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a b s t r a c t 

Given the dynamics of today’s markets, decision support based on advanced analytics is required to help market 

players keep their top position. This paper presents an approach to help business decision-makers gain market 

share by providing competitive tender offers for Full Truck Load (FTL) services. In particular, we compare oper- 

ating a fleet of full charter trucks (FCT), using Spot-Market (SM) capacity and a mixture of both options against 

each other. A Pickup and Delivery Problem is modeled, and solved using an Adaptive Large Neighborhood Search 

heuristic. Computational results indicate strong service benefits combining FCT and SM usage. Numerical exper- 

iments are presented in detail to support the findings. Additionally, a real-life case study originating from DB 

Schenker is presented. 
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. Introduction 

Full Truck Load (FTL) transportation gained limited attention from

he scientific community, compared to Less-than-Truck Load (LTL) or

xpress deliveries Wieberneit (2008) . However, there is a multitude of

spects related to FTL transportation, which have a significant financial

mpact and are worth researching, e.g. , fleet sizing, dynamic routing, or

TL solution design. 

Freight forwarders regularly compete at tenders organized by large

hippers who need tailored full-load logistics solutions. To win such ten-

ers, and thus gain more market share, the forwarders need to provide

ost-efficient full-load solutions, which are relatively complex to ana-

yze. The core trade-off when designing such solutions is the following:

n the one hand, the solution needs to be economical and avoid overex-

osure to prohibitively high fixed costs; on the other hand, the shipper

eeds to be provided with sufficient capacity at nearly any moment,

rrespective of volume development. 

Consequently, a freight forwarder has two extreme options to orga-

ize capacity. One would be to cover all shipping demand exclusively

hrough flexible capacity sourced from SM. Usually, SM can provide

ervice at short notice. This flexibility, however, comes at a relatively

igh market price and can not be taken for granted in special market

ituations, e.g. , during peak seasons or around public holidays. 
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Alternatively, the forwarder could invest into a fleet of FCT dimen-

ioned according to the (assumed) peak demand. The main idea is the

ollowing: rather than providing a customer an offer based on SM prices

er trip or trade lane, the forwarder would instead calculate the costs of

hartering and managing a fleet of trucks on a long-term basis, e.g. , sev-

ral months or years. When sizing this fleet properly and dispatching it

fficiently, the offer involving FCT may eventually be more competitive

han an SM solution. 

Finally, an effective mix of both solutions mentioned above may, at

east in theory, provide an even more cost-efficient solution than both

ndividual options introduced above. 

As stated earlier, winning tenders and increasing market share is the

rimary goal when designing such logistics solutions. Yet, the design

rocess itself includes costs and profits as secondary aspects. An inter-

al analysis of a (cost-)effective mix of SM- and FCT-options provides

nternal transparency about expected costs which enables the submis-

ion of a competitive tender bid. The profit aspect is in the hands of the

id writer after studying the costs of the designed solution. 

The problem has similarities with a multitude of problems exten-

ively studied by researchers over the years. Specifically, it boils down

o the Pickup and Delivery Problem with Time Windows (PDPTW)

 Sol and Savelsbergh, 1995 ), in particular to the FTL variant of the

DPTW. 
ne 2022 
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it has to wait for the next one. 

1 Note that this induces a minimum cost of 𝜇𝜅 per vehicle. Thus, an explicit 

fixed cost per vehicle is not considered. 
A recent study on FTL-PDPTW can be found in Soares et al. (2019) .

he authors propose a meta-heuristic to tackle the problem with syn-

hronization constraints. The approach is validated in a case study on

he biomass logistics industry. In a related study, Xue et al. (2021) de-

elop a column generation heuristic algorithm to solve large problem

nstances for FTL routing problem with multiple shifts. The described

pproach outperforms the previous attempts in terms of computational

ime and solution quality. Due to the lengthy planning horizons con-

idered, driving regulation constraints become crucial in achieving re-

listic solutions. Goel (2009, 2010, 2018) study the driving regulations

nd modeling approaches in the vehicle routing context. Goel and Vi-

al (2013) describe a heuristic algorithm designed to solve the vehicle

cheduling problem and analyze different driving regulations around

he world. In a related study, Goel and Irnich (2016) propose an ex-

ct approach to tackle the problem to optimality. In addition, consid-

ring the assumption that the trucks do not have pre-defined start and

nd depots leads us to a particular case of the well-known Open Ve-

icle Routing Problem (OVRP) ( Repoussis et al., 2007 ), where vehi-

les do not have to return to a depot. A recent study on OVRP can

e found in Lahyani et al. (2019) . The authors propose a hybrid adap-

ive large neighborhood search approach to solve large-scale problems

or OVRP and manage to find new best-known solutions for specific in-

tances. Furthermore, various routing problems with practical side con-

traints, such as FTL property and driving regulations, have been stud-

ed by scientists in the last decades. The interested reader is referred

o Annouch et al. (2016) ; Braekers et al. (2016) ; Vidal et al. (2013) for

ecent surveys on different types of routing problems. 

The orienteering problem Archetti et al. (2009) is another related

ell-known problem. In this context, each resource ( i.e. , truck) aims

t finding a minimum cost (or the most profitable) path, starting at a

ickup location and ending at a delivery location. Expensive shipments,

n terms of FCT cost, would then be serviced by SM. In this sense, the aim

s to find the right trade-off between FCT and SM costs. Note that both

he vehicle routing problem and the orienteering problem are similar

ypes of problems. The distinction is that the orienteering problem max-

mized profits, rather than minimizes costs. The orienteering problem

lso does not force that every location is visited. Orienteering problems

an thus be seen as a routing problem with profits ( Van Steenwegen and

unawan, 2019 ). 

The contributions of the paper at hand are as follows: 

1. We analyse the needed decision support for FTL transportation and

the related tendering process. 

2. We model the described problem as a Pickup and Delivery Problem

and propose a tailored adaptive large neighborhood search (ALNS)

to solve the underlying routing problem. 

3. Numerical results show that the mix of SM and FCT may lead to

cheaper FTL solutions compared to traditional pure SM strategy, hav-

ing the transformed VRP Gehring & Homberger instances as bench-

marks. 

4. We also present a practical case application to the tender support

for FTL business based on a real-life setting originating from DB

Schenker. DB Schenker is a freight forwarder that supports indus-

try and trade in the global exchange of goods by land transport,

worldwide air and ocean freight, contract logistics and supply chain

management. 

This paper is organized as follows. The tender decision process is

riefly sketched in Section 2 . In Section 3 we formally define the con-

idered mathematical problem, we present the related literature, and

iscuss the transformation of the business scenario into the formal prob-

em. In Section 4 we present a single-solution meta-heuristic tailored

o solve the problem at hand. Finally, we discuss the experiments on

ransformed literature instances and real-world data sets involving two

ustomers and the obtained solutions in Section 5 . 
2 
. Tender decision process 

For tender preparation, freight forwarders generally are given a

istorical data-set of shipments, which is assumed to be representa-

ive. Shipment data includes origin, destination locations, along with

iming/lead-time and other requirements, if applicable. 

