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WHAT THIS PAPER ADDS

This work has demonstrated that blood flow near the venous anastomosis of arteriovenous grafts deteriorates
considerably as a result of flow from the venous dialysis needle. Since disturbed flow is believed to be the
initiating event of venous neointimal hyperplasia, this finding suggests that dialysis needle flow can play an
important role in graft patency loss. The negative effects of dialysis flow can be mitigated by ensuring the venous
needle is in the centre of the graft’s lumen, by decreasing dialysis flow, or by increasing the distance between
graft cannulation and the venous anastomosis.
Objective: Arteriovenous grafts (AVGs) typically lose patency within two years of creation due to venous
neointimal hyperplasia, which is initiated by disturbed haemodynamics after AVG surgery. Haemodialysis
needle flow can further disturb haemodynamics and thus impact AVG longevity. In this computational study it
was assessed how dialysis flow and venous needle positioning impacts flow at the graft-vein anastomosis.
Furthermore, it was studied how negative effects of dialysis needle flow could be mitigated.
Methods: Non-physiological wall shear stress and disturbed blood flow were assessed in an AVG model with and
without dialysis needle flow. Needle distance to the venous anastomosis was set to 6.5, 10.0, or 13.5 cm,
whereas dialysis needle flow was set to 200, 300 or 400 mL/min. Intraluminal needle tip depth was varied
between superficial, central, or deep. The detrimental effects of dialysis needle flow were summarised by a
haemodynamic score (HS), ranging from 0 (minimal) to 5 (severe).
Results: Dialysis needle flow resulted in increased disturbed flow and/or non-physiological wall shear stress in
the venous peri-anastomotic region. Increasing cannulation distance from 6.5 to 13.5 cm reduced the HS by a
factor 4.0, whereas a central rather than a deep or superficial needle tip depth reduced the HS by a
maximum factor of 1.9. Lowering dialysis flow from 400 to 200 mL/min reduced the HS by a factor 7.4.
Conclusion: Haemodialysis needle flow, cannulation location, and needle tip depth considerably increase the
amount of disturbed flow and non-physiological wall shear stress in the venous anastomotic region of AVGs.
Negative effects of haemodialysis needle flow could be minimised by more upstream cannulation, by lower
dialysis flow and by ensuring a central needle tip depth. Since disturbed haemodynamics are associated with
neointimal hyperplasia development, optimising dialysis flow and needle positioning during haemodialysis
could play an important role in maintaining AVG patency.
Keywords: Arteriovenous graft, Cannulation, Dialysis, Disturbed flow, Venous needle
Article history: Received 26 March 2019, Accepted 12 August 2019, Available online 26 December 2019
� 2019 European Society for Vascular Surgery. Published by Elsevier B.V. All rights reserved.
INTRODUCTION

Arteriovenous grafts (AVGs) typically lose patency within
two years due to neointimal hyperplasia (NIH) at the graft-
vein anastomosis,1e3 which is attributed to disturbed blood
flow and non-physiological wall shear stress (WSS) after
AVG creation. Most research on minimising disturbed flow
responding author. Department of Vascular Surgery, Maastricht Uni-
Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
il address: barend.mees@mumc.nl (Barend Mees).
-5884/� 2019 European Society for Vascular Surgery. Published by
r B.V. All rights reserved.
://doi.org/10.1016/j.ejvs.2019.08.013
and normalising WSS patterns at the graft-vein anastomosis
has focused on modifying graft geometry.4 Strikingly, the
impact of haemodialysis (HD) needle flow on AVG haemo-
dynamics is often neglected, even though it has been
shown that needle flow can result in increased flow
disturbance.5e7 Most HD patients receive dialysis according
to intermittent or daily dialysis programs that amount to
12e36 h per week. Consequently these patients are
exposed to the possibly detrimental haemodynamic effects
of dialysis needle flow for 10%e30% of their time. It is
therefore conceivable that also dialysis needle flow plays an
important role in AVG dysfunction.8 Minimising disturbed
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flow by optimising cannulation technique and dialysis flow
rate might therefore be beneficial to graft longevity. In this
study was assessed how dialysis flow rate, needle tip
location in the graft’s lumen (needle tip depth), and the site
of graft cannulation (cannulation location) impact AVG
haemodynamics at the venous anastomosis. The effect of
dialysis needle flow was assessed using a computational
fluid dynamics (CFD) model of an idealised geometry of the
venous anastomosis of an AVG.

