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a b s t r a c t 

Inspired by the retail industry, we consider a stochastic inventory routing problem where retailers are 

replenished from a central warehouse using a time-based shipment consolidation policy. Such a time- 

based dispatching policy, where retailers facing stochastic demand are repetitively replenished at fixed 

times, is essential in practice. It allows for easy incorporation with dependent up- and downstream plan- 

ning problems such as personal staffing and warehouse operations, and has become a standard part of 

transportation contracts. We provide a new chance-constrained model that determines an optimal clus- 

tering of retailers in groups, their associated routing and shipment interval, and each retailers’ optimal 

inventory level. A newly developed branch-price-and-cut algorithm solves our model to optimality. Its 

efficiency comes from a tailored labeling algorithm for solving the pricing problem that relies, among 

others, on an optimality pruning criterion based on the approximate solution of a 0,1-knapsack prob- 

lem. Computational experiments show that our exact method can solve instances of up to 60 retailers 

to optimality. Besides, we accommodate practitioners by providing a fast heuristic that provides excel- 

lent solutions with an optimality gap of less than 1%. Finally, we show that incorporating uncertainty 

already in the planning process is essential for stochastic inventory routing with time-based shipment 

consolidation, as it results in overall cost-savings of 7.7% compared to the current state-of-the-art. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

How to optimally replenish inventory at geographically dis- 

ersed retailers from a central warehouse is a fundamental ques- 

ion at the interface of inventory management and transportation. 

t this interface, operations managers need decision support to co- 

rdinate when shipments are sent to retailers, how much will be 

ent to each retailer, and how these shipments are consolidated in 

ultiple vehicle routes to minimize inventory holding and trans- 

ortation costs. Practical applications by Coelho & Laporte (2014) ; 

uffy (2004) ; Gaur & Fisher (2004) , and Van Anholt, Coelho, La- 

orte, & Vis (2016) have shown that an integrated view on inven- 

ory management and transportation leads to significant cost sav- 

ngs in practice. In particular, Van Anholt et al. (2016) estimated 

he expected business cost savings at about € 10.1 million per 

ear for a Dutch ATM operator and Blumenfeld, Burns, Daganzo, 

rick, & Hall (1987) reported cost savings of $2.9 million a year 
∗ Corresponding author. 
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t General Motors. The most-well known application of integrated 

nventory and transportation management has been presented by 

aur & Fisher (2004) , who describe the planning problem at Albert 

eijn, a leading supermarket chain in the Netherlands. Albert Heijn 

aces the problem of replenishing all stores with stochastic demand 

everal times during a week. Gaur & Fisher (2004) reported cost- 

avings of 4% during the first year by implementing a correspond- 

ng replenishment system. 

For planning the retailer’s inventory replenishments, it is neces- 

ary that shipments leave the warehouse and arrive at the retailers 

t fixed and predetermined points in time to allow for coordination 

ith dependent up- and downstream planning processes such as 

aterial handling and staffing. The necessity for such time-based 

ispatching policies has been exemplified by case studies from 

olzapfel, Hübner, Kuhn, & Sternbeck (2016) at a major European 

rocery retailer, Stenius, Karaarslan, Marklund, & De Kok (2016) at 

 European metal sheet production company, and Campelo, Neves- 

oreira, Amorim, & Almada-Lobo (2019) for medicine distribution 

n the pharmaceutical sector. Time-based dispatching policies are 

lso beneficial for logistics service providers. Namely, drivers can 

e utilized more efficiently because they become familiar with 

heir routes, and, on a higher level, logistics providers can better 

https://doi.org/10.1016/j.ejor.2022.07.049
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.07.049&domain=pdf
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mailto:a.h.schrotenboer@tue.nl
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Fig. 1. Single-warehouse multiple-retailer distribution inventory system with shipment consolidation. 
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lan the vehicles and personnel required. Consequently, compa- 

ies can enter cheaper long-term contracts with logistics service 

roviders ( Gaur & Fisher, 2004 ). 

The resulting inventory replenishment strategy, where ship- 

ents are dispatched from the warehouse at fixed points in time 

o replenish inventory at predetermined groups of retailers, is 

nown in the literature as a time-based shipment consolidation 

olicy (see, e.g., Higginson & Bookbinder, 1995; Johansson, Son- 

tag, Marklund, & Kiesmüller, 2020; Marklund, 2011; Stenius et al., 

016; Ülkü & Bookbinder, 2012 ). Optimizing inventory replenish- 

ents under time-based shipment consolidation is challenging be- 

ause retailers face stochastic demand. In such a case, each re- 

lenishment takes place at fixed times while the amount to be 

hipped is stochastic. In the literature, the joint optimization of in- 

entory replenishments and transportation is known as the inven- 

ory routing problem ( Coelho, Cordeau, & Laporte, 2014b ). How- 

ver, researchers have been studying time-based shipment consol- 

dation policies mainly when retailer demand is deterministic. To 

he best of our knowledge, the few studies on stochastic inventory 

outing problems with time-based shipment consolidation, which 

e discuss in detail in the literature review, all present heuristic 

olution approaches to this highly complex problem. 

To solve our chance-constrained optimization model, we trans- 

orm it into an integer program for which we present a tailored 

ranch-price-and-cut algorithm. To solve the associated pricing 

roblem, we introduce a new pruning criterion based on the ap- 

roximate solution of a 0,1-knapsack problem. The approach ap- 

ears to be efficient because it solves instances of up to 60 re- 

ailers to optimality. Notably, this is the first exact solution ap- 

roach to the stochastic inventory routing problem that consid- 

rs the joint optimization of retailer clusters, their corresponding 

hipment intervals, the routing within each cluster, and the base 

tock levels at all retailers. Moreover, we provide tailored con- 

tructive heuristics that also serve as input to the branch-price- 

nd-cut algorithm and a hybrid heuristic that solves all consid- 

red problem instances with an optimality gap of typically less 

han 1% in negligible time. We show that including the uncertainty 

f retailer demand in the planning process is crucial for control- 
s

1187
ing costs and capacity utilization. Relying on expected demand 

nd buffer space in trucks yields an average cost increase of 7.7% 

nd insufficient truck capacity in about 95% of the considered in- 

tances, despite that we re-optimize shipment intervals to prevent 

his to the best extent possible. This shows that our new approach, 

ot suffering from this drawback, determines structurally different 

eplenishment schemes that can better mitigate retailer demand 

ncertainty by making more efficient use of the available truck 

apacity. 

In summary, the contributions of this paper are as follows: (1) 

e develop a tailored branch-price-and-cut algorithm to provide 

ptimal solutions to this highly complex problem. (2) We provide 

ailored constructive heuristics and a hybrid heuristic that exhibit 

xcellent performance in negligible time. (3) We show the impor- 

ance of including uncertainty in jointly optimizing inventory re- 

lenishment and transportation decisions under time-based ship- 

ent consolidation policies. 

The remainder of the paper is organized as follows. In Section 2 , 

e describe the problem in detail. In Section 3 , we review the 

elevant literature from the fields of inventory management, ca- 

acitated clustering, and inventory routing, and emphasize the re- 

earch gap that this paper is closing. Based on the problem state- 

ent in Section 2 , we formulate a new integer chance-constrained 

ptimization model in Section 4 . In Section 5 , we present an ex- 

ct solution approach and in Section 5.3 several heuristics. In 

ection 6 , we provide numerical results showing the performance 

f all solution approaches, the importance of considering uncer- 

ainty, and insights into the structure of the optimal solution. We 

onclude the paper and provide an outlook on future research op- 

ortunities in Section 7 . 

. Problem statement 

We consider a periodic, infinite-horizon, single-warehouse 

ultiple-retailer distribution inventory system as depicted in 

ig. 1 . In the following, we provide a high-level description of our 

ystem and postpone the formulation of our optimization problem 
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o Section 4 , where we also present an overview of the main no- 

ation used (see Table 2 ). 

The system consists of a set of retailers N = { 1 , . . . , N} , where

ach retailer i ∈ N faces stationary but stochastic period demand 

 i for a single item with known distribution and known expecta- 

ion E [ D i ] and variance VAR [ D i ] . Note that a single item model is

uitable even in a retail setting with thousands of products, if the 

emand is aggregated to, e.g., units of volume as it is done by Al- 

ert Heijn ( Gaur & Fisher, 2004 ). Demand occurring at each retailer 

s either satisfied from stock on hand immediately or backlogged in 

ase of stock-outs. Backorders are satisfied as soon as possible on 

 first-come, first-served basis once a new delivery arrives at the 

etailer. Each retailer i imposes a target service level α∗
i 

that refers 

o the non-stock-out probability at retailer i , which ensures a high 

evel of customer satisfaction. 

To replenish stock from the central warehouse, each retailer 

ses a periodic replenishment policy. More precisely, each retailer 

 places orders according to an (R i , S i ) -policy comprising a review

eriod R i and a base-stock level S i . Under an (R i , S i ) -policy, re-

ailer i places an order every R i periods such that the inventory 

osition after ordering is equal to the base-stock level S i . We de- 

ote the vector of base-stock levels for all retailers i ∈ N by S =
S 1 , S 2 , . . . , S N ) . The central warehouse itself has ample supply and

istributes the items ordered using a homogeneous fleet with an 

nlimited number of vehicles, each with capacity Q . 

We consolidate all N retailers to K ( 1 ≤ K ≤ N) mutually exclu- 

ive and collectively exhaustive retailer groups. Note that the num- 

er of retailer groups K, as well as the allocation of the retailers to

etailer groups, is part of our optimization problem. For readabil- 

ty, we denote the set of retailer groups by K = { 1 , . . . , K} . By us-

ng time-based shipment consolidation, all goods shipped to retail 

roup k ∈ K are dispatched periodically with a constant shipment 

nterval T k ∈ N ≥1 , which refers to the time between two consec- 

tive replenishments. Note that under time-based shipment con- 

olidation, shipments leave the central warehouse independently 

f the vehicle’s current utilization but in fixed time intervals, 

hich leads to a fixed delivery pattern. For all retailer groups K

ollectively, we denote the vector of shipment intervals by T = 

T 1 , T 2 , . . . , T K ) and assume that the shipment interval is constant

ithin each retailer group. This means that whenever a truck re- 

lenishes a retailer group, all retailers belonging to that group will 

e visited independently of the requested quantities. 

The number of units that comprise a replenishment to retailer 

roup k depends on the retailers’ orders according to their current 

nventory situation. Because shipments to retailer group k leave 

he warehouse every T k periods, all retailers i belonging to that 

etailer group place orders every T k periods just before the vehi- 

le departs from the central warehouse, and hence R i = T k . Thus, 

rders are placed by all retailers i belonging to retailer group k ac- 

ording to a (T k , S i ) -policy. To raise the inventory position after or-

ering to S i , the order quantity of each retailer belonging to group 

 equals the demand during the last T k periods. Because demand is 

tochastic, order quantities are stochastic as well, which can lead 

o a situation where the capacity of a vehicle is not sufficient to 

ransport all ordered units. In such a situation, an emergency ship- 

ent is performed by an external service provider to deliver ex- 

ess units to the corresponding retailers at a fixed cost per unit. 

e assume that regular and emergency shipments arrive at the 

etailers immediately after departure from the warehouse, which 

eans that we neglect transportation, order processing, and mate- 

ial handling times, because they are usually very short compared 

o the length of the shipment intervals. However, these processing 

imes can easily be included in the model by increasing the lead 

ime from the warehouse to the corresponding retailers. 

Henceforth, the sequence of events in each period is as follows: 

t the beginning of every period, shipments arrive at all retailers 
1188 
elonging to a retailer group k that receive a replenishment ac- 

ording to the group-specific shipment interval T k . Following this, 

emand occurs at the retailers and is either satisfied from stock or 

acklogged. At the end of each period, retailers receiving an order 

n the next period place a new order based on the current inven- 

ory position, which comprises the stock-on-hand, backlogs, and all 

utstanding orders, and all costs are reported. 

The aim is to find a cost-minimizing set of retailer groups, their 

ssociated shipment intervals, and the base-stock level at each re- 

ailer. The expected costs per period are composed of the sum 

f fixed and variable transportation costs, emergency shipment 

osts, and inventory holding costs for cycle and safety stock. Cycle 

tock is defined as the expected stock-on-hand required to satisfy 

he mean demand per replenishment cycle, whereas safety stock 

quals the expected stock-on-hand just before a replenishment ar- 

ives. A detailed description of the mathematical formulation fol- 

ows in Section 4 , after an overview of the relevant literature re- 

ated to our problem, which is presented in the next section. 

. Literature overview 

Our study interfaces with scientific work in the fields of inven- 

ory management in single- and two-echelon inventory systems 

nd inventory routing problems. Because of the large number of 

xcellent papers in all of these fields, the following overview does 

ot claim completeness, but instead emphasizes the research gap 

ur paper is closing. 