For operations planning, it is of great importance when the shipment

nformation becomes available. In real-life, the shipments are generally

ot known well in advance ( e.g. , one month in advance), and if so, the

nformation often changes. 

Once the shipment data is fixed and known, the dispatchers inves-

igate the available options: possibly multiple SM offers, and, if avail-

ble, FCT. If no FCT fleet is available, the dispatchers generally choose

he cheapest SM offer. However, if the FCT option exists, the dispatch-

rs would choose it only if the total cost, including the incurred empty

ravel, would not exceed the cheapest offer from SM (considering actual

ocations of the FCT vehicles). 

The dispatching approach described above may have economic

rawbacks, thus leading to high operating costs. In particular, the dis-

atchers might choose an insignificantly cheaper SM offer compared to

CT. However, at the end of the e.g. , month, the already available FCT

ehicles may incur additional costs if they were underutilized due to

uch sub-optimal decisions by dispatchers. Hence, from an operational

erspective, a dynamic decision support tool is needed to assure eco-

omic viability, however, this is not the scope of this paper. 

As aforementioned, SM is dynamic and to reduce the risk, freight

orwarders consider certain safety buffer in the assumed SM rates for the

ender offers. For this purpose, predictive analytic methods are generally

sed. For the scope of this paper, we assume the SM rates to include the

afety buffer given by the business experts. 

. Problem description and mathematical model 

We consider a set 𝑅 of transportation requests between a finite

et of locations 𝐿 . Each request 𝑟 ∈ 𝑅 has an origin 𝑟 𝑜 ∈ 𝐿 , a destina-

ion 𝑟 𝑑 ∈ 𝐿 , as well as a time window 𝑟 𝑜 tw at the origin and a set of time

indows 𝑟 𝑑 tws at the destination. A time window is defined by two abso-

ute points in time. Every request must be picked up at its origin within

ts origin time window, transported directly to its destination and be

elivered within one of its destination time windows. The travel-time

nd travel-distance between two locations 𝓁 , 𝓁 ′ are given by 𝑡 𝓁 , 𝓁 ′ and

 𝓁 , 𝓁 ′ . 

Each transportation request 𝑟 can be outsourced at a cost of 𝑠 𝑟 . The

emaining requests must be served by a set of vehicles at a cost of 𝜅 per

nit of driven distance. 

The task at hand is to find a cost-optimal assignment of all requests

o the options of outsourcing it or serving it by a vehicle. Note that the

et of vehicles is determined as part of the task. 

Serving the non-outsourced requests by vehicles is subject to the fol-

owing constraints: 

• Each vehicle can serve at most one request at any given point in

time. 
• Each vehicle starts at the origin of its first request, ends at the des-

tination of its last request, and has to drive a distance of at least

𝜇. 1 

• Each (un-)loading operation requires a time of 𝜎. The complete (un-

)loading operation has to be executed within one of the respective

time windows. Hence, if a vehicle arrives outside the time windows,
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Table 1 

Parameters and variables in the model. 

Variable Meaning 

𝒙 𝑎 vehicle is traveling along arc 𝑎 ( = 1) or not ( = 0) 

𝒚 𝑛 →𝑚 distance from origin to 𝑚 when a vehicle travels along 𝑛 → 𝑚 

𝒍 𝑛 = ( 𝑙 𝑛, 1 , 𝑙 𝑛, 2 ) state of the driver at node 𝑛 (arrival time, nonstop driving time) 

Parameter Meaning 

𝑑 𝑎 distance of arc 𝑎 

𝜅 cost of driving per unit distance 

𝜇 minimum driving distance of a vehicle 

𝑀 sufficiently large constant 

𝑠 𝑟 cost of out-sourcing request 𝑟 to the spot-market 
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• Each vehicle has to fulfill the following driving time regulations: A

shift-break is a break of duration of at least 𝜏𝑏 and a Sunday-break

is a break of duration of at least 𝜏s ≥ 𝑡𝑖𝑚𝑒 . After a duration of 𝜏n 
cumulative driving without shift-breaks, a shift-break is required.

(Un-)Loading does not count as break time, whereas waiting time

does. Every Sunday, a Sunday-break is required. 

A mathematical model combining classical arc-based vehicle rout-

ng, the minimum driving distance constraint from (Kara, 2011, Sec-

ion III) , and the labeling technique from Goel and Gruhn (2006) for the

riving time regulations is constructed in three phases: First, we define

 graph as basis for an arc-based vehicle routing model. Then, a model

especting everything except for the timing constraints is built. Finally,

he timing constraints (time windows, simplified driving regulation) are

dded. 

Variables are denoted by bold lower-case letters. Instance indepen-

ent parameters are denoted by greek letters. We write 𝔹 ∶= {0 , 1}
nd ℕ ∶= {0 , 1 , 2 , …} . By 𝑀 we denote a sufficiently large constant. An

verview of the variables and parameters can be found in Table 1 . 

Let 𝐺 ∶= ( 𝑁, 𝐴 ) denote the directed graph constructed as follows:

he set 𝑁 of nodes consists of 

 ∶= { ( 𝑟 𝑜 , 𝑟 ) ∶ 𝑟 ∈ 𝑅 } ∪
{(

𝑟 𝑑 , 𝑟 
)
∶ 𝑟 ∈ 𝑅 

}
∪
{
𝑛 0 , 𝑛 ∞

}
ll origin- and destination locations together with two artificial nodes 𝑛 0 
nd 𝑛 ∞ denoting the start and end of all tours. We write 𝑁 𝑅 ∶= 𝑁 ⧵
 𝑛 0 , 𝑛 ∞} . For a request 𝑟 we define 𝑟 𝑠 as the start of the time window 𝑟 𝑜 tw
nd 𝑟 𝑒 as its end. The set 𝐴 of arcs represents the vehicles realizing the

on-outsourced request, traveling empty between locations or waiting

t a location. It consists of the arcs serving requests 𝑟 ∈ 𝑅 , the tour start,

he tour end, and waiting/empty travel: 

 ∶= {( 𝑟 𝑜 , 𝑟 ) → ( 𝑟 𝑑 , 𝑟 ) ∶ 𝑟 ∈ 𝑅 } 

∪ { 𝑛 0 → ( 𝑟 𝑜 , 𝑟 ) ∶ 𝑟 ∈ 𝑅 } 

∪ {( 𝑟 𝑑 , 𝑟 ) → 𝑛 ∞ ∶ 𝑟 ∈ 𝑅 } 

∪
{ 

( 𝑟 𝑑 1 , 𝑟 1 ) → ( 𝑟 𝑜 2 , 𝑟 2 ) ∶ 𝑟 1 ≠ 𝑟 2 ∈ 𝑅, 𝑟 𝑠 1 + 𝑡 
𝑟 𝑜 1 ,𝑟 

𝑑 
1 
+ 𝑡 

𝑟 𝑑 1 ,𝑟 
𝑜 
2 
+ 3 𝜎 ≤ 𝑟 𝑒 2 

} 

. 

