ensure: The algorithm outputs a shortest non-zero lattice vector

1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do
5: if ‖v−w‖ < ‖v‖ then
6: Replace v← v−w
7: end if
8: end for
9: for each w ∈ L do

10: if ‖w− v‖ < ‖w‖ then
11: Replace w← w− v
12: Move w from the list L to the stack S (unless w = 0)
13: end if
14: end for
15: if v 6= 0 then
16: Add v to the list L
17: end if
18: until L contains a shortest lattice vector
19: return argmin0 6=v∈L ‖v‖

Definition 2.3 (Nearest Neighbor Searching – NNS). Given a data set L ⊂ Rd, preprocess
this data in such a way that, when given a target vector t ∈ Rd later, one can quickly find a
vector s ∈ L such that ‖s− t‖ = minv∈L ‖v− t‖.

Definition 2.4 (Approximate Nearest Neighbor Searching – NNSc). Let L ⊂ Rd and given
an approximation factor c > 1, preprocess the data in such a way that when given a target
vector t ∈ Rd later, one can quickly find a vector s ∈ L such that ‖s−t‖ 6 c·minv∈L ‖v−t‖.

NNS is essentially equivalent to CVPP, except that (1) the data set in nearest neighbor
searching is not assumed to be structured, and (2) the data set is assumed to be of finite
cardinality n < ∞. Naive brute force algorithms for nearest neighbor searching take
O(n) time andO(n) space without any preprocessing costs, and the literature commonly
focuses on sublinear time algorithms, running in time O(nρ) for ρ < 1, commonly with
superlinear space and preprocessing costs.

A celebrated technique for finding near neighbors in high dimensions is locality-
sensitive hashing (LSH). Here the idea is to construct many random partitions of the
space, and index the data set L in hash tables with buckets corresponding to the regions
induced by these partitions. Preprocessing then consists of constructing these hash tables,
and a query t is answered by doing a lookup in each of the hash tables, and searching
for a(n approximate) nearest neighbor in the hash buckets corresponding to t. For a data
set of size |L| = n, this commonly leads to a sublinear time complexity O(nρ) (ρ < 1) as
long as an approximate solution suffices, or if the majority of data points lie significantly

2.3. THE CVPP COST MODEL 21

further from the target than the nearest point in the data set. LSH has also been used to
speed up lattice sieving (e.g. [Laa15]).

Similar to locality-sensitive hash functions, locality-sensitive filters (LSF) divide the
space into regions, with the added relaxation that these regions do not have to form a
proper partition; regions may overlap, and part of the space may not even be covered by
any region. This leads to improved results when n is exponential in d [BDGL16].

Below we restate the main result of [Laa16c] for our applications, where n is assumed
to be exponential in d. The specific problem considered here is: given a data set L of
points sampled uniformly at random from the unit sphere Sd−1, and a random query t ∈
Sd−1, return a vector w ∈ L such that the angle between w and t is at most θ ∈ (0, π2).
The following result further assumes that the list L contains exactly n = (1/ sin θ)d+o(d)

vectors. The following is a restatement of [Laa16c, Corollary 1].

Lemma 2.5 (Nearest neighbor costs for spherical data sets). Let θ ∈ (0, 1
2π), and let

u ∈ [cos θ, 1/ cos θ]. Let L ⊂ Sd−1 be a list of n = (1/ sin θ)d+o(d) vectors sampled
uniformly at random from Sd−1. Then, using spherical LSF with parameters αq = u cos θ
and αu = cos θ, one can preprocess L in time n1+ρu+o(1), using n1+ρu+o(1) space, and with
high probability answer a random query t ∈ Sd−1 correctly in time nρq+o(1), where:

nρq =

(
sin2 θ (u cos θ+ 1)
u cos θ− cos 2θ

)d/2

, nρu =

(
sin2 θ

1 − cot2 θ (u2 − 2u cos θ+ 1)

)d/2

. (2.4)

In the above lemma, the parameter u ∈ [cos θ, 1/ cos θ] controls the trade-off be-
tween the preprocessing/space complexities on the one hand, and the query time com-
plexity on the other. The two extreme cases correspond to near-linear space and pre-
processing with a slightly sublinear query time complexity (for u = cos θ), and very high
space/preprocessing complexities with almost instant query responses (for u = 1/ cos θ).
The case u = 1 corresponds to ρq = ρu.

2.3 — The CVPP cost model

For analyzing the performance of CVPP algorithms, we split these methods into two
phases: the preprocessing phase (whose input is only the lattice L), and the query phase
(where also the target vector t is known). We keep track of four costs of CVPP algorithms.

• Preprocessing phase: Preprocess the lattice L (without the target t);
S1: The memory used during the preprocessing phase;
T1: The time used during the preprocessing phase;

• Query phase: Process the query t and output a vector s ∈ L near t;
S2: The memory used during the query phase;
T2: The time used during the query phase.

Intuitively the main goal of CVPP algorithms is to reduce the complexities of the query
phase (S2, T2) compared to a non-preprocessed CVP algorithm. That way, a sufficiently
large batch of CVP instances on the same lattice can be solved faster than with direct CVP
approaches. However, in any practical application we need to perform the preprocessing
at least once, and therefore CVPP algorithms with enormous preprocessing costs may be
useless even if the query complexities are great. Also note that as we are interested in
reducing the query complexity compared to solving CVP, and this usually comes at the

22 CHAPTER 2. FINDING CLOSEST LATTICE VECTORS USING APPROXIMATE
VORONOI CELLS

cost of a higher preprocessing cost, we generally have T2 6 T 6 T1, where T is the
corresponding asymptotic time complexity for CVP.

Polynomial vs. exponential advice. Note that in the literature on CVPP, a common
assumption is that the output of the preprocessing stage has size polynomial in the lattice
dimension d [Mic01]. This is partly because with unlimited preprocessing power (time
and space), heuristically the “post-processing” stage of CVPP can easily be made polyno-
mial time. As an example, one could cover a sufficiently large ball around the origin with
tiny cubes, and precompute/store the centers of these cubes, together with solutions to
CVP with these centers as target vectors. Given a target vector for CVPP, one could then
size-reduce with an LLL-reduced basis B, identify the cube the vector is in, and assuming
the net of cubes is sufficiently fine-grained, a solution to CVP for the center of this cube
is then likely a solution to CVP for the target vector as well.

Since the costs of the preprocessing stage are usually disregarded when assessing the
performance of a CVPP method, this would make CVPP (and CVPPκ, BDDPδ) altogether
trivial. Throughout we are interested in the practicality of the “total package” of the CVPP
algorithm, including the preprocessing. Taking these costs into account, the problem is no
longer trivial even when allowing exponential-sized advice from the preprocessing stage.
We explicitly do not make the assumption that the output of the preprocessing stage is of
polynomial size.

2.4 — Voronoi cells

In this section we recall some definitions and results regarding the Voronoi cell of a
lattice from [VB96,AEVZ02,SFS09,MV10a]. First, we give a formal definition of Voronoi
cells below, which are essentially the enclosing regions of points closer to the origin than
to any other lattice point.

Definition 2.6 (Voronoi cell of a lattice). The Voronoi cell of a lattice L is defined as the
region V ⊂ Rd such that v ∈ V iff ‖v‖ 6 ‖v− x‖ for all x ∈ L. In other words:

V :=
⋂
r∈L

H(r). (2.5)

An important property of Voronoi cells, which immediately follows from the defini-
tion, is that the closest vector to a target vector t ∈ Rd in a lattice L is the vector s ∈ L if
and only if t ∈ s+V. In particular, the latter condition is equivalent to t− s ∈ V, which
indicates that if we can find a point t ′ ∈ (t+L)∩V (i.e. t ′ = t− s), then we have found
a solution to CVP for t as s = t− t ′.

In (2.5) above, we see that the Voronoi cell can be described in terms of an infinite
number of half-spaces generated by the vectors in the lattice L. In reality, the Voronoi
cell of a lattice is a convex polytope with only a bounded number of facets, and its facets
are closely related to what are commonly known as the relevant vectors, defined below.

Definition 2.7 (Relevant vectors). Given a lattice L, a vector r ∈ L is a relevant vector of
the lattice L if and only if V ∩ (r+ V) is an (d− 1)-dimensional facet of V. We denote the
set of all relevant vectors by R ⊆ L.

2.5. VORONOI CELL ALGORITHMS 23

The relevant vectors of the lattice shape the boundary of V, and the set R can be seen
as a more compact way of representing/storing the Voronoi cell of a lattice, as V can be
equivalently described by the following equation:

V =
⋂
r∈R

H(r). (2.6)

In other words, the Voronoi cell is also equal to the intersection of half-spaces generated
only by the relevant vectors r ∈ R. The set R is by definition the minimal set S ⊆ L with
the property that V =

⋂
r∈SH(r) – other vectors do not contribute to the shape of the

Voronoi cell, and removing any vector from R would result in a different, larger enclosed
region.

To efficiently describe and store the Voronoi cell of a lattice, it is important to know
that R is finite and cannot be too large. Fortunately the size of R can be bounded (in the
worst-case) as follows; see e.g. [MV10a, Corollary 2.5] for a proof.

Lemma 2.8 (Number of relevant vectors). For arbitrary lattices L, the set R of relevant
vectors satisfies |R| 6 2d+1.

As a result, a description of the Voronoi cell of a lattice can be stored in 2d+o(d)

memory, by storing all the relevant vectors. An example of a Voronoi cell for a two-
dimensional lattice, as well as the related relevant vectors, is given in Section 2.6 in
Figure 2.1a. On the negative side, note that a storage requirement of the order 2d means
it is infeasible to store the exact Voronoi cell of lattices in dimensions higher than e.g. 80.
This in contrast to heuristic sieving algorithms, whose space requirement of the order
20.21d means these algorithms can still be used in higher dimensions as well.

2.5 — Voronoi cell algorithms

As stated above, a crucial property of Voronoi cells, highlighting their relevance for
closest point searching, is that s ∈ L is the closest point to a target vector t ∈ Rd if and
only if t − s ∈ V. Since t − s ∈ t + L, a common approach of Voronoi cell algorithms
for finding closest points to target vectors t is to start with t and gradually move along
the coset t + L towards the origin (by adding/subtracting lattice vectors to our current
vector in the coset t+L). When no shorter vector in t+L exists than our current guess
t ′ ∈ t+ L, we know that t ′ ∈ V and therefore s = t− t ′ is the closest lattice point to t.

Building upon work of Sommer, Feder and Shalvi [SFS09], Micciancio and Voul-
garis [MV10a] described algorithms for constructing the Voronoi cell of a lattice (or
equivalently, the set of 2d+o(d) relevant vectors of the lattice), and with proven time
complexities at most 22d+o(d) this allowed them to solve SVP, CVP and CVPP. Bonifas
and Dadush [BD15] later showed how to improve the time complexity for CVPP to only
2d+o(d), by bounding the number of iterations in the post-processing stage to poly(d)
rather than 2d+o(d).

An important technique for finding closest vectors, using the list of relevant vectors to
peform the aforementioned procedure of finding a point t ′ ∈ t+L, is the iterative slicer
of Sommer–Feder–Shalvi [SFS09] given in Algorithm 2.3. Given a target vector t and the
Voronoi cell of the lattice as input, within a finite number of steps [SFS09, Theorem 1]

24 CHAPTER 2. FINDING CLOSEST LATTICE VECTORS USING APPROXIMATE
VORONOI CELLS

this algorithm terminates and finds the closest vector to any target t ∈ R. Micciancio–
Voulgaris later showed that by selecting relevant vectors for reduction in a specific order,
the number of iterations can be bounded by 2d+o(d) [MV10a, Lemma 3.2].

Algorithm 2.3 The iterative slicer for finding closest vectors [SFS09]

Require: The relevant vectors R ⊂ L and a target t ∈ Rd
Ensure: The algorithm outputs a closest lattice vector s ∈ L to t

1: Initialize t ′ ← t
2: for each r ∈ R do
3: if ‖t ′ − r‖ < ‖t ′‖ then
4: Replace t ′ ← t ′ − r and restart the for-loop
5: end if
6: end for
7: return s = t− t ′

By similar techniques as in heuristic lattice sieving (or as in [BD15]), one can bound
the number of iterations of this slicer until termination. Given a target t, one can use e.g.
Babai rounding on an LLL-reduced basis of the lattice to get an initial guess t ′ ∈ t + L

satisfying ‖t ′‖ 6 2O(d) mins∈t+L ‖s‖. Then, by only performing reductions whenever
‖t ′±r‖ < γ‖t ′‖ for some geometric factor γ = 1−1/dk for certain k > 1, one can ensure
that the number of iterations is polynomially bounded by log1/γ ‖t ′‖ = O(d1+k). At the
same time, due to this geometric factor γ, after the algorithm terminates we might only
have t ′ ∈ (1/γ)V instead of t ′ ∈ V. Since Vol(V/γ) = Vol(V)/γd, we therefore expect
this algorithm to succeed with probability proportional to γd = 1−O(d1−k) = 1− o(1)
over the randomness of t. As k increases, the (polynomial) number of iterations increases,
while heuristically the success probability becomes overwhelming.

Bonifas and Dadush [BD15] described a different method to bound the number of
iterations to poly(d), by carefully choosing which relevant vectors to use for reduction
in each step. Although there is no formal proof that other approaches allow for solving
exact CVP as well, in the remainder of this chapter we will assume (heuristically) that the
number of iterations of this slicer (until termination) is only poly(d), for random lattices
and average-case target vectors.

2.6 — Approximate Voronoi cells

In this section we revisit the preprocessing approach to CVP of [Laa16b], as well as
the trend of speeding up these algorithms using nearest neighbor searching. These results
can be viewed as a first step towards a practical, heuristic alternative to the Voronoi
cell algorithm of Micciancio–Voulgaris [MW15], where instead of constructing the exact
Voronoi cell, the preprocessing computes an approximation of it, requiring less time and
space to compute and store.

First, our preprocessing step consists of computing a list L of most lattice vectors
below a given norm1. This preprocessing can be done using e.g. enumeration or sieving.
The preprocessed data can best be understood as representing an approximate Voronoi

1Heuristically, finding a large fraction of all lattice vectors below a given norm will suffice – one does not
necessarily need to run a deterministic preprocessing algorithm to ensure all short lattice vectors are found.

2.6. APPROXIMATE VORONOI CELLS 25

cell of the lattice, where the size of L determines how good the approximation is (see
Figure 2.1 for an example). Using this approximate Voronoi cell, a CVP instance can then
be solved by applying the iterative slicing procedure of [SFS09], with nearest neighbor
optimizations to reduce the search costs.

Below we start with a formal definition of approximate Voronoi cells, where as before
we write H(x) for half-spaces whose boundaries are orthogonal to x and pass through
1
2x.

Definition 2.9 (Approximate Voronoi cells). For a lattice L and a list L ⊆ L, the approx-
imate Voronoi cell generated by L is defined as:

VL :=
⋂
r∈L

H(r). (2.7)

Note that V ⊆ VL for any L ⊆ L, and V = VL if and only if R ⊆ L [SFS09, Lemma
5]. Similarly, R is the smallest set L ⊆ L with the property that VL = V. To quantify the
‘quality’ of an approximate Voronoi cell VL (or a list L), recall that the volume of the exact
Voronoi cell V is equal to the volume of the lattice: Vol(V) = det(L). If R is not contained
in L, then VL will have a strictly larger volume, and the following quantity can therefore
serve as a guideline as to how well an approximate Voronoi cell VL approximates V.

Definition 2.10 (Approximation factor). Given a lattice L and a list L ⊆ L, we define the
approximation factor AL for the cell VL generated by L as:

AL :=
Vol(VL)
Vol(V)

. (2.8)

Clearly AL > 1 with equality iff R ⊆ L. If L is very small, AL may be infinite, but
as long as L contains a basis of the lattice one has AL < ∞ [VB96]. For arbitrary lists
L,L ′ with L ⊆ L ′ ⊆ L we have AL′ 6 AL, i.e. if we add vectors to L to form L ′, the
approximation factor either stays the same or decreases.

Compared to [Laa16b], the main improvement of this approach lies in generalizing
how similar the approximate Voronoi cell VL (generated by the list L) needs to be to
the exact Voronoi cell of the lattice, V. We distinguish two cases below. As sketched
in Figure 2.1, a worse approximation leads to a larger approximate Voronoi cell, so
vol(VL) > vol(V) with equality iff V = VL.

2.6.1 – Good approximations. The main result of [Laa16b] for solving CVPP can be
summarized in terms of approximate Voronoi cells by the following lemma, stating how
big L must heuristically be to obtain approximation factors close to 1.

Lemma 2.11 (Good approximations). Let L consist of the αd+o(d) shortest vectors of a
lattice L, with α >

√
2 + o(1). Then heuristically,

AL = 1 + o(1). (2.9)

In other words, if L contains the 2d/2+o(d) shortest lattice vectors of a random lattice
L, we expect VL to approximate the exact Voronoi cell V very well. This in contrast with
the best proven worst-case bounds, which suggest that up to 2d+o(d) vectors are needed
to accurately represent the Voronoi cell of a lattice.

26 CHAPTER 2. FINDING CLOSEST LATTICE VECTORS USING APPROXIMATE
VORONOI CELLS

O

r1

r2

r3

r4

r5

r6

V

(a) A tiling of R2 with exact Voronoi cells V of a
lattice L (red/black points), generated by the set
R = {r1, . . . , r6} of all relevant vectors of L. Here
vol(V) = det(L).

O

r1

r2

r4

r5

VL

(b) An overlapping tiling of R2 with approximate
Voronoi cells VL of the same lattice L, gener-
ated by a subset of the relevant vectors, L =
{r1, r2, r4, r5} ⊂ R.

Figure 2.1: Exact and approximate Voronoi cells of the same two-dimensional lattice L.
For the exact Voronoi cell V (Figure 2.1a), the cells around the lattice points form a tiling of R2, covering each
point in space exactly once. Given that a point t lies in the Voronoi cell around s ∈ L, we know that s is the
closest lattice point to t.
For the approximate Voronoi cell VL (Figure 2.1b), the cells around the lattice points overlap, and cover a
non-empty fraction of the space by multiple cells. Given that a vector t lies in an approximate Voronoi cell
around a lattice point s, we further do not have the definite guarantee that s is the closest lattice point to t.

Algorithm 2.4 The heuristic slicer for finding closest vectors [Laa16b]

Require: A list L ⊂ L of the 2d/2+o(d) shortest vectors of L, and a target t ∈ Rd
Ensure: The algorithm outputs a closest lattice vector s ∈ L to t

1: Initialize t ′ ← t
2: for each r ∈ L do . NNS speedups can be used here
3: if ‖t ′ − r‖ < ‖t ′‖ then
4: Replace t ′ ← t ′ − r and restart the for-loop
5: end if
6: end for
7: return s← t− t ′

Heuristically, Lemma 2.11 implies that if we use Voronoi cell algorithms for CVP(P),
using only the 2d/2+o(d) shortest lattice vectors as our approximate list of relevant vec-
tors (instead of all 2d+o(d) relevant vectors), the algorithm will still succeed with high
probability in returning the actual closest vector to random target vectors. The resulting
heuristic slicer, which serves as the algorithm for the query phase of CVPP in [Laa16b],
is given in Algorithm 2.4.

Assuming the list L contains the 2d/2+o(d) shortest vectors of L, it returns the closest
vector with high probability. Naively, this algorithm has query time and space complex-
ities of 2d/2+o(d), but with nearest neighbor search techniques the search for relevant

2.7. RANDOMIZED SLICING 27

vectors that can reduce t ′ can be sped up significantly.

2.6.2 – Arbitrary approximations. To obtain improved results compared to [Laa16b],
we will use the following generalization of Lemma 2.11, providing a heuristic upper
bound on the approximation factor AL for lists L containing fewer than 2d/2+o(d) lattice
vectors. 2

Lemma 2.12 (Arbitrary approximations). Let L consist of the αd+o(d) shortest vectors of
a lattice L, with α ∈ (1.03396,

√
2). Then heuristically,

AL 6

(
16α4

(
α2 − 1

)
−9α8 + 64α6 − 104α4 + 64α2 − 16

)d/2+o(d)

. (2.10)

Above, 1.03396 . . . is a root of the polynomial in the denominator. Note that as
α →

√
2, the ratio approaches 1, and Lemma 2.12 therefore is a proper generaliza-

tion of Lemma 2.11. For α ↓ 1.03396 . . . , the ratio tends to∞, suggesting that for very
small lists our analysis does not provide a proper, meaningful upper bound on the ap-
proximation factor – there is no reason to believe that AL = ∞ for exponentially large
preprocessed lists.

For random target vectors, we heuristically expect the probability of success of finding
a closest vector to this target with a preprocessed list L to be approximately pL = 1/AL
– assuming a reduced vector returned by the slicer lies uniformly in VL, the probability
that it also lies in V is proportional to Vol(V)/Vol(VL). With the above result in mind,
we can thus generalize the previous heuristic slicer to construct a CVPP algorithm which
works with even smaller lists L, but has an exponentially small success probability in the
dimension d. This is somewhat unsatisfactory, as an algorithm succeeding with expo-
nentially small success probability is unlikely to be useful in any application. However,
similar to e.g. extreme pruning in enumeration [GNR10], as long as the gain in the time
(and space) complexity is more than the loss in the success probability, such an algorithm
may well turn out to be useful if we can somehow randomize our reduction algorithm.

2.7 — Randomized slicing

To instantiate Lemma 2.12 with an actual CVPP algorithm succeeding with high prob-
ability, ideally we need to be able to rerandomize problem instances such that, if an
algorithm succeeds with small probability p in time T, we can repeat the algorithm ap-
proximately 1/p times to obtain an algorithm succeeding with constant probability in T/p
time. The (heuristic) iterative slicer mostly works deterministically3, so if an initialized
data structure and problem instance fail, running the same slicing algorithm on the same
target would likely result in failure again.

To rerandomize problem instances, we will use the following procedure: instead of
starting with a single vector t ′ ← t and attempting to reduce it to a vector t ′′ ∈ V, we
use several vectors of the form t ′ ∼ Dt+L,s sampled from a discrete Gaussian over the

2The heuristic proof/derivation of this result from [DLdW19] is not tight, as it was later shown by Ducas
Laarhoven and van Woerden in [DLvW20].

3Observe that there is some room for randomization within the slicing algorithm itself: if an intermediate
vector t ′ can be reduced with two vectors v1,v2 ∈ L to form a shorter vector, one could randomly choose
either option for potentially different outcomes of the slicer.

28 CHAPTER 2. FINDING CLOSEST LATTICE VECTORS USING APPROXIMATE
VORONOI CELLS

coset t + L with a well-chosen parameter s. This parameter s needs to be chosen small
enough so that sampling can be done in polynomial time in the lattice dimension d, and
large enough so that the sampled vectors are not too long, and so that the reductions
of t ′ to short vectors t ′′ do not take too long. To analyze our CVPP method using this
sampling procedure, we propose the following heuristic assumption, essentially stating
that this rerandomization procedure works perfectly.

Heuristic 2.13 (Randomized slicing). For L ⊂ L and large s,

Pr
t′∼Dt+L,s

[
SliceL(t ′) ∈ V

]
≈ 1
AL

. (2.11)

For intuition behind this statement, recall that with a preprocessed list L, a vector
t ′ will ultimately be reduced by the slicer to a vector t ′′ = Slice(t ′) ∈ VL. If t ′′ now
also lies in V, which we may heuristically model as a sphere of radius λ1(L), then 0 is
the closest lattice vector to t ′′ ∈ t + L, and so s = t − t ′′ is indeed the closest lattice
vector to t. However, since VL is potentially much larger than V, this may only occur
with small probability, and heuristically we essentially assume that Prt′′←Slice(t′)[t

′′ ∈ V |

t ′′ ∈ VL] = 1/AL.
Note that the probability on the left hand side of (2.11) is for arbitrary, fixed target

vectors t, and the randomness is purely over the Gaussian sampling of t ′ ∼ Dt+L,s – we
heuristically assume/expect that we can effectively apply this rerandomization procedure
to any target vector, rather than e.g. always failing for certain targets and succeeding for
other targets. Experiments presented in [DLdW19] indeed suggest that this assumption
is justified.

Assuming the above heuristic assumption holds, an algorithm for CVPP follows, by re-
peating the slicing algorithm on randomly sampled vectors t ′ ∼ Dt+L,s. The randomized
heuristic slicer that we obtain is given in Algorithm 2.5.

Algorithm 2.5 The randomized heuristic slicer for finding closest vectors

Require: A list L ⊂ L and a target t ∈ Rd
Ensure: The algorithm outputs a closest lattice vector s ∈ L to t

1: s← 0 . Initial guess s for closest vector to t
2: repeat
3: Sample t ′ ∼ Dt+L,s . Randomly shift t by a vector v ∈ L

4: for each r ∈ L do
5: if ‖t ′ − r‖ < ‖t ′‖ then . New shorter vector t ′ ∈ t+ L

6: Replace t ′ ← t ′ − r and restart the for-loop
7: end if
8: end for
9: if ‖t ′‖ < ‖t− s‖ then

10: s← t− t ′ . New lattice vector s closer to t
11: end if
12: until s is a closest lattice vector to t
13: return s

For randomized slicing, the costs of the algorithm are mostly the same in terms of
α as for a single run of the slicer, except that the (expected) time complexity T2 for the

2.8. PREPROCESSING COSTS 29

query phase is multiplied by a factor 1/p, to account for the expected number of trials
necessary to find a closest vector. On the positive side, this means that we do not need to
fix α =

√
2 in advance, and can obtain significantly better space complexities, as well as

better space–time trade-offs.

2.8 — Preprocessing costs

For the preprocessing phase, we need to generate a list of the αd+o(d) lattice vectors
of norm at most α · λ1(L), and store it in a nearest neighbor data structure to allow for
fast searching. This preprocessing step can be done using different methods. In moderate
dimensions, the fastest way may be to use lattice enumeration but in high dimensions (as
well asymptotically) heuristic lattice sieving methods will lead to the best complexities.
As we are mostly interested in obtaining the best asymptotic complexities here, let us
consider the preprocessing costs for a sieving-based preprocessing stage.

Recall that with standard heuristic sieving methods, we reduce pairs of lattice vectors
if their angle is at most θ = π

3 , resulting in a list of size (sin θ)−d+o(d). To generate a
list of the αd+o(d) shortest lattice vectors of a lattice L with the GaussSieve, rather than
the (4/3)d/2+o(d) lattice vectors one would normally get, we relax the reduction step in
sieving: we reduce a list vector v with another list vector w if and only if their pairwise
angle is less than θ = arcsin(1/α), which for vectors v,w of similar norm corresponds to
the following condition:

‖v−w‖2 < 2(1 − cos θ) · ‖v‖2 =

(
2 −

2
α

√
α2 − 1

)
· ‖v‖2. (2.12)

This leads to the modified GaussSieve described in Algorithm 2.6. Note that for α =
√

2,
the reduction criterion becomes ‖v−w‖ <

√
2 −
√

2 · ‖v‖.
Intuitively, Algorithm 2.6 could be interpreted as a relaxed version of standard heuris-

tic sieving approaches. In standard sieving, pairwise reductions are always performed,
even if they lead to minor progress in reducing the norms of the vectors. This turns out
to lead to the smallest list sizes. By only reducing vectors when significant progress is
made in reducing their norms, reductions occur less frequently, leading to larger list sizes
before real progress is made. By not always doing reductions in Algorithm 2.6, it takes
longer to complete this preprocessing step, but a longer list of lattice vectors is returned.
Moreover, by only searching for vectors with very small angles, the speed-ups obtained
from applying nearest neighbor techniques become bigger as well.

Note that in Algorithm 2.6, as well as other lattice sieving algorithms in Section 2.2,
the stopping criterion is stated as continuing until the list contains a shortest vector. In
the literature on lattice sieving, many different stopping criterions have been considered,
often involving a bound on the number of “collisions” to the all-zero vector. An alternative
stopping criterion here might also be to continue until, say, at least 90% of the expected
number of lattice vectors below a certain norm α · λ1(L) have been encountered by the
sieve. In reality, the precise termination condition is somewhat irrelevant – at some point
during the run, the list will be a very good quality and contain most short vectors, and
continuing a bit longer only means that slightly more time is spent on the preprocessing
phase, and slightly more of the shortest lattice vectors will be in the preprocessed list for
the query phase.

30 CHAPTER 2. FINDING CLOSEST LATTICE VECTORS USING APPROXIMATE
VORONOI CELLS

Algorithm 2.6 The GaussSieve-based preprocessing phase for solving CVPP

Require: A basis B of a lattice L(B), a parameter α >
√

4/3
Ensure: The output list L ⊂ L contains αd+o(d) vectors of norm at most α · λ1(L)

1: Initialize an empty list L and an empty stack S
2: repeat
3: Get a vector v from the stack (or sample a new one if S = ∅)
4: for each w ∈ L do . NNS can be used to speed this up
5: if ‖v−w‖2 < (2 − 2

α

√
α2 − 1) · ‖v‖2 then

6: Replace v← v−w
7: end if
8: end for
9: for each w ∈ L do

10: if ‖w− v‖2 < (2 − 2
α

√
α2 − 1) · ‖w‖2 then

11: Replace w← w− v
12: Move w from the list L to the stack S (unless w = 0)
13: end if
14: end for
15: if v 6= 0 then
16: Add v to the list L
17: end if
18: until v is a shortest vector
19: return L

The following lemma summarizes the preprocessing costs obtained by using the opti-
mized nearest neighbor techniques from Lemma 2.5.

Lemma 2.14 (Preprocessing complexities). Let α ∈ (1,∞) and suppose that

u ∈ (
√
α2−1
α2 ,

√
α2

α2−1). With Algorithm 2.6, we can heuristically generate a list of the

αd+o(d) shortest vectors in a lattice L with the following space and time complexities S1

and T1.

S1 = max

{
S2,
(

4
3

)d/2+o(d)
}

, (2.13)

T1 = max

{
S2,
(

3
2

)d/2+o(d)
}

, (2.14)

S2 =

(
α

α− (α2 − 1)(αu2 − 2u
√
α2 − 1 + α)

)d/2+o(d)

. (2.15)

Moreover, at the end of the preprocessing step, we have a data structure of size S2 which can
answer CVP queries in time T2 as follows:

T2 =

(
α+ u

√
α2 − 1

−α3 + α2u
√
α2 − 1 + 2α

)d/2+o(d)

. (2.16)

2.9. CVPP COMPLEXITIES 31

Observe that reductions between vectors only make sense if vectors get shorter; if v
and w have similar norms, then one cannot reduce v with w if their pairwise angle is
larger than π

3 . To generate a list with αd+o(d) short vectors with α <
√

4/3, one can
just run the algorithm for α =

√
4/3 (corresponding to the regular GaussSieve), and

afterwards discard lattice vectors which are too long. Alternatively, if one is interested
in minimizing the memory complexity, for small values α one could consider using tuple
lattice sieving approaches discussed in [BLS16, HK17, HKL18]. We restrict our attention
to sieving using pairwise reductions, and we leave a complexity analysis based on tuple
reductions to future work.

Note also that S1 and T1 in Lemma 2.14 are lower bounded by the costs for solving SVP,
which based on the current best space and time complexities for (pairwise) sieving are
(4/3)d/2+o(d) and (3/2)d/2+o(d) respectively [BDGL16]. Using tuple sieving [BLS16,
HK17, HKL18], it is possible to eliminate this lower bound on S1, at the cost of worse
preprocessing time complexities – however this further generalization of the complexities
goes beyond the scope of this chapter.

2.9 — CVPP complexities

With the previous results and techniques in place, we are now ready to state a sum-
marising result. For the exact closest vector problem with preprocessing, the improved
complexities over [Laa16b] mainly come from the aforementioned randomizations. To
illustrate this with a simple example, suppose we run an optimized LDSieve [BDGL16],
ultimately resulting in a list of (4/3)d/2+o(d) of the shortest vectors in the lattice, in-
dexed in a nearest neighbor data structure of size (3/2)d/2+o(d). Asymptotically, using
this list as our approximate Voronoi cell, the iterative slicer succeeds with probability
p = (13/16)d/2+o(d) (by (2.10) and (2.11) for α =

√
4/3), while processing a query

with this data structure takes time (9/8)d/2+o(d) (by (2.16) for α =
√

4/3, u = 1). By
repeating a query 1/p times with rerandomizations of the same CVP instance, we obtain
the following heuristic complexities for CVPP.

Proposition 2.15 (Standard sieve preprocessing). Using the output of the LDSieve [BDGL16]
as the preprocessed list and encompassing data structure, we can heuristically solve CVPP
with the following query space and time complexities:

S = (3/2)d/2+o(d) ≈ 20.292d+o(d), T = (18/13)d/2+o(d) ≈ 20.235d+o(d).

If we use a more general analysis of the approximate Voronoi cell approach, varying
over both the nearest neighbor parameters and the size of the preprocessed list, we can
obtain even better query complexities. For a memory complexity of (3/2)d/2+o(d) ≈
20.292d+o(d), we can achieve a query time complexity of approximately 20.220d+o(d) by
using a shorter list of lattice vectors, and a more memory-intensive parameter setting
for the nearest neighbor data structure. The following main result summarizes all the
asymptotic time–space trade-offs we can obtain for heuristically solving CVPP in the av-
erage case.

32 CHAPTER 2. FINDING CLOSEST LATTICE VECTORS USING APPROXIMATE
VORONOI CELLS

20d 20.2d 20.4d 20.6d 20.8d 21d
20d

20.2d

20.4d

20.6d

Laa ′16

u =
√

1 − α−2

u = 1

α = 1.08

α = 1.12

α =
√

4/3

α =
√

2

−→ query space complexity

−→
qu

er
y

tim
e

co
m

pl
ex

ity

Figure 2.2: Complexities for randomized slicing. The light blue curves correspond to different values α and
different success probabilities pα. The right red curve corresponds to α =

√
2 and pα ≈ 1, i.e., not using

randomized slicing as in Section 2.7. Dashed purple curves correspond to fixing the nearest neighbor parameter
u and varying α. No single curve lies below all others, and the minimum over all curves is depicted by the
bottom blue curve.

Theorem 2.16 (Optimized CVPP complexities). Let α ∈ (1.03396,
√

2) and

u ∈ (
√
α2−1
α2 ,

√
α2

α2−1). With approximate Voronoi cells we can heuristically solve CVPP
with preprocessing space and time S1 and T1, and query space and time S2 and T2, where:

S1 = max

{
S2,
(

4
3

)d/2+o(d)
}

, T1 = max

{
S2,
(

3
2

)d/2+o(d)
}

, (2.17)

S2 =

(
α

α− (α2 − 1)(αu2 − 2u
√
α2 − 1 + α)

)d/2+o(d)

, (2.18)

T2 6

(
16α4

(
α2 − 1

)
−9α8+64α6−104α4+64α2−16

· α+ u
√
α2 − 1

−α3 + α2u
√
α2 − 1 + 2α

)d/2+o(d)

. (2.19)

The best query complexities (S2, T2) together form the thick blue curve in Figure 2.2.