.1. Inventory management 

Shipment consolidation in a single-warehouse multiple-retailer 

etting with stochastic demand has been studied extensively. We 

ocus on studies that take an integrated view of consolidation 

nd inventory management, and refer to Çetinkaya & Bookbinder 

2003) and Mutlu, Çetinkaya, & Bookbinder (2010) for an overview 

f studies that focus solely on consolidation policies, i.e., time- 

ased, quantity-based, and time- and quantity-based shipment 

onsolidation. As this paper considers a single-echelon system, in 

hich ample supply is available at the central warehouse, we first 

eview the existing literature in this field. Then, we briefly discuss 

he literature on two-echelon systems with limited instead of am- 

le supply at the central warehouse. 

In the stream of single-echelon models that integrate consoli- 

ation and inventory management, the grouping of retail stores is 

iven, and the shipping capacity is unrestricted. Çetinkaya & Lee 

20 0 0) were the first to consider stochastic demand, i.e., a Poisson 

rocess, together with a time-based dispatching policy, for which 

hey presented a heuristic solution approach. An exact solution 

rocedure and an improved heuristic procedure were presented by 

xsäter (2001) . A less practical alternative to time-based dispatch- 

ng policies is represented by quantity-based or hybrid dispatch- 

ng policies, which were extensively compared by Chen, Wang, & 

u (2005) and Çetinkaya, Mutlu, & Lee (2006) , who found that 

uantity-based policies are, in terms of costs, at least as good as 

ime-based policies. Cetinkaya, Tekin, & Lee (2008) presented opti- 

al quantity-based dispatching policies for the case in which both 

rder arrivals and order sizes are stochastic. 

Owing to the complexity of the problem, the literature on ship- 

ent consolidation in the context of two-echelon distribution in- 

entory systems with stochastic demand is limited. It has focused 

ainly on time-based dispatching policies because of their prac- 

icability, for instance, in the retail industry (for quantity-based 

onsolidation policies, we refer to Kiesmüller & De Kok, 2005 ). 

onsidering time-based dispatching policies, Marklund (2011) and 

tenius et al. (2016) presented exact approaches to minimize the 
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otal system-wide costs under Poisson and compound Poisson de- 

and, respectively. Johansson et al. (2020) used the same model 

s Stenius et al. (2016) and developed computationally attractive 

euristics solving larger problem instances. 

All papers on single- and two-echelon inventory systems have 

n common that they consider an unlimited fleet of vehicles with 

nlimited capacity. Furthermore, geographically close retailers are 

eplenished according to externally given retailer groups. Thus, 

hese papers focus solely on determining shipment intervals T 

nd base-stock levels S at the retailers, and neglect the cluster- 

ng and routing as well as the interaction between all these deci- 

ions. However, the importance and complexity of determining re- 

ailer groups have recently been recognized. For instance, Stenius, 

arklund, & Axsäter (2018) wrote that the “configuration of re- 

ailer groups can affect the performance of the system.”

.2. Inventory routing problem 

The basic version of the inventory routing problem (IRP) con- 

iders one supplier and several geographically dispersed retailers. 

n each period, the supplier has to replenish stock at a subset of 

etailers using capacitated vehicles. The objective is to minimize 

he total inventory distribution cost while meeting the demand at 

ach retailer ( Coelho et al., 2014b ). 

For the replenishment of stock at the retailers, one distin- 

uishes between static and dynamic allocation policies ( Kumar, 

chwarz, & Ward, 1995 ). Under static allocation policies, the allo- 

ation of items on a vehicle to retailers is made for all retailers 

efore the vehicle leaves the central warehouse. By contrast, un- 

er dynamic allocation policies, the allocation of vehicle inventory 

s postponed to the moment when the vehicle reaches each re- 

ailer. Because the solution procedure under dynamic allocation is 

ery different from that for static allocation, which we consider in 

his paper, we do not review the literature on dynamic allocation 

ut instead refer to, for instance, Huang & Lin (2010) ; Jaillet, Bard, 

uang, & Dror (2002) ; Reiman, Rubio, & Wein (1999) ; Schwarz, 

ard, & Zhai (2006) ; Trudeau & Dror (1992) , and Ghiami, Demir, 

an Woensel, Christiansen, & Laporte (2019) for papers considering 

his kind of problem. 

Focusing on static allocation policies, the problem we consider 

n this paper differs from classical IRPs in the following ways: 

1. Many stochastic IRP papers consider that in each period, the 

planners are concerned with deciding which customers to re- 

plenish and how much to deliver. In contrast to this, we con- 

sider a planning problem with fixed routes to a subset of re- 

tailers that are replenished repeatedly in fixed time intervals. 

2. Those IRP papers focusing on fixed routes—aggregated in the 

literature under the topic Cyclic Inventory Routing Problem 

(CIRP) —mostly assume that demand rates are deterministic, 

whereas we consider stochastic demand, which makes it nec- 

essary to 

(i) optimize safety stock at each retailer, which depends on the 

replenishment frequency; 

(ii) deal with situations where not all ordered units fit on the 

capacitated vehicle by, for instance, considering emergency 

shipments. 

3. Because of the complexity of the problem, most (C)IRP papers 

derive heuristic instead of exact algorithms. By contrast, we 

present an exact algorithm and several heuristics to solve the 

stochastic (cyclic) inventory routing problem. 

able 1 presents a summary of the IRP literature, including the 

ost relevant papers as well as those most closely related to our 

roblem. In this overview, we emphasize the research gap between 

his paper and previous works in this extensively studied field of 
1189
esearch. For extended literature reviews, we refer interested read- 

rs to the excellent papers by Andersson, Hoff, Christiansen, Hasle, 

 Løkketangen (2010) ; Kleywegt, Nori, & Savelsbergh (2002) ; Moin 

 Salhi (2007) , and Coelho et al. (2014b) . The column headings in

able 1 represent some key problem characteristics, where a check- 

ark between parentheses implies that the characteristic is only 

ndirectly considered: 

1. The time between two consecutive shipments—the shipment 

interval—can be either fixed or flexible over a particular plan- 

ning horizon. 

2. The demand per period at the retailers can be deterministic or 

stochastic. 

3. This column states whether or not emergency shipments are 

being considered. 

4. The next four columns refer to the decisions: Determining clus- 

ters of retailers that are always replenished jointly, determining 

fixed shipment frequencies instead of daily replenishment deci- 

sions, determining the routing between retailers and the ware- 

house, and determining inventory holding costs. 

5. This paper has a special focus on the inventory component. 

Therefore, we identify papers in the IRP literature that optimize 

cycle stock and/or safety stock at the retailers. 

6. Solution approaches can be exact or heuristic. 

Table 1 divides the IRP literature into two groups. The first 

roup focuses on cyclic planning problems under mainly deter- 

inistic demand, whereas the second group considers a planning 

roblem with flexible shipment intervals under stochastic demand. 

nder flexible shipment intervals, the probability of stock-outs at 

he retailers determines whether or not a retailer is replenished 

n the current period. Flexible shipment intervals are motivated by 

ractical applications in, for instance, the distribution of gases to 

ustomers (see, e.g., Kleywegt, Nori, & Savelsbergh, 2004; Trudeau 

 Dror, 1992 ). In such a setting, the customers “do not routinely 

all requesting replenishment nor are there regular pre-scheduled 

eliveries” ( Berman & Larson, 2001 ). Therefore, no coordination 

ith dependent planning processes is necessary, and day-to-day 

lanning of deliveries is reasonable resulting in a very different 

lanning problem. 

Focusing on fixed shipment intervals, the work by Raa & Aouam 

2021) is most closely related to our problem. The authors use a 

imilar model as in this paper, including stochastic demand and 

xpedited shipments in case of insufficient vehicle capacity, with 

he objective to minimize total average transportation and inven- 

ory related costs. Raa & Aouam (2021) present a heuristic ap- 

roach to solve the problem under the assumption of normally 

istributed demand, whereas we present an exact algorithm un- 

er a more general gamma distributed demand structure, which 

llows for larger demand variability and skewed demand distri- 

utions. The second study considering fixed shipment intervals in 

tochastic cyclic IRPs is that of Malicki & Minner (2021) , who con- 

ider a slightly different model with a finite planning horizon and 

ormulate it as a cyclic lot sizing problem. To determine the replen- 

shment frequencies and quantities, a multi-start adaptive search 

nd an adaptive large neighborhood search heuristic are proposed. 

part from the studies by Aghezzaf (2008) ; Malicki & Minner 

2021) ; Raa & Aouam (2021) and Gaur & Fisher (2004) are the only

uthors considering the inventory routing problem under periodic 

eliveries and stochastic demand. However, Aghezzaf (2008) and 

aur & Fisher (2004) use a decomposition approach and first solve 

 deterministic formulation of the problem, which is based on ex- 

ectations of the random variables. In the second step the solution 

s adjusted using, e.g., simulations to hedge against the uncertainty 

f the demand. 

Summarizing, there have been only a few studies considering 

xed replenishment intervals for retailers facing stochastic cus- 
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Table 1 

Comparison of our contributions with those of the most relevant existing studies. 

1 2 3 4 5 6 
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Deterministic 

demand 

Stochastic 
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Emergency 

shipments 

Clustering Shipment 

interval 

Routing Inventory Optimize 

cycle stock 
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safety stock 
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solution 

Heuristic 

solution 
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Table 2 

Overview of notation used. 

Sets: 

N set of retailers 

N 

0 set including all retailers and the central warehouse 

K set of retailer groups 

A complete edge set 

Indices: 

i, j index for retailers 

k index for retailer groups 

Parameters: 

N number of retailers 

K number of retailer groups 

D i random variable for the demand per period at retailer i 

E [ D i ] mean demand per period at retailer i 

VAR [ D i ] variance of the demand per period at retailer i 

D i (T k ) random variable for the demand for retailer i during T k periods 

α∗
i 

target service level at retailer i 

γ ∗ target probability that the vehicle’s capacity for a replenishment is not exceeded 

Q capacity of all vehicles 

IL + i (t, S i ) stock on hand at the end of period t at retailer i depending on the base-stock level S i 
Decision variables: 

S vector of base-stock levels 

S i base-stock level for retailer i 

T vector of shipment intervals to all retailer groups 

T k shipment interval for group k 

R i review period for retailer i belonging to group k ( R i = T k ) 

Y ( N × N × K) matrix containing binary decision variables y i jk 

y i jk binary decision variable that equals 1 if retailer j is visited after retailer i in group k ,and 0 otherwise 

X ( N × K) matrix containing binary decision variables x ik 
x ik binary decision variable that equals 1 if retailer group k contains retailer i , and equal 0 otherwise 

Cost components: 

TC total expected cost per period 

W fixed shipment costs per shipment 

c i j travel cost between retailer i and j

w k variable shipment cost per shipment to retailer group k 

e emergency shipment cost per emergency shipment to one retailer group 

h holding cost per unit and time unit 
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omer demand and we are not aware of any study solving this 

omplex planning problem exactly, which highlights the contribu- 

ion of our work. 

. Model formulation 

In the following, we first formulate the mathematical model 

hat can be used to solve our inventory routing problem with 

tochastic demand. We formulate it as a chance-constrained in- 

eger optimization problem. We then introduce an integer formu- 

ation by applying a Dantzig–Wolfe reformulation to the chance- 

onstrained integer optimization problem. An overview of the no- 

ation is given in Table 2 . 

.1. Mathematical model 

First, let N 

0 := N ∪ { 0 } , where 0 represents the central ware-

ouse and N the set of retailers. For readability, we refer to all 

 ∈ N 

0 as retailers. Our problem is then defined on the graph 

 = (N 

0 , A ) , where A is the complete edge set. We set the maxi-

um number of retailer groups K = N to ensure that we allow for 

ll possible retailer groups in our model, because retailer groups 

re allowed to be empty. Recall the vectors with decision vari- 

bles T = (T 1 , . . . , T K ) , denoting the shipment intervals of the K re-

ailer groups, and S = (S 1 , . . . , S N ) , denoting the base-stock levels

t each retailer. Furthermore, let Y = (y i jk ) (N+1) ×(N+1) ×K denote bi- 

ary decision variables that equal 1 if retailer j ∈ N 

0 is directly 

isited after retailer i ∈ N 

0 in retailer group k ∈ K, and equal 0 oth-

rwise. Finally, for readability, we introduce X = (x ik ) N×K as binary 

ecision variables that equal 1 if retailer group k contains retailer 

 ∈ N , and equal 0 otherwise. It holds that 
∑ 

j∈N 0 y i jk = x ik for all

 ∈ N . 
1191 
We first present the complete objective function. We then dis- 

uss the components of the objective function and the associated 

ariables and parameters one-by-one. The objective function is for- 

ulated as 

C ( S , T , X , Y ) = 

∑ 

k ∈K 

W + w k ( Y ) 

T k 

+ 

∑ 

k ∈K 

e 

T k 
E 

[ ( ∑ 

i ∈N 
x ik D i (T k ) − Q 

) + ] 

+ h 

∑ 

i ∈N 

∑ 

k ∈K 

1 

T k 

T k ∑ 

t=1 

x ik E [ IL + i (t, S i )] . (1) 

The first term in Eq. (1) corresponds to the regular shipment 

osts per period for each retailer group k . These are composed of a 

xed term W per replenishment and a variable component w k ( Y ) , 

hich corresponds to the variable transportation costs required to 

eplenish all retailers in group k with a single vehicle tour. The 

ariable costs are defined as 

 k ( Y ) = 

∑ 

i ∈N 0 

∑ 

j∈N 0 
c i j y i jk ∀ k ∈ K, (2) 

nd depend on the routing related decision variables y i jk and the 

ravel cost c i j between retailer i and j. 

