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Multiple Access Channel Simulation
Gowtham R. Kurri , Member, IEEE, Viswanathan Ramachandran , Sibi Raj B. Pillai , Member, IEEE,

and Vinod M. Prabhakaran , Member, IEEE

Abstract— We study the problem of simulating a two-user
multiple-access channel (MAC) over a multiple access network of
noiseless links. Two encoders observe independent and identically
distributed (i.i.d.) copies of a source random variable each, while
a decoder observes i.i.d. copies of a side-information random
variable. There are rate-limited noiseless communication links
between each encoder and the decoder, and there is independent
pairwise shared randomness between all the three possible pairs
of nodes. The decoder has to output approximately i.i.d. copies
of another random variable jointly distributed with the two
sources and the side information. We are interested in the
rate tuples which permit this simulation. This setting can be
thought of as a multi-terminal generalization of the point-to-
point channel simulation problem studied by Bennett et al. (2002)
and Cuff (2013). When the pairwise shared randomness between
the encoders is absent, the setting reduces to a special case
of MAC simulation using another MAC studied by Haddad-
pour et al. (2013). We establish that the presence of encoder
shared randomness can strictly improve the communication rate
requirements. We first show that the inner bound derived from
Haddadpour et al. (2013) is tight when the sources at the encoders
are conditionally independent given the side-information at the
decoder. This result recovers the existing results on point-to-point
channel simulation and function computation over such multi-
terminal networks. We then explicitly compute the communi-
cation rate regions for an example both with and without the
encoder shared randomness and demonstrate that its presence
strictly reduces the communication rates. Inner and outer bounds
for the general case are also obtained.
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I. INTRODUCTION

WHAT is the minimum amount of communication
required to create correlation remotely? The channel

simulation problem seeks to answer this fundamental question.
In the point-to-point formulation, an encoder observing an
independent and identically distributed (i.i.d.) source Xn with
distribution qX sends a message through a noiseless link to
a decoder. The decoder has to output Y n such that the total
variation distance between the joint distribution on (Xn, Y n)
and the i.i.d. joint distribution induced by passing the source
Xn through a discrete memoryless channel qY |X vanishes
asymptotically. This requirement that the synthesized joint dis-
tribution be close to the desired i.i.d. joint distribution in total
variation distance has been termed as strong coordination [1],
which is also the focus of this paper. A source of common
randomness accessible to both the encoder and the decoder
may assist them in the aforementioned task. This framework
was first investigated by Bennett et al. [2] assuming unlimited
common randomness, where they established a ‘reverse Shan-
non theorem’ to synthesize a noisy channel from a noiseless
channel.1 It was shown that the minimum communication rate
is nothing but the mutual information I(X ; Y ) of the joint
distribution. Harsha et al. [3] studied the non-asymptotic ver-
sion of this problem. Winter [4] studied the setting with limited
common randomness, albeit only for a certain extremal operat-
ing point. Cuff [5] and Bennett et al. [6] independently deter-
mined the entire optimal trade-off between communication and
shared randomness rates. Later, Wilde et al. [7] obtained a
similar trade-off in the quantum information-theoretic setting,
generalizing the above result. Yassaee et al. [8] established
a similar trade-off for channel simulation in a point-to-point
network with side-information at the decoder. Simulation of a
channel using another channel (instead of the noiseless com-
munication link) was studied by Haddadpour et al. [9] and
Cervia et al. [10]. A weaker form of coordination, namely,
empirical coordination, where only the empirical distribution
of the sequence of samples is required to be close to the
desired distribution, has also been studied in point-to-point
networks [1], [8], [11]–[14].

Channel simulation problems may also be thought
of as distributed computation of randomized functions.

1Referring to Shannon’s channel coding theorem as the simulation of a
noiseless channel using a noisy channel.
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Fig. 1. Strong coordination over a multiple-access network. Encoder j ∈
{1, 2} on observing the source Xn

j and shared randomness S0, Sj sends a
message Mj over a noiseless link to the decoder, which has side-information
Zn. Here (X1i, X2i, Zi), i = 1, . . . , n, are i.i.d. with qX1X2Z . Also
(Xn

1 , Xn
2 , Zn), S0, S1, and S2 are mutually independent. The decoder has

to output Y n such that (X1i, X2i, Zi, Yi), i = 1, . . . , n, are approximately
i.i.d. with qX1X2ZY .

Distributed computation of (deterministic) functions has
received much attention in the computer science literature (see,
e.g., [15], [16] and references therein) and the information
theory literature [17]–[32]. Two terminal interactive function
computation was studied in [18], [19], [21], [22], and
[26]. Distributed multi-terminal function computation in a
multiple-access network of noiseless links was studied by
Körner and Marton [17], Han and Kobayashi [20], Kuzuoka
and Watanabe [29], Watanabe [32], and Sefidgaran et al. [30].
Function computation in more general graph networks where
a single node seeks to compute a function of the inputs at
the other nodes was studied by Appuswamy et al. [27],
Kowshik and Kumar [28], and Sefidgaran and
Tchamkerten [31]. A related line of work is function
computation over multiple-access channels studied by Nazer
and Gastpar [23], [24], and Gastpar [25], which, in contrast
to the above works, exploit the computation performed
by the channel itself. This is fundamentally different from
computation over a network of noiseless links where the
communication channel does not perform any computation.

There are relatively few conclusive results on channel sim-
ulation in multi-terminal networks where possibly randomized
functions of the inputs need to be computed. A natural general-
ization of the point-to-point network to a multi-terminal setting
is the cascade network [33], [34]. Satpathy and Cuff [33]
considered a cascade network under a secrecy requirement
and obtained the optimal trade-off between communication
and common randomness rates. Vellambi et al. [34] obtained
the optimal rates for specific settings, e.g., when the communi-
cation topology matches the coordination structure. Empirical
coordination in multi-terminal networks has been studied in
[1], [35], and [36].

In this paper, we study multiple access channel simulation
(randomized function computation) over a multiple access
network of noiseless links. In particular, there are two encoders
who share noiseless communication links with a decoder –
see Figure 1. The two encoders and the decoder observe i.i.d.

copies of the sources X1 and X2, and the side-information Z ,
respectively, that are generated according to a given distribu-
tion qX1X2Z . Each encoder has access to a resource of pairwise
shared randomness with the decoder. There is another resource
of pairwise shared randomness between the encoders. The
three pairwise shared randomness resources are independent
of each other and also jointly independent of the sources and
side information. In addition, the encoders and the decoder
may privately randomize. The encoders transmit messages
through noiseless links to the decoder, whose output together
with the input sources and decoder side-information should be
approximately i.i.d. with qX1X2ZY .

The work which is closest to ours is by
Haddadpour et al. [37, Sec. IV], who studied simulation
of a multiple-access channel from another multiple-access
channel, a more general resource than the multiple-access
network of noiseless links considered here. The main
difference is the presence of shared randomness between
the encoders, i.e., S0, in our model. Haddadpour et al. [37]
obtained an inner bound to the rate-region for their setting.
In this work, we investigate the role of this additional shared
randomness resource and specifically ask the question: Can
this additional pairwise shared randomness resource between
the encoders (that is not available to the decoder) strictly
improve the communication rate requirements for channel
simulation? We answer this question in the affirmative. This
complements the results of [5] and [37] which established
that shared randomness between encoder(s) and decoder is
a useful resource for channel simulation. The configuration
of a shared randomness resource between the encoders is
reminiscent of the setting of multiple access channels with
partially cooperating encoders [38] – see also [39], [40].
However, in the present setting, the encoders are not allowed
to cooperate after observing the sources.

The problem of finding the optimal communication rates
for computing possibly randomized functions at the decoder in
this multiple-access network of noiseless links remains largely
open even for the case of independent sources. Sefidgaran
and Tchamkerten [31] determined the optimal communication
rates for computing deterministic functions2 when the sources
at the encoders are conditionally independent given the side-
information at the decoder, i.e., I(X1; X2|Z) = 0. Note
that Sefidgaran and Tchamkerten [31] in fact studied a more
general setting consisting of multiple terminals over a rooted
multi-level directed tree, where the multiple-access network of
noiseless links is a special case. Atif et al. [41] studied mul-
tiple access channel simulation in the presence of three-way
common randomness instead of pairwise shared randomness as
above and obtained an achievable inner bound. Atif et al. [42]
obtained a similar inner bound in the quantum information-
theoretic setting. After the submission of this work, the authors
learnt about a concurrent work by Atif et al. [43], which,
like [37], considered pairwise shared randomness between
each encoder and the decoder (i.e., no encoder shared
randomness), and derived inner and outer bounds on the

2It turns out that shared randomness does not aid in deterministic function
computation – see Remark 1.
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rate region. Achievable schemes using algebraic-structured
codes exploiting the specific structure of the function to
be computed were further explored by Krithivasan and
Pradhan [44] and Atif and Pradhan [45], where the latter
considered the quantum setting, in the spirit of Körner and
Marton [17].

Main Contributions: We analyze the role of pairwise shared
randomness in multiple-access channel simulation and estab-
lish that the presence of encoder shared randomness can
strictly improve the communication rates required.

• First, for the case when the encoder shared randomness
is absent, we obtain the optimal trade-off between the
communication rates and one of the two remaining shared
randomness rates (under sufficiently large other shared
randomness rate) when I(X1; X2|Z) = 0 (Theorem 3).
This recovers the results on point-to-point channel sim-
ulation [5], and also shows that the inner bound of
Haddadpour et al. [37, Th. 3] is tight for the special case
under consideration. When specialized to deterministic
function computation, our Theorem 3 also recovers the
result of Sefidgaran and Tchamkerten [31] restricted to
multiple-access network of noiseless links. However, the
techniques used there do not readily generalize to ran-
domized function computation (see the discussion below
Theorem 3).

• Next, we explicitly compute the communication rate
regions for an example both with and without the encoder
shared randomness and show that its presence strictly
reduces the communication rates required for coordina-
tion (see Example 1 and Section V-A).

• We also derive general inner and outer bounds on
the rate region with all the three pairwise shared ran-
domness resources present (Theorems 4, 5, and 6).
Our inner bound proofs are mostly in the spirit of
Haddadpour et al. [37, Th. 3].

The remainder of this paper is organized as follows.
We present our system model in Section II, and give the results
for the case when the encoder shared randomness is absent in
Section III. In Section IV, we show through an example that
the presence of encoder shared randomness can lead to a strict
improvement of the communication rate region. General inner
and outer bounds on the rate region are presented in Section V.
The proofs of our main results are given in Section VI.

II. SYSTEM MODEL

We study the problem of strong coordination of signals in a
three-node multiple-access network. There are two encoders
with inputs Xn

1 and Xn
2 , respectively, and a decoder with

side-information Zn, where (X1i, X2i, Zi), i = 1, . . . , n, are
independent and identically distributed (i.i.d.) with distribution
qX1X2Z , with X1, X2, and Z taking values in finite alphabets
X1,X2, and Z , respectively. For j = 1, 2, encoder j and
the decoder have access to a pairwise shared randomness
Sj uniformly distributed on [1 : 2nR0j ]. There is another
pairwise shared randomness S0 between the two encoders
that is uniformly distributed on [1 : 2nR00 ]. The random
variables S0, S1 and S2 are independent and also jointly

independent of (Xn
1 , Xn

2 , Zn). Encoder j ∈ {1, 2} observes
Xn

j and shared randomness (S0, Sj), and sends a message
Mj ∈ [1 : 2nRj ] over a noiseless communication link to
the decoder. The decoder observes M1, M2, in addition to the
shared randomness S1, S2, and side-information Zn. The goal
is to output Y n (where Yi, i = 1, . . . , n, takes values in a finite
alphabet Y) which along with the input sources and decoder
side-information is approximately distributed according to
q
(n)
X1X2ZY (xn

1 , xn
2 , zn, yn) :=

∏n
i=1 qX1X2ZY (x1i, x2i, zi, yi)

(see Figure 1).
Definition 1: A (2nR1 , 2nR2 , 2nR00 , 2nR01 , 2nR02 , n) code

consists of two randomized encoders pE1(m1|s0, s1, x
n
1 )

and pE2(m2|s0, s2, x
n
2 ) and a randomized decoder

pD(yn|s1, s2, m1, m2, z
n), where s0 ∈ [1 : 2nR00 ] and

sj ∈ [1 : 2nR0j ], mj ∈ [1 : 2nRj ], j = 1, 2.
The joint distribution of (S0, S1, S2, Xn

1 , Xn
2 , Zn, M1,

M2, Y n) and the resulting induced joint distribution on
(Xn

1 , Xn
2 , Zn, Y n) are respectively given by

p(s0, s1, s2, x
n
1 , xn

2 , zn, m1, m2, y
n)

=
1

2n(R00+R01+R02)
p(xn

1 , xn
2 , zn)

2∏
j=1

pEj (mj |s0, sj, x
n
j )

× pD(yn|s1, s2, m1, m2, z
n),

and

pind(xn
1 , xn

2 , zn, yn)

=
∑

s0,s1,s2,m1,m2

p(s0, s1, s2, x
n
1 , xn

2 , zn, m1, m2, y
n).

Recall that the total variation between two p.m.f.’s pX and
qX on the same alphabet X is defined as

||pX − qX ||1 � 1
2

∑
x∈X

|pX(x) − qX(x)|.

Definition 2: A rate tuple (R1, R2, R00, R01, R02) is said
to be achievable for a distribution qX1X2ZY if there exists
a sequence of (2nR1 , 2nR2 , 2R00 , 2nR01 , 2nR02 , n) codes such
that

lim
n→∞ ||pind

Xn
1 ,Xn

2 ,Zn,Y n − q
(n)
X1X2ZY ||1 = 0, (1)

where q
(n)
X1X2ZY is the product distribution given by

q
(n)
X1X2ZY (xn

1 , xn
2 , zn, yn) :=

n∏
i=1

qX1X2ZY (x1i, x2i, zi, yi).

Remark 1: If qX1X2ZY is such that Y is a deterministic
function of (X1, X2, Z), then the pairwise shared randomness
and the private randomness at the encoders and the decoder do
not have any effect on the communication rates. In fact, more
generally, common randomness available to both the encoders
and the decoder does not help to improve communication rates
in this case.

Definition 3: The rate region RMAC-coord is the closure of
the set of all achievable rate tuples (R1, R2, R00, R01, R02).
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Fig. 2. Strong coordination over a multiple-access network with no encoder
shared randomness. Encoder j ∈ {1, 2} on observing the source Xn

j and
shared randomness Sj sends a message Mj over a noiseless link to the
decoder, which has side-information Zn. Here (X1i, X2i, Zi), i = 1, . . . , n,
are i.i.d. with qX1X2Z . Also (Xn

1 , Xn
2 , Zn), S1, and S2 are mutually

independent. The decoder has to output Y n such that (X1i, X2i, Zi, Yi),
i = 1, . . . , n, are approximately i.i.d. with qX1X2ZY .

Let RMAC-coord, UL-(S0, S1, S2) be the rate region when all the
three pairwise shared randomness are unlimited, i.e.,

RMAC-coord, UL-(S0, S1, S2) = {(R1, R2) : ∃ R00, R01 and R02

s.t. (R1, R2, R00, R01, R02) ∈ RMAC-coord}. (2)

For purposes of comparison, we separately consider a special
case when the encoder shared randomness S0 is absent.
A code, an achievable rate tuple, and the rate region can be
defined analogously. In particular, the code and an achievable
rate tuple can be defined similar to Definitions 1 and 2 by
removing the respective coordinates containing R00 and by
treating S0 = ∅. The rate region RNO-S0

MAC-coord is the closure of
the set of all achievable rate tuples (R1, R2, R01, R02) when
S0 is absent. Let RNO-S0

MAC-coord, UL-S2
be the rate region when the

shared randomness S2 is unlimited, i.e.,

RNO-S0
MAC-coord, UL-S2

= {(R1, R2, R01) : ∃ R02 s.t.

(R1, R2, R01, R02) ∈ RNO-S0
MAC-coord}. (3)

The communication rate region RNO-S0
MAC-coord, UL-(S1, S2)

is given
by {(R1, R2) : ∃ R01 and R02 s.t. (R1, R2, R01, R02) ∈
RNO-S0

MAC-coord}. The communication rate region can be thought
of as the trade-off between the communication rates R1 and
R2 under sufficiently large pairwise shared randomness rates
R01 and R02.

III. RATE REGION WITH NO ENCODER

SHARED RANDOMNESS

In this section, we present our results for the special
case when the encoder shared randomness S0 is absent (see
Figure 2). Our main result here is a complete characterization
of the rate region RNO-S0

MAC-coord, UL-S2
when the sources are

conditionally independent given the side-information. We first
present an inner bound to the rate region RNO-S0

MAC-coord that
follows from Haddadpour et al. [37, Th. 3] which studies
multiple-access channel simulation using another multiple-
access channel as a resource (instead of a multiple-access
network of noiseless links as in this work).

Theorem 1 (Inner Bound With No Encoder Shared
Randomness): Given a p.m.f. qX1X2ZY , the rate tuple
(R1, R2, R01, R02) is in RNO-S0

MAC-coord if

R1 ≥ I(U1; X1|U2, Z, T )
R2 ≥ I(U2; X2|U1, Z, T )

R1 + R2 ≥ I(U1, U2; X1, X2|Z, T )
R1 + R01 ≥ I(U1; X1, X2, Y |Z, T )

− I(U1; U2|Z, T )
R2 + R02 ≥ I(U2; X1, X2, Y |Z, T )

− I(U1; U2|Z, T )
R1 + R2 + R01 ≥ I(U1; X1, X2, Y |Z, T )

+ I(U2; X2|U1, Z, T )
R1 + R2 + R02 ≥ I(U2; X1, X2, Y |Z, T )

+ I(U1; X1|U2, Z, T )
R1 + R2 + R01 + R02 ≥ I(U1, U2; X1, X2, Y |Z, T ),

for some p.m.f.

p(x1,x2, z, t, u1, u2, y) =
p(x1, x2, z)p(t)p(u1|x1, t)p(u2|x2, t)p(y|u1, u2, z, t)

(4)

such that∑
u1,u2

p(x1, x2, z, u1, u2, y|t) = q(x1, x2, z, y), for all t.

Remark 2: The inner bound in Theorem 1 without side-
information Z follows as a corollary of Haddadpour et al.
[37, Th. 3]. In particular, let the resource mutiple access
channel in [37, Th. 3] consists of two independent channels
which can be converted to two noiseless links by operating
at the rates of respective channel capacities. The details are
analogous to how the inner bound of point-to-point channel
simulation using a noiseless link [5] can be recovered from
that of point-to-point channel simulation using another channel
[37, Th. 1] (see [37, Remark 2]). However, for completeness,
we present a proof of Theorem 1 incorporating the side-
information Z with minor differences to that of [37, Th. 3]
in Appendix A.

The intuition behind the auxiliary random variables U1 and
U2 is analogous to the auxiliary random variable in the point-
to-point channel simulation setting [5], [6]. In particular,
U1 and U2 may be thought of as quantized versions of the
observations X1 and X2 respectively (with respect to the cor-
responding shared random variables). The Markov conditions
on U1 and U2 in (4) arises naturally due to the information
structure of the problem. We note that the inner bound in
Theorem 1 with Z = ∅ also appears in the concurrent work
by Atif et al. [43, Th. 1]. We now provide an outer bound to
the region RNO-S0

MAC-coord.
Theorem 2 (Outer Bound With No Encoder Shared

Randomness): Given a p.m.f. qX1X2ZY , any rate tuple
(R1, R2, R01, R02) in RNO-S0

MAC-coord satisfies, for every � ∈ (0, 1
4 ],

R1 ≥ max{I(U1; X1|Z, T )
I(U1; X1|U2, X2, Z, T )}

R2 ≥ max{I(U2; X2|Z, T )
I(U2; X2|U1, X1, Z, T )}
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R1 + R2 ≥ I(U1, U2; X1, X2|Z, T )
R1 + R01 ≥ I(U1; X1, X2, Y |Z, T )−g(�)
R2 + R02 ≥ I(U2; X1, X2, Y |Z, T )−g(�)

R1 + R2 + R01 + R02 ≥ I(U1, U2; X1, X2, Y |Z, T )−g(�),

with g(�) = 2
√

�
(
Hq(X1, X2, Y, Z) + log (|X1||X2||Y||Z|)

�

)
(which tends to 0 as � → 0), for some p.m.f.

p(x1,x2, z, t, u1, u2, y) =
p(x1, x2, z)p(t)p(u1, u2|x1, x2, t)p(y|u1, u2, z, t)

such that

p(u1|x1, x2, z, t) = p(u1|x1, t),
p(u2|x1, x2, z, t) = p(u2|x2, t),

||p(x1, x2, y, z|t) − q(x1, x2, y, z)||1≤ � for all t.

When the random variables X1 and X2 are conditionally
independent given Z , and the shared randomness rate R02 is
unlimited, we can show that the inner bound of Theorem 1 is
tight by obtaining an outer bound which is strictly stronger
than that in Theorem 2 along with cardinality bounds on
the auxiliary random variables that allows us to prove the
continuity of the outer bound at � = 0, thereby completely
characterizing the rate region RNO-S0

MAC-coord, UL-S2
.

Theorem 3 (Rate Region - Conditionally Independent
Sources Given the Side Information): Consider a p.m.f.
qX1X2ZY such that the random variables X1 and X2 are
conditionally independent given Z , i.e., I(X1; X2|Z) = 0.
Then the rate region RNO-S0

MAC-coord, UL-S2
is given by the set of

all rate tuples (R1, R2, R01) such that

R1 ≥ I(U1; X1|Z, T )
R2 ≥ I(U2; X2|Z, T )

R1 + R01 ≥ I(U1; X1, Y |X2, Z, T )

for some p.m.f.

p(x1, x2, z, t, u1, u2, y) =
p(z)p(x1|z)p(x2|z)p(t)p(u1|x1, t)p(u2|x2, t)p(y|u1, u2, z, t)

(5)

such that
∑

u1,u2

p(x1, x2, z, u1, u2, y|t) = q(x1, x2, z, y), for all

t, with |U1| ≤ |X1||X2||Y||Z|, |U2| ≤ |U1||X1||X2||Y||Z|, and
|T | ≤ 3.

In Remark 5 (on page 7580), we show that the outer
bound implicit in Theorem 3 is strictly stronger than that
of Theorem 2 (even after assuming its continuity at � =
0). The non-trivial part in the converse of Theorem 3 is
that we single-letterize the distributed protocol in order to
obtain a p.m.f. structure matching that of the inner bound in
Theorem 1, particularly leveraging the conditional indepen-
dence of the sources given the side-information. In general,
obtaining single-letter forms matching the inner bound is
known to be notoriously difficult for distributed source coding
problems [46], [47]. It is interesting to note that for the case
of deterministic function computation when the sources are

conditionally independent given the side-information, the inner
and outer bounds of Sefidgaran and Tchamkerten [31] special-
ized to the two-user multiple-access network of noiseless links
match, analogous to a result of Gastpar [49]. However, for
randomized function computation, the inner and outer bounds
in Theorems 1 and 2 (again after assuming the continuity of
the outer bound at � = 0 for the sake of comparison) do
not match for sources conditionally independent given side-
information and we need a strictly stronger outer bound to
show Theorem 3. A detailed proof of Theorem 3 is given in
Section VI-A.1 (achievability) and Section VI-B.3 (converse).

