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a b s t r a c t

For the formal verification and design of control systems, abstractions with quantified accuracy are
crucial. This is especially the case when considering accurate deviation bounds between a stochastic
continuous-state model and its finite (reduced-order) abstraction. In this work, we introduce a coupling
compensator to parameterize the set of relevant couplings and we give a comprehensive computational
approach and analysis for linear stochastic systems. More precisely, we develop a computational
method that characterizes the set of possible simulation relations and gives a trade-off between the
error contributions on the systems output and deviations in the transition probability. We show the
effect of this error trade-off on the guaranteed satisfaction probability for case studies where a formal
specification is given as a temporal logic formula.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Airplanes, cars, and power systems are examples of safety-
ritical control systems, whose reliable and autonomous func-
ioning is critical. It is of interest to design controllers for these
ystems that provably satisfy formal specifications such as lin-
ar temporal logic (LTL) formulae (Pnueli, 1977). These formal
pecifications have to be verified probabilistically for systems
escribed by stochastic discrete-time models. Despite recent ad-
ances (Cauchi & Abate, 2019; Desharnais, Gupta, Jagadeesan, &
anangaden, 2003; Haesaert & Soudjani, 2020; Haesaert, Soudjani
nd Abate, 2017; Julius & Pappas, 2009; Lavaei, Khaled, Soudjani,
Zamani, 2020; Lavaei, Soudjani, & Zamani, 2019, 2021; Soud-

ani, Gevaerts, & Abate, 2015; Zamani, Esfahani, Majumdar, Abate,
Lygeros, 2014), the provably correct design of controllers for

uch stochastic models with continuous state spaces remains a
hallenging problem. Many of those methods (Cauchi & Abate,
019; Haesaert & Soudjani, 2020; Haesaert, Soudjani et al., 2017;
avaei et al., 2020; Soudjani et al., 2015; Zamani et al., 2014)
ely on constructing a stochastic finite-state model or abstraction
hat approximates the original model. These methods are often
ore suitable for complex temporal logic specifications, but their

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Maria
Prandini under the direction of Editor Sophie Tarbouriech.
∗ Corresponding author.

E-mail addresses: b.c.v.huijgevoort@tue.nl (B.C. van Huijgevoort),
.haesaert@tue.nl (S. Haesaert).
ttps://doi.org/10.1016/j.automatica.2022.110476
005-1098/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
application to real-world problems tends to suffer from scala-
bility issues and conservative lower bounds on the satisfaction
probability.

A key factor in the conservatism is the quantification of the
similarity between the original and abstract model for which
approximate simulation relations (Desharnais et al., 2003; Hae-
saert & Soudjani, 2020; Haesaert, Soudjani et al., 2017; Zamani
et al., 2014) and stochastic simulation functions (Julius & Pappas,
2009; Lavaei et al., 2019) can be used. These methods inherently
build on an implicit coupling of probabilistic transitions (Segala
& Lynch, 1994; Tkachev & Abate, 2014). The latter shows that
the coupling between stochastic processes is crucial, and omitting
its explicit choice may lead to conservative results. Hence, we
investigate the explicit design of the coupling to find efficient
approximate stochastic simulation relations.

Besides abstraction-based methods that leverage finite-state
approximations, discretization-free methods also exist. Next
to methods that target specific model classes and limited
reach-(avoid) specifications (Kariotoglou, Kamgarpour, Summers,
& Lygeros, 2017; Vinod, Gleason, & Oishi, 2019), recent results
based on barrier certificates (Huang, Chen, Lin, Yang, & Li, 2017;
Jagtap, Soudjani, & Zamani, 2020) are able to handle larger sets
of specifications. Even though these methods suffer less from the
curse of dimensionality, they are often restricted to specific model
structures or specifications. For example the barrier certificates
in Jagtap et al. (2020) only work for LTL specifications on finite
traces. Furthermore, it is not known whether a solution can be
found even if one exists and the computational complexity grows
substantially with the length and complexity of the specification.

On the other hand, discretization-based methods are very
common in the provably correct design of controllers (Cauchi
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Abate, 2019; Haesaert & Soudjani, 2020; Haesaert, Soudjani
t al., 2017; Lavaei et al., 2020; Soudjani et al., 2015; Zamani
t al., 2014) and they can in general handle more challenging
pecifications. In Lavaei et al. (2021), it has been shown that
ϵ, δ)-stochastic simulation relations (Haesaert & Soudjani, 2020;
aesaert, Soudjani et al., 2017) that quantify both the probabilis-
ic deviation and the deviation in (output) trajectories can be used
or compositional verification of large scale stochastic systems
ith nonlinear dynamics and that this outperforms results that

everage simulation functions. Therefore, we focus on the de-
ign of efficient (ϵ, δ)-stochastic simulation relations via tailored
oupling designs. Moreover, we will show that this allows us to
haracterize the set of coupling simulations and to trade off the
rror contributions of the systems output with deviations in the
ransition probability.

This work introduces a coupling compensator, to leverage the
reedom in coupling-based similarity relations, such as Haesaert,
oudjani et al. (2017), via computationally attractive set-theoretic
ethods. To achieve this, we exploit the use of coupling prob-
bility measures through a coupling compensator (Section 3).
n Section 4, we develop a method to efficiently compute the
eviation bounds for finite-state abstractions by formulating it as
set-theoretic problem using the concept of controlled-invariant
ets. Similarly, in Section 5, we apply the coupling compensator to
educed-order models. We limit our comprehensive analysis and
omputational approach to linear stochastic systems, however,
he application of the coupling compensator is not restricted
o linear systems nor to approximate simulation relations. To
valuate the benefits of this method, we consider specifications
ritten using syntactically co-safe linear temporal logic (Belta,
ordanov, & Gol, 2017; Kupferman & Vardi, 2001), and analyze
he influence of both the deviation bounds on the satisfaction
robability (Section 6).