For α =
√

2, Theorem 2.16 leads to the exact same complexities as without reran-
domizations as in [Laa16b] depicted by the red curve in Figure 2.2. The time–space
curve Cα corresponding to α =

√
4/3, as well as a few other values α, are shown in

Figure 2.2. By taking the minimum over all these curves {Cα}α∈(1.03396,
√

2), where curves

are defined by varying the parameter u ∈ (
√
(α2 − 1)/α2,

√
α2/(α2 − 1)), we obtain

the thick blue curve in Figure 2.2. There seems to be no simple expression for this curve;
for a particular choice of the space complexity, the best query time complexity T2 can be
found by considering all different α, and for each α computing the value u such that the
space complexity is as desired, and taking the minimum over all these values. Note that
due to the condition α > 1.03396, the curve terminates on the left side at a minimum

2.10. EXPERIMENTAL RESULTS 33

space complexity of 1.03396d+o(d) ≈ 20.0482d+o(d); with this method we cannot obtain
a space complexity S2 = 2o(d) for exact CVPP.

2.9.1 – Concrete complexities. Although Theorem 2.16 and Figure 2.2 illustrate how
well we expect these methods to scale in high dimensions d, it should be stressed that
Theorem 2.16 is a purely asymptotic result, with potentially large order terms hidden by
the o(d) in the exponents for the time and space complexities. To obtain security esti-
mates for real-world applications, and to assess how fast this algorithm actually solves
problems appearing in the cryptanalysis of lattice-based cryptosystems, it therefore re-
mains necessary to perform extensive experiments, and to cautiously try to extrapolate
from these results what the real attack costs might be for high dimensions d, necessary
to attack actual instantiations of cryptosystems. In [DLdW19] some preliminary exper-
iments were performed to test the practicality of this approach, but further work is still
necessary to assess the impact of these results on the concrete hardness of CVPP. We briefly
mention some of the experiments from [DLdW19] in the next section.

2.10 — Experimental results

Besides the theoretical results mentioned in Section 2.9, with improved heuristic time
and space complexities compared to [Laa16b], [DLdW19] also implemented a (sieving-
based) CVPP solver using approximate Voronoi cells. For the preprocessing it used a slight
modification of a lattice sieve, returning more vectors than a standard sieve, allowing to
vary the list size in the experiments. The implementations served two purposes: validat-
ing the additional heuristic assumption made, and to see how well the algorithm performs
in practice.

To obtain the aforementioned improved asymptotic complexities for solving CVPP,
required a new heuristic assumption, stating that if the iterative slicer succeeds with
some probability p on a CVP instance t, then we can repeat 1/p times with perturba-
tions t ′ ∼ Dt+L,s to achieve a high success probability for the same target t. To verify
this assumption, the method was implemented and tested on lattices in dimension 50
with a range of randomly chosen targets to see whether, if the probability of success is
small, repeating m times will increase the success rate by a factor m. Figure 2.3 shows
performance metrics for various numbers of trials/repetitions and for varying list sizes.
In particular, Figure 2.3a illustrates the increased success probability as the number of
repetitions increases, and Figure 2.3c shows that the normalized success probability per
trial4 seems independent of the number of repetitions. Therefore, the “expected time”
metric as illustrated in Figure 2.3b appears to be independent of the number of trials.

Unlike the success probabilities, the time complexity might vary a lot depending on
the underlying nearest neighbor data structure. The experiments in Figure 2.3 was used
the hyperplane LSH [Cha02] as it was easy to implement and it is also used in the Hash-
Sieve [Laa15]. To put the complexities of Figure 2.3b into perspective, we compare the
normalized time complexities for CVPP with the complexities of sieving for SVP, which
by [Laa16b] are comparable to the costs for CVP. First, we note that the HashSieve al-
gorithm solves SVP in approximately 4 seconds on the same machine. This means that
in dimension 50, the expected time complexity for CVPP with the HashSieve (roughly 2

4As the success prob. q form trials scales as q = 1 − (1 − p)m if each trial independently has success
prob. p, the success prob. per trial is computed as p = 1 − (1 −q)1/m.

34 CHAPTER 2. FINDING CLOSEST LATTICE VECTORS USING APPROXIMATE
VORONOI CELLS

0 10000 20000 30000 40000
0.0

0.2

0.4

0.6

0.8

1.0

→ List size (vectors)

→
S
uc
ce
ss
pr
ob
ab
ili
ty

20 trials

10 trials

5 trials

2 trials

1 trial

(a) Success prob. with rerandomizations

0 10000 20000 30000 40000
0.000

0.002

0.004

0.006

0.008

0.010

→ List size (vectors)

→
T
im
e
(s
ec
on
ds

)
/
S
uc
ce
ss
pr
ob
ab
ili
ty 20 trials

10 trials

5 trials

2 trials

1 trial

(b) Expected time per CVP instance

0 10000 20000 30000 40000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

→ List size (vectors)

→
S
uc
ce
ss
pr
ob
.p
er
tr
ia
l

20 trials

10 trials

5 trials

2 trials

1 trial

(c) Average success prob. per trial

0 10000 20000 30000 40000
0

1.×10-6

2.×10-6

3.×10-6

4.×10-6

→ List size (vectors)

→
S
uc
ce
ss
pr
ob
.p
er
tr
ia
l/
Li
st
si
ze

20 trials

10 trials

5 trials

2 trials

1 trial

(d) Success prob. per trial, per vector

Figure 2.3: Experimental results for solving CVPP with randomized slicing in dimension 50. Each data point
corresponds to 10 000 random target vectors for those parameters.

milliseconds) is approximately 2000 times smaller than the time for solving SVP. To ex-
plain this gap, observe that the list size for solving SVP is approximately 4000, and so the
HashSieve algorithm needs to perform in the order of 4000 reductions of newly sampled
vectors with a list of size 4000. For solving CVPP, we only need to reduce 1 target vector,
with a slightly larger list of 10 000 to 15 000 vectors. So we save a factor 4000 on the
number of reductions, but the searches are more expensive, leading to a speed-up of less
than a factor 4000.

For solving SVP or CVP, the HashSieve [Laa15] reports time complexities in dimension
d of 20.45d−19 seconds, corresponding to 11 seconds in dimension 50, i.e. a factor 3 slower
than here. This is based on doing n ≈ 20.21d reductions of vectors with the list. If
doing only one of these searches takes a factor 20.21d less time, and we take into account
that for SVP the time complexity is now a factor 3 less than in [Laa15], then we obtain
an estimated complexity for CVPP in dimension d of 20.24d−19/3, which for d = 50
corresponds to approximately 2.6 milliseconds. A rough extrapolation would then lead
to a time complexity in dimension 100 of only 11 seconds. This however seems to be
rather optimistic – preliminary experiments in dimensions 60 and 70 suggest that the

2.11. ANOTHER FEW DIMENSIONS FOR FREE 35

overhead of using a lot of memory may be rather high, as the list size is usually even
larger than for standard sieving.

2.11 — Another few dimensions for free

Ducas [Duc18] showed that in practice, one can effectively use the additional vectors
found by lattice sieving to solve a few extra dimensions of SVP “for free”. More precisely,
by running a lattice sieve in a base dimension d, one can solve SVP in dimension d ′ =
d + Θ(d/ logd) at little additional cost. This is done by taking all vectors returned by a
d-dimensional lattice sieve, and running Babai’s nearest plane algorithm [Bab86] on all
these vectors in the d ′-dimensional lattice to find short vectors in the full lattice. If d ′ is
close enough to d, one of these vectors will then be “rounded” to a shortest vector of the
full lattice.

On a high level, Ducas’ approach can be viewed as a sieving/enumeration hybrid,
where the top part of enumeration is replaced with sieving, and the bottom part is done
regularly as in enumeration, which is essentially equivalent to doing Babai rounding
[Bab86]. The approach of using a CVPP-solver inside enumeration is in a sense dual to
Ducas’ idea, as here the bottom part of the enumeration tree is replaced with a (sieving-
like) CVPP routine. Since the CVPP complexities of Section 2.9 are strictly better than
the best SVP/CVP complexities, we can also gain up to Θ(d/ logd) dimensions for free
as follows:

1. First, we run the CVPP preprocessing on a d-dimensional sublattice of the full lattice
of dimension d ′ = d + Θ(d/ logd). This may for instance take time 20.292d+o(d)

and space 20.208d+o(d) when using the fastest sieve of [BDGL16].
2. Then, we initialize an enumeration tree in the full lattice, and we process the top
k = ε·d/ logd levels as usual in enumeration. This will result in 2Θ(k logk) = 2Θ(d)

target vectors at level k, and this requires a similar time complexity of 2Θ(d) to
generate all these target vectors.

3. Finally, we take the batch of 2Θ(d) target vectors at level k in the enumeration tree,
and we solve CVP for each of them with our approximate Voronoi cell, with query
time 20.220d+o(d) each.

By setting k = ε·d/ logd as above with small, constant ε > 0, the costs for solving SVP
or CVP in dimension d ′ are asymptotically dominated by the costs of the preprocessing
step, which is as costly as solving SVP or CVP in dimension d. So similar to [Duc18],
asymptotically we also get Θ(d/ logd) dimensions “for free”. However, unlike for Ducas’
idea, in practice the dimensions are likely not quite as free here, as there is more overhead
for doing the CVPP-version of sieving than for Ducas’ additional batch of Babai nearest
plane calls. This approach is analysed in detail in Chapter 4.

Chapter 3

The irreducible vectors of a lattice

This chapter is for all practical purposes identical to the paper The irreducible vectors of
a lattice: Some theory and applications [DLdW21] authored jointly with Thijs Laarhoven
and Benne de Weger.

3.1 — Introduction

The need for quantum-resistant cryptography has led to rapid developments in the
area of lattice-based cryptography, mainly spurred by the NIST PQ-Crypto competition.
Large scale deployment of lattice-based cryptosystems in the near future becomes real-
istic. This continues to make the deeper understanding of lattice problems an urgent
research topic.

In 2010 Micciancio and Voulgaris, based also on previous work [AEVZ02], described
deterministic Õ(22n)–time and Õ(2n)–space algorithms to solve some of the most impor-
tant lattice problems (such as SVP, SIVP and CVP) [MV10a] in dimension n. This result
mainly relies on an algorithm to compute the set of relevant vectors of (the Voronoi cell
of) a lattice. Even though this is a very interesting result, the constants in the exponents
of time and space complexities of the Micciancio–Voulgaris algorithm make it impractical,
even for moderate dimensions.

The set of relevant vectors was first introduced in 1908 by Voronoi [Vor08]. It provides
a useful representation of the Voronoi cell of a lattice. Even though the set of relevant
vectors seems to hold the key for solving many lattice problems, its expected size makes
it impractical. This becomes even more clear when that size is compared to the (time
and) space complexity of algorithms used in practice for solving lattice problems such
as [ADH+19,GNR10,CN11].

In this chapter, we introduce a different set of lattice vectors, which appears to serve as
a bridge between the provable results relying on the set of relevant vectors and heuristic
sieving algorithms [NV08,MV10b,BLS16].

Notions of irreducibility are considered to be fundamental in many areas. Often irre-
ducibility is defined with respect to multiplication. Since a lattice is an additive object,
we will however use an additive notion of irreducibility. Clearly the notion of lattice basis
could be seen as such a construct, but it has been observed to be a too weak notion to
provide, on its own, interesting results for lattice problems. Our new notion of irreducible
vectors provides us with a set of lattice vectors, larger than a basis but smaller than the set

38 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

of relevant vectors, and possessing interesting properties. To the best of our knowledge
this definition is new in the area of lattices.

3.1.1 – Contributions. In this chapter we define a notion of irreducibility for a lattice
vector. As a first result we show that every irreducible vector of a lattice belongs to the
lattice’s set of relevant vectors. Hence, the set of irreducible vectors which we denote
by Irr(L) is finite. Additionally, it is shown that the set of irreducible vectors generates
the lattice and also contains vectors achieving all the successive minima of the lattice.
Finally, the set of irreducible vectors of the root lattices An, Dn and their duals A∗n, D∗n
is examined as they prove to be interesting extreme cases.

As it turns out, the set Irr(L) can be as big as the set of relevant vectors. In order to
get a set of cardinality provably smaller than 2n, a complete system of irreducible vectors
is defined, which is denoted by P(L). This set inherits the aforementioned properties
of the set Irr(L) and also it is proved that | P(L)| < 20.402n where n is the rank of the
lattice. Heuristically it is expected that P(L) will have a cardinality of 20.21n. From a
computational point of view, it is shown that slightly modified versions of already existing
sieving algorithms asymptotically output such a set (modulo sign). This statement is
further supported by experimental results. Finally, we discuss the applicability of P(L) in
showing that sieving algorithms like the ones described in [MV10b, BLS16] can be used
for tackling SVP, SIVP and computing the kissing number of a lattice. Additionally we
discuss the applicability of P(L) as preprocessing data in a CVPP algorithm which we call
“the tuple slicer”. The tuple slicer can provide a time–memory trade-off without the use
of rerandomisations.

3.1.2 – Notation. We adopt the already introduced notation from Chapter 1 for basic
notions regarding lattices and lattice problems. However we point out that in this chapter
the dimension of a lattice will be denoted by n instead of d. Let B(x, r) := {y ∈ Rn | ‖y−
x‖ 6 r} denote the closed n-dimensional ball with center x and radius r. Finally we have
the kissing number τn, defined as the maximum number of equal n-dimensional spheres
that can be made to touch another central sphere of the same size without intersecting.

3.2 — Previous Work

In this section we recall some known results on the set of relevant vectors. This is
done for a matter of completeness but also in order to indicate what kind of results we
would like to obtain for the set of irreducible vectors which we will define later.

For v ∈ L we define H(v) := {x ∈ Rn | ‖x‖ 6 ‖x− v‖}, to relate the Voronoi cell of a
lattice to its relevant vectors.

Proposition 3.1. Let L be a full rank lattice in Rn. The set of relevant vectors R(L) is the
minimal set L ⊂ L such that

V(L) =
⋂
v∈L

H(v). (3.1)

In order to get a more practical description of the relevant vectors the following the-
orem is used.

Theorem 3.2 (Voronoi [Vor08]). Let L be a full rank lattice in Rn and v ∈ L \ {0}. Then
v ∈ R(L) if and only if 0 and v are the only closest vectors of L to 1

2v.

3.2. PREVIOUS WORK 39

This implies that

R(L) = {v ∈ L \ {0} | ‖1
2
v− x‖ > ‖1

2
v‖ ∀x ∈ L \ {0, v}} (3.2)

= {v ∈ L \ {0} | 〈v, x〉 < ‖x‖2 ∀x ∈ L \ {0, v}} (3.3)

Remark 3.3. It holds that 0 6∈ R(L). Also note that if v ∈ R(L) then −v ∈ R(L).

Remark 3.4. The condition 〈v, x〉 < ‖x‖2 needs to be checked only for x ∈ L \ {0} such
that ‖x‖ < ‖v‖, because otherwise it is trivially true.

For checking if a vector is relevant, the following lemma is useful.

Lemma 3.5 ([MV10a]). Let L be a full rank lattice in Rn, and v ∈ L. If v 6∈ R(L) then
there exists r ∈ R(L) such that 〈v, r〉 > ‖r‖2.

Also a lower bound for the set R(L) can be obtained by the following trivial lemma.

Lemma 3.6. Let L be a full rank lattice in Rn. It holds that S1(L) ⊆ R(L).

Equality in the above lemma holds for a very special type of lattices called root lattices
(see [CS98, Chapter 4]).

Theorem 3.7 ([RS96]). S1(L) = R(L) iff L is a root lattice.

The following theorem by Minkowski gives an upper bound on the size of R(L).

Theorem 3.8 (Minkowski [Min11]). Let L be a full rank lattice in Rn. It holds that
|R(L)| 6 2(2n − 1).

Apart from an upper bound we can also obtain a lower bound on |R(L)|.

Proposition 3.9. Let L be a full rank lattice in Rn. It holds that Vol(L) = Vol(V(L)).

Remark 3.10. For the lattice Zn is true that |R(Zn)| = 2n (see [CS98]). As the set R(L)
needs to have n linearly independent vectors in order the volume of V(L) to be finite then
2n 6 |R(L)| is a tight lower bound.

Other properties and results. Finally a property of the set R(L) is that it generates L.
The proof of this is rather simple. The Voronoi cell of L implies a tiling of Rn. Thus,
every vector in Rn can be reduced to a vector in V(L) through reductions by elements of
R(L). As 0 is the only lattice vector in V(L) it follows that all lattice vectors are reduced
to 0. Therefore, R(L) spans the entire lattice.

So far we have mentioned a number of properties and definitions on the relevant
vectors of a lattice. Computing them is however a different matter. The following result
is the current state of the art on this.

Theorem 3.11 (Micciancio–Voulgaris [MV10a]). There exists a deterministic Õ(22n)–time
and Õ(2n)–space algorithm which, given an n-rank lattice L with basis B, outputs the set
of relevant vectors.

40 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

3.3 — Irreducibility of lattice vectors

3.3.1 – The set of irreducible vectors. Inspired by number theoretic notions of (mul-
tiplicative) irreducibility, we introduce a similar concept for lattice (additively structured).

Definition 3.12 (Irreducibility). Let L be a full rank lattice in Rn and v ∈ L \ {0}. The
vector v is called k-irreducible iff > v1, . . . , vk ∈ L such that ‖vi‖ < ‖v‖ and v1+· · ·+vk =
v. For the special case k = 2, v will be just called irreducible.

Remark 3.13. The definition of k-irreducible vectors implies that if a vector is k-irreducible
then it is also (k − 1)-irreducible. This observation allows the construction of a chain of
subsets based on the notion of irreducibility.

In this chapter we are going to focus on the properties of 2-irreducibility. Further
research on the notion of k-irreducibility for k > 2 is left for future research.

Definition 3.14 (Irreducible vectors). Let L be a full rank lattice in Rn. We define

Irr(L) := {v ∈ L | v is irreducible}. (3.4)

Remark 3.15. It holds that 0 6∈ Irr(L). Also, if v ∈ Irr(L) then −v ∈ Irr(L).

The above properties hold for the set of relevant vectors as well and this is not a
coincidence as we will see. First we show that this set is not empty, and indeed that it
also contains vectors achieving the first successive minimum.

Lemma 3.16. Let L be a full rank lattice in Rn. It holds that S1(L) ⊆ Irr(L).

Proof. Let v ∈ S1(L). Then clearly v 6= 0. Assume that v 6∈ Irr(L), so there exist
v1, v2 ∈ L such that ‖vi‖ < ‖v‖ and v1 + v2 = v. As v ∈ S1(L) this implies that
‖vi‖ < λ1(L) and thus ‖vi‖ = 0. Hence, we get v1 = v2 = 0, which contradicts
v 6= 0.

Remark 3.17. It can be easily checked that Lemma 3.16 would still hold under the notion
of k-irreducibility for k > 2. Therefore we can conclude that k-irreducibility is not leading
to a trivially empty set of vectors for k > 2. One may expect that it will also include a lattice
basis.

We show that something similar occurs for the rest of the successive minima as well.

Definition 3.18. Let L be a full rank lattice in Rn and 1 6 i 6 n. We define Lλ to be the
sublattice spanned by all the vectors in L with norm strictly less than λ.

Proposition 3.19. Let L be a full rank lattice in Rn, and v ∈ L satisfying ‖v‖ = λi :=
λi(L) for some 1 6 i 6 n. If v 6∈ Lλi then v is irreducible.

Proof. It has been already proven in Lemma 3.16 that this is true for i = 1 so we can
consider i > 2. Assume v ∈ L such that ‖v‖ = λi(L) for some 2 6 i 6 n, v 6∈ Lλi and v
is not irreducible. Then there exist v1, v2 ∈ L such that v = v1 + v2 and ‖vj‖ < ‖v‖ for
j = 1, 2. Clearly vj 6= 0. As ‖vj‖ < ‖v‖ = λi(L) this implies that vj ∈ Lλi for j = 1, 2.
This further implies that v = v1 + v2 ∈ Lλi , contradiction.

3.3. IRREDUCIBILITY OF LATTICE VECTORS 41

Remark 3.20. Proposition 3.19 points out that a lattice vector achieving a successive min-
imum is not necessarily irreducible. An enlightening example of such an occasion is the
following. Consider the lattice L = L(B) generated by the matrix

B =

 3 0 0
0 4 0
0 0 10

 . (3.5)

Then λ1(L) = 3, λ2(L) = 4 and λ3(L) = 10. The vector v = (6, 8, 0) is such that
‖v‖ = λ3(L) but v is not irreducible as it can be written as a sum of shorter vectors i.e.
v = (6, 0, 0) + (0, 8, 0). The reason why v fails to be irreducible is that it belongs to the
sublattice Lλ3 .

Corollary 3.21. Let L be a full rank lattice in Rn. For every i = 1, . . . ,n there exists a
vector v ∈ Irr(L) such that ‖v‖ = λi(L).

Proof. By Proposition 3.19 it suffices to show that for every i = 1, . . . ,n there exists a
vector v ∈ L such that ‖v‖ = λi(L) and v 6∈ Lλi . Assume that for every vector v ∈ L

such that ‖v‖ = λi(L) for some fixed 2 6 i 6 n it holds v ∈ Lλi . For convenience we
define λ0(L) = 0. Let k be min16j6i j such that λj(L) = λi(L) and therefore λk−1(L) <
λk(L) = λi(L). Then Lλi has rank k − 1 as λk−1(L) < λk(L). If k − 1 = 0 then
we are done as this would imply v = 0. If k − 1 > 1 then v belongs to the sublattice
containing all the shorter vectors than it, Lλi and this sublattice is of rank k − 1. Thus
any choice of k − 1 vectors such that max{‖v1‖, . . . , ‖vk−1‖, ‖v‖} = ‖v‖ will result in a
linearly dependent set. Hence it cannot be that λk(L) = ‖v‖, contradiction.

Apart from vectors reaching the successive minima, it can be shown that the set Irr(L)
contains a generating set of the lattice as well.

Proposition 3.22 (Irreducible vectors generate). Let L be a full rank lattice in Rn. There
exists a generating set G of L such that G ⊆ Irr(L).

Proof. We will prove that the set Irr(L) spans the lattice and therefore it includes a gen-
erating set. Let v ∈ L. If > v1, v2 ∈ L with ‖vi‖ < ‖v‖ such that v1 + v2 = v then
v ∈ Irr(L). If there exist such vi then write v = v1 + v2. If the vi ∈ Irr(L) then we
are done. If not then further reduce the vectors vi such that they are written as a sum of
two strictly shorter vectors. As in each step the length of the vectors strictly reduces and
there is a finite number of lattice points in B(0, ‖v‖), after a finite number of steps we
will reach a state where v =

∑
pi and pi ∈ Irr(L). This concludes the proof.

Given the result of Proposition 3.22 the following conjecture can be formulated.

Conjecture 3.23. Let L be a full rank lattice in Rn. The set Irr(L) contains a basis of L.

Our next goal is to derive some more explicit descriptions of the set Irr(L).

Lemma 3.24. Let L be a full rank lattice in Rn. It holds that

Irr(L) = {v ∈ L \ {0} | ∀x ∈ L with ‖x‖ < ‖v‖ it holds ‖v− x‖ > ‖v‖} (3.6)

= {v ∈ L \ {0} | ∀x ∈ L with ‖x‖ < ‖v‖ it holds 2〈v, x〉 6 ‖x‖2
}. (3.7)

42 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

Proof. Let A = {v ∈ L \ {0} | ∀x ∈ L with ‖x‖ < ‖v‖ it holds ‖v − x‖ > ‖v‖}. Let
p ∈ Irr(L) and v ∈ L with ‖v‖ < ‖p‖. Then as p ∈ Irr(L) we get ‖p−v‖ > ‖p‖ because
otherwise p would have a decomposition into two shorter vectors, thus p ∈ A. This gives
Irr(L) ⊆ A. Next, let v ∈ A, and write v = v1 + v2 for some v1, v2 ∈ L. If ‖v1‖ < ‖v‖
then as v ∈ A we get ‖v − v1‖ > ‖v‖ and hence we do not get a decomposition of
v in two shorter vectors. If ‖v1‖ > ‖v‖ this is trivially true. Thus v ∈ Irr(L). This
implies equality (3.6) and equality (3.7) is an immediate consequence. This concludes
the proof.

Even though this lemma is rather straightforward it implies an interesting result for
the set Irr(L).

Proposition 3.25. Let L be a full rank lattice in Rn. Every irreducible vector of L is also a
relevant vector of L, hence Irr(L) ⊆ R(L).

Proof. As we already saw by Theorem 3.2, we can write the set R(L) as R(L) = {v ∈
L \ {0} | 〈v, x〉 < ‖x‖2 ∀x ∈ L \ {0, v}} and we can further improve that description to

R(L) = {v ∈ L \ {0} | ∀x ∈ L \ {0} with ‖x‖ < ‖v‖ it holds 〈v, x〉 < ‖x‖2
}.

For the set of irreducible vectors we got from Lemma 3.24 that

Irr(L) = {v ∈ L \ {0} | ∀x ∈ L with ‖x‖ < ‖v‖ it holds 2〈v, x〉 6 ‖x‖2
}.

Thus by carefully checking these two descriptions for the sets R(L) and Irr(L) it suffices
to prove that if v ∈ L \ {0} and x ∈ L \ {0} with ‖x‖ < ‖v‖ then 2〈v, x〉 6 ‖x‖2 ⇒
〈v, x〉 < ‖x‖2.
If 〈v, x〉 6 0 this is trivially true as x 6= 0. Also if 〈v, x〉 > 0 then 〈v, x〉 < 2〈v, x〉 and the
result follows.

Remark 3.26. Combining the result of Lemma 3.16 and Proposition 3.25 we get that
S1(L) ⊆ Irr(L) ⊆ R(L). Therefore Irr(L) is finite.

We already saw that for the case of root lattices it holds S1(L) = R(L). This implies
that for the root lattices it also holds that S1(L) = Irr(L) = R(L). Thus, the sets S1(L)
and R(L) are tight inclusions of Irr(L).

We expect that in general though it will hold S1(L) & Irr(L) & R(L). A question that
might be of interest is when and if S1(L) = Irr(L) & R(L) or S1(L) & Irr(L) = R(L) are
possible.

We believe that lattices satisfying either of these properties will be very special and
highly symmetric. The reason why we believe this, is that some already well known very
special families of lattices satisfy these properties. Namely, in Section 3.6 we will prove
the following two theorems.

Theorem 3.27. Let n ∈ N with n > 5. Then for the lattice D∗n it holds that S1(D
∗
n) &

Irr(D∗n) = R(D∗n). Furthermore | Irr(D∗n)| = 2n + 2n.

Theorem 3.28. Let n ∈ N with n > 3. Then for the lattice A∗n it holds that S1(A
∗
n) =

Irr(A∗n) & R(A∗n). Furthermore | Irr(A∗n)| = 2(n+ 1).

Additionally the famous Leech latticeΛ24 [CS98, p. 131] satisfies the property S1(Λ24) =
Irr(Λ24) & R(Λ24). We will actually be able to prove in the next subsection that for every
lattice that reaches the kissing number τn it holds that S1(L) = Irr(L).

3.3. IRREDUCIBILITY OF LATTICE VECTORS 43

3.3.2 – A complete system of irreducible vectors. The special family of lattices D∗n
indicates that the set Irr(L) can become as big as R(L) and actually grow as much in size
as 2n. However, our goal is to obtain a subset of Irr(L) which is closely related to it but
also provably smaller than 2n.

Definition 3.29. Let L be a full rank lattice in Rn. We define an equivalence relation in
Irr(L) in the following way.

Let v1, v2 ∈ Irr(L) then v1 ∼ v2 iff ‖v1‖ = ‖v2‖. (3.8)

From each equivalence class we will consider a representative set instead of just one
element. We choose it in the following way and we will explain afterwards why.

Definition 3.30. For each equivalence class S = {v1, . . . , vm} of Irr(L) according to (3.8)
we choose a subset S̃ ⊆ S such that the following two conditions hold:

(i) If v ∈ S̃ then also −v ∈ S̃.
(ii) S̃ is a maximal subset of S such that for every pair of vectors v1, v2 ∈ S̃ with v2 6= −v1

it holds that ‖v1 + v2‖ > ‖v1‖.

The main motivation is that the new set of vectors which will be built under these
rules will include irreducible vectors whose pairwise angle is “big” as we will prove later.
However, there are several details of this definition which should be clarified. First of
all, from the definition it follows that for an equivalence class we consider at least two
representatives, which is not usually done. The reasons for this are the following.

Initially, for the subset of Irr(L) which we are trying to define, we would like it to
inherit the property of Irr(L) that if v belongs to it then also −v belongs to it. A second,
more important reason is that choosing only one representative per equivalence class
could lead to a set that does not even span the lattice (for example in the case of root
lattices, or whenever S1(L) = Irr(L)).

The second condition of the definition implies that for every element v of a class S
which is not included in S̃ there exists a vector ṽ ∈ L such that ‖v − ṽ‖ < ‖v‖. From
this point of view the remaining elements of a class S which are not included in S̃ can be
generated by the elements of S̃ plus some strictly shorter vector. In order to ensure that
this holds we take S̃ to be maximal. Also by taking S̃ to be maximal we make sure that
the set S̃ contains as much information about the class as possible.

Remark 3.31. Choosing a representative set S̃ of a class S can be translated into a graph
problem. We define a graph where the set of vertices is the equivalence class, and there exists
an edge between two vertices iff the difference of the corresponding vectors is strictly shorter
than both of them. Then choosing a set of representatives translates to finding a maximal
subset of vertices that are not adjacent, while keeping the symmetry about 0. In terms of
graph theory this can be phrased as finding a special independent set of the graph. This idea
is further analysed in Section 3.7.

Definition 3.32. Let L be a full rank lattice in Rn. We define a set P ⊆ Irr(L) to be a
complete system of irreducible vectors of L if it is of the form:

P =
⋃

S∈Irr(L)/∼

S̃. (3.9)

44 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

Remark 3.33. Below we denote by P(L) any one of the complete systems of irreducible
vectors of L. It is clear that there always exists such a set P(L) and it is not necessarily
unique. In fact, even the size of P(L) can vary.

Remark 3.34. By the fact that for each class S of Irr(L)/∼ we have S̃ ⊆ S we get that
P(L) ⊆ Irr(L). Also the class of Irr(L)/∼ containing all the shortest vectors i.e. S1(L) will
be entirely included in P(L) as any pairwise sum of vectors (for non-trivial pairs) in this
class will be longer or equally long by definition. Thus we can conclude that

S1(L) ⊆ P(L) ⊆ Irr(L) ⊆ R(L).

We will also give an example in order to illustrate this definition.

Example 3.35. Let L = L(B) be the lattice generated by the columns of the matrix

B =

0 0 0 −1 3
−1 −1 0 1 0
0 0 −2 1 0
1 −1 0 0 1
0 1 0 2 1

 .

We find the sets S1(L), P(L), Irr(L), R(L).

In fact B is an LLL-reduced basis [LLL82] of the lattice. By means of enumeration one could
verify that S1(L) = {±(0,−1, 0, 1, 0)}. By running an algorithm that computes the set of
relevant vectors like [VB96] in SAGE [TSD19] we get

R(L) = {± (0,−1, 0, 1, 0),

± (0,−1, 0,−1, 1),

± (0, 0, 2, 0, 0),

± (−1, 0,−1, 1, 2),±(−1, 0, 1, 1, 2),±(−1, 1,−1, 0, 2),±(−1, 1, 1, 0, 2),

± (−1, 1,−1, 2, 1),±(−1, 1, 1, 2, 1),±(−1, 2,−1, 1, 1),±(−1, 2, 1, 1, 1),

± (3, 1, 0, 0, 1),±(3, 0, 0, 1, 1),

± (2, 1,−1, 1, 3),±(2, 1, 1, 1, 3),

± (2, 2,−1, 2, 2),±(2, 2, 1, 2, 2)}.

(each line has vectors of equal norm). The next step is to find the set of irreducible vectors
Irr(L). We consider the subset of R(L) containing relevant vectors which cannot be written
as a sum of two strictly shorter vectors (by cross-checking with the set of relevant vectors).
It turns out that this set just contains all the vectors achieving the successive minima thus it
must be that this is Irr(L).

Irr(L) = {± (0,−1, 0, 1, 0),

± (0,−1, 0,−1, 1),

± (0, 0, 2, 0, 0),

± (−1, 0,−1, 1, 2),±(−1, 0, 1, 1, 2),±(−1, 1,−1, 0, 2),±(−1, 1, 1, 0, 2),

± (3, 1, 0, 0, 1),±(3, 0, 0, 1, 1)}

3.3. IRREDUCIBILITY OF LATTICE VECTORS 45

The set Irr(L) contains 5 equivalence classes according to the equivalence relation (3.8). We
denote them by Ci for i = 1, . . . , 5. As we can see for the first three of them, computing
a set of representatives C̃1, C̃2, C̃3 is trivial as in these cases it will be C̃1 = C1, C̃2 = C2

and C̃3 = C3. The cases of C4 and C5 are more interesting. We start by examining C5 as
it contains fewer vectors. We set v1 = (3, 1, 0, 0, 1) and v2 = (3, 0, 0, 1, 1). Next we draw
the corresponding graph with vertices the ±v1,±v2 and edges if the pairwise differences are
strictly shorter than ‖v1‖.

v2

v1

-v2

-v1

Figure 3.1: The graph of the class C5

The graph in Figure 3.1 shows that we can take either C̃5 = {±v1} or C̃5 = {±v2}. We
are now going to do the same for the class C4. We set v1 = (−1, 0,−1, 1, 2),
v2 = (−1, 0, 1, 1, 2), v3 = (−1, 1,−1, 0, 2), v4 = (−1, 1, 1, 0, 2).

v1

v2

v3

v4

−v1

−v2

−v3

−v4

Figure 3.2: The graph of the class C4

The graph in Figure 3.2 shows that we can take C̃4 = {±vi} for any i = 1, 2, 3, 4.
Therefore one choice for the set P(L) is the following.

P(L) = {± (0,−1, 0, 1, 0),

± (0,−1, 0,−1, 1),

± (0, 0, 2, 0, 0),

± (−1, 0,−1, 1, 2),

± (3, 1, 0, 0, 1)}

Remark 3.36. The above example should not mislead the reader to the assumption that
the corresponding graph of each equivalence class will always have at least two connected
components. It can happen that the graph of a class is connected. One such example can be
derived from the family of lattices examined in Theorem 3.65.

One property of the set Irr(L) was that it includes a generating set of L. We can show
that P(L) inherits that property.

Proposition 3.37 (Complete system generates). Let L be a full rank lattice in Rn. Then
for every P(L) ⊆ Irr(L) there exists a generating set G of L such that G ⊆ P(L).

46 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

Proof. As in the proof of Proposition 3.22 for the set Irr(L) we will prove that the set P(L)
spans the lattice and therefore it includes a generating set. However, in this case the proof
is more technical. Let P(L) be a complete system of irreducible vectors of L as defined
in (3.9). We have already shown that Irr(L) is finite as Irr(L) ⊆ R(L) and thus we can
define t := | Irr(L)/∼|. We further set Ci for i = 1, . . . , t to be the equivalence classes
in Irr(L)/∼. Hence, the set P(L) can be written as P(L) = ∪ti=1C̃i. Each equivalence
class Ci contains all irreducible vectors of a specific length µi, and we can assume that
we have ordered the Ci according to increasing µi. We define the following sequence of
subsets of Irr(L):

Ai :=

i−1⋃
j=1

Ci

 ∪
 t⋃
j=i

C̃i

 for i = 1, . . . , t+ 1.

As for every i it holds C̃i ⊆ Ci then it follows that Ai(L) ⊆ Ai+1(L) and thus

P(L) = A1 ⊆ A2 ⊆ · · · ⊆ At ⊆ At+1 = Irr(L).