Remark 3: As mentioned earlier (see Remark 1), when Y
is a deterministic function of (X1, X2, Z), pairwise shared
randomness (or common randomness shared by all users) does
not have any effect on the communication rates. Indeed, the
rate constraints in Theorem 3 involving shared randomness
rates become redundant as we show in Appendix C. We also
show in Appendix C that Theorem 3 reduces to the main
result of Sefidgaran and Tchamkerten [31, Th. 3] specialized
to the two-user multiple-access network of noiseless links,
also reported in [50, Th. 3]. In appendix B, we show that
for deterministic function computation, Theorem 1 reduces to
Theorem 2 of Sefidgaran and Tchamkerten [31] specialized to
the two-user multiple-access network of noiseless links, also
reported in [50, Proposition 1].

Remark 4: Theorem 3 recovers the point-to-point channel
simulation results [5, Th. II.1], [6, Th. 1], [8, Th. 1] (special-
ized to a single round of interaction) when X2 = ∅.

Sefidgaran and Tchamkerten [50] already observed that their
inner bound (and hence, our Theorem 1, which recovers their
inner bound as shown in Appendix B) is not tight, in general.
The deterministic function computation problem of Körner and
Marton [17] illustrates this (see [51, Example 2]). For com-
puting the mod-2 sum of binary X1 and X2 with symmetric
input distribution, Körner and Marton [17] showed that struc-
tured codes can strictly outperform standard random coding
schemes. Achievable schemes using algebraic-structured codes
exploiting the specific structure of the function to be computed
were further explored by Krithivasan and Pradhan [44] and
Atif and Pradhan [45], where the latter considered the quantum
setting.

IV. ENCODER SHARED RANDOMNESS CAN STRICTLY

REDUCE THE COMMUNICATION RATES

In this section, we show that if the encoders share additional
independent randomness (see Figure 1), the communication
rates in some cases can be strictly improved, even if the
additional randomness is not available to the decoder. This is
done via an example for which we first explicitly compute
the communication rate region of Theorem 3 when there
is no shared randomness between the encoders, assuming
sufficiently large pairwise shared randomness rates. Then we
show that a rate pair outside this region is achievable in the
presence of shared randomness between the encoders.

Example 1: Let X1 = (X11, X12) be a vector of two
independent and uniformly distributed binary random vari-
ables. Similarly, let X2 = (X21, X22) be another vector of
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Fig. 3. The communication rate regions for Xk = (Xk1, Xk2), k ∈ {1, 2}
(X11, X12, X21, X22 are mutually independent, uniform binary random
variables) and Y = (X1J , X2J ), where J is uniform on {1, 2} and
independent of (X1, X2). The region is defined by the constraints R1 ≥ 1,
R2 ≥ 1, and R1+R2 ≥ 3 (shown via solid line) when the shared randomness
between each encoder and the decoder are of sufficiently large rates. When
an additional shared randomness is available between the encoders, the region
is defined by the constraints R1 ≥ 1 and R2 ≥ 1 (shown via dotted line)
provided the shared randomness between all the three pairs are of sufficiently
large rates (see Section V-A).

two independent and uniformly distributed binary random
variables independent of X1. Consider simulating a channel
qY |X1X2 with Y = (X1J , X2J), where J is a random variable
uniformly distributed on {1, 2} and independent of (X1, X2).
For simplicity, we let Z = ∅, i.e. there is no side information
at the decoder. Let us assume unlimited rates R01 and R02.

When there is no additional shared randomness between
the encoders, from Theorem 3, the communication rate region
RNO-S0

MAC-coord, UL-(S1, S2)
is given by the set of all rate pairs

(R1, R2) such that

R1 ≥ I(U1; X1|T ), (6)

R2 ≥ I(U2; X2|T ), (7)

for some p.m.f.

p(x1,x2, t, u1, u2, y) =
p(x1)p(x2)p(t)p(u1|x1, t)p(u2|x2, t)p(y|u1, u2, t) (8)

satisfying ∑
u1,u2

p(x1, x2, u1, u2, y|t) = q(x1, x2, y), (9)

for all t. The following proposition (proved at the end of this
section) explicitly characterizes the communication rate region
for this qX1X2Y .

Proposition 1: For the joint distribution qX1X2Y in
Example 1, the communication rate region of Theorem 3 under
sufficiently large shared randomness rates is equal to the region
defined by the constraints R1 ≥ 1, R2 ≥ 1, and R1 +R2 ≥ 3.

Now we show that if there exists an additional source of
shared randomness between the encoders, then the rate pair
(R1, R2) = (1, 1) is achievable (see Figure 3). In particular,
we prove that if this additional shared randomness is of rate
at least 1, then a rate pair (R1, R2) = (1, 1) is achievable
under sufficiently large shared randomness rates R01 and R02.
To see this, notice that both the encoders, using a shared
randomness of rate 1, can sample a sequence W1, W2, · · · , Wn

i.i.d. distributed on {1, 2} such that pW (1) = pW (2) =
0.5 and independent of (Xn

1 , Xn
2 ). Now we invoke Theorem 1

with (Xi, W ) as the input source to the encoder-i, i = 1, 2.

This implies that a rate pair (R1, R2) is achievable under
sufficiently large shared randomness rates R01 and R02 if

R1 ≥ I(U1; X1, W |U2),
R2 ≥ I(U2; X2, W |U1),

R1 + R2 ≥ I(U1, U2; X1, X2, W ),

for some p.m.f.

p(x1,x2, w, u1, u2, y) =
q(x1, x2, w)p(u1|x1, w)p(u2|x2, w)p(y|u1, u2). (10)

It is easy to see that U1 = X1W and U2 = X2W satisfy
the conditions on the structure of the probability distribution
p(x1, x2, w, u1, u2, y). This gives

I(X1W ; X1, W |X2W ) = 1,

I(X2W ; X2, W |X1W ) = 1,

I(X1W , X2W ; X1, X2, W ) = 2,

which imply that a rate pair (1, 1) is achievable, thereby
strictly improving over the rate region without encoder shared
randomness, defined by the constraints R1 ≥ 1, R2 ≥ 1, and
R1 + R2 ≥ 3.

Remark 5: We remark that the outer bound implicit in
Theorem 3 is strictly stronger than that of Theorem 2 (even
after assuming its continuity at � = 0) for the p.m.f. qX1X2ZY

in Example 1. We first observe that that the communication
rate pair (1, 1) is contained in the outer bound given by
Theorem 2 (under unlimited shared randomness rates and
the assumption of continuity at � = 0). To see this, first
notice that the choice of U1 = (X1J , J), U2 = (X2J , J),
where J is a random variable uniformly distributed on {1, 2}
and independent of (X1, X2), satisfies the conditions on the
structure of the p.m.f. in the outer bound of Theorem 2. Now
we evaluate the bounds on communication rates in Theorem 2
for this choice of auxiliary random variables.

max{I(X1J , J ; X1), I(X1J ; X1|X2J , J, X2)} = 1
max{I(X2J , J ; X2), I(X2J ; X2|X1J , J, X1)} = 1

I(X1J , X2J , J ; X1, X2) = 2.

This implies that a rate pair (R1, R2) = (1, 1) is contained in
the outer bound on the communication rate region implied
by Theorem 2 (under sufficiently large shared randomness
rates and the assumption of continuity at � = 0). However,
by Proposition 1, this rate pair lies outside the communication
rate region implied by Theorem 3.

We conclude the section with a proof of Proposition 1.
Proof of Proposition 1: For the achievability, it suffices to

show that the corner points (1, 2) and (2, 1) are in the region
defined by (6) – (9). By symmetry, it is enough to show that
there exists a p.m.f.

p(x1, x2, u1, u2, y) = p(x1, x2)p(u1|x1)p(u2|x2)p(y|u1, u2)

such that
∑

u1,u2

p(x1, x2, u1, u2, y) = q(x1, x2, y),

I(U1; X1) = 2, and I(U2; X2) = 1. It is easy to see
that U1 = X1 and U2 = (J, X2J), where J is a random
variable uniformly distributed on {1, 2} and independent of
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(X1, X2), satisfy the conditions on the structure of the joint
probability distribution p(x1, x2, u1, u2, y). Now I(U1; X1) =
H(X1) = 2 and I(U2; X2) = I(J, X2J ; X2) =
I(X2J ; X2|J) = 1.

For the converse, it suffices to show that for any p.m.f.
p(x1, x2, u1, u2, y) = p(x1, x2)p(u1|x1)p(u2|x2)p(y|u1, u2)
such that

∑
u1,u2

p(x1, x2, u1, u2, y) = q(x1, x2, y), we have

I(U1; X1) ≥ 1, I(U2; X2) ≥ 1, and I(U1; X1) + I(U2;
X2) ≥ 3. Consider the p.m.f. in (8) for a fixed value
of t, i.e.,

p(x1, x2, u1, u2, y)=p(x1)p(x2)p(u1|x1)p(u2|x2)p(y|u1, u2)
(11a)

such that ∑
u1,u2

p(x1, x2, u1, u2, y) = q(x1, x2, y). (11b)

Note that the independence of X1 and X2 along with the
long Markov chain U1 → X1 → X2 → U2 implies the
independence of (U1, X1) and (U2, X2). The following three
cases now arise based on H(X1|U1) and H(X2|U2).

Case 1: H(X1|U1) = 0,
Case 2: H(X2|U2) = 0,
Case 3: H(X1|U1) > 0 and H(X2|U2) > 0.
Case 1 (H(X1|U1) = 0):
We have I(X1; U1) = H(X1) = 2. Now we prove that

I(U2; X2) ≥ 1. We show this by contradiction. Suppose that
I(U2; X2) < 1. Then H(X2|U2) = H(X2) − I(U2; X2) =
2 − I(U2; X2) > 1 and hence there exists a u2 with P (U2 =
u2) > 0 such that pX2|U2=u2 has a support whose size is
larger than 2. Notice that the Markov chain Y → (X1, U2) →
X2 holds because

I(Y ; X2|X1, U2) ≤ I(Y, U1; X2|X1, U2)
=I(U1; X2|X1, U2) + I(Y ; X2|U1, U2, X1)
≤I(U1, X1; U2, X2)+ I(Y ; X1, X2|U1, U2)
= 0,

where the last equality follows because (U1, X1) is indepen-
dent of (U2, X2) and the Markov chain Y → (U1, U2) →
(X1, X2) holds.

Suppose pX2|U2=u2 has the support which is a superset
of {(0, 0), (1, 0), (0, 1)}. Consider the induced distribution
pY |X1=(0,1),U2=u2 . This is well-defined because P (X1 =
(0, 1), U2 = u2) > 0 as X1 is independent of U2 and P (X1 =
(0, 1)), P (U2 = u2) > 0. Since P (X2 = (0, 1)|X1 =
(0, 1), U2 = u2) = P (X2 = (0, 1)|U2 = u2) > 0 and
Y → (X1, U2) → X2, we have P (Y = (1, 0)|X1 =
(0, 1), U2 = u2) = P (Y = (0, 1)|X1 = (0, 1), U2 =
u2) = 0. Since P (X2 = (1, 0)|X1 = (0, 1), U2 = u2) =
P (X2 = (1, 0)|U2 = u2) > 0 and Y → (X1, U2) → X2,
we have P (Y = (1, 1)|X1 = (0, 1), U2 = u2) = P (Y =
(0, 0)|X1 = (0, 1), U2 = u2) = 0. This is a contradiction
since pY |X1=(0,1),U2=u2 has to be a probability distribution.

Suppose pX2|U2=u2 has the support which is a super-
set of {(0, 0), (1, 1), (0, 1)}. Since P (X2 = (0, 0)|X1 =
(0, 0), U2 = u2) = P (X2 = (0, 0)|U2 = u2) > 0 and

Y → (X1, U2) → X2, we have P (Y = (1, 0)|X1 =
(0, 0), U2 = u2) = P (Y = (0, 1)|X1 = (0, 0), U2 = u2) =
P (Y = (1, 1)|X1 = (0, 0), U2 = u2) = 0. Since P (X2 =
(1, 1)|X1 = (0, 0), U2 = u2) = P (X2 = (1, 1)|U2 = u2) > 0
and Y → (X1, U2) → X2, we have P (Y = (0, 0)|
X1 = (0, 0), U2 = u2) = 0. This is a contradiction since
pY |X1=(0,0),U2=u2 is a probability distribution.

The other supports {(1, 1), (0, 1), (1, 0)} and {(0, 0), (1, 1),
(1, 0)} can be analysed in a similar manner to arrive at a
contradiction. Hence, I(U2; X2) ≥ 1.

Case 2 (H(X2|U2) = 0):
By symmetry, the analysis for this case is similar to that of

Case 1.
Case 3 (H(X1|U1) > 0 and H(X2|U2) > 0):
We prove the following claim in Appendix D.
Claim 1: When H(X1|U1) > 0 and H(X2|U2) > 0, there

exists a k ∈ {1, 2} such that for all u1 and u2 with P (U1 =
u1) > 0, P (U2 = u2) > 0, we have H(X1k|U1 = u1) = 0
and H(X2k|U2 = u2) = 0.

Claim 1 roughly states that, under Case 3, U1 and U2 always
reveal the kth components of X1 and X2, respectively, for
a fixed k ∈ {1, 2}. Let us assume k = 1 without loss of
generality, i.e., Ui conveys atleast Xi1 losslessly, for i = 1, 2.
Let Ai be the event “Ui conveys both Xi1 and Xi2 losslessly”,
i.e., for i = 1, 2,

Ai =
⋃

ui:H(Xi1|Ui=ui)=H(Xi2|Ui=ui)=0

(Ui = ui). (12)

Let, for i = 1, 2,

pi := P (Ai) =
∑
ui:

H(Xi1|Ui=ui)=H(Xi2|Ui=ui)=0

P (Ui = ui).

For i = 1, 2, it follows that Ac
i is the event “Ui conveys only

Xi1 losslessly” from Claim 1 along with our assumption that
k = 1. Now, in view of the independence of (U1, X1) and
(U2, X2), it follows that 1 − p1p2 = 1 − P (A1 ∩ A2) =
P (Ac

1 ∪Ac
2). Notice that this event Ac

1 ∪Ac
2 must be a subset

of the event (J = 1), otherwise the correctness condition (11b)
is violated. Thus we have

1 − p1p2 ≤ P (J = 1) = 0.5. (13)

Also, we have

I(U1; X1)
= H(X1) − H(X1|U1)

= 2 −
∑
u1

P (U1 = u1)H(X1|U1 = u1)

(a)
= 2 −

∑
u1:

H(X11|U1=u1)=0,
H(X12|U1=u1)>0

P (U1 = u1)H(X1|U1 = u1)

−
∑
u1:

H(X11|U1=u1)=0,
H(X12|U1=u1)=0

P (U1 = u1)H(X1|U1 = u1)

≥ 2 −
∑
u1:

H(X11|U1=u1)=0,
H(X12|U1=u1)>0

P (U1 = u1)H(X12|U1 = u1)

≥ 2 − (1 − p1)
= 1 + p1, (14)
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where (a) follows from Claim 1 along with our assumption
that k = 1, since Ui reveals atleast Xi1 losslessly for i = 1, 2.
Similarly, we have I(U2; X2) ≥ 1 + p2. From (13), we have
p1p2 ≥ 0.5. Now since

min
p1,p2:

0≤p1,p2≤1 and p1p2≥0.5

p1 + p2 > 1, (15)

we have I(U1; X1) + I(U2; X2) ≥ 2 + p1 + p2 ≥ 3. This
proves that the communication rate region is equal to the
region defined by the constraints R1 ≥ 1, R2 ≥ 1, and
R1 + R2 ≥ 3. �

V. INNER AND OUTER BOUNDS ON THE RATE REGION

In this section, we present our results for the general setup
when a pairwise shared randomness of limited rate R00 is
present between the encoders (see Figure 1). In addition, for
Example 1, we will show that the (achievable) rate region
defined by R1 ≥ 1, R2 ≥ 1 is indeed optimal with suffi-
ciently large pairwise shared randomness rates (all three pairs).
We will also exploit common components [52] between the
two sources, i.e. random variables X0 such that there exist
deterministic functions f1 and f2 with

X0 = f1(X1) = f2(X2) a.s. (16)

The following theorem provides an inner bound to the region
RMAC-coord.

Theorem 4 (Inner Bound With Encoder Shared
Randomness): Given a p.m.f. qX1X2ZY , the rate tuple
(R1, R2, R00, R01, R02) is in RMAC-coord if

R00 ≥ H(U0|X0, T ) (17)

R1 ≥ I(U1; X1, U0|U2, Z, T ) (18)

R2 ≥ I(U2; X2, U0|U1, Z, T ) (19)

R1 + R2 ≥ I(U1, U2; X1, X2, U0|Z, T ) (20)

R1 + R01 ≥ I(U1; X1, X2, U0, Y |Z, T )
− I(U1; U2|Z, T ) (21)

R2 + R02 ≥ I(U2; X1, X2, U0, Y |Z, T )
− I(U1; U2|Z, T ) (22)

R1 + R2 + R01 ≥ I(U1; X1, X2, U0, Y |Z, T )
+ I(U2; X2, U0|U1, Z, T ) (23)

R1 + R2 + R02 ≥ I(U2; X1, X2, U0, Y |Z, T )
+ I(U1; X1, U0|U2, Z, T ) (24)

R1 + R2 + R01 + R02 ≥ I(U1, U2; X1, X2, U0, Y |Z, T ),
(25)

for some p.m.f.

p(x1,x2, z, t, u0, u1, u2, y) =
p(x1, x2, z)p(t)p(u0|x0, t)p(u1|x1, u0, t)

× p(u2|x2, u0, t)p(y|u1, u2, z, t)

such that∑
u0,u1,u2

p(x1, x2, u0, u1, u2, y, z|t) = q(x1, x2, z, y), for all t.

The main idea behind the proof is to make use of the
shared randomness between the encoders in order to simulate
a common description of Xn

0 , viz. Un
0 at both the encoders

approximately distributed according to q
(n)
Un

0 |Xn
0
(un

0 |xn
0 ) :=∏n

i=1 pU0|X0(u0i|x0i). Then we invoke Theorem 1 with Xj

replaced by (Xj , U0) for j ∈ {1, 2}. A detailed proof is given
in Section VI-A.2.

We now provide an outer bound to the region RMAC-coord.
Theorem 5 (Outer Bound With Encoder Shared Random-

ness): Given a p.m.f. qX1X2ZY , any rate tuple (R1, R2,
R00, R01, R02) in RMAC-coord satisfies, for every
� ∈ (0, 1

4 ],

R1 ≥ max{I(U1; X1|U0, Z, T )
I(U1; X1|U0, U2, X2, Z, T )}

(26)

R2 ≥ max{I(U2; X2|U0, Z, T )
I(U2; X2|U0, U1, X1, Z, T )}

(27)

R1 + R2 ≥ I(U1, U2; X1, X2|U0, Z, T )
(28)

R1 + R01 ≥ I(U1; X1, X2, Y |Z, T )−g(�)
(29)

R2 + R02 ≥ I(U2; X1, X2, Y |Z, T )−g(�)
(30)

R00 + R1 + R01 ≥ I(U0, U1; X1, X2, Y |Z, T )−g(�)
(31)

R00 + R2 + R02 ≥ I(U0, U2; X1, X2, Y |Z, T )−g(�)
(32)

R1 + R2 + R01 + R02 ≥ I(U1, U2; X1, X2, Y |Z, T )−g(�)
(33)

R00 + R1 + R2 + R01+R02 + g(�)
≥ I(U0, U1, U2; X1, X2, Y |Z, T )

(34)

with g(�) = 2
√

�
(
Hq(X1, X2, Y, Z) + log (|X1||X2||Y||Z|)

�

)
(which tends to 0 as � → 0), for some p.m.f.

p(x1, x2, z, t, u0, u1, u2, y) =
p(x1, x2, z)p(t)p(u0|t)p(u1, u2|x1, x2, u0, t)p(y|u1, u2, z, t)

(35)

such that

p(u1|x1, x2, u0, z, t) = p(u1|x1, u0, t) (36)

p(u2|x1, x2, u0, z, t) = p(u2|x2, u0, t) (37)

||p(x1, x2, y, z|t)− q(x1, x2, y, z)||1≤ � for all t. (38)

A detailed proof is given in Section VI-B.1. Once again,
the outer bound in Theorem 5 is only an epsilon rate region,
whose continuity at � = 0 is unknown.

When the random variables X1 and X2 are condition-
ally independent given Z , and the shared randomness rates

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 24,2022 at 09:06:28 UTC from IEEE Xplore.  Restrictions apply. 



KURRI et al.: MULTIPLE ACCESS CHANNEL SIMULATION 7583

(R00, R01, R02) are unlimited, we obtain a potentially stronger
outer bound which is also continuous at � = 0.

Theorem 6 (Outer Bound - Conditionally Independent
Sources Given the Side Information): Consider a p.m.f.
qX1X2ZY such that the random variables X1 and X2 are
conditionally independent given Z , i.e., I(X1; X2|Z) = 0.
Then any rate tuple in RMAC-coord, UL-(S0, S1, S2) satisfies

R1 ≥ I(U0, U1; X1|Z, T )
R2 ≥ I(U0, U2; X2|Z, T )

R1 + R2 ≥ I(U0, U1, U2; X1, X2|Z, T )

for some p.m.f.

p(x1, x2, z, t, u0, u1, u2, y) =
p(z)p(x1|z)p(x2|z)p(t)p(u0|t)p(u1|x1, u0, t)p(u2|x2, u0, t)

× p(y|u1, u2, z, t) (39)

such that
∑

u0,u1,u2

p(x1, x2, z, u0, u1, u2, y|t) = q(x1, x2, z, y),

for all t, with |U0| ≤ |X1||X2||Y||Z|, |U1| ≤
|U0||X1||X2||Y||Z|, |U2| ≤ |U0||X1||X2||Y||Z|, and |T | ≤ 3.

Notice that the improvement is in the structure of the p.m.f.
compared to that of Theorem 5. A detailed proof can be found
in Section VI-B.4.