or an arc 𝑎 = 𝑛 → 𝑚 we define target ( 𝑎 ) ∶= 𝑚 and source ( 𝑎 ) ∶= 𝑛 as the

arget and source of 𝑎 . We extend the distances 𝑑 𝓁,𝑘 and travel times 𝑡 𝓁,𝑘 
etween locations to 𝑑 𝑎 and 𝑡 𝑎 on arcs 𝑎 ∈ 𝐴 by 

 𝑎 ∶= 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 source ( 𝑎 ) = 𝑛 0 , 

0 target ( 𝑎 ) = 𝑛 ∞, 

𝑑 𝓁,𝑘 𝑎 = ( 𝓁, 𝑟 ) → ( 𝑘, 𝑟 ′) 
and 𝑡 𝑎 ∶= 

⎧ ⎪ ⎨ ⎪ ⎩ 
0 source ( 𝑎 ) = 𝑛 0 , 

0 target ( 𝑎 ) = 𝑛 ∞, 

𝑡 𝓁,𝑘 𝑎 = ( 𝓁, 𝑟 ) → ( 𝑘, 𝑟 ′) . 

Let 𝒙 𝑎 ∈ 𝔹 denote whether a vehicle is traveling along arc 𝑎 ∈ 𝐴

 𝒙 𝑎 = 1 ) or not ( 𝒙 𝑎 = 0 ). Note that for an arc 𝑎 = ( 𝑟 𝑜 , 𝑟 ) → ( 𝑟 𝑑 , 𝑟 ) this de-

otes whether the request 𝑟 is served by vehicles ( 𝒙 𝑎 = 1 ) or out-sourced

 𝒙 𝑎 = 0 ). As introduced in (Kara, 2011, Section III) we define 𝒚 𝑛 →𝑚 ∈ ℕ
s the total distance from the origin 𝑛 0 to node 𝑚 ∈ 𝑁 traveled by a ve-

icle when it goes along 𝑛 → 𝑚 ∈ 𝐴 . We focus purely on the routing and

he minimum distance per vehicle constraint: 

in 
∑
𝑎 ∈𝐴 

𝜅𝑑 𝑎 𝒙 𝑎 + 

∑
𝑟 ∈𝑅 

𝑠 𝑟 (1 − 𝒙 ( 𝑟 𝑜 ,𝑟 ) →( 𝑟 𝑑 ,𝑟 ) ) (1a) 
s  

3 
 . t. 
∑
𝑎 ∈𝐴 

target ( 𝑎 )=( 𝑟 𝑜 ,𝑟 ) 

𝒙 𝑎 = 𝒙 ( 𝑟 𝑜 ,𝑟 ) →( 𝑟 𝑑 ,𝑟 ) ∀𝑟 ∈ 𝑅 (1b) 

∑
𝑎 ∈𝐴 

ource ( 𝑎 )=( 𝑟 𝑑 ,𝑟 ) 

𝒙 𝑎 = 𝒙 ( 𝑟 𝑜 ,𝑟 ) →( 𝑟 𝑑 ,𝑟 ) ∀𝑟 ∈ 𝑅 (1c) 

∑
𝑎 ∈𝐴 

ource ( 𝑎 )= 𝑛 

𝒚 𝑎 = 

∑
𝑎 ∈𝐴 

source ( 𝑎 )= 𝑛 

𝑑 𝑎 𝒙 𝑎 + 

∑
𝑎 ∈𝐴 

target ( 𝑎 )= 𝑛 

𝒚 𝑎 ∀𝑛 ∈ 𝑁 𝑅 (1d) 

 𝑛 0 →( 𝑟 𝑜 ,𝑟 ) = 0 ∀𝑟 ∈ 𝑅 (1e) 

 𝑎 ≤ 𝑀 𝒙 𝑎 ∀𝑎 ∈ 𝐴 (1f) 

 𝑎 ≥ 𝜇𝒙 𝑎 ∀𝑎 ∈ 𝐴 ∶ target ( 𝑎 ) = 𝑛 ∞ (1g) 

 𝑎 ∈ 𝔹 , 𝒚 𝑎 ∈ ℝ 

+ ∀𝑎 ∈ 𝐴 (1h) 

Description: The model minimizes the sum (1a) of the driving cost of

on-outsourced requests and the outsourcing cost. If a request 𝑟 is real-

zed by own vehicles, there needs to be a vehicle entering the node ( 𝑟 𝑜 , 𝑟 ) ,
ee (1b) , and a vehicle leaving the node ( 𝑟 𝑑 , 𝑟 ) , see (1c) . Driven dis-

ances 𝒚 are initially set by (1e) at the artificial origin node, updated via

1d) , and restricted to used arcs by (1f) . As shown in Kara (2011) , fur-

her subtour-elimination constraints are not required. (1g) ensures the

inimum travel distance for each route. 

Finally, we consider the simplified driving time regulations. Inspired

y Goel and Gruhn (2006) , we define for all nodes 𝑛 ∈ 𝑁 𝑅 a label: 

 𝑛 = 

( 

𝑙 𝑛, 1 
𝑙 𝑛, 2 

) 

= 

( 

arrival time 

nonstop driving time 

) 

o represent the state of the driver at the node. The vehicle can start the

ervice at node 𝑛 ∈ 𝑁 𝑅 at time 𝑙 𝑛, 1 and can depart from 𝑛 at time 𝑙 𝑛, 1 + 𝜎.

t may drive 𝜏n − 𝑙 𝑛, 2 before the next break. 

As shown in (Goel and Gruhn, 2006, Section V) , it is possible to pre-

ompute the set  𝑚 ( 𝒍 𝑛 ) of potential labels for a vehicle that is supposed

o travel from node 𝑛 ∈ 𝑁 𝑅 with label 𝒍 𝑛 to a node 𝑚 ∈ 𝑁 𝑅 . This takes 

• the simplified driving regulation, 
• the time window(s) of the requests 𝑟 ∈ 𝑅 at origin and destination,

and 
• the Sunday-break 𝜏s 

nto account. Let 𝑙 𝑟 ∶= ( 𝑟 𝑠 , 0) ⊤ denote the label of a vehicle when the

equest 𝑟 is the first request within the tour. 

The extended model taking time windows and driving time regula-

ion into account is then 

in (1a) 

s . t. (1b) , (1c) , (1d) , (1e) , (1f) , (1g) , (1h) 

𝒙 𝑛 0 →( 𝑟 𝑜 ,𝑟 ) = 1 ⟹𝒍 ( 𝑟 𝑜 ,𝑟 ) = 𝑙 𝑟 ∀𝑟 ∈ 𝑅 (2a) 

 𝑛 →𝑚 = 1 ⟹𝒍 𝑚 ∈  𝑚 ( 𝒍 𝑛 ) ∀𝑛 → 𝑚 ∈ 𝐴 ∶ 𝑛, 𝑚 ∈ 𝑁 𝑅 (2b) 

. Solution approach 

The algorithm presented in this section is a single-solution meta-

euristic based on Large Neighborhood Search (LNS). The general idea

riginates in Shaw (1998) , and has been gaining significant popularity

n the recent past. In particular, it has proven to be highly effective in

ackling vehicle routing problems and provides a good trade-off between

olution quality and computational time. Note that in the literature the

erm shipment is used instead of request . 

