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Summary. We present an improvement on a previously
proposed method for computing Gabor coefficients of char-
acteristic functions with polygonal cross sections, based on
a Taylor series expansion and Olver’s algorithm. Several re-
quirements are proposed to make the method more robust.
Numerical evidence is given to show a convergent solution
can be obtained based on a sufficiently high truncation num-
ber and working precision.

1 Introduction

In [1] a numerical method to compute Gabor coef-
ficients for objects with polygonal cross sections was
proposed. The key components of this method are: (1)
a 1D-integral formulation derived from a double inte-
gral based on Gauss’s theorem, (2) a Taylor series ex-
pansion of the complex error function, (3) derivation
of a second-order inhomogeneous difference equation
and (4) solution with Olver’s algorithm. The main
benefit of this method is that it transforms an integra-
tion problem into an evaluation problem, where the
former can be computationally expensive when the
complex error function is contained in the integrand.
However, as observed in the second numerical exper-
iment in [1], this method failed on some points.

We explain why this method failed on those points
previously and we remedy the problem by introducing
several requirements for this method. Furthermore,
we show how this method can yield a convergent so-
lution with these requirements.

2 Requirements of the Taylor-Olver
method

Gabor coefficients for characteristic functions sup-
ported on a polygonal domain can be computed using
the following fundamental integrals [1]:

I =
∫ 1

0
e−c1x2+c2xerf(c3x+ c4)dx, (1)

where c1,c2,c3,c4 are given constants. Then we use
a truncated Taylor series to approximate the complex
error function:

erf(z)≈ 2√
π

N−1

∑
n=0

(−1)nz2n+1

(2n+1)n!
, (2)

which thereafter yields an approximated integral Ĩ:

Ĩ =
2ec7

√
πc3

2N−1

∑
m=0

smIm, (3)

where

sm =

 (−1)
m−1

2

m , m is odd,
0, m is even,

Im =
1

(m−1
2 )!

∫ c3+c4

c4

e−c5y2+c6yymdy,

and c5,c6,c7 are given constants. Note that only the
odd-indexed Im contribute to the final result. By ap-
plying integration by parts, one obtains the following
second-order difference equation:

Im−1−bmIm− c5Im+1 = dm,∀m≥ 1 (4)

where

bm =−
c6(

m−1
2 )!

2(m
2 )!

,

dm = p(m,c3 + c4)− p(m,c4),

and p(m,y) = 1
2(m/2)! e−c5y2+c6yym. The half-integer

factorials in bm are calculated with the Γ function. We
use Olver’s algorithm to solve this equation and as-
semble Im together to get Gabor coefficients [1].

The following requirements emphasize three cru-
cial points to obtain correct Gabor coefficients when
using the proposed Taylor-Olver method.
Requirement 1: The truncation number N of the Tay-
lor series in Eq. (2) must be sufficient. An accurate ap-
proximation of the partial sum in Eq. (2) to the com-
plex error function erf(z) is a necessary condition to
obtain an accurate approximated integral Ĩ in Eq. (3).
The truncation number N can be determined based on
either desired accuracy [2] or numerical evidence.
Requirement 2: The working precision w, which in-
dicates how many significant digits should be main-
tained in internal computations, must be high enough
to guarantee the final accuracy. This is because:

• the integrals Im can reach an extremely high value
before vanishing eventually, e.g., the Im in Fig. 3
of [1] reaches a level of 10360, where the Gabor
coefficient itself is a small number.

• the coefficient sequence sm in (3) is alternating,
therefore large cancellation errors occur if the
working precision is not high enough.



2

• the truncated tridiagonal system is sensitive to dm,
which means the first term I0 of the difference
equation must be calculated with high accuracy.

Numerical evidence shows that a working precision
w = N yields stable results.
Requirement 3: Truncation number N′ in Olver’s al-
gorithm should be large enough. Olver’s algorithm
transforms an semi-infinite matrix system, which is
corresponding to the difference equation, into a trun-
cated tridiagonal system. Olver provided a way to au-
tomatically determine the truncation number based on
the desired accuracy [3]. Numerical evidence shows
that a truncation number of the tridiagonal system
N′ = 1.5N yields a stable result.

3 Numerical Results

To demonstrate the importance of above requirements,
we recalculated one of the failed integrals in the sec-
ond experiment in [1] for c1 = 3.14, c2 = 49.3−5.1i,
c3 = −1.8 and c4 = 15.4− 14.5i in Eq. (1). One can
observe the range of erf(c3x + c4) for x ∈ [0,1] in
Fig. 1. A large truncation number N is needed for the
Taylor series to converge due to a relatively large dis-
tance from the origin, which therefore makes this I
one of the most difficult ones in the triangle example
to compute with the Taylor-Olver method.

Fig. 1: Magnitude of erf(z) on a log scale. The black
dots represent all c4 occurring in Simulation 2 in [1]

Following above three requirements, we obtained
the result Ĩ =−1.87×1027+1.72×1026i. Compared
with a high accuracy numerical reference, this solu-
tion has absolute error 1.52×10−95 and relative error
8.09× 10−123. The truncation number of the Taylor
series is N = 2800, the working precision used is w =
2800, the dimension of the truncated tridiagonal sys-
tem in Olver’s algorithm is N′ = 4200. Fig. 2 shows
the computed integral sequence Im from Eq. (3), com-
pared with the numerical reference.

Fig. 2: Solution of Eq. (4) based on Olver’s algorithm.

Fig. 3 shows a convergent solution obtained by in-
creasing the truncation number N of the Taylor series,
as along as the proposed requirements are satisfied.
This result also implies that an insufficient truncation
number of the Taylor series can be catastrophic.

Fig. 3: Convergence obtained by increasing the trun-
cation number of the Taylor series in Eq. (2).

Overall, we proposed three requirements to make
the previous Taylor-Olver method more robust. In the
future, optimization of the working precision should
be considered to reduce the computation time.
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