A. Optimal Region for Example 1 With Unlimited Shared
Randomness Between All Three Pairs

Here, we show that in the setting of Example 1, the region
R1 ≥ 1 and R2 ≥ 1 is indeed the optimal rate region (not just
achievable as shown in Section IV) with unlimited pairwise
shared randomness (all three pairs). The achievability can also
be inferred from Theorem 4 with the choice of U0 = J ,
U1 = X1J and U2 = X2J , where J is a random variable
uniformly distributed on {1, 2} and independent of (X1, X2).
To prove the converse, first note that Theorem 6 (with Z = ∅)
implies that any achievable rate pair (R1, R2) must satisfy

R1 ≥ I(U0, U1; X1|T )
R2 ≥ I(U0, U2; X2|T )

R1 + R2 ≥ I(U0, U1, U2; X1, X2|T ),

for some p.m.f.

p(x1,x2, t, u0, u1, u2, y) = p(x1)p(x2)p(t)p(u0|t)
× p(u1|x1, u0, t)p(u2|x2, u0, t)p(y|u1, u2, t)

such that
∑

u0,u1,u2

p(x1, x2, u0, u1, u2, y|t) = q(x1, x2, y), for

all t.
For the converse, it suffices to show that for any p.m.f.

p(x1,x2, u0, u1, u2, y) =
p(x1)p(x2)p(u0)p(u1|x1, u0)p(u2|x2, u0)p(y|u1, u2)

with
∑

u0,u1,u2

p(x1, x2, u0, u1, u2, y) = q(x1, x2, y), we have

I(U0, U1; X1) ≥ 1 and I(U0, U2; X2) ≥ 1. Equivalently, by

marginalizing away U2 and letting (U0, U1) � U , it suffices
to show that for any p.m.f.

p(x1, x2, u, y) = p(x1)p(x2)p(u|x1)p(y|u, x2)

with
∑
u

p(x1, x2, u, y) = q(x1, x2, y), we have I(U ; X1) ≥ 1

(The condition I(U0, U2; X2) ≥ 1 can be shown analogously.).
This can be established by proving that for each U = u such
that H(X1|U = u) > 0, there exists k(u) ∈ {1, 2} such that
H(X1k|U = u) = 0. Indeed this yields

I(U ; X1) = H(X1) − H(X1|U)

= 2 −
∑

u

P (U = u)H(X1|U = u)

= 2 −
∑

u

P (U = u) (H(X1k|U = u)

+H(X1k′ |U = u, X1k))

≥ 2 −
∑

u

P (U = u)(0 + 1)

= 1. (40)

We have the following claim.
Claim 2: When H(X1|U) > 0, for all u with H(X1|U =

u) > 0 there exists a k in {1, 2} such that H(X1k|U = u) = 0.
Proof of Claim 2: We prove this by contradiction. Suppose

H(X1i|U = u) > 0, for i = 1, 2. Then the support of
pX1|U=u has to be a superset of either {(0, 1), (1, 0)} or
{(0, 0), (1, 1)}. However, it turns out that, the support cannot
be a superset of {(0, 0), (1, 1)}. To see this, first notice that
P (X1 = (0, 0)|U = u, X2 = (0, 0)) = P (X1 = (0, 0)|U =
u) > 0, where the equality follows from the independence of
(U, X1) and X2. Similarly, P (X1 = (1, 1)|U = u, X2 =
(0, 0)) > 0. Now since X1J − (U, X2) − X1, we have
P (X1J = 0|U = u, X2 = (0, 0)) = P (X1J = 0|U =
u, X2 = (0, 0), X1 = (1, 1)) = 0, where the last equality
follows from the correctness of the output Y = (X1J , X2J).
Similarly, P (X1J = 1|U = u, X2 = (0, 0)) = P (X1J =
1|U = u, X2 = (0, 0), X1 = (0, 0)) = 0. This is a
contradiction since pY1|U=u,X2=(0,0) has to be a probability
distribution. The only other possibility is that pX1|U=u has
a support that is a superset of {(0, 1), (1, 0)}. Consider the
induced distribution pY |X2=(0,1),U=u. This is well-defined
because P (X2 = (0, 1), U = u) > 0 as X2 is independent
of U and P (X2 = (0, 1)), P (U = u) > 0. Since P (X1 =
(0, 1)|X2 = (0, 1), U = u) = P (X1 = (0, 1)|U = u) > 0
and Y → (X2, U) → X1, we have P (Y = (1, 0)|X2 =
(0, 1), U = u) = P (Y = (0, 1)|X2 = (0, 1), U = u) = 0.
Since P (X1 = (1, 0)|X2 = (0, 1), U = u) = P (X1 =
(1, 0)|U = u) > 0 and Y → (X2, U) → X1, we have P (Y =
(1, 1)|X2 = (0, 1), U = u) = P (Y = (0, 0)|X2 = (0, 1),
U = u) = 0. This is a contradiction since pY |X2=(0,1),U=u

has to be a valid probability distribution. �
This proves that the optimal communication rate region

with unlimited pairwise shared randomness (all three pairs)
RMAC-coord, UL-(S0, S1, S2) is indeed defined by the constraints
R1 ≥ 1 and R2 ≥ 1.
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VI. PROOFS

A. Achievability Proofs

The proof of Theorem 1 is in Appendix A.
1) Achievability Proof of Theorem 3: Proof: We argue

that achievability follows from Theorem 1 by enforcing
the constraint p(x1, x2, z) = p(z)p(x1|z)p(x2|z) along
with unlimited shared randomness rate R02. In this
case, the joint distribution on (X1, X2, Z , T , U1,
U2, Y ) decomposes as p(x1, x2, z, t, u1, u2, y) =
p(z)p(x1|z)p(x2|z)p(t)p(u1|x1, t)p(u2|x2, t)p(y|u1, u2, z, t).
We first write down the inner bound from Theorem 1 for this
case.

R1 ≥ I(U1; X1|U2, Z, T )

= I(U1; X1|Z, T )

R2 ≥ I(U2; X2|U1, Z, T )

= I(U2; X2|Z, T )

R1 + R2 ≥ I(U1, U2; X1, X2|Z, T )

= I(U1; X1|Z, T ) + I(U2; X2|Z, T )

R1 + R01 ≥ I(U1; X1, X2, Y |Z, T )

− I(U1; U2|Z, T )

= I(U1; X1, X2, Y |Z, T )

= I(U1; X1, Y |X2, Z, T )

R2 + R02 ≥ I(U2; X1, X2, Y |Z, T )

− I(U1; U2|Z, T )

= I(U2; X1, X2, Y |Z, T )

= I(U2; X2, Y |X1, Z, T )

R1 + R2 + R01 ≥ I(U1; X1,X2,Y |Z, T )

+I(U2; X2|U1, Z, T )

= I(U1; X1, X2, Y |Z)

+ I(U2; X2|Z, T )

R1 + R2 + R02 ≥ I(U2; X1,X2,Y |Z, T )

+I(U1; X1|U2, Z, T )

= I(U2; X1, X2, Y |Z)

+ I(U1; X1|Z, T )

R1 + R2 + R01 + R02 ≥ I(U1, U2; X1, X2, Y |Z, T ). (41)

Notice that the constraints on R1 + R2, R1 + R2 + R01 and
R1 + R2 + R02 are redundant. This region is an inner bound
to RNO-S0

MAC-coord. Considering only the constraints that exclude
R02 completes the achievability of Theorem 3. �

2) Proof of Theorem 4: Proof: We prove the achiev-
ability for |T | = 1, and the rest of the proof follows by
using time sharing argument similar to that in Theorem 1
(in particular, see the paragraph after Lemma 8). Firstly,
we show that the shared randomness between the encoders
can be harnessed to simulate Un

0 approximately distributed
according to q

(n)
Un

0 |Xn
0
(un

0 |xn
0 ) =

∏n
i=1 pU0|X0(u0i|x0i). The

rate of shared randomness needed here will turn out to
be R00 ≥ H(U0|X0), i.e. the constraint (17) on R00 in
Theorem 4.

Fig. 4. Implications of soft covering [5].

We make use of the following setup from Cuff
[5, Corollary VII.5]. Let Xn

0 be an i.i.d. sequence with
distribution pX0 and pU0|X0pV |U0,X0 be a memoryless chan-
nel. A deterministic encoder f(·) receives both Xn

0 and a
uniformly distributed random variable S0 ∈ [1 : 2nR00 ].
Cuff [5] gave the following sufficient condition on the rate
R00 so that the induced distribution on the channel output in
Figure 4 is i.i.d. in the limit of large n.

Lemma 1: [5, Corollary VII.5] Let pV n be the induced dis-
tribution on the channel output in Figure 4 and qV n be the i.i.d.
output distribution specified by

∑
u0,x0

pX0pU0|X0pV |U0,X0 .
Then if

R ≥ I(X0, U0; V ) − H(X0), (42)

we have

lim
n→∞ ||pV n − qV n ||1 = 0. (43)

For our purposes, we take pV |U0,X0 to be an identity channel
i.e. V = (U0, X0) in Lemma 1. Hence

lim
n→∞ ||pUn

0 ,Xn
0
− qUn

0 ,Xn
0
||1 = 0, (44)

provided that R00 satisfies

R00 ≥ I(X0, U0; X0, U0) − H(X0)
= H(U0|X0). (45)

Suppose if (Xn
1 , Xn

2 , Un
0 ) are generated exactly i.i.d., then

we can invoke Theorem 1 with Xj replaced by (Xj , U0) for
j ∈ {1, 2} and it can be verified that this exactly yields the
eight rate constraints (18)–(25) involving (R1, R2, R01, R02)
in Theorem 4. Here, we show that the same set of rate
constraints suffices even if (Un

0 , Xn
0 ) are approximately i.i.d.

in the sense of (44). All that remains to be shown is that under
the rate constraints in Theorem 4, there exists a sequence
of codes with an induced p.m.f. on (Xn

1 , Xn
2 , Un

0 , Zn, Y n)
such that the total variation distance between this p.m.f.
and the desired i.i.d. p.m.f.

∏
qX1,X2,U0,Z,Y vanishes in the

limit of large blocklength n. This can be argued out as
follows.

If (Xn
1 , Xn

2 , Un
0 ) were exactly i.i.d., by invoking Theorem 1

there exists

p(m1, m2, y
n|xn

1 , xn
2 , un

0 , zn, s1, s2)
:=p(m1|s1, x

n
1 , un

0 )p(m2|s2, x
n
2 , un

0 )p(yn|m1, m2, s1, s2, z
n)

such that

||pXn
1 ,Xn

2 ,Un
0 ,Zn,Y n −

∏
qX1X2U0ZY ||1 ≤ �. (46)
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On the other hand, let p̃(xn
1 , xn

2 , un
0 , zn, s1, s2) be the distrib-

ution in which (Un
0 , Xn

0 ) are approximately i.i.d. in the sense
of (44). Let us define

p̃(xn
1 ,xn

2 , un
0 , zn, s1, s2, m1, m2, y

n)
:=p̃(xn

1 , xn
2 , un

0 , zn, s1, s2)
× p(m1, m2, y

n|xn
1 , xn

2 , un
0 , zn, s1, s2). (47)

Now, the total variation distance of interest can be bounded
using triangle inequality as

||p̃Xn
1 ,Xn

2 ,Un
0 ,Zn,Y n −

∏
qX1X2U0ZY ||1

≤ ||p̃Xn
1 ,Xn

2 ,Un
0 ,Zn,Y n − pXn

1 ,Xn
2 ,Un

0 ,Zn,Y n ||1
+ ||pXn

1 ,Xn
2 ,Un

0 ,Zn,Y n −
∏

qX1X2U0Y ||1
≤ ||p̃Xn

1 ,Xn
2 ,Un

0 ,Zn,Y n − pXn
1 ,Xn

2 ,Un
0 ,Zn,Y n ||1 + �,

(48)

where (48) follows from (46). Next consider the first term on
the RHS of (48).

||p̃Xn
1 ,Xn

2 ,Un
0 ,Zn,Y n − pXn

1 ,Xn
2 ,Un

0 ,Zn,Y n ||1
=

∑
xn
1 ,xn

2 ,un
0 ,

zn,yn

|
∑

m1,m2,
s1,s2

p̃(xn
1 , xn

2 , un
0 , zn, yn, m1, m2, s1, s2)

− p(xn
1 , xn

2 , un
0 , zn, yn, m1, m2, s1, s2)|

(a)

≤
∑

xn
1 ,xn

2 ,un
0 ,zn,

yn,m1,m2,s1,s2

p(yn, m1, m2|xn
1 , xn

2 , un
0 , zn, s1, s2)

2n(R01+R02)

× |p̃(xn
1 , xn

2 , un
0 , zn) − p(xn

1 , xn
2 , un

0 , zn)|
=

∑
xn
1 ,xn

2 ,un
0 ,zn

|p̃(xn
1 , xn

2 , un
0 , zn) − p(xn

1 , xn
2 , un

0 , zn)|

(b)

≤
∑

xn
1 ,xn

2 ,xn
0 ,un

0 ,zn

|p̃(xn
1 , xn

2 , xn
0 , un

0 , zn)−

p(xn
1 , xn

2 , xn
0 , un

0 , zn)|
=

∑
xn
1 ,xn

2 ,xn
0 ,un

0 ,zn

p(xn
1 , xn

2 , xn
0 , zn)|p̃(un

0 |xn
0 ) − p(un

0 |xn
0 )|

=
∑

xn
0 ,un

0

|p̃(xn
0 , un

0 ) − p(xn
0 , un

0 )|

≤ �, (49)

where (a) follows from the triangle inequality and the fact that
S1 and S2 are uniformly distributed on their respective ranges,
(b) follows since X0 is a common function of X1 and X2, and
(49) follows from the statement below (46). From expressions
(48) and (49), we conclude that

||p̃Xn
1 ,Xn

2 ,Un
0 ,Zn,Y n −

∏
qX1,X2,U0,Z,Y ||1 ≤ 2�.

�

B. Converse Proofs

We will show that Theorem 2 is a direct consequence of
Theorem 5, which we prove first.

1) Proof of Theorem 5: Proof: Consider a code that
induces a joint distribution on (Xn

1 , Xn
2 , Zn, Y n) such that

‖pXn
1 ,Xn

2 ,Zn,Y n − q
(n)
X1X2ZY ‖1 < �, . (50)

for � ∈ (0, 1
4 ]. For ease of notation, for a vector An, we write

A∼i � (Ai−1, An
i+1). Also let M[0:2] � (M0, M1, M2) and

S[0:2] � (S0, S1, S2). We quote the following lemmas that
will prove useful in the outer bound.

Lemma 2: [10, Lemma 6] Let pXn be such that ||pXn −
q
(n)
X ||1 ≤ �, where q

(n)
X (xn) =

∏n
i=1 qX(xi), then

n∑
i=1

Ip(Xi; X∼i) ≤ ng1(�), (51)

where g1(�) = 2
√

�
(
H(X) + log |X | + log 1√

�

)
→ 0 as

� → 0.
Lemma 3: [5, Lemma VI.3] Let pXn be such that ||pXn −

q
(n)
X ||1 ≤ �, where q

(n)
X (xn) =

∏n
i=1 qX(xi), then for any RV

T ∈ [1 : n] independent of Xn,

Ip(T ; XT ) ≤ g2(�), (52)

where g2(�) = 4�
(
log |X | + log 1

�

)
→ 0 as � → 0.

Notice that for � ∈ (0, 1
4 ], we have max{g1(�), g2(�)} ≤

g(�) := 2
√

�
(
H(X) + log |X | + 2 log 1√

�

)
. So, we can

replace g1(�) and g2(�) in Lemmas 2 and 3 by g(�), which
also tends to 0 as � → 0. Let us consider the first lower bound
on Rj for j ∈ {1, 2} in (26)–(27).

nRj ≥ H(Mj)
≥ H(Mj|S0, Sj, Z

n)
≥ I(Mj ; Xn

j |S0, Sj , Z
n)

(a)
= I(Mj , Sj ; Xn

j |S0, Z
n)

=
n∑

i=1

I(Mj, Sj ; Xji|Xn
j,i+1, S0, Zi, Z∼i)

(b)
=

n∑
i=1

I(Mj , Sj , X
n
j,i+1, Z∼i; Xji|S0, Zi)

≥
n∑

i=1

I(Mj, Sj , X
n
j,i+1, Z

i−1; Xji|S0, Zi)

(c)

≥
n∑

i=1

I(Uji; Xji|U0i, Zi)

(d)
= nI(UjT ; XjT |U0T , ZT , T )
(e)
= nI(Uj; Xj |U0, Z, T ), (53)

where (a) follows since Sj is independent of (S0, X
n
j , Zn),

(b) follows since (Xji, Zi), i = 1, . . . , n, are jointly i.i.d.
and S0 is independent of (Xn

j , Zn), (c) follows by defin-
ing U0i = S0, U1i = (M1, S1, X

n
1,i+1, Z

i−1) and U2i =
(M2, S2, X

n
2,i+1), (d) follows by introducing a uniform time-

sharing random variable T ∈ [1 : n] that is independent of
everything else, while (e) follows by defining U0 := U0T ,
U1 := U1T , U2 := U2T , X1 := X1T , X2 := X2T , Y := YT
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and Z := ZT . The second lower bound on R1 in (26) is
obtained as follows.

nR1 ≥ H(M1)
≥ H(M1|Xn

2 , S[0:2], Z
n)

≥ I(M1; Xn
1 |Xn

2 , S[0:2], Z
n)

(a)
= I(M[1:2]; Xn

1 |Xn
2 , S[0:2], Z

n)
(b)
= I(M[1:2], S[1:2]; Xn

1 |S0, X
n
2 , Zn)

=
n∑

i=1

I(M[1:2], S[1:2]; X1i|Xn
1,i+1, S0, X

n
2 , Zn)

(c)
=

n∑
i=1

I(M[1:2],S[1:2],X
n
1,i+1,X2,∼i,Z∼i;X1i|S0, X2i,Zi)

≥
n∑

i=1

I(M[1:2],S[1:2],X
n
1,i+1, X

n
2,i+1, Z

i−1;X1i|S0,X2i,Zi)

(d)
=

n∑
i=1

I(U1i, U2i; X1i|U0i, X2i, Zi)

(e)
=

n∑
i=1

I(U1i; X1i|U0i, U2i, X2i, Zi)

= nI(U1T ; X1T |U0T , U2T , X2T , ZT , T )
= nI(U1; X1|U0, U2, X2, Z, T ), (54)

where (a) follows from the Markov chain M2 →
(Xn

2 , S0, S2) → (M1, S1, X
n
1 , Zn), (b) follows since S[1:2]

is independent of (S0, X
n
1 , Xn

2 , Zn), (c) follows since S0 is
independent of (Xn

1 , Xn
2 , Zn) and the fact that (X1i, X2i, Zi),

i = 1, · · · , n are i.i.d., (d) follows from the identifications
U0i = S0, U1i = (M1, S1, X

n
1,i+1, Z

i−1) and U2i =
(M2, S2, X

n
2,i+1), while (e) follows from the Markov chain

U2i → (U0i, X2i) → (X1i, Zi). Similarly, we obtain

nR2 ≥ nI(U2; X2|U0, U1, X1, Z, T ). (55)

We next derive the lower bound on (R1 + R2) in (28).

n(R1 + R2)
≥ H(M[1:2])
≥ H(M[1:2]|S[0:2], Z

n)
≥ I(M[1:2]; Xn

1 , Xn
2 |S[0:2], Z

n)
(a)
= I(M[1:2], S[1:2]; Xn

1 , Xn
2 |S0, Z

n)

=
n∑

i=1

I(M[1:2], S[1:2]; X1i, X2i|Xn
1,i+1, X

n
2,i+1, S0, Z

n)

(b)
=

n∑
i=1

I(M[1:2],S[1:2],X
n
1,i+1,X

n
2,i+1,Z∼i; X1i,X2i|S0, Zi)

≥
n∑

i=1

I(M[1:2],S[1:2],X
n
1,i+1,X

n
2,i+1,Z

i−1; X1i,X2i|S0, Zi)

=
n∑

i=1

I(U1i, U2i; X1i, X2i|U0i, Zi)

= nI(U1T , U2T ; X1T , X2T |U0T , ZT , T )
= nI(U1, U2; X1, X2|U0, Z, T ), (56)

where (a) follows since S[1:2] is independent of
(S0, X

n
1 , Xn

2 , Zn) while (b) follows since (X1i, X2i, Zi),
i = 1, . . . , n, are jointly i.i.d. and S0 is independent
of (Xn

1 , Xn
2 , Zn). We next derive the lower bound on

(Rj + R0j) for j ∈ {1, 2} in (29)–(30).

n(Rj + R0j)
≥ H(Mj, Sj)
≥ H(Mj, Sj |Zn)
≥ I(Mj , Sj; Xn

1 , Xn
2 , Y n|Zn)

=
n∑

i=1

I(Mj, Sj ; X1i, X2i, Yi|Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z

n)

=
n∑

i=1

I(Mj, Sj , X
n
1,i+1, X

n
2,i+1, Y

n
i+1, Z∼i; X1i, X2i, Yi|Zi)

−
n∑

i=1

I(Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z∼i; X1i, X2i, Yi|Zi)

(a)

≥
n∑

i=1

I(Mj , Sj, X
n
j,i+1, Z

i−1; X1i, X2i, Yi|Zi) − ng(�)

(b)

≥
n∑

i=1

I(Uji; X1i, X2i, Yi|Zi) − ng(�)

= nI(UjT ; X1T , X2T , YT |ZT , T ) − ng(�)
= nI(Uj ; X1, X2, Y |Z, T ) − ng(�), (57)

where (a) follows since

n∑
i=1

I(Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z∼i; X1i, X2i, Yi|Zi)

≤
n∑

i=1

I(X1∼i, X2∼i, Y∼i, Z∼i; X1i, X2i, Yi, Zi)

≤ ng(�) (58)

by (50) and Lemma 2, while (b) follows from the iden-
tifications U1i = (M1, S1, X

n
1,i+1, Z

i−1) and U2i =
(M2, S2, X

n
2,i+1).

We next derive the lower bound on (R00 + Rj + R0j) for
j ∈ {1, 2} in (31)–(32).

n(R00 + Rj + R0j)
≥ H(Mj, S0, Sj)
≥ H(Mj, S0, Sj |Zn)
≥ I(Mj, S0, Sj ; Xn

1 , Xn
2 , Y n|Zn)

=
n∑

i=1

I(Mj , S0, Sj ; X1i, X2i, Yi|Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z

n)

=
n∑

i=1

I(Mj ,S0,Sj ,X
n
1,i+1,X

n
2,i+1,Y

n
i+1,Z∼i; X1i,X2i,Yi|Zi)

−
n∑

i=1

I(Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z∼i; X1i, X2i, Yi|Zi)

(a)

≥
n∑

i=1

I(Mj, S0, Sj, X
n
j,i+1, Z

i−1; X1i, X2i, Yi|Zi) − ng(�)
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(b)

≥
n∑

i=1

I(U0i, Uji; X1i, X2i, Yi|Zi) − ng(�)

= nI(U0T , UjT ; X1T , X2T , YT |ZT , T ) − ng(�)
= nI(U0, Uj; X1, X2, Y |Z, T ) − ng(�), (59)

where (a) follows from (58), while (b) follows from the
identifications U0i = S0, U1i = (M1, S1, X

n
1,i+1, Z

i−1) and
U2i = (M2, S2, X

n
2,i+1). We next derive the lower bound on

(R1 + R2 + R01 + R02) in (33).

n(R1 + R2 + R01 + R02)
≥ H(M[1:2], S[1:2])
≥ H(M[1:2], S[1:2]|Zn)
≥ I(M[1:2], S[1:2]; Xn

1 , Xn
2 , Y n|Zn)

=
n∑

i=1

I(M[1:2], S[1:2]; X1i, X2i, Yi|Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z

n)

=
n∑

i=1

I(M[1:2],S[1:2],X
n
1,i+1,X

n
2,i+1,Y

n
i+1,Z∼i; X1i,X2i,Yi|Zi)

−
n∑

i=1

I(Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z∼i; X1i, X2i, Yi|Zi)

(a)

≥
n∑

i=1

I(M[1:2],S[1:2],X
n
1,i+1,X

n
2,i+1,Z

i−1; X1i,X2i,Yi|Zi)

− ng(�)

=
n∑

i=1

I(U1i, U2i; X1i, X2i, Yi|Zi) − ng(�)

= nI(U1T , U2T ; X1T , X2T , YT |ZT , T )− ng(�)
= nI(U1, U2; X1, X2, Y |Z, T ) − ng(�), (60)

where (a) follows from (58). We finally derive the lower bound
on (R00 + R1 + R2 + R01 + R02) in (34).

n(R00 + R1 + R2 + R01 + R02)
≥ H(M[1:2], S[0:2])
≥ H(M[1:2], S[0:2]|Zn)
≥ I(M[1:2], S[0:2]; Xn

1 , Xn
2 , Y n|Zn)

=
n∑

i=1

I(M[1:2], S[0:2]; X1i, X2i, Yi|Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z

n)

=
n∑

i=1

I(M[1:2],S[0:2],X
n
1,i+1,X

n
2,i+1,Y

n
i+1,Z∼i; X1i,X2i,Yi|Zi)

−
n∑

i=1

I(Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z∼i; X1i, X2i, Yi|Zi)

(a)

≥
n∑

i=1

I(M[1:2],S[0:2],X
n
1,i+1,X

n
2,i+1,Z

i−1; X1i,X2i,Yi|Zi)

− ng(�)

=
n∑

i=1

I(U0i, U1i, U2i; X1i, X2i, Yi|Zi) − ng(�)

= nI(U0T , U1T , U2T ; X1T , X2T , YT |ZT , T )− ng(�)
= nI(U0, U1, U2; X1, X2, Y |Z, T ) − ng(�), (61)

where (a) follows from (58).