The main workflow of the algorithm is as follows: given an initial

olution, iteratively modify it until a stopping criterion is reached. Two
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A  

t  
asic operators in the LNS framework are removal and insertion proce-

ures. In the current context, i.e. , the pickup and delivery problem, the

emoval method un-plans a percentage 𝜉 of already planned requests

pickup and delivery vertices associated with a request) from the solu-

ion, and the insertion method would re-plan these requests, by using,

.g. , an insertion heuristic. Note that for large instances, removing, e.g. ,

0 % of the requests might still lead to a large optimization sub-problem,

ence we limit it by an absolute upper bound 𝜓 on the number of re-

uests to remove. At every iteration, the modified solution is compared

o the best solution found, and promoted to the new best solution if

roved to be better. It is worth noting that a solution might contain un-

lanned requests, which are assumed to be serviced by SM, and thus

ncur additional costs. The original framework is extended to consider

n adaptive mechanism ( Pisinger and Ropke, 2007 ), i.e. , Adaptive LNS

ALNS), where user-defined removal and insertion methods are selected

ased on their performance during the search. 

The high-level pseudo-code of ALNS is presented in Algorithm 1 .

lgorithm 1 ALNS 

𝑠 ← generateInitialSolution() 
𝑠 best ← 𝑠 

while ! stoppingCriterion do 

𝑟 ∗ ← chooseRemovalOperator() 
𝑖 ∗ ← chooseInsertionOperator() 
𝑠 ′ ← partiallyDestroySolution( 𝑟 ∗ , 𝑠 ) 
𝑠 new ← repairSolution( 𝑖 ∗ , 𝑠 ′) 
if accept( 𝑠 new ) then 

𝑠 ← 𝑠 new 

if 𝑠 new < 𝑠 best then 

𝑠 best ← 𝑠 new 

updateOperatorProbabilities() 
return 𝑠 best 

he interested reader is referred to Ghilas et al. (2016) ;

rimault et al. (2017) ; Pisinger and Ropke (2007) ; Ropke and

isinger (2006) for more details about applying ALNS to a broad range

f VRPs. 

The starting solution 𝑠 is constructed using a greedy algorithm. Its

asic idea is to insert an unplanned request in the feasible position which

ncreases the objective function value the least. Note that the initial so-

ution out-sources all requests, nothing is planned on vehicles. A request

s given to a vehicle only if the insertion cost is smaller than the corre-

ponding out-sourcing cost. While the stopping criterion is not reached,

.g. , the maximum number of iterations 𝑚 , the algorithm randomly se-

ects one removal and one insertion operator, and applies them to the

urrent solution 𝑠 , thus generating a new solution 𝑠 new . The method

ccept verifies whether the newly-built solution is accepted. Simu-

ated annealing acceptance criteria are used in the current implementa-

ion, similarly to Pisinger and Ropke (2007) ; Ropke and Pisinger (2006) ,

o that worse solutions may also get accepted. If the newly-built solu-

ion is accepted, the current solution 𝑠 is overwritten. Finally, the best

olution found is returned. 

Note that the probability of an operator being chosen is dynamically

pdated every 𝑛 th iteration. The better the performance of the oper-

tor, the higher its chance of being chosen. Eventually, the algorithm

ill converge to using only good-performing operators, see Pisinger and

opke (2007) ; Ropke and Pisinger (2006) . 

It is important to note that the number of vehicles is unlimited, how-

ver at the end of each ALNS iteration, certain number of requests may

emain unplanned. This is mainly due to the fact that out-sourcing may

e cheaper if a significant empty travel would be induced by servicing a

pecific request using a vehicle, or if simply the SM rate is cheaper than

he FCT rate. 
4 
.1. Removal operators 

Several removal operators are used in the current implementation,

s described below. Note the that acronyms are taken from the literature

nd use the term shipment instead of request. 

RRR: Random Route Removal randomly selects a route and removes

it from the solution. All routes have the same probability of being

selected; 

TRR: Time-based Route Removal is similar to RRR, however, the

probability of a route being chosen depends on the total travel

time of the corresponding route in the current solution. In other

words, longer total travel time leads to a higher probability of

being selected; 

SRR: Stop-based Route Removal is similar to TRR, however, smaller

number of requests planned within a route leads to a higher prob-

ability of being selected. The intuition behind this is that the

fewer requests are planned in a route, the easier it is to re-plan

them into other routes, thus avoiding this route in the solution. 

RSR: Random Shipment Removal randomly selects a set of requests

to be removed from the current solution. This operator helps in

terms of search diversification. 

TSR: Time-based Shipment Removal is similar to RSR, however, the

probabilities of being selected depend on the incurred driving

times. In particular, the probability of selecting a request is higher

if, in a given solution, total driving time to its pickup location,

and from its delivery location, is longer. 

SR: Shaw Removal removes a set of requests similar to each other

( Shaw, 1998 ). The similarity is defined by the distance between

pickup locations and delivery locations of each pair of requests.

In addition, the time windows of the requests are part of the simi-

larity function. Two variants of SR are used: ( i ) with distance and

time windows as similarity criteria, and ( ii ) only time windows

as similarity criterion. 

.2. Insertion operators 

We provide more details about the insertion operators used as fol-

ows. 

Classical greedy: identifies in each iteration the request (of the set

of unplanned requests and the set of (partial) routes) which incurs

the lowest insertion cost and inserts it in its best feasible position.

It repeats this operation until no unplanned request exists or no

insertion cost ( i.e. , FCT cost) is lower then the corresponding SM

cost. 

Regret insertion: finds the request which incurs the maximum regret

if not inserted in its cheapest feasible position at every iteration.

Let 𝑐 1 represent the cost of inserting the requests in the route

with the cheapest feasible position within the FCT routes, 𝑐 2 –

in another route with the second cheapest position, 𝑐 3 – third,

etc. Then, the regret function can be defined as 𝑐 2 − 𝑐 1 , known

as 2-regret. For more details on regret insertion, please refer to

Potvin and Rousseau (1993) . In order to take into account more

information when deciding which request to insert next, the re-

gret function is generalized, known as 𝑘 -regret, considering mul-

tiple routes. For example, it is possible to look at the three cheap-

est insertion positions. i.e. , 
∑𝑘 

𝑖 =2 ( 𝑐 𝑖 − 𝑐 1 ) , where 𝑘 = 3 is the num-

ber of look-ahead insertion positions to take into account ( i.e. ,

3-regret). Note that several regret operators (with different 𝑘 val-

ues) can be used within the ALNS. 