The second term in Eq. (1) refers to the expected emergency 

hipment costs per period determined based on the expected num- 

er of units that exceed the vehicle’s capacity Q for retailer group 

 . Here, D i (T k ) refers to the demand at retailer i during T k peri-

ds and (·) + is the positive-part operator, i.e., (u ) + = max { 0 , u } .
e assume that all excess items are delivered to the correspond- 

ng retailers by an external service provider for a fixed unit price 

 . Because emergency shipments can occur only in periods where 
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egular shipments take place, emergency shipment costs to retailer 

roup k are divided by the group-specific shipment interval T k to 

btain the expected emergency shipment costs per period. There- 

ore, the emergency shipment costs per period are not only af- 

ected by the composition of retailer groups but also the corre- 

ponding shipment interval, which emphasizes the difficulty of the 

lanning problem because of an interrelation of all decision vari- 

bles and the resulting cost terms. 

The third term in Eq. (1) accumulates the expected holding 

osts per period over all retailers. Holding costs for a single re- 

ailer i belonging to retailer group k are calculated by multiply- 

ng the unit holding cost parameter h with the expected stock on 

and E [ IL + i (t, S i )] at the end of each period t during the replen-

shment cycle of length T k . Note that the expected stock on hand 

epends on the base-stock level S i , which in turn is dependent on 

he length of the corresponding shipment interval and, therefore, 

he time between the delivery of two consecutive orders. 

While minimizing the total expected costs per period TC , sev- 

ral constraints need to hold such that we can find a feasible so- 

ution to our problem. First, the retailers’ target service levels α∗
i 

ust be satisfied: 

 ( IL + i (T k , S i ) > 0) ≥ α∗
i ∀ i ∈ N , k ∈ K. (3)

y including a service level constraint, we ensure that the proba- 

ility for costly stock-outs leading to customer dissatisfaction does 

ot exceed 1 − α∗
i 
, ∀ i ∈ N . 

Second, the capacity of all vehicles should be respected. We 

odel this via the chance constraint 

 

( ∑ 

i ∈N 
x ik D i (T k ) ≤ Q 

) 

≥ γ ∗ ∀ k ∈ K. (4) 

This ensures that the probability that the total demand for re- 

ailer group k during T k periods is less than or equal to the vehi-

le’s capacity Q is at least γ ∗. Chance constraint (4) is added in 

ddition to the expected emergency costs in the objective function 

o not only penalize the volume shipped but also limit the proba- 

ility of having emergency shipments.This is from a practical per- 

pective highly desirable because each emergency shipment that 

eeds to be scheduled on an operational level requires time and 

ffort. 

Summarizing, the chance-constrained nonlinear optimization 

odel that minimizes the total expected costs per period, as de- 

ned in Eq. (1) , is given by 

in TC ( S , T , X , Y ) (5) 

.t. P ( IL + i (T k , S i ) > 0) ≥ α∗
i ∀ i ∈ N , k ∈ K, (6) 

 

( ∑ 

i ∈N 
x ik D i (T k ) ≤ Q 

) 

≥ γ ∗ ∀ k ∈ K, (7) 

 ik = 

∑ 

j∈ N 0 
y i jk ∀ i ∈ N , k ∈ K, (8) 

∑ 

k ∈K 

∑ 

j∈N 0 \{ i } 
y jik = 1 ∀ i ∈ N , (9) 

∑ 

k ∈K 

∑ 

j∈N 0 \{ i } 
y i jk = 1 ∀ i ∈ N , (10) 

∑ 

i ∈ U 

∑ 

j∈ U 
y i jk ≤ | U| − 1 ∀ k ∈ K, ∀ U ⊂ N , | U| > 2 , (11) 
1192 
 i ∈ R ∀ i ∈ N , (12) 

 k ∈ N ≥1 ∀ k ∈ K, (13) 

 ik ∈ { 0 , 1 } ∀ i ∈ N , k ∈ K, (14) 

 i jk ∈ { 0 , 1 } ∀ i ∈ N 

0 , j ∈ N , k ∈ K. (15) 

n this formulation, the constraints (6) and (7) are the chance con- 

traints discussed previously, the constraints (8) link the x ik vari- 

bles to the y i jk variables, the constraints (9) and (10) ensure that 

ach retailer is visited exactly once, the constraints (11) enforce the 

ondition that there is only a single tour among all retailers be- 

onging to a single retailer group k , and the constraints (12) –(15)

ndicate the domain of the decision variables. Note that the pre- 

ented model results in a stochastic mixed-integer nonlinear prob- 

em, due to constraints (6) and (7) . Therefore, we present an inte- 

er linear reformulation in the next subsection and discuss how to 

andle constraints (6) and (7) . 

.2. An integer linear reformulation 

In the remainder of this paper, we will work with an integer 

eformulation of the model (5) –(15) . We obtain this via a Dantzig- 

olfe reformulation on the constraints related to the feasibility 

f individual retailer clusters. The resulting formulation is a set- 

artitioning model, where we select retailer clusters that together 

artition the set of retailers N . Each cluster comprises a set of re- 

ailers with associated vehicle route, shipment interval, and corre- 

ponding individual base-stock levels in order to meet the service 

evels α∗
i 

. Furthermore, for each cluster, it is ensured that with 

robability γ ∗ the truck capacity is sufficiently large, as modeled 

ia the chance constraints (7) . How to explicitly calculate this is 

iscussed in Lemmas 2 and 3 , and Corollary 1 in Section 5 . 

The formulation comprises an exponentially large set of clus- 

ers. Let R be a collection of retail clusters, where each cluster 

 ∈ R describes a single vehicle route along all retail stores in the 

luster. Let β i 
r be equal to 1 if retailer i is contained in cluster r,

nd 0 otherwise. Furthermore, we define T r as the corresponding 

ptimal shipment interval and S i r as the optimal base-stock level 

f retailer i with β i 
r = 1 (see Section 5.1.1 for their calculation). 

The costs c r of cluster r ∈ R are defined as 

 r = 

1 

T r 
(w r + W ) + 

e 

T r 
E 

[ ( 

N ∑ 

i =1 

β i 
r D i (T r ) − Q 

) + ] 

+ h 

N ∑ 

i =1 

β i 
r 

1 

T r 

T r ∑ 

t=1 

E [ IL + i (t, S i r )] , (16) 

here w r is equal to the variable transportation costs within clus- 

er r. Let z r be binary decision variables equaling 1 if cluster r is se-

ected and 0 otherwise. Then, the inventory routing problem with 

tochastic demand can be formulated as 

P (z) = min 

∑ 

r∈R 

c r z r (17) 

.t. 
∑ 

r∈R 

β i 
r z r = 1 ∀ i ∈ N , (18) 

 r ∈ { 0 , 1 } ∀ r ∈ R . (19) 
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ere, the objective (17) minimizes the costs of the selected retail 

lusters. The constraints (18) ensure that each customer is assigned 

o exactly one retail cluster, and the constraints (19) indicate the 

omain of the variables. 

In the above formulation, the set of clusters R is of exponen- 

ially large size and cannot be enumerated. Instead, we consider 

he above master formulation restricted to a subset R̄ ⊂ R of the 

ariables. We call this the restricted master problem (RMP) and 

enote its solution value by RMP (z) . The linear relaxation of the 

MP (i.e., the replacement of (19) by z r ≥ 0 ∀ r ∈ R̄ ) is solved to

ptimality using column generation (see, e.g., Barnhart, Johnson, 

emhauser, Savelsbergh, & Vance, 1998; Lübbecke & Desrosiers, 

005 ). 

In column generation, one iteratively generates retail clusters 

 ∈ R\ R̄ of negative reduced cost, adds these clusters to the RMP, 

nd consequently (re)solves the linear relaxation of the RMP. If 

here are no retail clusters of negative reduced cost, then the linear 

elaxation of the RMP is provably optimal for the linear relaxation 

f the MP. The major challenge in column generation is therefore 

o determine if there are no retail clusters of negative reduced cost 

eft after solving the linear relaxation of the RMP. This problem is 

alled the pricing problem, and formally asks for a solution of 

min 

∈R\ ̄R 

ˆ c r := c r −
∑ 

i ∈ N 
β i 

r πi . (20) 

ere, ˆ c r is called the reduced cost of cluster r, and πi ∈ R are the

ual variables corresponding to the constraints (18) . If the pricing 

roblem returns a cluster r with ˆ c r > 0 , then we are certain that 

here are no retail clusters of negative reduced cost left, and the 

inear relaxation of the RMP is optimal for the linear relaxation 

f the MP. For our problem, in particular because of the chance 

onstraints (6) and (7) , this pricing problem is a new variant of the

lementary resource-constrained shortest-path problem (ERCSPP). 

Integer optimality is then obtained by embedding column gen- 

ration in a branch-and-bound scheme (called branch-and-price), 

nd its computational efficiency is enhanced by including valid in- 

qualities. The resulting approach is called branch-price-and-cut, 

hich we discuss in detail in Section 5 . 

. Branch-price-and-cut algorithm 

The branch-price-and-cut algorithm to solve the formula- 

ion (17) –(19) consists of three parts that will be discussed in the 

ollowing. A diagram showing how all parts are connected is pro- 

ided in the online appendix. First (see Section 5.1 ), we describe 

 tailored labeling algorithm to solve the pricing problem (20) . 

e give structural insights into our problem and present a novel 

ounding method based on 0,1-knapsack relaxations. Second (see 

ection 5.2 ), we outline the remaining ingredients of the branch- 

nd-price-and-cut algorithm by discussing the valid inequalities 

sed, the branching decisions, and the node selection rules. Third, 

e introduce several upper-bounding methods that are used to ini- 

ialize the set of retail clusters but can also serve as constructive 

euristics to solve the problem in negligible time. 

.1. Solving the pricing problem 

The pricing problem differs from traditional ERCSPPs because 

n addition to the truck routes—determined as in traditional 

RCSPPs— we also need to determine the associated shipment in- 

ervals for the clusters and the base-stock levels at all retailers be- 

onging to each cluster. 

We propose a tailored labeling algorithm to solve our pricing 

roblem. A labeling algorithm is a dynamic-programming-based 

ethod in which we iteratively extend partial retailer clusters, 

alled labels , with a new retailer and check its feasibility. The core 
1193
f its efficiency lies in the ability to prune labels based on domi- 

ance criteria. These criteria specify the conditions under which a 

abel dominates another label, meaning that the dominated label 

oes not need to be considered, because it will not lead to an im- 

roved solution. Besides dominance criteria, pruning based on op- 

imality criteria is gaining popularity. Optimality criteria consider 

hether or not a label and all its possible extensions can poten- 

ially improve the current best-known solution. If not, the label can 

e pruned. We consider both dominance and optimality criteria, as 

e will detail in Section 5.1.2 . Before that, we first define the ele-

ents of a label and the resource-extension functions (REFs) that 

escribe how label elements change after extending it by a retailer 

n Section 5.1.1 . 

In the remainder of this section, we assume that customer de- 

and D i per period at retailer i is gamma-distributed with retailer- 

ependent shape parameter κi and equal scale parameter θ . The 

dvantage of considering a gamma distribution is that the proba- 

ility density function can depict very different shapes and thereby 

over a broad variety of possible demand distributions. Although 

e use a gamma distribution to model demand at the retailers, 

ur algorithm can be adapted easily for other demand distributions 

e.g., normal or Poisson distributions). 