We now prove the Markov chains U1i → (X1i, U0i) →
(X2i, Zi), U2i → (X2i, U0i) → (X1i, Zi), (U1i, U2i) →
(X1i, X2i, U0i) → Zi and Yi → (U1i, U2i, Zi) → (X1i,
X2i, U0i). Note that this implies that the joint p.m.f. satisfies
(35)-(37). Recall the auxiliary random variable identifications

U0i = S0,

U1i = (M1, S1, X
n
1,i+1, Z

i−1),
U2i = (M2, S2, X

n
2,i+1).

Let us first show that (U1i, U2i) → (X1i, X2i, U0i) → Zi.

I(U1i, U2i; Zi|X1i, X2i, U0i)

= I(M[1:2], S[1:2], X
n
1,i+1, X

n
2,i+1, Z

i−1; Zi|X1i, X2i, S0)

≤ I(M[1:2], S[1:2], X1∼i, X2∼i, Z
i−1; Zi|X1i, X2i, S0)

= I(S[1:2], X1∼i, X2∼i, Z
i−1; Zi|X1i, X2i, S0)

+ I(M[1:2]; Zi|Xn
1 , Xn

2 , S[0:2], Z
i−1)

(a)
= 0 + 0 = 0, (62)

where in (a), the first term is zero since S[0:2] is independent
of (Xn

1 , Xn
2 , Zn) and (X1i, X2i, Zi), i = 1, . . . , n, are jointly

i.i.d., while the second term is zero because of the Markov
chain M[1:2] → (Xn

1 , Xn
2 , S[0:2]) → Zn.

We now show that U1i → (X1i, U0i) → (X2i, Zi) holds.

I(U1i; X2i, Zi|X1i, U0i)

= I(M1, S1, X
n
1,i+1, Z

i−1; X2i, Zi|X1i, S0)

≤ I(M1, S1, X1∼i, Z
i−1; X2i, Zi|X1i, S0)

= I(S1, X1∼i, Z
i−1; X2i, Zi|X1i, S0)

+ I(M1; X2i, Zi|Xn
1 , S1, Z

i−1, S0)
(a)
= 0 + 0 = 0, (63)

where in (a), the first term is zero since (S0, S1) is independent
of (Xn

1 , Xn
2 , Zn) and (X1i, X2i, Zi), i = 1, . . . , n, are jointly

i.i.d., while the second term is zero because of the Markov
chain M1 → (Xn

1 , S0, S1) → (Xn
2 , Zn). In a similar fashion,

we can show that U2i → (X2i, U0i) → (X1i, Zi) holds
as well. Finally, let us show that Yi → (U1i, U2i, Zi) →
(X1i, X2i, U0i) is a Markov chain as well.

I(Yi; X1i, X2i, U0i|U1i, U2i, Zi)

= I(Yi; X1i, X2i, S0|M[1:2], S[1:2], X
n
1,i+1, X

n
2,i+1, Z

i−1, Zi)

≤ I(Yi, Z
n
i+1; X1i, X2i, S0|M[1:2], S[1:2], X

n
1,i+1, X

n
2,i+1, Z

i)

= I(Zn
i+1; X1i, X2i, S0|M[1:2], S[1:2], X

n
1,i+1, X

n
2,i+1, Z

i)
+ I(Yi; X1i, X2i, S0|M[1:2], S[1:2], X

n
1,i+1, X

n
2,i+1, Z

n)
(a)
= I(Zn

i+1; X1i, X2i, S0|M[1:2], S[1:2], X
n
1,i+1, X

n
2,i+1, Z

i)

≤ I(Zn
i+1; X

i
1, X

i
2, S0|M[1:2], S[1:2], X

n
1,i+1, X

n
2,i+1, Z

i)

≤ I(Zn
i+1; X

i
1, X

i
2, M[1:2], S0|S[1:2], X

n
1,i+1, X

n
2,i+1, Z

i)

= I(Zn
i+1; X

i
1, X

i
2, S0|S[1:2], X

n
1,i+1, X

n
2,i+1, Z

i)

+ I(Zn
i+1; M[1:2]|S[0:2], X

n
1 , Xn

2 , Zi)
(b)
= 0 + 0 = 0,

where (a) follows from the Markov chain Y n →
(M[1:2], S[1:2], Z

n) → (S0, X
n
1 , Xn

2 ), and in (b), the first
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term is zero since S[0:2] is independent of (Xn
1 , Xn

2 , Zn)
and (X1i, X2i, Zi), i = 1, . . . , n, are jointly i.i.d., while the
second term is zero because of the Markov chain M[1:2] →
(Xn

1 , Xn
2 , S[0:2]) → Zn. Note that, for all t ∈ [1 : n],

‖pX1t,X2t,Zt,Yt|T=t − qX1,X2,Z,Y |T=t‖1

(a)

≤ ‖pXn
1 ,Xn

2 ,Zn,Y n − q
(n)
X1,X2,Z,Y ‖1

(b)
< �,

where (a) follows from [5, Lemma V.1] and the fact that T is
independent of all other random variables, while (b) follows
from (71). Therefore,

‖pX1,X2,Z,Y |T=t − qX1,X2,Z,Y |T=t‖1

= ‖pX1T ,X2T ,ZT ,YT |T=t − qX1,X2,Z,Y |T=t‖1

= ‖pX1t,X2t,Zt,Yt|T=t − qX1,X2,Z,Y |T=t‖1

≤ �.

�
2) Proof of Theorem 2: Proof: Note that by

Definitions 2, if (R1, R2, R01, R02) ∈ RNO-S0
MAC-coord, then we

have (R1, R2, 0, R01, R02) ∈ RMAC-coord. In other words,
an outer bound for the case without shared randomness
between the encoders can be obtained by invoking Theorem 5
with R00 = 0. The proof of the implication would be complete
by proving that the resulting outer bound is exactly identical
to Theorem 2.

With R00 = 0, Theorem 5 reduces to the set of
(R1, R2, R01, R02) such that

R1 ≥ max{I(U1; X1|U0, Z, T ),
I(U1; X1|U0, U2, X2, Z, T )}

R2 ≥ max{I(U2; X2|U0, Z, T ),
I(U2; X2|U0, U1, X1, Z, T )}

R1 + R2 ≥ I(U1, U2; X1, X2|U0, Z, T )
R1 + R01 ≥ I(U0, U1; X1, X2, Y |Z, T )
R2 + R02 ≥ I(U0, U2; X1, X2, Y |Z, T )

R1 + R2 + R01 + R02 ≥ I(U0, U1, U2; X1, X2, Y |Z, T ),

for some p.m.f.

p(x1, x2, z, t, u0, u1, u2, y) =
p(x1, x2, z)p(t)p(u0|t)p(u1, u2|x1, x2, u0, t)p(y|u1, u2, z, t)

such that

p(u1|x1, x2, u0, z, t) = p(u1|x1, u0, t)
p(u2|x1, x2, u0, z, t) = p(u2|x2, u0, t)

||p(x1, x2, y, z|t)− q(x1, x2, y, z)||1≤ � for all t.

Let us define U 	
j � (U0, Uj) for j = 1, 2. Using the Markov

chains U0 → T → (X1, X2, Z), Y → (U1, U2, Z, T ) →
(X1, X2, U0), (U1, U2) → (X1, X2, U0, T ) → Z , U1 →
(X1, U0, T ) → (X2, Z), and U2 → (X2, U0, T ) → (X1, Z),
the region can be simplified as the set of (R1, R2, R01, R02)
such that

R1 ≥ max{I(U 	
1; X1|Z, T ),

I(U 	
1; X1|U 	

2, X2, Z, T )}

R2 ≥ max{I(U 	
2; X2|Z, T ),

I(U 	
2; X2|U 	

1, X1, Z, T )}
R1 + R2 ≥ I(U 	

1, U
	
2; X1, X2|Z, T )

R1 + R01 ≥ I(U 	
1; X1, X2, Y |Z, T )

R2 + R02 ≥ I(U 	
2; X1, X2, Y |Z, T )

R1 + R2 + R01 + R02 ≥ I(U 	
1, U

	
2; X1, X2, Y |Z, T ),

for some p.m.f.

p(x1,x2, z, t, u	
1, u

	
2, y) =

p(x1, x2, z)p(t)p(u	
1, u

	
2|x1, x2, t)p(y|u	

1, u
	
2, z, t)

such that

p(u	
1|x1, x2, z, t) = p(u	

1|x1, t)
p(u	

2|x1, x2, z, t) = p(u	
2|x2, t)

||p(x1, x2, y, z|t)− q(x1, x2, y, z)||1 ≤ � for all t.

�
3) Converse Proof of Theorem 3: Proof: We prove the

following lemma later.
Lemma 4: Consider a p.m.f. qX1X2ZY such that the random

variables X1 and X2 are conditionally independent given Z .
Then any rate tuple (R1, R2, R00, R01, R02) in RMAC-coord

satisfies, for every � ∈ (0, 1
4 ],

R1 ≥ I(U1; X1|Z, T ) (64)

R2 ≥ I(U2; X2|Z, T ) (65)

R1 + R01 ≥ I(U1; X1, Y |X2, Z, T ) − g(�)
(66)

R2 + R02 ≥ I(U2; X2, Y |X1, Z, T ) − g(�)
(67)

R1 + R2 + R01 + R02 ≥ I(U1, U2; X1, X2, Y |Z, T ) − g(�),
(68)

with g(�) = 2
√

�
(
Hq(X1, X2, Y, Z) + log (|X1||X2||Y||Z|)

�

)
(which tends to 0 as � → 0), for some p.m.f.

p(x1, x2, z, t, u1, u2, y) =
p(z)p(x1|z)p(x2|z)p(t)p(u1|x1, t)p(u2|x2, t)p(y|u1, u2, z, t)

(69)

such that ||p(x1, x2, y, z|t) − q(x1, x2, y, z)||1 ≤ � for all t.
Notice that Lemma 4 gives an almost matching outer bound

to the inner bound in Theorem 1 for X1 and X2 conditionally
independent given Z (see (41)), in the sense that continuity at
� = 0 is the only difference between them. When the shared
randomness rate R02 is sufficiently large, we can in fact prove
that such a continuity argument holds. We argue this below.

First we prove the following lemma concerning the cardinal-
ity bounds on the auxiliary random variables U1 and U2 under
sufficiently large shared randomness rate R02. Let S� denote
the set of rate tuples (R1, R2, R01) that satisfy, for every � > 0,

R1 ≥ I(U1; X1|Z, T )
R2 ≥ I(U2; X2|Z, T )

R1 + R01 ≥ I(U1; X1, Y |X2, Z, T ) − g(�)
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with g(�) = 2
√

�
(
Hq(X1, X2, Y, Z) + log (|X1||X2||Y||Z|)

�

)
(which tends to 0 as � → 0), for some p.m.f.

p(x1, x2, z, t, u1, u2, y) =
p(z)p(x1|z)p(x2|z)p(t)p(u1|x1, t)p(u2|x2, t)p(y|u1, u2, z, t)

(70)

such that ||p(x1, x2, y, z|t) − q(x1, x2, y, z)||1 ≤ � for all t.
Lemma 5: The size of the auxiliary random variable alpha-

bets in S� can be restricted to:

|U1| ≤ |X1||X2||Y||Z|,
|U2| ≤ |U1||X1||X2||Y||Z|,
|T | ≤ 3.

Proof: See Appendix E. �
From Lemmas 4 and 5, the converse for Theorem 3 follows

using the continuity of total variation distance and mutual
information in the probability simplex along the same lines
as [5, Lemma VI.5] and [8, Lemma 6]. It remains to prove
Lemma 4.

Proof of Lemma 4: Consider a code that induces a joint
distribution on (Xn

1 , Xn
2 , Zn, Y n) such that

‖pXn
1 ,Xn

2 ,Zn,Y n − q
(n)
X1X2ZY ‖1 < �. (71)

Let us first prove the lower bound on Rj for j ∈ {1, 2} in
(64)–(65).

nRj ≥ H(Mj)
≥ H(Mj|Sj , Z

n)
≥ I(Mj; Xn

j |Sj , Z
n)

(a)
= I(Mj , Sj; Xn

j |Zn)

=
n∑

i=1

I(Mj , Sj ; Xji|Xn
j,i+1, Z

n)

(b)
=

n∑
i=1

I(Mj , Sj, Z∼i, X
n
j,i+1; Xji|Zi)

≥
n∑

i=1

I(Mj , Sj , X
n
j,i+1, Z

i−1; Xji|Zi)

(c)

≥
n∑

i=1

I(Uji; Xji|Zi)

(d)
= nI(UjT ; XjT |ZT , T )
(e)
= nI(Uj ; Xj |Z, T ), (72)

where (a) follows since Sj is independent of (Xn
j , Zn),

(b) follows since (Xji, Zi), i = 1, . . . , n, are jointly i.i.d.,
(c) follows by defining U1i = (M1, S1, X

n
1,i+1, Z

i−1) and
U2i = (M2, S2, X

n
2,i+1), (d) follows by introducing a uniform

time-sharing random variable T ∈ [1 : n] that is independent
of everything else, while (e) follows by defining U1 := U1T ,
U2 := U2T , X1 := X1T , X2 := X2T , Y := YT and Z := ZT .

We next derive the lower bound on (R1 + R01) in (66).

n(R1 + R01)
≥ H(M1, S1)
≥ H(M1, S1|Xn

2 , Zn)

≥ I(M1, S1; Xn
1 , Y n|Xn

2 , Zn)

=
n∑

i=1

I(M1, S1; X1i, Yi|Xn
1,i+1, Y

n
i+1, X

n
2 , Zn)

=
n∑

i=1

I(M1, S1, X
n
1,i+1, Y

n
i+1, X2∼i, Z∼i; X1i, Yi|X2i, Zi)

−
n∑

i=1

I(Xn
1,i+1, Y

n
i+1, X2∼i, Z∼i; X1i, Yi|X2i, Zi)

(a)

≥
n∑

i=1

I(M1, S1, X
n
1,i+1, Z

i−1; X1i, Yi|X2i, Zi) − ng(�)

=
n∑

i=1

I(U1i; X1i, Yi|X2i, Zi) − ng(�)

= nI(U1T ; X1T , YT |X2T , ZT , T ) − ng(�)
= nI(U1; X1, Y |X2, Z, T ) − ng(�), (73)

where (a) follows since
n∑

i=1

I(Xn
1,i+1, Y

n
i+1, X2∼i, Z∼i; X1i, Yi|X2i, Zi)

≤
n∑

i=1

I(X1∼i, X2∼i, Y∼i, Z∼i; X1i, X2i, Yi, Zi)

≤ ng(�)

by (71) and Lemma 2. The bound n(R2 + R02) ≥
I(U2; X2, Y |X1, Z, T ) follows in a similar manner.

For the lower bound on (R1 + R2 + R01 + R02) in (68),
we proceed as follows.

n(R1 + R2 + R01 + R02)
≥ H(M[1:2], S[1:2])
≥ H(M[1:2], S[1:2]|Zn)
≥ I(M[1:2], S[1:2]; Xn

1 , Xn
2 , Y n|Zn)

=
n∑

i=1

I(M[1:2], S[1:2]; X1i, X2i, Yi|Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z

n)

=
n∑

i=1

I(M[1:2],S[1:2],X
n
1,i+1,X

n
2,i+1,Y

n
i+1,Z∼i; X1i,X2i,Yi|Zi)

−
n∑

i=1

I(Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z∼i; X1i, X2i, Yi|Zi)

(a)

≥
n∑

i=1

I(M[1:2],S[1:2],X
n
1,i+1,X

n
2,i+1,Z

i−1; X1i,X2i,Yi|Zi)

− ng(�)

=
n∑

i=1

I(U1i, U2i; X1i, X2i, Yi|Zi) − ng(�)

= nI(U1T , U2T ; X1T , X2T , YT |ZT , T )− ng(�)
= nI(U1, U2; X1, X2, Y |Z, T ) − ng(�), (74)

where (a) follows since
n∑

i=1

I(Xn
1,i+1, X

n
2,i+1, Y

n
i+1, Z∼i; X1i, X2i, Yi|Zi)

≤
n∑

i=1

I(X1∼i, X2∼i, Y∼i, Z∼i; X1i, X2i, Yi, Zi)

≤ ng(�)

by (71) and Lemma 2.
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We now prove the Markov chains U1i → X1i → (X2i, Zi),
U2i → X2i → (U1i, X1i, Zi), (U1i, U2i) − (X1i, X2i) − Zi,
and Yi → (U1i, U2i, Zi) → (X1i, X2i). Note that this implies
that the joint p.m.f. satisfies (70). Recall the auxiliary random
variable identifications

U1i = (M1, S1, X
n
1,i+1, Z

i−1), (75)

U2i = (M2, S2, X
n
2,i+1). (76)

Let us first show that (U1i, U2i) → (X1i, X2i) → Zi.

I(U1i, U2i; Zi|X1i, X2i)

= I(M[1:2], S[1:2], X
n
1,i+1, X

n
2,i+1, Z

i−1; Zi|X1i, X2i)

≤ I(M[1:2], S[1:2], X1∼i, X2∼i, Z
i−1; Zi|X1i, X2i)

= I(S[1:2], X1∼i, X2∼i, Z
i−1; Zi|X1i, X2i)

+ I(M[1:2]; Zi|Xn
1 , Xn

2 , S[1:2], Z
i−1)

(a)
= 0 + 0 = 0, (77)

where in (a), the first term is zero since S[1:2] is independent
of (Xn

1 , Xn
2 , Zn) and (X1i, X2i, Zi), i = 1, . . . , n, are jointly

i.i.d., while the second term is zero because of the Markov
chain M[1:2] → (Xn

1 , Xn
2 , S[1:2]) → Zn. We now show that

U1i → X1i → (X2i, Zi) is a Markov chain.

I(U1i; X2i, Zi|X1i)

= I(M1, S1, X
n
1,i+1, Z

i−1; X2i, Zi|X1i)

≤ I(M1, S1, X1∼i, Z
i−1; X2i, Zi|X1i)

= I(S1, X1∼i, Z
i−1; X2i, Zi|X1i)

+ I(M1; X2i, Zi|Xn
1 , S1, Z

i−1)
(a)
= 0 + 0 = 0, (78)

where in (a), the first term is zero since S1 is independent
of (Xn

1 , Xn
2 , Zn) and (X1i, X2i, Zi), i = 1, . . . , n, are jointly

i.i.d., while the second term is zero because of the Markov
chain M1 → (Xn

1 , S1) → (Xn
2 , Zn). Next, we show that

Yi → (U1i, U2i, Zi) → (X1i, X2i) is a Markov chain.

I(Yi; X1i, X2i|U1i, U2i, Zi)

= I(Yi; X1i, X2i|M[1:2], S[1:2], X
n
1,i+1, X

n
2,i+1, Z

i−1, Zi)

≤ I(Yi, Z
n
i+1; X1i, X2i|M[1:2], S[1:2], X

n
1,i+1, X

n
2,i+1, Z

i)

= I(Zn
i+1; X1i, X2i|M[1:2], S[1:2], X

n
1,i+1, X

n
2,i+1, Z

i)

+ I(Yi; X1i, X2i|M[1:2], S[1:2], X
n
1,i+1, X

n
2,i+1, Z

n)
(a)
= I(Zn

i+1; X1i, X2i|M[1:2], S[1:2], X
n
1,i+1, X

n
2,i+1, Z

i)

≤ I(Zn
i+1; X

i
1, X

i
2|M[1:2], S[1:2], X

n
1,i+1, X

n
2,i+1, Z

i)

≤ I(Zn
i+1; X

i
1, X

i
2, M[1:2]|S[1:2], X

n
1,i+1, X

n
2,i+1, Z

i)

= I(Zn
i+1; X

i
1, X

i
2|S[1:2], X

n
1,i+1, X

n
2,i+1, Z

i)

+ I(Zn
i+1; M[1:2]|S[1:2], X

n
1 , Xn

2 , Zi)
(a)
= 0 + 0 = 0,

where (a) follows from the Markov chain Y n →
(M[1:2], S[1:2], Z

n) → (Xn
1 , Xn

2 ) and in (b), the first term
is zero since S[1:2] is independent of (Xn

1 , Xn
2 , Zn) and

(X1i, X2i, Zi), i = 1, . . . , n, are jointly i.i.d., while the

second term is zero because of the Markov chain M[1:2] →
(Xn

1 , Xn
2 , S[1:2]) → Zn.

It remains to prove the Markov chain U2i → X2i →
(U1i, X1i, Zi). Consider the following chain of inequalities.