The general framework of an insertion operator is shown in

lgorithm 2 : Given a set 𝑆 in of unplanned requests and a set 𝑃 of par-

ial routes, iteratively find the cost of inserting a request into a route
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Algorithm 2 Insertion procedure 

Require: 𝑆 in = 𝑢𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 , 𝑃 = 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑠 , 𝑠 𝑟 (out-sourcing 

costs) 

𝑆 out ← ∅
while 𝑆 in ≠ ∅ do 

for 𝑟 ∈ 𝑆 in , 𝑝 ∈ 𝑃 do 

𝑐 𝑟𝑝 ← computeCostOfInsertingRequestInRoute( 𝑟 , 𝑝 ) 

( 𝑟 ∗ , 𝑝 ∗ ) ← requestToInsertNext( 𝑐) 
if 𝑐 𝑟 ∗ 𝑝 ∗ < 𝑠 𝑟 ∗ then 

insertRequestInRoute( 𝑟 ∗ , 𝑝 ∗ ) 
else 

𝑝 new ← ∅
insertRequestInRoute( 𝑟 ∗ , 𝑝 new ) 
if allRoutesAreWellUtilized( 𝑃 ) and cost( 𝑝 new ) ≤ 𝑠 𝑟 ∗ then 

𝑃 ← 𝑃 ∪ { 𝑝 new } 
else 

𝑆 out ← 𝑆 out ∪ { 𝑟 ∗ } 
𝑆 in ← 𝑆 in ⧵ 𝑟 ∗ 

return 𝑆 out 
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Table 2 

Business-specific parameters. 

Parameter Description Value Unit 

𝜏n duration of cumulative driving without shift-breaks 450 min 

𝑡𝑖𝑚𝑒 minimum duration of a break 990 min 

𝜏s minimum duration of a Sunday-break 1,320 min 

𝜎 duration of an (un-)loading operation 120 min 

𝜈 average speed of vehicles 70 km/h 

Table 3 

Technical parameters. 

Parameter Description Value 

𝑚 maximum number of ALNS iterations 25,000 

𝜓 maximum absolute number of requests to remove 100 

𝜉 maximum relative number of requests to remove 35 % 

𝑛 every 𝑛 iterations update operators weights 200 
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hat incurs the most beneficial change of the given cost function . If the

nsertion cost is cheaper than the corresponding out-sourcing cost, the

nsertion is performed. 

Otherwise, a new trip is created only if no feasible insertion is found

n the existing vehicle trips, and the corresponding out-sourcing cost is

igher or equal than using a new vehicle trip. In addition, a new trip is

reated only if all vehicles used are utilized w.r.t. distance traveled at

east 𝜇 per planning horizon. 

Otherwise, the request is placed into the out-sourcing bank 𝑆 out , i.e. ,

he set of the requests which are out-sourced. 

The algorithm is assumed to start with one vehicle available. As soon

s the vehicles used are well-utilized as aforementioned, the algorithm

akes an additional vehicle available. 

We compute an insertion cost matrix 𝑐 𝑟𝑝 for each unplanned request

nd each existing route. The method requestToInsertNext re-

urns the request with the least incurred insertion cost, along with the

oute and the corresponding position within the route. Here, either clas-

ical greedy or a 𝑘 -regret insertion is used. The selected request is then

valuated, i.e. , if the incurred insertion cost is cheaper compared to out-

ourcing, it is inserted in the chosen route (in its cheapest position). The

equest is then removed from 𝑆 in . Note that in the event that no feasi-

le insertion is found, the request 𝑟 with the least cost per distance unit

s selected ( i.e. , 𝑠 𝑟 ∕ 𝑑 𝑠 𝑜 ,𝑠 𝑑 ). Finally, the insertion procedure returns the

ut-sourcing bank 𝑆 out . 

.3. Constraints 

The feasibility of (intermediate) solutions is enforced at any time

uring the run of the algorithm. To recap, the following constraints need

o be satisfied during cost matrix computation: ( i ) every request is out-

ourced or must be served by a vehicle, ( ii ) time window(s) at origin and

estination of the requests must be respected, and ( iii ) breaks between

orking shifts as well as ( iv ) Sunday-breaks must be taken into account.

onstraints ( ii ), ( iii ), and ( iv ) are enforced only if the requests are served

y a vehicle. As aforementioned, out-sourced requests are assumed to

atisfy all the considered constraints. 

Constraints ( i ) and ( ii ) are straightforward to implement. Many re-

earchers have investigated ways to consider these constraints in an effi-

ient manner, i.e. , by using auxiliary data structures, e.g. , Campbell and

avelsbergh (2004) ; Savelsbergh (1990) . However, when combined with

onstraints ( iii ) and ( iv ), it is not trivial to efficiently implement them

ithin ALNS. 
5 
. Computational experiments 

First, we describe the assumptions made during the transformation

f Gehring & Homberger VRP instances, along with their corresponding

esults. The second part presents a case study at DB Schenker and de-

cribes the instance characteristics of the input data sets and costs. In

oth sections, the costs for out-sourcing no request and out-sourcing all

equests are computed for comparison. Finally, the solutions that assign

ll requests to outsourcing it or serving it by a vehicle are discussed. 

The ALNS is implemented in C++11 and all experiments are run

n an Intel Core i7-8750H machine @2.2GHz, with 16 GB DDR4-RAM

2.4GHz. 

Algorithm parameters The algorithm contains various parameters that

eed to be set. Some of them are business-related, others are heuristics

echnical in nature. The business-related parameters, along with corre-

ponding explanation and values, are shown in Table 2 . 

After performing extensive computational experiments, we found

hat the best performance can be achieved by applying the removal op-

rators RRR, SRR, SR, TSR, and RSR and the insertion operators greedy,

-regret, 5-regret, and 6-regret, as well as the technical parameter set-

ings of Table 3 . 

Furthermore, we apply simulated annealing (SA) acceptance crite-

ia in our ALNS framework, as inspired by Ropke and Pisinger (2006) .

e considered a similar parameter setup as in Ghilas et al. (2016) , as

t proved to be beneficial for solution quality: In particular, generating

 new best solution is rewarded with 33, generating an improved cur-

ent solution, but not better the best-known solution is rewarded with

, and finally, generating a solution, not better than the current one,

ut accepted by the SA mechanism is rewarded with 13. In such setup

iversification is rewarded. 

Note that this presented parameter setup is used throughout this sec-

ion. 