We will prove by induction that each term of this sequence of sets spans the lattice L.
Base case i = t+ 1: The set Irr(L) = At+1 spans the lattice as it was already shown in
Proposition 3.22.
Induction hypothesis: Assume that it holds for some i = k, i.e. Ak spans the lattice for
some k ∈ {2, . . . , t+ 1}.
Induction step: Prove that Ak−1 spans the lattice. By the definition of the sets Ai we

can conclude that Ak−1 = Ak \ (Ck−1 \ C̃k−1). By the induction hypothesis it suffices
to show that the vectors in Ck−1 \ C̃k−1 can be generated by the vectors in Ak−1. Let
v ∈ Ck−1 \ C̃k−1. As v ∈ Ck−1 but v 6∈ C̃k−1 this implies that there exists a ṽ ∈ C̃k−1

such that ‖v + ṽ‖ < ‖v‖. This holds because C̃k−1 is maximal by definition. We set
w = v + ṽ. Furthermore as ‖w‖ < ‖v‖ then w is either irreducible or can be written
as a sum of irreducible vectors shorter than ‖v‖. We use the ordering of the Ci. Thus by
its definition the set Ak−1 contains all the vectors in Irr(L) which are shorter than ‖v‖.
Hence as, ‖w‖ < ‖v‖ this implies that w can be generated by the vectors in Ak−1. So,
concluding we wrote v as v = w− ṽ where both w and ṽ belong toAk−1. This concludes
the proof.

For v1, v2 ∈ L we denote by ϑ(v1, v2) the angle formed by v1, v2.

Proposition 3.38. Let L be a full rank lattice in Rn, and p1,p2 ∈ P(L) such that p1 6=
±p2. Then it holds that

(i) min{‖p1 ± p2‖} > max{‖p1‖, ‖p2‖} and
(ii) | cos ϑ(p1,p2)| 6 1

2 .

Proof. (Part i) By Lemma 3.24 we have that

Irr(L) = {v ∈ L \ {0} | ∀x ∈ L with ‖x‖ < ‖v‖ it holds ‖v− x‖ > ‖v‖}.

Let p1,p2 ∈ P(L) such that p1 6= ±p2. Without loss of generality we assume that
‖p2‖ 6 ‖p1‖. Initially we will prove that ‖p1 + p2‖ > max{‖p1‖, ‖p2‖}.
Case 1: If ‖p2‖ < ‖p1‖. Then p1,p2 ∈ Irr(L) and they are not in the same class. Using

3.3. IRREDUCIBILITY OF LATTICE VECTORS 47

the description of the Lemma 3.24 with v = p1 ∈ Irr(L) and x = −p2 we get ‖p1+p2‖ >
‖p1‖. But as ‖p2‖ < ‖p1‖ we can conclude that ‖p1 + p2‖ > max{‖p1‖, ‖p2‖}.
Case 2: If ‖p2‖ = ‖p1‖. Then p1,p2 ∈ Irr(L) and they are in the same class. Let
S ∈ Irr(L)/∼ such that p1,p2 ∈ S. Then as p1,p2 ∈ P(L) we get that p1,p2 belong
to the same S̃. Thus, by the definition of S̃ we can again conclude that ‖p1 + p2‖ >
max{‖p1‖, ‖p2‖}.
The result follows from the fact that for every v ∈ P(L) also −v ∈ P(L).
(Part ii) Let p1,p2 ∈ P(L) such that p1 6= ±p2. Without loss of generality we assume
that ‖p2‖ 6 ‖p1‖. By part (i) we get that ‖p1 ± p2‖ > ‖p1‖. This in turn implies that
2|〈p1,p2〉| 6 ‖p2‖2. Hence,

| cos ϑ(p1,p2)| =
|〈p1,p2〉|
‖p1‖‖p2‖

6
|〈p1,p2〉|
‖p2‖2 6

1
2

.

We will use the following theorem in order to bound | P(L)|.

Theorem 3.39 ([KL78]). Let A(n,φ0) be the maximal size of any set C of points in Rn
such that the angle between any two distinct vectors vi, vj ∈ C (denoted φvi,vj) is at least
φ0. If 0 < φ0 < 63°, then for all sufficiently large n, A(n,φ0) = 2cn for some

c 6 −
1
2

log2(1 − cos(φ0)) − 0.099. (3.10)

Proposition 3.40. Let L be a full rank lattice in Rn. It holds that | P(L)| < 20.402n.

Proof. By using Theorem 3.39 withφ0 = π
3 (which can be deduced from Proposition 3.38)

we get that | P(L)| = 2cn with c 6 − 1
2 log2(1 − cos(π3)) − 0.099. Evaluating the right

hand side of this inequality implies the result.

Proposition 3.38 states the same condition that is also satisfied by the output of the
GaussSieve algorithm described in [MV10b]. As in the paper describing the GaussSieve
algorithm [MV10b] the size of P(L) can actually be bounded by the kissing number τn.
Following the same arguments as in [MV10b] we can argue that in practice we expect
P(L) ≈ 20.21n which is a factor 2 smaller in the exponent than the provable bound
| P(L)| < 20.402n.

A result that might be of interest in the search for lattices reaching the kissing number
is the following.

Theorem 3.41. Let L be a full rank lattice in Rn. If the lattice L is such that it reaches the
kissing number τn then S1(L) = Irr(L).

Proof. As the lattice L reaches the kissing number τn, that implies |S1(L)| = τn. By
Proposition 3.38 we can conclude that the angle between any two vectors in P(L) is
at least π/3. This is also the minimal possible angle between the centers of two equal
n-dimensional spheres which touch another central sphere of the same size without in-
tersecting. Hence | P(L)| 6 τn. Combining this with S1(L) ⊆ P(L) and |S1(L)| = τn
implies that P(L) = S1(L). As the set P(L) was build from classes of Irr(L) and we
showed that it actually contains only vectors of norm λ1(L) that means that there is only

48 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

one class in Irr(L)/∼, namely the class of S1(L). But in this class there is no pair of vec-
tors that adds to a shorter one, thus the whole class is included in P(L). That implies that
Irr(L) = P(L) = S1(L).

Remark 3.42. A similar result for the set R(L) is not possible. For example for the root
lattice E8 reaching the kissing number in dimension 8 it holds S1(E8) = R(E8) but for the
Leech lattice Λ24 it holds that S1(Λ24) & R(Λ24) (see [CS98]).

3.4 — Computation of the set P(L)

In the previous sections we investigated some properties of the set P(L) and its re-
lation to the set R(L). Ultimately we aim at using this set instead of R(L) due to its
provably smaller cardinality. However, in order to actually benefit from this replacement
an algorithm that computes P(L) without using the set R(L) is needed. The goal of this
section is to examine ways of computing the set P(L).

3.4.1 – The “brute force” approach. If the set Irr(L) is given then the set P(L) can
be computed by means of a graph-based technique already described in Remark 3.31 and
further analysed in Section 3.7. Thus, it suffices to describe an algorithm which computes
the set Irr(L). The naive approach is to use the fact that Irr(L) ⊆ R(L). Hence, as a first
step one can run the algorithm described in [MV10a] in order to get the set R(L). Then
having a superset of Irr(L) it suffices to remove all the reducible vectors from it. This
can be done by iterating through R(L) and checking for each r ∈ R(L) if there exists
a v ∈ R(L) such that ‖v‖ < ‖r‖ and ‖r − v‖ < ‖r‖. If r ∈ Irr(L) then by definition
there will not exist a vector v ∈ L such that ‖v‖ < ‖r‖ and ‖r − v‖ < ‖r‖ and thus the
algorithm will not discard any of the irreducible vectors. If the vector r is reducible then
we need the following heuristic assumption.

Assumption 3.43. Let L be a full rank lattice in Rn with Irr(L) 6= R(L). If r ∈ R(L) \
Irr(L) then ∃v ∈ R(L) such that ‖v‖ < ‖r‖ and ‖r− v‖ < ‖r‖.

Heuristic assumption 3.43 can be considered as the analogue of Lemma 3.5 for the
set Irr(L). Lemma 3.5 guaranteed that for every non-relevant vector there would exist
a relevant vector acting as a “witness” of “non-relevancy”. Heuristic assumption 3.43
speculates that for every reducible relevant vector there exists a relevant vector acting as a
“witness” of reducibility. This claim can be further supported by the heuristic expectation
for the set R(L) to include most of the “short” lattice vectors. Some experimental support
can be derived for low dimensional lattices from Table 3.1 and Figure 3.3a.

Remark 3.44. Under Heuristic assumption 3.43 and the result of [MV10a] on computing
the set R(L) we can conclude that computing the set Irr(L) by “brute-force” can take up
to Õ(22n)–time and Õ(2n)–space. This complexity can serve as an upper bound on the
computation of the set Irr(L). Combining this observation with the discussion in Section 3.7
can give an upper bound in the complexity of computing P(L). Namely, for lattices which are
not extremely structured (i.e. maxS∈Irr(L)/∼ |S| = poly(n)) we can conclude that computing
P(L) from Irr(L) can take O(poly(n)| Irr(L)|) time. Therefore the computation of Irr(L)
dominates the time complexity, leading to an overall upper bound for P(L) of Õ(22n)–time.

However the approach in the next section could offer a better performance.

3.4. COMPUTATION OF THE SET P(L) 49

Algorithm 3.1 The GaussSieve algorithm as described in [MV10b]

Require: A basis B of a lattice L(B) and a c > 0.
Ensure: A list L ⊂ L s.t. min{‖v1 ± v2‖} > max{‖v1‖, ‖v2‖} for all v1, v2 ∈ L.

function GAUSSSIEVE(B, c)
L← {0}, S← {}, K← 0
while K < c do

if S is not empty then
vnew ← S.pop()

else
vnew ← SampleGaussian(B)

end if
vnew ← GaussReduce(vnew,L,S)
if vnew = 0 then
K← K+ 1

else
L← L ∪ {vnew}

end if
end while

end function

function GAUSSREDUCE(p,L,S)
while ∃vi ∈ L : ‖vi‖ 6 ‖p‖

∧ ‖p− vi‖ 6 ‖p‖ do
p← p− vi

end while
while ∃vi ∈ L : ‖vi‖ > ‖p‖

∧ ‖vi − p‖ 6 ‖vi‖ do
L← L \ {vi}

S.push(vi − p)
end while
return p

end function

3.4.2 – Using the GaussSieve/MinkowskiSieve algorithms. As it was already men-
tioned in Section 3.3.2, it is expected that the output of the GaussSieve algorithm [MV10b]
will be closely related to a set P(L). This conjecture was motivated by the fact that both
sets, P(L) and the output of the GaussSieve, possess the property min{‖v1 ± v2‖} >
max{‖v1‖, ‖v2‖} for any pair of v1 6= ±v2 in the set. At this point it should be clari-
fied that for our purposes we will consider a slightly modified version of the GaussSieve
algorithm which will be described here.

Algorithm 3.2 The modified GaussReduce function

1: function PRIMEGAUSSREDUCE(p,L,S)1

2: while ∃vi ∈ L : ‖vi‖ 6 ‖p‖∧ ‖p± vi‖ < ‖p‖ do
3: if ‖p+ vi‖ < ‖p‖ then
4: p← p+ vi
5: else
6: p← p− vi
7: end if
8: end while
9: while ∃vi ∈ L : ‖vi‖ > ‖p‖∧ ‖vi ± p‖ < ‖vi‖ do

10: L← L \ {vi}
11: S.push(vi ± p)
12: end while
13: return p
14: end function

50 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

For our purposes we will use the GaussSieve algorithm 3.1 but with the modified
version of the GaussReduce function 3.2. In this way the following conditions are met.

(i) Any irreducible vector which has been added to the GaussSieve list L will never be
removed from it.

(ii) Any irreducible vector encountered by the algorithm will be added to L provided
that it can extend its class representative set already in L.

Lemma 3.45. The GaussSieve algorithm 3.1 equipped with the function
PrimeGaussReduce (Algorithm 3.2) satisfies both properties (i) and (ii).

Proof. (Property i) The only way for a vector vi ∈ L to be removed from the list L is by
entering the while loop in line 9 of the PrimeGaussReduce function. Let vi ∈ L and also
vi ∈ Irr(L). In order for the algorithm to remove vi from L it should encounter another
vector p such that ‖vi‖ > ‖p‖ and ‖vi−p‖ < ‖vi‖ or ‖vi‖ > ‖−p‖ and ‖vi+p‖ < ‖vi‖
which contradicts the irreducibility of v.
(Property ii) Assume that the function PrimeGaussReduce is called and in some iteration
of the while loop in line 2, p becomes such that p ∈ Irr(L). In order for p to not
be added in L this would mean that p could be further modified by the while loop in
line 2. Thus the algorithm should encounter another vector vi ∈ L such that ‖vi‖ 6 ‖p‖
and ‖p ± vi‖ < ‖p‖. The case where ‖vi‖ < ‖p‖ and ‖p ± vi‖ < ‖p‖ violates the
irreducibility of p and thus can be disregarded. This leaves only one possible case, namely
‖vi‖ = ‖p‖ and ‖p ± vi‖ < ‖p‖. This condition implies that vi and p belong to the
same equivalence class and they are adjacent. Therefore this pair of vectors cannot belong
to any set P(L) of L. Hence p should not be included in L anyway and the algorithm
correctly further reduces it.

Remark 3.46. If the PrimeGaussReduce function in line 9 was the same as in the original
GaussReduce, then the algorithm could encounter an instance where it would enter the loop
with ‖vi‖ > ‖p‖ , ‖vi − p‖ = ‖vi‖ and vi, vi − p ∈ Irr(L). This could be possible if an
equivalence class in Irr(L) was not trivial. In this case the algorithm would remove the vector
vi from the list and add its equivalent vi−p to S. As a result for these non-trivial classes the
algorithm could behave in a bad way by repetitively removing and adding representatives of
the same class.

Remark 3.47. If the PrimeGaussReduce function in line 2 was the same as in the original
GaussReduce, then the algorithm could encounter an instance where it would enter the loop
with ‖vi‖ 6 ‖p‖ , ‖p − vi‖ = ‖p‖ and p,p − vi ∈ Irr(L). Thus, p and p − vi are
equivalent. In case ‖vi‖ < ‖p‖ then p and p− vi are also adjacent in the class graph and
therefore in this case the algorithm would cycle through the adjacent vectors of p. Therefore
there is no need to perform a reduction in this case. In case ‖vi‖ = ‖p‖ then all three
p, vi,p − vi are equivalent but not adjacent. Hence in this case the algorithm does not
make any progress by replacing p by p − vi. Thus, there is no need to perform a reduction
in this case as well. 2

1This version is the one used in [The19a] as well.
2However, as p− vi is not adjacent to both p and vi an option could be to move p− vi to the stack S

for further consideration later.

3.4. COMPUTATION OF THE SET P(L) 51

We consider the GaussSieve algorithm 3.1 equipped with the PrimeGaussReduce func-
tion (Algorithm 3.2). We denote by GaussSieve(L) a list of vectors L created by this al-
gorithm and possessing the property that L cannot be further modified by the algorithm.
In order to relate the sets GaussSieve(L) and P(L) we give the following definition.

Definition 3.48. Let L be a full rank lattice in Rn. Given a P(L) ⊆ Irr(L) we define P+(L)
and P−(L) to be a partition of P(L) according to sign.

In other words, we take for P+(L) some subset of P(L) such that of each pair ±v ∈
P+(L) exactly one is in P+(L). Of course, there are many choices for P+(L) and P−(L),
any one will do.

Even though the output of GaussSieve converges to a set which is maximal in L under
the property min{‖v1 ± v2‖} > max{‖v1‖, ‖v2‖}, the same is not true in general for
the set P+(L) as shown by experiments (Table 3.1). In particular, we can conclude by
Lemma 3.45 that if we allow this modified version of the GaussSieve to run long enough
i.e. it samples “enough” vectors, then the output will converge to a set GaussSieve(L),
which will contain a P+(L).

Hence we cannot claim that the output of GaussSieve converges to a set P+(L) but
only to a superset of it. The fact that a P+(L) is not maximal in L under the property
min{‖v1 ± v2‖} > max{‖v1‖, ‖v2‖} implies the existence of vectors which are not irre-
ducible but they also cannot be reduced by any of the vectors in P(L).

The definition of the set P2(L) will help us in bounding the output of the GaussSieve
algorithm. Also, the definition of the sets Pk(L) for k > 2 will help us in bounding the
output of modified versions of “higher” sieving algorithms like the Triple and Quadruple
MinkowskiSieve, described in [BLS16].

Definition 3.49. Let L be a full rank lattice in Rn. Given a P(L) ⊆ Irr(L) we define

P2(L) := {v ∈ L | >p ∈ P(L)with ‖p‖ < ‖v‖ and ‖v− p‖ < ‖v‖}.

A first remark on this definition is that as P(L) ⊆ L also P(L) ⊆ P2(L). The output
of the (modified) GaussSieve converges to a set GaussSieve(L) including a set P+(L).
Therefore, every v ∈ GaussSieve(L) cannot be reduced by any p ∈ P+(L) and as
GaussSieve(L) ⊆ L we can conclude that GaussSieve(L) can be bounded as follows:

P+(L) ⊆ GaussSieve(L) ⊆ P2(L) (3.11)

Under this set inequality GaussSieve(L) can be viewed in the following way. A set
GaussSieve(L) can be considered as the closure of a P+(L) in P2(L) under the property of
Gauss-reduction. In more detail GaussSieve(L) can be viewed as the minimal (according
to included vector norms) subset of a P2(L) including P+(L) and being a maximal subset
of P2(L) with the property of Gauss-reduction (i.e. min{‖v1 ± v2‖} > max{‖v1‖, ‖v2‖}).

Remark 3.50. It is unclear if the set P2(L) is a finite or an infinite set. Although we would
like to point out one remark that we made in the case that P2(L) was infinite. If the set
P2(L) contained arbitrarily long lattice vectors, then these vectors would get arbitrarily close
to being orthogonal to the entire set P(L).

52 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

Definition 3.51. Let L be a full rank lattice in Rn and k ∈ N with k > 2. Given a
P(L) ⊆ Irr(L) we define

Pk+1(L) := {v ∈ Pk(L) | >p ∈ P(k)(L)with ‖p‖ < ‖v‖ and ‖v− p‖ < ‖v‖}

where P(k)(L) is defined as

bk/2c⋃
i=1

{
v1 + v2 | v1 ∈ P(i)(L), v2 ∈ P(k−i)(L) and ‖vj‖ < ‖v1 + v2‖,

‖vl‖ 6 ‖v1 + v2‖where (j, l) ∈ (1, 2), (2, 1)
}

and P(1)(L) := P(L).

Lemma 3.52. Let L be a full rank lattice in Rn and P(L) be a subset of Irr(L). Then for
the sequence Pk(L) given in definition 3.51 it holds that

(i) Pk+1(L) ⊆ Pk(L) for every k > 2.
(ii) limk→∞ Pk(L) = Irr(L).

So, in one line:

P2(L) ⊇ . . . ⊇ Pk(L) ⊇ Pk+1(L) ⊇ . . . ⊇ Irr(L).

Proof. First of all, as we chose a random but fixed P(L) ⊆ Irr(L) the sets Pk(L) are
well-defined. Part (i) of the lemma is an immediate consequence of the Pk(L) defini-
tion. Initially we show that Irr(L) ⊆ Pk(L) for every k > 2. This follows directly by
the definition of Pk(L) and the fact that P(k)(L) ⊆ L. By the (recursive) definition of
Pk(L) it follows that it includes all vectors v ∈ L such that they can not be reduced
by any shorter vector in ∪k−1

i=1 P(i)(L). Thus for part (iii) of the lemma it suffices to
show that limk→∞ ∪ki=1 P(i)(L) = L. As P(i)(L) ⊆ L for every i > 1 it follows that
limk→∞ ∪ki=1 P(i)(L) ⊆ L. It is only left proving the converse inequality. Let v ∈ L, it
suffices to show that ∃k > 1 such that v ∈ P(k)(L).

A vector v ∈ L can be repeatedly reduced as in the proof of Proposition 3.22 until
it is written as a sum v =

∑l
i=1 pi of shorter vectors pi ∈ Irr(L) for some l > 1. This

decomposition satisfies the recursive condition implied by the definition of the P(k)(L).
If all the vectors pi ∈ Irr(L) actually belong to P(L) then v ∈ P(l)(L) and we are
done. If there exists some pi ∈ Irr(L) \ P(L) then pi = p̃i + p ′i where p̃i ∈ P(L)
and ‖p ′i‖ < ‖pi‖, ‖pi‖ = ‖p̃i‖ by the definition of P(L). Thus, p ′i can be further get
decomposed into shorter vectors (like v) and as ‖p ′i‖ < ‖pi‖ progress was made which
implies that this decomposition will finish after finitely many steps as there is a finite
number of lattice points in B(0, ‖v‖). Therefore v can be repeatedly reduced until it is
written as a sum of vectors in P(L), concluding the proof.

We are now going to describe the “higher” sieving algorithms which we will con-
sider. We have already mentioned the Triple and the Quadruple MinkowskiSieve de-
scribed in [BLS16]. The difference between the GaussSieve algorithm and these higher
ones lies in the reduction function. Hence, if we equip Algorithm 3.1 with function
PrimeMinkowskiReduce (Algorithm 3.3), we get the modified MinkowskiSieve which we
are interested in.

3.4. COMPUTATION OF THE SET P(L) 53

Algorithm 3.3 The modified MinkowskiReduce function

1: function PRIMEMINKOWSKIREDUCE(p,L,S,k)
2: loop = true
3: while loop do
4: loop = false
5: if k > 2 then
6: PRIMEMINKOWSKIREDUCE(p,L,S,k− 1)
7: end if
8: for all {v1, . . . , vk−1} ⊂ L s.t. ‖vi‖ 6 ‖p‖ do

9: for all w ∈
{∑k−1

i=1 (−1)aivi | ai ∈ {0, 1}
}

do

10: if ‖w‖ 6 ‖p‖ and ‖p−w‖ < ‖p‖ then
11: p← p−w
12: loop = true
13: goto next
14: end if
15: end for
16: end for
17: next:
18: end while
19: for all {v1, . . . , vk−1} ⊂ L with ‖vi‖ 6 ‖vi+1‖ and s.t. ‖vk−1‖ > ‖p‖ do

20: for all w ∈
{
(−1)a0p+

∑k−2
i=1 (−1)aivi | ai ∈ {0, 1}

}
do

21: if ‖w‖ < ‖vk−1‖ and ‖vk−1 −w‖ < ‖vk−1‖ then
22: L← L \ {vk−1}

23: S.push(vk−1 −w)
24: end if
25: end for
26: end for
27: return p
28: end function

The modification compared to the description in [BLS16] appears in lines 10 and 21
of Algorithm 3.3, where the extra conditions ‖w‖ 6 ‖p‖ and ‖w‖ < ‖vk−1‖ respectively
are added. By adding these conditions it is guaranteed to get an output list which will
satisfy properties (i) and (ii) like in Lemma 3.45 for the GaussSieve. Hence, based on
these properties it can be concluded that the output list of vectors will again contain a set
P+(L). In order to ease our exposition we set the following notation.

Let k ∈ Nwith k > 2. We consider the k-MinkowskiSieve algorithm equipped with the
function PrimeMinkowskiReduce (Algorithm 3.3). We denote by MinkowskiSievek(L) a
list of vectors L created by this algorithm and possessing the property that L cannot be
further modified by the algorithm. Note that for k = 2 one has MinkowskiSieve2(L) =
GaussSieve(L).

Remark 3.53. The output of the modified k-MinkowskiSieve algorithm will not be a list of
vectors which will be k-Minkowski-reduced if k > 2 (for the Minkowski-reduced definition
see [NS09]). If this was desired, then the lines 10 and 21 of Algorithm 3.3 should be modified

54 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

in order to allow reductions by longer vectors as well. For a k-Minkowski-reduced list with
k > 4 lines 9,10 and 20,21 of Algorithm 3.3 should also allow for the coefficients of the
vectors vi, p and vk−1 to take more values than ±1 (see for example [NS09, Theorem
2.2.2]).

The “higher” sieving algorithms which we considered by making the generalisation
from the GaussSieve towards the MinkowskiSieve will contribute towards an asymptotic
computational argument. But first we state a heuristic assumption which we will use.

Assumption 3.54. Consider the k-MinkowskiSieve algorithm equipped with the function
PrimeMinkowskiReduce (Algorithm 3.3). Then the output of this algorithm will converge to
a set MinkowskiSievek(L).

Remark 3.55. Heuristic assumption 3.54 actually claims that the k-MinkowskiSieve does
not diverge or enter an infinite loop. The experimental results in section 3.4.3 (see Figure 3.3)
indicate that for k ∈ {2, 3, 4} this seems to be a valid assumption. However, this is the only
argument we have in favour of this assumption. We leave the investigation for concrete
arguments supporting this heuristic assumption as an open problem for future research.

Theorem 3.56. Let L be a full rank lattice in Rn. We consider the k-MinkowskiSieve algo-
rithm equipped with the function PrimeMinkowskiReduce. Under Heuristic Assumption 3.54,
as k increases the set MinkowskiSievek(L) converges to a set P+(L).

Proof. In order to simplify the proof and avoid ambiguities we make the following con-
vention. Both sets P+(L) and MinkowskiSievek(L) are defined/constructed in such a
way that for a vector v only one of ±v belongs to the set. This allows many possible
choices for these sets. In order to avoid this kind of ambiguities we make the convention
that a vector v is included in the aforementioned sets only if its first non-zero coordinate
is positive.

Initially we will prove that for every k > 2 there exists a set P+(L) and a set Pk(L)
such that

P+(L) ⊆ MinkowskiSievek(L) ⊆ Pk(L). (3.12)

Let k > 2 and MinkowskiSievek(L) be the converging set of an execution of the k-
MinkowskiSieve. As mentioned before, we can transfer Lemma 3.45 from the case of
GaussSieve to the k-MinkowskiSieve algorithm described in this section. This implies
that for every MinkowskiSievek(L) there will exist a set P+(L) such that
P+(L) ⊆ MinkowskiSievek(L). We fix this set P+(L).

Let v ∈ MinkowskiSievek(L) and p1, . . . ,pk−1 ∈ P+(L) with ‖pi‖ < ‖v‖. As the
set MinkowskiSievek(L) is k-reduced according to the notion implied by Algorithm 3.3
we can conclude that v cannot be reduced by any vector of the form

∑l
i=1 (−1)aipi for

1 6 l 6 k−1. As the vectors p1, . . . ,pk−1 belong to the set MinkowskiSievek(L) as well,
they are k− 1-reduced. This in turn implies that the vectors of the form

∑l
i=1 (−1)aipi

belong to the set P(l)(L) for 1 6 l 6 k−1. This holds for any tuple of l vectors in P+(L).
Hence, the set of vectors emerging from the union of all {

∑l
i=1 (−1)aipi} will be exactly

P(l)(L). This implies that v cannot be reduced by any vector in ∪k−1
i=1 P(i)(L). This is

equivalent to the condition a vector v has to satisfy according to definition 3.51 in order
to belong to Pk(L). Thus we can conclude that MinkowskiSievek(L) is included in the

3.4. COMPUTATION OF THE SET P(L) 55

Pk(L) implied by the set P(L) = P+(L)∪ (− P+(L)). This concludes the first part of the
proof.

For the second part of the proof we distinguish between the cases of Irr(L) = P(L)
and Irr(L) 6= P(L).
If it holds that Irr(L) = P(L) then apart from P(L) being uniquely determined the
same holds for the sets Pk(L). Hence, for every k > 2 the boundary sets in (3.12)
are uniquely determined. This enables a direct use of Lemma 3.52. As k increases the
set MinkowskiSievek(L) will be contained in even smaller and smaller sets Pk(L) which
converge to Irr(L) according to (i) and (iii) of Lemma 3.52. Therefore for the limit case
it could be stated that

P+(L) ⊆ lim
k→∞MinkowskiSievek(L) ⊆ Irr(L). (3.13)

But we assumed Irr(L) = P(L) and thus we can conclude that

lim
k→∞MinkowskiSievek(L) = P+(L).

In order to finish the proof we have to deal with the case Irr(L) 6= P(L). In this
case, the sets P+(L) and Pk(L) used in inequality (3.12) are not uniquely determined
and therefore Lemma 3.52 cannot be used directly. In Lemma 3.52 it was shown that
given the sequence of Pk(L) implied by any P(L) then limk→∞ Pk(L) = Irr(L). Hence
any Pk(L) belongs to a sequence converging to the same limit, Irr(L). Interchanging
terms (Pk(L)) among these sequences does not affect their limit. Therefore, we can
again use inequality (3.12) and take limits leading to a result like (3.13). We have to
be careful though. The right hand-side limit (i.e. Irr(L)) is well-defined but the left
one can cycle over all choices of P+(L). This is expected as the limit of the sequence
MinkowskiSievek(L) as k → ∞ is not unique but depends on the choice of representa-
tives made for each non-trivial class of vectors. For convenience we assume that ∀k > k0

for some k0 this choice stabilises to some random but fixed choice. Thus, we have again
reached inequality (3.13).

We examine the sets in inequality (3.13) according to the Gauss-reduced property.
Let k > 2, the set MinkowskiSievek(L) is a set to which the output of the algorithm
converges to and also possesses the Gauss-reduced property by construction. This holds
for every k > 2 and thus transfers to the limit as well, as k→∞. The set P+(L) is not a
maximal subset of L satisfying the Gauss-reduced property but due to its construction it
is maximal in the set Irr(L). Hence, inequality (3.13) and maximality of P+(L) in Irr(L)
imply the result.

The conclusion in Theorem 3.56 is supported by the experimental results given in
Table 3.1.

Remark 3.57. Theorem 3.56 describes asymptotic behaviour of the modified MinkowskiSieve
algorithm with the goal of providing a faster way of computing sets P+(L). Even though,
asymptotically, the algorithm possesses the desired behaviour, this does not make it immedi-
ately a computational tool for P+(L). There are two obstacles towards that goal. The first
one is, given a lattice L in dimension n, to find for which k > 2 to run k-MinkowskiSieve.
This k should not be too high in order to be computationally efficient to run the algorithm.
The second problem is finding for how long this k-MinkowskiSieve should run in order to
approximate well enough a set MinkowskiSievek(L).

56 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

3.4.3 – Experimental results. In this section we provide some experimental results
which support our claims in the previous subsections. In particular, as a first step we
computed the sets R(L), Irr(L), P(L) for 10 lattices in dimension 20 and afterwards we
computed the output of the GaussSieve, the Triple and the Quadruple MinkowskiSieve.
In order to generate 10 lattices in dimension 20 we used the Sage computer algebra
system [TSD19]. In particular we used Sage’s “Hard lattice generator” with the following
choice of parameters,

sage.crypto.gen_lattice(type=’random’, n=1, m=20, q=10ˆ42, seed=seed)

and 10 different values of seed. Initially, using the OpenMP parallel implementation build
for the projects [FCMP19,CMF19] we computed the set of relevant vectors R(L) for each
lattice. On top of this code (which the authors were so kind to provide us) we imple-
mented the method described in Section 3.4.1 and computed the set Irr(L). As for our
experiments the lattices used were generated randomly, they did not possess any specific
structure and hence P(L) = Irr(L) for all of them. This part of the experiments was
performed on a node of the Lisa cluster [SUR19] with a 16-core CPU (2.10GHz) and
96 GB of RAM. The computation of the sets R(L) and Irr(L) using the aforementioned
implementation and hardware took about 5.5 seconds per lattice.

Finally, by modifying the already existing sieve implementations in FPLLL [The19a]
we computed the output of the GaussSieve, Triple and Quadruple MinkowskiSieve as
described in Section 3.4.2 for the same 10 lattices. The modifications which we made to
the already existing FPLLL implementations were:

• A vector is allowed to be reduced only by a shorter vector.
• The termination condition is changed to a fixed number of collisions: 5 ·105 for the

GaussSieve and 105 for the Triple and Quadruple MinkowskiSieve. These numbers
were chosen to ensure the created list by the algorithm remains unchanged for
“many” iterations before the algorithm terminates. These choices seem to not be
optimal according to our experimental data and could possibly be further reduced.

This part of the experiments was performed on a Lenovo X250 laptop with 4 Intel
Core i3-5010U CPU (2.10GHz) and 8 GB of RAM. The output of these experiments is
summarised in Table 3.1.

Table 3.1 motivates a number of remarks about the involved sets. Initially, the number
of relevant vectors observed was indeed close to the expected number 2 · (220 − 1). Also,
the sets Irr(L) and P(L) were equal in all 10 cases, as we had assumed for random lattices
without any underlying structure. The size of P(L) (and Irr(L) in this case) was observed
to be some orders of magnitude smaller than the size of R(L) making it more appealing
to use in practice.

The right part of Table 3.1 justifies our idea to try and correlate the output of sieving
algorithms with the set of irreducible vectors. Even though we cannot display here the
lists of vectors which we computed but rather only their sizes, we observed the follow-
ing behaviour. The list of vectors output by the GaussSieve contained the set P(L) in 8
out of the 10 cases and in the other two of them there was only 1 vector missing. This
supports our claim the output of GaussSieve converges to a superset of P(L). Also, as we
moved to “higher” sieving algorithms like our modified version of the Triple and Quadru-
ple MinkowskiSieve the output of the sieving algorithms approximated even closer the
set P(L). Actually, it is not a coincidence that the numbers in the columns “4-red” and

3.4. COMPUTATION OF THE SET P(L) 57

Table 3.1: The following tables describe the sizes of the lists involved in our experiments with 10
random lattices in dimension 20. The first columns indicate the seed used for the generation of
the lattice. The table on the left gives the sizes of the corresponding sets R(L), Irr(L) and P(L) for
each lattice. The factor 2 is due to the sign symmetry. The table on the right shows the sizes of the
lists generated by the modified GaussSieve, Triple and Quadruple MinkowskiSieve.

Seed |R(L)| | Irr(L)|, | P(L)|

314 2 · 1048361 2 · 66
417 2 · 1048388 2 · 70
849 2 · 1048389 2 · 68
422 2 · 1048349 2 · 67
168 2 · 1048371 2 · 60
84 2 · 1048363 2 · 64

105 2 · 1048375 2 · 62
273 2 · 1048360 2 · 60
390 2 · 1048376 2 · 66
656 2 · 1048372 2 · 71

Seed 2-red 3-red 4-red

314 86 77 66
417 95 80 70
849 98 85 68
422 93 74 67
168 88 69 60
84 92 75 64

105 88 74 62
273 83 68 60
390 89 76 66
656 95 79 71

20 21 22 23 24 25 26
50

100

150

200

→ Dimension

→
Li

st
si

ze
(v

ec
to

rs
)

2-red
3-red
4-red
P(L)

(a) List sizes for dimensions 20–26.

20 30 40 50 60
101

102

103

104

→ Dimension

→
Li

st
si

ze
(v

ec
to

rs
)

2-red
3-red
0.21n

(b) List sizes for dimensions 20–65.

Figure 3.3: Experimental results on the scaling of size of P(L) according to the dimension of L. Each point in
the graphs corresponds to the average value taken amongst 10 lattices. The labels k-red are used to indicate
the modified sieve algorithms described in this chapter and not the ones in the literature [MV10b,BLS16].

“| Irr(L)|, | P(L)|” in Table 3.1 differ only by a factor of 2. The output of the Quadruple
MinkowskiSieve in all 10 cases gave exactly a set P+(L) as for every vector v it stores
only one of ±v.