.1.1. Label definition, feasibility, and extension 

To track feasibility and to apply dominance criteria, we define a 

abel L by the following elements: 

1. the current partial path of retail stores � v (L ) , with i (L ) denoting

the retail store at the end of � v (L ) ; 

2. a sorted set of unreachable retailers U(L ) ⊂ N denoting the re- 

tailers that can no longer be visited or that are visited already 

in the label; 

3. the sum κ(L ) of shape parameters κi of all retailers i contained 

in L ; 

4. the incurred dual costs ˆ c (L ) , i.e., the sum of dual variables πi 

for all retailers i contained in L ; 

5. the total transportation costs w (L ) ; 

6. the optimal shipment interval t(L ) ; 

7. the truck capacity used q (L ) , defined as the γ % percentile of 

the joint demand distribution associated with shipment interval 

t(L ) of all the retailers in label L ; 

8. the objective value c(L ) composed of regular and expected 

emergency transportation and holding costs minus the incurred 

dual costs. 

A label L is initialized by a single warehouse visit, i.e., � v (L ) =
0) , U(L ) = ∅ , κ(L ) = ˆ c (L ) = t(L ) = q (L ) = c(L ) = 0 , and w (L ) = W .

he basic action of a labeling algorithm is to extend a label L with

 new retailer i ∈ N 

0 into an extended label L ′ . Before we detail the

esource extension functions that update the elements of L upon 

xtension, we explain how the optimal shipment interval t(L ) can 

e computed for a given label. For better comprehensibility, we 

rst summarize some properties of the gamma distribution. After 

his, we detail some properties of retailers included in a label, i.e., 

ow to determine the base-stock level and the expected cycle and 

afety stock. Then, we indicate how to calculate the expected num- 

er of emergency shipments and how truck capacity should be re- 

pected. We present this in a sequence of three lemmas. 

emma 1 (Gamma distribution) . Consider a given label L . For read- 

bility, assume that U(L ) equals the set of retailers contained in � v (L ) .

et t(L ) be the associated shipment interval. Assume that each re- 

ailer i ∈ U(L ) faces gamma-distributed demand �(κi , θ ) with shape 

arameters κi and equal-scale parameter θ . 

• The total demand at retailer i during a replenishment cycle of 

length t(L ) , D i (t(L )) , is gamma-distributed with shape parameter 

t(L ) κ and scale parameter θ : D (t(L )) ∼ �(t(L ) κ , θ ) . 
i i i 
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• The total demand for label L per replenishment cycle of length t(L ) ,

D L (t(L )) , is also gamma-distributed with parameters t(L ) κ(L ) and

θ : D L (t(L )) ∼ �(t(L ) κ(L ) , θ ) . 

Using this lemma on the properties of the demand distribution 

aced by a label L , we can calculate the base-stock levels at the

ontained retailers and determine the expected cycle and safety 

tock as shown in Lemma 2 . 

emma 2 (Retailer properties) . For any given label L , the following 

tatements are true for a retailer i ∈ N contained in L : 

• The optimal base-stock level at retailer i as a function of t(L ) 

equals S i (t(L )) = F −1 (α∗
i 
; t(L ) κi , θ ) , where F −1 (x ; a 1 , a 2 ) refers

to the inverse cumulative distribution function of a gamma- 

distributed random variable with shape parameter a 1 and scale 

parameter a 2 at point x . The formula follows directly from con- 

straint (6) . This result is general for any inverse cumulative distri- 

bution function F −1 . 
• The cycle stock per period under a replenishment cycle of length 

t(L ) at retailer i equals I cs 
i 

(t (L )) = 

1 
2 d̄ i (t (L )) , where d̄ i (t (L ))

equals the mean demand at retailer i during t(L ) periods. Note 

that this result is independent of the considered demand distribu- 

tion. Under gamma distributed demand, this can be calculated as 

d̄ i (t(L )) = t(L ) κi θ . 
• The safety stock per period at retailer i equals the expected pos- 

itive amount of stock that is available at the end of each re- 

plenishment cycle just before a new replenishment is received: 

I ss 
i 

(t(L )) = E [(S i (t(L )) − D i (t(L ))) + ] . This term can be simplified

under gamma-distributed demand to 

S i (t(L )) − d̄ i (t(L )) + d̄ i (t(L ))(1 − F (S i (t(L )) ; t(L ) κi + 1 , θ )) 

−S i (t(L ))(1 − F (S i (t(L )) ; t(L ) κi , θ )) , 

where F (x ; a 1 , a 2 ) denotes the cumulative distribution function of 

a gamma-distributed random variable with shape parameter a 1 
and shape parameter a 2 at point x (see, e.g., Silver, Pyke, Peter- 

son et al., 1998 ). Note that the calculation of the safety stock 

as I ss 
i 

(t(L )) = E [(S i (t(L )) − D i (t(L ))) + ] is independent of the con-

sidered demand distribution. However, the simplification denoted 

above depends on the used demand distribution. 

Besides the properties of each retailer, we need to determine 

he required number of emergency shipments of label L that is di- 

ectly related with the truck capacity. We summarize this in the 

ollowing lemma: 

emma 3 (Label properties) . For each label L , the following holds: 

• The expected emergency costs for label L are calculated by multi- 

plying the unit emergency cost with the expected number of units 

exceeding truck capacity on the occasion of a replenishment, given 

by 

E L (t(L )) = E [(D L (t(L )) − Q ) + ] 

= 

∫ ∞ 

Q 

(u − Q ) f (u ; t(L ) κ(L ) , θ ) d u, 

where f (x ; a 1 , a 2 ) is defined as the probability density function 

of a gamma-distributed random variable with shape parameter a 1 
and scale parameter a 2 . The integral in this equation is called the 

first-order loss function and can be simplified according to Silver 

et al. (1998) to 

d̄ L (1 − F (Q; t(L ) κ(L ) + 1 , θ )) − Q(1 − F (Q; t(L ) κ(L ) , θ )) , 

where d̄ L (t(L )) = t(L ) κ(L ) θ is defined as the mean demand per 

replenishment cycle of label L . 
• The probability of exceeding capacity Q in a replenishment cy- 

cle with shipment interval t(L ) , P (D L (t(L )) > Q ) , equals 1 −
−1 	 
F (γ ; t(L ) κ(L ) , θ ) . c
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Based on Lemmas 2 and 3 , we can calculate the optimal ship- 

ent interval t(L ) of label L given gamma-distributed demand at 

ach retailer, as shown in the following corollary: 

orollary 1. For a given label L , the optimal shipment interval t(L )

nder gamma-distributed demand is given by 

(L ) := argmin u ∈ N + { 
(u, L ) | P (D L (u ) ≤ Q ) ≥ γ 	 } , (21) 

(u, L ) = 

w (L ) 

u 

+ 

e 

u 

E L (u ) + h 

∑ 

i ∈ � v (L ) 

[
I cs 
i (u ) + I ss 

i (u ) 
]
. (22) 

Note that I cs 
i 

(u ) and I ss 
i 

(u ) refer to the optimal expected cycle

nd safety stock for any given shipment interval u and are defined 

n Lemma 2 . 

Lemmas 1 –3 and Corollary 1 define how the different cost 

omponents of a label can be calculated in case demand is 

amma distributed. We continue our exposition by introducing the 

esource-extension functions that describe how the label elements 

hould be updated in case a label L is extended with an arbitrarily 

etailer j ∈ N 

0 into a new label L ′ . That is, label L ′ is obtained as

ollows: 

1. � v (L ′ ) = ( � v (L ) , j) ; 

2. U(L ′ ) = U(L ) ∪ { j} ; 
3. k (L ′ ) = k (L ) + κ j ; 

4. ˆ c (L ′ ) = ˆ c (L ) + π j ; 

5. w (L ′ ) = w (L ) + c i j , where i is the last node of � v (L ) . 

6. t(L ′ ) = argmin u ∈ N + 
{

(u, L ′ ) | P (D L ′ (u ) ≤ Q ) ≥ γ 	 

}
; 

7. q (L ′ ) = F −1 (γ ∗; t(L ′ ) k (L ′ ) ; θ ) ; 

8. c(L ′ ) = 
(t(L ′ ) , L ′ ) − ˆ c (L ′ ) . 
Note that in the case j = 0 , we only update the path 

�
 v (L ′ )

nd leave the other label elements untouched. Feasibility of a la- 

el follows trivially from the label definition; i.e., extending label 

 with a retailer j into label L ′ is feasible if the truck capacity 

onstraints are respected [ q (L ′ ) ≤ Q] and if j / ∈ U(L ) . When a la-

el is extended with the central warehouse, i.e., if j = 0 , we check

hether c(L ′ ) < 0 and transform the label with negative reduced 

ost into a new retailer cluster and add it to the set R̄ . 

.1.2. Dominance and optimality criteria 

Here, we introduce dominance and optimality criteria in order 

o prune labels during the labeling algorithm. This is crucial for 

he efficiency of the algorithm. If these criteria are not included, 

he labeling algorithm simply enumerates all possible clusters. The 

ominance and optimality criteria are valid under the assumption 

hat we fix the shipment interval during execution of the labeling 

lgorithm. Let t lb ≤ t(L ) ≤ t ub for all labels L . In the remainder of

his section, we assume that the shipment interval is fixed (i.e., 

 

lb = t ub ). In Section 5.1.3 , we indicate how we ensure optimality

f the complete labeling algorithm. 

We now discuss how a label L in the labeling algorithm can be 

isregarded. First, we consider dominance criteria that disregard a 

abel because there provably exists another label L ′ that results in 

he same label extensions as L but at lower cost. The dominance 

riteria are similar to those of the capacitated vehicle routing prob- 

em (see, e.g., Costa, Contardo, & Desaulniers, 2019 ). For complete- 

ess, we restate these dominance criteria. A label L is said to be 

ominated by label L ′ if the following three conditions hold: 

(L ′ ) ⊆ U(L ) , c(L ′ ) ≤ c(L ) , q (L ′ ) ≤ q (L ) . (23) 

rom left to right, these state that L ′ dominates L if L ′ contains a

ubset of retailers only, has lower reduced cost, and less vehicle 

apacity used. 

Second, we provide an optimality criteria based on a so-called 

ompletion bound. This is a lower bound on the reduced cost that 
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an be obtained by all possible extensions from a particular label 

 . If we keep track of the best known solution so far to the pric-

ng problem, we can disregard L if we can show that L (or its ex-

ensions) cannot improve that current best-known solution. Note, 

e also disregard L if the completion bound shows us that only a 

ositive reduced cost can be achieved from further extending this 

abel. 

The completion bound exploits the fact that the dual costs are 

nly incurred at the retailers (and not on the actual arcs chosen) 

nd that holding costs can be calculated directly for a fixed ship- 

ent interval. Consequently, our completion bound considers all 

etailers i / ∈ U(L ) and “collects” the sum of positive dual costs and 

he minimum holding costs at i associated with the shipment in- 

erval of label L . We do this so that we obtain a lower bound on

he reduced cost of any cluster that results from extending label L . 

To obtain a valid completion bound, we need an easy-to- 

ompute lower bound on the increase of q (L ) , independent of the

ctual demand distributions of retailers contained in L . Our lower 

ound uses the following property of gamma-distributed demand: 

emma 4 (Gamma-distribution quantile) . Let D i ∼ �(κi , θ ) and 

 j ∼ �(κ j , θ ) be gamma-distributed independent random variables, 

epresenting the demand per period of retail stores i and j. Then, for 

ny i, j ∈ N , κi , κ j ∈ R 

+ , θ ∈ R 

+ and for any parameter constellation

κi , κ j , θ ) , there exists an ˜ a (κi , κ j , θ ) such that for all a > ˜ a (κi , κ j , θ ) ,

he following inequality holds: 

 

−1 (a ;κi + κ j , θ ) ≥ F −1 (a ;κi , θ ) + κ j θ . (24) 

The proof is provided in the Online Appendix. Lemma 4 pro- 

ides a lower bound on the right tail quantile of the sum of 

wo gamma-distributed random variables, which is useful for con- 

tructing our completion bound because it allows us to work with 

ower bounds on the increase of q (L ) by extensions of some label

 . In particular, it implies that q (L ) increases by less than κ j θ if

ome label L is extended with retailer j ∈ N . 

We define for each retailer i its so-called completion costs CC i : 

C i = 

w 

t lb 
min 

j∈N ′ 
c i j − πi + h [ I cs 

i (t lb ) + I ss 
i (t lb )] . (25) 

The completion costs CC i consist of the shortest outgoing arc 

rom i , its associated dual costs πi , and the holding cost at node i

ith shipment interval t lb . For any label L and retailer i / ∈ U(L ) , the

ompletion costs CC i are a lower bound on the increase in c(L ) , 

ecause CC i does not account for the emergency shipment costs 

nd the shipment interval is fixed to t lb . In other words, it holds

hat the extended label L ∪ { i } := L ′ has costs c(L ′ ) ≥ c(L ) + CC i . 