I(U2i; U1i, X1i, Zi|X2i)

= I(M2, S2, X
n
2,i+1; M1, S1, X

n
1,i, Z

i|X2i)

= I(S2, X
n
2,i+1; M1, S1, X

n
1,i, Z

i|X2i)

+ I(M2; M1, S1, X
n
1,i, Z

i|S2, X
n
2,i)

= I(S2, X
n
2,i+1; S1, X

n
1,i, Z

i|X2i)

+ I(S2, X
n
2,i+1; M1|S1, X

n
1,i, Z

i, X2i)

+ I(M2; S1, X
n
1,i, Z

i|S2, X
n
2,i)

+ I(M2; M1|S1, S2, X
n
1,i, X

n
2,i, Z

i)
(a)

≤ 0 + I(S2, X
n
2,i+1; M1, X

i−1
1 , Zi−1|S1, X

n
1,i, Z

i, X2i)

+ I(M2, X
i−1
2 ; S1, X

n
1,i, Z

i|S2, X
n
2,i)

+ I(M2, X
i−1
2 ; M1|S1, S2, X

n
1,i, X

n
2,i, Z

i)

= I(S2, X
n
2,i+1; X

i−1
1 , Zi−1|S1, X

n
1,i, Z

i, X2i)

+ I(S2, X
n
2,i+1; M1|S1, X

n
1 , Zn, X2i)

+ I(X i−1
2 ; S1, X

n
1,i, Z

i|S2, X
n
2,i)

+ I(M2; S1, X
n
1,i, Z

i|S2, X
n
2 )

+ I(X i−1
2 ; M1|S1, S2, X

n
1,i, X

n
2,i, Z

i)

+ I(M2; M1|S1, S2, X
n
1,i, X

n
2 , Zi)

(b)
= 0+ 0+ 0+ 0+ I(X i−1

2 ; M1|S1, S2, X
n
1,i, X

n
2,i, Z

i)+ 0

≤ I(X i−1
2 ; M1, X

i−1
1 |S1, S2, X

n
1,i, X

n
2,i, Z

i)

= I(X i−1
2 ; X i−1

1 |S1, S2, X
n
1,i, X

n
2,i, Z

i)

+ I(X i−1
2 ; M1|S1, S2, X

n
1 , Xn

2,i, Z
i)

(c)
= I(X i−1

2 ; X i−1
1 |Zi−1)

+ I(X i−1
2 ; M1|S1, S2, X

n
1 , Xn

2,i, Z
i)

(d)
= 0 + 0 = 0, (79)

where the fact that the first term in (a) and the first and
third terms in (b) are zeros, as well as (c), follow since
S[1:2] is independent of (Xn

1 , Xn
2 , Zn) and (X1i, X2i, Zi), i =

1, . . . , n, are jointly i.i.d. The second, fourth and sixth terms
in (b) and the second term in (d) are zeros because of the
Markov chains M1 → (Xn

1 , S1) → (S2, X
n
2 , Zn) and M2 →

(Xn
2 , S2) → (S1, M1, X

n
1 , Zn). The first term in (d) is zero

because (X1i, X2i, Zi), i = 1, . . . , n, are jointly i.i.d. with
qX1X2,Z and I(X1; X2|Z) = 0. Notice that we also have
‖pX1,X2,Z,Y |T=t−qX1,X2,Z,Y |T=t‖1 ≤ � along the same lines
as in the proof of Theorem 5. �

4) Proof of Theorem 6: Proof: We prove the following
lemma later.

Lemma 6: Consider a p.m.f. qX1X2ZY such that the random
variables X1 and X2 are conditionally independent given Z .
Then any rate tuple (R1, R2, R00, R01, R02) in RMAC-coord

satisfies, for every � ∈ (0, 1
4 ],

R1 ≥ I(U0, U1; X1|Z, T )
R2 ≥ I(U0, U2; X2|Z, T )
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R1 + R2 ≥ I(U0, U1, U2; X1, X2|Z, T )
R1 + R01 ≥ I(U1; X1, Y |X2, Z, T )−g(�)
R2 + R02 ≥ I(U2; X2, Y |X1, Z, T )−g(�)

R00 + R1 + R01 ≥ I(U0, U1; X1, Y |X2, Z, T )−g(�)
R00 + R2 + R02 ≥ I(U0, U2; X2, Y |X1, Z, T )−g(�)

R1 + R2 + R01 + R02 ≥ I(U1, U2; X1, X2, Y |Z, T )−g(�)
R00 + R1 + R2+R01 + R02

≥ I(U0, U1, U2; X1, X2, Y |Z, T )−g(�),

with g(�) = 2
√

�
(
Hq(X1, X2, Y, Z) + log (|X1||X2||Y||Z|)

�

)
(which tends to 0 as � → 0), for some p.m.f.

p(x1, x2, z, t, u0, u1, u2, y) = p(z)p(x1|z)p(x2|z)p(t)
× p(u0|t)p(u1|x1, u0, t)p(u2|x2, u0, t)p(y|u1, u2, z, t)

such that ||p(x1, x2, y, z|t) − q(x1, x2, y, z)||1 ≤ � for all t.
Notice that Lemma 6 gives an epsilon rate region, whose

continuity at � = 0 is unknown. When the shared randomness
rates (R00, R01, R02) are sufficiently large, we can in fact
prove that such a continuity argument holds. We argue this
below.

First we prove the following lemma concerning the
cardinality bounds on the auxiliary random variables U0,
U1 and U2 under sufficiently large shared randomness rates
(R00, R01, R02). Let S	

� denote the set of rate pairs (R1, R2)
that satisfy, for every � > 0,

R1 ≥ I(U0, U1; X1|Z, T )
R2 ≥ I(U0, U2; X2|Z, T )

R1 + R2 ≥ I(U0, U1, U2; X1, X2|Z, T )

for some p.m.f.

p(x1, x2, z, t, u0, u1, u2, y) = p(z)p(x1|z)p(x2|z)p(t)
× p(u0|t)p(u1|x1, u0, t)p(u2|x2, u0, t)p(y|u1, u2, z, t)

such that ||p(x1, x2, y, z|t) − q(x1, x2, y, z)||1 ≤ � for all t.
Lemma 7: The size of the auxiliary random variable alpha-

bets in S	
� can be restricted to:

|U0| ≤ |X1||X2||Y||Z|,
|U1| ≤ |U0||X1||X2||Y||Z|,
|U2| ≤ |U0||X1||X2||Y||Z|,
|T | ≤ 3.

Proof: See Appendix F. �
From Lemmas 6 and 7, the outer bound in Theorem 6

follows using the continuity of total variation distance and
mutual information in the probability simplex along the same
lines as [5, Lemma VI.5] and [8, Lemma 6]. It remains to
prove Lemma 6.

Proof of Lemma 6: With the same choice of auxiliary
random variables as in the proof of Theorem 5, i.e., U0i = S0,
U1i = (M1, S1, X

n
1,i+1, Z

i−1), and U2i = (M2, S2, X
n
2,i+1),

we will show that the Markov chain U2 → (X2, U0, T ) →
(U1, X1, Z) holds when X1 → Z → X2. Then in addi-
tion to the Markov chains U0 → T → (X1, X2, Z),

U1 → (X1, U0, T ) → (X2, Z), (U1, U2) → (X1, X2,
U0, T ) → Z and Y → (U1, U2, Z, T ) → (X1, X2, U0),
we note the following simplifications to the rate constraints
in Theorem 5:

R1 ≥ max{I(U1; X1|U0, Z, T ), I(U1; X1|U0, U2, X2, Z, T )}
= max{I(U1; X1|U0, Z, T ), I(U1; X1|U0, Z, T )}
= I(U0, U1; X1|Z, T ),

R2 ≥ max{I(U2; X2|U0, Z, T ), I(U2; X2|U0, U1, X1, Z, T )}
= max{I(U2; X2|U0, Z, T ), I(U2; X2|U0, Z, T )}
= I(U0, U2; X2|Z, T ),

R1 + R2 ≥ I(U1, U2; X1, X2|U0, Z, T )
= I(U0, U1, U2; X1, X2|Z, T ),

R1 + R01 ≥ I(U1; X1, X2, Y |Z, T )
= I(U1; X1, Y |X2, Z, T ),

R2 + R02 ≥ I(U2; X1, X2, Y |Z, T )
= I(U2; X2, Y |X1, Z, T ),

R00 + R1 + R01 ≥ I(U0, U1; X1, X2, Y |Z, T )
= I(U0, U1; X1, Y |X2, Z, T )

R00 + R2 + R02 ≥ I(U0, U2; X1, X2, Y |Z, T )
= I(U0, U2; X2, Y |X1, Z, T ),

R1 + R2 + R01 + R02 ≥ I(U1, U2; X1, X2, Y |Z, T ),
R00 + R1 + R2 + R01+R02

≥ I(U0, U1, U2; X1, X2, Y |Z, T ).

It remains to prove the Markov chain U2i → (X2i, U0i) →
(U1i, X1i, Zi). Recall the choice of auxiliary random variables.

U0i = S0,

U1i = (M1, S1, X
n
1,i+1, Z

i−1),

U2i = (M2, S2, X
n
2,i+1).

Consider the following chain of inequalities.

I(U2i; U1i, X1i, Zi|X2i, U0i)
= I(M2, S2, X

n
2,i+1; M1, S1, X

n
1,i, Z

i|X2i, S0)
= I(S2, X

n
2,i+1; M1, S1, X

n
1,i, Z

i|X2i, S0)
+ I(M2; M1, S1, X

n
1,i, Z

i|S0, S2, X
n
2,i)

= I(S2, X
n
2,i+1; S1, X

n
1,i, Z

i|X2i, S0)
+ I(S2, X

n
2,i+1; M1|S1, X

n
1,i, Z

i, X2i, S0)
+ I(M2; S1, X

n
1,i, Z

i|S0, S2, X
n
2,i)

+ I(M2; M1|S0, S1, S2, X
n
1,i, X

n
2,i, Z

i)
(a)

≤ 0 + I(S2, X
n
2,i+1; M1, X

i−1
1 , Zi−1|S0, S1, X

n
1,i, Z

i, X2i)
+ I(M2, X

i−1
2 ; S1, X

n
1,i, Z

i|S0, S2, X
n
2,i)

+ I(M2, X
i−1
2 ; M1|S0, S1, S2, X

n
1,i, X

n
2,i, Z

i)
= I(S2, X

n
2,i+1; X

i−1
1 , Zi−1|S0, S1, X

n
1,i, Z

i, X2i)
+ I(S2, X

n
2,i+1; M1|S0, S1, X

n
1 , Zn, X2i)

+ I(X i−1
2 ; S1, X

n
1,i, Z

i|S0, S2, X
n
2,i)

+ I(M2; S1, X
n
1,i, Z

i|S0, S2, X
n
2 )

+ I(X i−1
2 ; M1|S0, S1, S2, X

n
1,i, X

n
2,i, Z

i)
+ I(M2; M1|S0, S1, S2, X

n
1,i, X

n
2 , Zi)
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(b)
= 0+ 0+ 0+ 0

+I(X i−1
2 ; M1|S0, S1, S2, X

n
1,i, X

n
2,i, Z

i)+0
≤ I(X i−1

2 ; M1, X
i−1
1 |S0, S1, S2, X

n
1,i, X

n
2,i, Z

i)
= I(X i−1

2 ; X i−1
1 |S0, S1, S2, X

n
1,i, X

n
2,i, Z

i)
+ I(X i−1

2 ; M1|S0, S1, S2, X
n
1 , Xn

2,i, Z
i)

(c)
= I(X i−1

2 ; X i−1
1 |Zi−1)

+ I(X i−1
2 ; M1|S0, S1, S2, X

n
1 , Xn

2,i, Z
i)

(d)
= 0 + 0 = 0, (80)

where the first term in (a), the first and third terms in
(b) are zeros and (c) follows since S[0:2] is independent of
(Xn

1 , Xn
2 , Zn) and (X1i, X2i, Zi), i = 1, . . . , n, are jointly

i.i.d. The second, fourth and sixth terms in (b) and the second
term in (d) are zeros because of the Markov chains M1 →
(Xn

1 , S0, S1) → (S2, X
n
2 , Zn) and M2 → (Xn

2 , S0, S2) →
(S1, M1, X

n
1 , Zn). The first term in (d) is zero because

(X1i, X2i, Zi), i = 1, . . . , n, are jointly i.i.d. with qX1X2,Z

and I(X1; X2|Z) = 0. �

APPENDIX A
PROOF OF THEOREM 1

The proof employs the Output Statistics of Random Bin-
ning (OSRB) framework developed by Yassaee et al. [53].
In the sequel, we use capital letters (like PX ) to denote
random p.m.f.’s (see, e.g., [5], [53]) and lower-case letters
(like pX ) to denote non-random p.m.f.’s. We use pU

A to denote
the uniform distribution over the set A. The notation ≈ for
pmf approximations is adopted from [53] – for two random
pmfs PX and QX on the same alphabet X , we say that
PX

�≈ QX provided E[||PX − QX ||1] ≤ �. For any two
sequences of random p.m.f.’s PX(n) and QX(n) on X (n),
we write PX(n) ≈ QX(n) if limn→∞�‖PX(n)−QX(n)‖1 = 0.
Likewise, we use pX

�≈ qX for two (non-random) p.m.f.’s
provided ||pX − qX ||1 ≤ �. For any two sequences of random
pmfs PXn and QXn on Xn, we write PXn ≈ QXn if
limn→∞ E[||PXn − QXn ||1] = 0. Similarly, we write pXn ≈
qXn for two sequences of (non-random) p.m.f.’s. We also
quote the following results that will prove useful in the proof
of Theorem 1, where the first one is a restatement of the OSRB
result [54, Th. 1].

Theorem 7: [53, Th. 1] Given a discrete memoryless source
(An, Bn

1 , · · · , Bn
L) ∼ i.i.d. with pA,B1,··· ,BL on A×

∏L
j=1 Bi.

For j ∈ [1 : L], let φj : Bn
j → [1 : 2nRj ] be a random

binning in which φj maps each sequence of Bn
j uniformly

and independently to the set [1 : 2nRj ]. Let Kj = φj(Bn
j ), j ∈

{1, · · · , L}. If for each S ⊆ [1 : L], the following constraint∑
t∈S

Rt ≤ H(BS |A) (81)

holds, then we have

lim
n→∞ Eφ1,··· ,φL

⎡
⎣||PAn,K1,··· ,KL − pAn

L∏
j=1

pU
Kj

||1

⎤
⎦ = 0,

(82)

where Eφ1,··· ,φL denotes the expectation over the random
binnings, PAn,K1,··· ,KL is a random p.m.f., and pU

Kj
is the

uniform distribution over [1 : 2nRj ].
Lemma 8: [53, Lemma 4]
1) If PXn ≈ QXn , then PXnPY n|Xn ≈ QXnPY n|Xn . Also

if PXnPY n|Xn ≈ QXnQY n|Xn , then PXn ≈ QXn .
2) If pXnpY n|Xn ≈ qXnqY n|Xn , then there exists a

sequence xn ∈ Xn such that pY n|Xn=xn ≈ qY n|Xn=xn .
3) If PXn ≈ QXn and PXnPY n|Xn ≈ PXnQY n|Xn , then

PXnPY n|Xn ≈ QXnQY n|Xn .

For simplicity, we prove the achievability for |T | = 1. The
proof with the general time-sharing random variable T then
follows using standard time sharing argument outlined below.

Suppose the rate tuples R	 := (R	
1, R

	
2, R

	
01, R

	
02) and

R		 := (R		
1 , R		

2 , R		
01, R

		
02) are achievable for qX1X2ZY ,

i.e., there exist p.m.f.’s p	(x1, x2, z, u1, u2, y) and p		(x1, x2,
z, u1, u2, y) which together with the rate tuples R	 and R		,
respectively, satisfy the constraints in Theorem 1 (with T = ∅).
For each blocklength n, we use the code corresponding to R	

for the first αn (with α ∈ [0, 1], where αn is an integer)
transmissions and use the code corresponding to R		 for the
rest of the transmissions. Let pXn

1 ,Xn
2 ,Zn,Y n be the induced

distribution with this new code. For ease of notation, let D �
(X1, X2, Z, Y ). Note that the induced distribution decomposes
as pDn = pDαn · pDn

αn+1
, where Dn

αn+1 = (Dαn+1, . . . , Dn),
because of the independence of the two segments. Then, the
overall total variation distance of interest with this new code
is given by

‖pDn −
∏

qD‖

= ‖pDαn · pDn
αn+1

− q
(n)
D ‖

=
∑
dn

∣∣∣∣pDαn(dαn)pDn
αn+1

(dn
αn+1)

− q
(αn)
D (dαn)q(αn+1:n)

D (dn
αn+1)

∣∣∣∣ (83)

≤
∑
dn

∣∣∣∣pDαn(dαn)pDn
αn+1

(dn
αn+1)

− pDαn(dαn)q(αn+1:n)
D (dn

αn+1)
∣∣∣∣

+
∑
dn

∣∣∣∣pDαn(dαn)q(αn+1:n)
D (dn

αn+1)

− q
(αn)
D (dαn)q(αn+1:n)

D (dn
αn+1)

∣∣∣∣ (84)

=
∑

dn
αn+1

|pDn
αn+1

(dn
αn+1) − q

(αn+1:n)
D (dn

αn+1)|

+
∑
dnα

|pDαn(dαn) − q
(αn)
D (dαn)|

→ 0 as n → ∞, (85)

where (83) follows by defining q
(αn+1:n)
D (dn

αn+1) =∏n
i=αn+1 qD(di), (84) follows by adding and subtracting

the term pDαn(dαn)q(αn+1:n)
D (dn

αn+1) for each dn inside the
absolute value in (83) and then applying the triangle inequality,
and (85) follows because the codes in each of the segments
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satisfy (1) with the respective blocklengths. So, the rate tuple
αR	 + (1 − α)R		 is achievable. This handles the case of
|T | = 2 with T = {1, 2} and pT (1) = 1 − pT (2) = α. The
generalization to larger alphabets for T follows along similar
lines.

We now follow the standard structure of an achievability
proof via OSRB. This involves defining two protocols, one
each based on random coding and random binning, that induce
a joint distribution on the random variables defined during the
protocols.

A. Random Binning Scheme

Let (Un
1 , Un

2 , Xn
1 , Xn

2 , Zn, Y n) be drawn i.i.d. with the
joint distribution

p(x1, x2, z)p(u1|x1)p(u2|x2)p(y|u1, u2, z)

such that p(x1, x2, z, y) = q(x1, x2, z, y). Now we employ the
following random binning:

• Generate (S1, M1, F1) as three uniform binnings of Un
1

independently, i.e. S1 = φ11(Un
1 ) ∈ [1 : 2nR01 ], M1 =

φ12(Un
1 ) ∈ [1 : 2nR1 ] and F1 = φ13(Un

1 ) ∈ [1 : 2nR̃1 ].
Here, S1 stands for the pairwise shared randomness
between the first encoder and the decoder, M1 stands
for a message communicated over the noiseless link,
while F1 is additional shared randomness assumed in
OSRB to be eliminated later without disturbing the i.i.d.
distribution.

• Likewise, generate (S2, M2, F2) as three uniform bin-
nings of Un

2 independently, i.e. S2 = φ21(Un
2 ) ∈ [1 :

2nR02 ], M2 = φ22(Un
2 ) ∈ [1 : 2nR2 ] and F2 =

φ23(Un
2 ) ∈ [1 : 2nR̃2 ].

The receiver uses a Slepian-Wolf decoder to estimate (ûn
1 , ûn

2 )
from (s1, s2, f1, f2, m1, m2, z

n). The corresponding random
p.m.f. induced is (the randomness is due to the binning)

P (xn
1 , xn

2 , zn, yn, un
1 , un

2 , s1, f1, m1, s2, f2, m2, û
n
1 , ûn

2 )
= p(xn

1 , xn
2 , zn)p(un

1 |xn
1 )p(un

2 |xn
2 )p(yn|un

1 , un
2 , zn)

× P (s1, f1, m1|un
1 )P (s2, f2, m2|un

2 )

× PSW (ûn
1 , ûn

2 |s1, f1, m1, s2, f2, m2, z
n) (86)

= p(xn
1 , xn

2 , zn)P (s1, f1, m1, u
n
1 |xn

1 )P (s2, f2, m2, u
n
2 |xn

2 )

× PSW (ûn
1 , ûn

2 |s1, f1, m1, s2, f2, m2, z
n)p(yn|un

1 , un
2 , zn)

= p(xn
1 , xn

2 , zn)P (s1, f1|xn
1 )P (un

1 |s1, f1, x
n
1 )P (m1|un

1 )
× P (s2, f2|xn

2 )P (un
2 |s2, f2, x

n
2 )P (m2|un

2 )

× PSW (ûn
1 , ûn

2 |s1, f1, m1, s2, f2, m2, z
n)p(yn|un

1 , un
2 , zn)

= P (xn
1 , xn

2 , zn, s1, s2, f1, f2)P (un
1 |s1, f1, x

n
1 )P (m1|un

1 )
× P (un

2 |s2, f2, x
n
2 )P (m2|un

2 )

× PSW (ûn
1 , ûn

2 |s1, f1, m1, s2, f2, m2, z
n)p(yn|un

1 , un
2 , zn).

(87)

where (86) uses the Markov chains (U1, U2) → (X1, X2) →
Z , U1 → X1 → X2 → U2, Y → (U1, U2, Z) → (X1, X2),
and the binning construction.

B. Random Coding Scheme

We assume that additional shared randomness Fj of
rate R̃j , j ∈ {1, 2} are available between the respective
encoders and the decoder in the main problem. Encoder
j ∈ {1, 2}, knowing (sj , fj , x

n
j ), generates un

j according
to the p.m.f. P (un

j |sj , fj , x
n
j ) (from the previous protocol)

and sends the bin index of un
j corresponding to the binning

φj2 in the previous protocol over the noiseless link to the
decoder. The decoder obtains (s1, s2, f1, f2, m1, m2, z

n), and
employs the Slepian-Wolf decoder from the previous proto-
col, i.e. PSW (ûn

1 , ûn
2 |s1, f1, m1, s2, f2, m2, z

n), to estimate
(un

1 , un
2 ). Then it constructs yn according to the distribu-

tion pY n|Un
1 ,Un

2 ,Zn(yn|ûn
1 , ûn

2 , zn). The induced random p.m.f.
from this protocol is given by

P̂ (xn
1 , xn

2 , zn, yn, un
1 , un

2 , s1, f1, m1, s2, f2, m2, û
n
1 , ûn

2 )

= pU(s1)pU(f1)pU(s2)pU(f2)p(xn
1 , xn

2 , zn)
× P (un

1 |s1, f1, x
n
1 )P (m1|un

1 )
× P (un

2 |s2, f2, x
n
2 )P (m2|un

2 )

× PSW (ûn
1 ,ûn

2 |s1,f1,m1, s2, f2, m2, z
n)p(yn|ûn

1 , ûn
2 , zn).

(88)

Next we find constraints that imply that the induced p.m.f.’s
from the two protocols are almost identical. Then one can
restrict attention to the source coding side of the problem
(related to the random binning protocol) and investigate the
desired properties like vanishing total variation distance.

C. Analysis of Rate Constraints

We now derive sufficient conditions for the joint statistics
of the random variables from the two protocols to be identical.
Since (sj , fj) are the bin indices of un

j for j ∈ {1, 2}, if we
ensure that

R01 + R̃1 ≤ H(U1|X1, X2, Z) = H(U1|X1),
(89)

R02 + R̃2 ≤ H(U2|X1, X2, Z) = H(U2|X2),
(90)

R01 + R̃1 + R02 + R̃2 ≤ H(U1, U2|X1, X2, Z)
= H(U1, U2|X1, X2) (91)

(where the equalities in (89)–(91) follow from the Markov
chains U1 → X1 → (X2, Z), U2 → X2 → (X1, Z), and
(U1, U2) → (X1, X2) → Z , respectively), then by Theorem 7,
we obtain

P (xn
1 , xn

2 , zn, s1, s2, f1, f2)

≈ pU(s1)pU(f1)pU(s2)pU(f2)p(xn
1 , xn

2 , zn)

= P̂ (xn
1 , xn

2 , zn, s1, s2, f1, f2). (92)

This in turn results in

P (xn
1 , xn

2 , zn, un
1 , un

2 , s1, f1, m1, s2, f2, m2, û
n
1 , ûn

2 )

≈ P̂ (xn
1 , xn

2 , zn, un
1 , un

2 , s1, f1, m1, s2, f2, m2, û
n
1 , ûn

2 ).
(93)
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Note that the condition (91) above is redundant because
H(U1, U2|X1, X2) = H(U1|X1) + H(U2|X2) using the
Markov chain U1 → X1 → X2 → U2.