Another question which could be investigated experimentally is how the expected size
of P(L) behaves as the dimension of L increases. In order to develop an intuition about
this behaviour we performed a number of experiments in dimensions 20–65, the results
of which are shown in Figure 3.3. Like in our experiments in dimension 20 we used
the modified OpenMP parallel implementation from [FCMP19,CMF19] and the modified

58 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

sieve implementations in FPLLL [The19a]. For each dimension we depict the average
value amongst 10 lattices. However, as in this case we dealt with higher dimensions we
reduced the number of collisions in the termination condition of the sieve algorithms to

• GaussSieve: 10,000 collisions
• Triple MinkowskiSieve: 2,500 collisions
• Quadruple MinkowskiSieve: 2,000 collisions.

Therefore the results in Figure 3.3 related to sieving algorithms should only be inter-
preted as approximations of the algorithm’s converging set size. As we will discuss later,
estimating the accuracy of this approximation is left for future research. Figure 3.3a il-
lustrates the result of our experiments in dimensions 20-26. We believe that for these
“smaller” dimensions the approximations are “more” accurate and that is why we show
them separately. Another reason is that running the OpenMP Voronoi implementation
beyond these dimensions has a substantial memory requirement (tens of GB).

Computing a least squares fit for the points in the blue curve (which indicates the cor-
rect expected values for | P(L)| under assumption 3.43) gives the formula 20.237n+1.286

which closely matches the heuristic expectation for the size of P(L), namely 20.21n. Fur-
thermore Figure 3.3a reveals that the GaussSieve gives only a superset of P(L) even for
small dimensions. The Triple and Quadruple MinkowskiSieve are much closer to the
blue curve. The difference between the Triple and Quadruple MinkowskiSieve is that
the one lies above the blue curve and the other below it. As we already observed in Ta-
ble 3.1 the Triple MinkowskiSieve will probably remain above it. However the Quadru-
ple MinkowskiSieve possess the potential to reach the “correct” curve asymptotically. Of
course this could also be far from the truth for higher dimensions.

In order to put these curves more into perspective we created Figure 3.3b which shows
the average output sizes of the GaussSieve and Triple MinkowskiSieve for dimensions 20–
65. We did not draw the curve of the Quadruple MinkowskiSieve as it also turns out to
be quite time costly for dimensions higher than 30. At this point we must emphasise that
the used modified sieving algorithms take more time in order to terminate due to the
modifications which aim not in solving SVP but computing close approximations of P(L).
For instance the modified Triple MinkowskiSieve in dimension 65 took on average 3 days
in order to terminate for each lattice. However this is only the average observed time.
Actually one of the ten lattices used proved to be an “easier case”, terminating in under
2 hours.

Even though these results provide some intuition on what kind of relation could be
expected between the set of irreducible vectors and sieving algorithms, they also imply
some questions.

A first question which would be interesting is examining the termination condition
for the sieving algorithm. In our experiments we made a specific choice on the number of
collisions but this was done by trial and error and could be possibly improved. In other
words, we ask for a termination condition, which if it is satisfied by a sieving algorithm
(as used in this section) it guarantees that the algorithm has reached a list of vectors
which cannot be further modified by the algorithm.

A second question that arises is up to what level of sieving we should get in order
to either get exactly a set P(L) or a “very good” approximation of it. In this case the
Quadruple MinkowskiSieve was enough, but this might not be the case for higher dimen-
sional lattices. Thus it would be interesting to know how this index increases relative to

3.5. APPLICATIONS OF P(L) 59

the dimension. So, given some termination condition, how close can a sieving algorithm
approximate a set P(L)?

If these questions receive an answer it will help in making sieving algorithms a way
to either compute exactly or approximately a set P(L) of a lattice L. This would be very
interesting as it will provide a way to compute a set P(L) (exactly or approximately)
without having to compute the set R(L) which is a very costly computation.

3.5 — Applications of P(L)

Even though the sets Irr(L) and P(L) might be of interest in their own, examining
their relation to already existing lattice problems and algorithms is a natural question
that arises. We choose to focus on the set P(L) as it seems to be the easier to com-
pute/approximate with existing lattice algorithms.

3.5.1 – P(L) in the study of shortest vector(s) problems. The results in Section 3.3
provide some interesting conclusions about the relation of the set P(L) to well known
lattice problems. A first observation in Section 3.3.2 was that S1(L) is included in P(L).
This leads to the following result.

Proposition 3.58. Let L be a full rank lattice in Rn. Computing a set P(L) provides a
solution to the SVP and the kissing number problem.

The relation S1(L) ⊆ P(L), implies that two classic lattice problems can be solved
given a P(L). Of course this holds for any superset of P(L) as well. We combine this
observation with the inclusion P+(L) ⊆ MinkowskiSievek(L) for k > 2 shown in the
proof of Theorem 3.56. This provides some extra (heuristic) evidence that some sieving
algorithms will indeed output a solution to SVP or the kissing number problem if they
run long enough. This is no surprise as sieving algorithms were devised for solving SVP.

Examining the relation of SIVP to the set P(L) is probably a more interesting question.
By Corollary 3.21 we know that for every i = 1, . . . ,n there exists a vector v ∈ Irr(L)
such that ‖v‖ = λi(L). The following proposition completes this result.

Proposition 3.59. Let L be a full rank lattice in Rn. Computing a set P(L) provides a
solution to the SIVP.

Proof. Let v1, . . . , vn be a set of linearly independent vectors in L such that ‖vi‖ = λi(L)
for i = 1, . . . ,n. We distinguish two cases.
Case 1: >i > 2 such that λ1(L) 6 λi−1(L) < λi(L) = λi+1(L). This implies that there
exists a k > 1 such that

λ1(L) = · · · = λk(L) < λk+1(L) < · · · < λn(L).

Then by S1(L) ⊆ P(L) it follows that v1, . . . , vk belong to P(L). In addition, by Corol-
lary 3.21 and the definition of P(L) it follows that all the vk+1, . . . , vn will be included
in P(L).
Case 2: ∃i > 2 such that λ1(L) 6 λi−1(L) < λi(L) = λi+1(L). Let i > 2 such that the
condition holds. We set k = max{j > i |λi(L) = λj(L)}. Hence,

λ1(L) 6 λi−1(L) < λi(L) = λi+1(L) = · · · = λk(L).

60 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

We will show that vi, . . . , vk ∈ P(L). Let j ∈ {i, . . . , k} we set Lλj to be the sublattice
of L spanned by all the vectors in L strictly shorter than λj. As λi(L) = λj(L) it follows
that Lλj = Lλi which has rank i − 1. Assume that vj ∈ Lλj . Then we would get
that the set {v1, . . . , vi−1, vj} is a set of linearly dependent vectors. Contradiction. Thus
vj 6∈ Lλj and by Proposition 3.19 we get that vj ∈ Irr(L). This holds for any i 6 j 6 k
and therefore we get that all vj with i 6 j 6 k belong to Irr(L). In order to show
that they also do belong to a P(L) it suffices to show that for every µ,ν such that i 6
µ < ν 6 k it holds that ‖vν − vµ‖ > λi(L). Assume that there exist µ,ν such that
i 6 µ < ν 6 k and ‖vν − vµ‖ < λi(L). Then it follows that vν − vµ ∈ Lλi . The set
of vectors {v1, . . . , vi−1, vµ, vν} is a linearly independent set and thus the same holds for
{v1, . . . , vi−1, vν − vµ}. This implies a set of i linearly independent vectors in the lattice
Lλi which is of rank i− 1, contradiction.
Concluding, let vl belong to the considered linearly independent set of vectors achieving
the successive minima. If ‖vl‖ = ‖vl+1‖ or ‖vl‖ = ‖vl−1‖ then vl ∈ P(L) by the proof
in “case 2”. If ‖vl−1‖ < ‖vl‖ < ‖vl+1‖ then vl ∈ P(L) by the same argument used in
“case 1”.

Remark 3.60. Obtaining a set of the shortest vector(s), given a set P(L), amounts to scan-
ning the entire set P(L) a number of times. Thus, sorting P(L) can be avoided.

3.5.2 – Using P(L) in CVPP algorithms. One main problem in lattice theory is the
closest vector problem. A straightforward way of using the set R(L) in order to solve
CVPP was described in [SFS09]. In that work, an algorithm called the iterative slicer is
given which takes as input the set R(L) and a target vector t and outputs a closest lattice
vector to t (Algorithm 3.4). The main idea behind this algorithm is to iteratively reduce
the target vector t by the relevant vectors until the resulting vector t ′ is contained in the
Voronoi cell V(L) of the lattice. Once this condition is satisfied it is known that t − t ′ is
a closest lattice point to t. This algorithm is shown to terminate after a finite number of
iterations.

Algorithm 3.4 The iterative slicer [SFS09]

Require: The set R(L) and a target vector t.
Ensure: A vector s ∈ L closest to t.

1: t ′ ← t
2: for every r ∈ R(L) do
3: if ‖t ′ − r‖ < ‖t ′‖ then
4: t ′ ← t ′ − r
5: restart the for loop
6: end if
7: end for
8: s = t− t ′

9: return s

Inspired by the iterative slicer, in [MV10a] an algorithm is described to provably solve
the CVPP in Õ(22n)–time by using the set R(L) as the preprocessing data. The difference
between Algorithm 3.4 and the algorithm in [MV10a] is that the latter selects the relevant
vectors in a specific order for reduction. This results in a Õ(22n)–time and Õ(2n)–space

3.5. APPLICATIONS OF P(L) 61

Algorithm 3.5 The tuple slicer

Require: A set P(L), a C ∈ N and a target vector t.
Ensure: A vector s ∈ L closest to t.

1: t ′ ← t
2: for l = 1 to C do
3: for all {v1, . . . , vl} ⊂ P(L) do
4: w←

∑l
i=1 vi

5: if ‖t ′ −w‖ < ‖t ′‖ then
6: t ′ ← t ′ −w
7: restart the outer for loop
8: end if
9: end for

10: end for
11: s = t− t ′

12: return s

algorithm. This work was further improved in [BD15] by optimising the use of the pre-
processing data.

However, using the set R(L) in practice is not convenient due to its expected size of
about 2n+1 −2 vectors. One way to reduce the memory requirements could be the use of
a compact representation of R(L) like the one described in [HRS19]. In such a scenario
a superset of R(L) would be generated on the fly by a CVPP algorithm which would only
use a smaller set of vectors in order to generate R(L).

Another way would be to use a subset of R(L) instead of the entire set. Such an
approach was introduced in [Laa16b]. In that work an approximate Voronoi cell is defined
as the cell implied by a list of short lattice vectors which is potentially a subset of the set
R(L). That lead to a heuristic algorithm for CVPP using the approach of Micciancio–
Voulgaris but with more practical time and space complexities.

We describe a CVPP algorithm (the tuple slicer, Algorithm 3.5) using the set P(L),
and we discuss its advantages and disadvantages against already existing approaches.
We distinguish two cases.

If C = 1 in Algorithm 3.5 then it just uses a subset of R(L). In this case the analysis
of the algorithm just follows under the “approximate Voronoi cell” approach where a
specific choice has been made on the used subset. The advantage in this case is that it is
guaranteed that the used list of vectors is a subset of R(L).

If C > 1 Algorithm 3.5 behaves similar to the tuple sieving approach in [BLS16].
A vector is reduced not only by a single vector but also by the sums of small tuples of
vectors in the used list. Hence, a target vector t is reduced by a superset of P(L). If this
superset includes the set R(L) then [SFS09, Lemma 5] guarantees the correctness of the
algorithm. This depends on the value of C. We can prove that there always exists a value
of C which guarantees the inclusion of R(L) in the generated superset.

Remark 3.61. In line 3 of Algorithm 3.5 it considers sets of vectors {v1, . . . , vl} such that
vi 6= −vj but it could be that vi = vj.

62 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

20 21 22 23 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C = 1

C = 2

C = 3

→ Dimension

→
Su

cc
es

s
pr

ob
ab

ili
ty

Figure 3.4: Preliminary experimental results on the success probability of Algorithm 3.5. The algorithm was
tested on lattices of dimensions 20, 21, 22, 23, 24. For each dimension the algorithm was tested with input
C = 1, 2, 3 against 10000 CVP instances. Each of the 10000 CVP blocks was formed by 10 smaller blocks of
1000 CVPs corresponding to 10 lattices. Each point in the graph corresponds to the ratio of correct answers out
of the 10000 CVP instances.

Definition 3.62. Let L be a full rank lattice in Rn and k a positive integer. We define

k P(L) =
{ j∑
i=1

pi | pi ∈ P(L) and j ∈ {1, . . . , k
}
}.

Proposition 3.63. Let L be a full rank lattice in Rn and P(L) a complete system of irre-
ducible vectors of it. Then there exists a positive integer n0 ∈ N such that R(L) ⊆ n0 P(L).

Proof. By Proposition 3.37 there exists a generating set G ⊆ P(L) with |G| = l > n.
Let r ∈ R(L), then there exists an x ∈ Zl such that Gx = r. With x = (x1, . . . , xl) set
mr = ‖x‖1 =

∑l
i=1 |xi|. Then r ∈ mr P(L). Set m = maxr∈R(L){mr}. As R(L) is finite

then m is finite and ∀r ∈ R(L) it holds r ∈ m P(L).

The used superset is computed on the fly. This allows for a time–memory trade-off.
The algorithm loses on time complexity as it examines a larger list of vectors but it gains
on the memory requirement as it stores a provably smaller subset of R(L). In more detail
the space complexity of the algorithm is proportional to | P(L)| which can be bounded by
O(τn). The time complexity will depend on the size of P(L) but also on the parameter C.
Following the analysis of [MV10a]we can argue that the time complexity of Algorithm 3.5
will be O(| P(L)|C · 2n poly(n)).

Remark 3.64. From Theorem 3.68 it follows that if Algorithm 3.5 was to be applied to the
lattice family A∗n, it should consider a value of C as high as (n + 1)/2 in order for R(A∗n)
to be included in the used superset. Therefore, a provable upper bound on C alone will not
lead to any good bound for the time complexity of Algorithm 3.5 in a provable setting.

3.6. CORNER CASES AMONG S1(L) , Irr(L) AND R(L) 63

Considering Algorithm 3.5 in a heuristic setting seems to be a more appealing choice.
In such a scenario the requirements of the algorithm can be relaxed in mainly two di-
rections. The first one is using an approximation (a superset) of P(L) instead of the set
itself. Hence, the output of the MinkowskiSieve as described in Section 3.4.2 could serve
as such a choice. Furthermore, choosing a specific approximation of P(L) can allow fixing
the value of the parameter C in the following way.

By a heuristic result of [Laa16b] we know that if a list L containing 2n/2+o(n) lattice
vectors of norm less than

√
2λ1(L) is used as input to the iterative slicer then the suc-

cess probability of the algorithm is close to 1. Following this guideline, a value for the
parameter C can be chosen in a way that guarantees that the set of all vectors used for
reduction in Algorithm 3.5 contains a list of 2n/2+o(n) shortest lattice vectors.

Further options can be examined if it is allowed for the used slicing algorithm to
succeed with probability much smaller than 1. In such a case the results in [DLdW19,
DLvW20] provide a way of relating the success probability to size of the used preprocessed
list and hence in our case C.

We briefly experimented on the relation of the success probability of Algorithm 3.5
and the parameter C. The results can be found in Figure 3.4. From these results we get
a first indication that the success probability of Algorithm 3.5 increases as the value of
C increases. Unfortunately, extending these experiments to moderate dimensions was
infeasible, as the exact computation of P(L) would require hundreds or thousands of GB
of RAM (using a “brute force” approach). Therefore, obtaining a specific guideline on
how to choose a value for C remains an open question.

3.6 — Corner cases among S1(L) , Irr(L) and R(L)

In Section 3.3.1 we posed two questions regarding the set Irr(L): if and when the
corner cases S1(L) & Irr(L) = R(L) and S1(L) = Irr(L) & R(L) are possible. In this
section we will give a partial answer to these questions by examining some already known
families of special lattices, the duals of the root lattices Dn and An (see [CS98, Chapter
4]).

For n ∈ N with n > 5 we write3 Ln = 2D∗n. Then a basis of Ln is the following
(see [CS98, p. 120])

Bn = {2ei | 1 6 i 6 n− 1} ∪ {1n} (3.14)

and 1n represents the all-1 vector.

Theorem 3.65. For every n ∈ N with n > 5

S1(Ln) = {±2ei | 1 6 i 6 n} and

Irr(Ln) = R(Ln) = {±2ei | 1 6 i 6 n} ∪ {±1}n.

Proof. By the definition of the lattice Ln it is clear that {±2ei | 1 6 i 6 n}∪{±1}n ⊂ Ln.
We will prove this theorem in three steps.
The first step is to show that S1(Ln) = {±2ei | 1 6 i 6 n}.
The second step will be to show that R(Ln) ⊆ {±2ei | 1 6 i 6 n} ∪ {±1}n.
Finally in the third step we will prove that {±2ei | 1 6 i 6 n} ∪ {±1}n ⊆ Irr(Ln). These

3We choose to work with a scaling ofD∗n as in this way we get a lattice in Zn, which is easier to work with.

64 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

three steps imply the result as Irr(Ln) ⊆ R(Ln).
The “defining property” of the lattice Ln, that if v = (v1, . . . , vn) ∈ Ln then vi ≡ vj
(mod 2) for all 1 6 i, j 6 n, will be used throughout the proof.
Step 1: Obtaining that S1(Ln) = {±2ei | 1 6 i 6 n} is trivial and is left as an exercise to
the reader.
Step 2: Let v 6∈ R(Ln) and v 6= 0. Then by Theorem 3.2 we know that there exists
a vector x ∈ Ln \ {0, v} such that 〈v, x〉 > ‖x‖2. We will prove that for every vector
v ∈ Ln \ ({±2ei | 1 6 i 6 n}∪ {±1}n∪ {0}) there exists a vector x ∈ Ln \ {0, v} such that
〈v, x〉 > ‖x‖2. This implies the desired property R(Ln) ⊆ {±2ei | 1 6 i 6 n} ∪ {±1}n.
Let v ∈ Ln \ ({±2ei | 1 6 i 6 n} ∪ {±1}n ∪ {0}), we distinguish two cases.
Case 1: Let v be such that v = (v1, . . . , vn) with vi ≡ 1 (mod 2) for all vi. We already
showed in step 1 of the proof that the shortest vectors with odd coordinates are the {±1}n.
As v does not belong to this set, |vi| > 1 for all vi, and there exists at least one vj such
that |vj| > 3. Consider the vector x = (sign(v1), . . . , sign(vn)). This is a valid lattice
vector as x ∈ {±1}n ⊂ Ln and x 6= v as v ∈ Ln \ ({±2ei | 1 6 i 6 n} ∪ {±1}n). We
check the inner product of v and x.

〈v, x〉 =
n∑
i=1

sign(vi)vi =
n∑
i=1

|vi| > n+ 2 > n = ‖x‖2

This proves that v 6∈ R(Ln).
Case 2: Let v be such that v = (v1, . . . , vn) with vi ≡ 0 (mod 2) for all vi. As v is a
non-zero vector then it has at least one non-zero coordinate, let it be vj. Also as vj is even
we can conclude that |vj| > 2. We consider the vector x = 2 sign(vj)ej. This is a valid
lattice vector as x ∈ {±2ei | 1 6 i 6 n} ⊂ Ln and x 6= v as v ∈ Ln \ ({±2ei | 1 6 i 6
n} ∪ {±1}n). We check the inner product of v and x.

〈v, x〉 =
n∑
i=1

xivi = 2 sign(vj)vj = 2|vj| > 4 = ‖x‖2

This proves that again v 6∈ R(Ln) concluding the proof of the second step.
Step 3: In this step we want to prove that {±2ei | 1 6 i 6 n} ∪ {±1}n ⊆ Irr(Ln).
In step 1 we already showed that S1(Ln) = {±2ei | 1 6 i 6 n} and we know that
S1(Ln) ⊆ Irr(Ln) hence, we only have to show that {±1}n ⊆ Irr(Ln). Assume that
v ∈ {±1}n and v 6∈ Irr(Ln). Thus there are two strictly shorter vectors v1 and v2 such
that v = v1 + v2. In step 1 of the proof we showed that the vectors in {±1}n are the
shortest ones among those with odd coordinates. Therefore as v1 and v2 are strictly
shorter than v then it must be that they have even coordinates. This implies that v can
be written as a sum of vectors with even coordinates. This is a contradiction, as a sum of
even numbers is never odd.

As a scaling of a lattice L has the same properties as L we get Theorem 3.27 already
mentioned in Section 3.3.1.

Theorem 3.66. Let n ∈ N with n > 5. Then for the lattice D∗n it holds that S1(D
∗
n) &

Irr(D∗n) = R(D∗n). Furthermore | Irr(D∗n)| = 2n + 2n.

3.6. CORNER CASES AMONG S1(L) , Irr(L) AND R(L) 65

This proves that S1(L) & Irr(L) = R(L) is possible for every dimension n > 5. In
order to complete this result from this point of view we give another three lattices, one
for each of the dimensions n = 2, 3, 4 that possess the same property.

For n = 2, 3, 4 we write L2 = L(B2),L3 = L(B3),L4 = L(B4) with B2, B3, B4 being

B2 =

(
3 1
0 1

)
B3 =

 3 0 1
0 3 1
0 0 1

 B4 =

1 0 0 1
0 3 0 1
0 0 3 1
0 0 0 1

 (3.15)

We leave it to the reader to verify our claim for these three lattices.
Our next goal is to derive a similar result for the case S1(L) = Irr(L) & R(L). In order
to do so we will use a scaling of the lattices A∗n.

For n ∈ N with n > 3, we write Mn = (n+ 1)A∗n. Then a basis of Mn is formed by
the columns of Bn (see [CS98, p. 115]), where

Bn =

−n 1 1 · 1
1 −n 1 · 1
1 1 −n · 1
...

...
...

...
...

1 1 1 · −n
1 1 1 · 1

(3.16)

is an (n+ 1)× n matrix.

Remark 3.67. By the given basis Bn for Mn we can immediately observe that if v =
(v1, v2, . . . , vn+1) ∈Mn then vi ≡ vj (mod n+ 1). Additionally

∑n+1
i=1 vi = 0.

For the next theorem we will adopt the notation (xn,ym) in order to denote all vectors
in Zn+m containing n coordinates equal to x andm coordinates equal to y in some order.

Theorem 3.68. For every n ∈ N with n > 3,

S1(Mn) = Irr(Mn) = {±(−n1, 1n)} and

R(Mn) =

{
±(αβ, (−β)α) | β = n+ 1 − α , 1 6 α 6

n+ 1
2

}
.

Proof. We set A = {±(αβ, (−β)α) | β = n+ 1 − α , 1 6 α 6 (n+ 1)/2}. Verifying that
A ⊆Mn is left as an exercise to the reader. We will prove this theorem in four steps. The
first step is to show that S1(Mn) = {±(−n1, 1n)}. The second step will be to show that
R(Mn) ⊆ A. The third step will be to show that Irr(Mn) ⊆ {±(−n1, 1n)} and finally in
the fourth step we will show that A ⊆ R(Mn).
Step 1: The vectors {±(−n1, 1n)} have squared length n2 +n and hence we get λ2

1(L) 6
n2 +n. This implies that a vector achieving λ1(L) cannot have a coordinate vj such that
|vj| > n + 1. Therefore a vector achieving λ1(L) belongs to A. The squared length of a
vector in A is βα2 + αβ2 = (n+ 1)αβ which minimizes for α = 1.
Step 2: Let v ∈ Mn \ (A ∪ {0}) and write it as v = (v1, . . . , vn+1). Then there will exist
at least one coordinate of v, let it be vj, such that |vj| > n + 1. This can be proved by a

66 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

contradiction argument. Assume that there was no coordinate in v such that |vj| > n+ 1
then it would hold that |vi| 6 n for all 1 6 i 6 n and by the fact that vi ≡ vj (mod n+1)
we can conclude that there would be at most two possible values for |vi|. But the set A
contains all such vectors of the lattice, hence that would imply v ∈ A, contradiction.
We set x to be the vector having sign(vj)n in the j-th position and − sign(vj) in all other
places. This is a valid lattice vector and x 6= v as v ∈Mn \A. We check the inner product
of v and x:

〈v, x〉 =
n+1∑
i=1

vixi = |vj|n− sign(vj)
n+1∑
i=1
i 6=j

vi = |vj|n+ |vj| > (n+ 1)2 > ‖x‖2.

This proves that v 6∈ R(Mn) concluding the proof of the second step.
Step 3: Let v ∈ Mn \ ({±(−n1, 1n)} ∪ {0}) and write it as v = (v1, . . . , vn+1). Then we
will show that v is reducible. By step 2 of the proof we know that R(Mn) ⊆ A and as
we know that Irr(Mn) ⊆ R(Mn) we can restrict our choice to v ∈ A \ {±(−n1, 1n)}. As
v ∈ A we can write v = ±(αβ, (−β)α) with β = n+1−α for some 1 < α 6 (n+ 1)/2.
By Lemma 3.24 it suffices to find a lattice vector x with ‖x‖ < ‖v‖ and such that 2〈v, x〉 >
‖x‖2. Let γ = max{|α|, |β|} and the j-th coordinate of v be such that |vj| = γ. Consider
x to be the vector with sign(vj)n in the j-th position and − sign(vj) in all other places.
This is a valid lattice vector and ‖x‖ < ‖v‖ as x ∈ S1(Mn) but v 6∈ S1(Mn). Then

2〈v, x〉 = 2
n+1∑
i=1

vixi = 2
(
|vj|n− sign(vj)

n+1∑
i=1
i 6=j

vi

)
= 2(γn+ γ)

= 2(n+ 1)γ > (n+ 1)2 > ‖x‖2

as γ > (n+ 1)/2. This proves that v 6∈ Irr(Mn) and therefore Irr(Mn) ⊆ {±(−n1, 1n)}.
Step 4: By [CS92, Theorem 3] and the fact that the vectors (−n1, 1n) form a strictly
obtuse superbasis of Mn (see [CS92]) it follows that A ⊆ R(Mn) and finally R(Mn) =
A.

This implies Theorem 3.28 already mentioned in Section 3.3.1.

Theorem 3.69. Let n ∈ N with n > 3. Then for the lattice A∗n it holds that S1(A
∗
n) =

Irr(A∗n) & R(A∗n). Furthermore | Irr(A∗n)| = 2(n+ 1).

This proves that S1(L) = Irr(L) & R(L) is possible for every dimension n > 3. In
order to complete the result from this point of view we give another lattice in dimension
n = 2 that possess the same property: M2 = L(B2), where

B2 =

(
4 1
1 4

)
(3.17)

We leave it to the reader to verify this.

3.7. SOME GRAPH THEORETICAL ASPECTS 67

3.7 — Some graph theoretical aspects

In Section 3.3.2 we introduced the notion of a complete system of irreducible vectors
and we gave an example of how the set P(L) can be computed. In that example the use
of graph theoretical tools was demonstrated in order to compute the set P(L) given the
set Irr(L). A natural question that arises is how costly this step can be.

In order to answer this question a few graph theory definitions are necessary. Graphs
will de denoted by Γ = (V ,E), where V is the set of vertices and E is the set of edges. If
e = {u, v} ∈ E then we say that u and v are adjacent.

Definition 3.70 (Independent set). Given a simple graph Γ = (V ,E) an independent set is
a subset of vertices U ⊆ V , such that no two vertices in U are adjacent. An independent set
is maximal if no vertex can be added without violating independence. An independent set of
maximum cardinality is called maximum and its cardinality is denoted by α(Γ).

Definition 3.71 (Class graph). Let L be a full rank lattice in Rn and S ∈ Irr(L)/∼. We
define ΓL(S) to be the graph where the set of vertices V = S and there exists an edge between
v1, v2 ∈ V iff ‖v1 − v2‖ < ‖v1‖.

Computing P(L) out of Irr(L) amounts to solving a maximal independence set in-
stance in ΓL(S) for every class S ∈ Irr(L)/∼. Therefore the complexity of this task highly
depends on the size of the equivalence classes S ∈ Irr(L)/∼ and | Irr(L)/∼|. For average-
case lattices the computational step from Irr(L) to P(L) should almost always be trivial,
i.e. P(L) = Irr(L), as for all S ∈ Irr(L)/∼ it is expected that |S| = 2. In these cases the
set P(L) is uniquely determined.

However, in case the underlying lattice L possesses any kind of structure or symme-
tries it is expected that there will be equivalence classes S ∈ Irr(L)/∼ with |S| > 2. In
these cases the computational task of finding a maximal independent set in the corre-
sponding class graph is not trivial anymore. In such cases the first step is to construct
the corresponding graph ΓL(S), which will take time O(|S|2). Then, naively computing a
maximal independent set (which should always include both ±v) will take time O(|S|m)
wherem is the number of edges in ΓL(S) but, there are better performing algorithms for
this task [Lub86]. If we denote by h the maximum size of a class in Irr(L)/∼ then the
time complexity of computing P(L) out of Irr(L) will scale as O(h2| Irr(L)|).

Thus if there does not exist a class S with |S| exponential to the dimension n then
computing P(L) out of Irr(L) will take time Õ(| Irr(L)|). In practice, stumbling upon
a lattice L possessing a class S ∈ Irr(L)/∼ where |S| is exponential to the dimension
n is highly unlikely as such a lattice would be extremely structured. For the sake of
mathematical curiosity (and nice graph pictures) we briefly investigate such a case of
lattices, namely the Ln for n > 5 defined in Section 3.6. For our exposition we will need
the following definition.

Definition 3.72 (Cayley graph). Let G be a group and T ⊆ G a generating set of G. The
Cayley graph ofG generated by T , denoted Cay(G, T) is the directed graph Γ = (V ,E) where
V = G and E = {(g,gs) |g ∈ G, s ∈ T }.

If T = T−1 (T is closed under inversion) then Cay(G, T) is an undirected graph.

68 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

1

0

15
11

9

8

7

3 2

14

4

13

10

6

12

5

Figure 3.5: The uncoloured Cayley graph Cay(Z4
2,ϕ(T1(Z5

2))) with generating set ϕ(T1(Z5
2)) =

{(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 1)}. For convenience, instead of labelling the vertices
of the graph by the elements of Z4

2, we consider the elements of Z4
2 as binary representations and assign the

corresponding integer (e.g. (1, 0, 0, 0) maps to 8). This graph can be used in order to compute a representative
set S̃2 for the class S2 = {±1}5 in the L5 = 2D∗5 lattice. One such set is implied by the black vertices of the
graph. The graph possesses 40 maximal independent sets of cardinality 4 and 16 maximal independent sets of
cardinality 5 (maximum).

In Section 3.6 we saw that Irr(Ln) = {±2ei | 1 6 i 6 n} ∪ {±1}n. Hence Irr(Ln)
contains two equivalence classes of sizes 2n and 2n respectively. The class S2 := {±1}n

which we will study can be viewed as the group G = Zn2 . Two elements of S2 are con-
nected if their difference is shorter than

√
n, thus it is a sum of less than n/4 elements

from the set {±2ei | 1 6 i 6 n}. In turn this implies that two elements of S2 are con-
nected in ΓLn(S2) if they differ by a sign in less than n/4 of their coordinates. Thus we
can now use the following observation.

ΓLn(S2) ∼= Cay(G, Tdn/4e(G)), (3.18)

where G = Zn2 and Tdn/4e(G) := {x ∈ G | 1 6 | supp(x)| < dn/4e} and supp(x) denotes
the support of x. In our case Tdn/4e(G) = T−1

dn/4e(G) and thus Cay(G, Tdn/4e(G)) is
an undirected graph.4 We are interested in the maximal independent sets of the graph
ΓLn(S2), but not in all of them. It is additionally required that for every vector v ∈ S̃2

also −v ∈ S̃2. This could be phrased as we work “modulo sign”. This property can be
translated algebraically by working in the quotient groupH = Zn2 /〈(1, . . . , 1)〉 instead of

4Such type of Cayley graphs are of an interest in coding theory as independent sets of Cay(Znq ,Td(Znq))
with Td(Znq) = {x ∈ Znq | 1 6 | supp(x)| < d} correspond to q-ary (n,d) codes.

3.7. SOME GRAPH THEORETICAL ASPECTS 69

G = Zn2 . Using the group isomorphism

ϕ : Zn2 /〈(1, . . . , 1)〉 → Zn−1
2

(xi)
n
i=1 + 〈(1, . . . , 1)〉 7→ (xn + xi)

n−1
i=1

we can transfer the problem to the graph Γsign = Cay(Zn−1
2 ,ϕ(Tdn/4e(G))). Each in-

dependent set in Γsign implies an independent set in ΓLn(S2) which possesses the extra
property of the “sign symmetry”. A first remark regarding the set of maximal independent
sets of Γsign is that it is invariant under the group action of Zn−1

2 . For example, if we
consider the graph in Figure 3.5, all 16 maximal independent sets of cardinality 5 can be
generated by acting with Z4

2 to the given independent set formed by the black vertices.
We briefly experimented with Γsign for the first few values n = 5, 6, 7 in order to get

a first indication of how many maximal independent sets such a graph may have and how
much their size can vary.

Table 3.2: Using SAGE [TSD19] we computed all possible sizes of a maximal independent set of
Cay(Zn−1

2 ,ϕ(Tdn/4e(Zn2))) for n = 5, 6, 7 and the corresponding frequency of these sizes.

n = 5
Cardinality 4 5
Frequency 40 16

n = 6
Cardinality 6 8 11 16
Frequency 320 300 32 2

n = 7
Cardinality 8 14 16 17 18 19 20 22
Frequency 240 1920 625548 203840 67200 13440 2800 64

As the number of maximal independent sets seems to grow super-exponentially in the
dimension n we stopped at n = 7. Even though experimental results are useful in order
to get intuition, theoretical results are those which give the final answer to a question.
In our case there are some theoretical results, originating both from graph theory and
coding theory which bound the sizes we experimented with.

• Let Γ = (V ,E) be a graph with |V | = N. In [MM65] it is proven that Γ can have up
to 3N/3 maximal cliques in the worst case, a bound which is tight. Complementary
this also proves that a graph Γ with N vertices can possess up to 3N/3 maximal
independent sets in the worst case.
The results in the same work also imply that the number of different sizes of max-
imal independent sets is upper bounded by N− log2N which is shown to be tight
in the worst case.

• Let Γ be an m-regular graph with N vertices. In [Ros64] it is shown that α(Γ) can
be upper bounded by min{bN/2c,N −m}. This bound is obtainable. In the same
work, a lower bound for α(Γ) is given, depending onm andN. However this bound
is not uniform but depends on number theoretic properties of N,m. In our case
the appropriate lower bound for α(Γ) would be dN/(m+ 1)e.

• As the graph family in question, ΓLn(S2) (and Γsign) is specific, better upper bounds
can be obtained than the general ones given in [Ros64]. This is achieved with

70 CHAPTER 3. THE IRREDUCIBLE VECTORS OF A LATTICE

the use of coding theory [Hop18]. In more detail, α(ΓLn(S2)) = A2(n, dn/4e).
This equality enables the use of already known upper bounds on A2(n, dn/4e)
from coding theory such as the Hamming bound [Ham50]. The lower bound im-
plied by [Ros64] for α(ΓLn(S2)) is equivalent to the Gilbert-Varshamov bound for
A2(n, dn/4e).

Chapter 4

Hybrid lattice algorithms for SVP via
CVPP

This chapter is for all practical purposes identical to the paper Sieve, Enumerate, Slice,
and Lift: Hybrid Lattice Algorithms for SVP via CVPP [DLdW20] authored jointly with
Thijs Laarhoven and Benne de Weger, which was published at Africacrypt 2020.