. Preliminaries

We denote the set of positive real numbers by R+ and the
-dimensional identity matrix by In. We limit us to spaces that
re finite, Euclidean or Polish. Furthermore, we denote a Borel
easurable space as (X,B(X)) where X is an arbitrary set and
(X) are the Borel sets. A probability measure P over this space
as realizations x ∼ P, with x ∈ X. Denote the set of probability
easures on the measurable space (X,B(X)) as P(X).

odel. We consider systems whose behavior is modeled by a
tochastic difference equation

:

{
x(t + 1) = f (x(t), u(t), w(t))
y(t) = h(x(t)), ∀t ∈ {0, 1, 2, . . . },

(1)

nitialized with x(0) = x0 and with state x ∈ X, input u ∈ U,
isturbance w ∈ W, and output y ∈ Y. We assume that the func-
ions f : X× U×W→ X and h : X→ Y are Borel measurable.
Furthermore, w(t) is an independently and identically distributed
(i.i.d.) noise signal with realizations w(t) ∼ Pw . A (finite) path
ω→t := x0, u0, x1, u1, . . . , xt of M consists of states xk and inputs
uk, for which xk+1 = x(k+1) follow (1) for a given state x(k) = xk,
input u(k) = uk and disturbance w(k) at time steps k. A control
strategy µ := µ0, µ1, µ2 . . . consists of maps µt (ω→t ) ∈ U
assigning an input u(t) to each finite path ω→t generated by the
model (1). In this work, we consider control strategies, denoted as
C represented with finite memory and we denote the controlled
system with M × C .

Specifications. Consider specifications written using syntactically
co-safe linear temporal logic (scLTL) (Belta et al., 2017; Kupfer-
man & Vardi, 2001) a subset of LTL (Pnueli, 1977). Denote with
AP = {p , . . . , p } the set of atomic propositions, and let 2AP be
1 N .

2

the alphabet with letters π ∈ 2AP. An infinite string of letters is a
wordπππ = π0π1π2 . . . with associated suffixπππ t = πtπt+1πt+2 . . . .
An scLTL formula φ is defined as

φ ::= p|¬p|φ1 ∧ φ2|φ1 ∨ φ2| ⃝ φ|φ1 ∪ φ2,

with p ∈ AP . The semantics of scLTL is defined for the suffices
πt as follows. An atomic proposition πππ t |H p holds if p ∈ πt ,
while a negation πππ t |H ¬p holds if πππ t ̸|H p. A conjunction πππ t |H

φ1 ∧ φ2 holds if both πππ t |H φ1 and πππ t |H φ2 hold. A disjunction
π t |H φ1 ∨ φ2 holds if either πππ t |H φ1 or πππ t |H φ2 holds. A next
operator πππ t |H ⃝φ holds if πππ t+1 |H φ is true. An until operator
π t |H φ1 Uφ2 holds if there exists an i ∈ N such that πππ t+i |H φ2
and for all j ∈ N, 0 ≤ j < i we have πππ t+j |H φ1. By combining
multiple operators, the eventually operator ♢φ := trueUφ can
also be defined. A labeling function L : Y → 2AP assigns letters
π = L(y) to outputs y ∈ Y. A state trajectory x :=x0x1x2 . . .
satisfies a specification φ, written x |H φ, iff the generated word
π satisfies φ at time 0, i.e., πππ0 |H φ. The satisfaction probability
of a specification is the probability that words generated by the
controlled system M × C satisfy the specification φ, denoted as
P(M × C |H φ).

3. Similarity quantification: Problem statement and approach

The design of controller C and its exact quantification P(M ×
C |H φ) is computationally hard for continuous-state stochastic
models (Abate, Prandini, Lygeros, & Sastry, 2008). Therefore, the
approximation and similarity quantification of continuous-state
models is a basic step in the provably correct design of con-
trollers. This section proposes an approach to efficiently solve the
coupling problem. These definitions are not restricted to linear
time-invariant systems, so we keep them general in this section.

Problem statement. Suppose that model M given in (1), has an
abstraction written as

M̂ :

{
x̂(t + 1) = f̂ (x̂(t), û(t), ŵ(t)),
ŷ(t) = ĥ(x̂(t)),

(2)

initialized with x̂(0) = x̂0 and with functions ĥ : X̂ → Y and
f̂ : X̂× Û×W→ X̂. Here, X̂ and Û can be finite and ŵ(t) is an
i.i.d. noise sequence with realizations Pŵ . Note also that we have
Ŷ = Y.

We quantify the difference between the original model M and
the abstract model M̂ by bounding the difference between the
outputs y and ŷ. For this we need to resolve the choice of inputs
u, û and the stochastic disturbance. The former is often done by
equating u(t) = û(t) and analyzing the worst case error. An
interface function (Girard & Pappas, 2009) generalizes this by
refining the control input û to u as a function of the current states

Uv : Û× X̂× X→ U. (3)

In a similar way, we can resolve the stochastic disturbance. We
first relate the probability measures Pŵ and Pw of the stochastic
disturbances ŵ and w as follows.

Definition 1 (Coupling of Probability Measures). A coupling
(den Hollander, 2012) of two probability measures Pŵ and Pw on
the same measurable space (W,B(W)) is any probability measure
W on the product measurable space (W×W,B(W×W)) whose
marginals are Pŵ and Pw , that is,1

Pŵ = W · π̂−1, Pw = W · π−1, (4)

1 Requirement (4) on W can be equivalently given as

(Â×W) = Pŵ(Â) for all Â ∈ B(W)

(W× A) = Pw(A) for all A ∈ B(W).
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or which π̂ and π are projections, respectively defined by

π̂ (ŵ, w) = ŵ, π (ŵ, w) = w, ∀ (ŵ, w) ∈ W×W.

We can also design W as a measurable function of the current
state pair and actions, similarly to the interface function. This
yields a Borel measurable stochastic kernel associating to each
(u, x̂, x) a probability measure

W : Û× X̂× X→ P(W2) (5)

that couples probability measures Pŵ and Pw as in Definition 1.
e can now define a composed model as follows.

efinition 2 (Composed Model). Given a coupling measure (5)
and interface function (3) resolving the disturbances and inputs,
respectively, the model M̂ ∥ M composed of models M̂ and M can
e defined as

x̂(t + 1)
x(t + 1)

]
=

[
f̂ (x̂(t), û(t), ŵ(t))

f (x(t),Uv(û(t), x̂(t), x(t)), w(t))

]
[
ŷ(t)
y(t)

]
=

[
ĥ(x̂(t))
h(x(t))

]
(6)

with states (x̂, x) ∈ X̂ × X, inputs û ∈ Û, coupled disturbances
(ŵ, w) ∼ W( · |û, x̂, x) and outputs ŷ, y ∈ Y.

The deviation between M̂ and M can be expressed as the
metric dY(ŷ, y) := ∥y − ŷ∥, with ŷ, y ∈ Y for the traces of
the composed model. Similar notions have been used in inter
alia (Haesaert & Soudjani, 2020; Julius & Pappas, 2009; Zamani
et al., 2014). Note that the choice of coupling is a critical part of
this model composition. The problem can now be formulated as
follows.