The completion bound, defined for any label L , then consists of 

electing the most “profitable” retailers i / ∈ U(L ) according to their 

ompletion costs CC i . Using Lemma 4 , we define the completion 

ound as the solution to the linear optimization problem 

¯
 (L ) = min CC i y i (26) 

.t. 
∑ 

i / ∈ U(L ) 

θκi y i ≤ Q − q (L ) , (27) 

 ≤ y i ≤ 1 ∀ i / ∈ U(L ) . (28) 

his is a linear knapsack problem ( CC i ∈ R ), which is solved by

orting all retailers i / ∈ U(L ) in non-increasing order according to 

C i / (θκi ) and assigning the Q − q (L ) remaining capacity according 

o the sorted list of retailers. This sorting operation is done be- 

ore the labeling algorithm starts and does not add complexity to 

olving the pricing problem. However, the assignment of remain- 

ng capacity Q − q (L ) to retailers i / ∈ U(L ) depends on L and is per-

ormed when the optimality pruning criteria are invoked. This can 
1195 
e done quickly as we can sort the retailers based upon CC i / (θκi ) 

efore invoking the labeling algorithm as these weights are inde- 

endent from the constructed partial retailer clusters in the label- 

ng algorithm. We summarize these optimality pruning criteria by 

ur completion bound in the following lemma: 

emma 5 (Completion bound) . Let L be a given label, and let z̄ (L )

e defined as above. Let z 0 be the best solution found so far during 

he execution of the labeling algorithm. If c(L ) + ̄z (L ) > z 0 , then any

xtension of label L will result in a label of cost larger than z 0 , and

abel L can be pruned. 

.1.3. Labeling algorithm procedure 

The labeling algorithm procedure works as follows. After ob- 

erving the LP relaxation to the RMP, we iteratively run the la- 

eling algorithm for the parameter t̄ ∈ { ̄t max , ̄t max − 1 , . . . , 1 } . For

 ̄= t̄ max , we set t ub = ∞ and t lb = t̄ . For other values of t̄ , we im-

ose t lb = t ub = t̄ . Note that in the case t ub = ∞ , our optimality

runing criteria are not valid, which is not a problem, because set- 

ing t̄ max sufficiently large ensures that the vehicle capacity is very 

estricted in this case. In our experiments, we set t̄ max = 4 . Note, 

his does not imply that we consider only shipment intervals of at 

ost 4, but is rather the value from which disregarding the opti- 

ality pruning criteria does not harm computational performance. 

e abort the enumeration over t̄ if for some t̄ we identified re- 

ailer clusters of negative reduced cost. We then solve the linear 

elaxation of the RMP and restart our iterative labeling algorithm. 

e terminate a single call to the labeling algorithm procedure af- 

er we have found 50 0 0 clusters of negative reduced cost, after 

hich we resolve the RMP and restart the labeling algorithm pro- 

edure. 

.2. Branching and valid inequalities 

Valid branching rules are required to obtain a working exact 

olution method. We make use of two branching rules. First, we 

ranch on an integral number of vehicles being used. For a given 

P relaxation to the RMP, we define z ∗
i j 

:= 

∑ 

r∈ ̄R 

δr 
i j 

z ∗r , where δr 
i j 

is a

inary parameter indicating if retailer j is visited directly after re- 

ailer i in cluster r, and z ∗r is the value of z r in the LP relaxation

f the RMP. Then, if 
∑ 

j∈N z ∗0 j is fractional, we create two child 

odes where we impose 
∑ 

r∈ ̄R 

δr 
0 j 

z r ≤ � ∑ 

j∈N z ∗0 j � and 

∑ 

r∈ ̄R 

δr 
0 j 

z r ≥
 

∑ 

j∈N z ∗0 j � , respectively. If an integral number of vehicles is used, 

e continue with branching on individual arcs. That is, we select 

he arc (i, j) for which z ∗
i j 

is closest to 0.5, and create two child

odes: one child node where we enforce arc (i, j) to be traversed 

y at least a single cluster, and one in which we do not allow arc

i, j) to be traversed. Note that the branching rule on the number 

f vehicles imposes cuts on the model formulation, which we take 

nto account in our pricing problem by initializing the dual cost 

omponent of our labeling algorithm with the dual values associ- 

ted with the branching cut, i.e., we subtract them from the out- 

oing arcs of the depot. Note that this is equal to initializing the 

abel reduced cost with the dual costs associated with these con- 

traints. Furthermore, the branch rule on individual arcs requires to 

ynamically adjust the set of generated clusters during the branch- 

nd-bound search by setting local upper bounds of 0.0 in the cor- 

esponding master variables. For arcs set to zero, this is done by 

rivially selecting the retailer clusters that visit that arc. If an arc 

s set to one, it implies that other outgoing or incoming arcs (ex- 

ept for arcs leaving or entering the depot) are set to zero, and we 

hen select the associated retailer clusters. Node selection is done 

sing the default node selection method from the constraint pro- 

ramming environment SCIP 6.0.2 ( Gleixner et al., 2018 ), which we 

se to code our branch-price-and-cut algorithm. 
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In addition, we add subset-row inequalities ( Jepsen, Petersen, 

poorendonk, & Pisinger, 2008 ) to further strengthen our LP relax- 

tion. Subset-row inequalities are defined for an O ⊂ N of retailer 

odes and an integer 1 ≤ φ ≤ |O| − 1 , and are given by 

 

∈ ̄R 

⌊ 

1 

φ

∑ 

i ∈O 
β i 

r 

⌋ 

z r ≤
⌊ |O| 

φ

⌋
. (29) 

Preliminary experiments have shown that only subset-row in- 

qualities considering |O| = 3 and φ = 2 have a significant effect 

n the quality of the root node relaxation. We have therefore 

nly included those in our branch-price-and-cut algorithm. Separa- 

ion is done via complete enumeration and is considered in every 

ode of the branch-and-bound tree, because it requires negligible 

ime compared with solving the pricing problems. Finally, includ- 

ng these inequalities requires some standard adaptations of our 

abeling algorithm, because the subset-row inequalities considered 

n this paper are so-called “non-robust cuts.” We have made sim- 

lar changes to those outlined in, for instance, Costa et al. (2019) ;

chrotenboer, Ursavas, & Vis (2019) , and thus introduce new label 

lements for each included subset-row cut to keep track on the 

umber of visited retailers associated with the cut. This is needed 

ecause a variable only enters a subset-row inequality if at least 

wo of the three associated retailers are visited. 

.3. Upper-bounds 

In this section, we briefly introduce three constructive heuris- 

ics to solve the considered problem. These heuristics serve two 

urposes. First, they provide relatively high-quality upper bounds 

i.e., feasible solutions) very quickly, which is of practical rele- 

ance. Second, all distinct clusters evaluated during execution of 

he heuristics are used as an initial set of clusters for the branch- 

rice-and-cut algorithm. This speeds up the overall run-time of the 

ranch-price-and-cut algorithm by potentially reducing the num- 

er of columns to be generated and by providing a better starting 

oint for primal heuristics included by default in SCIP. A detailed 

escription of the heuristics including pseudo codes is provided in 

he Online Appendix. 

KM: The first upper bounding method is a tailored version 

of a K-means algorithm, which is the “best-known clus- 

tering algorithm” ( Geetha, Poonthalir, & Vanathi, 2009 ). 

Using this algorithm, all retailers are iteratively assigned 

to the closest feasible cluster according to Euclidean dis- 

tances, which entails the consideration of vehicle capaci- 

ties throughout the clustering procedure. 

SAV: The second heuristic is based on ideas from the classi- 

cal savings algorithm by Clarke & Wright (1964) for the 

vehicle routing problem. The algorithm starts by initializ- 

ing a set of clusters consisting of single retailers that are 

replenished using direct deliveries as in Kleywegt et al. 

(2002) . Then, the algorithm iteratively merges two clus- 

ters until no further cost savings can be achieved. 

MSAV: The third heuristic is a combination of the first two al- 

gorithms. In an initial step, the algorithm clusters all re- 

tailers into “regions” based on a K-means algorithm that 

ignores capacity restrictions. Afterwards, we apply the 

savings-based heuristic within each generated “region”. 

Numerical experiments have shown that such a two-step 

procedure can result in significant cost reductions in- 

duced by relaxing the order in which retailer clusters are 

merged, i.e., if the retailers to be merged in the classical 

SAV algorithm belong to two different regions, they can- 

not be merged, which can lead to better decisions in the 
long run when more clusters are consolidated. w

1196 
. Computational results 

This section evaluates the performance of the branch-price- 

nd-cut algorithm. Besides the complete branch-price-and-cut al- 

orithm that we abbreviate as MIP-BPC, we also introduce two 

IP-based heuristics based on the set partitioning formulation in 

ection 4.2 that we refer to as MIP-CG and MIP-H. MIP-CG is a 

euristic variant of MIP-BPC and considers column generation in 

he root node only, which reduces computation times significantly 

nd allows for solving larger instances close to optimality. MIP-H 

uilds upon the exploration of retailer clusters by the three con- 

tructive heuristics (KM, SAV, and KMSAV) discussed in Section 5.3 . 

uring the execution of each of the three heuristics, we consider 

any different retailer clusters, all of which we store in mem- 

ry together with their corresponding optimal shipment intervals 

nd base-stock levels. The MIP-H heuristic then solves the set- 

artitioning formulation RMP subject to this fixed set of clusters 

ithout invoking column generation. 

All algorithms are implemented in C++17, using the framework 

or constraint programming SCIP 6.0.2 and CPLEX 12.8. All the 

mplementations are completely single-threaded. The experiments 

re performed on an Intel Xeon E5 2680v3 2.5 GHz CPU with 

0 GB of RAM allocated. In the following, we first provide de- 

ails on the benchmark instances used in Section 6.1 . Then, in 

ection 6.2 , we evaluate the performance of our exact and heuris- 

ic methods on the benchmark instances. In Section 6.3 , we illus- 

rate the importance of considering stochastic customer demand, 

y studying the value of the stochastic solution. In Section 6.4 , we 

how how the different cost components steer the structure of the 

ptimal solution. 

.1. Instance characteristics 

We use two different benchmark sets. Benchmark Set A is based 

n the deterministic instances provided by Raa (2006) and reflects 

pplications where the mean demand per period is relatively low 

ompared to the truck capacity, which leads to long shipment in- 

ervals and, therefore, infrequent replenishments. Because discus- 

ions with supermarkets and companies in the retail sector have 

hown that replenishment frequencies are usually much higher (up 

o several times a day) due to relatively high mean demand per pe- 

iod in relation to the truck capacities, we introduce a new Bench- 

ark Set B that captures this characteristic. In the following, we 

riefly describe both benchmark sets and refer to the accompany- 

ng data for full descriptions of the individual instances. 

Similar to Raa & Aouam (2021) , we adapt for Benchmark Set 

 a deterministic IRP benchmark set of Raa (2006) . Raa & Aouam 

2021) assume a normally distributed demand and adjust the 

enchmark set of Raa (2006) by adding demand variability in 

erms of different standard deviations. We are using the same ap- 

roach of adding variability to the demand. However, because we 

re considering gamma distributed demand to be able to model 

igher demand variability, we set the scale parameter θ to either 

.8 or 1.0, while ensuring at the same time that the mean of the 

amma distributed customer demand κi θ equals the deterministic 

emand rate used by Raa (2006) . 

As already mentioned, the instances of Raa (2006) have rela- 

ively low mean demand compared to the truck capacity, which 

ould result without additional constraints to in practice unrea- 

onably long routes. Therefore, Raa (2006) add a constraint on the 

aximum route duration and set it to 8 hours. Moreover, there is 

 fixed service time of 15 minutes per retailer included. For solv- 

ng the instances in Benchmark Set A, we include these required 

nd straightforward adaptions to our methods to ensure feasibility 

ith respect to the maximum route duration. 
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Table 3 

Performance of MIP-BPC, MIP-CG, and MIP-H on Benchmark Set A. 