MATERIALS AND METHODS

A model of the venous anastomosis of an AVG was created
in SolidWorks 2017 (Dassault Systèmes, Vélizy-Villacoublay,
France) (Fig. 1A). The vein was modelled as a straight, 15 cm
long vessel with a constant diameter of 7.7 mm. The graft
segment was 20 cm long, with a 6 mm internal diameter.
The graft-vein anastomosis had an angle of 45�. The
resulting length of the anastomosis was approximately
9 mm. Vascular dimensions were based on standard of care
ultrasound follow up for monitoring graft function.

Cannulation model

In clinical practice the location of the AVG venous cannu-
lation site is changed between HD sessions to ensure that a
maximum length of the graft’s venous segment is used for
cannulation.3,9 This practice is known as the rope ladder
technique and was modelled by setting the distance be-
tween the needle tip and the anastomosis to 6.5, 10.0, and
13.5 cm. The cannulation procedure was modelled as
described in Brouwer.10 The shaft of a standard one inch
15 G steel needle was advanced completely through the
skin. The needle tip was positioned bevel down in the
lumen.10 Needle back eye was omitted since it minimally
impacts haemodynamics.11 Intraluminal needle tip location
was either in the graft’s cross sectional centre or 1.5 mm
above or below, corresponding to a superficial or deep
needle tip depth, respectively (Fig. 1A). It was assumed that
the graft was located 3 mm beneath the skin. Consequently,
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Figure 1. (A) The arteriovenous graft model. Note that the needle is onl
200, 300 or 400 mL/min, needle tip distance was set to 6.5, 10.0 or 1
centre of the graft or 1.5 mm above or below the centre (superficial and
flows. Note that qtotal is constant between simulations, whereas qgraft de
pressure at the venous outlet is 0 mmHg.
resulting cannulation angles for the superficial, central, and
deep needle tip depth were 9.2�, 13.9�, and 17.5�,
respectively. Dialysis flow rate was set to 200, 300, or
400 mL/min. All 27 combinations of dialysis flow, needle tip
depth, and cannulation location were evaluated, next to a
reference AVG simulation without needle.

In this study, blood was regarded as a Newtonian
fluid with a density of 1 000 kg/m3 and a viscosity of
3.5 mPa s.12 Pulsatile flow through the model (qtotal) was
assumed to be equal in all simulations and was obtained
from the duplex ultrasound measurements (Fig. 1B). The
average magnitude of the total graft flow was measured as
9.9 3 102 mL/min. Needle and graft flow were set by
prescribing a blunt velocity profile at the respective inlet.
Graft flow (qgraft) was defined as qtotal e qneedle. Because
flow from the distal veins was assumed to be negligible,
blood flow velocity at the distal venous inlet was set to zero.
A zero pressure was prescribed at the venous outlet, since
flow velocity and wall shear stress (WSS) characteristics
were independent of the outlet pressure in this modelling
set up. After an initial start up of the simulation, haemo-
dynamics had stabilised from the third cardiac cycle on-
wards and did not vary between subsequent cycles.
Therefore, for all situations three cardiac cycles were
simulated of which the final one was considered repre-
sentative of the simulated condition. This cycle was subse-
quently used for all further analyses.
Computed haemodynamic metrics