Problem 3. Explicitly design the coupling of probabilistic transi-
tions to efficiently quantify the similarity between models M̂ and
M as in (1) and (2).

A coupling compensator approach. As in Haesaert, Soudjani
et al. (2017), consider an approximate simulation relation to
quantify the similarity between the stochastic models M̂ and
M . The following definition is a special case of Def. 9 in Hae-
saert, Soudjani et al. (2017) applicable to stochastic difference
equations.

Definition 4 ((ϵ, δ)-stochastic Simulation Relation). Let stochastic
difference equations M̂ and M with metric output space (Y, dY)
be composed into M̂ ∥ M based on the interface function Uv (3)
and the Borel measurable stochastic kernel W (5). If there exists
a measurable relation R ⊆ X̂× X, such that

(1) (x̂0, x0) ∈ R,
(2) ∀(x̂, x) ∈ R : dY(ŷ, y) ≤ ϵ, and
(3) ∀(x̂, x) ∈ R, ∀û ∈ Û : (x̂+, x+) ∈ R holds with probability

at least 1− δ,

then M̂ is (ϵ, δ)-stochastically simulated byM , and this simulation
relation is denoted as M̂ ⪯δ

ϵ M .

Here, ϵ and δ denote the output and probability deviation
respectively. Furthermore, state updates x̂+ and x+ are the abbre-
viations of x̂(t+1) and x(t+1). The choice of interface Uv impacts
how much of the deviations between x(t) and x̂(t) is compensated
at the next time instance x(t + 1) and x̂(t + 1). Similarly, the
coupling W induces a term w− ŵ that can compensate for state
deviations. We can choose to explicitly parameterize the coupling
based on this compensator term. To this end the notion of a
coupling compensator is defined next.
 t

3

Definition 5 (Coupling Compensator). Consider probability mea-
sures Pŵ and Pw on the same measurable space (W,B(W)). Given
a bounded set Γ and a probability 1 − δ, we say that Wγ is a
coupling compensator if it parameterizes the coupling, such that
for any compensator value γ ∈ Γ we obtain the event w−ŵ = γ
with probability at least 1− δ, that is, Wγ (w − ŵ = γ ) ≥ 1− δ.

In the remainder of this paper, we resolve Problem 3 for
(ϵ, δ)-simulation relations by either choosing the coupling com-
pensator as a linear mapping of the state deviations when X̂ ⊂ X,
that is,W(·|û, x̂, x) = Wγ with γ = F (x−x̂) or as a linear mapping
of the projected state deviation when X̂ and X are of a different
dimension.

4. Coupling compensator for finite abstractions

Consider a linear time-invariant (LTI) system whose behavior
is modeled by the stochastic difference equation

M :
{
x(t + 1) = Ax(t)+ Bu(t)+ Bww(t)
y(t) = Cx(t),

(7)

initialized with x0 and with matrices A ∈ Rn×n, B ∈ Rn×m, Bw ∈

Rn×d, C ∈ Rm×n, state x ∈ X ⊂ Rn, input u ∈ U ⊂ Rm and
output y ∈ Y ⊂ Rm. Furthermore, the stochastic disturbance w ∈
W ⊆ Rd is an i.i.d Gaussian process. Without loss of generality,
we assume that w(t) has mean 0 and variance identity, that is,
w ∼ N (0, I). To leverage model checking results (Baier & Katoen,
2008) for finite-state Markov decision processes, we can abstract
the model (7) to a finite-state representation.

Finite-state abstraction M̂ . To obtain a finite-state model M̂ ,
partition the state space X in a finite number of regions Ai ⊂ X,
such that

⋃
i Ai = X and Ai ∩ Aj = ∅ for i ̸= j. Choose a

representative point in each region, X̂i ∈ Ai, and define the set
of abstract states x̂ ∈ X̂ based on these representative points,2
that is, X̂ := {X̂1, X̂2, X̂3, . . . , X̂α}, where α is the (finite) number
of regions. Furthermore, a finite set of inputs is selected from
U and defines Û. To define the dynamics of the abstract model,
consider the operator Π : X→ X̂ that maps states x ∈ Ai to their
representative points X̂i ∈ Ai. Using Π to obtain a finite-state
abstraction of M , we get the abstract model M̂

M̂ :
{
x̂(t + 1) = Π (Ax̂(t)+ Bû(t)+ Bwŵ(t))
ŷ(t) = Cx̂(t),

(8)

with x̂ ∈ X̂ ⊂ X, û ∈ Û ⊂ U, and ŵ ∼ N (0, I) and initialized with
x̂0. This initial state is the associated representative point, that is
x̂0 = X̂i if x0 ∈ Ai or equivalently x̂0 = Π (x0). The abstract model
M̂ can also be written as the following LTI system

M̂ :
{
x̂(t + 1) = Ax̂(t)+ Bû(t)+ Bwŵ(t)+ β(t)
ŷ(t) = Cx̂(t),

(9)

by introducing the deviation β(t) as in Haesaert and Soudjani
(2020). The β(t)-term denotes the deviation caused by the map-
ping Π in (8) and takes values in the following bounded set
B :=

⋃
i{X̂i − xi|xi ∈ Ai}. At each time step t , the deviation

β(t) ∈ B ⊆ Rn is a function of x̂(t), û(t) and ŵ(t), however, for
simplicity we write β(t).

Similarity quantification of M̂ . To quantify the similarity be-
tween the abstract model M̂ and the original model M , we use
the notion of (ϵ, δ)-stochastic simulation relation given in Def-
inition 4. Next, we show that a coupling compensator can be

2 Beyond the given representative points, one generally adds a sink state to
oth the continuous- and the finite-state model to capture transitions that leave
he bounded set of states.
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omputed based on the maximal coupling between two probabil-
ty measures and that the linear compensator can be used to solve
he similarity quantification efficiently. Without loss of generality
e limit the interface function to

(t) := û(t). (10)

ased on the composed model (cf., Definition 2), we can define
he error dynamics between (7) and (9) as
+

∆(t) = Ax∆(t)+ Bw(w(t)− ŵ(t))− β(t), (11)

here the state x∆ and state update x+∆ are the abbreviations
f x∆(t) := x(t)− x̂(t) and x∆(t + 1), respectively. Furthermore,
he stochastic disturbances (ŵ, w) are generated by the coupling
ompensator Wγ as in (5) with w − ŵ the coupling compensator
erm.