For the Slepian-Wolf decoder to succeed, we require
(by Slepian-Wolf theorem [54], see also [53, Lemma 1])

R01 + R̃1 + R1 ≥ H(U1|U2, Z), (94)

R02 + R̃2 + R2 ≥ H(U2|U1, Z), (95)

R01 + R̃1 + R1 + R02 + R̃2 + R2 ≥ H(U1, U2|Z). (96)

This ensures that

P (xn
1 , xn

2 , zn, un
1 , un

2 , s1, f1, m1, s2, f2, m2, û
n
1 , ûn

2 )
≈ P (xn

1 , xn
2 , zn, un

1 , un
2 , s1, f1, m1, s2, f2, m2)

× �{ûn
1 = un

1 , ûn
2 = un

2}. (97)

Using (97), (93) and the first and third parts of Lemma 8,
we can write the following for the joint probability distribution
involving yn

P̂ (xn
1 , xn

2 , zn, un
1 , un

2 , s1, f1, m1, s2, f2, m2, û
n
1 , ûn

2 , yn)

= P̂ (xn
1 , xn

2 , zn, un
1 , un

2 , s1, f1, m1, s2, f2, m2, û
n
1 , ûn

2 )
× p(yn|ûn

1 , ûn
2 , zn)

≈ P (xn
1 , xn

2 , zn, un
1 , un

2 , s1, f1, m1, s2, f2, m2)
× �{ûn

1 = un
1 , ûn

2 = un
2}p(yn|ûn

1 , ûn
2 , zn)

= P (xn
1 , xn

2 , zn, un
1 , un

2 , s1, f1, m1, s2, f2, m2)
× �{ûn

1 = un
1 , ûn

2 = un
2}p(yn|un

1 , un
2 , zn)

= P (xn
1 , xn

2 , zn, un
1 , un

2 , s1, f1, m1, s2, f2, m2, y
n)

× �{ûn
1 = un

1 , ûn
2 = un

2}. (98)

Thus, using the first part of Lemma 8, we can conclude that

P̂ (xn
1 , xn

2 , zn, yn, f1, f2) ≈ P (xn
1 , xn

2 , zn, yn, f1, f2). (99)

We require (Xn
1 , Xn

2 , Zn, Y n) to be independent of the
extra shared randomness (F1, F2) to eliminate them without
disturbing the desired i.i.d. distribution. This can be accom-
plished by imposing the following conditions according to
Theorem 7.

R̃1 ≤ H(U1|X1, X2, Y, Z), (100)

R̃2 ≤ H(U2|X1, X2, Y, Z), (101)

R̃1 + R̃2 ≤ H(U1, U2|X1, X2, Y, Z). (102)

This ensures that

P (xn
1 , xn

2 , zn, yn, f1, f2) ≈ pU(f1)pU(f2)p(xn
1 , xn

2 , zn, yn),
(103)

which along with (99) and the triangle inequality, implies that

P̂ (xn
1 , xn

2 , zn, yn, f1, f2) ≈ pU(f1)pU(f2)p(xn
1 , xn

2 , zn, yn).
(104)

Hence there exists a fixed binning with corresponding pmf p̃
such that if we replace P by p̃ in (88) and denote the resulting
pmf by p̂, then

p̂(xn
1 , xn

2 , zn, yn, f1, f2) ≈ pU(f1)pU(f2)p(xn
1 , xn

2 , yn, zn).
(105)

Now the second part of Lemma 8 allows us to conclude that
there exist instances F1 = f∗

1 , F2 = f∗
2 such that

p̂(xn
1 , xn

2 , zn, yn|f∗
1 , f∗

2 ) ≈ p(xn
1 , xn

2 , zn, yn). (106)

Now along with the rate constraints imposed in equations
(89) – (90), (94) – (96) and (100) – (102), we also need to
impose the non-negativity constraints on all the rates. But it
turns out that the constraints R̃1 ≥ 0 and R̃2 ≥ 0 are redun-
dant, which can be shown along the lines of [53, Remark 4].
We prove that if (R̃1, R̃2) are not necessarily all positive
and satisfy (89) – (90), (94) – (96) and (100) – (102)
along with (R1, R2, R01, R02) for some (U1, U2) such that
(U1, U2) → (X1, X2) → Z , U1 → X1 → X2 → U2 and
Y → (U1, U2, Z) → (X1, X2), then there exists (Ū1, Ū2)
with (Ū1, Ū2) → (X1, X2) → Z , Ū1 → X1 → X2 → Ū2 and
Y → (Ū1, Ū2, Z) → (X1, X2) and R̄1 ≥ 0, R̄2 ≥ 0 such that
(R̄1, R̄2) along with (R1, R2, R01, R02) satisfy (89) – (90),
(94) – (96) and (100) – (102) for (Ū1, Ū2) instead of (U1, U2).

Towards this end, suppose R̃1 < 0 and R̃2 < 0. Let
(W1, W2) be random variables such that H(W1) > |R̃1|
and H(W2) > |R̃2|. We also assume that W1 as well as
W2 are independent of all the other random variables. Define
R̄1 = R̃1 + H(W1), R̄2 = R̃2 + H(W2) and Ū1 = (U1, W1),
Ū2 = (U2, W2). Clearly, we have R̄1, R̄2 ≥ 0 and it is easy
to see that (R̄1, R̄2) along with (R1, R2, R01, R02) satisfy
(89) – (90), (94) – (96) and (100) – (102) for (Ū1, Ū2)
using the independence of W1 and W2 from all other random
variables and the fact that (R̃1, R̃2) satisfy (89) – (90),
(94) – (96) and (100) – (102) along with (R1, R2, R01, R02).
Next suppose R̃1 < 0, R̃2 ≥ 0 – here the proof follows by
defining W1, R̄1 and Ū1 as above and noting that (R̄1, R̃2)
along with (R1, R2, R01, R02) satisfy (89) – (90), (94) – (96)
and (100) – (102) for (Ū1, U2). The remaining configuration
R̃1 ≥ 0, R̃2 < 0 can be dealt similarly. Finally on elimi-
nating (R̃1, R̃2) from equations (89) – (90), (94) – (96) and
(100) – (102) by Fourier-Motzkin elimination (FME),
we obtain the rate constraints

R1 ≥ H(U1|U2, Z) − H(U1|X1, U2, Z) = I(U1; X1|U2, Z),
(107)

R2 ≥ H(U2|U1, Z) − H(U2|X2, U1, Z) = I(U2; X2|U1, Z),
(108)

R1 + R2 ≥ H(U1, U2|Z) − H(U1, U2|X1, X2, Z)
= I(U1, U2; X1, X2|Z), (109)

R1 + R01 ≥ H(U1|U2, Z) − H(U1|X1, X2, Y, Z)
= I(U1; X1, X2, Y |Z) − I(U1; U2|Z), (110)

R2 + R02 ≥ H(U2|U1, Z) − H(U2|X1, X2, Y, Z)
= I(U2; X1, X2, Y |Z) − I(U1; U2|Z), (111)

R1 + R2 + R01

≥ H(U1, U2|Z)−H(U2|X2, Z)−H(U1|X1, X2, Y, Z)
= I(U1; X1, X2, Y |Z) + I(U2; X2|U1, Z), (112)

R1 + R2 + R02

≥ H(U1, U2|Z)−H(U1|X1, Z)−H(U2|X1, X2, Y, Z)
= I(U2; X1, X2, Y |Z) + I(U1; X1|U2, Z), (113)
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R1 + R2 + R01 + R02

≥ H(U1, U2|Z) − H(U1, U2|X1, X2, Y, Z)
= I(U1, U2; X1, X2, Y |Z). (114)

Thus when the rate constraints in (107) – (114) are met, there
exists a sequence of (2nR01 , 2nR02 , 2nR1 , 2nR2 , n) codes with
encoders and decoders as described in the second protocol
with the particular realization of binning along with the fixed
instances f∗

1 , f∗
2 resulting in vanishing total variation distance.

APPENDIX B
SPECIALIZATION OF THEOREM 1 TO DETERMINISTIC

FUNCTION COMPUTATION

Let |T | = 1 for simplicity. When Y is a deterministic
function of (X1, X2, Z), we note the following simplifications
to the rate constraints of Theorem 1.

R1 + R01 ≥ I(U1; X1, X2, Y |Z) − I(U1; U2|Z)
(a)
= I(U1; X1, X2|Z) − I(U1; U2|Z)
= I(U1; X1, X2|U2, Z) − I(U1; U2|X1, X2, Z)
(b)
= I(U1; X1|U2, Z), (115)

where (a) follows since Y is determined by (X1, X2, Z) while
(b) follows from the Markov chains U1 → X1 → (U2, X2, Z)
and U2 → X2 → (U1, X1, Z). Similarly, it follows that

R2 + R02 ≥ I(U2; X2|U1, Z). (116)

Furthermore, we note that

R1 + R2 + R01 ≥ I(U1; X1, X2, Y |Z) + I(U2; X2|U1, Z)
(a)
= I(U1; X1, X2|Z) + I(U2; X2|U1, Z)
(b)
= I(U1; X1, X2|Z) + I(U2; X1, X2|U1, Z)
= I(U1, U2; X1, X2|Z), (117)

where (a) follows since Y is determined by (X1, X2, Z) while
(b) follows from the Markov chain U2 → X2 → (U1, X1, Z).
Similarly, it follows that

R1 + R2 + R02 ≥ I(U1, U2; X1, X2|Z). (118)

Finally, we note that

R1 + R2 + R01 + R02 ≥ I(U1, U2; X1, X2, Y |Z)
= I(U1, U2; X1, X2|Z). (119)

Thus when Y is a deterministic function of (X1, X2, Z), the
rate constraints involving the shared randomness rates R01

and R02 become redundant in Theorem 1. Hence, the region
simplifies to the set of rate pairs (R1, R2) satisfying

R1 ≥ I(U1; X1|U2, Z),
R2 ≥ I(U2; X2|U1, Z),

R1 + R2 ≥ I(U1, U2; X1, X2|Z),

for some p.m.f.

p(x1, x2, z, u1, u2) = p(x1, x2, z)p(u1|x1)p(u2|x2)

such that H(Y |U1, U2, Z) = 0. This is precisely the inner
bound of [31, Th. 2] specialized to the multiple-access network
where the condition H(Y |U1, U2, Z) = 0, in conjunction with
the structure of the p.m.f., is expressed in an alternate form
involving graph entropy using [51, Lemma 3].

APPENDIX C
SPECIALIZATION OF THEOREM 3 TO DETERMINISTIC

FUNCTION COMPUTATION

Let |T | = 1 again for simplicity. The joint distribution in
(70) is such that (U1, X1) → Z → (U2, X2) is a Markov
chain. This leads to the following simplification to the rate
constraints involving shared randomness when Y is a deter-
ministic function of (X1, X2, Z), say, Y = f(X1, X2, Z).

I(U1; X1, Y |X2, Z) = I(U1; X1, X2, Y |Z)
= I(U1; X1, X2|Z)
= I(U1; X1|Z).

This simplification renders the bound on R1 + R01 in
Theorem 3 redundant. Hence, the region simplifies to the set
of rate pairs (R1, R2) satisfying

R1 ≥ I(U1; X1|Z),
R2 ≥ I(U2; X2|Z),

for some p.m.f.

p(x1,x2, z, u1, u2, y) =
p(z)p(x1|z)p(x2|z)p(u1|x1)p(u2|x2)p(y|u1, u2, z)

such that H(Y |U1, U2, Z) = 0. This is the rate region in
[31, Th. 3] specialized to the multiple-access network where
it is expressed in an alternate form involving graph entropies,
which follows by using [51, Proof of Th. 3].

APPENDIX D
PROOF OF CLAIM 1

It suffices to restrict attention to realizations u1, u2 for
which H(X1|U1 = u1) > 0 and H(X2|U2 = u2) > 0.
We prove the claim in three steps.
Step 1: We prove that under Case 3, for any u1 with
P (U1 = u1) > 0, there exists a k ∈ {1, 2} such that
H(X1k|U1 = u1) = 0.
Step 2: Then for any u2 with P (U2 = u2) > 0, for the k from
Step 1, we show that H(X2k|U2 = u2) = 0.
Step 3: Finally, for any u	

1 with u	
1 �= u1 and P (U1 = u	

1) > 0,
for the k from Step 1, we prove that H(X1k|U1 = u	

1) = 0.
Step 1: We prove this by contradiction. Suppose

H(X1i|U1 = u1) > 0, for i = 1, 2. This implies
that the support of pX1|U1=u1 cannot be of the form
{b1, b2}, {(b1, b2), (b1, 1 − b2)}, {(b1, b2), (1 − b1, b2)}, for
b1, b2 ∈ {0, 1}. The remaining possibility is that the support
has to be a superset of either {(0, 1), (1, 0)} or {(0, 0), (1, 1)}.
In the sequel, we use the independence of (U1, X1) and
(U2, X2), and the Markov chain Y → (U1, U2) → (X1, X2)
repeatedly. Consider a u2 such that P (U2 = u2) > 0. It turns
out that the support cannot be a superset of {(0, 0), (1, 1)}.
To see this, first notice that P (X1 = (0, 0)|U1 = u1, U2 =
u2), P (X1 = (1, 1)|U1 = u1, U2 = u2) > 0. Now since
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X1J − (U1, U2) − X1, we have P (X1J = 0|U1 = u1, U2 =
u2) = P (X1J = 0|U1 = u1, U2 = u2, X1 = (1, 1)) = 0,
where the last equality follows from the correctness of output
Y = (X1J , X2J). Similarly, P (X1J = 1|U1 = u1, U2 =
u2) = P (X1J = 1|U1 = u1, U2 = u2, X1 = (0, 0)) = 0.
This is a contradiction since pX1J |U1=u1,U2=u2 has to be a
probability distribution. The only other possibility is that the
support of pX1|U1=u1 is a superset of {(0, 1), (1, 0)}. Since
H(X2|U2) > 0, there exists a u2 with P (U2 = u2) >
0 such that H(X2|U2 = u2) > 0. So, either exactly one
or both of H(X21|U2 = u2) and H(X22|U2 = u2) will
be strictly positive. Suppose exactly one of them is strictly
positive. Without loss of generality, suppose H(X21|U2 =
u2) > 0, i.e., P (X21 = 0|U2 = u2), P (X21 = 1|U2 =
u2) > 0 and H(X22|U2 = u2) = 0. Also, assume that
P (X22 = 1|U2 = u2) = 1. Consider the probability
distribution pY |U1=u1,U2=u2 . This is well defined because
P (U1 = u1, U2 = u2) > 0 as U1 is independent of U2 and
P (U1 = u1), P (U2 = u2) > 0. From the above we have the
following.

P (X1 = (0, 1), X2 = (0, 1)|U1 = u1, U2 = u2) > 0 which
implies that P (Y = (0, 1)|U1 = u1, U2 = u2) = 0 and
P (Y = (1, 0)|U1 = u1, U2 = u2) = 0.

P (X1 = (1, 0), X2 = (0, 1)|U1 = u1, U2 = u2) > 0 which
implies that P (Y = (0, 0)|U1 = u1, U2 = u2) = 0 and
P (Y = (1, 1)|U1 = u1, U2 = u2) = 0.

This is a contradiction since pY |U1=u1,U2=u2 has to be a
probability distribution. Now suppose both H(X21|U2 = u2)
and H(X22|U2 = u2) are strictly positive. Since Y2 :=
X2J ∈ {X21, X22}, the only possibility is that pX2|U2=u2 has
a support that is a superset of {(0, 1), (1, 0)}. Then we have
the following.

P (X1 = (0, 1), X2 = (0, 1)|U1 = u1, U2 = u2) > 0 which
implies that P (Y = (0, 1)|U1 = u1, U2 = u2) = 0 and
P (Y = (1, 0)|U1 = u1, U2 = u2) = 0.

P (X1 = (0, 1), X2 = (1, 0)|U1 = u1, U2 = u2) > 0 which
implies that P (Y = (0, 0)|U1 = u1, U2 = u2) = 0 and
P (Y = (1, 1)|U1 = u1, U2 = u2) = 0.

This is a contradiction since pY |U1=u1,U2=u2 has to be
a probability distribution. Thus, we have, under Case 3,
if H(X1|U1 = u1) > 0, then there exists a k ∈ {1, 2} such
that H(X1k|U1 = u1) = 0.

Step 2: Note that there exists u1 with P (U1 = u1) > 0 such
that H(X1|U1 = u1) > 0 since H(X1|U1) > 0. So, by the
discussion in Step 1, there exists a k such that H(X1k|U1 =
u1) = 0. Note that H(X1k′ |U1 = u1) > 0, where k	 = 3− k,
since H(X1|U1 = u1) > 0. Similarly, there exists u2 with
P (U2 = u2) > 0 such that H(X2|U2 = u2) > 0. Now
we show that H(X2k|U2 = u2) = 0. We prove this by
contradiction. Suppose H(X2k|U2 = u2) > 0. Then in view
of the above discussion, we have H(X2k′ |U2 = u2) = 0.
Without loss of generality, let k = 1, i.e., k	 = 2. Note
that pX12,X21|U1=u1,U2=u2 = pX12|U1=u1 · pX21|U2=u2 has full
support since H(X12|U1 = u1), H(X21|U2 = u2) > 0. Also,
assume that P (X11 = 0|U1 = u1) = 1 and P (X22 = 0|U2 =
u2) = 1 (other choices can be dealt similarly). Consider the
probability distribution pY |U1=u1,U2=u2 . Then we have the
following.

P (X1 = (0, 1), X2 = (1, 0)|U1 = u1, U2 = u2) =
P (X12 = 1, X21 = 1|U1 = u1, U2 = u2) > 0, which
implies that P (Y = (0, 0)|U1 = u1, U2 = u2) = 0 and
P (Y = (1, 1)|U1 = u1, U2 = u2) = 0 since we have the
Markov chain Y − (U1, U2) − (X1, X2).

P (X1 = (0, 0), X2 = (0, 0)|U1 = u1, U2 = u2) =
P (X12 = 0, X21 = 0|U1 = u1, U2 = u2) > 0, which
implies that P (Y = (0, 1)|U1 = u1, U2 = u2) = 0 and
P (Y = (1, 0)|U1 = u1, U2 = u2) = 0 since we have the
Markov chain Y − (U1, U2) − (X1, X2).

This is a contradiction since pY |U1=u1,U2=u2 has to be a
probability distribution.

Step 3: Now suppose that there exists a u	
1 with u	

1 �= u1 and
P (U1 = u	

1) > 0 such that H(X1|U1 = u	
1) > 0. Since

there is a u2 such that H(X2k|U2 = u2) = 0, by the
same argument as above (reversing the roles of 1 and 2),
we have H(X1k|U1 = u	

1) = 0. This completes the proof of
Claim 1.

APPENDIX E
PROOF OF LEMMA 5

The cardinality bound |T | ≤ 3 on the time-sharing random
variable T can be obtained using standard arguments based
on the support lemma [55, Appendix C].3 We now focus on
cardinality bounds for U1 and U2. Consider the region S� with
|T | = 1:

R1 ≥ I(U1; X1|Z) (120)

R2 ≥ I(U2; X2|Z), (121)

R1 + R01 ≥ I(U1; X1, Y |X2, Z) − g(�), (122)

for some p.m.f.

p(x1,x2, z, u1, u2, y)
= p(z)p(x1|z)p(x2|z)p(u1|x1)p(u2|x2)p(y|u1, u2, z)

(123)

such that

‖
∑

u1,u2

p(x1, x2, z, u1, u2, y) − q(x1, x2, z, y)‖ ≤ �. (124)

Call this region C. We now show that the auxiliary cardinalities
can be restricted to |U1| ≤ |X1||X2||Y||Z| and |U2| ≤
|U1||X1||X2||Y||Z| via the perturbation argument of [56]. This
is done in two steps.

• Step 1: We prove that

C = Closure

⎛
⎝ ⋃

K1,K2≥0

CK1,K2

⎞
⎠ , (125)

where the region CK1,K2 for positive integers
K1, K2 is given by the union of rate triples
(R1, R2, R01) satisfying (120)–(122) over random
variables (U1, U2, X1, X2, Y, Z) with cardinality bounds
|U1| ≤ K1 & |U2| ≤ K2 and having a joint p.m.f.

3It suffices for the alphabet T to have 3 elements to preserve
I(U1; X1|Z, T ), I(U2; X2; |Z, T ), and I(U1; X1, Y |X2, Z, T ), thereby
preserving the rate region.
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p(z)p(x1|z)p(x2|z)p(u1|x1)p(u2|x2)p(y|u1, u2, z) such
that ‖p(x1, x2, z, y) − q(x1, x2, z, y)‖ ≤ �.

• Step 2: If |U1| ≤ K1 and |U2| ≤ K2 for some constants
K1, K2, we show that the auxiliary cardinalities can be
brought down to |U1| ≤ |X1||X2||Y||Z| and |U2| ≤
|U1||X1||X2||Y||Z|.
Proof Step 1: It suffices to show that any rate triple

(R1, R2, R01) ∈ C is a limit point of the set
⋃

K1,K2≥0

CK1,K2 .

Firstly, if (R1, R2, R01) ∈ C, then random variables
(U1, U2, X1, X2, Y, Z) satisfying (120)–(122) exist such that
their joint p.m.f. is of the form (123) and (124) holds.
Assume that Uj = {1, 2, · · · } for j = 1, 2. Define modified
versions (U 	

1, U
	
2) of random variables (U1, U2) taking values

in {1, 2, · · · , m} ∪ X1 and {1, 2, · · · , m} ∪ X2 respectively,
where m is an integer. The alphabet cardinalities of (U 	

1, U
	
2)

are m + |X1| and m + |X2| respectively. Let the conditional
p.m.f. of U 	

j given Xj for j ∈ {1, 2}, xj ∈ Xj be specified as
follows:

pU ′
j |Xj

(i|xj) = pUj |Xj
(i|xj), i = {1, 2, · · · , m}, (126)

pU ′
j |Xj

(x	
j |xj) = 0 ∀ x	

j �= xj , (127)

pU ′
j |Xj

(xj |xj) = Pr(Uj > m|Xj = xj) =
∞∑

i=m+1

pUj |Xj
(i|xj).

(128)

From the definitions in (126)–(128) and the fact that the
original random variables (U1, U2, X1, X2, Y, Z) satisfy U1 →
X1 → (U2, X2, Z) and U2 → X2 → (U1, X1, Z), it follows
that the Markov chains U 	

1 → X1 → (U 	
2, X2, Z) and U 	

2 →
X2 → (U 	

1, X1, Z) hold as well.
To define pY |U ′

1,U ′
2,Z , consider new auxiliary random vari-

ables (U 		
1 , U 		

2 ) whose alphabets are the same as that of
(U1, U2), and their conditional p.m.f. given U 	

j for j ∈ {1, 2}
is specified as follows:

• If U 	
j ∈ {1, 2, · · · , m}, then U 		

j = U 	
j , i.e.,

pU ′′
j |U ′

j
(i|i) = 1, i = 1, 2, · · · , m. (129)

• Otherwise, let

pU ′′
j |U ′

j
(i|xj) ={

Pr(Uj = i|Xj = xj , Uj > m), i = m + 1, m + 2, · · ·
0, i = 1, 2, · · · , m.

(130)

Note that we have∑
u′

j

pU ′
j |Xj

(u	
j|xj)pU ′′

j |U ′
j
(u		

j |u	
j)

= pUj |Xj
(u		

j |xj), u		
j ∈ Uj , xj ∈ Xj , j = 1, 2.