MIP-BPC MIP-CG MIP-H 

N Type # rep # sol 
(%) max 
(%) time opt (seconds) # sol 
UB (%) 
LB (%) time(seconds) time opt (seconds) 
UB (%) 
LB (%) 

25 0 10 10 – – 60 .90 10 0 .00 0 .00 13 13 0 .01 0 .01 

1 10 10 – – 99 .03 10 0 .00 0 .00 16 16 0 .01 0 .01 

2 10 10 – – 645 .56 10 0 .00 0 .00 205 205 0 .04 0 .04 

3 10 9 0 .20 0 .20 505 .82 10 0 .00 0 .02 300 299 .60 0 .08 0 .10 

30 0 10 9 0 .05 0 .05 222 .93 10 0 .00 0 .01 61 61 0 .07 0 .08 

1 10 10 – – 94 .50 10 0 .02 0 .02 63 63 0 .07 0 .07 

2 10 9 0 .92 0 .92 3557 .30 10 −0 .05 0 .04 1715 1715 0 .03 0 .12 

3 10 9 1 .18 1 .18 2834 .48 10 −0 .07 0 .05 1716 1717 −0 .02 0 .10 

35 0 10 10 – – 315 .89 10 0 .00 0 .00 166 166 0 .06 0 .06 

1 10 10 – – 406 .95 10 0 .01 0 .01 172 172 0 .02 0 .02 

2 9 3 1 .77 8 .63 3930 .82 8 −0 .11 0 .13 4657 4657 −0 .86 0 .25 

3 9 4 1 .04 3 .76 8638 .73 7 −0 .40 0 .16 8412 4690 −0 .40 0 .16 

40 0 10 10 – – 1194 .89 10 0 .00 0 .00 668 668 0 .08 0 .08 

1 10 10 – – 1486 .75 10 0 .00 0 .00 946 946 0 .04 0 .04 

2 5 2 4 .88 8 .23 8905 .49 5 −2 .60 0 .17 8684 8684 −2 .51 0 .27 

3 5 0 4 .81 11 .21 – 3 −3 .99 0 .52 14,143 11,015 −4 .17 0 .31 
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Similar to Raa (2006) , we set the fixed vehicle cost W to 100

nd selected the instances with holding costs 0.8 per unit and time 

nit. To adjust the deterministic benchmark set, we add emergency 

hipment costs e equal to 50, retailers’ target service levels α∗
i 

f 95%, and a service level γ ∗ on the truck capacity of 90%. Fi- 

ally, we selected both instances of Raa (2006) with a small and 

arge geographical area and define the following instance types 

ased on the size of the geographical area and the scale param- 

ter θ ∈ { 0 . 8 , 1 . 0 } : Type 0 implies a large geographical area with

= 0 . 8 , Type 1 implies a large geographical area with θ = 1 . 0 ,

ype 2 implies a small geographical area with θ = 0 . 8 , and Type 3

mplies a small geographical area with θ = 1 . 0 . The original bench-

ark set comprises 10 instances with at least 70 customers each. 

or each combination of number of retailers and instance type, we 

olve all 10 instances but select the first N ∈ { 25 , 30 , 35 , 40 } cus-

omers to be able to solve the instances to optimality. 

Benchmark set B is a newly constructed benchmark set that 

overs—according to our discussions with businesses—practically 

ore relevant instances with high demand rates and, therefore, 

requent replenishments. More precisely, we set the truck capac- 

ty Q to either 70 or 90 and the parameters of the gamma dis- 

ributed demand for all N ∈ { 20 , 25 , 30 , 35 , 40 , 45 , 50 , 55 , 60 } re-

ailers as follows: the scale parameter θ is set to 15 / 16 and we

andomly draw the shape parameter κi for each retailer i between 

0 and 22. This results in an average shape parameter κ̄ equal 

o 16, which corresponds to an average coefficient of variation of 

oV = 

√ 

κ̄θ/ ̄κθ = 1 / 
√ 

κ̄ = 0 . 25 . All retailers are randomly located

ccording to a uniform distribution in a 100 × 100 box and we fix 

he location of the warehouse to coordinates (50 , 50) . The cost pa-

ameters are set as follows: holding costs h ∈ { 0 . 5 , 1 . 0 } , fixed ve-

icle cost W = 100 , emergency shipment costs e = 50 , and travel

ost c i j equal to the Euclidean distance between nodes i and j. The 

ervice levels α∗
i 

and γ are set equal to those in Benchmark Set A, 

.e., α∗
i 

= 0 . 95 ∀ i = 1 , . . . , N and γ = 0 . 90 . For each combination of

hese parameters, we randomly create 10 instances. The random- 

ess thereby lies in the demand at the retailers and the location of 

etailers. 

.2. Performance of MIP-BPC, MIP-CG, and MIP-H 

In Tables 3 and 4 , we provide an overview of the performance 

f MIP-BPC, MIP-CG, and MIP-H on Benchmark Sets A and B, re- 

pectively. Each row represents averaged values for the particular 

arameter combinations over all instances solved. We refer for the 

olutions of the individual instances to the supplementary materi- 
1197 
ls that can be downloaded from the publishers website. The col- 

mn “# rep ” denotes the number of instances (out of 10) whose 

oot node could be processed within our prespecified time limit 

f 18,0 0 0 seconds and our memory limit of 40 GB. We considered 

nly those instances for which we obtained a root node solution 

n our comparison of the average performance of MIP-BPC, MIP- 

G, and MIP-H in each row of Tables 3 and 4 . The column “Type”

n Table 3 reflects the type as outlined before. Other than that, the 

ubsequent columns in Tables 3 and 4 are the same: The column 

# sol ” indicates how many of the # rep instances are solved to opti- 

ality for MIP-BPC, or until convergence for MIP-CG. The column 


 (%)” shows the average optimality gap for the instances not 

olved to optimality, the column “max 
 (%) ” shows the maximum 

ptimality gap, and the column “time opt (seconds)” shows the av- 

rage computation time of the instances solved to optimality by 

IP-BPC. For MIP-CG and MIP-H, we compare the resulting upper 

ound with the upper bound of MIP-BPC (the column “
UB (%) ”) 

nd the lower bound of MIP-BPC (the column “
LB (%) ”). Note that 

egative values for 
UB (%) indicate improvements over the upper 

ounds found by the exact method, which can happen in case the 

olution is not solved to optimality. Finally, the column “time (sec- 

nds)” gives the average computation time on instances solved to 

ptimality or until convergence by MIP-CG. The computation time 

f MIP-H ranges from one to a few seconds, and is therefore omit- 

ed from the table. 

Table 3 shows that our solution approach is able to solve all 

nstances up to 30 retailers in Benchmark Set A to optimality. For 

arger instances of Type 2 and 3 an optimal solution could not be 

ound for all instances, which is explained by the small geograph- 

cal area, resulting in relatively low transportation costs and travel 

imes and, therefore, larger clusters. The results indicate that the 

verage percentage deviation of the heuristic approach MIP-CG to 

he lower bound ( 
LB (%)) is rather small. Furthermore, the heuris- 

ic MIP-H based on the upper bounding procedures presented in 

ection 5.3 shows satisfactory results for all instances with an av- 

rage deviation from the lower bound of at most 0.31%. 

Because this paper’s focus is on the practically more relevant 

nstances in the retail industry with higher average demand and, 

herefore, more frequent replenishments, we focus in the following 

n the analysis of Benchmark Set B. Table 4 shows that MIP-BPC 

an solve instances to optimality up to N = 60 retailers, although 

omputation times increase and the performance of MIP-BPC is af- 

ected by vehicle capacity and holding costs. Higher capacity and 

olding costs lead to an increase in cluster sizes, and therefore to 

 larger solution space, which increases the computational efforts. 
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Table 4 

Performance of MIP-BPC, MIP-CG, and MIP-H on Benchmark Set B. 

MIP-BPC MIP-CG MIP-H 

N Q h # rep # sol 
(%) max 
(%) time opt (seconds) # sol 
UB (%) 
LB (%) time(seconds) time opt (seconds) 
UB (%) 
LB (%) 

20 70 0 .5 10 10 – – 2 10 0 .00 0 .00 1 1 0 .10 0 .10 

1 .0 10 10 – – 30 10 0 .04 0 .04 2 2 0 .50 0 .50 

90 0 .5 10 10 – – 10 10 0 .03 0 .03 8 8 0 .19 0 .19 

1 .0 10 10 – – 36 10 0 .07 0 .07 16 16 0 .69 0 .69 

25 70 0 .5 10 10 – – 38 10 0 .00 0 .00 6 6 0 .16 0 .16 

1 .0 10 10 – – 65 10 0 .00 0 .00 7 7 0 .64 0 .64 

90 0 .5 10 10 – – 415 10 0 .00 0 .00 44 44 0 .40 0 .40 

1 .0 10 10 – – 2976 10 0 .00 0 .00 70 70 1 .13 1 .13 

30 70 0 .5 10 10 – – 32 10 0 .02 0 .02 11 11 0 .25 0 .25 

1 .0 10 10 – – 80 10 0 .00 0 .00 14 14 0 .85 0 .85 

90 0 .5 10 10 – – 554 10 0 .01 0 .01 108 108 0 .48 0 .48 

1 .0 10 8 0 .22 0 .29 917 10 0 .17 0 .21 151 118 0 .84 0 .88 

35 70 0 .5 10 10 – – 69 10 0 .00 0 .00 27 27 0 .18 0 .18 

1 .0 10 10 – – 3221 10 0 .04 0 .04 32 32 0 .82 0 .82 

90 0 .5 10 9 0 .10 0 .10 1064 10 0 .09 0 .10 425 392 0 .56 0 .57 

1 .0 10 6 0 .27 0 .67 1953 10 0 .09 0 .20 550 388 1 .34 1 .45 

40 70 0 .5 10 10 – – 246 10 0 .00 0 .00 44 44 0 .30 0 .30 

1 .0 10 9 0 .16 0 .16 3642 10 0 .11 0 .12 49 48 0 .65 0 .67 

90 0 .5 10 6 0 .05 0 .09 5387 10 0 .01 0 .03 597 603 0 .51 0 .53 

1 .0 10 5 0 .70 1 .88 8214 10 −0 .08 0 .26 865 707 0 .32 0 .67 

45 70 0 .5 10 10 – – 502 10 0 .06 0 .06 90 90 0 .32 0 .32 

1 .0 10 4 0 .13 0 .19 4027 10 0 .08 0 .15 97 95 0 .66 0 .73 

90 0 .5 10 6 0 .44 0 .88 6325 10 −0 .07 0 .11 1653 1137 0 .30 0 .48 

1 .0 10 3 2 .38 14 .70 4435 10 −1 .32 0 .27 2056 1703 −0 .57 1 .03 

50 70 0 .5 10 9 0 .10 0 .10 2319 10 0 .02 0 .03 125 128 0 .38 0 .39 

1 .0 10 6 0 .27 0 .42 3284 10 0 .11 0 .22 133 146 0 .64 0 .75 

90 0 .5 10 5 0 .33 0 .92 8833 10 −0 .10 0 .06 2102 2120 0 .40 0 .57 

1 .0 10 3 1 .05 4 .41 5060 10 −0 .48 0 .25 2409 2861 0 .07 0 .80 

55 70 0 .5 10 7 0 .08 0 .10 3017 10 0 .02 0 .05 234 170 0 .29 0 .32 

1 .0 10 4 0 .13 0 .23 6195 10 0 .09 0 .16 269 219 0 .51 0 .59 

90 0 .5 10 1 3 .79 9 .50 16,572 9 −3 .03 0 .19 4730 3564 −2 .50 0 .74 

1 .0 8 1 10 .10 13 .10 6635 7 −7 .55 0 .63 6376 5322 −7 .10 1 .12 

60 70 0 .5 10 7 0 .11 0 .15 2302 10 0 .02 0 .05 313 299 0 .40 0 .43 

1 .0 10 3 0 .25 0 .52 7194 10 0 .01 0 .18 306 355 0 .50 0 .67 

90 0 .5 10 0 2 .84 7 .31 – 10 −2 .50 0 .24 7054 – −2 .02 0 .74 

1 .0 8 0 3 .99 9 .83 – 8 −3 .40 0 .49 9459 – −2 .73 1 .18 

T

i

g

s

r

a

c

f

i

l

c

b

w

t

p

c

B

a

(

t

t

t

o

i

w

a

s

c

t

m

C

s

c

m

6

t

t

s

e

a

(

m

w

t

s

r

b

t

A

s

c

p

s

he reported average optimality gaps are, if not solved to optimal- 

ty, rather small for MIP-BPC, and also the maximum optimality 

aps are within a 14.7% range. Notice that for the larger instances, 

olving the pricing problem in each branch-and-bound node is a 

ather time-consuming aspect of MIP-BPC, which may impair its 

bility to search for high-quality upper bounds. 

In comparison, the performance of MIP-CG is outstanding. It 

onverges on all instances except two, with the average deviation 

rom the lower bound of MIP-BPC being only 0.11%. On the smaller 

nstances, it typically finds the same solution as MIP-BPC, and on 

arger instances it exploits its relatively fast branch-and-bound pro- 

ess compared with MIP-BPC to achieve significantly better upper 

ounds, although at the expense of missing the optimal solution 

ith a small probability. On the instances with more than 50 cus- 

omers and high vehicle capacity, the upper bounds of MIP-CG out- 

erform those of MIP-BPC by a few percentages. Comparing the 

omputation times on the instances solved to optimality by MIP- 

PC, we observe that MIP-CG only requires 251 seconds on aver- 

ge, compared with 1951 seconds for MIP-BPC. 