The error dynamics can be used to efficiently compute
he simulation relation, denoted as R. In contrast to Blute, De-
harnais, Edalat, and Panangaden (1997), Desharnais, Gupta, Ja-
adeesan, and Panangaden (2004) and Julius and Pappas (2009),
hich quantify the deviation between the abstract and original
odel either completely on ϵ or completely on δ by fixing Wγ ,
e design a coupling compensator Wγ with compensator value
to achieve a preferred trade-off between ϵ and δ. Conditioned

n event w − ŵ = γ as in Definition 5 the error dynamics (11)
reduce to

x+∆(t) = Ax∆(t)+ Bwγ (t)− β(t) (12)

and hold with a probability of W(w − ŵ = γ | û, x̂, x) = Wγ (w
− ŵ = γ ) that is at least bigger than 1 − δ for all γ ∈ Γ . For a
iven γ ∈ Γ , we can compute an optimal coupling Wγ as follows.

First, we introduce random variable ŵγ ∼ N (γ , I) to replace the
bstract disturbance

ˆ (t) = ŵγ (t)− γ (t). (13)

ext, we find the coupling Wγ for ŵ and w by finding a maximal
oupling of ŵγ and w after which we can directly obtain Wγ for

ŵγ and w. The computation of a maximal coupling in P(W×W)
can be found in den Hollander (2012) and builds on top of max-
imizing the probability mass that can be located on the diagonal
w − ŵγ = 0. Denote with ρ( · |0, I) and ρ̂( · |γ , I) the respective
probability density functions of w ∼ N (0, I) and ŵγ ∼ N (γ , I).
s in den Hollander (2012), we construct a maximal coupling
γ that has on its diagonal w − ŵγ = 0 the sub-probability
istribution

∧ ρ̂ := min(ρ, ρ̂), (14)

here min denotes the minimal value of the probability density
unction for different values of w. We can now establish a relation
etween deviation δ and value γ .

emma 6. Consider two normal distributions
Pw := N (0, I) and Pŵγ := N (γ , I) with γ ∈ Γ . Then there exists

coupled distribution Wγ such that

− ŵγ = 0 for (ŵγ , w) ∼ Wγ

ith probability at least

− δ := inf
γ∈Γ

2 cdf(−
1
2
∥γ ∥). (15)

Here, cdf(·) denotes the cumulative distribution function of
a one-dimensional Gaussian distribution N (0, 1). The full proof
of Lemma 6 is given in Appendix A. This lemma shows that by
choosing a maximal coupling the error dynamics (12) hold with a
probability of at least 1− δ. We can now quantify the similarity
via robust controlled positively invariant sets, also referred to as
controlled-invariant sets in the remainder of the paper. Here, we
consider the error dynamics (12) as a system with constrained
input γ and bounded disturbance β .
 d

4

Definition 7 (Controlled Invariance). A set S is a (robust) con-
trolled (positively) invariant set (Blanchini & Miani, 2008) for the
error dynamics given in (12) with γ ∈ Γ and β ∈ B, if for all
states x∆ ∈ S, there exists an input γ ∈ Γ , such that for any
disturbance β ∈ B the next state satisfies x+∆ ∈ S.

We can quantify the similarity as follows.

Theorem 8. Consider models M and M̂ with error dynamics (12)
for which controlled-invariant set S is given.

If ϵ ≥ sup
x∆∈S
∥Cx∆∥ and δ ≥ sup

γ∈Γ

1− 2 cdf(−
1
2
∥γ ∥)

then M̂ is (ϵ, δ)-stochastically simulated by M as in Definition 4,
denoted as M̂ ⪯δ

ϵ M.

The proof is based on Lemma 6 and simulation relation

R :=
{
(x̂, x) ∈ X̂× X | (x̂, x) ∈ S

}
. (16)

The inequality ϵ ≥ supx∆∈S ∥Cx∆∥ yields

∀(x̂, x) ∈ R : ∥Cx∆∥ ≤ ϵ, (17)

and therefore also implies the second condition of an (ϵ, δ)-
stochastic simulation relation as in Definition 4. The full proof of
Theorem 8 is given in Appendix B.

Comparison to available methods. As mentioned before, in Hae-
saert and Soudjani (2020), Julius and Pappas (2009) and Blute
et al. (1997), Desharnais et al. (2004), Soudjani et al. (2015) the
deviation between the abstract and original model is quantified
either completely on ϵ or completely on δ by fixing Wγ . This
can now be recovered by choosing a specific compensator value
γ . More specifically, the deviation is completely quantified on ϵ,
when δ = 0. This result is obtained by choosing γ = 0, hence by
choosing Wγ such that w − ŵ = 0 holds with probability 1, we
recover the results in Haesaert and Soudjani (2020).

Similarly, the deviation is completely quantified on δ, when
ϵ is fully defined by the gridsize. This is obtained by choosing
γ (t) = −B−1w Ax∆(t) such that x∆(t + 1) = −β(t). Hence we
recover the results in Blute et al. (1997), Desharnais et al. (2004)
and Soudjani et al. (2015) that also only hold for non-degenerate
systems for which Bw is invertible.

Computation of deviation bounds. Consider interface function
(10), relation (16), and an ellipsoidal controlled-invariant set S,
that is

S :=
{
(x̂, x) ∈ X̂× X | ∥x− x̂∥D ≤ ϵ

}
, (18)

here ∥x∥D denotes the weighted 2-norm, that is, ∥x∥D =
√
xTDx

with D a symmetric positive-definite matrix D = DT
≻ 0. The

constraints in Theorem 8 can now be implemented as matrix
inequalities for the error dynamics (12) with the linear param-
eterization of the compensator value as extra design variable,
i.e., γ = Fx∆. More precisely, we can formulate an optimization
roblem that minimizes the deviation bound ϵ for a given bound
subject to the existence of an (ϵ, δ)-stochastic simulation rela-

tion between models M̂ and M as given in Theorem 8. Given δ,
e can compute a bound on input γ and define a suitable set Γ

s

∈ Γ :=

{
γ ∈ Rd

| ∥γ ∥ ≤ r = |2 idf
(1− δ

2

)
|

}
, (19)

hich is a sphere of dimension d with radius r . Here idf is the
nverse distribution function, i.e., the inverse of the cumulative
istribution function. We will show that given bound δ, we can
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ptimize bound ϵ and matrix D as in (18) by solving the following
ptimization problem