.1. Transformed Gehring & Homberger instances 

In this section, we present the computational results obtained by

olving the transformed well-known Gehring & Homberger VRP in-

tances ( Gehring and Homberger, 1999 ). To convert the literature in-

tances, we made the following assumptions: 

• Node 0 is ignored, as it corresponds to the depot; 
• Demand, capacity and service time data is ignored; 
• For an instance with 𝑁 nodes, node 𝑛 and 𝑁/2 + 𝑛 correspond to

pickup and delivery nodes of a request; 
• To assure that the planning horizon consists of multiple days, we

multiplied the Euclidean distances and pickup start time windows
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Table 4 

Assumptions on spot-market rates. 

distance 𝛿 𝛿 < 150 km 150 km ≤ 𝛿 < 350 km 350 km ≤ 𝛿

cost in EUR/km 1.75 1.40 1.15 

 

 

 

 

 

 

 

 

G  

a  

C  

fl  

a

 

a  

e  

s  

s  

c  

c  

o

 

a  

f  

p  

r  

i

 

o  

e  

i

5

 

s  

S  

f  

w  

b  

a  

i  

i

 

f  

l  

c

 

p  

p  

p  

f  

u

 

m  

c  

b

 

d

 

p  

t  

d  

a

 

t  

i  

i  

s  

a  

p  

c  

a

 

t  

r  

b  

o

i  

t  

f  

a  

s

 

n  

s  

S

5

 

u

 

u  

C  

a  

m  

b  

p  

s  

i  

l  

i  

a

 

a  

r  

e

 

S

 

u

 

t  

C

 

fl  

t  

m  

r

by a factor 𝑓 = 6 . The resulting distances are then rounded to the

closest integer; 
• For simplicity, all locations ( i.e. , pickup and delivery locations) are

assumed to be open between 06:00 and 18:00; 
• The transformed pickup time is used to determine the ready day

within the planning horizon. Then, the corresponding time window

from 06:00 to 18:00 of that day is used as pickup time window. Both

time windows of the delivery location are computed given the pickup

time window; 
• SM rates per km are assumed as shown in Table 4 ; 
• FCT rate is assumed 1.06 EUR/km; 
• 𝜇 is computed for each instance separately: 250 km per day with

pickups in the planning horizon. 

Table 5 presents the results obtained after solving the transformed

ehring & Homberger instances. In particular, the numbers show the

verages over all corresponding instances for each instance class ( e.g. ,

100). Three scenarios are computed: all requests served by an own

eet, all requests out-sourced, and a mix between those as mentioned

bove. 

Not surprisingly, the results indicate that considering the mix of FCT

nd SM leads to best results w.r.t. operating costs. In particular, on av-

rage 0.5 % savings can be achieved for the clustered (C) instances by

erving approx. 5 % of the requests using own vehicles compared to out-

ourcing everything. On the other hand, an average of 0.2 % cost savings

an be achieved in the mixed scenario for random (R) and randomly-

lustered (RC) instances by serving approx. 2 % of the requests using

wn vehicles. 

For the C instances, more savings can be achieved compared to R

nd RC instances. The main reason is that requests that are compatible

rom a temporal point of view are more compatible from a geographical

oint of view. In other words, the chances that a pickup location of a

equest is close to a delivery location of another request are higher in C

nstances. Hence less empty driving can be achieved. 

Note that serving all requests by own vehicles is the most costly out

f all scenarios considered. A minimum-driving-distance constraint is

nforced, and the requests are not perfectly compatible in terms of tim-

ng and spatial aspects. 

.2. DB Schenker case study 

DB Schenker is one of the key players in the global logistics

ector. Founded in 1872 by Gottfried Schenker in Vienna, Austria,

chenker & Co. began its business by consolidating rail consignments

rom Paris, France, to Vienna, Austria. DB Schenker is a freight for-

arder that supports industry and trade in the global exchange of goods

y land transport, worldwide air and ocean freight, contract logistics,

nd supply chain management. With more than 76,000 employees work-

ng in approx. 2,000 locations around the world, DB Schenker is a leader

n its industry. 

DB Schenker’s land transport in Europe covers 36 countries and of-

ers a variety of products and services. One of them is direct product for

arge loads, e.g. , FTLs that are transported directly from consignor to

onsignee. 

Large shippers frequently conduct tenders that require logistics

roviders to tailor dedicated full-load solutions. DB Schenker partici-

ates in such tenders via sales department representatives, who need to

repare the business offers. To come up with competitive solutions, dif-

erent scenarios need to be analyzed, such as: operating a fleet of FCT,

sing SM capacity, as well as a mix of both options mentioned above. 
6 
The approach presented in this paper aims at helping sales depart-

ents get more insights about various scenarios, given e.g. , histori-

al/forecasted FTL transportation demands. As a result, sales teams can

ecome more competitive during tenders. 

Two of DB Schenker’s customers conducted a tender, and the sales

epartment was given the following problem (per customer): 

A set of plants is operating on a weekly schedule with working hours

er day. For an entire month, all full-load shipments that have to be

ransported between the plants are given. Every shipment has a pickup

ate and must be transported directly (no consolidation, no pickup on

 later date, etc.) to its destination. 

For small instances, an offer can be created by assuming that every-

hing is given to the spot market or that the volume can be included

n DB Schenker’s internal transportation network. However, for large

nstances as given by the two customers (with up to 12,427 full-load

hipments per month), none of the approaches has enough capacity,

nd none of them would enable the sales department to present a com-

etitive offer. An option with enough capacity that can be operated at a

ompetitive cost is the combination of its own dedicated fleet of trucks

nd outsourcing to the spot market. 

To determine the size of such a fleet and the cost of operating it,

he above model can be applied: The full-load shipments correspond to

equests 𝑅 that have to be transported between the locations 𝐿 given

y the plants. The origin time window 𝑟 𝑜 tw of a request 𝑟 is given by the

perating hours of the pickup plant. The destination time windows 𝑟 𝑑 tws 
s given by the operating hours of the destination plant. Note that up to

wo such time windows are required, as a truck can arrive late and wait

or the next day. The two options of using the spot market and operating

n own fleet correspond to outsourcing requests and serving them by a

et of vehicles, respectively. 

As the result should be a business offer within the tender process,

o party requires a detailed schedule for the trucks of the own fleet. A

implified driving regulations model based on shifts and including the

unday-driving ban is sufficient. 

.2.1. Data description 

In this section, we describe the request- and cost-related data we

sed in the analysis. 

Request data Two data sets obtained from DB Schenker customers are

sed. We consider two instances for Customer 1 and three instances for

ustomer 2, each consisting of monthly request data, representing low-,

verage- and high-demand months. In contrast to Customer 2, the de-

and for Customer 1 is relatively stable over time. Hence the difference

etween high- and low-volume months is rather insignificant. Table 6

rovides the total number of requests, along with the corresponding

um of the direct origin-destination distances over all requests for all

nstances. Fig. 1 visualizes the number of in- and out-going requests per

ocation. Note that most locations have a significant imbalance between

n- and out-going requests. Additionally, the maps in Figs. 2 and 3 visu-

lize the number of requests as well as the in- and out-degree. 

Fig. 3 indicates that for Customer 1, quite some locations are imbal-

nced, i.e. , has either (almost) only incoming, or (almost) only outgoing

equests. In contrast, the demand from Customer 2 looks more balanced,

xcept for the western location. 

Distances between physical locations were computed using the Open

ource Routing Machine ( Luxen and Vetter, 2011 ). 

Overall, it can be observed that the problem instances are large, with

p to 12 , 427 requests. 

As aligned with the FTL operations team, the minimum amount to

ravel by an own vehicle was set to 𝜇 = 8 , 000 km and 𝜇 = 5 , 000 km, for

ustomer 1 and 2, respectively. 