Comparing the generated number of variables in the root node 

i.e., the total number of variables of MIP-CG) versus the heuris- 

ically generated columns via the constructive heuristics (i.e., the 

otal number of variables of MIP-H), we observe that only few ex- 

ra variables are generated in the root node. The average number 

f variables for MIP-CG and MIP-H equals 1930 and 1846 for the 

nstances of at most 35 customers, respectively. For the instances 

ith more than 35 customers, these numbers are on average 7626 

nd 7414. This implies, that the constructive heuristics search the 

olution space rather efficiently, though not efficient enough to 

lose the optimality gap. 
1198 
Summarizing, we can solve medium size instances up to 30 re- 

ailers for almost all instances to optimality. Because the perfor- 

ance of MIP-BPC deteriorates with increasing problem size, MIP- 

G can be used to generate near-optimal solutions for large in- 

tances in reasonable time. The hybrid heuristic MIP-H returns ex- 

ellent solutions in negligible time, and is therefore an attractive 

ethod solving practically sized problem instances. 

.3. The value of the stochastic solution 

To study the impact of demand uncertainty on the composi- 

ion of retailer groups and costs, we provide a deterministic coun- 

erpart to the solution of MIP-CG. This so-called expected value 

olution is obtained by considering deterministic retailer demand 

qual to the mean demand in our stochastic model. We set the 

vailable truck capacity to γ ∗Q , which is equivalent to considering 

1 − γ ∗) Q buffer space on each vehicle. Note that emergency ship- 

ents and safety stocks are not required if demand is deterministic 

hich reduces the complexity significantly. 

To overcome the unrealistically low service levels at the re- 

ailers in case one applies the expected value solution to our 

tochastic setting, we enhance the expected value solution by 

e-calculating the corresponding optimal shipment intervals and 

ase-stock levels. We do that by considering the actual stochas- 

ic demand distributions while keeping the retailer clustering fixed. 

lthough we re-optimize shipment intervals, truck capacity might 

till be insufficient leading to relatively high emergency shipment 

osts. This is caused by clusters with low shipment intervals (es- 

ecially those with shipment interval 1), which can become infea- 

ible with regards to the chance-constraint on truck capacity be- 
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Fig. 2. Impact of varying values of γ and on the performance of MIP-CG and AEV. 

Fig. 3. Solution structures of the optimization problem (left), in the case where holding costs are ignored (middle), and in the case where emergency costs are ignored 

(right). 

Table 5 

Comparison of the adjusted expected value (AEV) solution and MIP-CG solution 

characteristics, averaged over all instances of the benchmark sets ∗ . 

MIP-CG AEV 

Average number of clusters 11 .2 11 .9 

Average length of shipment intervals 1 .5 1 .6 

Average cost increase – 7 .7% 

Cost composition 

travel cost 77 .9% 75 .2% 

emergency cost 3 .1% 6 .9% 

holding cost 19 .1% 17 .9% 

Average expected truck fill rate 80 .5% 78 .4% 

Percentage instances with ≥ 1 infeasible cluster – 94 .7% 

∗: The instance categories with N ≥ 55 , Q = 90 were excluded. 
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(

ause these clusters would require a delivery more than once per 

eriod which we do not allow by assumption (note that T k ∈ N ≥1 ). 

The results are presented in Table 5 and show that the adjusted 

xpected value (AEV) solution, where shipment intervals and base 

tock levels are re-optimized, is on average 7.7% worse than MIP- 

G. Besides, 94.7% of the instances contain at least one cluster 

ere the probability that truck capacity is sufficient is below γ ∗, 

hich also leads to an increase of emergency shipment costs from 

.1% to 6.9% of the total costs. Hence, accounting for uncertainty 

n the demand distribution in our joint optimization problem is of 

rucial importance to control costs. 

We further study the impact of γ ∗ on the difference between 

he MIP-CG and the AEV. Note that an increase in γ ∗ reduces the 

xpected number of emergency shipments, because the probability 

hat not all units fit on the truck ( 1 − γ ∗) is reduced. This can be
1199
esirable from a practical perspective to avoid planning effort for 

rganizing these emergency shipments. The results are presented 

n Fig. 2 . Comparing the total costs (left panel), we clearly see 

hat MIP-CG outperforms the simple allocation of buffer capacity in 

EV. It can be seen that the amount of buffer capacity has a small 

ffect on the costs of MIP-CG because stochastic demand is directly 

aken into account in the planning process. Instead, under the AEV 

olution, planners have to set the right amount of buffer capac- 

ty to minimize costs. For high values of γ ∗, emergency shipment 

osts under AEV increase as a result of insufficient buffer capacity, 

hereas for low values of γ ∗ AEV incurs high transportation cost 

s a result of inefficient routes. The results also show that our ap- 

roach is able to increase truck capacity reliability up to 95% while 

imilar costs are obtained. This might be relevant especially in the 

ontext of practical applications. In the right panel of Fig. 2 , we 

eport the average load of the trucks with increasing γ ∗. It con- 

rms that it is crucial to consider uncertain demands already in 

he planning process because it increases average truck loads and 

educes costs. 

.4. Impact of different cost components 

We continue the analysis by providing further insights in the 

tructure of the optimal solution for varying cost components. In 

ig. 3 , we investigate the effect of ignoring holding and emergency 

osts. On the left of Fig. 3 , the structure of the optimal solution 

hen incorporating holding and emergency costs is shown. The 

iddle and right solutions correspond to setting h = 0 and e = 0 ,

espectively. Zooming in on the solution without holding costs 

middle panel), we observe that direct deliveries become favorable 
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or most retailers. This is because the reduction in fixed shipment 

osts achieved by replenishing retailers as infrequently as possible 

s higher than the effect of less variable shipment costs resulting 

rom merging retailers into larger clusters. Moreover, when emer- 

ency shipment costs are ignored (right panel), we observe that re- 

ailer groupings increase. Note that the chance constraint on truck 

apacity still limits the size of the retailer groupings, and excess 

tems not fitting on the truck are still delivered to the retailers by 

n external service provider but at zero costs. If excess items can 

e transported at zero costs, then less buffer space needs to be 

onsidered on the vehicle, which increases cluster sizes. 

. Conclusions and future research 

We have presented a new approach to the stochastic inventory 

outing problem taking into account fixed replenishment intervals 

o groups of retailers mandated by, e.g., the retail industry to al- 

ow coordination with up- and downstream planning operations. 

oth our optimal solution and our heuristic solutions balance fixed 

s well as variable transportation costs, emergency shipment costs, 

nd holding costs by allocating retailers to clusters that are replen- 

shed in fixed intervals. 

We transformed the naturally integer chance-constrained model 

o a linear integer model, which we solve using column genera- 

ion. We have provided an exact branch-price-and-cut method and 

everal upper bounding procedures that are also used as an ini- 

ial set of columns for the exact method. The efficiency of the ex- 

ct method relies on a labeling algorithm tailored toward our set- 

ing and utilizes an approximate stochastic knapsack solution as a 

runing mechanism. Whereas the exact method is able to solve, 

epending on the chosen parameter values, instances with up to 

0 retailers, the hybrid heuristic achieves a performance that is 

ithin 1% from optimality. This shows that for large-scale practical 

nstances, the combination of our exact method (which can provide 

 lower bound) with the use of our heuristic methods shows an 

xcellent performance that is provably near-optimal. An analysis of 

IP-CG compared to the AEV solution has shown that it is impor- 

ant to include stochastic demand already in the planning process. 

urthermore, we have illustrated how different cost components 

mpact the structure of the optimal solution, which reveals the im- 

ortance of considering all these cost components—transportation 

osts, emergency shipment costs, and holding costs—in the context 

f stochastic inventory routing problems. 

The opportunities for further research are numerous. Many of 

hese opportunities would not require structural adaptations of the 

resented model: for instance, one could consider delivery lead 

imes that depend on the customer order in a tour and the corre- 

ponding transportation times, which requires modeling on a con- 

inuous time horizon. We believe that such extensions are valuable 

n its own, and our presented model can be used as a starting 

oint. 

More structural changes are required when, for instance, there 

s limited supply at the central warehouse, correlated demand 

etween retailers and/or items are considered, vehicle tours are 

cheduled, or different shipment intervals in each retailer group 

re allowed. Limited supply at the central warehouse requires an 

llocation of available inventory to retailers as well as considera- 

ion of waiting times due to stock-outs at the central warehouse. 

orrelated demand increases the complexity of utilizing vehicle ca- 

acity and therefore also increases the complexity of clustering re- 

ailers into groups, as cumulative demand distributions might be 

omplex to characterize. Nevertheless, our solution method can be 

pplied in case demand is correlated. In this paper, we have not 

cheduled vehicles and thus have assumed that each tour is per- 

ormed by a different vehicle. By scheduling the tours, one can de- 

ermine the optimal number of required vehicles, which is impor- 
1200 
ant if the shipments are performed by the company itself rather 

han by an external service provider. One can allow for different 

hipment intervals in each retailer group by, for example, consid- 

ring so-called power-of-two policies described in the joint replen- 

shment literature (see, e.g., Federgruen & Zheng, 1992; Jackson, 

axwell, & Muckstadt, 1985 ), where each retailer is replenished 

n constant intervals that are power-of-two multiples of some base 

hipment interval. Thus, the number of parameters that needs to 

e optimized increases significantly. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2022.07.049 . 

eferences 

delman, D. (2004). A price-directed approach to stochastic inventory/routing. Op- 

erations Research, 52 (4), 499–514 . 
ghezzaf, E.-H. (2008). Robust distribution planning for supplier-managed inventory 

agreements when demand rates and travel times are stationary. Journal of the 
Operational Research Society, 59 (8), 1055–1065 . 

ghezzaf, E.-H., Raa, B., & Van Landeghem, H. (2006). Modeling inventory routing 

problems in supply chains of high consumption products. European Journal of 
Operational Research, 169 (3), 1048–1063 . 

ghezzaf, E.-H., Zhong, Y., Raa, B., & Mateo, M. (2012). Analysis of the single-vehicle 
cyclic inventory routing problem. International Journal of Systems Science, 43 (11), 

2040–2049 . 
ndersson, H., Hoff, A., Christiansen, M., Hasle, G., & Løkketangen, A. (2010). Indus- 

trial aspects and literature survey: Combined inventory management and rout- 
ing. Computers and Operations Research, 37 (9), 1515–1536 . 

xsäter, S. (2001). A note on stock replenishment and shipment scheduling for ven- 

dor-managed inventory systems. Management Science, 47 (9), 1306–1310 . 
ard, J. F., Huang, L., Jaillet, P., & Dror, M. (1998). A decomposition approach to the

inventory routing problem with satellite facilities. Transportation Science, 32 (2), 
189–203 . 

arnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & 
Vance, P. H. (1998). Branch-and-price: Column generation for solving huge 

integer programs. Operations Research, 46 (3), 316–329 . 

erman, O., & Larson, R. C. (2001). Deliveries in an inventory/routing problem using 
stochastic dynamic programming. Transportation Science, 35 (2), 192–213 . 

ertazzi, L., Bosco, A., Guerriero, F., & Lagana, D. (2013). A stochastic inventory rout- 
ing problem with stock-out. Transportation Research Part C: Emerging Technolo- 

gies, 27 , 89–107 . 
ertazzi, L., Laganà, D., Ohlmann, J. W., & Paradiso, R. (2020). An exact approach for

cyclic inbound inventory routing in a level production system. European Journal 

of Operational Research, 283 (3), 915–928 . 
lumenfeld, D. E., Burns, L. D., Daganzo, C. F., Frick, M. C., & Hall, R. W. (1987).