min
inv ,L,ϵ
−

1
ϵ2 (20a)

s.t. Dinv ≻ 0,[
Dinv DinvCT

CDinv I

]
⪰ 0, (ϵ-deviation) (20b)[

r2Dinv LT

L 1
ϵ2

I

]
⪰ 0, (input bound) (20c)[

λDinv ∗ ∗

0 (1−λ) 1
ϵ2
∗

ADinv+BwL − 1
ϵ2

βl Dinv

]
⪰ 0 (invariance) (20d)

here Dinv = D−1, L = FDinv , βl ∈ vert(B) and l ∈ {0, 1, . . . , q}.
his optimization problem is parameterized in λ. We say that (20)
as a feasible solution for values of δ, ϵ ≥ 0, if there exist values
or λ and Dinv, L such that the matrix inequalities in (20) hold.
ow, we can conclude the following.

heorem 9. Consider models M and M̂ and their error dynamics
12). If a pair δ, ϵ ≥ 0 yields a feasible solution to (20), then M̂ is
ϵ, δ)-stochastically simulated by M.

Leveraging Theorem 9, an algorithm to search the minimal
eviation ϵ can be composed as follows.

Algorithm 1 Optimizing ϵ given δ such that M̂ ⪯δ
ϵ M

1: Input: M, M̂, δ

2: Compute r based on δ as in (19)
3: for λ between 0 and 1 do
4: Dinv, L, ϵ ← Solve optimization problem (20)
5: Set D := (Dinv)−1, F := LD,

6: Save parameters D, F , ϵ

7: end for
8: Take minimal value of ϵ and corresponding matrices D and F .

The efficiency of this algorithm depends on the efficiency of
he line-search algorithm for λ (cf. line 3) and on the optimiza-
ion problem (cf. line 4). The latter problem can be solved as a
emi-definite programming problem with matrix inequalities as
function of 1/ϵ2.
The full proof of Theorem 9 is given in Appendix C and is based

n the following observations with respect to matrix inequalities
20b)–(20d). The ϵ-deviation requirement ϵ ≥ supx∆∈S ∥Cx∆∥ (cf.
heorem 8) can be simplified to the following implication
T
∆Dx∆ ≤ ϵ2

H⇒ xT∆C
TCx∆ ≤ ϵ2. (21)

or this CTC ⪯ D, or equivalently, the ϵ-deviation inequality (20b)
s a sufficient condition.

The input bound γ ∈ Γ with γ = Fx∆ has to hold for all x∆ ∈ S.
his reduces to
T
∆Dx∆ ≤ ϵ2

H⇒ xT∆F
T Fx∆ ≤ r2 (22)

or which F T F ⪯ r2

ϵ2
D and the input bound (20c) are equivalent

ufficient constraints.
For S to be a controlled-invariant set we need to have that for

ll states x∆ ∈ S, there exists an input γ = Fx∆ ∈ Γ , such that for
ny disturbance β ∈ B the next state satisfies x+∆ ∈ S. To achieve
his it is sufficient to require that for any β ∈ B

T
∆Dx∆ ≤ ϵ2

H⇒ (23)

((A+ BwF )x∆ − β)T D ((A+ BwF )x∆ − β) ≤ ϵ2.
5

Via the S-procedure this yields the invariance constraint (20d) as
a sufficient condition. The corresponding details can be found in
the appendix.

Concluding, the introduction of the coupling compensator in
Section 3 allows the use of the well-studied theory of controlled-
invariant sets to quantify the deviation between the original and
abstract model on bounds ϵ and δ. Furthermore, it leads to an
efficient computation of the deviation bounds as a set-theoretic
problem. By considering an ellipsoidal controlled-invariant set,
this computation can be formulated as an optimization problem
constrained by parameterized matrix inequalities.

5. A coupling compensator for model order reduction

The provably correct design of controllers faces the curse of
dimensionality. For some models this can be mitigated by in-
cluding model order reduction in the abstraction. This additional
abstraction step, yielding a lower dimensional continuous-state
model, decreases the dimension of the abstract model and hence
decreases the computation time. In this section, we show how the
coupling compensator applies to model reduction.

First, we construct a reduced-order model Mr , based on (7),
with state space Xr ⊂ Rnr with nr < n by using projection matrix
P ∈ Rn×nr that maps the states of the reduced-order model to the
original model, that is x = Pxr . The dynamics of Mr are given as

Mr :

{
xr (t + 1) = Arxr (t)+ Brur (t)+ Brwwr (t)
yr (t) = Crxr (t),

(24)

nitialized with xr0 and with state xr ∈ Xr , input ur ∈ U,
utput yr ∈ Y and disturbance wr ∈ W that satisfy a Gaussian
istribution wr ∼ N (0, I).

imilarity quantification of M r . As in Haesaert, Soudjani et al.
2017), we resolve the inputs of models M (7) and Mr (24) by
hoosing interface function

(t) := Rur (t)+ Qxr (t)+ K (x(t)− Pxr (t)) (25)

or some matrices R,Q , K , P , such that the Sylvester equation
Ar = AP + BQ and Cr = CP hold. The resulting error dynamics
etween (7) and (24) are
+

r∆ = Āxr∆ + B̄ur + Bw(w − wr )+ B̄wwr , (26)

here the stochastic disturbances (wr , w) are generated by the
oupled probability measure Wγ as in (5) and where the state xr∆
nd state update x+r∆ are the abbreviations of xr∆(t) := x(t)− Px̂r
t) and xr∆(t + 1), respectively. Furthermore, we have Ā = A+BK ,
¯ = BR − PBr and B̄w = Bw − PBrw . The term (w − wr ) can now
e used as a coupling compensator term.
Unlike existing work (Haesaert, Cauchi and Abate, 2017; Hae-

aert, Soudjani et al., 2017), we now use an approach similar
o the one used in the previous section and substitute wr =

γ−γr for wr . Subsequently, we choose Wγ again as the coupling
hat maximizes the probability of event w − wγ = 0. The error
ynamics conditioned on this event reduce to
+

r∆ = Āxr∆ + B̄ur + Bwγr + B̄wwr . (27)

emma 6 still applies and can be used to compute 1−δ. If B̄w = 0
hen (27) reduces to a set-theoretic control problem. In contrast,
f this does not hold then by truncating the stochastic influence
r , the error dynamics are still bounded and the probability δ can
e modified to δr = δ+δtrunc , where δtrunc is the error introduced
y truncating wr to the bounded set W . We consider the resulting
rror dynamics (27) as a system with constrained input γr and
ounded disturbance z = B̄ur + B̄wwr . This is very similar to
he error dynamics in (12), however, now instead of bounded
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isturbance β we have z ∈ Z = B̄U+ B̄wW , with W the set of the
truncated disturbance wr . If we now consider simulation relation

RMOR =
{
(xr , x) ∈ Xr × X | ∥x− Pxr∥Dr ≤ ϵr

}
(28)

hen we can recover the results in Theorem 8 to achieve an
ϵr , δr )-simulation relation between Mr and M .