Disturbed flow was quantified in each simulation by
assessing the magnitude of high frequency velocity per-
turbations in both the venous anastomotic region and in
the proximal vein (Fig. 1). Furthermore, the amount of non-
physiological WSS was quantified by assessment of the size
of the area exposed to wall shear stress (WSS) below or
above the physiological range (0.1e7 Pa);13 to WSS levels
causing irreversible endothelial damage (>40 Pa);14 or to
highly oscillating WSS (oscillatory shear index > 0.25).
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Table 2. Anastomotic area percentage exposed to low
(<0.1 Pa) wall shear stress for each dialysis settings
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A detailed description of the computational fluid dynamics
model and formulation of the computed haemodynamic
metrics is presented in the Supplementary material.
Dialysis
flow

Cannulation
location

Needle tip depth

Superficial Central Deep

200 mL/min 6.5 cm 31þ 28þ 21
10.0 cm 17 19 18
13.5 cm 19 17 16

300 mL/min 6.5 cm 24 19 26þ

10.0 cm 21 22 27þ

13.5 cm 22 19 22
400 mL/min 6.5 cm 23 18 26þ

10.0 cm 20 30þ 26þ

13.5 cm 28þ 24 24

A superscript þ denotes a relevant increase compared with the
reference simulation.
Haemodynamic scoring of needle impact

To allow for comparison of the haemodynamic effects of
different HD settings, a scoring technique was devised that
combined the overall haemodynamic effect into a single
variable. This haemodynamic score quantified how much
the haemodynamics in a simulation with a dialysis needle
had deteriorated with respect to the reference simulation.
The haemodynamic score used in this paper was computed
on the basis of five variables related to graft dysfunction,
i.e. the size of the anastomotic area exposed to non-
physiologically low WSS (<0.1 Pa); to non-physiologically
high WSS (>7 Pa, � 40 Pa); to very high WSS (>40 Pa);
or to high oscillatory shear index (OSI) (>0.25), as well as
the magnitude of velocity perturbations in the anastomotic
and proximal venous region. The total area of the anasto-
motic region of the model (Fig. 1) was 1 256.5 mm2. A
haemodynamically relevant deterioration or improvement
of any WSS metric was defined as an increase or decrease in
size of the exposed area of at least 5% of the total size of
the anastomotic region (i.e. > 62.8 mm2) compared with
the reference simulation. A haemodynamically relevant in-
crease or decrease in the amount of disturbed flow was
defined as a difference in the magnitude of velocity per-
turbations of at least 2 cm/s with respect to the reference
simulation.

For each haemodynamic metric that showed a relevant
deterioration in a simulation, the haemodynamic score was
incremented by 1. Conversely, the score was decreased by 1
for each haemodynamic metric that showed a relevant
improvement compared with the reference simulation.
Finally, an average haemodynamic score was computed
for all simulations that either shared the same tip depth,
dialysis flow, or cannulation location. Since all
combinations of flow, needle tip depth and cannulation
location were evaluated, each average haemodynamic score
was computed on the basis of nine simulations.
Table 1. Anastomotic area percentage exposed to high (>7 Pa)
and very high (>40 Pa, in brackets) wall shear stress for each
dialysis setting

Dialysis
flow

Cannulation
location

Needle tip depth

Superficial Central Deep

200 mL/min 6.5 cm 43þ 44þ 30
10.0 cm 43þ 31 28
13.5 cm 34 36 36

300 mL/min 6.5 cm 56þ (1) 47þ 48þ

10.0 cm 40þ 32 46þ

13.5 cm 34 34 42þ

400 mL/min 6.5 cm 49þ (13þ) 49þ (1) 46þ

10.0 cm 41þ 40þ 44þ

13.5 cm 37 33 41þ

A superscript þ denotes a relevant increase compared with the
reference simulation.
RESULTS

General observations

Wall shear stress. In the reference simulation, the area
exposed to high (>7 Pa), low (<0.1 Pa) and highly oscilla-
tory (OSI > 0.25) WSS amounted to 32%, 20%, and 3% of
the anastomotic area, respectively. No WSS in excess of
40 Pa was observed.