4.1 — Introduction

In recent decades, lattice-based cryptography has emerged as a front-runner for build-
ing secure and efficient cryptographic primitives in the post-quantum age. For an accurate
and reliable deployment of these schemes, it is essential to obtain a good understanding
of the hardness of the underlying lattice problems, such as the shortest (SVP) and closest
vector problems (CVP).

To date, research on lattice algorithms has resulted in two main flavors of algorithms:
enumeration methods, requiring 2O(d logd) time and dO(1) space to solve hard lattice
problems in dimension d [Kan83, FP85, GNR10, AN17]; and sieving methods, running
in expected time and space 2O(d) [AKS01, NV08, MV10a, ADRS15]. Just a few years
ago, enumeration clearly dominated benchmarks for testing these algorithms in prac-
tice [GNR10, CN11, FK15, svp19], but recent improvements to sieving have allowed it
to overtake enumeration in practice as well [MV10b, Laa15, BDGL16, Duc18, ADH+19].
Some attempts have also been made to combine the best of both worlds, a.o. resulting in
the tuple sieving line of work [BLS16,HK17,HKL18]. A better comprehension of how to
exploit the strengths and weaknesses of each method remains an interesting open prob-
lem.

A long-standing open problem from e.g. [GNR10,DLdW19] concerns the possibility of
speeding up lattice enumeration with a batch-CVP solver: if an efficient algorithm exists
that can solve a large number of CVP instances on the same lattice faster than solving each
problem separately, then this algorithm can be used to solve the CVP instances appear-
ing implicitly in the enumeration tree faster. For a long time no such efficient batch-CVP
algorithms were known, until the recent line of work on approximate Voronoi cells and
the randomized slicer [DLdW19, Laa19, DLvW20] showed that, at least in high dimen-
sions, one can indeed solve large batches faster in practice than solving each problem
separately. This raises the question whether these new results can be used to instantiate

72 CHAPTER 4. HYBRID LATTICE ALGORITHMS FOR SVP VIA CVPP

this conjectured hybrid algorithm and obtain better results, in theory and in practice.

4.1.1 – Contributions. In this chapter we study the feasibility of combining recent
batch-CVP algorithms with lattice enumeration, and show that we heuristically obtain a
2Θ(d/ logd) speedup and memory reduction for solving SVP compared to the state-of-the-
art lattice sieve. This improvement is proper, in the sense that this does not hide large
order terms: we show that for solving SVP in dimension d, the costs are proportional
to those of running a sieve in dimension d − Θ(d/ logd), making the leading constant
explicit, and showing that the remaining overhead is negligible. The hybrid construc-
tions we propose are independent of e.g. the underlying nearest neighbor data structure,
and we expect that these and other heuristic improvements can be applied to the hybrid
algorithms as well.

Obtaining Θ(d/ logd) dimensions for free may sound familiar, as Ducas [Duc18]
showed that sieving in dimension d−Θ(d/ logd) implies solving SVP in dimension d. As
the asymptotic improvement of Ducas is greater than ours, to improve upon his results
we need to be able to combine both techniques. The feasibility of such a combined hybrid
algorithm relies on Assumption 4.10, which Section 4.5 aims to verify with experiments.
Combining both techniques, we asymptotically obtain 0.5305d/ log2 d dimensions for
free, compared to Ducas’ 0.4150d/ log2 d.

4.1.2 – Notation. We adopt the already introduced notation from Chapter 1 for basic
notions regarding lattices and lattice problems. We writeDt+L,s for the discrete Gaussian
distribution on t+L with probability mass function proportional to ρs,t(x) = exp(−π‖t−
x‖2/s2). For t ∈ Rd we define d(t,L) := minv∈L ‖t−v‖, where all norms are Euclidean
norms.

4.2 — Preliminaries

4.2.1 – Heuristic Assumptions. For our asymptotic analyses we will rely on a num-
ber of common heuristic assumptions, which have often been used throughout the lit-
erature and we have introduced in Section 1.2. In particular, we will use the Gaussian
heuristic 1.18 and the Geometric Series Assumption 1.20. Using volume arguments, the
Gaussian heuristic predicts that λ1(L) = gh(L) where gh(L) :=

√
d/(2πe) · Vol(L)1/d ·

(1+o(1)). For random targets t ∈ Rd, we further expect that d(t,L) = gh(L)·(1+o(1))
with high probability.

In this chapter we will use a slightly different form of the Geometric Series Assump-
tion 1.20 than the one given in Section 1.2. In fact we are interested in a formula relating
‖b∗i‖ to ‖b1‖ rather than Vol(L)1/d, where b1 denotes the first vector in the basis. We
emphasise that the basis vectors will be denoted as b1, . . . ,bd instead of b0, . . . ,bd−1

which was used in Section 1.2. Also, we will ignore the exact formula for αβ given in
Section 1.2. We will use the Geometric Series Assumption in the following form.

Assumption 4.1. Let B be a strongly reduced basis of a lattice L. Then the Gram–Schmidt
vectors b∗i satisfy

‖b∗i‖ = qi−1‖b1‖, q ∈ (0, 1). (4.1)

The GSA is used in analyzing enumeration and Babai lifting (Sections 4.2.2, 4.2.5).

4.2. PRELIMINARIES 73

Assumption 4.2 (Randomized slicer assumption [DLdW19]). Let s� 0, and let
X1,X2, · · · ∈ {0, 1} denote the events that running the iterative slicer on ti ∼ Dt+L,s returns
the shortest vector t ′ ∈ t+L (Xi = 1) or not (Xi = 0). Then the random variables Xi are
identically and independently distributed.

This assumption is related to the randomized slicer, discussed in Section 4.2.4.

4.2.2 – Lattice Enumeration. For constructing hybrid algorithms for solving SVP, we
will combine several existing techniques, the first of which is lattice enumeration. This
method, first described in the 1980s [FP85, Kan83] and later significantly improved in
practice [GNR10, MW15, AN17], can be seen as a brute-force approach to SVP: every
lattice vector can be described as an integer linear combination of the basis vectors, and
given some guarantees on the quality of the input basis, this results in bounds on the
coefficients of the shortest vector in terms of this basis. The algorithm can be described
as a depth-first tree search, requiring dO(1) memory and 2O(d logd) time. For further
details, we refer the reader to e.g. [GNR10,HPS11,LvdPdW12].

For our purposes, what is important to know is that the complexity of (partial) enu-
meration is proportional to the number of nodes visited in the tree, and that the number of
nodes at depth k = o(d) for a strongly-reduced d-dimensional lattice basis is 2O(k logd).
More precisely, we will need the following lemma which can be derived heuristically,
based on estimates from [HS07].

Lemma 4.3 (Costs of enumeration [HS07]). Let B be a strongly reduced basis of a lattice.
Then the number of nodes Ek at depth k = o(d), k = d1−o(1), satisfies:

Ek = dk/2+o(k). (4.2)

Enumerating all these nodes can be done in time Tenum and space Senum, with:

Tenum = Ek · dO(1), Senum = dO(1). (4.3)

Proof. As a starting point, we take the formula from [HS07, Section 6.2], which was
derived using the Gaussian heuristic:

Ek =
πk/2

Γ(k/2 + 1)
· ‖b1‖k∏d

i=d−k+1 ‖b∗i‖
. (4.4)

For the gamma function, we can use a very rough version of Stirling’s approximation of
the form Γ(x) = (x/e)x+o(x), which for the first term above gives an asymptotic scaling
of (2πe/k)k/2+o(k) = k−k/2+o(k). For the terms ‖b1‖ and ‖b∗i‖, we apply the geometric
series assumption, which implies that ‖b∗i‖ = qi−1‖b1‖ for some q ∈ (0, 1). Using that∑d
i=d−k+1(i− 1) = k(2d− k− 1)/2 = kd− o(kd) for k = o(d), this reduces the above

to:

Ek = k−k/2+o(k) · q−kd+o(kd) . (4.5)

Next, we note that for a sufficiently well-reduced basis B, we have ‖b1‖ = O(λ1(L)) =
O(
√
d) · Vol(L)1/d. From the GSA, we then get:

Vol(L) =
d∏
i=1

‖b∗i‖ = qd(d+1)/2‖b1‖d = qd(d+1)/2d−d/2+o(d) Vol(L). (4.6)

74 CHAPTER 4. HYBRID LATTICE ALGORITHMS FOR SVP VIA CVPP

From this we can conclude that q = d−1/d+o(1/d) and q−kd+o(kd) = dk+o(k). From
the assumptions that k = d1−o(1) and k = o(d) we then get:

Ek = d−k/2+o(k) · dk+o(k) = dk/2+o(k). (4.7)

As for the time and space complexities of enumeration, as has been noted several times
before [FP85, GNR10, AN17] the time complexity is directly proportional to the size of
the enumeration tree, while the space complexity is only polynomial in d.

4.2.3 – Lattice Sieving. Another method for solving SVP, and which will be part of our
hybrid algorithms, is lattice sieving. This method dates back to the 2000s [AKS01,NV08,
MV10b] and has seen various recent improvements [Laa15,BDGL16,Duc18,HKL18,ADH+19]
that allowed it to surpass enumeration in the SVP benchmarks [svp19]. This method only
requires 2O(d) time to solve SVP in dimension d (compared to 2O(d logd) for enumera-
tion), but this comes at the cost of a memory requirement of 2O(d). The algorithm starts
out by generating a large number of lattice vectors as simple combinations of the basis
vectors, and then proceeds by combining suitable pairs of vectors to form shorter lattice
vectors. For additional details, see e.g. [BDGL16,HPS11,LvdPdW12,Laa16a].

In the context of this chapter we will make use of the following result from [BDGL16],
which is the current state-of-the-art for (heuristic) lattice sieving in high dimensions d.
The statement below is stronger than saying that sieving merely solves SVP, as lattice
sieving commonly returns a list of all short lattice vectors within radius approximately√

4/3 · λ1(L). This same assumption was used in [Duc18].

Lemma 4.4 (Costs of lattice sieving [BDGL16]). Given a basis B of a lattice L, the LDSieve
heuristically returns a list L ⊂ L containing the (4/3)d/2+o(d) shortest lattice vectors, in
time Tsieve and space Ssieve with:

Tsieve = (3/2)d/2+o(d), Ssieve = (4/3)d/2+o(d). (4.8)

With the LDSieve we can therefore solve SVP with the above complexities.

4.2.4 – The Randomized Slicer. The third ingredient for our hybrid algorithms is
the randomized slicer for solving CVP(P). This algorithm, described in [DLdW19], is an
extension of the iterative slicer [SFS09], and follows a procedure of reducing target t
with a list L ⊂ L to find shorter vector t ′ ∈ t+ L. The goal is to find the shortest vector
t∗ ∈ t+ L by repeatedly reducing t with L, since t− t∗ is the solution to CVP(L, t).

We will make use of two separate results from [DLvW20]. These results differ in
whether one desires to solve only one or many CVP instances on the same lattice; as
shown in [DLvW20], solving many CVP instances simultaneously allows for more efficient
memory management, thus allowing to achieve a better overall time complexity for a
given space bound. Here ζ = − 1

2 log2(1 − 2(1−y)
1+
√

1−y) = 0.2639 . . . where y = 0.7739 . . .

is a root of p(y) = 16y4 − 80y3 + 120y2 − 64y+ 9.

Lemma 4.5 (Costs of the randomized slicer, single target [DLvW20]). Given a list of the
(4/3)d/2+o(d) shortest vectors of a lattice L and a target t ∈ Rd, the randomized slicer
solves CVP for t in time Tslice and space Sslice, with:

Tslice = 2ζd+o(d), Sslice = (4/3)d/2+o(d). (4.9)

4.3. SIEVE, ENUMERATE, SLICE, AND LIFT 75

Lemma 4.6 (Costs of the randomized slicer, many targets [DLvW20]). Given a list of the
(4/3)d/2+o(d) shortest vectors of a lattice L and a batch of n > (13/12)d/2+o(d) target
vectors t1, . . . , tn ∈ Rd, the batched randomized slicer solves CVP for all targets ti in total
time Tslice and space Sslice, with:

Tslice = n · (18/13)d/2+o(d), Sslice = (4/3)d/2+o(d). (4.10)

The amortized time complexity per instance equals Tslice/n = (18/13)d/2+o(d).

4.2.5 – Babai Lifting. Finally, we will revisit the extension to lattice sieving described
in [Duc18], based on Babai’s nearest plane algorithm [Bab86]. As observed by Ducas,
lattice sieving returns much more information about a lattice than just the shortest vector,
and this additional information can be used to obtain a few dimensions for free – to solve
SVP in dimension d, it suffices to run sieving on a sublattice of dimension d − ` with
` = Θ(d/ logd), and use the resulting list of vectors in this sublattice to find the shortest
vector in the full lattice.

Lemma 4.7 (Costs of Babai lifting [Duc18]). Let γ > 1, let B = {b1, . . . ,bd} be a suf-
ficiently reduced basis of a lattice L, and let L ′ ⊂ L be the sublattice of L generated by
B ′ = {b1, . . . ,bd−`}, where:

` =
2d log2 γ

log2 d
· (1 + o(1)). (4.11)

Then, given a list L ′ of the γd+o(d) shortest vectors of L ′, we can find a shortest vector of L
through Babai lifting of L ′ in time Tlift and space Slift, with

Tlift = γ
d+o(d), Slift = γ

d+o(d). (4.12)

For γ =
√

4/3 this results in ` = d log2(4/3)/ log2 d dimensions for free.

4.3 — Sieve, Enumerate, Slice, and Lift

Suppose we have a basis B = {b1, . . . ,bd} of a lattice L = L(B), and we split it into
two disjoint parts as follows, for some choice 0 6 k 6 d:

B = Bbot ∪ Btop, Bbot := {b1, . . . ,bd−k}, Btop := {bd−k+1, . . . ,bd}. (4.13)

This defines a partition of the lattice L = Lbot⊕Ltop as a direct sum of the two sublattices
Lbot := L(Bbot) and Ltop := L(Btop). Let us further denote a solution s = SVP(L) as
s = sbot + stop with sbot ∈ Lbot and stop ∈ Ltop. Finding s can commonly be described as
solving a CVP instance on Lbot:

stop 6= 0 =⇒ s = stop − CVP(Lbot, stop). (4.14)

Note that the case stop = 0 is in a sense “easy”, as then s = SVP(Lbot). The hardest
problem instances occur when stop 6= 0, and this will be our main focus.

Lattice enumeration can be viewed as a procedure for solving SVP based on the above
observations: first enumerate all target vectors t ∈ Ltop that have the potential to satisfy
t = stop, and then compute CVP(Lbot, t) for each of these targets through a continued

76 CHAPTER 4. HYBRID LATTICE ALGORITHMS FOR SVP VIA CVPP

enumeration procedure on the sublattice Lbot, to see which of them produces the solution
to SVP on the full lattice. Observe that lattice enumeration commonly solves each of these
CVP instances separately, even though each problem instance can be viewed as a CVP
instance on the same lattice Lbot, but with a different target vector t ∈ Ltop.

As previously outlined in e.g. [GNR10, DLdW19], a truly efficient CVPP algorithm
would imply a way to speed up processing all these CVP instances in enumeration; one
would first run a one-time preprocessing on the sublattice Lbot, and then solve all the CVP
instances at some level k using the preprocessed data as input for the CVP(P) oracle. The
initial preprocessing step may be expensive, but these costs can be amortized over the
many CVP instances that potentially have to be solved during the enumeration phase. At
the time of [GNR10] no good heuristic CVPP algorithm was known, but with the results
of [DLdW19, Laa19, DLvW20] we may now finally instantiate the above idea with the
ingredients from Sections 4.2.2–4.2.4.

4.3.1 – Hybrid 1: Sieve, Enumerate–and–Slice. In the first hybrid, after the prepro-
cessing (sieve) finishes, we compute closest vectors to targets t ∈ Ltop one vector at a
time. This algorithm has two phases, where the second phase combines enumeration
with the randomized slicer.

1. Sieve: First, run a lattice sieve on Lbot to generate a list L ⊂ Lbot.
2. Enumerate–and–slice: Then, run a depth-first enumeration in Ltop, where for each

leaf t ∈ Ltop we run the randomized slicer to find the closest vector CVP(t) ∈ Lbot.
We keep track of the shortest difference vector t − CVP(t), and ultimately return
the shortest one as a candidate solution for SVP(L).1

To optimize the asymptotic time complexity of this algorithm, note that the cost of enu-
meration in Ltop is Tenum = 2O(k logd) while the costs of sieving and slicing in Lbot are
Tsieve, Tslice = 2O(d−k). To balance these costs, and minimize the overall time complexity,
we will therefore set k as follows:

k =
α · d
log2 d

, with α > 0 constant. (4.15)

Using Lemmas 4.3–4.5, optimizing α to obtain the best overall asymptotic time complex-
ity is a straightforward exercise, and we state the result below.

Heuristic result 4.8 (Sieve, enumerate–and–slice). Let k = αd/ log2 d with

α < log2(
3
2) − 2ζ = 0.0570 (ζ as in Lemma 4.5) (4.16)

Let T(d)
1 and S(d)

1 denote the overall time and space complexities of the sieve, enumerate–
and–slice hybrid algorithm in dimension d. Then:

T(d)
1 = T(d−k)

sieve · (1 + o(1)), S(d)
1 = S(d−k)

sieve · (1 + o(1)). (4.17)

Proof. For the time complexities, recall that the costs of the individual parts of the algo-
rithm, by Lemmas 4.3–4.5, are given by:

Tsieve = 2
1
2 log2(

3
2)d+o(d), Tenum = 2

α
2 d+o(d), Tslice = 2(α2 +ζ)d+o(d). (4.18)

1The case stop = 0 can be handled by checking if L contains an even shorter vector.

4.3. SIEVE, ENUMERATE, SLICE, AND LIFT 77

Clearly Tenum = o(Tslice) since ζ > 0. Now, due to α < α0 = log2(
3
2) − 2ζ being strictly

smaller than the point where Tsieve ≈ Tslice, we have Tslice = o(Tsieve) as well, giving a total
time complexity of T = Tsieve · (1 + o(1)). Finally, looking closely, we note that the cost
Tsieve actually corresponds to running a standard lattice sieve in dimension d − k, which
can be done in time T(d−k)

sieve as claimed.
For the space complexities, we recall them from Lemmas 4.3–4.5 as follows:

Ssieve = (4/3)d/2+o(d), Senum = poly(d), Sslice = (4/3)d/2+o(d). (4.19)

Since α < α0, the time complexity of the enumerate–and–slice procedure is strictly
smaller than the cost of the preprocessing phase, and this will remain true even if we
use a slightly smaller list as output from the preprocessing phase. So for sufficiently
small ε > 0, we may therefore choose to use a list L ′ ⊂ L for the enumerate–and–slice
phase of size |L ′| = |L|1−ε, while still maintaining a time complexity Tslice = o(Tsieve).
This guarantees that the overhead caused by the quasilinear-space nearest neighbor data
structure, required in the third phase to achieve sublinear search costs, does not impose
any overhead in the asymptotic space complexity; the memory required in the third phase
will then be of size Sslice = (S1−ε

sieve)
1+o(1) = o(Ssieve).

Letting α → log2(
3
2) − 2ζ in the above result, we get k ≈ 0.0570d/ log2 d with

an asymptotic speedup of a factor 20.0167d/ log2 d and a memory reduction of a factor
20.0118d/ log2 d compared to running a sieve directly on L. Note that the result does not
hide subexponential or even polynomial hidden order terms; the time and space com-
plexities are dominated by the preprocessing costs.

For the heuristic results in the following subsections 4.3.2-4.3.4, analogous deriva-
tions can be given to argue that both the time and space complexities are dominated by
the initial sieving phase, as long as the parameters k (and `) are below the point where
the sieving and slicing (and lifting) become equally expensive. Further note that although
the batched slicer has a cost of (3/2)d/2+o(d) +n · (18/13)d/2+o(d) for n targets due to
the reinitializations of the costly nearest neighbor data structures [DLvW20], these costs
can again be made to be (3/2−ε)d/2+o(d)+n1−ε · (18/13)d/2+o(d) by slightly reducing
the number of targets and the number of hash tables accordingly.

4.3.2 – Hybrid 2: Sieve, Enumerate, Slice. An alternative to the above approach is
to separate the enumeration and slicing procedures into two disjoint parts, and run the
hybrid algorithm in three phases. The benefit of this approach (cf. Section 4.2.4) is that
the batched slicer can then be used to achieve better amortized complexities for CVPP.

1. Sieve: As before, run a lattice sieve on Lbot, to generate a list L ⊂ Lbot.
2. Enumerate: Then, enumerate all nodes t ∈ Ltop at depth k in the enumeration

tree, and store them in a list of targets T ⊂ Ltop.
3. Slice: Finally, use the batched randomized slicer with the list L to solve CVP on

Lbot for all targets t ∈ T , and return the shortest vector t− CVP(t).
Asymptotically, the additional space required for storing the nodes from the enumeration
phase will not play a large role, compared to the memory required for storing the output
from the preprocessing phase. On the other hand, by using the improved batch-CVPP
slicer of Lemma 4.6 we can use nearest neighbor searching more efficiently, without in-
creasing the memory, leading to a bigger improvement over standard sieving than with
the first hybrid algorithm.

78 CHAPTER 4. HYBRID LATTICE ALGORITHMS FOR SVP VIA CVPP

Heuristic result 4.9 (Sieve, enumerate, slice). Let k = αd/ log2 d with

α < log2(
13
12) = 0.1154 (4.20)

Let T(d)
2 and S(d)

2 denote the overall time and space complexities of the batched sieve, enu-
merate, slice hybrid algorithm in dimension d. Then:

T(d)
2 = T(d−k)

sieve · (1 + o(1)), S(d)
2 = S(d−k)

sieve · (1 + o(1)). (4.21)

In the limit of α→ log2(
13
12) we get k ≈ 0.1154d/ log2 d dimensions for free, leading

to an asymptotic speedup of a factor 20.0338d/ log2 d+o(d/ logd) and a memory reduction of
a factor 20.0240d/ log2 d+o(d/ logd) over direct sieving on L.

4.3.3 – Hybrid 3: Sieve, Enumerate–and–Slice, Lift. For the third and fourth hy-
brids, we observe that similar to lattice sieving, the slicer in the previous hybrid algorithms
can actually produce much more information about the lattice than just the shortest lat-
tice vector; for other targets t 6= stop, as well as for “failed” outputs of the randomized
slicer, the slicer will also return many short lattice vectors. This suggests that to get even
more dimensions for free, we may be able to combine both hybrids with Babai lifting as
outlined in Lemma 4.7.

Instead of splitting the lattice into two parts, we now split the input lattice basis
into three parts B = Bbot ∪ Bmid ∪ Btop, where the three bases Bbot := {b1, . . . ,b`},
Bmid := {b`+1, . . . ,bd−k}, and Btop := {bd−k+1, . . . ,bd} generate lattices Lbot,Lmid,Ltop

of dimensions `, d−k− ` and k respectively. For Hybrid 3 we essentially run Hybrid 1 on
Lmid ⊕ Ltop, and use Babai lifting to deal with the additional ` dimensions of Lbot. This
leads to the following algorithm:

1. Sieve: Run a lattice sieve on Lmid to generate a list L ⊂ Lmid.
2. Enumerate–and–slice: Enumerate all nodes t ∈ Ltop, and repeatedly slice each of

them with the list L to find close vectors v ∈ Lmid. For each pair t, v add the vector
t− v to an output list S ⊂ Lmid ⊕ Ltop.

3. Lift: Finally, extend each vector s ′ ∈ S to a candidate solution s ∈ L by running
Babai’s nearest plane algorithm. Return the shortest lifted vector.

As the slicer processes Ek = dk/2+o(k) = 2αd/2+o(d) target vectors, and requires ρ =
(16/13)d/2+o(d) rerandomizations per target for average-case CVP to succeed (see [DLdW19,
DLvW20] for details), the slicer outputs 2(α+log2(16/13))·d/2+o(d) lattice vectors, and ide-
ally we might hope this list contains, similar to sieving [Duc18], (almost) all lattice vectors
of norm at most γ = 2(α+log2(16/13))/2+o(1) · gh(L).

Assumption 4.10 (Hybrid assumption2). The list S, output by the slicer, contains the
2(α+log2(16/13))·d/2+o(d) shortest lattice vectors of Lmid ⊕ Ltop.

Assuming that the above heuristic is indeed valid, we derive the following result re-
garding the asymptotic time and space complexities of the described hybrid algorithm.
In Section 4.5 we will revisit this assumption, to study its validity.

2After the paper on which this chapter is based on was published, Léo Ducas and Wessel van Woerden
informed us that counterexamples to Assumption 4.10 can be found where S only contains at most an expo-
nentially small fraction of the shortest vectors of Lmid⊕Ltop . As a result, our results relying on Assumption 4.10
should be seen as optimistic, best-case lower bounds on the true algorithm complexities.

4.3. SIEVE, ENUMERATE, SLICE, AND LIFT 79

Heuristic result 4.11 (Sieve, enumerate–and–slice, lift). Let k = αd/ log2 d and ` =
βd/ log2 d with

α < log2(
3
2) − 2ζ = 0.0570 . . . , β < log2(

24
13) − 2ζ = 0.3565 (4.22)

Let T(d)
3 and S(d)

3 denote the time and space complexities of the sieve, enumerate–and–slice,
lift hybrid algorithm in dimension d. Then, under Assumption 4.10:

T(d)
3 = T(d−k−`)

sieve · (1 + o(1)), S(d)
3 = S(d−k−`)

sieve · (1 + o(1)). (4.23)

Observe that the number of dimensions we save compared to a full sieve here is k+` ≈
0.4136d/ log2 d. Compared to the result of Ducas [Duc18] of ` ≈ 0.4150d/ log2 d this
new hybrid is asymptotically slightly worse than a sieve–and–lift hybrid.

4.3.4 – Hybrid 4: Sieve, Enumerate, Slice, Lift. Finally, combining the second hy-
brid with lifting, as in the third hybrid algorithm above, results in the following optimized
hybrid procedure:

1. Sieve: Run a lattice sieve on Lmid to generate a list L ⊂ Lmid.
2. Enumerate: Enumerate all nodes t ∈ T ⊂ Ltop at depth k in L.
3. Slice: Run the slicer, with the list L as input, to find close vectors in Lmid to the

targets t ∈ T . The result is a list S ⊂ Lmid ⊕ Ltop.
4. Lift: Finally, extend each vector s ′ ∈ S to a candidate solution s ∈ L by running

Babai’s nearest plane algorithm. Return the shortest lifted vector.
Not only does splitting the enumeration and slicing guarantee that the batched version
of the slicer gets better complexities; the smaller resulting value α also means that the
number of vectors output by the slicer is larger, which leads to more dimensions for free
from the lifting phase. In particular, with the batched slicer the number of vectors output
by the slicer is proportional to (4/3)d/2+o(d), and we may get as many dimensions for
free in the lifting phase as [Duc18].

Heuristic result 4.12 (Sieve, enumerate, slice, lift). Let k = αd/ log2 d and ` = βd/ log2 d
with

α < log2(
13
12) = 0.1154 . . . , β < log2(

4
3) = 0.4150 (4.24)

Let T(d)
4 and S(d)

4 denote the time and space complexities of the sieve, enumerate, slice, and
lift hybrid algorithm in dimension d. Then, under Assumption 4.10:

T(d)
4 = T(d−k−`)

sieve · (1 + o(1)), S(d)
4 = S(d−k−`)

sieve · (1 + o(1)). (4.25)

We again stress that the above result relies on a batched version of the randomized
slicer. With this batched hybrid algorithm with lifting, assuming the hybrid assumption
holds, we can potentially get up to k + ` ≈ 0.5305d/ log2(d) dimensions for free, which
would improve upon Ducas’ ` ≈ 0.4150d/ log2(d) [Duc18].

An overview of the techniques used in the four hybrids, as well as the number of
dimensions for free in each algorithm, is given in Table 4.1. Figure 4.1 presents graphical
overviews of the hybrid algorithms described in this section where the horizontal axis
depicts the basis vectors b1, . . . ,bd and the vertical axis corresponds to the time (with
algorithms starting from the top and ending at the bottom).

80 CHAPTER 4. HYBRID LATTICE ALGORITHMS FOR SVP VIA CVPP

Hybrid 1

L

Lbot ⊕ Ltop

L ⊂ Lbot

s ∈ L

Sieve

Enumerate & Slice

Hybrid 2

L

Lbot ⊕ Ltop

L ⊂ Lbot T ⊂ Ltop

s ∈ L

Sieve Enumerate

Slice

Hybrid 3

L

Lbot ⊕ Lmid ⊕ Ltop

L ⊂ Lmid

S ⊂ Lmid ⊕ Ltop

s ∈ L

Sieve

Enumerate & Slice

Lift

Hybrid 4

L

Lbot ⊕ Lmid ⊕ Ltop

L ⊂ Lmid T ⊂ Ltop

S ⊂ Lmid ⊕ Ltop

s ∈ L

Sieve Enumerate

Slice

Lift

Figure 4.1: A high-level description of the hybrid algorithms presented in section 4.3. Hybrids 1 and 3 combine
enumeration and slicing, performing the randomized slicing procedure for only one target vector at a time.
Hybrids 3 and 4 use the Babai lifting technique from [Duc18]. The asymptotics of the slicer depend on whether
targets are processed directly (left) or in batches (right). The lifting can be done directly as well, without
affecting the performance of the algorithm.

4.4. SIEVE, ENUMERATE, SLICE, REPEAT 81

Table 4.1: An overview of the techniques used in the hybrids, as well as the asymptotic number of dimensions
for free for each part and in total (last column). In sufficiently high dimensions, under Assumption 4.10, Hybrid
4 outperforms all other algorithms, by saving up to 0.53d/ log2 d dimensions compared to sieving in the full
lattice.

Algorithm Sieve Enum./Slice Lift Dimensions for free
(Single) (Batch) (k

d
log2 d) (`

d
log2 d) (k+`

d
log2 d)

Full sieve
[BDGL16]

Ø - - -

Hybrid 1 Ø Ø 0.0570 - 0.0570
Hybrid 2 Ø Ø 0.1154 - 0.1154
Hybrid 3 Ø Ø Ø 0.0570 0.3566 0.4136
SubSieve
[Duc18]

Ø Ø - 0.4150 0.4150

Hybrid 4 Ø Ø Ø 0.1155 0.4150 0.5305

4.4 — Sieve, Enumerate, Slice, Repeat

For the fourth hybrid, under Assumption 4.10 the enumeration and batched slicer
together take as input a list of all vectors of norm at most

√
4/3 · gh(L ′) of a suitable

sublattice L ′ ⊂ L, and output (almost) all lattice vectors of norm at most
√

4/3·gh(L) of
L. This suggests one might replace the initial sieving step on Lmid by a sieve, enumerate,
slice hybrid (Hybrid 2), by splitting Lmid = L

(1)
mid ⊕ L

(2)
mid with rank(L(2)

mid) = Θ(d/ logd);

running a sieve on L
(1)
mid; enumerating L

(2)
mid; and then using the slicer to find a list of short

vectors L ⊂ Lmid. Under Assumption 4.10, this substitution of the initial sieve by Hybrid
2 can be repeated many times to obtain Θ(d/ logd) dimensions for free several times.

As an alternative interpretation, rather than running enumeration on k levels directly,
one additional level of nesting suggests we first run the lower k/2 levels of enumeration,
lift the resulting target vectors to obtain short vectors in a lattice of rank d−k/2, and then
run another k/2 levels of enumeration to find short vectors in the full lattice. Splitting
up the enumeration this way decreases the overall enumeration costs and the number of
targets for the slicing phases (Ek/2 + Ek/2 � Ek), but at the same time the list output
by the first slicing phase might not be as good for the second slicing phase as what one
would get from running a sieve directly; even if Assumption 4.10 is true, likely this still
comes at a slight loss in the quality of the list, say in the first order terms.

We finally observe that the same idea of nesting does not seem to work for the sieve,
lift hybrid of [Duc18]. Although one could define a “generalized” Babai lifting procedure,
lifting targets to all nearby vectors in the higher-rank lattice, from a viewpoint of enumer-
ation we are “missing” some branches in the tree due to L only containing some nodes in
the tree at level d− `. Therefore, if the shortest vector in the lattice is actually in one of
those missing branches, then a generalized lifting procedure will not succeed in finding
this shortest vector.

Although we will briefly revisit the idea of nesting in the experiments in the next
section, we leave a technical study of nesting for future work.

82 CHAPTER 4. HYBRID LATTICE ALGORITHMS FOR SVP VIA CVPP

Nested Hybrid

L

L1 ⊕ L2 ⊕ L3 ⊕ . . . ⊕ Lm

. . .

. . .

L1 ⊂ L1 T2 ⊂ L2

L2 ⊂ L1 ⊕ L2 T3 ⊂ L3

L3 ⊂ L1 ⊕ L2 ⊕ L3

Tm ⊂ LmLm−1 ⊂
m−1⊕
i=1

Li

Lm ⊂
m⊕
i=1

Li = L

s ∈ L

Sieve Enumerate

Slice Enumerate

Slice

Enumerate

Slice

Figure 4.2: A high-level description of the potential recursive hybrid algorithm, which starts on a lattice L1
of dimension d − Θ(d/ logd), and then repeatedly lifts the lists Li ⊂ L1 ⊕ · · · ⊕ Li to lists Li+1 ⊂
L1⊕ · · ·⊕Li+1 by enumerating targets Ti+1 ⊂ Li+1 and using the batched slicer with Li as input to create
Li+1. Each lattice Li for i > 1 has dimensionΘ(d/ logd).

4.5. EXPERIMENTAL RESULTS 83

4.5 — Experimental Results

4.5.1 – Verifying Assumption 4.10. To attempt to validate (or disprove) the new
heuristic assumption, we performed the following experiment. We used the 60-dimensional
SVP challenge lattice with seed 0 [svp19], pre-reduced with BKZ-50 [Sch87], for which
gh(L) ≈ 2001 and λ1(L) ≈ 1943. The black dashed line in Figure 4.3 shows the ex-
pected number of lattice points below a certain norm by the Gaussian heuristic (Assump-
tion 1.18). The (barely visible) purple line intersecting this line for high norms shows
the actual number of lattice vectors found by a “relaxed” sieve [Laa16b], showing the
accuracy of the Gaussian heuristic for large balls.

gh(ℒ) 4 /3 ·gh(ℒ)
100

101

102

103

104

105

Euclidean norm

N
u
m
b
er
o
f
ve
ct
o
rs

Figure 4.3: The number of vectors found through a sieve (black) and sieve, enumerate, slice hybrids for k ∈
{1, 2, 3, 4} (orange, green, blue, red) in dimension 60. The dashed black line, and the purple line intersecting it
for large norms, indicate the true number of lattice vectors below this norm. The dashed colored lines indicate
the lists obtained from running sieving in sublattices of rank d− k.

To test Assumption 4.10, we then ran both a standard g6k lattice sieve to produce a
list L0 (black) [ADH+19]; and sieve, enumerate, slice hybrids for k ∈ {1, 2, 3, 4} by (1)
running g6k on the (d − k)-dimensional sublattice formed by b1, . . . ,bd−k to produce
a list Lk, (2) running enumeration up to depth k in the full lattice to obtain targets Tk,
(3) slicing each target t ∈ Tk up to 20 · (16/13)(d−k)/2 times, to obtain a list Sk, and
(4) plotting the sorted norms of both Lk (dashed) and Sk ∪ Lk (solid) in Figure 4.3.
These results show that (i) as expected, the preprocessed lists Lk in rank d − k become
increasingly poor approximations of the sieved list L0 as k increases, and (ii) the sliced
lists Sk ∪ Lk together form very good approximations to the sieved list L0. Note that, at
norm

√
4/3 · gh(L), all these lists are quite far off from the prediction by the Gaussian

heuristic.