Computation of deviation bounds. Consider interface function
(25) and simulation relation (28). Given bound δr and matrices
P,Q , R, we can optimize bound ϵr and matrix Dr as in (28) by
solving an optimization problem similar to (20). Since model
order reduction influences the error dynamics, the invariance
constraint in (20d) has to be altered to⎡⎣ λDr,inv ∗ ∗

0 (1−λ) 1
ϵ2r

∗

ADinv+BE+BwL 1
ϵ2r

zl Dr,inv

⎤⎦ ⪰ 0, (29)

where E = KDr,inv and zl ∈ vert(Z).
To make sure that the bound u ∈ U is satisfied an additional

constraint can be formulated for matrix K in the exact same way
as the matrix inequality for the input bound in (20c).

Similarity quantification between M and M̂ r . The finite-state
abstract model M̂r of Mr (24) will now be substantially smaller
than the finite-state abstraction ofM . Given the (ϵr , δr )-simulation
relation between Mr and M , the relation between M̂r and M
can be computed by considering the relation between M̂r and

r . More precisely, we can follow Section 4 and compute a
air (ϵabs, δabs) that guarantees that M̂r is (ϵabs, δabs)-stochastically
imulated by Mr . Following Theorem 5 in Haesaert, Soudjani et al.
(2017) on transitivity of ⪯δ

ϵ we have that if M ⪯
δr
ϵr

Mr and
Mr ⪯

δabs
ϵabs M̂r both hold, the simulation relation M ⪯δabs+δr

ϵabs+ϵr M̂r
holds as well.

6. Case studies

In this section, we consider three case studies. For robust
control synthesis, we use the robust dynamic programming map-
pings derived in Haesaert and Soudjani (2020), since given a
robust satisfaction probability Rϵ,δ(M̂ × Ĉ |H φ) there always
exists a controller C such that

P(M × C |H φ) ≥ Rϵ,δ(M̂ × Ĉ |H φ).

The lower bound Rϵ,δ is robust in the sense that it takes the ap-
proximation errors, ϵ and δ, into account. The robust satisfaction
probability is computed by performing a value iteration based on
computing a fixed-point solution for a robust Bellman operator
as detailed in Haesaert and Soudjani (2020).

Car parking in 1D and 2D. First, we consider a one-dimensional
(1D) case study of parking a car. The dynamics of the car are
modeled using (7) with A = 0.9, B = 0.5 and Bw = C = 1
and with states x ∈ X = [−10, 10], input u ∈ U = [−1, 1]
and output y ∈ Y = X. The unpredictable changes of the
position of the car are captured by Gaussian noise w ∼ N (0, 1).
The goal of the controller is to guarantee that the car will be
parked in parking spot P1, while avoiding parking spot P2. Using
scLTL, this can be written as φpark = ¬P2 U P1. Here, we have
chosen the regions P1 = [4.75, 6.25⟩ and P2 = [6.25, 10]. First,
we have computed a finite-state abstract model M̂ in the form of
(9) by partitioning the state space with regions of size 0.1. Next,
we have selected optimal values for deviation bounds ϵ and δ
based on the optimization problem given in (20). Finally, we have
computed the satisfaction probability using Python and achieved
a computation time of approximately 16 s and a memory usage
of 6.16 MB. The results are shown in Fig. 1. Quantifying all the
error on ϵ (green line) yields a relatively low overall satisfaction
6

Fig. 1. Satisfaction probability of the 1D car parking example, where
the blue circles, orange triangles and green line are obtained with
(ϵ, δ) equal to (0.05, 0.018), (0.2, 0.012) and (0.5, 0) respectively. (For inter-
pretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

probability that slightly decreases the further you are from the
region P1. The low overall probability is caused by the large ϵ
value, which makes reaching the desired parking spot P1 very
difficult. On the other hand, quantifying all the error on δ (blue
line) yields a probability that starts relatively high, but steeply
decreases the further you are from the region P1. The presented
ethod can achieve a full trade off of ϵ and δ (cf., the orange line)

thereby achieving a higher satisfaction probability for part of the
state space.

As a second case study, we have considered parking a car in a
two-dimensional (2D) space. More specifically, we have consid-
ered the model (7) with A = 0.9I2, B = 0.7I2, Bw = C = I2
and state x ∈ X =

{(
x1, x2

)T
∈ R2
| − 2 ≤ x1 ≤ 10,−8 ≤ x2 ≤ 5

}
,

input u ∈ U = [−1, 1]2, output y ∈ Y = X and disturbance w ∼
N (0, I2). We wanted to synthesize a controller such that specifica-
tion φpark = ¬P2 U P1, with regions P1 =

{ (
x1, x2

)T
∈ R2

| 4 ≤ x1
10,−4 ≤ x2 < 0

}
and P2 =

{ (
x1, x2

)T
∈ R2

| 4 ≤ x1 ≤
0, 0 ≤ x2 ≤ 4

}
is satisfied. First, we have computed a finite-

tate abstract model M̂ in the form of (9) by partitioning the
tate space with square regions of size 0.2. Next we have selected
ptimal values for deviation bounds ϵ and δ based on the opti-
ization problem given in (20). Finally, we have computed the
atisfaction probability using Python and achieved a computation
ime of approximately 594 s and a memory usage of 6.88 GB.
he results are shown in Fig. 2 and are very similar to the 1D
ase, however, the influence from the avoid region (P2) is more
pparent in 2D. Furthermore, dividing the deviation between ϵ
nd δ (Fig. 2(b)) shows a decent trade-off between quantifying
he deviation completely on δ (Fig. 2(a)) and ϵ (Fig. 2(c)). In the
ense that the satisfaction probability is relatively high overall,
hile not steeply decreasing the further you are from the region
1 (or closer to region P2).