A relevant increase in the area subjected to high WSS was
observed for all simulations using a 6.5 cm cannulation
location, except when using a 200 mL/min needle flow, in
combination with a deep needle tip depth (Table 1). Only
when needle flow was set to 400 mL/min and cannulation
was in close vicinity of the anastomosis (6.5 cm) with a
superficial needle tip depth, a relevant area exposed to very
high WSS (>40 Pa) was observed. In general, a central
needle tip depth combined with more distal (away from the
anastomosis) cannulation most efficiently lowered
maximum WSS to reference conditions for the 300 and
400 mL/min needle flows. Although relevant increases in
the anastomotic area exposed to low time averaged wall
shear stress (TAWSS) and high OSI were observed in some
simulations (Tables 2 and 3), no clear general trends with
respect to cannulation location, needle tip depth or dialysis
flow were observed.
Table 3. Anastomotic area subjected to high (>0.25) OSI for
each dialysis settings

Dialysis
flow

Cannulation
location

Needle tip depth

Superficial Central Deep

200 mL/min 6.5 cm 4 16þ 3
10.0 cm 8 2 2
13.5 cm 2 1 1

300 mL/min 6.5 cm 10þ 5 8
10.0 cm 1 3 6
13.5 cm 2 2 5

400 mL/min 6.5 cm 20þ 9 12þ

10.0 cm 2 9þ 10þ

13.5 cm 5 10þ 10þ

A superscript þ denotes a relevant increase compared with the
reference simulation.
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Disturbed flow. An increase in the magnitude of flow dis-
turbances in the venous segment could be observed with
more proximal cannulation sites (towards the anastomosis),
higher dialysis flow settings and when the needle tip was
not placed in the centre of the graft’s lumen (Figs. 2 and 3).
When the needle was placed centrally in the graft’s lumen,
flow perturbations were, in general, similar or lower to
those observed in the reference simulation.

Haemodynamic scoring. The lowest haemodynamic scores
were obtained by using a central needle tip depth, a
200 mL/min dialysis flow and a 13.5 cm cannulation dis-
tance (Fig. 2, Table S1). When using a superficial or deep
needle tip depth instead of a central needle tip depth, the
haemodynamic score increased on average by a factor 1.2
and 1.9, respectively. Furthermore, the average haemody-
namic score increased by a factor 4.0 and 7.4 when using a
300 mL/min and 400 mL/min, instead of 200 mL/min dial-
ysis flow, respectively. Finally, decreasing the cannulation
distance from 13.5 cm to 10.0 cm or 6.5 cm increased the
average haemodynamic score by a factor 2.4 and 4.0,
respectively.

DISCUSSION

This study has shown that venous HD needle flow can
considerably impact the amount of non-physiological and
highly oscillating WSS experienced by the venous peri-
Reference: no needle

200 ml/min needle flow
Central needle tip depth

Distal cannulation (13.5 cm)

400 ml/min needle flow
Deep needle tip depth

Proximal cannulation (6.5 cm)

1 cm

Figure 2. Left: Comparison of the flow fields observed in the reference fl

(middle) and a simulation with a high haemodynamic score (bottom). F
rectangle. For the reference simulation, percentages of the anastomotic a
high (>7Pa � 40Pa) and very high WSS (>40 Pa) are presented on th
perturbations. For the HD simulations, the triangles on the right denote
reference simulation, whereas the circles indicate which metrics di
HD ¼ haemodialysis.
anastomotic region of AVGs. Furthermore HD needle flow
induces disturbed flow in, and downstream of, the AVG’s
venous anastomosis. This is of particular interest as both
disturbed flow and disturbed WSS are believed to be the
main initiators of NIH development in the venous anasto-
motic region, which is the primary cause of AVG failure.1,15

Since HD is performed for a considerable amount of a dial-
ysis patient’s time, this study thus suggests that haemodialysis
needle flow plays an important role in the process of AVG
dysfunction. Indeed, increased AVG longevity is observed in
VAs that are not being used, compared with those that are.16

A haemodynamic score was used to isolate the haemo-
dynamic effects of varying dialysis flow, cannulation loca-
tion and needle tip depth. As such, this score was used to
identify optimal settings for each individual dialysis
parameter, regardless of the setting of the other two. It was
demonstrated that the negative effects of dialysis needle
flow could best be mitigated by decreasing dialysis flow,
more upstream cannulation and/or by ensuring a central
needle tip depth.