(131)

Further, let

pY |U ′′
1 ,U ′′

2 ,Z(y|u1, u2, z) = pY |U1,U2,Z(y|u1, u2, z). (132)

The conditional distribution pY |U ′
1,U ′

2,Z is defined as

pY |U ′
1,U ′

2,Z(y|u	
1, u

	
2, z)

=
∑

u′′
1 ,u′′

2

pU ′′
1 |U ′

1
(u		

1 |u	
1)pU ′′

2 |U ′
2
(u		

2 |u	
2)pY |U ′′

1 ,U ′′
2 ,Z(y|u		

1 , u		
2 , z)

(133)

=
∑

u′′
1 ,u′′

2

pU ′′
1 |U ′

1
(u		

1 |u	
1)pU ′′

2 |U ′
2
(u		

2 |u	
2)pY |U1,U2,Z(y|u		

1 , u		
2 , z).

(134)

From the definitions in (130)–(133) and the fact that
the original random variables (U1, U2, X1, X2, Y, Z) sat-
isfy Y → (U1, U2, Z) → (X1, X2), it follows that
the Markov chain Y → (U 	

1, U
	
2, Z) → (X1, X2) holds

as well. Due to these Markov constraints, the joint dis-
tribution of (U 	

1, U
	
2, X1, X2, Y, Z) is pU ′

1,U ′
2,X1,X2,Y,Z =

pX1,X2,ZpU ′
1|X1pU ′

2|X2pY |U ′
1,U ′

2,Z . On marginalizing away
(U 	

1, U
	
2) from pU ′

1,U ′
2,X1,X2,Y,Z , we obtain the p.m.f.

pX1,X2,Y,Z , which can be seen as follows.∑
u′
1,u′

2

(pX1,X2,Z(x1, x2, z)pU ′
1|X1(u

	
1|x1)pU ′

2|X2(u
	
2|x2)

× pY |U ′
1,U ′

2,Z(y|u	
1, u

	
2, z))

=
∑

u′
1,u′

2

pX1,X2,Z(x1, x2, z)pU ′
1|X1(u

	
1|x1)pU ′

2|X2(u
	
2|x2)·

(
∑

u′′
1 ,u′′

2

pU ′′
1 |U ′

1
(u		

1 |u	
1)pU ′′

2 |U ′
2
(u		

2 |u	
2)pY |U ′′

1 ,U ′′
2 ,Z(y|u		

1 , u		
2 , z))

=
∑

u′′
1 ,u′′

2

pX1,X2,Z(x1, x2, z)(
∑
u′
1

pU ′
1|X1(u

	
1|x1)pU ′′

1 |U ′
1
(u		

1 |u	
1))

(
∑
u′
2

pU ′
2|X2(u

	
2|x2)pU ′′

2 |U ′
2
(u		

2 |u	
2))pY |U1,U2,Z(y|u		

1 , u		
2 , z)

(a)
=
∑

u′′
1 ,u′′

2

pX1,X2,Z(x1, x2, z)pU1|X1(u
		
1 |x1)pU2|X2(u

		
2 |x2)

pY |U1,U2,Z(y|u		
1 , u		

2 , z)
= pX1,X2,Y,Z(x1, x2, y, z), (135)

where (a) follows from (131). Hence pU ′
1U ′

2X1X2Y Z

satisfies (124).
It follows that the joint distribution of the random variables

(U 	
1, U

	
2, X1, X2, Y, Z) converges to the the joint distribution

of (U1, U2, X1, X2, Y, Z) in the limit m → ∞. As a result,
the mutual information terms I(U 	

1; X1|Z), I(U 	
2; X2|Z) and

I(U 	
1; X1, Y |X2, Z) converge to I(U1; X1|Z), I(U2; X2|Z)

and I(U1; X1, Y |X2, Z) respectively. Hence, we conclude that
the given rate triple (R1, R2, R01) is a limit point of the set⋃
K1,K2≥0

CK1,K2 .

Proof Step 2: It suffices to consider an optimization of
the weighted sum term λ1I(U1; X1|Z) + λ2I(U2; X2|Z) +
λ3I(U1; X1, Y |X2, Z) for non-negative reals λ1, λ2, λ3, and
find new auxiliary random variables whose cardinalities are
bounded while not increasing the weighted sum and preserving
the conditions (123) and on (124) on p(x1, x2, u1, u2, y, z).
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For a given p(u1, u2, x1, x2, y, z), consider the perturbation
defined by

p�(u1, u2, x1, x2, y, z) = p(u1, u2, x1, x2, y, z) (1 + �φ(u1)) .

For p�(u1, u2, x1, x2, y, z) to be a valid p.m.f., we require
that (1 + �φ(u1)) ≥ 0 for all u1, and

∑
u1

p(u1)φ(u1) = 0.
Furthermore, we will consider perturbations φ(u1) such that

E [φ(U1)|X1 = x1, X2 = x2, Y = y, Z = z]

=
∑
u1

p(u1|x1, x2, y, z)φ(u1) = 0, ∀ x1, x2, y, z. (136)

Observe that such a non-zero perturbation satisfying (136)
(which also implies

∑
u1

p(u1)φ(u1) = 0) exists as long as
|U1| > |X1||X2||Y||Z|, since the null-space of the constraints
has rank at most |X1||X2||Y||Z|. For sufficiently small values
of |�|, we also have (1 + �φ(u1)) ≥ 0 for all u1. Note that
this perturbation preserves the distribution of (X1, X2, Y, Z),
i.e., p(x1, x2, y, z). This follows since

p�(x1, x2, y, z) =
∑

u1,u2

p�(u1, u2, x1, x2, y, z)

=
∑

u1,u2

p(u1, u2, x1, x2, y, z) (1 + �φ(u1))

= p(x1, x2, y, z)

{
∑
u1

p(u1|x1, x2, y, z) + �
∑
u1

p(u1|x1, x2, y, z)φ(u1)}

= p(x1, x2, y, z), (137)

where the last step follows from (136).
We now show that the perturbed distribution p�(·) preserves

the structure of the p.m.f. in (123). To see this, note that

p�(x1, x2, z, u1, u2, y)
= p(x1, x2, z, u1, u2, y) (1 + �φ(u1))
= p(x1)p(z|x1) {p(u1|x1) (1 + �φ(u1))} p(x2|z)p(u2|x2)

p(y|u1, u2, z). (138)

Marginalizing away Z, X2, U2, Y , we have

p�(x1, u1) = p(x1)p(u1|x1) (1 + �φ(u1)) . (139)

Since p�(x1) = p(x1) (by (137)), we have p�(u1|x1) =
p(u1|x1) (1 + �φ(u1)). Thus,

p�(x1, x2, z, u1, u2, y)
= p(z)p(x1|z)p(x2|z)p�(u1|x1)p(u2|x2)p(y|u1, u2, z),

(140)

which is of the form (123).
Now if the distribution p(u1, u2, x1, x2, y, z) minimizes

λ1I(U1; X1|Z) + λ2I(U2; X2|Z) + λ3I(U1; X1, Y |X2, Z),
then for any valid perturbation, we must have the extremality
condition:

d

d�
(λ1I�(U1; X1|Z) + λ2I�(U2; X2|Z)

+ λ3I�(U1; X1, Y |X2, Z))
∣∣∣
�=0

= 0, (141)

where the subscript � in the mutual information terms is
used to denote that these are evaluated under the perturbed

distribution p�(u1, u2, x1, x2, y, z). We examine the weighted
sum term under the perturbed distribution p�(·).

λ1I�(U1; X1|Z) + λ2I�(U2; X2|Z) + λ3I�(U1; X1, Y |X2, Z)
= λ1 (H�(X1, Z) − H�(Z) + H�(U1, Z) − H�(U1, X1, Z))
+ λ2 (H�(X2, Z) − H�(Z) + H�(U2, Z) − H�(U2, X2, Z))
+ λ3(H�(X1, X2, Y, Z) − H�(X2, Z) + H�(U1, X2, Z)

− H�(U1, X1, X2, Y, Z))
(a)
= λ1 (H(X1, Z) − H(Z) + H�(U1, Z) − H�(U1, X1, Z))
+ λ2 (H(X2, Z) − H(Z) + H�(U2, Z) − H�(U2, X2, Z))
+ λ3(H(X1, X2, Y, Z) − H(X2, Z) + H�(U1, X2, Z)

− H�(U1, X1, X2, Y, Z))
(b)
= λ1

(
H(X1, Z) − H(Z) + H(U1, Z) + �Hφ(U1, Z)

− [
∑
u1,z

p(u1, z)(1 + �φ(u1)) log(1 + �φ(u1))]

− H(U1, X1, Z) − �Hφ(U1, X1, Z)

+ [
∑

u1,x1,z

p(u1, x1, z) (1 + �φ(u1)) log (1 + �φ(u1))]
)

+ λ2 (H(X2, Z) − H(Z) + H�(U2, Z) − H�(U2, X2, Z))

+ λ3

(
H(X1, X2, Y, Z) − H(X2, Z) + H(U1, X2, Z)+

�Hφ(U1, X2, Z)−
[
∑

u1,x2,z

p(u1, x2, z) (1 + �φ(u1)) log (1 + �φ(u1))]

− H(U1, X1, X2, Y, Z) − �Hφ(U1, X1, X2, Y, Z)+

[
∑

u1,x1,x2,y,z

p(u1, x1, x2, y, z) (1 + �φ(u1)) log (1 + �φ(u1))]
)

(c)
= λ1 (I(U1; X1|Z) + �Hφ(U1, Z) − �Hφ(U1, X1, Z))
+ λ2 (H(X2, Z) − H(Z) + H�(U2, Z) − H�(U2, X2, Z))
+ λ3(I(U1; X1, Y |X2, Z) + �Hφ(U1, X2, Z)

− �Hφ(U1, X1, X2, Y, Z)), (142)

where (a) follows since the joint distribution of (X1, X2, Y, Z)
is preserved from (137), while in (b) we have defined

Hφ(U1, Z) = −
∑
u1,z

p(u1, z)φ(u1) log p(u1, z),

Hφ(U1, X1, Z) = −
∑

u1,x1,z

p(u1, x1, z)φ(u1) log p(u1, x1, z),

Hφ(U1, X1, X2, Y, Z)

= −
∑

u1,x1,x2,y,z

p(u1, x1, x2, y, z)φ(u1) log p(u1, x1, x2, y, z),

and (c) follows from the fact that all the sums in the square
brackets are equal.

Note that from (140),

p�(u2, x2, z) = p(u2, x2, z). (143)

Hence it follows that

H�(U2, X2, Z) = H(U2, X2, Z), (144)

H�(U2, Z) = H(U2, Z). (145)
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Substituting (144) and (145) into (142), the weighted sum
becomes

λ1I�(U1; X1|Z)+λ2I�(U2; X2|Z)+λ3I�(U1; X1, Y |X2, Z)
= λ1 (I(U1; X1|Z) + �Hφ(U1, Z) − �Hφ(U1, X1, Z))

+ λ2I(U2; X2|Z) + λ3(I(U1; X1, Y |X2, Z)
+ �Hφ(U1, X2, Z) − �Hφ(U1, X1, X2, Y, Z)). (146)

Now we apply the first derivative condition (141) to (146).
This yields

λ1 (Hφ(U1, Z) − Hφ(U1, X1, Z))
+ λ3 (Hφ(U1, X2, Z) − Hφ(U1, X1, X2, Y, Z)) = 0.

(147)

Substituting (147) into (146), we obtain

λ1I�(U1; X1|Z) + λ2I�(U2; X2|Z) + λ3I�(U1; X1, Y |X2, Z)
=λ1I(U1; X1|Z) +λ2I(U2; X2|Z) +λ3I(U1; X1, Y |X2, Z).

Thus if p(u1, u2, x1, x2, y, z) attains the minimum of the
weighted sum rate, then the latter is preserved for any valid
perturbation p�(u1, u2, x1, x2, y, z) that satisfies (136). Now
we choose � such that

min
u1

(1 + �φ(u1)) = 0,

and let u1 = u∗
1 attain this minimum. Clearly, p�(u∗

1) = 0, and
hence there exists an U1 with cardinality at most |U1|−1 such
that λ1I(U1; X1|Z)+λ2I(U2; X2|Z)+λ3I(U1; X1, Y |X2, Z)
is preserved. We can proceed by induction until |U1| =
|X1||X2||Y||Z|. When this happens, we are no longer guar-
anteed the existence of a non-trivial φ(u1) satisfying (136).
Hence we can restrict the cardinality to |U1| ≤ |X1||X2||Y||Z|.

We next perturb U2. For a given p(x1, x2, u1, u2, y, z),
consider another perturbation defined by

p	�(x1, x2, u1, u2, y, z) = p(x1, x2, u1, u2, y, z) (1 + �φ	(u2)) .

We require that (1 + �φ	(u2)) ≥ 0 for all u2, and∑
u2

p(u2)φ	(u2) = 0. Furthermore, let φ	(u2) be such that

E [φ	(U2)|U1 = u1, X1 = x1, X2 = x2, Y = y, Z = z]

=
∑
u2

p(u2|u1, x1, x2, y, z)φ	(u2) = 0, ∀ u1, x1, x2, y, z.

(148)

Such a non-zero perturbation satisfying (148) exists as long
as |U2| > |U1||X1||X2||Y||Z|. Again, it can be verified that
p	�(·) preserves p(x1, x2, y, z) as well as the structure of the
p.m.f. in (123). We examine the weighted sum term under the
perturbed distribution p	�(·).

λ1I�(U1; X1|Z) + λ2I�(U2; X2|Z) + λ3I�(U1; X1, Y |X2, Z)
= λ1 (H(X1, Z) − H(Z) + H�(U1, Z) − H�(U1, X1, Z))
+ λ2 (H(X2, Z) − H(Z) + H�(U2, Z) − H�(U2, X2, Z))
+ λ3(H(X1, X2, Y, Z) − H(X2, Z) + H�(U1, X2, Z)

− H�(U1, X1, X2, Y, Z))
(a)
= λ1 (H(X1, Z) − H(Z) + H�(U1, Z) − H�(U1, X1, Z))
+ λ2 (I(U2; X2|Z) + �Hφ′(U2, Z) − �Hφ′(U2, X2, Z))

+ λ3(H(X1, X2, Y, Z) − H(X2, Z) + H�(U1, X2, Z)
− H�(U1, X1, X2, Y, Z)), (149)

where in (a) we have defined Hφ′(U2, X2, Z) =
−
∑

u2,x2,z p(u2, x2, z)φ	(u2) log p(u2, x2, z). Consider
the p.m.f. of (U1, X1, X2, Y, Z) under the perturbation p	�(·).

p	�(u1, x1, x2, y, z) =
∑
u2

p	�(u1, u2, x1, x2, y, z)

=
∑
u2

p(u1, u2, x1, x2, y, z) (1 + �φ	(u2))

= p(u1, x1, x2, y, z)

{
1 + �

∑
u2

p(u2|u1, x1, x2, y, z)φ	(u2)

}

(a)
= p(u1, x1, x2, y, z),

where (a) follows from (148). Hence it follows that the
terms H�(U1, X1, X2, Y, Z), H�(U1, X2, Z), H�(U1, Z) and
H�(U1, X1, Z) are preserved under p	�(·). Hence, the weighted
sum in (149) becomes

λ1I�(U1; X1|Z) + λ2I�(U2; X2|Z) + λ3I�(U1; X1, Y |X2, Z)
= λ1I(U1; X1|Z) + λ2(I(U2; X2|Z) + �Hφ′(U2, Z)

− �Hφ′(U2, X2, Z)) + λ3I(U1; X1, Y |X2, Z). (150)

Now we apply the first derivative condition to (150). This
yields

λ2 (Hφ′(U2, Z) − Hφ′(U2, X2, Z)) = 0. (151)

Substituting (151) into (150), it follows that the weighted
sum is preserved. Thus if p(u1, u2, x1, x2, y, z) attains the
minimum of the weighted sum rate, then the latter is preserved
for any valid perturbation p	�(u1, u2, x1, x2, y, z) that satisfies
(148). Now the proof is completed by choosing � such that
minu2 (1 + �φ	(u2)) = 0 and the cardinality of U2 drops by 1.
We can proceed by induction until |U2| = |U1||X1||X2||Y||Z|.

APPENDIX F
PROOF OF LEMMA 7

Since the arguments are along the same lines as Appendix E,
we only outline the differences below. Again, the cardinality
bound on T can be obtained using the support lemma [55,
Appendix C], and we focus on cardinality bounds for U0,
U1 and U2. Let C	 denote the region in S	

� with |T | = 1,
i.e., the collection of (R1, R2) such that:

R1 ≥ I(U0, U1; X1|Z) (152)

R2 ≥ I(U0, U2; X2|Z) (153)

R1 + R2 ≥ I(U0, U1, U2; X1, X2|Z), (154)

for some p.m.f.

p(x1, x2, u0, u1, u2, y, z) = p(z)p(x1|z)p(x2|z)p(u0)
× p(u1|x1, u0)p(u2|x2, u0)p(y|u1, u2, z) (155)

such that

‖
∑

u0,u1,u2

p(x1, x2, u0, u1, u2, y, z)− q(x1, x2, y, z)‖ ≤ �.

(156)
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As before, we use the perturbation argument of [56], and the
proof is in two steps.

• Step 1: We prove that C	 =

Closure

( ⋃
K0,K1,K2≥0

C	K0,K1,K2

)
, where the region

C	K0,K1,K2 for positive integers K0, K1, K2 is given by
the union of rate pairs (R1, R2) satisfying (152)–(154)
over (U0, U1, U2, X1, X2, Y, Z) with cardinality bounds
|U0| ≤ K0, |U1| ≤ K1 & |U2| ≤ K2 and having a joint
p.m.f.

p(z)p(x1)p(x2)p(u0)p(u1|x1, u0)p(u2|x2, u0)
× p(y|u1, u2, z)

such that

‖p(x1, x2, y, z) − q(x1, x2, y, z)‖ ≤ �

.
• Step 2: If |U0| ≤ K0, |U1| ≤ K1 and |U2| ≤ K2

for some constants K0, K1, K2, we show that the
auxiliary cardinalities can be brought down to |U0| ≤
|X1||X2||Y||Z|, |U1| ≤ |U0||X1||X2||Y||Z| and |U2| ≤
|U0||X1||X2||Y||Z|.
Proof Step 1: We show that any rate pair (R1, R2) ∈

C	 is a limit point of the set
⋃

K0,K1,K2≥0

C	K0,K1,K2 . Firstly,

if (R1, R2) ∈ C	, then random variables (U0, U1, U2, X1,
X2, Y , Z) satisfying (152)–(154) exist such that their joint
p.m.f. is of the form (155) and (156) holds. Assume that Uj =
{1, 2, · · · } for j = 0, 1, 2. Define a modified version U 	

0 of the
random variable U0 with p.m.f. specified as:

pU ′
0
(i) =

{
pU0(i), i = {1, 2, · · · , m}
Pr(U0 > m), i = m + 1,

(157)

where m is an integer. The alphabet of U 	
0 is U 	

0 =
{1, 2, · · · , m+1}. Likewise, define modified versions (U 	

1, U
	
2)

of random variables (U1, U2) taking values in {1, 2, · · · , m}∪
X1∪(X1×U 	

0) and {1, 2, · · · , m}∪X2∪(X2×U 	
0) respectively.

The alphabet cardinalities of (U 	
1, U

	
2) are m + |X1| + (m +

1)|X1| and m + |X2| + (m + 1)|X2| respectively. Let the
conditional p.m.f. of U 	

j given (Xj , U
	
0) for j ∈ {1, 2},

xj ∈ Xj be specified as:

pU ′
j |Xj ,U ′

0
(i|xj , u

	
0)

= pUj |Xj ,U0(i|xj , u
	
0),u

	
0 ∈ {1, 2, · · · , m},i ∈ {1, 2, · · · , m},

(158)

pU ′
j |Xj ,U ′

0
((xj , u

	
0)|xj , u

	
0)

=
∞∑

i=m+1

pUj |Xj ,U0(i|xj , u
	
0), u

	
0 ∈ {1, 2, · · · , m}, (159)

pU ′
j |Xj ,U ′

0
(xj |xj , m + 1) = 1, (160)

pU ′
j |Xj ,U ′

0
(·|·, ·) = 0, otherwise. (161)

As before, to define pY |U ′
1,U ′

2,Z , consider new auxiliary
random variables (U 		

1 , U 		
2 ) whose alphabets are the same as

that of (U1, U2). Let the conditional p.m.f. pU ′′
1 ,U ′′

2 |U ′
1,U ′

2
be

specified as follows:

• If U 	
j ∈ {1, 2, . . . , m} ∪ (Xj × U0), j = 1, 2, then,

we define

PU ′′
1 ,U ′′

2 |U ′
1,U ′

2
(u		

1 , u		
2 |u	

1, u
	
2)

= PU ′′
1 |U ′

1
(u		

1 |u	
1) · PU ′′

2 |U ′
2
(u		

2 |u	
2),

(162)

where

pU ′′
j |U ′

j
(i|i) = 1, i = 1, 2, · · · , m. (163)

pU ′′
j |U ′

j
(k|(xj , i)) ={

Pr(Uj = k|Xj = xj , U0 = i, Uj > m), k ≥ m + 1
0, k = 1, 2, · · · , m.

(164)

• Note that, otherwise, U 	
0 = m+1 and hence, U 	

1 ∈ X1 and
U 	

2 ∈ X2. For this case, we define

pU ′′
1 ,U ′′

2 |U ′
1,U ′

2
(u1, u2|x1, x2) =∑

u0

Pr(U0 = u0|U0 > m)pU1|X1,U0(u1|x1, u0)·

pU2|X2,U0(u2|x2, u0). (165)

It is easy to verify that

pU ′′
1 ,U ′′

2 |X1,X2(u1, u2|x1, x2) = pU1,U2|X1,X2(u1, u2|x1, x2).

(166)

Further, let

pY |U ′′
1 ,U ′′

2 ,Z(y|u1, u2, z) = pY |U1,U2,Z(y|u1, u2, z)

. The conditional distribution pY |U ′
1,U ′

2,Z is defined as

pY |U ′
1,U ′

2,Z(y|u	
1, u

	
2, z)

=
∑

u′′
1 ,u′′

2

pU ′′
1 ,U ′′

2 |U ′
1,U ′

2
(u		

1 , u		
2 |u	

1, u
	
2)pY |U ′′

1 ,U ′′
2 ,Z(y|u		

1 , u		
2 , z)

(167)

=
∑

u′′
1 ,u′′

2

pU ′′
1 ,U ′′

2 |U ′
1,U ′

2
(u		

1 , u		
2 |u	

1, u
	
2)pY |U1,U2,Z(y|u		

1 , u		
2 , z).