84 CHAPTER 4. HYBRID LATTICE ALGORITHMS FOR SVP VIA CVPP

Table 4.2: Experimental results and estimates for the costs of the hybrid algorithms, in dimensions d ∈
{60, 65, 70, 75, 80} and for parameter choices k ∈ {0, 1, 2, 3} as well as the nested hybrid with two itera-
tions of k = 1. Single-core timings are denoted in milliseconds (ms), seconds (s), minutes (m), hours (h),
and days (d). List sizes |L| and estimates on the required number of rerandomizations p−1

iter are sometimes
given in multiples of one thousand (k). The last column gives estimates for the total time complexities for these
algorithms, by adding up the costs for BKZ, sieving, enumeration, and slicing. The case k = 0 corresponds to
running a sieve on the full lattice directly.

Parameters BKZ — Sieve — — Enum — — Slice — Total
d k T(d−10)

BKZ |L| T(d−k)
sieve |T | T(k)

enum T(d−k)
iter p−1

iter T(d−k)
slice T(d)

hyb

60 0 4s 18k 19s - - - - - 23s
1 4s 16k 16s 5 0s 3.2ms 830 13s 33s
2 4s 13k 12s 30 0s 2.7ms 530 43s 59s
3 4s 12k 9s 155 0s 2.4ms 760 280s 293s

1+1 4s 13k 12s 4 0s 3.0ms 500 6s 51s(16k) (0s) 5 0s 3.2ms 1820 29s

65 0 8s 37k 78s - - - - - 1m
1 8s 32k 57s 5 0s 6.8ms 12.5k 7m 8m
2 8s 28k 44s 37 0s 6.6ms 2.9k 12m 13m
3 8s 24k 36s 215 0s 5.6ms 2.9k 58m 59m

1+1 8s 28k 44s 4 0s 6.6ms 1.1k 0.5m 6m(32k) (0s) 5 0s 6.8ms 6.7k 4m

70 0 1m 76k 5m - - - - - 6m
1 1m 65k 4m 6 0m 20ms 17k 35m 40m
2 1m 57k 3m 46 0m 16ms 1k 12m 16m
3 1m 49k 2m 293 0m 13ms 6k 381m 384m

1+1 1m 57k 3m 5 0m 15ms 2k 2m 43m(65k) (0m) 5 0m 18ms 25k 37m

75 0 2m 155k 22m - - - - - 0.4h
1 2m 134k 16m 6 0m 40ms 25k 2h 2h
2 2m 116k 11m 50 0m 48ms 20k 13h 14h
3 2m 101k 8m 366 0m 30ms 12k 37h 37h

1+1 2m 116k 11m 5 0m 35ms 4k 0.2h
>8h(134k) (0m) 6 0m 41ms >100k >7h

80 0 14m 320k 74m - - - - - 1.5h
1 14m 275k 58m 7 0m 95ms >100k >18h >20h
2 14m 240k 45m 64 0m 74ms >50k >66h >67h
3 14m 205k 36m 506 0m 66ms >50k >19d >19d

4.5.2 – Assessing the Sieve, Enumerate–and–Slice Hybrid. To study the practical
performance of these hybrid algorithms, we performed some preliminary experiments in
dimensions 60–80, whose results are described in Table 4.2. We describe the setup of the
experiments, and discuss the results as well as conclusions that can or cannot be drawn
from these results.

BKZ. To start, we used the SVP challenge lattices [svp19] with seed 0 in dimensions
d ∈ {60, 65, 70, 75, 80}. We preprocessed each basis with BKZ with block size d − 10.
In case the shortest vector had a 0-coefficient for bd when expressed in terms of B, we
would rerandomize the basis and run BKZ again, to guarantee that the preprocessed lists
do not already contain the solution.

Sieve. Next, we used the g6k [The19b] framework to generate sieving lists in dimen-
sions d − k, for k = 0, 1, 2, 3. We disabled the “dimensions for free” from g6k, to test
the pure hybrids for their performance and limit the impact of other factors for now. The
case k = 0 corresponds to sieving in the full lattice, and the timings in dimensions d− k

4.5. EXPERIMENTAL RESULTS 85

clearly decrease with k, as shown in Table 4.2. The resulting vectors were stored in an
output file, and their sizes are also given in Table 4.2.

Enumerate. Then, we ran a full enumeration in the full lattice up to depth k, to
generate the target vectors for the slicer. These were again stored in a separate file for
later usage. Note that pruning would reduce the number of targets further, but (1) this
would decrease the success probability of the overall algorithm, and (2) rerandomizing
the lattice basis to get a high success probability would (naively) require running the
costly sieving preprocessing step several times. We therefore restricted experiments to
enumeration without pruning.

Slice. Finally, with the sieved list L and target vectors T as input, we identified the
target t ∈ T corresponding to the shortest vector in the lattice, and for this target we ran
the randomized slicer with 105 trials to estimate the success probability piter of the slicer
in finding the shortest vector. Table 4.2 shows the inverse p−1

iter as well as the average time
for each trial, which together with |T | can then be used to estimate the time for the slicing
as Tslice ≈ |T | · p−1

iter · Titer.
Nested hybrid. We also tested a simple nested hybrid from Section 4.4, with two

successive (non-batched) enumerate–and–slice routines in dimension k = 1. In the first
slicing phase, we chose the total number of iterations such that the size of the output list
matches the size of a directly sieved list for k = 1. The rows k = 1 + 1 in Table 4.2
suggest this approach compares favorably to k = 2.

Conclusions. Although the results in Table 4.2 mainly suggest that these hybrid ap-
proaches may have a large overhead in practice, we stress that as d grows, the time
complexity grows slower than a full sieve. Furthermore, for the slicer we did not use
nearest neighbor techniques or batching to reduce the query times. Also, note that as
0.11d/ log2 d < 2 for d < 128 we do not expect to obtain many (additional) dimensions
for free in dimensions 60 6 d 6 80. The aforementioned reasons can provide some
insight why the speedup was not observed in practice in our experiments.

Code in fplll. As part of this project, we implemented the iterative slicer in fplll
[The19a], and we expect this code to be included in the library soon.

Chapter 5

Gambling at the Ring’s casino:
The zeros-guessing game

This chapter contains joint work with Benne de Weger which has not yet been published
and was inspired by a talk of Daniel J. Bernstein and Tanja Lange.1

5.1 — Introduction

For a random lattice L, short vectors do not seem to possess any special property apart
from being short. In particular, for lattices without an exceptionally small determinant,
no assumption can be made on how many small or even zero coordinates they may have.
On the other hand, in lattice-based cryptography it is often the case that the secret key is
a short vector with relatively many small or zero coordinates (e.g see [HPS98]). In many
cases an attacker will be looking for the secret key as a short vector or part of a short
vector in a lattice (e.g. see [BG14]). Due to its construction, this short vector will contain
some unusually small coordinates. This extra knowledge could serve as an extra tool in
the hands of the attacker.

For example, May and Silverman [MS01] discuss the option of guessing a number of
coordinates, mainly coordinates of the short secret vector which will be zero. By guessing
some of these coordinates, an attacker could decrease the rank of the used lattice, lead-
ing to a potentially faster attack. The efficiency of this method depends on the success
probability of guessing a pattern correctly and the time complexity of the algorithm used
in order to retrieve a short lattice vector. In this chapter we will focus on the “guessing
of patterns”.

The guessing technique is even more effective for lattices which possess a cyclic struc-
ture, meaning that all rotations of a lattice vector also belong to the lattice. Such type of
lattices occur for example in the study of the NTRU problem [HPS98] or the Ring-LWE
problem (see [BCLv19]), making this a very interesting case study. For the rest of this
chapter we focus on such lattices with an underlying cyclic structure.

Let r be the number of zeros to be guessed, which we will take as fixed. We consider
a pattern as a set of indices which presumably point to zero coordinates of a vector.
For example, by referring to the pattern {1, 2, . . . , r} it is implied that the first up to r-

1https://simons.berkeley.edu/talks/successive-minima-type-inequalities

88 CHAPTER 5. GAMBLING AT THE RING’S CASINO

th coordinate of a vector are being guessed to be zero. As a guess is made, a “success
probability” of guessing correctly can be related. Also, a specific pattern could appear
once or more than once in a vector if rotations of the vector are allowed. This fact is
referred as distinct and multiple winners respectively. In [MS01] the following open
problems were mentioned regarding the option of guessing a number of zeros in a secret
vector s:

1. Does the pattern {1, 2, . . . , r} give the lowest success probability among all patterns
of length r?

2. Which patterns of length r achieve the highest success probability among all pat-
terns of length r?

3. Among patterns of length r, does the pattern {1, 2, . . . , r} of consecutive zeros give
the fewest distinct winners?

4. What is the average number of distinct winners over all patterns of length r?
5. What pattern (or patterns) gives the maximum number of distinct winners?

5.1.1 – Contributions. In this chapter we examine combinatorial aspects of guessing
a pattern of zeros in a secret vector as discussed by May and Silverman in [MS01]. We
start by providing further insight into the experimental observation stating that random
patterns seem to behave better than the consecutive zeros pattern. We define what we
call the index of symmetry of a pattern. We discuss the relevance of this notion to some
open problems mentioned in [MS01] as well as its use in aiding the choice of a “good”
pattern.

5.2 — The consecutive zeros pattern

One of the first questions which emerges when one considers the guessing of zeros
game is if the consecutive zeros pattern is a good choice or not. In [MS01] it is mentioned
that experimentally it appears that random patterns possess a higher success probability
over the consecutive pattern. However this is only an experimental observation. We
attempt to make this observation more clear by adding a proven result. We start by
computing the success probability of the consecutive zeros pattern {1, 2, . . . , r} in a binary
vector.

Definition 5.1. Let N ∈ Z>0 and x ∈ ZN2 . We denote by x(k) the k-fold right rotation of
x.

Definition 5.2. Let N,d ∈ Z>0 with N > d. We define

BN(d) := {x ∈ ZN2 with exactly d ones}.

We will use the notation [n] for the set of integers {0, 1, . . . ,n− 1}.

Definition 5.3. Let N,d ∈ Z>0 with N > d and a ∈ BN(d). We define

Pat(a) := {S ⊆ [N] | ∃k ∈ [N] s.t. a(k)
si

= 0 ∀si ∈ S}

Proposition 5.4. Let N,d, r ∈ Z>0 with r 6 N− d and a ∈ BN(d). Then

Pr([r] ∈ Pat(a)) =

1 if r < dN/de

1(
N−1
d−1

)bN−d
r c∑
l=1

(
d

l

)(
N− lr− 1
d− 1

)
(−1)l+1 if r > dN/de.

5.2. THE CONSECUTIVE ZEROS PATTERN 89

Proof. Case r < dN/de: Let a ∈ BN(d). As [r] ∈ Pat(a) requires at least one rotation of
a to contain r consecutive zeros in positions 0, . . . , r − 1, we consider the vector a as a
placement of N−d 0s and d 1s on a circle with N positions. That implies that there will
always exist a block of consecutive zeros with size d(N−d)/de = dN/de−1. Assume on
the contrary that each substring has at most r− 1 6 dN/de− 2 zeros. Together with the
d bounding 1s this covers at most d(dN/de − 1) < N positions out of N contradicting
the assumption.
Case r > dN/de: In this case it is not always guaranteed that [r] ∈ Pat(a). Let a ∈ BN(d),
then

Pr([r] ∈ Pat(a)) =
|{v ∈ BN(d) s.t. [r] ∈ Pat(v)}|

|BN(d)|
.

If for a ∈ BN(d) it holds that [r] ∈ Pat(a), the same holds for all a(k). We define the
equivalence relation ∼ in BN(d) by a ∼ b iff ∃k such that b = a(k). We denote by M a
set of representatives2 of BN(d)/∼. Thus we get

Pr([r] ∈ Pat(a)) = N
|{v ∈M s.t. [r] ∈ Pat(v)}|

|BN(d)|

=
N(
N
d

) |{v ∈M s.t. [r] ∈ Pat(v)}|.

We are left with the task to count the elements in the set A := {v ∈ M s.t. [r] ∈ Pat(v)}.
We do consider again vectors in BN(d) as a placement of N − d 0s and d 1s on a circle
with N positions. For a vector a ∈ BN(d) to belong to A it should possess at least one
block of at least r zeros.
We first consider the “base case” b(N − d)/rc = 1. In this case having more than one
block of at least r zeros is not possible, and thus a vector in A will contain exactly one
block of at least r zeros. A way to count the number of these vectors is the following.
Reserve r zeros, then there are N − d − r zeros and d ones to be placed on a circle of
lengthN− r. There are

(
N−r
d

)
ways to do that. As we are interested in choices which are

rotation invariant we get 1
N−r

(
N−r
d

)
. Then it is left to choose one out of the d blocks of

zeros in the circle with N − r positions and insert the initially reserved block of r zeros.
Hence we end up with |A| = 1

N−r

(
N−r
d

)(
d
1

)
.

Then we consider the case b(N − d)/rc > 1. In order to deal with this case we will
use an inclusion-exclusion type argument. For 1 6 k 6 b(N− d)/rc, we define

mk := |{v ∈ A | v contains exactly k blocks of at least r zeros}|.

This implies that |A| =
∑b(N−d)/rc
k=1 mk. Let 1 6 l 6 b(N − d)/rc. As a first step of our

inclusion-exclusion argument we use the same method as in the “base case” in order to
count the number of vectors containing at least l blocks of at least r zeros. Hence, we
initially reserve l · r zeros. Then there are N − d − lr zeros and d ones to be placed
on a circle of length N − lr. There are 1

N−lr

(
N−lr
d

)
rotation invariant ways to do that.

Then it is left to choose l out of the d blocks of zeros in the circle with N − lr positions
and insert the initially reserved l blocks of r zeros. So we end up with 1

N−lr

(
N−lr
d

)(
d
l

)
choices. However during the process of counting, for l 6 k 6 b(N − d)/rc we double

2In combinatorial terms, the setM contains the binary necklaces of lengthN with exactly d 1s.

90 CHAPTER 5. GAMBLING AT THE RING’S CASINO

counted by a factor of
(
k
l

)
all cases were there are exactly k blocks of at least r zeros.

Therefore it follows that

1
N− lr

(
N− lr

d

)(
d

l

)
=

bN−d
r c∑
k=l

(
k

l

)
mk.

In order to compute the sum ofmk from the weighted sum given above, we consider the
alternating sum

bN−d
r c∑
l=1

(−1)l+1

N− lr

(
N− lr

d

)(
d

l

)
=

bN−d
r c∑
l=1

(−1)l+1
bN−d

r c∑
k=l

(
k

l

)
mk

=

bN−d
r c∑
k=1

(k∑
l=1

(
k

l

)
(−1)l+1

)
mk

=

bN−d
r c∑
k=1

−((1 − 1)k − 1)mk

=

bN−d
r c∑
k=1

mk = |A|

This concludes the proof.

Remark 5.5. For a ∈ BN(d) and small r, namely r < dN/de it was shown that Pr([r] ∈
Pat(a)) = 1. However, we can extend this result to any pattern J with |J| < dN/de. For any
such J this can be done by considering a bijection from BN(d) to BN(d) where the elements at
indices in [|J|] are mapped to the indices in J. This could be considered a slight improvement
of [MS01, Theorem 1] as it gives an exact result for “small” patterns.

In [MS01, Theorem 1] it was shown that for a randomly chosen pattern J of length r
and a ∈ BN(d) it is expected that

Pr(J ∈ Pat(a)) ≈ 1 −

(
1 −

(
N−r
d

)(
N
d

))N. (5.1)

This was also supported by experimental results. As a pattern with a higher success prob-
ability could lead to a faster attack, a natural question arises. Which success probability is
higher: the one in [MS01, Theorem 1] or the one in Proposition 5.4? Unfortunately, due
the complexity of the sum in Proposition 5.4 we were not able to prove a result on this.
Therefore we resort to making the following assumption, which is just a more compact
algebraic reformulation of the comparison between the formula in Proposition 5.4 and
the right part of equation (5.1).

Assumption 5.6. For N,d, r ∈ N with 2 6 d < N and dN
d
e 6 r < N− d it holds that

(
1 −

(
N−r
d

)(
N
d

))N 6
1(
N−1
d−1

) bN−d
r c∑
l=0

(
d

l

)(
N− lr− 1
d− 1

)
(−1)l.

5.2. THE CONSECUTIVE ZEROS PATTERN 91

Figure 5.1: Experimental results on the validity of Heuristic Assumption 5.6. In this example we tookN = 200
and checked the validity for all pairs (d, r) with 2 6 d < N and dNd e 6 r 6N−d. Green points indicate
that the assumption is true whereas blue points indicate that it is false.

We checked the validity of our assumption experimentally for various triplets (N,d, r).
In Figure 5.1 the result of one such experiment is shown. We consider it to be a good
representative for getting an intuition on the validity of our heuristic assumption.

As it is shown in Figure 5.1 the assumption is false on the diagonal r = N−d. However
this is not a problem in practice as we would not try to guess all zeros in a vector anyway.
Therefore we excluded this corner case from our assumption. However the assumption
appears to be false in many cases on the lower boundary of Figure 5.1 as well. This is
a different case as these points could correspond to practical values which an attacker
might decide to use. Hence, in these cases it is not obvious if using the consecutive zeros
pattern or a random pattern is more efficient. This depends on the accuracy of the model
in [MS01, Theorem 1] for the success probability in these particular cases. Experimentally
it appears that blue points only occur for r 6 6. Under this extra restriction Heuristic
Assumption 5.6 was found to be always true for N < 104.

This brings us to the following heuristic result, which follows directly by Proposition
5.4 and the Heuristic Assumption 5.6.

Heuristic result 5.7. Let N,d ∈ Z>0, a ∈ BN(d) and J ⊂ [N] chosen randomly such that
|J| = r with dN

d
e 6 r < N − d. Assuming that [MS01, Theorem 1] accurately predicts the

Pr(J ∈ Pat(a)) and the heuristic assumption 5.6 holds, then

Pr([r] ∈ Pat(a)) 6 Pr(J ∈ Pat(a)).

92 CHAPTER 5. GAMBLING AT THE RING’S CASINO

5.3 — A pattern’s index of symmetry

In this section we define an index of symmetry of a pattern. We attempt to use this
notion in order to gain insight into questions 3 and 5 from the introduction. We do that
by examining the somewhat dual of questions 3 and 5. Namely we ask about multiple
winners instead of distinct winners, as this appears easier to handle. We will also examine
the adequacy of our index of symmetry as a measure aiding in choosing patters with
higher success probability.

5.3.1 – Multiple winners. By multiple winners we refer to the fact that a pattern
may appear more than once in a vector (taking into account rotations). We consider
the problem where we try to minimise the number of multiple winners. A pattern J of
length r may appear k times in a vector a ∈ BN(d) as long as kr − (k − 1) 6 N − d so
k 6 (N − d − 1)/(r − 1). Hence, we cannot expect to minimise the maximum number
of times a pattern can occur in a vector a ∈ BN(d) below this bound. For a pattern J to
occur more than (N−d−1)/(r−1) times in a vector a ∈ BN(d) it might need to be more
symmetric. By that we mean that there exists a rotation of the pattern which partially
overlaps with the pattern. We define

Sr(N) := {{xi}
r
i=1 | xi ∈ [N] and xi 6= xj for i 6= j}.

Let J = {xi}
r
i=1 ∈ Sr(N) and g ∈ ZN. We denote as gJ the rotation of J by g, hence

gJ = {xi + g (mod N)}ri=1 where representatives (mod N) are taken in [N].

Definition 5.8. Let N, r ∈ Z>0 and J ∈ Sr(N). We define the index of symmetry of the
pattern J to be

η(J) := max
g∈ZN\{0}

|gJ ∩ J|

Remark 5.9. The index η(J) of a pattern J does not depend on a specific vector a ∈ BN(d)
but solely on the pattern J.

Proposition 5.10. Let N, r ∈ Z>0 and J ∈ Sr(N) be a pattern. It holds that
r(r−1)
N

6 η(J) 6 r− 1.

Proof. The upper bound follows directly as two patterns can share at most r−1 elements
without being identical. For the lower bound we consider a graph theoretical approach.
Let J = {xi}

r
i=1 ∈ Sr(N) be a pattern and g ∈ ZN\{0}. We ask for a lower bound to

|gJ ∩ J|. But,

|gJ ∩ J| = |{xi + g (mod N)}ri=1 ∩ {xi}
r
i=1|

= |{xi ∈ J | ∃xj ∈ Jwith xi + g ≡ xj (mod N)}|

= |{(xi, xj) ∈ J× J | xj − xi ≡ g (mod N)}|.

Assign the elements of J to the vertices of the complete graph Kr. Each edge of the graph
corresponds to the fact that we can move from an element in ZN to another by adding an
element in ZN. We map each element g ∈ ZN to a color but such that g and −g get the
same color. We consider the following edge colouring of the graph Kr. Color the edge
(xi, xj) according to the color corresponding to xi − xj (mod N). This is well defined as
xi−xj and xj−xi correspond to the same color. It then follows that |gJ∩ J| equals to the

5.3. A PATTERN’S INDEX OF SYMMETRY 93

number of occurrences of the color corresponding to g and η(J) is the maximum among
all colors in the graph. The graph has

(
r
2

)
edges and there are at most d(N−1)/2e colors

being used. Therefore the maximum times a color appears is at least
(
r
2

)
/d(N − 1)/2e

which implies the result.

Remark 5.11. For the consecutive zeros pattern [r] it holds that η([r]) = r−1 showing that
the upper bound is tight. This also provides a good reason why the consecutive zeros pattern
appears to maximize the number of multiple winners. Figure 5.2 provides some indication
that by random sampling of patterns we observe an increase of the multiple winners as the
value of η(J) increases.

2 3 4 5

5

6

7

8

9

10

→ index η(J)

→
m

ax
w

in
ne

rs

min
av.

max

Figure 5.2: Experimental results on the maximum number of winners for (N,d, r) = (19, 4, 6). Patterns
J ∈ Sr(N) are considered in classes according their value η(J). For each such class the graph shows the
minimum, average and maximum of the maximum number of times a pattern in the class can occur in a vector
of BN(d).

5.3.2 – The distribution of patterns according to η(J). Having already defined the
index η(J) of a pattern J, a first question that arises is how are the patterns J ∈ Sr(N)
distributed according to this index. Computing this distribution exactly seems to be a hard
combinatorial problem. However, it is possible to get an approximation using probabilistic
techniques.

Let Z be a random variable modelling the experiment; pick a pattern J ∈ Sr(N) and
compute η(J). We are going to approximate the probability mass function of Z. The in-
dex η(J) was defined as η(J) = maxg∈ZN\{0} |gJ ∩ J| where J = {xi}

r
i=1. The first step

is for some fixed g ∈ ZN\{0} and for some random x ∈ J to define a Bernoulli trial of
whether x is in gJ or not. It follows that the success probability is Pr(x ∈ gJ) = r−1

N
.

Next, let Y be a random variable modelling the experiment; choose a fixed g ∈ ZN\{0}
and a random pattern J ∈ Sr(N), then compute |gJ ∩ J|. The random variable Y is actu-
ally counting the number of successes for repeating the aforementioned Bernoulli trial r
times. If these Bernoulli trials were independent we could conclude that Y follows a bi-
nomial distribution. Therefore, this is the point where from an exact model we will move
to an approximation by making the assumption that these Bernoulli trials are actually
independent. Under this assumption we can deduce that Pr(Y = k) =

(
r
k

)
pk(1 − p)r−k

where p = (r− 1)/N.

94 CHAPTER 5. GAMBLING AT THE RING’S CASINO

By the definition of the index η(J) we get that Z = max16i6N−1 Yi where Yi ∼ Y
and each Yi corresponds to an intersection |gJ∩ J| implied by an element in g ∈ ZN\{0}.
However, the random variable Z could be considered as Z = max16i6d(N−1)/2e Yi rather
than Z = max16i6N−1 Yi. This is due to the fact that for a pattern J and g ∈ ZN it holds
that |gJ ∩ J| = |(−g)J ∩ J|. Therefore half of the random variables Yi initially considered
in the definition of Z would be redundant. So, for the cumulative distribution function
of Z we get that

Pr(Z 6 m) =

dN−1
2 e∏
i=1

Pr(Yi 6 m)

=

(
m∑
k=0

(
r

k

)
pk(1 − p)r−k

)dN−1
2 e

. (5.2)

Hence, finally we can get an approximation of Pr(Z = m) using the fact that Pr(Z =
m) = Pr(Z 6 m) − Pr(Z 6 m− 1).

This should only be considered as a simplified rough approximation of the distribution
of patterns according to the index η(J). As we already mentioned, we made an assump-
tion on the random variable Y in order to be able to draw a conclusion. However we
cannot predict how much that affects the quality of the approximation neither if it is even
possible to get an exact formula if this assumption is not made. Experimental results
testing the presented model are shown in Figure 5.3.

5.3.3 – Using η(J) in practice. In this section we provide experimental results sup-
porting the definition and use of the index η in practice. A question already mentioned
in Section 5.3.2 is how patterns J of a specific length r in dimension N are distributed
according to their value η(J). For the experiments we used most values of (N, r) from
the experiments of [MS01, Section 6] and an extra value ofN which is closer to currently
used parameters, combined with some values r >

√
N. We selected r >

√
N in order to

ensure that the bound r(r− 1)/N is greater than 1.
Figure 5.3 shows that patterns are mainly concentrated towards the lower bound

of η(J), namely r(r−1)
N

. So, sampling patterns randomly will result in patterns with a
relatively small index η. In addition Figure 5.3 provides good evidence that additionally
to the upper bound given in Proposition 5.10 being tight, also the lower bound of η(J)
appears to be quite tight. However, we should mention that in practice we observe only
patterns with η(J) up to roughly r/2 instead of r− 1.

Finally, Figure 5.3 presents some preliminary experimental results on the accuracy
of the model adopted in Section 5.3.2 in order to describe the distribution of patterns
according to η(J). A first conclusion could be that as r decreases the accuracy of the
model improves. Of course this is only an experimental observation. The reason for our
model not being exact is an assumption we made in Section 5.3.2, namely that the random
variable Y follows a binomial distribution. The random variable Y models |gJ ∩ J| for a
fixed g ∈ ZN\{0} and a random pattern J ∈ Sr(N). We tested that assumption separately
and one set of results is shown in Figure 5.4.3 The results in Figure 5.4 suggest that

3We performed the experiment for N = 167, 251, 347 but we only show the case N = 251 as the other
cases are similar.

5.3. A PATTERN’S INDEX OF SYMMETRY 95

2 6 10 14 18 22 26

0

0.1

0.2

0.3

0.4

0.5

→ index η(J)

→
Fr

eq
ue

nc
y

r = 20
r = 25
r = 30
r = 35
r = 40
r = 45

(a) Distributions forN = 167.

2 4 6 8 10 12 14 16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

→ index η(J)

→
Fr

eq
ue

nc
y

r = 10
r = 15
r = 20
r = 25
r = 30
r = 35

(b) Distributions forN = 251.

2 6 10 14 18 22

0

0.1

0.2

0.3

0.4

0.5

→ index η(J)

→
Fr

eq
ue

nc
y

r = 25
r = 30
r = 35
r = 40
r = 45
r = 50

(c) Distributions forN = 347.

2 4 6 8 10 12 14 16

0

0.1

0.2

0.3

0.4

0.5

0.6

→ index η(J)

→
Fr

eq
ue

nc
y

r = 30
r = 35
r = 40
r = 45
r = 50
r = 55

(d) Distributions forN = 761.

Figure 5.3: Experimental results for the distribution of patterns according to the index η(J). For each pair
(N, r) we sampled 10, 000 random patterns of length r in dimensionN and plotted the observed distribution
(full lines). The dashed lines show the approximation of the distribution considered in Section 5.3.2 for some
of the pairs (N, r).

for smaller values of r the binomial model matches quite closely the behaviour of the
random variable Y. However for bigger r there are significant deviations. This behaviour
could explain that of the approximations shown in Figure 5.3. Finally we notice that in
Figure 5.4 the red curves corresponding to the binomial model seem to have a peak at
the same point as the black ones.

Apart from the distribution of patterns according to the index η, an interesting ques-
tion is how the success probability of a pattern J relates to its value η(J). Patterns with
higher success probability could potentially speed-up attacks. In order to investigate this
behaviour we performed the following experiments.

For many of the triplets (N,d, r) used in [MS01, Section 6] we sampled 10, 000 ran-
dom patterns of length r and 10 vectors from BN(d). Similarly to [MS01], for each vector
we counted how many patterns out of all observed patterns J with η(J) = k occurred in

96 CHAPTER 5. GAMBLING AT THE RING’S CASINO

(a) r = 10. (b) r = 30.

(c) r = 100.

Figure 5.4: Experimental results comparing the probability mass function of the random variable Y defined in
Section 5.3.2 to the suggested binomial model. For this experiment we choseN = 251 and r = 10, 30, 100.
The black lines indicate the experimentally observed distribution whereas the red ones the suggested binomial
model.

the vector. For each triplet (N,d, r) and value k of the index η this resulted in 10 pairs of
index-value–probability. We finally considered the average amongst the 10 pairs as the
average success probability of a pattern J with η(J) = k. As this computation was run on
a 48-core machine we could run this experiment in parallel 48 times. The average of all
48 results is shown in Figures 5.5a, 5.5b, 5.5c.

As the above experiments do only approximate the true behaviour of the success prob-
ability of patterns according to the index η, we also performed some experiments with
small parameters. In these cases we were able to go through all patterns of length r
instead of just a fraction of them and compute their exact success probability by iterat-
ing through all vectors in BN(d). The result of only one of the “small” experiments we
performed is shown in Figure 5.5d.

Starting with easiest experiment, i.e. Figure 5.5d we can see that the success proba-
bility behaves almost always monotonically (apart from the case r = 4 and η(J) = 1, 2).
This “almost” monotonic behaviour turned out to occur in more such “small” experiments
which we performed with (N,d) = (13,d) and (N,d) = (11,d) for several values of d.
We do not include all of these results as they all point to the same behaviour.

However, if we examine Figures 5.5a, 5.5b, 5.5c we cannot observe the same nice
monotonic behaviour where the maximum is reached for the smallest value of η(J). For

5.3. A PATTERN’S INDEX OF SYMMETRY 97

2 4 6 8 10 12 14 16 18 20
0

0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8
0.9

1

→ index η(J)

→
Su

cc
es

s
Pr

ob
ab

ili
ty

r = 15
r = 20
r = 25
r = 30
r = 35

(a) Success prob. for (N,d) = (167, 30).

1 2 3 4 5 6 7 8 9 10 11 12

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

→ index η(J)

→
Su

cc
es

s
Pr

ob
ab

ili
ty

r = 10
r = 15
r = 20
r = 25

(b) Success prob. for (N,d) = (251, 72).

3 5 7 9 11 13 15

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

→ index η(J)

→
Su

cc
es

s
Pr

ob
ab

ili
ty

r = 20
r = 25
r = 30
r = 35

(c) Success prob. for (N,d) = (347, 64).

1 2 3 4 5 6 7 8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

→ index η(J)

→
Su

cc
es

s
Pr

ob
ab

ili
ty

r = 3
r = 4
r = 5
r = 6
r = 7
r = 8
r = 9

(d) Success prob. for (N,d) = (13, 4).

Figure 5.5: Experimental results for the success probability of a pattern J with regard to its value η(J). The
plotted points correspond to the average success probability observed among a set of patterns with the same
value of the index η.

the higher values of (N,d) used in these experiments the success probability appears
to behave more erratically. Even though, there are still some conclusions which can be
drawn. It seems that for each value of r the middle section of the curve corresponding
to that value does not deviate a lot. Also, in many cases we notice a peak towards the
highest values of η(J).

The results shown in Figures 5.5a, 5.5b, 5.5c are approximations of the truth and
therefore they could be not completely accurate. Extrapolating from observations like
the ones in Figure 5.5d (monotonic behaviour) appears to be a dangerous exercise. So,
what should an attacker do if he wants to choose patterns J with regard to their value
η(J) and maximize the success probability?

One strategy would be to perform an experiment like the ones shown in Figures 5.5a,
5.5b, 5.5c, 5.5d in order to create a profile of the behaviour of the success probability
with regard to the index η. It seems that the curves in Figure 5.5 are not completely flat

98 CHAPTER 5. GAMBLING AT THE RING’S CASINO

for “longer” patterns, thus the index η(J) could be of use in the choice of patterns. For
example in Figure 5.5a for r = 25 it appears that patterns with η(J) = 13 have on average
a clearly higher success probability than the rest. Computing the value η(J) takes time
polynomial inN and hence (depending on the desired accuracy of the profile) this should
take only negligible time compared to a lattice attack which would have time complexity
exponential in N. However, creating a profile of the behaviour of the success probability
with regard to the index η can be considered a trade-off in a more relaxed setting. This is
due to the fact that such a profile would only have to be computed once and then it can
be reused in any number of attacks which use the same parameters. Finally, it should be
pointed out that computing such profiles is independent of the lattice and for a guessed
pattern of length r the dimension of the lattice is reduced from N to N− r.

An advantage of this method to just finding some specific pattern is that in this way we
identify a whole class of patterns with a presumably higher success probability compared
to a randomly chosen pattern. Therefore it will be harder for a lattice creator to generate
a lattice whose shortest vector will contain none of the patterns in such a class.

As an attacker, another take-away point of Figure 5.5 is that for “small enough” values
of r it appears that the success probability of a pattern J is independent of η(J) and close
to 1. Therefore, an attacker can guess a “small enough” pattern for free: i.e. without a
loss in the success probability of the lattice attack he will be running. Also, this seems
to be independent of η(J) thus in this case the attacker does not have to bother with it.
Once the length of the pattern grows the success probability decreases, meaning that the
lattice attack will have to be repeated for various “guessed” patterns. This actually de-
scribes a success probability-time trade-off. Of course, whether the overall performance
can be improved depends on the performance of the chosen lattice attack and the suc-
cess probability induced by the guessed patterns. In addition, guessing patterns could
be viewed as a means of achieving a success probability-memory trade-off. If there are
hardware limitations (i.e. available memory) an attack could be made feasible, at the cost
of a smaller success probability.

Chapter 6

Exploiting generalised Ring-LWE
lattices

This chapter contains work that is still work in progress.

6.1 — Introduction

The NTRU cryptosystem introduced by Hoffstein–Pipher–Silverman [HPS98] is one
of the most well-known lattice-based cryptography schemes. Thus, it naturally attracted
a lot of cryptanalytic attention. One of the research lines explored in the past few years
is the so called overstretched NTRU. This line of research focuses on the study of NTRU
with a “large” modulus q. The motivation behind this line of research is that most attacks
against NTRU are better when q is large than when q is small.

The first published works investigating this path were by Albrecht–Bai–Ducas [ABD16]
and Cheon–Jeong–Lee [CJL16] in 2016. In these works it was shown that if the modu-
lus q is “large” enough then the underlying algebraic structure of NTRU can be used
in order to improve upon already existing attacks at the time. Later, in 2017 Kirchner–
Fouque [KF17] showed that the existence of an unusually dense sublattice (a sublattice
of large dimension and small determinant) in the NTRU lattice was the key element for
“better” lattice-basis reduction attacks in the regime of “large” q. Improving upon [KF17],
Ducas–van Woerden in [DW21] provided improved asymptotic and concrete estimations
of what is “large” q.