Because a central needle tip depth showed the least
negative impact on anastomotic haemodynamics, this study
adds an additional haemodynamic argument for existing
clinical recommendations that advocate placing the needle
tip in the centre of the graft’s lumen, to prevent needle
infiltration of the graft wall. Since recent research shows
that the needle tip is only in the graft’s centre in 10% of all
OSI > 0.25:
WSS < 0.1 Pa:
WSS > 7 Pa:
WSS > 40 Pa:
Velocity perturbations (anastomosis):
Velocity perturbations (proximal vein):
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WSS > 40 Pa:
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successful cannulations,17 it is important to develop tech-
niques that streamline the process of placing the needle tip
in the centre of the graft’s lumen. In this context, ultra-
sound guided cannulation might be a promising way of
achieving this.3 In addition, it should be investigated
whether needle tip depth changes considerably during a
dialysis session due to patient movement.10,17 If so, it may
be advantageous to develop methods to maintain a stable
needle tip depth during dialysis.

In clinical practice AVGs are also cannulated in close
proximity to the anastomosis, since grafts are cannulated
over the greatest possible distance to prevent excessive
local graft damage (rope ladder cannulation). Since this
study demonstrated that haemodynamics deteriorate with
more downstream cannulation, it might be necessary to
find an optimal trade off between minimising graft damage
due to cannulation and minimising detrimental haemody-
namics. However, it should be ensured that the cannulation
region remains sufficiently large to prevent pseudoaneur-
ysm formation.18 Alternatively, constructing the venous
anastomosis more proximally on the vein could help create
a longer venous graft segment, which might reduce the
need for cannulation near the anastomosis.

Increasing dialysis flow had a clear negative effect on
anastomotic haemodynamics. More specifically, of all eval-
uated HD settings, haemodynamics deteriorated most with a
400 mL/min dialysis flow, especially when cannulation was
performed in close proximity to the venous anastomosis. It
has been shown that autologous fistula survival is inversely
correlated to dialysis flow.19 Given the results of this study, a
similar relation might hold true for AVGs.

In this study the effect of dialysis flow and needle posi-
tioning on anastomotic haemodynamics was assessed by a
model comprising a standard 6 mm graft. However, alterna-
tive graft designs such as cuffed grafts have been specifically
designed to optimise venous anastomotic haemodynamics.20

The use of such modified grafts could possibly further help
mitigate the negative effect of dialysis needle flow on anas-
tomotic haemodynamics. Furthermore, though grafts are
typically cannulated using metal needles,21 it is suggested that
the use of plastic cannulae could reduce dialysis flow induced
flow disturbances.22,23 Future research should be performed
to assess the possible haemodynamic benefits of alternative
graft designs and plastic cannulae during haemodialysis.
Limitations

As blood flow is dependent on patient specific properties,
such as anastomotic angle and graft flow magnitude, exact
haemodynamics will vary between patients.24,25 However,
since important flow characteristics of a vascular access is
preserved in idealised models,24 the observed negative ef-
fect of high dialysis flows, proximal cannulation, and non-
central needle tip depth on AVG haemodynamics will
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translate to the general patient population. The current
study employed a CFD model to assess the impact of needle
flow on AVG haemodynamics related to AVG failure. How-
ever, the exact biological response on haemodynamic
metrics is often unknown.2,26 Consequently, future patient
studies should be performed to confirm and quantify the
clinical benefit of lower dialysis flows, central needle tip
depths and more upstream cannulation.

CONCLUSION

In this study it was demonstrated that needle flow can
substantially deteriorate haemodynamics at the venous
anastomosis of AVGs. Since haemodynamics trigger NIH
development, dialysis needle flow might play a considerable
role in AVG dysfunction. The negative effect of needle flow
can be minimised by having a greater distance between the
cannulation site and the anastomosis, lower needle flows
and a needle tip that is placed in the centre of the graft.
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