Reducing logistics costs at general motors. Interfaces, 17 (1), 26–47 . 
ramel, J., & Simchi-Levi, D. (1995). A location based heuristic for general routing 

problems. Operations Research, 43 (4), 649–660 . 
urns, L. D., Hall, R. W., Blumenfeld, D. E., & Daganzo, C. F. (1985). Distribution

strategies that minimize transportation and inventory costs. Operations Research, 

33 (3), 469–490 . 
ampbell, A. M., & Savelsbergh, M. W. (2004). A decomposition approach for the 

inventory-routing problem. Transportation Science, 38 (4), 488–502 . 
ampelo, P., Neves-Moreira, F., Amorim, P., & Almada-Lobo, B. (2019). Consistent ve- 

hicle routing problem with service level agreements: A case study in the phar- 
maceutical distribution sector. European Journal of Operational Research, 273 (1), 

131–145 . 

etinkaya, S., & Bookbinder, J. H. (2003). Stochastic models for the dispatch of 
consolidated shipments. Transportation Research Part B: Methodological, 37 (8), 

747–768 . 
etinkaya, S., & Lee, C.-Y. (20 0 0). Stock replenishment and shipment scheduling for 

vendor-managed inventory systems. Management Science, 46 (2), 217–232 . 
etinkaya, S., Mutlu, F., & Lee, C.-Y. (2006). A comparison of outbound dispatch poli- 

cies for integrated inventory and transportation decisions. European Journal of 

Operational Research, 171 (3), 1094–1112 . 
etinkaya, S., Tekin, E., & Lee, C.-Y. (2008). A stochastic model for joint inventory 

and outbound shipment decisions. IIE Transactions, 40 (3), 324–340 . 
han, L. M. A ., Federgruen, A ., & Simchi-Levi, D. (1998). Probabilistic analyses and

practical algorithms for inventory-routing models. Operations Research, 46 (1), 
96–106 . 

hen, F. Y., Wang, T., & Xu, T. Z. (2005). Integrated inventory replenishment 
and temporal shipment consolidation: A comparison of quantity-based and 

time-based models. Annals of Operations Research, 135 (1), 197–210 . 

hitsaz, M., Divsalar, A., & Vansteenwegen, P. (2016). A two-phase algorithm for 
the cyclic inventory routing problem. European Journal of Operational Research, 

254 (2), 410–426 . 
larke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a

number of delivery points. Operations Research, 12 (4), 568–581 . 

https://doi.org/10.1016/j.ejor.2022.07.049
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0003
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0019
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0020
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0024


D.R. Sonntag, A.H. Schrotenboer and G.P. Kiesmüller European Journal of Operational Research 306 (2023) 1186–1201 

C

C

C

C

C

D

D

E  

F

G  

G

G  

G  

H

H

H

H

J

J  

J

J  

J  

K

K

K

K  

L

L

M

M

M

M  

R

R

R

R

R  

S

S  

S  

S

S  

S

T

Ü  

V  

V

Z

oelho, L. C., Cordeau, J.-F., & Laporte, G. (2014a). Heuristics for dynamic and 
stochastic inventory-routing. Computers and Operations Research, 52 , 55–67 . 

oelho, L. C., Cordeau, J.-F., & Laporte, G. (2014b). Thirty years of inventory routing. 
Transportation Science, 48 (1), 1–19 . 

oelho, L. C., & Laporte, G. (2014). Optimal joint replenishment, delivery and in- 
ventory management policies for perishable products. Computers and Operations 

Research, 47 , 42–52 . 
osta, L., Contardo, C., & Desaulniers, G. (2019). Exact branch-price-and-cut algo- 

rithms for vehicle routing. Transportation Science, 53 (4), 946–985 . 

rama, Y., Rezaei, M., Savelsbergh, M., & Woensel, T. V. (2018). Stochastic inventory 
routing for perishable products. Transportation Science, 52 (3), 526–546 . 

iabat, A., Archetti, C., & Najy, W. (2021). The fixed-partition policy inventory rout- 
ing problem. Transportation Science, 55 (2), 353–370 . 

uffy, M. (2004). How Gillette cleaned up its supply chain. Supply Chain Manage- 
ment Review, 8 (3), 20–27 . 

kici, A., Özener, O. Ö., & Kuyzu, G. (2015). Cyclic delivery schedules for an inventory

routing problem. Transportation Science, 49 (4), 817–829 . 
edergruen, A., & Zheng, Y.-S. (1992). The joint replenishment problem with general 

joint cost structures. Operations Research, 40 (2), 384–403 . 
aur, V., & Fisher, M. L. (2004). A periodic inventory routing problem at a super-

market chain. Operations Research, 52 (6), 813–822 . 
eetha, S., Poonthalir, G., & Vanathi, P. (2009). Improved k-means algorithm for ca- 

pacitated clustering problem. INFOCOMP, 8 (4), 52–59 . 

hiami, Y., Demir, E., Van Woensel, T., Christiansen, M., & Laporte, G. (2019). A de-
teriorating inventory routing problem for an inland liquefied natural gas distri- 

bution network. Transportation Research Part B: Methodological, 126 , 45–67 . 
leixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R. L., et al.,

(2018). The SCIP optimization suite 6.0. ZIB-Report . Zuse Institute Berlin . http: 
//nbn- resolving.de/urn:nbn:de:0297- zib- 69361 

igginson, J. K., & Bookbinder, J. H. (1995). Markovian decision processes in ship- 

ment consolidation. Transportation Science, 29 (3), 242–255 . 
olzapfel, A., Hübner, A., Kuhn, H., & Sternbeck, M. G. (2016). Delivery pattern and 

transportation planning in grocery retailing. European Journal of Operational Re- 
search, 252 (1), 54–68 . 

uang, S.-H., & Lin, P.-C. (2010). A modified ant colony optimization algorithm for 
multi-item inventory routing problems with demand uncertainty. Transportation 

Research Part E: Logistics and Transportation Review, 46 (5), 598–611 . 

vattum, L. M., & Løkketangen, A. (2009). Using scenario trees and progressive 
hedging for stochastic inventory routing problems. Journal of Heuristics, 15 (6), 

527 . 
ackson, P., Maxwell, W., & Muckstadt, J. (1985). The joint replenishment problem 

with a powers-of-two restriction. IIE Transactions, 17 (1), 25–32 . 
aillet, P., Bard, J. F., Huang, L., & Dror, M. (2002). Delivery cost approximations for

inventory routing problems in a rolling horizon framework. Transportation Sci- 

ence, 36 (3), 292–300 . 
epsen, M., Petersen, B., Spoorendonk, S., & Pisinger, D. (2008). Subset-row inequal- 

ities applied to the vehicle-routing problem with time windows. Operations Re- 
search, 56 (2), 497–511 . 

ohansson, L., Sonntag, D. R., Marklund, J., & Kiesmüller, G. P. (2020). Controlling dis-
tribution inventory systems with shipment consolidation and compound pois- 

son demand. European Journal of Operational Research, 280 (1), 90–101 . 
uan, A . A ., Grasman, S. E., Caceres-Cruz, J., & Bekta ̧s , T. (2014). A simheuristic al-

gorithm for the single-period stochastic inventory-routing problem with stock- 

-outs. Simulation Modelling Practice and Theory, 46 , 40–52 . 
iesmüller, G., & De Kok, A. (2005). A multi-item multi-echelon inventory system with 

quantity-based order consolidation . Beta, Research School for Operations Manage- 
ment and Logistics . 

leywegt, A. J., Nori, V. S., & Savelsbergh, M. W. (2002). The stochastic inventory 
routing problem with direct deliveries. Transportation Science, 36 (1), 94–118 . 

leywegt, A. J., Nori, V. S., & Savelsbergh, M. W. (2004). Dynamic programming ap- 

proximations for a stochastic inventory routing problem. Transportation Science, 
38 (1), 42–70 . 
1201 
umar, A., Schwarz, L. B., & Ward, J. E. (1995). Risk-pooling along a fixed delivery
route using a dynamic inventory-allocation policy. Management Science, 41 (2), 

344–362 . 
efever, W., Aghezzaf, E.-H., & Hadj-Hamou, K. (2016). A convex optimization ap- 

proach for solving the single-vehicle cyclic inventory routing problem. Comput- 
ers and Operations Research, 72 , 97–106 . 

übbecke, M. E., & Desrosiers, J. (2005). Selected topics in column generation. Oper- 
ations Research, 53 (6), 1007–1023 . 

alicki, S., & Minner, S. (2021). Cyclic inventory routing with dynamic safety stocks 

under recurring non-stationary interdependent demands. Computers and Opera- 
tions Research, 131 , 105247 . 

arklund, J. (2011). Inventory control in divergent supply chains with time-based 
dispatching and shipment consolidation. Naval Research Logistics, 58 (1), 59–71 . 

oin, N. H., & Salhi, S. (2007). Inventory routing problems: A logistical overview. 
Journal of the Operational Research Society, 58 (9), 1185–1194 . 

utlu, F., Çetinkaya, S. i. l., & Bookbinder, J. H. (2010). An analytical model for com-

puting the optimal time-and-quantity-based policy for consolidated shipments. 
IIE Transactions, 42 (5), 367–377 . 

aa, B. (2006). Models and algorithms for the cyclic inventory routing problem . Ghent 
University Ph.D. thesis. . 

aa, B., & Aghezzaf, E.-H. (2009). A practical solution approach for the cyclic inven- 
tory routing problem. European Journal of Operational Research, 192 (2), 429–441 . 

aa, B., & Aouam, T. (2021). Multi-vehicle stochastic cyclic inventory routing with 

guaranteed replenishments. International Journal of Production Economics, 234 , 
108059 . 

aa, B., & Dullaert, W. (2017). Route and fleet design for cyclic inventory routing. 
European Journal of Operational Research, 256 (2), 404–411 . 

eiman, M. I., Rubio, R., & Wein, L. M. (1999). Heavy traffic analysis of the dynamic
stochastic inventory-routing problem. Transportation Science, 33 (4), 361–380 . 

chrotenboer, A. H., Ursavas, E., & Vis, I. F. A. (2019). A branch-and-price-and-cut 

algorithm for resource-constrained pickup and delivery problems. Transportation 
Science, 53 (4), 1001–1022 . 

chwarz, L. B., Ward, J. E., & Zhai, X. (2006). On the interactions between routing
and inventory-management policies in a one-warehouse n-retailer distribution 

system. Manufacturing & Service Operations Management, 8 (3), 253–272 . 
ilver, E. A., Pyke, D. F., Peterson, R., et al., (1998). Inventory management and pro-

duction planning and scheduling : vol. 3. Wiley New York . 

olyalı, O., Cordeau, J.-F., & Laporte, G. (2012). Robust inventory routing under de- 
mand uncertainty. Transportation Science, 46 (3), 327–340 . 

tenius, O., Karaarslan, A. G., Marklund, J., & De Kok, A. (2016). Exact analysis of
divergent inventory systems with time-based shipment consolidation and com- 

pound poisson demand. Operations Research, 64 (4), 906–921 . 
tenius, O., Marklund, J., & Axsäter, S. (2018). Sustainable multi-echelon inventory 

control with shipment consolidation and volume dependent freight costs. Euro- 

pean Journal of Operational Research, 267 (3), 904–916 . 
rudeau, P., & Dror, M. (1992). Stochastic inventory routing: Route design with 

stockouts and route failures. Transportation Science, 26 (3), 171–184 . 
lkü, M. A., & Bookbinder, J. H. (2012). Optimal quoting of delivery time by a third

party logistics provider: The impact of shipment consolidation and temporal 
pricing schemes. European Journal of Operational Research, 221 (1), 110–117 . 

an Anholt, R. G., Coelho, L. C., Laporte, G., & Vis, I. F. (2016). An inventory-routing
problem with pickups and deliveries arising in the replenishment of automated 

teller machines. Transportation Science, 50 (3), 1077–1091 . 

ansteenwegen, P., & Mateo, M. (2014). An iterated local search algorithm for the 
single-vehicle cyclic inventory routing problem. European Journal of Operational 

Research, 237 (3), 802–813 . 
hao, Q.-H., Chen, S., & Zang, C.-X. (2008). Model and algorithm for inven- 

tory/routing decision in a three-echelon logistics system. European Journal of 
Operational Research, 191 (3), 623–635 . 

http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0025
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0026
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0027
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0036
http://nbn-resolving.de/urn:nbn:de:0297-zib-69361
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0039
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0044
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0045
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0046
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0047
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0048
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0049
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0050
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0051
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0052
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0053
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0054
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0055
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0056
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0057
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0058
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0059
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0060
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0061
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0062
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0063
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0064
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0065
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0066
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0067
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0068
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0069
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0070
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0071
http://refhub.elsevier.com/S0377-2217(22)00619-1/sbref0072

	Stochastic inventory routing with time-based shipment consolidation
	1 Introduction
	2 Problem statement
	3 Literature overview
	3.1 Inventory management
	3.2 Inventory routing problem

	4 Model formulation
	4.1 Mathematical model
	4.2 An integer linear reformulation

	5 Branch-price-and-cut algorithm
	5.1 Solving the pricing problem
	5.1.1 Label definition, feasibility, and extension
	5.1.2 Dominance and optimality criteria
	5.1.3 Labeling algorithm procedure

	5.2 Branching and valid inequalities
	5.3 Upper-bounds

	6 Computational results
	6.1 Instance characteristics
	6.2 Performance of MIP-BPC, MIP-CG, and MIP-H
	6.3 The value of the stochastic solution
	6.4 Impact of different cost components

	7 Conclusions and future research
	Supplementary material
	References