Therefore, what should be clarified next is the meaning of “large” modulus q. We
will follow the same definitions adopted by Ducas–van Woerden in [DW21] for this no-
tion. Namely, the standard regime (not “large” modulus q) is distinguished from the
overstretched regime (“large” modulus q) by classifying according to which event occurs
first during strong basis reduction (like BKZ [Sch87]):

– Secret Key Recovery (SKRκ): Let 0 6 κ < d be a fixed position, a vector as short
as a secret key vector is inserted in the basis at position κ.

– Dense Sublattice Discovery (DSDκ): Let 0 6 κ < d be a fixed position, a vector
strictly longer than the secret key but belonging to the dense (secret) sublattice
generated by the secret key is inserted in the basis at position κ.

In their work [KF17] Kirchner and Fouque showed that asymptotically q > n2.783+o(1)

is already “large” enough (i.e. overstretched) for ternary secrets. However recently Ducas

100 CHAPTER 6. EXPLOITING GENERALISED RING-LWE LATTICES

and van Woerden in [DW21] brought this down to q > n2.484+o(1) and also provided a
concrete analysis of where the fatigue point lies (i.e. the value of q separating the standard
regime from the overstretched regime).

The Ring-LWE problem is closely related to NTRU and is also used as a building block
in modern lattice-based cryptography. Thus the question arises, if the overstretched con-
cept and corresponding analysis can be applied to the Ring-LWE problem. According
to [KF17] the aforementioned analysis is possible for NTRU due to the inherent property
of its lattice to contain an unusually dense sublattice of large dimension. However, the
Ring-LWE problem is mainly modelled in literature by some lattice which does not pos-
sess this crucial property. The assumption that this is the only lattice modelling Ring-LWE,
led to some claims (e.g. see [KF17, Section 7]) stating that Ring-LWE cannot get affected
by attacks relying on the existence of an unusually dense sublattice. In this chapter we
revisit such claims and try to provide evidence of whether they are true or not.

6.1.1 – Contributions. In this chapter we adopt a suggestion made in [BCLv19] by
Bernstein–Chuengsatiansup–Lange–Vredendaal which leads to a series of lattices mod-
elling Ring-LWE. These lattices are of increasing dimension and symmetry. This under-
lying symmetry allows the gradual formation of a dense sublattice of relatively large di-
mension. Hence, the fertile ground for an overstretched case analysis is created.

Initially, we examine the asymptotic requirement (block size) for a DSD event to occur.
For our analysis we mainly adopt the techniques from [DW21]. We differ from [DW21]
at the heuristic assumption used to model the profile of the basis at the point of detection.
In particular, instead of using the ZGSA assumption we opt for the GSA assumption as it
appears to be more suitable for the case of Ring-LWE (Figure 6.2). Finally, we compare
the asymptotic estimate implied by the DSD analysis to the asymptotic requirement for a
SKR event in order to decide the existence of a fatigue point in the case of Ring-LWE. We
conclude that under a specific model of comparison for the cost of SKR and DSD events,
there does not exist a fatigue point for the case of Ring-LWE. We further support our
conclusion by experimental results.

Furthermore, we briefly examine (experimentally) the idea from [BCLv19] within a
second framework. Namely, we examine how this larger set of lattices modelling Ring-
LWE could in practice affect the performance of lattice-basis reduction attacks. Using a
modification of the implementation from [DW21] we ran experiments where we tried to
solve Ring-LWE instances while considering many lattices modelling the same Ring-LWE
instance. Our experiments indicate that the best attack performance (success probability,
block size) is not reached for the commonly used lattice of rank 2n+ 1.

6.2 — Preliminaries

6.2.1 – Notation. We adopt the already introduced notation from Chapter 1 for basic
notions regarding lattices and lattice problems. As lattices are groups, sublattices are
defined as subgroups contained in the full lattice and maintaining the additive group
structure. For a basis B and i ∈ {0, 1, . . . ,d − 1} we define πi as the projection onto the
orthogonal complement of {b0, . . . ,bi−1} . The Gram–Schmidt vectors b∗0 , . . . ,b∗d−1 are
defined as b∗i := πi(bi). The sequence (‖b∗i‖)

d−1
i=0 is called the profile of a basis. We

recall that Vol(L) =
∏d−1
i=0 ‖b∗i‖. We write B[l:r) for the matrix [πl(bl), . . . ,πl(br−1)],

and denote the projected sublattice L(B[l:r)) as L[l:r) when the basis is clear from the

6.2. PRELIMINARIES 101

context. If l = 0, there is no projection involved, thusL[0:r) is just the sublattice generated
by [b0, . . . ,br].

6.2.2 – The Ring-LWE problem and its lattices. Let q be a prime and let f(X) ∈
Z[X] be an irreducible polynomial of degree n. We set R = Z[X]/〈f(X)〉 and Rq =
Zq[X]/〈f(X)〉. In order to ease the exposition we will consider the specific case f(X) =
Xn + 1 with n = 2l, known as the 2n-th cyclotomic polynomial.

Definition 6.1 (The Ring-LWE Problem). Let a, e ∈ R with “small” coefficients1, sampled
according to some distributions χ1 and χ2. Let G be a uniformly random element of Rq and
A ∈ Rq such that aG+ e = A in Rq. Given, G,A find a.

This problem can be modelled over R using some lifting from Rq such as q A −G
0 1 0
0 0 1

 r
t
a

 =

 e
t
a

 ,

for some r ∈ R. Also, in this case t ∈ R is set to 1. As a next step, one could further
model the problem over Z. In order to do so, it is useful to consider the multiplication
matrix M(g) of a g ∈ R, i.e. the j-th column ofM(g) is formed by the coefficients of xjg.
Consider the lattice generated by the columns of the following (2n+1)×(2n+1) matrix: qIn A M(−G)

0 1 0
0 0 In

 (6.1)

where A is the coefficient vector of A. Then a solution to the Ring-LWE problem is
given by a short vector in this lattice. This is a canonical choice for a lattice modeling
Ring-LWE, in the spirit of [BG14], but one could also use more “generalised” lattices of
dimension up to 3n. For example, one can consider the matrix representing the “natural”
homogenisation over Z (6.2) , not taking t ∈ Z but t ∈ Zn: qIn M(A) M(−G)

0 In 0
0 0 In

 . (6.2)

However, this is merely one choice for t ∈ Zn. More lattices can be obtained by taking t ∈
Zν with ν ∈ {1, . . . ,n}. In this way, the number of short vectors representing a solution
to the Ring-LWE problem is increasing with ν, which may help in cryptanalysis. The
“extra” vectors representing a solution to the Ring-LWE problem correspond to multiples
of (e, t,a) by a “small” element in R (i.e. xj). This implies the use of a more structured
lattice at the cost of a higher dimension. If we wished no extra structure in the used
lattice we could just use one column out of the middle block of the basis matrix (6.2).
Hence, the choice of ν can offer a trade-off between the dimension and the amount of
structure in the lattice modelling Ring-LWE. This idea was described in [BCLv19, Section
6.3]. Hence, we give the following definition.

1Here “small” usually refers to some set like {0,±1}.

102 CHAPTER 6. EXPLOITING GENERALISED RING-LWE LATTICES

Definition 6.2. Let (n,q,G,A,a, e) be a Ring-LWE instance and ν ∈ {1, . . . ,n}. We define
the rank 2n+ ν Ring-LWE lattice as

LG,A,q,ν :=

 qIn M(A)[0:ν) M(−G)
0 Iν 0
0 0 In

 · Z2n+ν, (6.3)

and its rank ν (secret) dense sublattice by:

La,e := Ba,e · Zν ⊂ LG,A,q,ν, where Ba,e :=

 M(e)[0:ν)
Iν

M(a)[0:ν)

 .

For the ease of exposition we will denote a random column of Ba,e as (e|t|a). The
basis Ba,e is expected to be close to orthogonal and hence the Hadamard bound 6.10 can
provide a “good” approximation of Vol(La,e).

Remark 6.3. Instead of choosing the first ν columns of M(A) in order to define LG,A,q,ν,
one could also make a random choice of ν columns of M(A). We chose to use the first ν
columns of M(A) in the definition of LG,A,q,ν for the ease of exposition.

6.2.3 – Useful definitions, results and assumptions. We start by mentioning some
commonly adopted heuristic assumptions in the study of lattices and lattice basis re-
duction which were introduced in Section 1.2. In particular, we will use the Gaussian
heuristic 1.18 and the Geometric Series Assumption 1.20. We also recall the definition of
a q-ary lattice.

Definition 6.4 (q-ary lattice). A lattice L of dimension d is called q-ary if for some q > 0
we have

qZd ⊆ L ⊆ Zd.

Assumption 6.5 (ZGSA). Let B be a basis of a (2n + ν)-dimensional q-ary lattice L with
n q-vectors. After BKZ-β reduction, the profile has the following shape

‖b∗i‖ =

q if i 6 n−m
√
q α

(n−i)
β if n−m < i < n+m

1 if i > n+m

(6.4)

where αβ = (β/2πe)1/(β−1) and m = 1
2

log(q)
log(αβ)

.

Heuristic assumption 6.5 is the analogue of a similar assumption about NTRU. We
refer to [HG07, Section 3.1] and [DW21, Section 2.3] for a more detailed description.
The version regarding NTRU was introduced in [DW21] under the name “ZGSA” in order
to emphasise the Z-like shape of it. Of course, as it can be seen in Figure 6.1 it is not
exactly a Z shape, but we decide to keep the name for the uniformity of notation.

Remark 6.6. The value of m in Heuristic assumption 6.5 can exceed n for big “enough”
blocksizes β. This would break the “Z” shape of the profile, and lead to a profile which would
be closer to the prediction of the GSA instead of the ZGSA.

6.2. PRELIMINARIES 103

0 50 100 150 200 250

0

2

4

6

8

10

→ index i

→
lo

g(
‖b
i
‖)

(a) ν = 1.

0 100 200 300 400

0

2

4

6

8

10

→ index i

→
lo

g(
‖b
i
‖)

(b) ν = 128.

Figure 6.1: An example of the basis’ profile for LG,A,q,ν after BKZ reduction with blocksize 10. The shown
example corresponds to n = 128, q = 769 and ν = 1, 128.

Definition 6.7 (BKZ Events). For a progressive BKZ-β run (the block size β increases pro-
gressively) on a Ring-LWE lattice LG,A,q,ν with dense sublattice La,e we define two events:

1. Secret Key Recovery (SKR): The first time one of the secret keys (e|t|a) is inserted
into the basis.

2. Dense Sublattice Discovery (DSD): The first time a vector v ∈ La,e strictly longer
than the secret key(s) is inserted into the basis.

We further specify SKRκ andDSDκ when the insertion takes place at position κ in the basis.

Heuristic result 6.8 (2016 Estimate [ADPS16]). Let L be a lattice of dimension d and v ∈
L be an unusually short vector ‖v‖ � gh(L). Then under the Geometric Series Assumption
BKZ recovers v if √

β/d ‖v‖ < α(2β−d−1)/2
β Vol(L)1/d, (6.5)

where αβ = (β/2πe)1/(β−1).

Lemma 6.9 (Sublattice Volume [DW21]). Let L be a d-dimensional lattice with basis
b0, . . . ,bd−1, and consider the sublattice L[0:s). For any n-dimensional sublattice L ′ ⊂ L

we have

Vol(L[0:s) ∩ L ′) 6 Vol(L ′)

min
J

∏
j∈J
‖b∗j ‖

−1

, (6.6)

where k := dim(L[0:s) ∩ L ′) and J ranges over the (n− k)-size subsets of
{s, . . . ,d− 1}.

Finally we recall the Hadamard bound.

Proposition 6.10 (Hadamard bound). Let B be ad×d real matrix with columnsb0, . . . ,bd−1

then

| det(B)| 6
d−1∏
i=0

‖bi‖

104 CHAPTER 6. EXPLOITING GENERALISED RING-LWE LATTICES

6.3 — Can Ring-LWE get overstretched?

6.3.1 – Dense sublattice detection for Ring-LWE. In order to estimate the minimum
block size β at which a DSD event occurs in LG,A,q,ν, we are going to imitate the analysis
of [DW21]. Thus, the first step is to adopt the following claim.

Claim 6.11 (DSD-PT). A tour of BKZ-β triggers the DSD event for LG,A,q,ν if

‖πn+l−β(v)‖ < ‖b∗n+l−β‖, (6.7)

where v is a shortest vector of LG,A,q,ν
[0:n+l) ∩ La,e for some 0 < l 6 n+ ν.

This claim is the analogue of a similar claim used about NTRU in [DW21] and provides
a quantification of when a DSD event is triggered. Hence, we are left with the task of
estimating the minimum β for which the inequality (6.7) holds. Following the analysis
of [DW21] the right hand side (i.e. ‖b∗n+l−β‖) could be estimated by the (Z)GSA. On
the other hand, the ‖πn+l−β(v)‖ can be upper bounded by Minkowski’s bound. In order
to use Minkowski’s bound, the volume of LG,A,q,ν

[0:n+l) ∩L
a,e is bounded using the following

corollary of Lemma 6.9.

Corollary 6.12. Let LG,A,q,ν be a Ring-LWE lattice with dense sublattice La,e of dimension
ν. If dim(LG,A,q,ν

[0:n+l) ∩ La,e) = k for some l > 0 then

Vol(LG,A,q,ν
[0:n+l) ∩ La,e) 6 Vol(La,e)

2n+ν−1∏
j=2n+k

‖b∗j ‖

−1

. (6.8)

In order to make use of Corollary 6.12 an estimation of dim(LG,A,q,ν
[0:n+l) ∩L

a,e) is needed.

This dimension does not rely only on the lattice LG,A,q,ν but also on the basis B of it being
used, as it considersLG,A,q,ν

[0:n+l) , which is basis-dependent. As BKZ runs, it modifies the basis

of LG,A,q,ν and hence also L
G,A,q,ν
[0:n+l) . Therefore we can conclude that dim(LG,A,q,ν

[0:n+l) ∩
La,e) could vary as BKZ runs. Our goal is to use Corollary 6.12 for the moment at which
BKZ detects a vector in La,e for the first time. We will make the assumption that just
before the detection BKZ will have “mixed” the initial basis vectors to a point that they
look like “random” vectors compared to La,e.

Therefore, similarly to [DW21], we will assume that the span of the first 2n vectors of
the basis and that of La,e behave like random 2n and ν dimensional spaces accordingly.
Therefore their intersection is expected to be trivial with high probability in the (2n+ν)-
dimensional space. Hence, if l 6 n we can conclude that dim(LG,A,q,ν

[0:n+l) ∩ La,e) = 0 and

if l > n we get dim(LG,A,q,ν
[0:n+l) ∩ La,e) = l− n.

We performed some preliminary experiments in order to verify this estimation. We
varied the parameter l and computed the dimension of the intersection of LG,A,q,ν

[0:n+l) with
the secret sublattice La,e. For l < n we observed a series of zeros. Then at roughly l = n
we noticed the first non-trivial intersection. From that point on, as l was increasing the
dimension of the intersection was increasing. Usually increasing l by 1 increased the
dimension of the intersection by 1. In some cases increasing l by 1 would increase the
dimension of the intersection by 2 but then in the next step the dimension would stay

6.3. CAN RING-LWE GET OVERSTRETCHED? 105

the same, “balancing” the overall increase of the dimension. These experiments seem to
match our suggested model.

We summarise our claim in the following heuristic assumption.

Assumption 6.13. Let LG,A,q,ν be a Ring-LWE lattice with dense sublattice La,e of di-
mension ν. At the stage when BKZ detects a vector in La,e for the first time, it holds that
dim(LG,A,q,ν

[0:n+l) ∩ La,e) = max(l− n, 0).

Therefore we are interested in the cases n < l 6 n+ ν.

Heuristic result 6.14. Let (n,q,G,A,a, e) be a Ring-LWE instance with parameters q =
Θ(nQ) and ‖(e|t|a)‖ = O(nS). For 1 < Q and 0 < S 6 1, the BKZ algorithm with block
size β = Bn applied to LG,A,q,ν triggers a DSD event if

B =
2

1 + Q− 2S
+ o(1). (6.9)

This is the asymptotically minimum block size for 1 6 ν 6 n, and is attained at ν = 1.

Proof. Equation (6.7) provides a sufficient condition for a DSD event to occur. Therefore,
following the analysis in [DW21] we will estimate ln ‖πn+l−β(v)‖ and ln ‖b∗n+l−β‖. Set
l = Ln and ν = Vn .
Step 1. We start by estimating ln ‖πn+l−β(v)‖:

ln ‖πn+l−β(v)‖ ≈ ln

√
β

n+ l
+ ln ‖v‖

=
1
2

ln
B

1 + L
+ ln ‖v‖

= ln ‖v‖+O(1).

In order to bound ln ‖v‖ we use Theorem 1.15:

ln ‖v‖ = ln
∥∥∥λ1

(
L
G,A,q,ν
[0:n+l) ∩ La,e

)∥∥∥
6

1
2

ln(l− n) +
1

l− n
ln Vol

(
L
G,A,q,ν
[0:n+l) ∩ La,e

)
(by Cor. 6.12)

6
1
2

ln(l− n) +
1

l− n

ln Vol(La,e) − ln

2n+ν−1∏
j=n+l

‖b∗j ‖

 .

For ln Vol(La,e) we use the Hadamard bound and thus we get

ln ‖v‖ 6 1
2

ln(l− n) +
1

l− n

Sν lnn−

2n+ν−1∑
j=n+l

ln ‖b∗j ‖+O(n)

 (6.10)

6

(
1
2
+

SV

L− 1

)
lnn−

1
(L− 1)n

2n+ν−1∑
j=n+l

ln ‖b∗j ‖+O(1). (6.11)

106 CHAPTER 6. EXPLOITING GENERALISED RING-LWE LATTICES

At this point the analysis cannot follow the same path as in the case of NTRU. In particular,
if we were to continue the analysis as in [DW21] then we should use the ZGSA in order
to estimate the sum of ln ‖b∗j ‖. However for the Ring-LWE case the summation starts at
j = n + l with l > n which leads to 2n < j. According to the ZGSA for n +m 6 i it
holds that ln ‖b∗i‖ = 0. As we have assumed a “Z” shape for the profile which implies that
m < n, and that 2n < jwe conclude thatm+n < 2n < j. Therefore, the sum of ln ‖b∗j ‖
in (6.11) will be equal to zero. The main problem implied by a trivial sum over ln ‖b∗j ‖ is

that it actually means that Corollary 6.12 gives a uniform bound to Vol(LG,A,q,ν
[0:n+l) ∩L

a,e)

which is independent of l, thus not a bound that can be used to determine the best value
(some preliminary experiments verify this). Such a weak bound leads to a loose analysis
and therefore it is not useful.

Apart from not being useful, using the ZGSA assumption for the analysis of DSD in
Ring-LWE would also not be realistic. This is illustrated by our experimental results (see
Figure 6.2). According to our experiments the profile of the basis at the point of detection
follows the GSA assumption model instead of the ZGSA assumption model in that there
are no flat parts. Hence, we will continue our analysis under the GSA assumption. Thus
equation (6.11) gives that

ln ‖v‖ 6
(

1
2
+

SV

L− 1

)
lnn−

1
(L− 1)n

2n+ν−1∑
j=n+l

ln ‖b∗j ‖+O(1)

6

(
1
2
+

SV

L− 1

)
lnn

−
1

(L− 1)n

2n+ν−1∑
j=n+l

[(
Q

2 + V
+

2 + V

2B
−

j

Bn

)
lnn− jO

(
1
n

)]
+O(1)

6

(
1
2
+

SV

L− 1

)
lnn−

1 + V− L

L− 1

(
Q

2 + V
−
L+ 1
2B

+ o(1)
)

lnn+O(1)

6

[
1
2
+

SV

L− 1
−

1 + V− L

L− 1

(
Q

2 + V
−
L+ 1
2B

)
+ o(1)

]
lnn+O(1).

Step 2. Estimating ln ‖b∗n+l−β‖.
Estimating this quantity can be done by directly applying the GSA:

ln ‖b∗n+l−β‖ = ln
(
qn/(2n+ν)α

(2β−2l+ν−1)/2
β

)
=

n

2n+ ν
lnq+

2β− 2l+ ν− 1
2

lnαβ

=

(
Q

2 + V
+

V− 2L
2B

+ 1
)

lnn+O(1) (6.12)

as lnαβ = lnn
Bn

+O(1
n
).

Step 3. Comparing the estimations from Step 1 and Step 2.

6.3. CAN RING-LWE GET OVERSTRETCHED? 107

0 50 100 150 200

0

2

4

6

8

→ index i

→
lo

g
‖b
i
‖

ν = 42
ν = 48
ν = 54
ν = 60

(a) Profiles for q = 40009.

0 50 100 150 200

0

2

4

6

8

→ index i

→
lo

g
‖b
i
‖

q = 10007
q = 40009
q = 75011
q = 100003

(b) Profiles for ν = 64.

Figure 6.2: Experimental results on the profile of the basis at the point a DSD event occurs. We ran progressive
BKZ with 8 tours on Ring-LWE lattices with n = 64 and for several values of q and ν. The secret and error
distributions for all instances were chosen to be the Gaussian with σ2 = 2

3 . The progressive BKZ was allowed
to use a maximum block size min(n+ν, 60). For each pair (q,ν) we tried 20 instances. Each plot represents
a randomly chosen profile, out of those cases where DSD occurred before SKR. In all cases the profiles were
similar, that is why show only one randomly chosen.

So, considering equation (6.7), a sufficient condition to be satisfied asymptotically is,

1
2
+

SV

L− 1
−

1 + V− L

L− 1

(
Q

2 + V
−
L+ 1
2B

)
6

Q

2 + V
+

V− 2L
2B

+ 1⇒

(2 + V)(L2 − 2L+ 2V+ 1)
(2 + V)(L− 1 − 2SV) + 2VQ

6 B (6.13)

under the condition that the denominator is positive, i.e. S − Q/(2 + V) < (L − 1)/2V.
Under this condition and 0 < V 6 1 and 1 6 L 6 1 + V we can minimize the left hand
side of inequality (6.13) as a function of V and L. We set

fQ,S(V,L) =
(2 + V)(L2 − 2L+ 2V+ 1)
(2 + V)(L− 1 − 2SV) + 2VQ

and study this function in the aforementioned domain. It turns out (see Lemma 6.15)
that

2
1 + Q− 2S

< fQ,S(V,L) (6.14)

and fQ,S(V,L) approaches the lower bound as V→ 0+.

108 CHAPTER 6. EXPLOITING GENERALISED RING-LWE LATTICES

Lemma 6.15. Let

fQ,S(V,L) =
(V+ 2)

(
L2 − 2L+ 2V+ 1

)
(V+ 2)(L− 2SV− 1) + 2QV

on the domain 0 < V 6 1, 1 6 L 6 1 + V, with the denominator being positive, and with
0 < S 6 1, Q > 1. For all Q, S,V,L with the conditions above, we have

fQ,S(V,L) >
2

1 + Q− 2S
,

where the inequality is strict.

Proof. We write L = 1 + xV, where 0 6 x 6 1. Then we get

fQ,S(V, 1 + xV) =
(V+ 2)(x2V+ 2)

2Q− (V+ 2)(2S− x)
,

where in numerator and denominator a factor V has conveniently dropped out. Clearly
we have

fQ,S(V, 1 + xV) >
2(V+ 2)

2Q− (V+ 2)(2S− 1)
,

and
d

dV

(
2(V+ 2)

2Q− (V+ 2)(2S− 1)

)
=

4Q
(2Q− (V+ 2)(2S− 1))2

is positive, so

fQ,S(V, 1 + xV) >
2(V+ 2)

2Q− (V+ 2)(2S− 1)

∣∣∣∣
V=0

=
2

1 + Q− 2S
.

Clearly this lower bound is indeed reached as a limit value for fQ,S(V,L) .

Remark 6.16. In Heuristic result 6.14 we chose to focus on Ring-LWE instances with q =
Θ(nQ) and ‖(e|t|a)‖ = O(nS), where 1 < Q and 0 < S 6 1. This is due to mainly two rea-
sons. Firstly, these choices are interesting from a cryptographic point of view and especially
the choice of S = 1/2 (ternary secrets). Like in the NTRU case, we expect the DSD events to
occur for “higher” q and choosing 1 < Q is also helpful in the proof of inequality (6.14).

6.3.2 – The fatigue point. Heuristic result 6.14 implies some direct conclusions on
the occurrence of DSD events. In particular, the fact that the minimum block size is
reached for ν = 1 implies that in this case the DSD event is “trivial”. That is due to the
fact that detecting a DSD event with a 1-dimensional secret sublattice will actually result
in a SKR event. Namely, the DSD detection will output a multiple of the secret vector.
Therefore it should not be expected for ν = 1 to get a DSD event before a SKR event.
Also, the results of our experiments (Figure 6.4) suggest that for “small” ν and “small”
q it is unlikely to witness a DSD event before a SKR event. This is similar to the case of
NTRU.

Nevertheless, our experiments in Figure 6.4 do not rule out the case for higher val-
ues of q or ν to allow a DSD event before a SKR event. For this reason we ran further
experiments with n = 64, q ∈ {10007, 40009, 75011, 100003} and ν ∈ {30, . . . , 64} and
focused on the order of the two events. Figure 6.3 shows the result of our experiments.

6.3. CAN RING-LWE GET OVERSTRETCHED? 109

30 35 40 45 50 55 60 64

0

0.2

0.4

0.6

→ Secret sublattice rank ν

→
D

SD
fr

eq
ue

nc
y

q = 10007
q = 40009
q = 75011
q = 100003

Figure 6.3: Experimental results on the frequency of DSD events occurring before SKR events. We ran progres-
sive BKZ with 8 tours on Ring-LWE lattices withn = 64 and for several values ofq and ν. The secret and error
distribution for all instances was chosen to be the Gaussian with σ2 = 2

3 . The progressive BKZ was allowed to
use a maximum block size min(n+ν, 60). Each point in the graph represents the frequency of DSDs amongst
20 instances.

Two main conclusions can be drawn from Figure 6.3. Initially, it appears that as q in-
creases, also the minimum ν increases for which DSD events will start occurring before
SKR events. This behaviour could be explained by the fact that as q increases SKR gets
“easier” (Figure 6.4d) and thus for DSD to get even “easier” it requires a higher dimen-
sional dense (secret) sublattice, hence a higher ν. It also seems that as q increases, the
maximum frequency with which DSD events occur increases as well. This second obser-
vation resembles to the behaviour observed for NTRU in [DW21]. However in the case
of Ring-LWE there does not seem to exist a useful fatigue point (i.e. a critical value of q
after which DSD can happen before SKR).

In order to discuss a fatigue point in the case of Ring-LWE, the choice of ν should also
be taken into account. In Figure 6.3 it was shown that for higher values of q and ν DSD
events can occur before SKR events. A naive definition of a fatigue point in the case of
Ring-LWE could be the following: the smallest q for which there exists a ν0 such that
DSD is triggered at a lower block size than SKR for the specific choice of ν. However, the
value of ν0 could be large and it is not necessary to consider the same value of ν when
studying SKR and DSD.

As it is shown in Figure 6.4d, for each q, the minimum block size needed for SKR is
expected to be achieved for a “small” value of ν. However, in Figure 6.3 it was made
clear that DSD events start to get triggered before SKR only for relatively large values
of ν. Thus, a more accurate definition of a fatigue point would be the following: the
smallest q for which the minimum block size needed for DSD over all ν ∈ {1, . . . ,n} is
smaller than the minimum block size needed for SKR over all ν ∈ {1, . . . ,n}.

Let (n,q,G,A,a, e) be a Ring-LWE instance with parametersq = Θ(nQ) and ‖(e|t|a)‖ =
O(nS), where 1 < Q and 0 < S 6 1. We set LSKR = LG,A,q,ν0 for some “small”
ν0 = o(n) to be the lattice used for the SKR (i.e. it requires the minimum block size over
all ν ∈ {1, . . . ,n}) and similarly LDSD = LG,A,q,ν1 be the lattice used for the DSD, for
some ν1. Thus, for a fatigue point to exist, there should exist values of q for which the

110 CHAPTER 6. EXPLOITING GENERALISED RING-LWE LATTICES

block size needed for SKR in LSKR is higher than the block size for the DSD in LDSD. In
Heuristic result 6.14 we obtained a minimum block size for DSD. Hence, if there was a
fatigue point, the block size needed for SKR in LSKR should be at least higher than this
minimum.

Under the assumption that ν0 = o(n), the LSKR lattice is of dimension (2+o(1))n, it
is a q-ary lattice and has Vol(LSKR) = qn. Therefore, we can consider it to asymptotically
behave as the NTRU lattice does in [DW21]. In particular, we can directly transfer the
asymptotic estimate on the necessary block size for SKR implied by the “2016-estimate”.
Namely, for S 6 1 we get a block size estimate of 2Q/(1 + Q− S)2. Hence, for a DSD
event to occur at a lower block size than a SKR event, asymptotically it should hold that,

2
1 + Q− 2S

<
2Q

(1 + Q− S)2 ⇒ Q < −(S− 1)2

which gives a contradiction. Therefore, under the assumption that the best block size for
SKR is reached for some ν0 = o(n) we conclude that there is no useful fatigue point for
the case of Ring-LWE.

6.4 — Implications for attack performance

Considering a larger family of lattices modelling Ring-LWE could have implications
for the performance of known lattice attacks. In particular, the “generalised” lattices
which were introduced in Section 6.2.2 are of increasing dimension and symmetry. In
Section 6.3 we took advantage of this property in order to describe an analysis of whether
Ring-LWE can get overstretched. However, this new trade-off between the dimension of
the used lattice and its symmetry yields a new “dimension” in the attack surface of the
problem. Therefore, it should be investigated if the best attack to Ring-LWE does lie in the
“trivial” case where the used lattice has the minimum dimension but also the minimum
symmetry.

Pursuing this line of research we ran a set of experiments. For this purpose, we
adapted the implementations of [DW21]3 to the case of Ring-LWE. In our experiments we
focused on two aspects. The first one concerns the success probability of the algorithm
when given specific resources (i.e. block size up to min(n + ν, 60)), while the second
concerns the actual required block size for Secret Key Recovery (SKR). The results of our
experiments are shown in Figure 6.4.

However, before we start discussing our findings there is a specific technical detail
which we would like to point out. Initially, we tried to run our experiments using BKZ
without any restrictions in sage [TSD19] (i.e. progressive, limited number of tours). With-
out these restrictions the BKZ was “too strong” and could solve all cases, no matter the
rank of the lattice. In the implementation from [DW21] the authors built a progressive
version of BKZ and also provided the choice of restricting BKZ to a predetermined number
of tours. This is a choice that we kept. Apparently, this was a good idea as it “weakened”
BKZ and thus the algorithm became more “sensitive” to the actual difficulty of the prob-
lem.

Our experiments are divided in two main groups, those with length n = 32 (Fig-
ures 6.4a, 6.4b) and those with n = 64 (Figures 6.4c, 6.4d). For both cases the entries

2Except for a couple of cases for q = 601, where DSD occurred first.
3Available at https://github.com/WvanWoerden/NTRUFatigue

https://github.com/WvanWoerden/NTRUFatigue

6.4. IMPLICATIONS FOR ATTACK PERFORMANCE 111

0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

→ Secret subllattice rank ν

→
Su

cc
es

s
Pr

ob
ab

ili
ty

q = 83
q = 101
q = 149
q = 229
q = 601

(a) n = 32.

0 2 4 6 8 10 12 14 16

3

4

5

6

7

→ Secret subllattice rank ν

→
B

lo
ck

si
ze
β

q = 83
q = 101
q = 149
q = 229
q = 601

(b) n = 32.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

→ Secret subllattice rank ν

→
Su

cc
es

s
Pr

ob
ab

ili
ty

q = 83
q = 101
q = 149
q = 229
q = 601

(c) n = 64.

0 2 4 6 8 10 12 14 16

10

20

30

40

50

→ Secret subllattice rank ν

→
B

lo
ck

si
ze
β

q = 83
q = 101
q = 149
q = 229
q = 601

(d) n = 64.

Figure 6.4: Experimental results on the performance of progressive BKZ with 8 tours on Ring-LWE with n =
32, 64 and for several values ofq and ν. The secret and error distribution for all instances was chosen to be the
Gaussian with σ2 = 2

3 . The progressive BKZ was allowed to use a maximum block size min(n+ν, 60). Each
point in all four graphs represents the average amongst 20 instances. On the left (Figures 6.4a and 6.4c) the
success probability of the algorithm on Secret Key Recovery (SKR) is shown, whereas on the right (Figures 6.4b
and 6.4d) the minimum block size at which the SKR occurred is shown.2

of the secret and error vector were sampled from the discrete Gaussian distribution with
σ2 = 2

3 . For each n, we ran a series of experiments for q ∈ {83, 101, 149, 229, 601} and
ν ∈ {1, 2 . . . 15}. Regarding the values of q, we decided to stop at q = 601 as for the
aforementioned values of n,ν and higher values of q the problem becomes trivial (see
Figures 6.4b, 6.4d).

Starting with the case of n = 32, Figure 6.4a shows how the success probability of
BKZ can be affected by the choice of ν. The most obvious observation is the overall
increase of the success probability as ν increases. However, if we focus more closely on
the “plots” for each value of q, we can see that they interleave. Thus, we cannot conclude
in this case that one plot is clearly above another. Nevertheless, it seems that the blue
dots (q = 83) are above all others for almost all cases. In addition we can observe that
for some values of q we do get a zero success probability for ν 6 4.

112 CHAPTER 6. EXPLOITING GENERALISED RING-LWE LATTICES

In Figure 6.4b it is shown how the minimum block size for SKR is affected by the
choice of ν. Apparently, for the case (n = 32), the problem was quite easy when the
success probability was greater than zero, as we notice block sizes only in the range
3−5. Although this is trivial in practice, it is worth noticing that the necessary block size
did not significantly increase as the rank of the used lattice (and the success probability)
increased.

For the case of n = 64 (Figures 6.4c, 6.4d), we get a more clear picture of the effect
of ν in the performance of the attack. In particular, in Figure 6.4c we can clearly notice
that as q increases the effect of ν is getting greater. However, for the case of n = 64
the effect of ν seems to kick in for higher values of q compared to the case n = 32. In
Figure 6.4d we get a clear picture of how the block size is affected by ν. In this case the
data points behave less erratically compared to the case n = 32. As it can be seen, the
plots for each q are clearly above each other without intersecting. Thus, we notice that
as q increases the problem gets easier, like in the case of NTRU. Also, the data suggest
that the block size tends to (finally) increase as ν increases.

However, it seems that the minimum block size is not reached at ν = 1. Instead,
the minimum is reached at some ν ∈ {2, 3}. This supports our intuition, namely that
the minimum block size does not lie at ν = 1 but it could also not be reached “too far”
from ν = 1 as this would result to higher block sizes. Of course, at this point it would
be interesting to get an asymptotic analysis suggesting which is the optimal choice of ν
which minimizes the block size. However, we chose to focus on this problem from an
experimental point of view and leave such an analysis for future work. The only claim
we want to make at this point is the following. If the optimal ν which minimizes the
block size is not ν = 1 (which is suggested by our experiments) then it probably will not
be constant, but should increase as n increases.