Building Automation System. As a third case study, we have
onsidered a Building Automation System (BAS) (Cauchi & Abate,
018) that is used in the benchmark study in Abate et al. (2020).
he system consists of two heated zones with a common air sup-
ly. It has a 7-dimensional state with a 6-dimensional disturbance
nd a one-dimensional control input as described in Cauchi and
bate (2018, Sec.3.2). The goal is to control the temperature in
one 1 such that it does not deviate from the set point (20 ◦C) by
ore than 0.5 ◦C over a time horizon equal to 1.5 h, i.e., φT =
5
i=0⃝

iP1 with P1 =
{
x ∈ R7

| 19.5 ≤ x1 ≤ 20.5
}
. We have

ubsequently reduced the model to a 2 dimensional system and
ridded the state space. We obtained (ϵr , δr ) = (0.2413, 0.0161)
nd (ϵabs, δabs) = (0.1087, 0) for a ∥β∥ ≤ 1.8 · 10−3. This leads to
total deviation bound of (ϵ, δ) = (0.35, 0.0161). Note that these
esults have been obtained for a slightly enlarged input set u(t) ∈
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Fig. 2. Satisfaction probability of the 2D car parking case study for different couplings. Figs. 2(a) and 2(c) represent quantifying the deviation completely on δ or on
respectively, while Fig. 2(b) corresponds to dividing the deviation between ϵ and δ.
Fig. 3. Satisfaction probability for the BAS case study with initial state xr (0) =
xr1, xr2]⊤ . The blue and yellow regions correspond to a probability of 0 and
0.9035 respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

[15, 33], originally u(t) ∈ [15, 30]. The satisfaction probability of
0.9035 as shown in Fig. 3 is consistent with Abate et al. (2020).
The computation is performed in Matlab and required a memory
usage of 3.06 GB.3

Comparison to available software tools. In Abate et al. (2020),
the BAS benchmark has been used to compare the performance
of AMYTISS (Lavaei et al., 2020), FAUST2 (Soudjani et al., 2015),
ReachTools (Vinod et al., 2019) and StocHy (Cauchi & Abate,
019). These tools all target the verification of stochastic systems
ith continuous state space. Of these tools, SReachTools is the
ost limited. It can only handle a very specific set of models with
pecifications limited to reach(-avoid) and invariance. In contrast,
he tools AMYTISS, FAUST2 and StocHy are all abstraction-based
ethods that can handle a wider set of temporal specifications.

n comparison to the numerical results presented in the previous
aragraph, which follow from a basic Matlab implementation,
hese tools are more matured. StocHy is implemented in C++ and
ombines several advanced techniques such as symbolic proba-
ilistic kernels and multi-threading. AMYTISS goes even further
nd utilizes parallel computations. If we compare our results,
ith those of these tools as summarized in Table 1, we notice that
ur implementation is performing on equal footing. As indicated
n the table, FAUST2 was unable to run this case study. StocHy
equired a very fine grid resulting in a very large computation
ime. Both AMYTISS and SReachTools obtain good results, since
hey achieve a reasonable or high reach probability in a short

3 Here, memory usage is computed based on the sizes of the matrices stored
n the workspace. Note that the Python and Matlab tool are implemented
ifferently, which significantly impacts the memory usage.
7

Table 1
Results of the BAS case study for different tools. This table contains the results
from Abate et al. (2020) together with the results of our method (ϵ, δ)-CC.
Method Run time (s) Max. reach probability

FAUST2 – –
StocHy 3910.41 ≥0.8± 0.23
AMYTISS 2.9 ≈0.8
SReachTools 1.33 ≥0.99
(ϵ, δ)-CC 190.34 ≥0.9035

time. Our method yielded the second least conservative com-
putation probability, only SReachTools does better. Though, this
already shows that the given results are promising, future study
is needed to develop a mature tool implemented in C++ that
leverages parallelized computations and benchmark it fairly.

7. Conclusion and discussion

We have shown that the introduction of a coupling com-
pensator increases the accuracy of the satisfaction probability of
methods that use (ϵ, δ)−stochastic simulation relations. For this,
we have defined a structured methodology based on set-theoretic
methods for linear stochastic difference equations. These set-
theoretic methods leverage the freedom in coupling-based simi-
larity relations and allow us to tailor the deviation bounds to the
considered synthesis problem. We have applied this to compute
the deviation bounds expressed with (ϵ, δ)−stochastic simulation
relations for finite-state abstractions, reduced-order abstractions,
and for a combination thereof. We have illustrated that tailored
deviation bounds that trade-off between output and probability
deviations can be beneficial to the satisfaction probability. In
future work, this approach will also be instrumental to build more
advanced results where different levels of accuracy bounds are
combined to tackle challenging temporal logic specification (van
Huijgevoort & Haesaert, 2021).

Future work includes extending these results to more general
nonlinear stochastic difference equations as in Lavaei et al. (2021)
and to other types of similarity quantifications such as simulation
functions (Lavaei et al., 2019). The former should enable extend-
ing the results in this paper to large-scale nonlinear stochastic
systems.
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ppendix A. Proof of Lemma 6

First, an analytical expression for the maximal coupling of
wo disturbances w ∼ N (0, I) and ŵγ ∼ N (γ , I) is derived.
Their probability density functions are denoted by ρ( · |0, I) and
ρ̂( · |γ , I), respectively. The maximal coupling is based on Eq. (14).
The probability density function of this maximal coupling is de-
noted as ρw : W × W → R+ and can be computed as fol-
lows. Denote the sub-probability density function ρmin(w) =
min(ρ(w), ρ̂(w)), with ∆γ =

∫
Rd ρmin(w)dw and define the cou-

pling density function as

ρw(w, ŵγ ) = ρmin(w)δŵγ (w) (A.1)
+ (ρ(w)− ρmin(w))(ρ̂(ŵγ )− ρmin(ŵγ ))/(1−∆γ ),

with δŵγ (w) the shifted Dirac delta function equal to +∞ if
equality w = ŵγ holds and 0 otherwise. The first term of
the coupling (A.1) puts only weight on the diagonal w = ŵγ .
The second term puts the remaining probability density in an
independent fashion. The sub-probability ∆γ can be computed as

∆γ =

∫
Rd

min(ρ(w), ρ̂(w))dw =
∫
E
ρ(w)dw +

∫
Ê
ρ̂(ŵγ )dŵγ .