Note that the ultimate goal is to generate insights regarding the FCT

eet size for each customer, as operational plans are out of scope in

his paper. Hence, solving multiple scenarios depending on different

onthly volumes helps the sales department develop cost-efficient and

eliable business offers. 
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Table 5 

Costs (average: grouped by class and number of nodes) for the mixed scenarios. Distances are given in 1 , 000 km. Minimum distance 𝜇 per own vehicle 

is enforced in all scenarios ( i.e. , assumed fixed cost 𝜇𝜅). %req. denotes the percentage of requests. Costs are given in 1 , 000 EUR. The highlighted 

cost is better. 

out-sourcing out-sourcing mixed scenario 

Class nothing everything own vehicles out-sourced Σ

& % km km 

Nodes km cost km cost req. loaded empty cost km cost cost 

C 100 58.0 64.5 45.0 54.6 2.2 1.14 0.04 1.3 44.0 53.2 54.5 

C 200 145.0 154.5 115.0 136.4 5.2 6.00 0.18 6.5 109.0 129.0 135.6 

C 300 324.0 343.3 267.0 310.1 5.2 17.29 0.41 18.8 250.0 290.0 308.8 

C 400 527.0 558.3 449.0 518.6 5.6 29.70 0.74 32.3 419.0 484.2 516.5 

C 500 869.0 921.2 764.0 881.0 7.2 67.31 1.15 72.6 697.0 803.4 876.0 

R 100 58.0 63.3 44.0 53.0 2.0 0.90 0.02 1.0 43.0 51.9 52.9 

R 200 154.0 163.6 120.0 142.2 2.0 2.35 0.08 2.6 118.0 139.4 141.9 

R 300 342.0 362.7 272.0 314.9 1.7 6.06 0.11 6.5 266.0 308.0 314.5 

R 400 607.0 643.0 497.0 573.8 2.3 15.26 0.32 16.5 482.0 556.2 572.7 

R 500 960.0 1017.9 791.0 910.9 3.2 34.09 0.49 36.7 757.0 871.7 908.4 

RC 100 59.0 63.1 44.0 53.4 2.1 1.20 0.03 1.3 43.0 52.0 53.3 

RC 200 155.0 164.5 126.0 147.7 2.4 3.55 0.08 3.8 122.0 143.5 147.4 

RC 300 338.0 357.8 262.0 305.2 2.0 6.35 0.19 6.9 256.0 297.8 304.7 

RC 400 622.0 659.2 500.0 577.8 2.5 17.82 0.43 19.3 482.0 557.3 576.6 

RC 500 980.0 1039.2 806.0 929.5 2.8 30.08 0.69 32.6 776.0 894.8 927.5 

Table 6 

Instances 

High Volume Month Average Volume Month Low Volume Month 

Customer #requests kilometer #requests kilometer #requests kilometer 

1 12,427 10,215,308 — — 11,432 9,197,733 

2 2,316 1,094,550 2,257 1,145,214 1,162 678,370 

Fig. 1. In- and out-going requests per physical location. The 

plots show the number of in- (gray) and out-going (black) 

requests per location. The top and middle plot refer to Cus- 

tomer 1 and the remaining ones for Customer 2. 

Fig. 2. Number of Requests per Location for Customer 1 (left) and 2 (right). 

7 
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Fig. 3. In- and Out-Degree per Location for Customer 1 (left) and 2 (right). The pie-chart per location shows the relative in-degree in blue and the out-degree in 

orange. 

Fig. 4. Real SM rates for out-sourcing vs. approximated rates 

for out-sourcing vs. costs per km for vehicles for Customer 1 

(left) and 2 (right). The individual points show the approxi- 

mated SM default rates (red crosses) as well as the real SM rate s 

for outsourcing (blue dots). The static cost of 1.06 EUR/km for 

vehicles is shown as a black reference line. 
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Cost data DB Schenker’s FTL operations team provided us with SM

ates to be used for outsourced requests corresponding to the given

atasets. Since it was impossible to obtain all rates (for all points in

ime and all origin-destination pairs), we had to make assumptions re-

arding missing rates. In close collaboration with our business partners,

e managed to develop realistic assumptions for static SM rates per

ilometer. 

In particular, we distinguish three different specific rate levels, de-

ending on the distance between origin and destination, as shown in

able 4 . Regarding the cost per driven kilometer of the FCT vehicles,

ur business partners provided a cost benchmark of 1.06 EUR/km (both

mpty or loaded). Fig. 4 displays the relation between specific rates in

UR/km and the distance from the origin to the destination. In partic-

lar, SM: default rates indicate the distance-specific approximation de-

cribed above, whereas SM: rate indicates the real rates for out-sourcing

o the SM obtained from the operations team. 

For Customer 1, approximately 35 % of the SM rates could not be

btained by the operations team and were, thus, approximated using

he approach described above. In contrast to that, all SM rates could be

etrieved for Customer 2. No clear trend can be observed in Fig. 4 . This

s mainly because specific rate levels differ strongly between trade lanes,

nd that they are not symmetric per trade lane: a transport from East-

rn Europe to Western Europe, with a distance of, e.g. , 750 km would

ost less than the corresponding trip in the opposite direction. Also, rate

evels are dynamic in time. Certain months of the year experience high

emand for transportation services, hence the costs get higher. Simi-

arly, for low-volume months the transportation costs are expected to

e cheaper. 

The enforced minimum total distance 𝜇 per vehicle, along with an

ppropriate cost 𝜅 per unit of driven distance, reflects the fixed cost of

sing a vehicle, i.e. , labor, truck leasing, etc. In other words, we assume
8 
hat if a vehicle is used, it would cost at least 𝜇𝜅. In addition, the vehicles

re assumed to be deployed only for the customer which e.g. , organizes

he tender (set 𝑅 ). 

In order to assure that the final business offer is economically vi-

ble, considering spot market volatility, 𝑠 𝑟 (for 𝑟 ∈ 𝑅 ) contains a certain

mount of buffer, as discussed with the operations team. 

Note that these costs reflect the market at the time of writing this

rticle, and an additional uncertainty buffer. 

.2.2. Out-sourcing everything vs. nothing 

Here, we present the computational results of enforcing all requests

o be outsourced and all requests to be served by vehicles. Computing

he cost of outsourcing is easy. We have to sum up all outsourcing costs

f all requests. For computing the cost of serving all requests by own

ehicles, we consider the cost of unplanned requests within the ALNS as

 huge number. 

Tables 7 and 8 indicate the results considering complete sets of re-

uests for each customer and month. In particular, Table 7 shows the

umber of vehicles needed to perform the service. Additional columns

resent the empty travel distance between loads relative to the loaded

ravel distance, i.e. , between the previous delivery and the next pickup,

PIs related to the distance traveled per vehicle, and, finally, the com-

utational time needed. 

It can easily be seen that significant additional empty travel would

e required in a scenario where nothing is outsourced. One of the main

easons for this is, of course, the imbalanced demand structure that was

isplayed in Fig. 3 . In particular, several locations in both data sets serve

ither as origins (sources) or destinations (sinks). This naturally leads to

mpty runs, e.g. , when a vehicle delivers at a pure sink location and then

s forced to travel empty to its following source location. 
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Table 7 

Computational results for a solution out-sourcing nothing. Distances per vehicle are given in 1 , 000 km. The additional empty distances are given 

relatively to the loaded distances in Table 6 . 