Chapter 7

Conclusions and open problems

As a final chapter of this thesis we summarise research questions and open problems
emerging from Chapters 2 through 6.

7.1 — Research questions on approximate Voronoi cells

In Chapter 2 we studied CVPP in terms of approximate Voronoi cells, and obtained
better time and space complexities using randomized slicing, which is similar in spirit
to using randomized bases in lattice enumeration [GNR10]. With this approach, an im-
provement was reached upon previously known complexities for CVPP, both theoretically
and experimentally. The main research paths left for future work from Chapter 2 were
(i) obtain a tighter asymptotic analysis from the one in Lemma 2.12, (ii) the utilisation of
a CVPP solver to build faster hybrid enumeration methods, and (iii) the optimisation of
CVPP methods in moderate dimensions, where the performance is studied from a practi-
cal point of view instead of an asymptotic one.

Chapter 2 contains the chronologically first work of this thesis. As it turned out, the
time between the publication of that work and these lines are being written was enough
for the scientific community to deal with two out of the three open questions mentioned
above. In particular, the heuristic proof/derivation of Lemma 2.12 turned out to not be
tight, as it was later shown by Ducas, Laarhoven and van Woerden in [DLvW20]. In
addition, in Chapter 4 of this thesis we studied potential use of a CVPP solver in building
faster hybrid algorithms. Thus, it is only problem (iii) of the above paragraph which
actually remains open.

7.2 — Research questions on irreducible vectors

In Chapter 3 we introduced a notion of irreducible vectors with the belief that it will
motivate further research in the field of lattices. In this chapter we focused only on pair-
wise irreducibility of vectors, even though a definition of higher order irreducibility was
also given. In particular pairwise irreducibility appears to have a close relation to lattice
sieving algorithms. Thus, it could be that the set P(L) can provide further insight in this
area. An interesting question would be if the usage of the set P(L) (under some heuris-
tic assumptions on its size) enables the proof of an upper bound on the time complexity
of the GaussSieve [MV10b]. Examining the properties and the utility of higher order

114 CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS

irreducibility is left for future research.

The implications of P(L) in cryptanalytic attacks could be an interesting topic to in-
vestigate. The set P(L) is expected to be affected by an underlying structure in the lattice
L. It can thus be expected that structured lattices end up with a smaller set P(L) than
“average-case” lattices. Many of the modern lattice-based cryptosystems possess such un-
derlying structures and hence they could serve as interesting cases to examine from this
point of view.

In Section 3.4.1 we argued that computing P(L) by “brute force” can take up to Õ(22n)
time. Therefore, this can serve as an upper bound. However, this bound may not be tight
as discussed in Section 3.4.2. In Section 3.4.2 modified sieving algorithms were utilised in
order to show how to compute P(L) asymptotically. But the question of how to compute
it exactly or approximately in practice remains open. Such a result would also imply the
ability to compute a subset of R(L) (of heuristically exponential size) without requiring
the set R(L).

The set P(L) can be used as a tool in proving a behaviour of a lattice algorithm but
could also be used by itself (e.g. as preprocessing data of a CVPP algorithm). In Sec-
tion 3.5 we proposed the use of the “tuple slicer” in order to utilise the set P(L) in the
CVPP framework. However this algorithm introduces a new question, namely what size
of tuples should be considered during this algorithm. Figure 3.4 attempts to give some
preliminary experimental evidence on this problem. However, a theoretical analysis of
this question is left for future work.

Section 3.7 provided some experimental evidence showing that the size of a set P(L)
could vary a lot in some cases. An “average-case” result implying that if the underlying
lattice is not “special” then the size of P(L) cannot vary a lot would be of interest. A
potential tool to reaching such a result could be lattice theta functions [Elk09]. This is due
to the fact that the coefficients in a lattice’s theta function actually represent the number
of lattice vectors of a specific length. Therefore this property reveals the connection to
the definition of P(L).

7.3 — Research questions on hybrid algorithms

In Chapter 4 we examined hybrid lattice algorithms for SVP based on algorithms for
CVPP. Our study examined the (heuristic) asymptotic performance of these hybrids as
well as their practical performance. However, apart from our results there is a number of
questions arising from the research in Chapter 4.

Besides performing more extensive experiments, which may assist in obtaining esti-
mates for the crossover points between these hybrids and plain lattice sieving, open prob-
lems arising from Chapter 4 include (i) finding a way to effectively incorporate pruning
into the enumeration parts of the proposed hybrids; (ii) further studying the theoretical
and practical relevance of the proposed nested hybrid algorithms, and their relation with
progressive sieving ideas [Duc18,LM18]; and (iii) finding improvements for CVPP, poten-
tially using a dual distinguisher. After the publication of the work described in Chapter 4,
Laarhoven and Walter studied (iii) in their work “Dual lattice attacks for closest vector
problems (with preprocessing) [LW21]”.

7.4. RESEARCH QUESTIONS ON GUESSING PATTERNS 115

7.4 — Research questions on guessing patterns

In Chapter 5 we discussed some combinatorial aspects in guessing a pattern of ze-
ros in a lattice vector. In Proposition 5.4 we provided an exact formula for the success
probability of the consecutive zeros pattern. This enabled a comparison between the con-
secutive zeros pattern and random patterns. Even though this comparison is not exact in
the sense that the result in [MS01] is approximate, it provides more concrete evidence
in what was before just an experimental observation. Therefore we have addressed an
interesting special case of question 1 in Section 5.1. Proving Heuristic Assumption 5.6
would make this claim even more robust. However, this task is probably interesting only
as an intellectual challenge, as an attacker can always plug in values forN,d, r and check
its validity for his case of interest.

By defining the index of symmetry η(J) of a pattern J we attempted to provide a
concept which would reflect some of its properties, like the maximum number of times
it can occur in a vector (multiple winners). Whether or not this concept is an optimal
choice remains an interesting open combinatorial problem. What would definitely be
very interesting is a theoretical result predicting the success probability of a pattern Jwith
regard to its value η(J). This would explain Figure 5.5 and it would make the computation
of such profiles unnecessary for attackers.

Finally, in Chapter 5 we described how guessing patterns of zeros can provide a success
probability-time trade-off or even a probability-memory trade-off. Testing the potential
benefits of such trade-offs in practice with concrete parameters and attacks is left for
future research.

7.5 — Research questions on Ring-LWE’s lattices

In Chapter 6 we investigated how a larger set of lattices could be used in the analysis
of the Ring-LWE problem. We mainly focused on applying this idea within the so-called
“overstretched” framework. In our study we approached this problem both from a theo-
retical point of view (heuristic asymptotics) as well as from an experimental point of view.
We adopted the approach of [DW21] and studied if Ring-LWE could get overstretched,
like in the case of NTRU. Even though we concluded in a negative answer, our result
covers this existing gap in the analysis of Ring-LWE.

Additionally, we examined how this larger set of lattices modelling Ring-LWE could
affect in practice the performance of lattice reduction attacks. Some preliminary experi-
ments suggested that the optimal choice may not lie at the commonly used lattice of rank
2n + 1. It would be interesting to get an asymptotic analysis suggesting which lattice
modelling Ring-LWE provides the best performance (block size, success probability). Of
course, further experiments supporting such an asymptotic analysis would be of interest.

Summary

Lattice cryptanalysis: theoretical and practical aspects

Cryptography is of utmost importance in our connected and digitalised world. It en-
ables the secure implementation of many online services which empower the technologi-
cal development and financial growth of our society. Some examples are online payments,
sending emails, sending messages from our phone or having online meetings. Cryptogra-
phy guarantees the confidentiality, integrity and authenticity of our data against malicious
entities while these data are transmitted through an insecure channel (e.g. the internet).

Currently used public-key encryption and digital signature schemes depend on the
hardness of mathematical problems, such as the factorization of integers which are the
product of two (big) primes, or the discrete logarithm problem. These problems have
been studied extensively for the past 45 years and seem to be adequately hard (up to
now). However, that could change within the next years or decades. The advent of
large scale quantum computers would enable the use of quantum algorithms, breaking
these problems extremely faster than the currently used classical algorithms. Under this
assumption, it is made clear that a new generation of cryptography has to be designed,
based on mathematical problems which should withstand classical as well as quantum
attacks. One such option for post-quantum cryptography is lattice-based cryptography.

This thesis is devoted to the study of some lattice problems underlying lattice-based
cryptography. The first part of this thesis discusses some theoretical aspects of lattice
problems. In particular, in Chapter 2 the use of approximate Voronoi cells is examined
in solving the closest vector problem with preprocessing (CVPP). The use of approximate
Voronoi cells combined with a so-called randomised slicer results in better time and space
complexities for CVPP. Besides that, a notion of irreducibility for lattice vectors is intro-
duced in Chapter 3. It turns out that the set of irreducible vectors of a lattice is a subset
of its Voronoi relevant vectors. Apart from this property which allows a connection to
already known theory we also notice that there is a close relation to the output of lattice
sieving algorithms.

The second part of this thesis is devoted to a more practical study of lattice prob-
lems. In Chapter 4 we examine hybrid algorithms for the Shortest Vector Problem (SVP)
through ones for the closest vector problem with preprocessing. This idea takes advantage
of the work in Chapter 2 and combines it (mainly) with lattice enumeration algorithms.
In lattice-based cryptography it is a common practice to choose secret lattice vectors con-
taining many zeros. This fact motivated a study in Chapter 5 of combinatorial aspects in
guessing a pattern of zeros in a vector. More precisely, we focus on a comparison between

the consecutive zeros pattern and random patterns while also introducing a potential
“measure” of “good” patterns. Finally, one of the widely used building blocks in modern
lattice-based cryptography is the Ring-LWE problem. Chapter 6 focuses on this problem
and investigates the potential benefits of a “wider” set of lattices modelling Ring-LWE.
In more detail, we examine this idea within the so-called “overstretched” framework.
Furthermore we investigate the practical implications of this idea within lattice-basis re-
duction attacks.

Curriculum Vitae

Emmanouil Doulgerakis was born on November 20, 1993, in Rethymno, Greece. In 2015,
he completed his bachelor’s degree in Mathematics at University of Crete. For his perfor-
mance in his undergraduate studies he received the Pixoridi award. In the same year, he
started his master in Pure Mathematics at University of Crete which he completed in May
of 2017 under the supervision of Jannis Antoniadis. The title of his master thesis was
The Number Field Sieve and its Applications in Factorization. For his performance in his
master studies he received the Manasaki scholarship.

Also in May 2017, he started his PhD project in the Coding theory and Cryptology
group at the Eindhoven University of Technology under the supervision of Benne de Weger
and Tanja Lange. The project was funded by the NWO grant 628.001.028 (FASOR).
During his PhD studies he studied some theoretical as well as practical aspects of solving
lattice problems, focusing on those of cryptographic interest.

Bibliography

[ABD16] Martin Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on
overstretched NTRU assumptions - cryptanalysis of some FHE and graded
encoding schemes. In Proceedings of the 36th CRYPTO, pages 153–178.
Springer, 2016. doi:10.1007/978-3-662-53018-4_6.

[ADH+19] Martin Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Eamonn
Postlethwaite, and Marc Stevens. The general sieve kernel and new records
in lattice reduction. In Proceedings of the 38th EUROCRYPT, pages 717–746.
Springer, 2019. doi:10.1007/978-3-030-17656-3_25.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange: a new hope. In Proceedings of the 25th USENIX
Security Symposium, pages 327–343, 2016. doi:10.5555/3241094.
3241120.

[ADRS15] Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-
Davidowitz. Solving the shortest vector problem in 2n time via discrete
Gaussian sampling. In Proceedings of the 47th STOC, pages 733–742, 2015.
doi:10.1145/2746539.2746606.

[ADSD15] Divesh Aggarwal, Daniel Dadush, and Noah Stephens-Davidowitz. Solving
the closest vector problem in 2n time – the discrete Gaussian strikes again!
In Proceedings of the 56th FOCS, pages 563–582, 2015. doi:10.1109/
FOCS.2015.41.

[AEVZ02] Erik Agrell, Thomas Eriksson, Alexander Vardy, and Kenneth Zeger. Closest
point search in lattices. Transactions on Information Theory, 48(8):2201–
2214, 2002. doi:10.1109/TIT.2002.800499.

[AKS01] Miklós Ajtai, Ravi Kumar, and Dandapani Sivakumar. A sieve algorithm for
the shortest lattice vector problem. In Proceedings of the 33rd STOC, pages
601–610. ACM Press, 2001. doi:10.1145/380752.380857.

[AN17] Yoshinori Aono and Phong Q. Nguyen. Random sampling revisited: lattice
enumeration with discrete pruning. In Proceedings of the 36th EUROCRYPT,
pages 65–102. Springer, 2017. doi:10.1007/978-3-319-56614-6\
_3.

http://dx.doi.org/10.1007/978-3-662-53018-4_6
http://dx.doi.org/10.1007/978-3-030-17656-3_25
http://dx.doi.org/10.5555/3241094.3241120
http://dx.doi.org/10.5555/3241094.3241120
http://dx.doi.org/10.1145/2746539.2746606
http://dx.doi.org/10.1109/FOCS.2015.41
http://dx.doi.org/10.1109/FOCS.2015.41
http://dx.doi.org/10.1109/TIT.2002.800499
http://dx.doi.org/10.1145/380752.380857
http://dx.doi.org/10.1007/978-3-319-56614-6_3
http://dx.doi.org/10.1007/978-3-319-56614-6_3

122 BIBLIOGRAPHY

[Bab86] László Babai. On Lovasz lattice reduction and the nearest lattice point prob-
lem. Combinatorica, 6(1):1–13, 1986. doi:10.1007/BF02579403.

[BCLV17] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Chris-
tine van Vredendaal. NTRU prime: reducing attack surface at low cost.
In Proceedings of the 24th SAC, pages 235–260, 2017. doi:10.1007/
978-3-319-72565-9_12.

[BCLv19] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Chris-
tine van Vredendaal. NTRU prime, 2019. Submission to NIST post-
quantum call for proposals. URL: https://ntruprime.cr.yp.to/
nist/ntruprime-20190330.pdf.

[BD15] Nicolas Bonifas and Daniel Dadush. Short paths on the Voronoi graph
and the closest vector problem with preprocessing. In Proceedings of
the 26th SODA, pages 295–314. ACM-SIAM, 2015. doi:10.1137/1.
9781611973730.22.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New di-
rections in nearest neighbor searching with applications to lattice siev-
ing. In Proceedings of the 27th SODA, pages 10–24. ACM-SIAM, 2016.
doi:10.1137/1.9781611974331.ch2.

[BG14] Shi Bai and Steven D. Galbraith. Lattice decoding attacks on binary LWE.
In Proceedings of the 19th Information Security and Privacy, pages 322–337.
Springer, 2014. doi:10.1007/978-3-319-08344-5_21.

[BL21] Daniel J. Bernstein and Tanja Lange. Non-randomness of s-unit lat-
tices. Cryptology ePrint Archive, Paper 2021/1428, 2021. https://
eprint.iacr.org/2021/1428. URL: https://eprint.iacr.org/
2021/1428.

[BLS16] Shi Bai, Thijs Laarhoven, and Damien Stehlé. Tuple lattice sieving. LMS
Journal of Computation and Mathematics, 19(A):146–162, 2016. doi:10.
1112/S1461157016000292.

[Cha02] Moses Charikar. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the 34th STOC, pages 380–388. ACM Press, 2002.
doi:10.1145/509907.509965.

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for
NTRU problems and cryptanalysis of the GGH multilinear map without a
low-level encoding of zero. LMS Journal of Computation and Mathematics,
19(A):255–266, 2016. doi:10.1112/S1461157016000371.

[CMF19] Filipe Cabeleira, Artur Mariano, and Gabriel Falcao. Memory-optimized
Voronoi cell-based parallel kernels for the shortest vector problem on lat-
tices. In Proceedings of the 27th EUSIPCO, pages 1–5. IEEE, 2019. doi:
10.23919/EUSIPCO.2019.8902635.

http://dx.doi.org/10.1007/BF02579403
http://dx.doi.org/10.1007/978-3-319-72565-9_12
http://dx.doi.org/10.1007/978-3-319-72565-9_12
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
https://ntruprime.cr.yp.to/nist/ntruprime-20190330.pdf
http://dx.doi.org/10.1137/1.9781611973730.22
http://dx.doi.org/10.1137/1.9781611973730.22
http://dx.doi.org/10.1137/1.9781611974331.ch2
http://dx.doi.org/10.1007/978-3-319-08344-5_21
https://eprint.iacr.org/2021/1428
https://eprint.iacr.org/2021/1428
https://eprint.iacr.org/2021/1428
https://eprint.iacr.org/2021/1428
http://dx.doi.org/10.1112/S1461157016000292
http://dx.doi.org/10.1112/S1461157016000292
http://dx.doi.org/10.1145/509907.509965
http://dx.doi.org/10.1112/S1461157016000371
http://dx.doi.org/10.23919/EUSIPCO.2019.8902635
http://dx.doi.org/10.23919/EUSIPCO.2019.8902635

BIBLIOGRAPHY 123

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security esti-
mates. In Proceedings of the 17th ASIACRYPT, pages 1–20. Springer, 2011.
doi:10.1007/978-3-642-25385-0_1.

[CS92] John H. Conway and Neil J.A. Sloane. Low-dimensional lattices. VI. Voronoi
reduction of three-dimensional lattices. In Proceedings of the Mathematical
and Physical Sciences, volume 436, pages 55–68. The Royal Society, 1992.
doi:10.1098/rspa.1992.0004.

[CS98] John H. Conway and Neil J.A. Sloane. Sphere packings, lattices and groups.
Springer, 1998.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976. doi:10.1109/
TIT.1976.1055638.

[DLdW19] Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. Find-
ing closest lattice vectors using approximate Voronoi cells. In Proceed-
ings of the 10th PQCRYPTO, pages 3–22. Springer, 2019. doi:10.1007/
978-3-030-25510-7_1.

[DLdW20] Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. Sieve,
enumerate, slice, and lift: Hybrid lattice algorithms for svp via cvpp. In
Proceedings of the 12th AFRICACRYPT, pages 301–320. Springer, 2020.
doi:10.1007/978-3-030-51938-4_15.

[DLdW21] Emmanouil Doulgerakis, Thijs Laarhoven, and Benne de Weger. The irre-
ducible vectors of a lattice: Some theory and applications. Preprint, 2021.
https://eprint.iacr.org/2021/1203.pdf.

[DLvW20] Léo Ducas, Thijs Laarhoven, and Wessel van Woerden. The randomized
slicer for CVPP: sharper, faster, smaller, batchier. In Proceedings of the 23rd
PKC, pages 3–36. Springer, 2020. doi:10.1007/978-3-030-45388-6\
_1.

[Duc18] Léo Ducas. Shortest vector from lattice sieving: a few dimensions for free.
In Proceedings of the 37th EUROCRYPT, pages 125–145. Springer, 2018.
doi:10.1007/978-3-319-78381-9_5.

[DW21] Léo Ducas and Wessel van Woerden. NTRU fatigue: How stretched is over-
stretched ? In Proceedings of the 27th ASIACRYPT, pages 3–32. Springer,
2021. doi:10.1007/978-3-030-92068-5_1.

[Elk09] Noam Elkies. Theta functions and weighted theta functions of Euclidean
lattices, with some applications. http://people.math.harvard.edu/
~elkies/aws09.pdf, 2009.

[FCMP19] Gabriel Falcao, Filipe Cabeleira, Artur Mariano, and Luis Paulo Santos. Het-
erogeneous implementation of a Voronoi cell-based SVP solver. IEEE Access,
7:127012–127023, 2019. doi:10.1109/ACCESS.2019.2939142.

http://dx.doi.org/10.1007/978-3-642-25385-0_1
http://dx.doi.org/10.1098/rspa.1992.0004
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1007/978-3-030-25510-7_1
http://dx.doi.org/10.1007/978-3-030-25510-7_1
http://dx.doi.org/10.1007/978-3-030-51938-4_15
https://eprint.iacr.org/2021/1203.pdf
http://dx.doi.org/10.1007/978-3-030-45388-6_1
http://dx.doi.org/10.1007/978-3-030-45388-6_1
http://dx.doi.org/10.1007/978-3-319-78381-9_5
http://dx.doi.org/10.1007/978-3-030-92068-5_1
http://people.math.harvard.edu/~elkies/aws09.pdf
http://people.math.harvard.edu/~elkies/aws09.pdf
http://dx.doi.org/10.1109/ACCESS.2019.2939142

124 BIBLIOGRAPHY

[FK15] Masaharu Fukase and Kenji Kashiwabara. An accelerated algorithm for
solving SVP based on statistical analysis. Journal of Information Processing,
23(1):67–80, 2015. doi:10.2197/ipsjjip.23.67.

[FP85] Ulrich Fincke and Michael Pohst. Improved methods for calculating vectors
of short length in a lattice. Mathematics of Computation, 44(170):463–471,
1985. doi:10.2307/2007966.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumeration
using extreme pruning. In Proceedings of the 29th EUROCRYPT, pages 257–
278. Springer, 2010. doi:10.1007/978-3-642-13190-5_13.

[Ham50] Richard Hamming. Error detecting and error correcting codes. The
Bell System Technical Journal, 29(2):147–160, 1950. doi:10.1002/j.
1538-7305.1950.tb00463.x.

[HG07] Nick Howgrave-Graham. A hybrid lattice-reduction and meet-in-the-middle
attack against NTRU. In Proceedings of the 27th CRYPTO, pages 150–169,
2007. doi:10.1007/978-3-540-74143-5_9.

[HK17] Gottfried Herold and Elena Kirshanova. Improved algorithms for the
approximate k-list problem in Euclidean norm. In Proceedings of
the 20th PKC Part I, pages 16–40. Springer, 2017. doi:10.1007/
978-3-662-54365-8_2.

[HKL18] Gottfried Herold, Elena Kirshanova, and Thijs Laarhoven. Speed-ups
and time-memory trade-offs for tuple lattice sieving. In Proceedings
of the 21st PKC, pages 407–436. Springer, 2018. doi:10.1007/
978-3-319-76578-5_14.

[Hop18] Max Hopkins. Representation-theoretic techniques for independence
bounds of Cayley graphs. Bachelor thesis, 2018.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based
public key cryptosystem. In Algorithmic Number Theory Symposium, pages
267–288, 1998. doi:10.1007/BFb0054868.

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the
shortest and closest lattice vector problems. In Proceedings of the 3rd IWCC,
pages 159–190, 2011. doi:10.1007/978-3-642-20901-7_10.

[HRS19] Christoph Hunkenschröder, Gina Reuland, and Matthias Schymura. On
compact representations of Voronoi cells of lattices. In Proceedings of the
20th IPCO, volume 11480 of Lecture Notes in Computer Science, pages 261–
274. Springer, 2019. doi:10.1007/s10107-019-01463-3.

[HS07] Guillaume Hanrot and Damien Stehlé. Improved analysis of Kannan’s short-
est lattice vector algorithm (extended abstract). In Proceedings of the 27th
CRYPTO, pages 170–186. Springer, 2007.

http://dx.doi.org/10.2197/ipsjjip.23.67
http://dx.doi.org/10.2307/2007966
http://dx.doi.org/10.1007/978-3-642-13190-5_13
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1007/978-3-540-74143-5_9
http://dx.doi.org/10.1007/978-3-662-54365-8_2
http://dx.doi.org/10.1007/978-3-662-54365-8_2
http://dx.doi.org/10.1007/978-3-319-76578-5_14
http://dx.doi.org/10.1007/978-3-319-76578-5_14
http://dx.doi.org/10.1007/BFb0054868
http://dx.doi.org/10.1007/978-3-642-20901-7_10
http://dx.doi.org/10.1007/s10107-019-01463-3

BIBLIOGRAPHY 125

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related
lattice problems. In Proceedings of the 15th STOC, pages 193–206. ACM
Press, 1983. doi:10.1145/800061.808749.

[KF17] Paul Kirchner and Pierre-Alain Fouque. Revisiting lattice attacks on over-
stretched NTRU parameters. In Proceedings of the 36th EUROCRYPT, pages
3–26. Springer, 2017. doi:10.1007/978-3-319-56620-7_1.

[KL78] Grigory Kabatiansky and Vladimir Levenshtein. Bounds for packings on a
sphere and in space. Problemy Peredachi Informatsii, 14:3–25, 1978.

[Laa15] Thijs Laarhoven. Sieving for shortest vectors in lattices using angular
locality-sensitive hashing. In Proceedings of the 35th CRYPTO, pages 3–22.
Springer, 2015. doi:10.1007/978-3-662-47989-6_1.

[Laa16a] Thijs Laarhoven. Search problems in cryptography. PhD thesis, Eind-
hoven University of Technology, 2016. https://pure.tue.nl/ws/
portalfiles/portal/14673128/20160216_Laarhoven.pdf.

[Laa16b] Thijs Laarhoven. Sieving for closest lattice vectors (with preprocessing).
In Proceedings of the 23rd SAC, pages 523–542. Springer, 2016. doi:10.
1007/978-3-319-69453-5_28.

[Laa16c] Thijs Laarhoven. Tradeoffs for nearest neighbors on the sphere, 2016.
https://arxiv.org/abs/1511.07527.

[Laa19] Thijs Laarhoven. Approximate Voronoi cells for lattices, revisited. In Pro-
ceedings of the 1st MATHCRYPT, 2019. https://arxiv.org/pdf/1907.
04630.pdf.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra Jr., and László Lovász. Factoring poly-
nomials with rational coefficients. Mathematische Annalen, 261(4):515–
534, 1982. doi:10.1007/BF01457454.

[LM18] Thijs Laarhoven and Artur Mariano. Progressive lattice sieving. In Pro-
ceedings of the 9th PQCRYPTO, pages 292–311. Springer, 2018. doi:
10.1007/978-3-319-79063-3_14.

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent
set problem. SIAM Journal on Computing, 15(4):1036–1053, 1986. doi:
10.1145/22145.22146.

[LvdPdW12] Thijs Laarhoven, Joop van de Pol, and Benne de Weger. Solving hard lattice
problems and the security of lattice-based cryptosystems. Cryptology ePrint
Archive, Report 2012/533, pages 1–43, 2012. http://eprint.iacr.
org/2012/533.

[LW21] Thijs Laarhoven and Michael Walter. Dual lattice attacks for closest vector
problems (with preprocessing). In Proceedings of CT-RSA, pages 478–502,
2021. doi:10.1007/978-3-030-75539-3_20.

http://dx.doi.org/10.1145/800061.808749
http://dx.doi.org/10.1007/978-3-319-56620-7_1
http://dx.doi.org/10.1007/978-3-662-47989-6_1
https://pure.tue.nl/ws/portalfiles/portal/14673128/20160216_Laarhoven.pdf
https://pure.tue.nl/ws/portalfiles/portal/14673128/20160216_Laarhoven.pdf
http://dx.doi.org/10.1007/978-3-319-69453-5_28
http://dx.doi.org/10.1007/978-3-319-69453-5_28
https://arxiv.org/abs/1511.07527
https://arxiv.org/pdf/1907.04630.pdf
https://arxiv.org/pdf/1907.04630.pdf
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1007/978-3-319-79063-3_14
http://dx.doi.org/10.1007/978-3-319-79063-3_14
http://dx.doi.org/10.1145/22145.22146
http://dx.doi.org/10.1145/22145.22146
http://eprint.iacr.org/2012/533
http://eprint.iacr.org/2012/533
http://dx.doi.org/10.1007/978-3-030-75539-3_20

126 BIBLIOGRAPHY

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems:
a cryptographic perspective. Kluwer Academic Publishers, Boston, Mas-
sachusetts, 2002.

[Mic01] Daniele Micciancio. The hardness of the closest vector problem with pre-
processing. IEEE Transactions on Information Theory, 47(3):1212–1215,
2001. doi:10.1109/18.915688.

[Min11] Hermann Minkowski. In Gesammelte Abhandlungen von Hermann
Minkowski, volume 2, pages 103–121. 1911.

[MM65] J. W. Moon and L. Moser. On cliques in graphs. Israel Journal of Mathemat-
ics, 3:23–28, 1965. doi:10.1007/BF02760024.

[MS01] Alexander May and Joseph H. Silverman. Dimension reduction methods for
convolution modular lattices. In Proceedings of Cryptography and Lattices,
pages 110–125. Springer, 2001. doi:10.1007/3-540-44670-2_10.

[MV10a] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single expo-
nential time algorithm for most lattice problems based on Voronoi cell com-
putations. In Proceedings of the 42nd STOC, pages 351–358. ACM Press,
2010. doi:10.1145/1806689.1806739.

[MV10b] Daniele Micciancio and Panagiotis Voulgaris. Faster exponential time
algorithms for the shortest vector problem. In Proceedings of the
21st SODA, pages 1468–1480. ACM-SIAM, 2010. doi:10.1137/1.
9781611973075.119.

[MW15] Daniele Micciancio and Michael Walter. Fast lattice point enumeration with
minimal overhead. In Proceedings of the 26th SODA, pages 276–294, 2015.
doi:10.1137/1.9781611973730.21.

[Ngu09] Phong Q. Nguyen. Hermite’s constant and lattice algorithms. In The LLL Al-
gorithm: Survey and Applications, pages 19–69. Springer, 1st edition, 2009.

[NS09] Phong Q. Nguyen and Damien Stehlé. Low-dimensional lattice basis reduc-
tion revisited. ACM Transactions on Algorithms, 5(4):46:1–46:48, 2009.
doi:10.1145/1597036.1597050.

[NV08] Phong Q. Nguyen and Thomas Vidick. Sieve algorithms for the shortest vec-
tor problem are practical. Journal of Mathematical Cryptology, 2(2):181–
207, 2008. doi:10.1515/JMC.2008.009.

[Ros64] Mosche Rosenfeld. Independent sets in regular graphs. Israel Journal of
Mathematics, 2:262–272, 1964. doi:10.1007/BF02759743.

[RS96] Dayanand S. Rajan and Anil M. Shende. A characterization of root
lattices. Discrete Mathematics, 161:309–314, 1996. doi:10.1016/
0012-365X(95)00239-S.

http://dx.doi.org/10.1109/18.915688
http://dx.doi.org/10.1007/BF02760024
http://dx.doi.org/10.1007/3-540-44670-2_10
http://dx.doi.org/10.1145/1806689.1806739
http://dx.doi.org/10.1137/1.9781611973075.119
http://dx.doi.org/10.1137/1.9781611973075.119
http://dx.doi.org/10.1137/1.9781611973730.21
http://dx.doi.org/10.1145/1597036.1597050
http://dx.doi.org/10.1515/JMC.2008.009
http://dx.doi.org/10.1007/BF02759743
http://dx.doi.org/10.1016/0012-365X(95)00239-S
http://dx.doi.org/10.1016/0012-365X(95)00239-S

BIBLIOGRAPHY 127

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Communications of the
ACM, 21(2):120–126, 1978. doi:10.1145/359340.359342.

[Sch87] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theoretical Computer Science, 53(2):201–224, 1987. doi:10.
1016/0304-3975(87)90064-8.

[SFS09] Naftali Sommer, Meir Feder, and Ofir Shalvi. Finding the closest lattice point
by iterative slicing. SIAM Journal of Discrete Mathematics, 23(2):715–731,
2009. doi:10.1137/060676362.

[Sho94] Peter W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings of the 35th FOCS, pages 124–134. IEEE Com-
puter Society, 1994. doi:10.1109/SFCS.1994.365700.

[Sin00] Simon Singh. The code book: the secret history of codes and code-breaking.
Fourth Estate, 2000.

[Ste16] Noah Stephens-Davidowitz. Dimension-preserving reductions between lat-
tice problems. http://noahsd.com/latticeproblems.pdf, 2016.

[SUR19] SURFsara. The Lisa cluster. https://userinfo.surfsara.nl/
systems/lisa, 2019.

[svp19] SVP Challenge, 2019. https://www.latticechallenge.org/
svp-challenge/.

[The19a] The FPLLL development team. fplll, a lattice reduction library. Available at
https://github.com/fplll/fplll, 2019.

[The19b] The g6k development team. The general sieve kernel (G6K). Available at
https://github.com/fplll/g6k, 2019.

[TSD19] The Sage Developers. Sagemath, the Sage Mathematics Software System.
https://www.sagemath.org, 2019.

[VB96] Emanuele Viterbo and Ezio Biglieri. Computing the Voronoi cell of a lattice:
The diamond-cutting algorithm. IEEE Transactions on Information Theory,
42:161–171, 1996. doi:10.1109/18.481786.

[Vor08] Georgy Voronoi. Nouvelles applications des paramètres continus à la
théorie des formes quadratiques. deuxième mémoire. recherches sur les
parallélloèdres primitifs. Journal für die reine und angewandte Mathematik,
134:198–287, 1908.

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1016/0304-3975(87)90064-8
http://dx.doi.org/10.1016/0304-3975(87)90064-8
http://dx.doi.org/10.1137/060676362
http://dx.doi.org/10.1109/SFCS.1994.365700
http://noahsd.com/latticeproblems.pdf
https://userinfo.surfsara.nl/systems/lisa
https://userinfo.surfsara.nl/systems/lisa
https://www.latticechallenge.org/svp-challenge/
https://www.latticechallenge.org/svp-challenge/
https://github.com/fplll/fplll
https://github.com/fplll/g6k
https://www.sagemath.org
http://dx.doi.org/10.1109/18.481786

	Official
	Acknowledgments
	Contents
	Introduction
	1 A brief introduction to lattices
	1.1 Basic notions and main problems
	1.2 Classical results and heuristic assumptions
	1.3 Structured lattices

	2 Finding closest lattice vectors using approximate Voronoi cells
	2.1 Introduction
	2.2 Preliminaries
	2.3 The CVPP cost model
	2.4 Voronoi cells
	2.5 Voronoi cell algorithms
	2.6 Approximate Voronoi cells
	2.7 Randomized slicing
	2.8 Preprocessing costs
	2.9 CVPP complexities
	2.10 Experimental results
	2.11 Another few dimensions for free

	3 The irreducible vectors of a lattice
	3.1 Introduction
	3.2 Previous Work
	3.3 Irreducibility of lattice vectors
	3.4 Computation of the set `3́9`42`"̇613A``45`47`"603AP(L)
	3.5 Applications of `3́9`42`"̇613A``45`47`"603AP(L)
	3.6 Corner cases among S1(L) , `3́9`42`"̇613A``45`47`"603AIrr(L) and R(L)
	3.7 Some graph theoretical aspects

	4 Hybrid lattice algorithms for SVP via CVPP
	4.1 Introduction
	4.2 Preliminaries
	4.3 Sieve, Enumerate, Slice, and Lift
	4.4 Sieve, Enumerate, Slice, Repeat
	4.5 Experimental Results

	5 Gambling at the Ring's casino: The zeros-guessing game
	5.1 Introduction
	5.2 The consecutive zeros pattern
	5.3 A pattern's index of symmetry

	6 Exploiting generalised Ring-LWE lattices
	6.1 Introduction
	6.2 Preliminaries
	6.3 Can Ring-LWE get overstretched?
	6.4 Implications for attack performance

	7 Conclusions and open problems
	7.1 Research questions on approximate Voronoi cells
	7.2 Research questions on irreducible vectors
	7.3 Research questions on hybrid algorithms
	7.4 Research questions on guessing patterns
	7.5 Research questions on Ring-LWE's lattices

	Summary
	Summary

	Curriculum Vitae
	Curriculum Vitae

	Bibliography
	Bibliography