(A.2)

ere, half spaces Ê and E denote the respective regions sat-
sfying ρ > ρ̂ and ρ ≤ ρ̂. These regions can be represented as
-dimensional half spaces.
As mentioned before, ρ( · |0, I) and ρ̂( · |γ , I) are probability

ensity functions of Gaussian distributions w and ŵγ and there-
ore, ρ and ρ̂ are strictly decreasing functions for increasing
alues of ∥w∥ and ∥w− γ ∥ respectively. Furthermore, these two
unctions are equal except for a γ -shift. This implies that for a
iven point w if
• ∥w∥ < ∥w − γ ∥ then ρ(w) > ρ̂(w) (half space Ê)
• ∥w∥ ≥ ∥w − γ ∥ then ρ(w) ≤ ρ̂(w) (half space E).

his last item shows that the half spaces Ê (1st item) and E (2nd
tem) are separated by a hyper-plane through the point w = 1

2γ
nd perpendicular to the vector γ . This hyper-plane, denoted
y H is characterized by H :=

{
w ∈ Rd

| γ Tw − 1
2∥γ ∥

2
= 0

}
,

and illustrated in Fig. A.1. Since ρ and ρ̂ are Gaussian density
distribution that are equal up to γ -shift, as depicted in 2D in
Fig. A.1, the integrals in (A.2) are equal to each other and ∆γ =∫

E ρ(w)dw. It is trivial to see that this integral evaluates to
∆γ = 2 cdf(− 1

2∥γ ∥). To obtain the worst case probability as in
15) we need to take into account all possible values of γ as
− δ := infγ∈Γ ∆γ = infγ∈Γ 2 cdf(− 1

2∥γ ∥). This concludes the
roof of Lemma 6.

ppendix B. Proof of Theorem 8

To prove that M̂ is (ϵ, δ)-stochastically simulated by M under
he conditions given in Theorem 8, the simulation relation in
efinition 4 is proven point by point.

(1) Initial condition. Since x̂0 is inside the region that x0 is in,
the distance between x̂0 and x0 is bounded by B, that is,
x̂0−x0 ∈ B. Since it trivially holds that B ⊆ S, (q.v. Theorem
5.2 in Blanchini and Miani (2008)) we also have x∆(0) =
x0 − x̂0 ∈ S. This implies that the inclusion (x̂0, x0) ∈ R

holds for simulation relation (16).
(2) ϵ-Accuracy. For LTI-systems M (7) and M̂ (9), condition (17)

can be written as ∀(x̂, x) ∈ R : ∥y − ŷ∥ ≤ ϵ. Hence, since
ϵ ≥ supx∆∈S ∥Cx∆∥ this condition holds.

(3) Invariance. Let γ (t) ∈ Γ then according to Lemma 6 there
exists a coupled distribution W such that with probability
1−δ the error dynamics in (11) can equivalently be written
8

Fig. A.1. Level sets of probability density functions ρ(·|0, I) (black circle) and
ρ̂(·|γ , I) (dashed circle). Half spaces Ê and E are respectively the R2-plane left
and right of hyper-plane H (red line). The area underneath min(ρ, ρ̂) for these
level sets is indicated in blue. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

as (12). The latter implies that (x̂+, x+) ∈ R holds with
probability at least 1−δ, which proves the third statement
in Definition 4.

Items one until three prove that M̂ is (ϵ, δ)-stochastically
simulated by M under the conditions given in Theorem 8.

Appendix C. Proof of Theorem 9

To prove Theorem 9, we show that the derived conditions
in Section 4 can be written as the matrix inequalities in (20)
and that they represent a set of sufficient conditions for the
(ϵ, δ)-stochastic simulation relation.

First inequality constraint: In (18) we define an ellipsoidal
controlled-invariant set S, with D a symmetric positive definite
matrix, D = DT

≻ 0. This constraint can equivalently be written
as Dinv = D−1 ≻ 0.

Second inequality constraint (ϵ-deviation): The implication (21)
holds if the inequality CTC ⪯ D is satisfied. Applying the Schur
complement on this inequality and performing a congruence
transformation with non-singular matrix

[
D−1 0
0 I

]
yields constraint

(20b). Hence, if constraint (20b) is satisfied, the inequality CTC ⪯
D holds and the bound on ϵ also holds.

Third inequality constraint (input bound): Similarly, the impli-
cation (22) holds if F T F ⪯ r2

ϵ2
D is satisfied. This inequality can be

rewritten in the exact same way as inequality CTC ⪯ D and yields
constraint (20c), where we denoted L = FDinv . Hence, if constraint
(20c) is satisfied, the inequality F T F ⪯ r2

ϵ2
D holds and the input

bound also holds.

Fourth inequality constraint (invariance): Next, we show that
the constraint such that S is a controlled-invariant set as given by
the implication in (23) can equivalently be written as constraint
(20d) in (20). First, we use the S-procedure (Boyd, El Ghaoui,
Feron, & Balakrishnan, 1994, p. 23) and Schur complement (with
D ≻ 0) and conclude that the implication in (23) holds for any
β ∈ B if there exists λ ≥ 0 such that for any β ∈ B[

λD 0 (A+BwF )TD
0 (1−λ)ϵ2 −βTD

]
⪰ 0
D(A+BwF ) −Dβ D
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P

S

V

Z

holds. Performing a congruence transformation with non-singular

matrix

[
D−1 0 0
0 1

ϵ2
I 0

0 0 D−1

]
yields

[
λDinv 0 DinvAT+LT BTw

0 (1−λ) 1
ϵ2

−βT

ADinv+BwL −β Dinv

]
⪰ 0, (C.1)

ith Dinv = D−1 and L = FDinv . It is computationally impossible
to verify this matrix inequality point by point for any β ∈ B.
However, if B is a polytope, which we represent as B = {β =

z, 1̄T z ≤ 1, z ≥ 0, } with b consisting of the q vectors βl and
1̄ = [ 1 1 ... 1 ]T . Then we only have to consider the q vertices of B
and we conclude that the implication holds for any β ∈ B if there
exists λ ≥ 0 such that constraint (20d) in (20) is satisfied.

Concluding, if a pair δ, ϵ ≥ 0 yields a feasible solution to
(20), then the implications (21), (22) and (23) hold. Consequently,
the bounds in Theorem 8 are satisfied and S is a controlled-
invariant set. Based on Theorem 8 we conclude that M̂ is (ϵ, δ)-
stochastically simulated by M .
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