Cus- Additional Dist. p. Vehicle CPU 

tomer Month #requests #vehicles Empty Dist. Max Avg Min [sec] 

1 High 12,427 1,172 + 31.3 % 18.8 11.7 8.0 4,386 

1 Low 11,432 1,095 + 35.1 % 18.8 11.9 8.0 3,917 

2 High 2,316 153 + 35.6 % 13.2 9.7 5.4 525 

2 Avg 2,257 153 + 41.1 % 13.8 10.6 5.4 727 

2 Low 1,162 95 + 33.8 % 12.5 9.6 5.4 345 

Table 8 

Costs for solutions out-sourcing everything and out-sourcing nothing. Distances are given in 1 , 000 km. Costs are given in 1 million EUR. The 

highlighted cost is better. #req. denotes the number of requests. 

out-sourcing everything nothing 

requests grouped per orig.-dest. dist. 𝛿

Customer 𝛿< 150 150 ≤ 𝛿< 350 350 ≤ 𝛿

Month #req. Σkm #req. Σkm #req. Σkm cost km cost 

1 High 458 46.9 2,651 726.3 9,318 9,442.1 12.43 13,417 14.22 

1 Low 435 44.3 2,650 747.4 8,347 8,406.0 11.40 12,431 13.18 

2 High 1,099 52.7 16 4.9 1,201 1,036.9 1.50 1,485 1.57 

2 Avg 958 45.9 24 7.4 1,275 1,091.9 1.50 1,616 1.71 

2 Low 439 21.0 17 5.3 706 652.1 0.85 908 0.96 

Table 9 

Costs for the mixed scenarios. Distances are given in 1 , 000 km. %req. denotes the percentage of requests. #veh. denotes the number of vehicles. 

Costs are given in 1 million EUR. The highlighted cost is better. 

out-sourcing out-sourcing mixed scenario 

nothing everything own vehicles out-sourced Σ

% km km # 

Customer & Month km cost km cost req. loaded empty veh. cost km cost cost 

1 High 13,417 14.22 10,215 12.43 6.9 294.4 39.3 36 0.35 9,921 11.83 12.18 

1 Low 12,431 13.18 9,198 11.40 6.2 264.8 24.2 31 0.31 8,933 10.87 11.18 

2 High 1,485 1.57 1,095 1.50 41.1 56.2 35.7 14 0.10 1,038 1.26 1.36 

2 Avg 1,616 1.71 1,145 1.50 35.4 50.2 26.0 11 0.08 1,095 1.30 1.38 

2 Low 908 0.96 678 0.85 34.5 26.3 15.0 7 0.04 652 0.74 0.79 
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To assess the merits of a scenario without outsourcing, we compare

ts overall cost to that of a scenario where everything is outsourced, as

ummarized in Table 8 . In all five instances, outsourcing nothing is less

ompetitive than outsourcing everything, with an overall cost disadvan-

age of up to 16 %. Again, this result does not come as a real surprise

ince an outsourcing approach is, at least in theory, fully flexible and of

nlimited capacity and, thus, more efficient in serving the rather imbal-

nced and erratic demand patterns inherent to our customer instances. 

.2.3. Cost-optimal mix 

After computing the costs for outsourcing no request and outsourcing

ll requests for comparison, we compute the cost-optimal assignment of

equests to outsourcing options or an own fleet of vehicles. We call a

cenario where both options are allowed a mixed scenario . 

Table 9 indicates results for the most cost-efficient mixed scenarios

ound and compares them to outsourcing nothing and outsourcing ev-

rything. In all five instances, the mixed scenario is more competitive

han any other two options, although the relative gain is more marked

or Customer 2 than Customer 1. 

The demand structure of Customer 1 (as discussed in Section 5.2.1 )

hows an extreme imbalance of in- and out-going requests for many lo-

ations. The geographic distribution of the locations induces many long-

istance connections, which lead to a high amount of empty travel. To

e financially beneficial, a spot-market rate has to be twice as high as

he rate for operating an own vehicle. This is rarely the case, as shown

efore. As a result of this effect, we see that only a minimal amount (up
9 
o 7 %) of the requests is served by own vehicles, whereas the vast ma-

ority is outsourced. For a high-volume month, the mixed scenario is 2 %

heaper (12.18 million instead of 12.43 million EUR) than outsourcing

verything to the SM. In a low-volume month, savings are even less. 

As certain spot market rates for Customer 2 are quite expensive,

ompared to own vehicle rate 𝜅, 41 % of the requests are served

y own vehicles. The significant relative empty travel of the vehicles

ould still outweigh the high spot market costs. Consequently, for a

igh/average/low-volume month, the mixed scenario is 9 %/7 %/6 %

heaper than out-sourcing everything to the spot-market, respectively. 

. Conclusions 

In this paper, we have presented a meta-heuristic to effectively sup-

ort business development units at DB Schenker in designing competi-

ive offers for complex full-load solutions. In particular, in order to cal-

ulate the total number of vehicles needed, the distance traveled, and

he full-load requests that are served by an own fleet of vehicles instead

f out sourcing them to SM. We modeled the problem as a variant of the

DPTW with driving regulations, and tackled it using a tailored ALNS. 

We compared three scenarios, namely out-sourcing nothing, out-

ourcing everything to the spot-market, and a mix of both, and quanti-

ed the corresponding costs. For evaluation purposes, we used trans-

ormed VRP instances widely used in the scientific literature ( i.e. ,

ehring & Homberger) and real-life instances from two potential cus-

omers of DB Schenker, containing monthly demand data with up to
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2,427 requests. For these instances, out-sourcing nothing is outper-

ormed by out-sourcing everything due to the underlying demand struc-

ure. However, a mixed setup may yield benefits of up to 9 % compared

o out-sourcing everything. 

To actually realize the potential benefits presented in this paper, the

eveloped approach would need to be complemented by an operational

ecision support system, which can help control towers continuously

lan, execute, and re-plan scenarios in case of demand fluctuations, driv-

ng time deviations or other unexpected events. The operational sys-

em needs access to real-time traffic data and own vehicles should be

quipped with tracking devices that allow timely detection of potential

eviations or disruptions. 

Also from an algorithmic point of view, our approach could be

xtended in a number of ways. As aforementioned, when using the

resented algorithm as operational decision support, additional as-

ects/parameters need to be added to allow for considering dynamic

spects of the problem as well as problem heterogeneity, e.g. , different

ost assumptions per lane or geography when operating own vehicles.

e have also indicated above that we took a rather pragmatic approach

owards driving time constraints which currently doesn’t reflect the full

omplexity of various national regulatory regimes. 

In addition, when using the approach for tender calculations, de-

and uncertainty should be incorporated into the optimization proce-

ure. This implies that routing solutions would need to be more conser-

ative, hence more costly to some extent. However, incorporating the

ncertainty explicitly into the model would increase the robustness of

he solutions, and thus lead to less probability of unexpected costs due

o demand fluctuations. 
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