(168)

The above definitions preserve all the Markov chains
associated with the original p.m.f. As a result, the
joint distribution of (U 	

0, U
	
1, U

	
2, X1, X2, Y, Z) factors

according to pU ′
0,U ′

1,U ′
2,X1,X2,Y,Z = pX1,X2,ZpU ′

0
pU ′

1|X1,U ′
0

pU ′
2|X2,U ′

0
pY |U ′

1,U ′
2,Z . On marginalizing away (U 	

0, U
	
1, U

	
2)

from pU ′
0,U ′

1,U ′
2,X1,X2,Y,Z , we may verify that we obtain the

p.m.f. pX1,X2,Y,Z .
It follows that the joint distribution of the random

variables (U 	
0, U

	
1, U

	
2, X1, X2, Y, Z) converges to the

the joint distribution of (U0, U1, U2, X1, X2, Y, Z)
in the limit m → ∞. As a result, the mutual
information terms I(U 	

0, U
	
1; X1|Z), I(U 	

0, U
	
2; X2|Z) and

I(U 	
0, U

	
1, U

	
2, ; X1, X2|Z) converge to I(U0, U1; X1|Z),

I(U0, U2; X2|Z) and I(U0, U1, U2, ; X1, X2|Z) respectively.
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Hence, we conclude that the given rate pair (R1, R2) is a
limit point of the set

⋃
K0,K1,K2≥0

C	K0,K1,K2 .

Proof Step 2: As in Appendix E, it suffices to consider an
optimization of the weighted sum term λ1I(U0, U1; X1|Z) +
λ2I(U0, U2; X2|Z) + λ3I(U0, U1, U2; X1, X2|Z) for non-
negative reals λ1, λ2, λ3, and find new auxiliary random vari-
ables whose cardinalities are bounded while not increasing the
weighted sum. For a given p(x1, x2, u0, u1, u2, y, z), consider
the perturbation defined by

p�(x1, x2, u0, u1, u2, y, z) = p(x1, x2, u0, u1, u2, y, z)
× (1 + �φ(u0)) .

For p�(x1, x2, u0, u1, u2, y, z) to be a valid p.m.f., we require
that (1 + �φ(u0)) ≥ 0 for all u0, and

∑
u0

p(u0)φ(u0) = 0.
Furthermore, we will consider perturbations φ(u0) such that

E [φ(U0)|X1 = x1, X2 = x2, Y = y, Z = z]

=
∑
u0

p(u0|x1, x2, y, z)φ(u0) = 0, ∀ x1, x2, y, z. (169)

Observe that such a non-zero perturbation satisfying (169)
exists as long as |U0| > |X1||X2||Y||Z|. Similar to Appen-
dix E, it can be shown verified that this perturbation preserves
p(x1, x2, y, z) as well as the structure of the p.m.f. in (155).

We examine the weighted sum term under p�(·).

λ1I�(U0, U1; X1|Z) + λ2I�(U0, U2; X2|Z)
+ λ3I�(U0, U1, U2; X1, X2|Z)

= λ1 (H(X1|Z) + H�(U0, U1, Z) − H�(U0, U1, X1, Z))
+ λ2 (H(X2|Z) + H�(U0, U2, Z) − H�(U0, U2, X2, Z))
+ λ3(H(X1, X2|Z) + H�(U0, U1, U2, Z)

− H�(U0, U1, U2, X1, X2, Z))
(a)
= λ1

(
I(U0, U1; X1|Z) + �Hφ(U0, U1, Z)

− �Hφ(U0, U1, X1, Z)
)

+ λ2

(
I(U0, U2; X2|Z) + �Hφ(U0, U2, Z)

− �Hφ(U0, U2, X2, Z)
)

+ λ3

(
I(U0, U1, U2; X1, X2|Z)

+ �Hφ(U0, U1, U2, Z) − �Hφ(U0, U1, U2, X1, X2, Z)
)
,

(170)

where in (a) we have defined

Hφ(U0,U1, U2, X1, X2, Z)

= −
∑

u0,u1,u2,x1,x2,z

p(u0, u1, u2, x1, x2, z)φ(u0)·

log p(u0, u1, u2, x1, x2, z).

Now we apply the first derivative condition to (170). This
yields

λ1 (Hφ(U0, U1, Z) − Hφ(U0, U1, X1, Z))
+ λ2(Hφ(U0, U2, Z) − Hφ(U0, U2, X2, Z))
+ λ3 (Hφ(U0, U1, U2, Z) − Hφ(U0, U1, U2, X1, X2, Z)) = 0.

(171)

Substituting (171) into (170), it follows that the weighted sum
is preserved. Thus if p(u0, u1, u2, x1, x2, y, z) attains the min-
imum of the weighted sum rate, then the latter is preserved for
any valid perturbation p�(u0, u1, u2, x1, x2, y, z) that satisfies
(169). Now we choose � such that minu0 (1 + �φ(u0)) = 0 and
let u0 = u∗

0 attain this minimum. This makes p�(u∗
0) = 0,

and the cardinality of U0 can be reduced by one. We can
proceed by induction until |U0| = |X1||X2||Y||Z|. Hence we
can restrict the cardinality to |U0| ≤ |X1||X2||Y||Z|.

We next perturb U1. For a given p(x1, x2, u0, u1, u2, y, z),
consider another perturbation defined by

p	�(x1, x2, u0, u1, u2, y, z) = p(x1, x2, u0, u1, u2, y, z)
× (1 + �φ	(u1)) .

We require that (1 + �φ	(u1)) ≥ 0 for all u1, and∑
u1

p(u1)φ	(u1) = 0. Furthermore, let φ	(u1) be such that

E [φ	(U1)|U0 = u0, X1 = x1, X2 = x2, Y = y, Z = z]

=
∑
u1

p(u1|u0, x1, x2, y, z)φ	(u1) = 0, ∀ u0, x1, x2, y, z.

(172)

Such a non-zero perturbation satisfying (172) exists as long as
|U1| > |U0||X1||X2||Y||Z|. Again, it can be verified that p	�(·)
preserves p(x1, x2, y, z) as well as the structure of the p.m.f.
in (155).

We examine the weighted sum term under the perturbed
distribution p	�(·).

λ1I�(U0, U1; X1|Z) + λ2I�(U0, U2; X2|Z)
+ λ3I�(U0, U1, U2; X1, X2|Z)

= λ1 (H(X1|Z) + H�(U0, U1, Z) − H�(U0, U1, X1, Z))
+ λ2 (H(X2|Z) + H�(U0, U2, Z) − H�(U0, U2, X2, Z))
+ λ3(H(X1, X2|Z) + H�(U0, U1, U2, Z)

− H�(U0, U1, U2, X1, X2, Z))
(a)
= λ1

(
I(U0, U1; X1|Z) + �Hφ′(U0, U1, Z)

− �Hφ′(U0, U1, X1, Z)
)

+ λ2 (H(X2|Z) + H�(U0, U2, Z) − H�(U0, U2, X2, Z))

+ λ3

(
I(U0, U1, U2; X1, X2|Z) + �Hφ′(U0, U1, U2, Z)

− �Hφ′(U0, U1, U2, X1, X2, Z)
)
, (173)

where in (a) we have defined

Hφ′(U0, U1, U2, X1, X2, Z)

= −
∑

u0,u1,u2,x1,x2,z

p(u0, u1, u2, x1, x2, z)φ	(u1)·

log p(u0, u1, u2, x1, x2, z).

Consider the p.m.f. of (U0, U2, X2, Z) under the perturbation
p	�(·).

p	�(u0, u2, x2, z) =
∑

u1,x1,y

p	�(u0, u1, u2, x1, x2, y, z)

=
∑

u1,x1,y

p(u0, u1, u2, x1, x2, y, z) (1 + �φ	(u1))
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= p(u0, u2, x2, z)

{
1 + �

∑
u1

p(u1|u0, u2, x2, z)φ	(u1)

}

(a)
= p(u0, u2, x2, z)

{
1 + �

∑
u1

p(u1|x2, u0)φ	(u1)

}

(b)
= p(u0, u2, x2, z),

where (a) follows since U2 → (X2, U0) → (U1, X1, Z), while
(b) follows from (172). Hence it follows that

H�(U0, U2, X2, Z) = H(U0, U2, X2, Z), (174)

H�(U0, U2, Z) = H(U0, U2, Z). (175)

Substituting (174) and (175) into (173), the weighted sum
becomes

λ1I�(U0, U1; X1|Z) + λ2I�(U0, U2; X2|Z)
+ λ3I�(U0, U1, U2; X1, X2|Z)

= λ1

(
I(U0, U1; X1|Z) + �Hφ′(U0, U1, Z)

− �Hφ′(U0, U1, X1, Z)
)

+ λ2I(U0, U2; X2|Z) + λ3

(
I(U0, U1, U2; X1, X2|Z)

+ �Hφ′(U0, U1, U2, Z) − �Hφ′(U0, U1, U2, X1, X2, Z)
)
.

(176)

Now we apply the first derivative condition to (176). This
yields

λ1 (Hφ′(U0, U1, Z) − Hφ′(U0, U1, X1, Z))+
λ3 (Hφ′(U0, U1, U2, Z) − Hφ′(U0, U1, U2, X1, X2, Z)) = 0.

(177)

Substituting (177) into (176), it follows that the weighted
sum is preserved. Thus if p(u0, u1, u2, x1, x2, y, z) attains
the minimum of the weighted sum rate, then the latter is
preserved for any valid perturbation p	�(u0, u1, u2, x1, x2, y, z)
that satisfies (172). Now the proof is completed by choosing
� such that minu1 (1 + �φ	(u1)) = 0 and the cardinality of
U1 drops by 1. We can proceed by induction until |U1| =
|U0||X1||X2||Y||Z|. The same argument can be repeated to
make |U2| ≤ |U0||X1||X2||Y||Z| as well.

ACKNOWLEDGEMENT

The authors thank the Associate Editor and the anonymous
reviewers for their insightful comments on the article. In par-
ticular, the authors would like to thank them for making aware
of [37, Sec. IV]. In addition, they thank Sandeep Pradhan for
alerting them of an error in an earlier version of the article.

REFERENCES

[1] P. W. Cuff, H. H. Permuter, and T. M. Cover, “Coordination capacity,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4181–4206, Sep. 2010.

[2] C. H. Bennett, P. W. Shor, J. A. Smolin, and
A. V. Thapliyal, “Entanglement-assisted capacity of a quantum channel
and the reverse Shannon theorem,” IEEE Trans. Inf. Theory, vol. 48,
no. 10, pp. 2637–2655, Oct. 2002.

[3] P. Harsha, R. Jain, D. McAllester, and J. Radhakrishnan, “The commu-
nication complexity of correlation,” IEEE Trans. Inf. Theory, vol. 56,
no. 1, pp. 438–449, Jan. 2010.

[4] A. Winter, “Compression of sources of probability distributions and
density operators,” 2022, arXiv:quant-ph/0208131.

[5] P. Cuff, “Distributed channel synthesis,” IEEE Trans. Inf. Theory,
vol. 59, no. 11, pp. 7071–7096, Nov. 2013.

[6] C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter,
“The quantum reverse Shannon theorem and resource tradeoffs for
simulating quantum channels,” IEEE Trans. Inf. Theory, vol. 60, no. 3,
pp. 2926–2959, May 2014.

[7] M. M. Wilde, P. M. Hayden, F. Buscemi, and M.-H. Hsieh, “The
information-theoretic costs of simulating quantum measurements,”
J. Phys. A, Math. Theor., vol. 45, no. 45, p. 453001, Nov. 2012.

[8] M. H. Yassaee, A. Gohari, and M. R. Aref, “Channel simulation via
interactive communications,” IEEE Trans. Inf. Theory, vol. 61, no. 6,
pp. 2964–2982, Jun. 2015.

[9] F. Haddadpour, M. H. Yassaee, S. Beigi, A. Gohari, and M. R. Aref,
“Simulation of a channel with another channel,” IEEE Trans. Inf. Theory,
vol. 63, no. 5, pp. 2659–2677, May 2017.

[10] G. Cervia, L. Luzzi, M. Le Treust, and M. R. Bloch, “Strong coordi-
nation of signals and actions over noisy channels with two-sided state
information,” IEEE Trans. Inf. Theory, vol. 66, no. 8, pp. 4681–4708,
Aug. 2020.

[11] G. Cervia, L. Luzzi, M. R. Bloch, and M. Le Treust, “Polar coding for
empirical coordination of signals and actions over noisy channels,” in
Proc. IEEE Inf. Theory Workshop (ITW), Sep. 2016, pp. 81–85.

[12] M. L. Treust, “Joint empirical coordination of source and channel,” IEEE
Trans. Inf. Theory, vol. 63, no. 8, pp. 5087–5114, Aug. 2017.

[13] R. A. Chou, M. R. Bloch, and J. Kliewer, “Empirical and strong
coordination via soft covering with polar codes,” IEEE Trans. Inf.
Theory, vol. 64, no. 7, pp. 5087–5100, Jul. 2018.

[14] M. Mylonakis, P. A. Stavrou, and M. Skoglund, “Empirical coordination
with multiple descriptions,” in Proc. 57th Annu. Allerton Conf. Com-
mun., Control, Comput. (Allerton), Sep. 2019, pp. 1074–1081.

[15] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[16] M. Braverman and A. Rao, “Information equals amortized commu-
nication,” IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 6058–6069,
Oct. 2014.

[17] J. Körner and K. Marton, “How to encode the modulo-two sum of
binary sources (Corresp.),” IEEE Trans. Inf. Theory, vol. 25, no. 2,
pp. 219–221, Mar. 1979.

[18] H. Yamamoto, “Wyner–Ziv theory for a general function of the cor-
related sources (Corresp.),” IEEE Trans. Inf. Theory, vol. 28, no. 5,
pp. 803–807, Sep. 1982.

[19] A. H. Kaspi, “Two-way source coding with a fidelity criterion,” IEEE
Trans. Inf. Theory, vol. 31, no. 6, pp. 735–740, Nov. 1985.

[20] T. Han and K. Kobayashi, “A dichotomy of functions F(X, Y)of
correlated sources(X, Y),” IEEE Trans. Inf. Theory, vol. 33, no. 1,
pp. 69–76, Jan. 1987.

[21] N. Alon and A. Orlitsky, “Source coding and graph entropies,” IEEE
Trans. Inf. Theory, vol. 42, no. 5, pp. 1329–1339, Sep. 1996.

[22] A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001.

[23] B. Nazer and M. Gastpar, “Computation over multiple-access channels,”
IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3498–3516, Oct. 2007.

[24] B. Nazer and M. Gastpar, “Lattice coding increases multicast rates for
Gaussian multiple-access networks,” in Proc. 45th Annu. Allerton Conf.,
2007, pp. 1089–1096.

[25] M. Gastpar, “Uncoded transmission is exactly optimal for a simple
Gaussian sensor network,” IEEE Trans. Inf. Theory, vol. 54, no. 11,
pp. 5247–5251, Nov. 2008.

[26] N. Ma and P. Ishwar, “Some results on distributed source coding for
interactive function computation,” IEEE Trans. Inf. Theory, vol. 57,
no. 9, pp. 6180–6195, Sep. 2011.

[27] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network coding for computing: Cut-set bounds,” IEEE Trans. Inf.
Theory, vol. 57, no. 2, pp. 1015–1030, Feb. 2011.

[28] H. Kowshik and P. R. Kumar, “Optimal function computation in directed
and undirected graphs,” IEEE Trans. Inf. Theory, vol. 58, no. 6,
pp. 3407–3418, Jun. 2012.

[29] S. Kuzuoka and S. Watanabe, “A dichotomy of functions in distributed
coding: An information spectral approach,” IEEE Trans. Inf. Theory,
vol. 61, no. 9, pp. 5028–5041, Sep. 2015.

[30] M. Sefidgaran, A. Gohari, and M. Aref, “On Körner-Marton’s sum
modulo two problem,” in Proc. Iran Workshop Commun. Inf. Theory
(IWCIT), May 2015, pp. 1–6.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 24,2022 at 09:06:28 UTC from IEEE Xplore.  Restrictions apply. 



KURRI et al.: MULTIPLE ACCESS CHANNEL SIMULATION 7603

[31] M. Sefidgaran and A. Tchamkerten, “Distributed function computation
over a rooted directed tree,” IEEE Trans. Inf. Theory, vol. 62, no. 12,
pp. 7135–7152, Dec. 2016.

[32] S. Watanabe, “A classification of functions in multiterminal distributed
computing,” IEEE Trans. Inf. Theory, vol. 66, no. 10, pp. 6169–6183,
Oct. 2020.

[33] S. Satpathy and P. Cuff, “Secure cascade channel synthesis,” IEEE Trans.
Inf. Theory, vol. 62, no. 11, pp. 6081–6094, Nov. 2016.

[34] B. N. Vellambi, J. Kliewer, and M. R. Bloch, “Strong coordination over
multi-hop line networks using channel resolvability codebooks,” IEEE
Trans. Inf. Theory, vol. 64, no. 2, pp. 1132–1162, Feb. 2018.

[35] A. Bereyhi, M. Bahrami, M. Mirmohseni, and M. R. Aref, “Empirical
coordination in a triangular multiterminal network,” in Proc. IEEE Int.
Symp. Inf. Theory, Jul. 2013, pp. 2149–2153.

[36] M. Mylonakis, P. A. Stavrou, and M. Skoglund, “Empirical coordination
subject to a fidelity criterion,” in Proc. IEEE Inf. Theory Workshop
(ITW), Aug. 2019, pp. 1–5.

[37] F. Haddadpour, M. H. Yassaee, M. R. Aref, and A. Gohari, “When is it
possible to simulate a DMC channel from another?” in Proc. IEEE Inf.
Theory Workshop (ITW), Sep. 2013, pp. 1–5.

[38] F. M. J. Willems, “The discrete memoryless multiple access channel
with partially cooperating encoders (Corresp.),” IEEE Trans. Inf. Theory,
vol. 29, no. 3, pp. 441–445, May 1983.

[39] S. I. Bross, A. Lapidoth, and M. Wigger, “Dirty-paper coding for
the Gaussian multiaccess channel with conferencing,” IEEE Trans. Inf.
Theory, vol. 58, no. 9, pp. 5640–5668, Sep. 2012.

[40] P. Noorzad, M. Effros, and M. Langberg, “The unbounded benefit of
encoder cooperation for the K-user MAC,” IEEE Trans. Inf. Theory,
vol. 64, no. 5, pp. 3655–3678, May 2018.

[41] T. Anwar Atif, A. Padakandla, and S. Sandeep Pradhan, “Source coding
for synthesizing correlated randomness,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2020, pp. 1576–1581.

[42] D. Mayer et al., “Nonequilibrium thermodynamics and optimal cooling
of a dilute atomic gas,” 2019, arXiv:1901.06188.

[43] T. Anwar Atif, A. Padakandla, and S. Sandeep Pradhan, “Source coding
for synthesizing correlated randomness,” 2020, arXiv:2004.03651.

[44] D. Krithivasan and S. S. Pradhan, “Distributed source coding using
abelian group codes: A new achievable rate-distortion region,” IEEE
Trans. Inf. Theory, vol. 57, no. 3, pp. 1495–1519, Mar. 2011.

[45] T. Anwar Atif and S. Sandeep Pradhan, “Distributed quantum faithful
simulation and function computation using algebraic structured measure-
ments,” 2021, arXiv:2101.02360.

[46] S.-Y. Tung, “Multiterminal source coding,” Ph.D. dissertation, School
Elect. Comput. Eng., Cornell Univ., Ithaca, NY, USA, 1978.

[47] T. Berger, “Multiterminal source coding,” Inf. Theory Approach Com-
mun., vol. 229, pp. 171–231, Jul. 1977.

[48] G. R. Kurri, V. Ramachandran, S. R. B. Pillai, and V. M. Prabhakaran,
“Multiple access channel simulation,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2021, pp. 2411–2416.

[49] M. Gastpar, “The Wyner–Ziv problem with multiple sources,” IEEE
Trans. Inf. Theory, vol. 50, no. 11, pp. 2762–2768, Nov. 2004.

[50] M. Sefidgaran and A. Tchamkerten, “Computing a function of correlated
sources: A rate region,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2011,
pp. 1856–1860.

[51] M. Sefidgaran and A. Tchamkerten, “On computing a function of
correlated sources,” 2011, arXiv:1107.5806.

[52] P. Gacs and J. Körner, “Common information is far less than mutual
information,” Problems Control Inf. Theory, vol. 2, no. 2, pp. 149–162,
1973.

[53] M. H. Yassaee, M. R. Aref, and A. Gohari, “Achievability proof via
output statistics of random binning,” IEEE Trans. Inf. Theory, vol. 60,
no. 11, pp. 6760–6786, Nov. 2014.

[54] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Jul. 1973.

[55] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2011.

[56] A. A. Gohari and V. Anantharam, “Evaluation of Marton’s inner bound
for the general broadcast channel,” IEEE Trans. Inf. Theory, vol. 58,
no. 2, pp. 608–619, Feb. 2012.

Gowtham R. Kurri (Member, IEEE) received the B.Tech. degree in elec-
tronics and communication engineering from the International Institute of
Information Technology, Hyderabad, India, in 2011, and the M.Sc. and
Ph.D. degrees from the Tata Institute of Fundamental Research, Mumbai,
India, in 2020. From 2011 to 2012, he worked as an Associate Engineer at
Qualcomm India Private Ltd., Hyderabad, India. From July to October, 2019,
he was a Research Intern at the Blockchain Technology Group, IBM Research,
Bengaluru, India. Since 2020, he has been a Post-Doctoral Researcher with
the School of Electrical, Computer and Energy Engineering, Arizona State
University. His research interests are in information theory and statistical
machine learning.

Viswanathan Ramachandran was born in Kerala, India. He received the
Ph.D. degree in electrical engineering from the Indian Institute of Technology
Bombay in 2020. He worked as a Visiting Researcher at the Tata Institute
of Fundamental Research in 2020. Since 2021, he has been a Post-Doctoral
Fellow with the Department of Electrical Engineering, Technical University of
Eindhoven, The Netherlands. His research interests are in information theory
and multi-user information theory with applications to wireless and optical
channels. He was a recipient of the Naik and Rastogi Award for excellence in
Ph.D. research from the Indian Institute of Technology Bombay in 2021 and
the Best Paper Award from the 25th National Conference on Communications
(NCC), Indian Institute of Science, Bengaluru, in 2019.

Sibi Raj B. Pillai (Member, IEEE) received the Ph.D. degree in computer
science and communication systems from Ecole Polytechnique Fédérale
de Lausanne (EPFL), Switzerland, in July 2007. From October 2007 to
April 2009, he was a Research Fellow with the University of Melbourne.
Since 2009, he has been a Faculty Member with the Department of Elec-
trical Engineering, Indian Institute of Technology Bombay. His research
interests are in network information theory, feedback communications,
cross layer scheduling, biological information inheritance, and radar signal
processing.

Vinod M. Prabhakaran (Member, IEEE) received the M.E. degree from the
Indian Institute of Science in 2001 and the Ph.D. degree from the University of
California at Berkeley, Berkeley, in 2007. He was a Post-Doctoral Researcher
at the University of Illinois at Urbana–Champaign, from 2008 to 2010 and
the Ecole Polytechnique Fédérale de Lausanne, Switzerland, in 2011. Since
2011, he has been with the School of Technology and Computer Science,
Tata Institute of Fundamental Research, Mumbai. His research interests are
in information theory, communication, cryptography, and signal processing.
He was an Associate Editor for the Special Issue on Shannon Theory of the
IEEE TRANSACTIONS ON INFORMATION THEORY from 2016 to 2019. He is
currently an Associate Editor for the Special Issue on Security and Privacy
of the IEEE TRANSACTIONS ON INFORMATION THEORY.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 24,2022 at 09:06:28 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


